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Abstract

When training speech recognition systems,
one often faces the situation that sufficient
amounts of training data for the language in
question are available but only small amounts
of data for the domain in question. This
problem is even bigger for end-to-end speech
recognition systems that only accept tran-
scribed speech as training data, which is harder
and more expensive to obtain than text data.

In this paper we present experiments in adapt-
ing end-to-end speech recognition systems by
a method which is called batch-weighting and
which we contrast against regular fine-tuning,
i.e., to continue to train existing neural speech
recognition models on adaptation data. We
perform experiments using theses techniques
in adapting to topic, accent and vocabulary,
showing that batch-weighting consistently out-
performs fine-tuning.

In order to show the generalization capabilities
of batch-weighting we perform experiments in
several languages, i.e., Arabic, English and
German. Due to its relatively small computa-
tional requirements batch-weighting is a suit-
able technique for supervised life-long learn-
ing during the life-time of a speech recognition
system, e.g., from user corrections.

1 Introduction

When building an automatic speech recognition
(ASR) system for a specific domain, one is often
faced with the fact that only very limited amounts
of training data for the target domain are avail-
able. This problem has become bigger with the
advent of end-to-end speech recognition systems.
The old ASR systems used the Bayes theorem to
solve the speech recognition with the help of an
acoustic model (AM) and a language model (LM).
The acoustic model needed to be trained on tran-
scribed speech recordings, the language model was
trained on text only. Therefore, topic adaptation,

could be done with the help of textual training data
only, by adapting or training a language model on
topic specific data. As text only data is easier to
come by than transcribed speech, topic adaptation
was often feasible. For end-to-end speech recog-
nition systems this option is no longer available,
as they only accept transcribed speech as training
data. However, transcribed speech for a specific
domain is often more difficult to find than text data,
thus making it more difficult or expensive to find
or create fitting adaptation data.

For HMM based ASR systems that use Gaussian
mixture models (GMMs) for estimating the emis-
sion probabilities of the HMM, several techniques
for adapting to speakers or channels were available
(Gales et al., 1996; Gales, 1998; Puming Zhan and
Westphal, 1997). These techniques often could also
be applied in an unsupervised or semi-supervised
manner during inference.

For end-to-end ASR systems such techniques
need to be newly created. In this paper we are exam-
ining the use of fine-tuning for end-to-end ASR for
adapting them to different domains. We thereby ex-
amine different dimensions of domain adaptation,
such as adapting to topics, accents and vocabulary.
In the experiments we compare fine-tuning, i.e.,
continuing to train an end-to-end system on adap-
tation data, to a technique called batch-weighting,
in which we mix adaptation data with the data for
training the background model in a certain ratio
at mini-batch level. Batch-weighting was thereby
inspired by a technique from machine translation
(Wang et al., 2017) and is explained in detail in
section 5. We adapt this technique for automatic
speech recognition.

Further, for the different dimensions of domain
adaptation, we examine the fine-tuning of different
parts of the end-to-end ASR systems, e.g., only
the encoder or only the decoder, in order to test
the hypothesis that encoder layers are mainly con-
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cerned with learning features and acoustic proper-
ties, while the decoder models the linguistic prop-
erties of the recognizer’s domain.

We performed our experiments in several lan-
guages — Arabic, English and German — and in
different domain scenarios in order to show batch-
weighting’s generalization capabilities to new adap-
tation scenarios. Our experiments thereby show
that batch-weighting consistently outperforms sim-
ple fine-tuning.

We also report the computational time needed
for performing batch-weighting in the different sce-
narios. The low computation times (less than six
hours in all cases) makes this technique suitable for
life-long learning, when small amounts of super-
vised adaptation data can be collected during the
life of a system, e.g., by user corrections.

2 Related Work

There are a several studies about adaptation of
Neural Machine Translation (NMT) systems. Chu
and Wang (2018) divided NMT domain adaptation
methods into four categories: Data centric, training
objective centric, architecture centric and decoding
centric:

• Data centric: (Moore and Lewis, 2010;
Axelrod et al., 2011; Duh et al., 2013) selected
the sentences that are similar to in-domain
data from out-of-domain data.

• Training objective centric:
Chen et al. (2017) used sentence weighting
for adaptation of part-of-speech (POS)
tagging, a named entity (NE) recognition
task. Wang et al. (2017) used sentence
weighting, domain weighting and batch
weighting for NMT, and Yan et al. (2019)
used word weighting. (Luong and Manning,
2015; Freitag and Al-Onaizan, 2016; Neubig
and Hu, 2018) used fine-tuning, and Chu
and Dabre (2019) used mixed fine-tuning,
while Kobus et al. (2016); Chu et al. (2017)
combined mixed fine-tuning and adding
domain tag.

• Architecture centric: Baniata et al.
(2018) used shared decoder and domain spe-
cific encoders to adapt NMT for new language.
(Gu et al., 2019; Britz et al., 2017) trained
Domain Discriminator and NMT model with
some part shared in parallel.

• Decoding centric: Gulcehre et al.
(2015) used shallow fusion, whose outputs are
generated by the weighted sum of the NMT
and RNNLM probabilities. Dou et al. (2019)
combined shallow fusion, deep fusion and do-
main differential.

In the area of end-to-end speech recognition
Nguyen et al. (2019) trained a speech recognition
system on a multi-domain corpus. By using a do-
main identification (DI) vector derived from the
activation of a bottle-neck layer in a domain classi-
fying network they prime their speech recognition
system to different domains present in the train-
ing data. The paper then shows improvements in
Word Error Rate (WER) when adapting the speech
recognition system in an unsupervised manner us-
ing the DI vector to a domain for which no train-
ing or adaptation data is available. In contrast in
our experiments we work with small amounts of
adaptation data that are not sufficient for training a
complete system, but can be exploited for adapting
an existing system.

3 Dimensions of Adaption

In our work we examine the adaptation of our sys-
tem to different dimensions of variability. Some-
times these different dimensions are subsumed un-
der the term domain (Nguyen et al., 2019). How-
ever, on other occasions domain is used to describe
the topic of speech data only. We will follow the
latter use of domain in this paper and will explicitly
address the different dimensions of the speech data
for which we examined suitable adaptation tech-
niques: Topic adaptation, accent adaptation and
vocabulary adaptation.

3.1 Topic Adaptation
In some situations, we need a model that works
well in a specific domain, but the target domain
data-set (also known as in-domain data-set) is too
small to train a meaningful ASR model alone. In
order to obtain a high-performance model in the
low resource target domain, we adapt a well trained
general seq2seq model to the target domain.

3.2 Accent Adaptation
In some situations, it may be difficult to recognize
the audio of non-native speakers correctly. The
speakers often have a significant non-native accent
which does not match the training data from native
speakers or even other non-native speakers. Our
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in-domain training data consists just of a few hours
audio of non-native speakers of a specific native
language. We adapt the seq2seq model on both
specific accent domain and multi-accent domain
with our own data-sets.

3.3 Vocabulary Adaptation
In some situations, it may be crucial to recognize
specific topic words correctly. The Word Error Rate
(WER) usually does not reflect the performance on
these specific words, therefore we evaluate if these
words are recognized correctly via another metric.
We recorded data-sets containing certain words of
the new domains which the baseline systems don’t
recognize correctly. To measure how well our sys-
tems recognize the new words, we calculate an
word accuracy (WA) where a new word is counted
as recognized if and only if it is contained in the
hypothesis.

4 Data

We conduct experiments on the languages English,
German and Arabic, in order to make sure that
batch-weighting generalizes across languages. Ta-
bles 1, 2 and 3 contain a summary of the speech
data-sets that we used as general, out-of-domain
training data-sets (out), and of the in-domain data-
sets (in) that match our target domain.

4.1 Out-of-domain Data-Sets
4.1.1 English
The baseline system in English has been trained on
the TED-LIUM (Rousseau et al., 2012) and How2
(Sanabria et al., 2018) corpus. We divided 789
hours of speech as the training set, 18.3 hours as
the validation set and 2.6 hours as the test set.

4.1.2 German
The German baseline system has been trained on
433 hours of speech data consisting of speech from
the European Parliament, radio news and lectures.
A test set of 50 minutes was randomly selected
from this domain and excluded from the training
data.

4.1.3 Arabic
The baseline system in Arabic has been trained on
Alj.1200h. It consists of 1200 hours of broad-
cast videos recorded during 2005–2015 from the
Aljazeera Arabic TV channel as described in Ali
et al. (2016). As reported, 70% of this set is in Mod-
ern Standard Arabic (MSA) and the rest is Dialectal

Arabic (DA), such as Egyptian (EGY), Gulf (GLF),
Levantine (LEV), and North African (NOR). The
categories of the speech range from conversation
(63%), interview (19%), to report (18%). The used
test set Alj-MSA+dialect.10h of 10 hours is
described in Ali et al. (2016) as well. It includes
non-overlapped speech from Aljazeera, which was
prepared according to Ali et al. (2016) for an
Arabic multi-dialect broadcast media recognition
challenge. For our task, we normalized Hamza
and Alif. The test set Alj-MSA.2h is a subset
from Alj-MSA+dialect.10h where we cut
only MSA utterances free from dialects from the
beginning of the set until we reached the duration
of 2 hours.

Corpus Speech data Utterances
A: Training Data

How2+Ted (out) 789 h 473K

validation set
How2+Ted (out) 18.3 h 11K

Atis (in) 3.6 h 1800

data-set (in)
Japanese accent 4.7 h 2227

Multi accent data-set (in) 8.7 h 8986
B: Test Data
How2+Ted (out) test set 2.6 h 1155

Atis (in) test set 34.4 min 355

data-set (in) test set
Japanese accent 1.2 h 496

data-set (in) test set
Multi-accent 2.1 h 2135

Table 1: Summary of the English speech data-sets

Corpus Speech data Utterances
A: Training Data

Training set (out) 433 h 321K

training set (in)
MINI-Questions 3.7 h 1441

validation set (in)
MINI-Questions 23 min 173

B: Test Data
Test set (out) 50 min 605

MINI-Questions test set (in) 18 min 189
New words test set (in) 32 min 325

Table 2: Summary of the German speech data-sets

4.2 Topic Adaptation Data-Sets
4.2.1 English
For topic adaptation in English we use the ATIS
data-set. ATIS (Air Travel Information Services)
contains speech about various hypothetical travel
planning scenarios from 36 speakers. There are
many American city names, airport names and ab-
breviations, that makes the general model perform
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Corpus Speech data Utterances
A: Training Data

Alj.1200h (out) 1200 h 374K
MINI-Quest-Ans.3.34h (in) 3.34 h 915
B: Test Data

Alj-MSA.2h (out) 2 h 1188
MINI-ANS.42m (in) 42 min 224
MINI-Ques.50m (in) 50 min 225

Table 3: Summary of the Arabic speech data-sets

poorly. We used 3.6 hours of speech as training set
and 34.4 minutes of speech as test set.

4.2.2 German
For topic adaptation in German we recorded
3.7 hours of data from six speakers (called
MINI-Questions training set) contain-
ing questions of a psychological interview (Shee-
han et al., 1998). For the MINI-Questions
validation and test set we recorded 23
minutes and 18 minutes of speech, respec-
tively, from one speaker. The speakers of
the MINI-Questions training and test
set are disjoint. For the recording we employed
our online application TEQST1 which allows the
user to read texts and record with their own mobile
devices.

4.2.3 Arabic
The data-set MINI-Quest-Ans.3.34h for
topic adaptation in Arabic consists of 915 utter-
ances and 3.34 hours of reading MINI (Shee-
han et al., 1998) questions and free answers
from two speakers. We transcribed the answers
with our ASR system and then corrected them
manually with the application DaCToR (Hus-
sain et al., 2020) which we used to record a
part of data and to correct the automatic tran-
scription. There are two corresponding test
sets. The other part is recorded with TEQST
(section 4.2.2). MINI-ANS.42m has been pro-
cessed similarly to MINI-Quest-Ans.3.34h
and consists of 224 free answers on M.I.N.I
questions with a duration of 38 minutes by one
speaker and MINI-Ques.50m which contains
231 M.I.N.I questions by the same speaker as from
MINI-ANS.42m with a duration of 43 minutes.

4.3 Accent Adaptation Data-Set

For accent adaptation we conducted experiments
with the two following English data-sets:

1https://github.com/TEQST/TEQST

The first accent domain that we adapted the
seq2seq model on is a Japanese accented English
one. A four-hour audio, which was compiled by a
working student in our Institute in 2010 was used
as the training data for this domain. On the other
hand, the test data was actually a recording of a
one-hour-and-a-half English lecture delivered by
the Japanese Professor Nakamura in April 2020.
This audio copy was provided by the University of
Tokyo, one of our partners who was in need of an
English ASR system for transcribing their lectures.
Those training and test data-sets were collectively
called the Japanese accent data-set.

For the second accent domain, the condition was
considerably different in which the data-set con-
tained numerous audios of speeches in some in-
ternational scientific conferences. It can be seen
that those people were from different countries and
they spoke English with dissimilar accents, conse-
quently making it harder to adapt the model effec-
tively. To be more specific, the training data was
made up of 39 recordings of 39 presentations in the
EUROSPEECH 1993 Conference. Similarly, the
test data was collected by obtaining speech record-
ings in the InterACT25 2006workshop. In the
end, we had a two-hour test data-set of 24 speeches
with a wide range of accents. These data-sets were
called the multi-accent data-set.

4.4 Vocabulary Adaptation Data-Set

For vocabulary adaptation we recorded a German
new words test set containing 32 minutes
of speech. In this test set, words of the
German MINI-Questions training set
which are not recognized correctly with our base-
line system (e.g. substance names) have been taken,
put in other context and have been recorded. For
recording of this new words test set the application
TEQST (see section 4.2.2) was used.

5 Experiments and Results

For all experiments, we first trained a general ASR
seq2seq model on the out-of-domain data-set, then
adapted the model with the in-domain data-set. For
the experiments in English topic adaptation and
in German we used a Transformer based seq2seq
model (Vaswani et al., 2017; Pham et al., 2019),
for Arabic and English accent adaptation we used
an encoder-decoder plus attention based system
(Nguyen et al., 2020).

For the adaptation we compare fine-tuning and

https://github.com/TEQST/TEQST
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batch-weighting (Wang et al., 2017). In the batch-
weighting strategy the training data-set is a combi-
nation of in- and out-of-domain data. To describe
how the data of both data-sets is combined we re-
port the out-of-domain ratio, i.e., the number of
tokens in a mini batch from the out-of-domain data-
set divided by the total number of tokens in the
mini batch. A ratio of 0 is equivalent to conven-
tional fine-tuning using only in-domain data and 1
is equivalent to training without in-domain data.
Furthermore, we combined these methods with
freezing layers. We froze the encoder and all layers
except the softmax-layer.

For all the experiments we report the time for
the adaptation. Note that it is possible for methods
with frozen layers to take longer compared to their
counterparts with no frozen layers since different
methods can require different amounts of update
steps to obtain the best performance.

The tables 4, 5, 6 and 7 contain a summary of
the experiments.

English For English the baseline model achieved
a Word Error Rate (WER) of 11.0% on the
out-of-domain test set, i.e., TED talks. On
the out-of-domain test set, ATIS, the baseline
system achieves a WER of 43.1%.

German The German baseline model yields
WERs of 15.8% and 32.6% on the out-of-
domain test set and on the in-domain test set,
respectively. The baseline systems achieves
an accuracy of 32.0% on the new words test
set.

Arabic The Arabic baseline system achieves a
WER of 12.6% on the out-of-domain data, Al-
jazeera shows, and 40.0% on MINI answers
and 30.4% on MINI questions, our in-domain
data.

Non-Native English The baseline system for our
non-native tests achieved a WER of 7.8% on
the out-of-domain test data, and 23.5% and
21.6% on the two accented in-domain data-
sets.

5.1 Topic Adaptation

5.1.1 English
The results for the topic adaptation experiments
on English are summarized in Table 4. The batch-
weighting method with out-of-domain ration 0.3

and no frozen layers obtained 4.4% WER on the in-
domain, which is a 12% relative improvement com-
pared to the fine-tuning approach, and is only 0.3%
worse on the out-of-domain data-set than the base-
line. Compared with the 3.1% reduction of WER
of the fine-tuning, the results show that adding an
appropriate amount of out-of-domain data to the
training data-set during adaptation can effectively
reduce forgetting on the out-of-domain. Freezing
the encoder or all layers except the softmax-layer
performed worse on the in-domain data-set than
without freezing layers.

5.1.2 German

For the language German we found that for both
fine-tuning and batch-weighting the WERs on the
out-of-domain test set decreased ((A-C) in table
5). This suggests that there may be a better point
of stopping the baseline training. Batch-weighting
was performed with an initial ratio of 0.5 and the
distance of this ratio to zero and one was then split
in half multiple times to obtain the other ratios
used. The best full model, model with frozen en-
coder and model with all layers except the softmax-
layer frozen achieved 21.8%, 25.6% and 27.8%
WER on the out-of-domain data-set outperforming
fine-tuning by 1.1%, 5.3% and 5.7%, respectively.
As for the English system adapting the full model
performed best and batch-weighting worked better
than fine-tuning.

5.1.3 Arabic

For adapting the Arabic system to M.I.N.I ques-
tions and answers, we employed batch-weighting
by increasing the out-of-domain ratio from 0.05
to 0.95 with a step of 0.05. The validation set
is a mixed set from in- and out-domain data. As
shown in table 6, the system succeeds to adapt to
the target domain without forgetting by training
the full model, by freezing the encoder with the
ratios 0.2 and 0.4 respectively. The model suf-
fers from a slight forgetting (0.8%) when train-
ing by freezing all layers except the softmax-layer.
As we notice from table 6 the best adapting re-
sults (11.4% for MINI-ANS.42m and 3.8% for
MINI-Ques.50m) are reached when training the
whole model inclusive the encoder. The reason
could be referred to the channel difference of the
recording with mobile platforms from the out-
domain training data (see sections 4.1.3 and 4.2.3).
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Description Out-of-domain ratio Ted (out) Atis (in) Time
Baseline - 11.0 43.1 -

A: Full model
Fine-tuning 0.0 14.1 5.0 12 min

Batch-weighting 0.3 11.3 4.4 63 min
B: Frozen encoder

Fine-tuning 0.0 14.0 4.8 12 min
Batch-weighting 0.5 11.4 4.8 123 min
Batch-weighting 0.3 11.5 4.9 44 min
C: All layers except softmax-layer frozen

Fine-tuning 0.0 20.5 5.3 38 min
Batch-weighting 0.5 11.4 5.5 53 min
Batch-weighting 0.3 11.5 5.5 65 min

Table 4: Summary of the experiments for the English ASR-System domain adaptation (values are the WER ↓)

Description Out-of-domain ratio Test set MINI-Q. test set New words test set acc. (↑) Time
Baseline - 15.8 32.6 32.0 -

A: Full model
Fine-tuning 0.00 15.8 22.0 52.3 50 min

Batch-weighting 0.88 14.9 22.2 54.3 29 min
Batch-weighting 0.97 15.4 21.8 58.4 40 min
B: Frozen encoder

Fine-tuning 0.00 15.1 27.0 42.1 35 min
Batch-weighting 0.75 15.1 26.4 43.2 107 min
Batch-weighting 0.94 15.4 25.6 49.2 34 min
C: All layers except softmax-layer frozen

Fine-tuning 0.00 15.1 29.5 36.6 59 min
Batch-weighting 0.94 15.0 28.0 53.0 142 min
Batch-weighting 0.97 15.0 27.8 53.0 95 min
D: All layers except softmax-layer frozen with feature caching
Batch-weighting 0.88 15.2 28.5 57.4 10 s
E: Feature caching + 1-layer LM on top of the decoder
Batch-weighting 0.50 16.9 27.2 70.1 86 min

Table 5: Summary of the experiments for the German ASR-System (values are the WER ↓)

Description Out-of-domain ratio Alj-MSA.2h MINI-ANS.42m MINI-Ques.50m Time
Baseline - 12.6 40.0 30.4 -

A: Full model
fine-tuning 0 17.3 14.1 5.3 7 min

Batch-weighting 0.2 12.6 11.4 3.8 48 min
B: Frozen encoder

fine-tuning 0 21.2 25.3 8.6 19 min
Batch-weighting 0.4 12.7 25.8 6.1 27 min
C: All layers except softmax-layer frozen

fine-tuning 0 13.9 30.0 19.6 18 min
Batch-weighting 0.2 13.4 26.6 11.0 68 min

Table 6: Summary of the experiments for the Arabic ASR-System (values are the WER ↓)

Description Out-of-domain ratio Test set test set
Japanese accent

test set
Multi-accent Time

Baseline - 7.8 23.5 21.6 -
A: Full model

Fine-tuning 0.0 7.3 18.8 22.5 183 min
Batch-weighting 0.5 7.2 18.9 20.2 351 min
B: Frozen encoder

Fine-tuning 0.0 8.1 24.6 - -
C: Frozen decoder

Fine-tuning 0.0 7.3 18.8 22.7 149 min
Batch-weighting 0.5 7.2 18.8 20.1 291 min

Table 7: Summary of the experiments for the non-native English ASR-System adaptation (values are the WER ↓)
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5.2 Accent Adaptation

In addition to the adaptation strategies described at
the start of the chapter, we inspected the efficiency
of the fine-tuning process with frozen decoder. We
expected this method to be significantly better than
fine-tuning with frozen encoder, and as effective as
fine-tuning the whole model due to the adaptation
on the acoustic domain.

For the Japanese accent test set, the
batch-weighting method with frozen decoder pro-
duced the best WER 18.8%. As can be seen from
Table 7, the frozen decoder had an equally effec-
tive performance in comparison with fine-tuning
the whole model and worked a lot better than fine-
tuning with frozen encoder. Moreover, the result
of frozen encoder was proved to be worse than
the baseline model. Interestingly, the result on
the out-of-domain test set was even better after ap-
plying fine-tuning on the in-domain data, which
exceeded our original expectation. Therefore, we
assumed that fine-tuning on the harder acoustic do-
main could improve the general performance of
the encoder component. On the other hand, the
result could not be noticeably improved with the
batch-weighting.

For the multi-accent test set, the re-
sults did not show that the normal fine-tuning could
work as well as the Japanese accent one. How-
ever, it can be observed that batch-weighting of
the whole model could improve WER from 21.6 to
20.2.

Finally, batch-weighting with frozen decoder
produced the best results on both Japanese accent
and multi-accent domains.

5.3 Vocabulary Adaptation

For vocabulary adaption we did not only measure
WER but also the word accuracy (WA) on the new
words as described in Section 3.3. The baseline
model achieved a WA of 32.0% on the new words
test set. This is rather high for words the base-
line model did not recognize correctly in other
context since in the MINI-Questions training set
the are a lot of enumerations, e.g., of substance
names. Putting these new words in separate sen-
tences makes it easier for the model to recognize
them. The best full model, model with frozen en-
coder and model with all layers except the softmax-
layer frozen achieved 58.4%, 49.2% and 52.8%
accuracy (A-C in table 5), i.e., significantly better
than the baseline.

In a scenario where the adaptation has to be
done within a very short time, e.g., during a lecture
where the system should adapt to human correc-
tions within a few seconds, it is possible to use the
approach of freezing all layers except the softmax-
layer. This allows to speed up the adaptation pro-
cess by caching the output of the decoder before
the softmax-layer. These features can then be used
to train the softmax-layer. This is faster because it
is only required to process the speech and text once
by the encoder and decoder, respectively, and this
can be done in a precomputation step.

We tried to cache the features after the decoder
with the model in training and inference mode,
respectively. The second one performed better
and also better than when training without feature
caching ((D) in table 5). Since the validation loss
increased constantly during training when using
inference mode features we chose the validation
accuracy (which increased up to some point) to
determine the point to stop the training. Using this
technique reduces the time requirements signifi-
cantly.

We also tried to extend the model by adding a
language model on top of the decoder. We tested
language models with one and two layers. The
1-layer language model outperformed all other ap-
proaches tested with 70.1% accuracy on the new
words test set and is reported in table 5 (E).

6 Conclusion

In this paper we examined the supervised adap-
tation of end-to-end speech recognition systems
on small amounts of adaptation data when large
amounts of general, out-of-domain training data
are available. We used a technique called batch-
weighting and contrasted it against regular fine-
tuning, showing that batch-weighting delivers con-
sistently better performance.

For this we performed experiments on several
dimensions of domain adaptation: Topic, accent
and vocabulary. We also performed experiments on
three languages — Arabic, English and German —
to show that batch-weighting generalizes across dif-
ferent languages and scenarios. For a rule of thumb
to choose a good mixing ratio further experiments
have to be conducted.

Due to its comparatively short run-time and com-
putational resources necessary batch-weighting is
suitable for life-long learning of an ASR systems
during deployment, e.g., from user corrections.
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