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Abstract

We describe the ADAPT system for the 2020
IWPT Shared Task on parsing enhanced Uni-
versal Dependencies in 17 languages. We im-
plement a pipeline approach using UDPipe
and UDPipe-future to provide initial levels of
annotation. The enhanced dependency graph
is either produced by a graph-based semantic
dependency parser or is built from the basic
tree using a small set of heuristics. Our results
show that, for the majority of languages, a se-
mantic dependency parser can be successfully
applied to the task of parsing enhanced depen-
dencies.

Unfortunately, we did not ensure a connected
graph as part of our pipeline approach and our
competition submission relied on a last-minute
fix to pass the validation script which harmed
our official evaluation scores significantly. Our
submission ranked eighth in the official evalu-
ation with a macro-averaged coarse ELAS F1
of 67.23 and a treebank average of 67.49. We
later implemented our own graph-connecting
fix which resulted in a score of 79.53 (lan-
guage average) or 79.76 (treebank average),
which would have placed fourth in the compe-
tition evaluation.

1 Introduction

The 2020 IWPT Shared Task on enhanced depen-
dency parsing (Bouma et al., 2020) requires partici-
pants to predict the enhanced dependencies (DEPS
column in the CoNLL-U format) in addition to sen-
tence boundaries, tokenisation, lemmata, POS tags,
morphological features and the basic dependency
tree. We take a pipeline approach using

1. UDPipe for sentence splitting and tokenisa-
tion,

2. ensembles of UDPipe-future basic parsers,
that also predict lemmata, POS tags and mor-
phological features, with added support for

multi-treebank models (Stymne et al., 2018),
and

3. two types of enhancers: (a) copying the ba-
sic tree and applying a small set of heuristics
(baseline system), and (b) a graph-based se-
mantic dependency parser (Dozat and Man-
ning, 2018).

To enable reproduction of our results, we make
available our helper scripts and modifications of
the semantic parser.1

Our approach to the task does not guarantee a
connected graph – something that we did not ac-
count for. Thus, on submission day, we did not
have an appropriate solution ready to fix our out-
puts but were able to provide a valid submission
due to some functionality that was added to the
quick-fix tool provided by the organisers2 to al-
ter the enhanced graph. The solution was designed
primarily to make the files pass validation but in
doing so, harms F1-score. In a post-competition
run, we addressed the connected graph issue with
an alternative solution which increased our macro-
averaged ELAS F1-score from 67.23 to 79.53 and
the treebank average from 67.49 to 79.76.

2 System Components

2.1 Segmentation

We use UDPipe3 (Straka and Straková, 2017)
with off-the-shelf UD v2.5 models4 (Straka and
Straková, 2019) for the languages of the shared
task to split the raw input text into sentences and to-
kens. In cases where more than one UDPipe model

1https://github.com/jbrry/
Enhanced-UD-Parsing

2https://github.com/
UniversalDependencies/tools

3http://ufal.mff.cuni.cz/udpipe
4http://hdl.handle.net/11234/1-3131

https://github.com/jbrry/Enhanced-UD-Parsing
https://github.com/jbrry/Enhanced-UD-Parsing
https://github.com/UniversalDependencies/tools
https://github.com/UniversalDependencies/tools
http://ufal.mff.cuni.cz/udpipe
http://hdl.handle.net/11234/1-3131
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is available for a language, we try all models dur-
ing development 5 and select for each test language
the best overall pipeline according to ELAS on the
treebank with the biggest development set for the
language.6

2.2 Basic Parsing

We choose UDPipe-future (Straka, 2018) for basic
parsing and joint prediction of lemmata, POS tags
and morphological features so as to not require a
separate tagger. We extend UDPipe-future to train
multi-treebank models as introduced by (Stymne
et al., 2018) with UUParser.7,8

Inspired by Straka et al. (2019), we use two types
of external word embeddings with UDPipe-future:
ELMo contextualised word embeddings (Peters
et al., 2018) and FastText character-n-gram-based
word embeddings (Bojanowski et al., 2017).9 For
15 of the 17 test languages, ElmoForManyLangs10

(Che et al., 2018) provides ELMo models. We train
FastText on the raw text provided by the CoNLL’17
shared task for the same 15 languages after shuf-
fling sentences. For the Russian FastText model,
we kept getting vectors with large component val-
ues even after trying a different machine and a
different permutation of sentences, prohibiting ef-
fective training of the parser. We then used a model
trained on 2⁄3 of the Russian data for which compo-
nent values and parser LAS were in the expected
range. Furthermore, we train UDPipe-future mod-
els using FastText and internal embeddings only.

5Due to a configuration error, we did not try segmenta-
tion with UDPipe models trained on fi ftb, lt hse and
sv lines in the official submission.

6For Czech, we based our decision on results for cs cac
instead of cs pdt as we did not have full results available for
cs pdt.

7Multi-treebank models supply each token with the source
treebank ID as additional input with a separate embedding
table. Like Stymne et al. (2018), we use a vector size of 12.
At test time, a proxy treebank must be chosen when the input
sentence does not come from one of the training treebanks or
the source is unknown.

8https://github.com/jowagner/
UDPipe-Future/tree/multitreebank

9The FastText word embedding is restricted to a fixed
vocabulary of one million tokens, not taking advantage of
FastText’s ability to produce new vectors for OOVs. UDPipe-
future does not fine-tune these word embeddings. Instead, the
parser trains an additional embedding exclusively for training
words and a character-based representation. The latter two are
added and the result is concatenated with the two externally
provided representations. As far as we understand the code, an
all-zero vector is used for OOVs, i. e. words not in the selected
one-million-word FastText vocabulary.

10https://github.com/HIT-SCIR/
ELMoForManyLangs

For Lithuanian and Tamil, we train UDPipe-
future without external word embeddings. The
parser still uses an internal word embedding cover-
ing all words of the training treebank(s) and a word
representation obtained with a bidirectional GRU
layer over the input characters.

For each target language, we train (a) mono-
treebank models for each training treebank avail-
able with surface strings in UD v2.5, preferring the
shared-task version when available, and (b) a multi-
treebank model for each language using all tree-
banks for that language for which we also trained
mono-treebank models. We train up to seven mod-
els with different initialisation for each setting to
combine them in ensembles.11,12 We consider en-
sembles not just of a single type of model with dif-
ferent initialisation but also combinations of mod-
els trained on different treebanks (mono-treebank
models) or treebank combinations (multi-treebank
models) and in the plain, FastText and ELMo vari-
ants.13 As the number of possible combinations
increases exponentially with the number of models,
we prune the candidates giving preference to mod-
els using all or only one treebank and to models
using ELMo. We then test each ensemble on the
development data (raw input segmented with UD-
Pipe) and pick the best ensembles based on ELAS
after applying our heuristic enhancer (Section 2.3)
to the basic trees.

To pick the proxy treebank (see description in
Footnote 7) for multi-treebank parsing, we use
the treebank name in the filename of the raw text
during development. However, for final testing,
the treebank identifier is unavailable (and if it had
been available there would have been cases where

11We trained 68 types of models. We trained seven seeds
for 34 of these, five seeds for 30 and three seeds for four.
Ensembles sizes three, five and seven are considered, including
a combination of (n+1)/2 models of one type and (n−1)/2
models of another type with n ∈ {3, 5, 7}.

12We use our implementation https://github.com/
jowagner/ud-combination of the linear combiner of
Attardi and Dell’Orletta (2009).

13While predicting on development data to facilitate model
selection, we temporarily introduced a bug in our system
causing it to use the first initialisation seed for all ensemble
members only, effectively falling back to a single model when
only one model type is used. We fixed this bug before we
switched to making test set predictions and tried to account for
it in the model selection but, under time pressure, made some
hard to explain ad hoc choices, e. g. we used an ensemble of
three models for Czech, two mono-treebank models trained
on cs cac and one multi-treebank model, even though we
also had test set predictions with an ensemble of seven models
with the same mixture of model types available. For details,
see the reproducibility notes in our code repository.

https://github.com/jowagner/UDPipe-Future/tree/multitreebank
https://github.com/jowagner/UDPipe-Future/tree/multitreebank
https://github.com/HIT-SCIR/ELMoForManyLangs
https://github.com/HIT-SCIR/ELMoForManyLangs
https://github.com/jowagner/ud-combination
https://github.com/jowagner/ud-combination
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this treebank is not one of the training treebanks).
Given time limits, we decided to simply assign
each test set, i. e. each test language, the training
treebank with the largest amount of training data
as the proxy treebank.14

2.3 Heuristic Enhancement

We build a baseline system which concentrates on
the two enhanced UD phenomena which are very
straightforward to implement using simple heuris-
tic rules, namely, co-reference in relative clauses
and modifier relations containing case markers.
These rules are applied to the output of the ba-
sic parser. We have two versions of the modifier
relation rule - one in which the value of the case
morphological feature is included in the relation
label and one without. We also have a rule which
adds the lemma of a conjunction to the enhanced
label of its head. For each development set, we find
the optimal subset of the set of heuristic rules in
terms of ELAS among all possible subsets except
those combining the two case rules.

This baseline system is clearly suboptimal since
it makes no attempt at all to handle those more in-
teresting enhanced UD phenomena which involve
the addition or deletion of arcs, i.e. conjunct prop-
agation, ellipsis and control/raising constructions.
Nonetheless it is useful as a baseline to check that
the main system is performing reasonably and is
available as a fall back.

2.4 Semantic Parsing

2.4.1 Modelling Enhanced Dependencies

As our main system to predict the enhanced graph,
we follow (Dozat and Manning, 2018) and treat
enhanced dependency parsing as a task similar to
semantic dependency parsing. In semantic depen-
dency parsing, words may have multiple heads.
Thus, Dozat and Manning (2018) apply their deep
biaffine graph-based dependency parser (Dozat and
Manning, 2017) to the task of semantic dependency
parsing but replace the softmax cross-entropy loss
with sigmoid cross-entropy loss for edge prediction.
The above modification changes the modelling ob-
jective such that words are no longer competing
with one another to be classified as the appropriate
head; rather, the parser chooses whether an edge

14For Estonian, French, Dutch and Polish (a subset of the
languages with PUD treebanks announced in the development
pack), we randomised on the sentence level which proxy tree-
bank is used during multi-treebank parsing.

exists between each possible pair of words indepen-
dently. Whether an edge exists between two words
is based on a predefined threshold, where a score
above this threshold results in an edge being pre-
dicted and, subsequently, the edge’s label. In our
experiments we use an edge prediction threshold
of 0.5. If the parser did not predict an edge for a
word, we take the edge with the highest probabil-
ity. As we want to select the label with the highest
probability for each chosen edge, standard softmax
cross-entropy loss is used for label prediction as in
Dozat and Manning (2018).

In order for the semantic dependency parser to
be able to model relationships where a word may
have multiple heads, we create an adjacency matrix
where the ijth entry in the matrix indicates whether
an edge exists between tokens i and j with label
type k. We also append the dummy root token
to the adjacency matrix so that an edge can be
predicted from the main predicate of the sentence
to the dummy root token.

Figure 1a shows the enhanced UD graph for the
phrase, Tale of joy and sorrow. In the enhanced
representation, each conjunct in the conjoined noun
phrase is attached to the governor of the modifier
phrase, e.g. there is an additional nmod relation
marked in blue between the noun Tale and the
second conjunct sorrow. Note that the lemma of
the case and cc dependents are appended to the
enhanced dependency labels of their heads. The
corresponding edge-existence probabilities of the
semantic parser trained on en ewt are shown in
Figure 1b where the parser correctly predicts an
edge from sorrow to the first conjunct joy as well
as the head of the modifier phrase Tale.

2.4.2 Feature Representations
In our experiments, each word wi in a sentence
S = (w0, w1, . . . , wN ) is converted to its vector
representation xi. We trained different variants of
our semantic parser where xi is the concatenation
of different combinations of the below features:

• BERT embedding: The first word-piece
embedding of the wordpiece-tokenised in-
put word from BERT (Devlin et al., 2019)
e
(BERT )
i ∈ R768

• character embedding: A character em-
bedding obtained by passing the k charac-
ters ch1, . . . , chk of wi through a BiLSTM:
BiLSTM(ch1:k), e

(ch)
i ∈ R64
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ROOT Tale of joy and sorrow

root
nmod:of

conj:and

case

nmod:of

cc

(a) Enhanced UD graph. (b) Edge-existence probabilities.

Figure 1 The enhanced UD graph and edge-existence probabilities of the semantic parser trained on en ewt for
the phrase Tale of joy and sorrow.

• lemma embedding: The embedding of the
word’s lemma e

(le)
i ∈ R50

• UPOS embedding: The embedding of the
word’s universal POS tag e

(u)
i ∈ R50

• XPOS embedding: The embedding of the
word’s language-specific POS tag e

(x)
i ∈ R50

• morphological feature embedding: The em-
bedding of the word’s morphological features
e
(f)
i ∈ R50

• head-information embedding: An embed-
ding representing the word’s head information
from the basic tree e

(h)
i ∈ R50

• dependency label embedding: The embed-
ding of the word’s dependency label from the
basic tree e

(label)
i ∈ R50

All model variants use the lexical information
of the first BERT word-piece embedding and the
character embedding, where ; represents vector con-
catenation:

e
(l)
i = [e

(BERT )
i ; e

(ch)
i ] (1)

The subsequent variation comes from the other
types of features used where we experimented with
the below feature settings:

xi = [e
(l)
i ; e

(u)
i ] (2)

xi = [e
(l)
i ; e

(le)
i ; e

(u)
i ; e

(f)
i ] (3)

xi = [e
(l)
i ; e

(le)
i ; e

(u)
i ; e

(x)
i ; e

(f)
i ] (4)

xi = [e
(l)
i ; e

(le)
i ; e

(u)
i ; e

(f)
i ; e

(b)
i ] (5)

xi = [e
(l)
i ; e

(le)
i ; e

(u)
i ; e

(x)
i ; e

(f)
i ; e

(b)
i ] (6)

For the morphological features, there may be
multiple morphological tags m1, . . . ,mt for a par-
ticular word wi. Thus, we split the full label into
separate features (Hall et al., 2007) and embed each
morphological property separately. We then sum
the individual embedded representations together
and divide by the number of active properties:

e
(f)
i = mean(e(m1:t)) (7)

We follow the same process for the head-
information embedding e

(h)
i . Rather than encoding

the head as an integer value, we obtain a direc-
tion value and a distance value: for each head-
dependent pair (i, j), we subtract the indices of i, j
giving the distance value. If the value is negative
it means the head is to the left or if it is positive,
to the right. We then take the absolute distance
value and define ranges: short (1-4), medium (5-9),
far (10-14) and long-range (>15). The qualitative
direction (left or right) and distance labels are em-
bedded in the same way as morphological features,
e.g. embedded as separate components, summed
together and then divided by the number of features
(which in this case is always two):

e
(h)
i = mean(e(h1:t)) (8)

To encode the basic tree, we then concatenate the
head representation and the dependency label em-
bedding:

e
(b)
i = [e

(h)
i ; e

(label)
i ] (9)
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It is worth mentioning that more sophisticated ap-
proaches for modelling head distance and direction
exist for basic dependency parsing (Qi et al., 2018)
but we leave using this approach for enhanced de-
pendency parsing as future work.

2.4.3 Training Details
Our semantic parser predicts edges in a greedy
fashion based on local decisions, i. e. we did not
make use of any maximum spanning tree algorithm
or enforce any global constraints. One property
of enhanced dependency graphs is that the graph
may contain cycles, therefore, we did not remove
any cycles from the graph but observed that this
sometimes causes fragments in the graph which
are not reachable from the notional ROOT. For
graphs with unreachable nodes, we applied our
post-processor to attach these (Section 2.5).

We found that this architecture can be easily ap-
plied to enhanced dependency parsing given its sim-
ilar nature to semantic dependency parsing. One
caveat is that in enhanced dependency parsing, the
label set can be quite large as modifier lemma and
case information can be appended to the depen-
dency label which results in very high memory
requirements for certain languages such as Ara-
bic. Additionally, modelling all enhanced labels
in this fashion means that the parser is limited in
its ability to predict labels for rare modifiers. An
examination of the semantic parser output on the
en ewt development set shows that, although the
parser often predicts the correct label, it can some-
times predict the wrong label containing a frequent
modifier which is not in the sentence, e.g. advcl:if
instead of advcl:as.

Our semantic parser is built upon the implemen-
tation in AllenNLP (Gardner et al., 2018). Due to
time constraints, we trained our semantic parsing
models on the gold training data released by the
organisers as opposed to creating jack-knifed sil-
ver data. Hyperparameters are similar to those in
Dozat and Manning (2017) as we found the larger
network size of Dozat and Manning (2018) to be
too restrictive for certain languages with high mem-
ory demands. Full hyperparameters of the seman-
tic parser are given in Table 1. We trained for
75 epochs with early-stopping if the development
score did not improve after 10 epochs.

Memory Considerations We trained our seman-
tic parsing models on two GPUs: the first was
an NVIDIA RTX 2080 Ti with 12GB of VRAM

Semantic Parser Details
Parameter Value

Char-BiLSTM layers 2
BiLSTM layers 3
BiLSTM size 400
Char-BiLSTM size 64
Arc MLP size 500
Label MLP size 100
Dropout LSTMs 0.33
Dropout MLP 0.33
Dropout embeddings 0.33
Nonlinear act. (MLP) ELU
Edge prediction threshold 0.5
BERT word-piece embedding 768
Char embedding 64
Tag embedding (all tags) 50
Optimizer Adam
Learning rate 0.001
beta1 0.9
beta2 0.9
Num. epochs 75
Patience 10
Batch size 16

Table 1 Chosen hyperparameters for our semantic
parser. For the tag embedding, we use the same size
embedding for all features (lemma, POS, morpholog-
ical features, head-information and label embeddings)
and concatenate them.

where we had to remove very long sentences
(< .03% of sentences overall) from the treebanks:
cs cac, cs pdt, it isdt, ru syntagrus
and sv talbanken in order to fit a batch into
memory. We were also given access to an NVIDIA
V100 GPU with 32GB of VRAM which enabled
us to process all treebanks except for ar padt
without removing long sentences. For ar padt,
after removing the longest 75 sentences, the model
still required 29GB of VRAM.

2.4.4 BERT Models

For the BERT models, in early development runs
we compared multilingual BERT (mBERT) with a
language-specific BERT model if there was one
available in HuggingFace’s (Wolf et al., 2019)
models repository.15 We used a language-specific
BERT model for ar (Safaya et al., 2020), bg+cs
(Arkhipov et al., 2019), en (Devlin et al., 2019),

15https://huggingface.co/models

https://huggingface.co/models
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fi (Virtanen et al., 2019), it16, nl (de Vries et al.,
2019), pl17, ru (Kuratov and Arkhipov, 2019)
and sv18 and for the rest of the languages we used
mBERT (Devlin et al., 2019). We found that the
language-specific variant was always better than
mBERT except for pl lfg. For fr sequoia,
we tried using the CamemBERT model (Martin
et al., 2020). As this model uses RoBERTA (Liu
et al., 2019) as opposed to BERT, we installed
AllenNLP from the master repository which uses
HuggingFace’s AutoTokenizer module which
supports many BERT-like models. We noticed a
trend of lower results when using the master branch
for some languages but training was also more sta-
ble for certain treebanks where we had previously
encountered a nan in the loss.19 Consequently,
we include models from the stable release and the
bleeding-edge master branch in our development
pipeline.

2.5 Connecting the Graph

We had no solution ready to connect fragmented
graphs produced by our semantic parser20 on the
system submission day and resorted to using the
“connect-to-root” option of the quick-fix tool
provided by the shared task organisers, who warned
that it had not been thoroughly tested.

After the system submission deadline, we inves-
tigated the fragmentation issue. The task is to make
all nodes reachable from the notional ROOT21,
where reachability is directional. Adding more
edges than necessary harms precision and thus F1-
score. We found that the quick-fix tool with
the “connect-to-root” option adds edges to every
unreachable node. We also noticed a bug in the im-
plementation where certain reachable nodes were
being reported as unreachable.

We then implemented an improved tool to con-
nect fragmented graphs trying to minimise the num-
ber of edges added to the graph. We repeatedly

16https://github.com/dbmdz/berts
17https://github.com/kldarek/polbert
18https://github.com/Kungbib/

swedish-bert-models
19We incurred a nan loss for cs cac, cs pdt, it isdt

and ru syntagrus using the AllenNLP stable branch 0.9.0
and used the best model from the available epochs.

20Between 90.18% (Lithuanian) and 99.51% (Russian) of
test sentences in our official submission are not affected, i. e.
all nodes are reachable from a root node. This observation
excludes Estonian, for which we submitted predictions using
our heuristic system.

21UD distinguished between the notional ROOT (ID 0) and
root nodes. The latter are any nodes that have ‘0’ as a head.

ELAS F1
Treebank sem-frag heuristic

ar padt 70.99 59.74
bg btb 88.09 86.19

cs cac 86.51 74.41
cs fictree 83.23 77.37
cs pdt 79.58 71.19

en ewt 84.71 82.86
et edt 62.74 69.35
fi tdt 83.64 71.84
fr sequoia 88.65 87.53
it isdt 90.13 88.28
lt alksnis 73.63 57.84
lv lvtb 81.82 71.29

nl alpino 89.93 89.00
nl lassysmall 79.00 81.24

pl lfg 94.12 93.84
pl pdb 82.25 78.27

ru syntagrus 88.48 80.03
sk snk 81.30 75.98
sv talbanken 84.54 81.32
ta ttb 55.68 43.94
uk iu 82.41 76.88

Table 2 Development set ELAS F1 score for the
best semantic parser evaluated without connecting frag-
mented graphs (sem-frag) and for the best combination
of heuristic rules (heuristic)

check for each unreachable node how many un-
reachable nodes can be reached from it. Among
the nodes that maximise this number we pick the
first node in surface order and make it a child of
the notional ROOT, i. e. it becomes an additional
root node. This is a rather naive approach which
does not try to connect fragments in a sensible
manner but, rather, mimics the behaviour of the
“connect-to-root” option. Future work could try to
show whether our above algorithm adds the min-
imal number of edges necessary to connect the
graph or if a lower optimum exists.

3 Results

Table 2 compares the semantic parser against the
heuristic approach on the ELAS F1 metric. The
evaluation script was run without connecting frag-
mented graphs and format validation. For all but
two treebanks, the semantic parser performs better
than the best heuristic approach. For some lan-

https://github.com/dbmdz/berts
https://github.com/kldarek/polbert
https://github.com/Kungbib/swedish-bert-models
https://github.com/Kungbib/swedish-bert-models
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ELAS F1
Treebank subm frag fix re-run

Arabic-PADT 57.19 70.08 70.40
Bulgarian-BTB 77.29 89.58 89.60
Czech-FicTree 70.04 80.77 81.63
Czech-CAC 71.72 86.00 86.38
Czech-PDT 65.94 79.03 79.84
Czech-PUD 64.34 77.37 78.08
Dutch-Alpino 71.44 87.61 87.77
Dutch-L.Small 64.03 77.39 77.24
English-EWT 70.61 83.56 83.56
English-PUD 70.25 86.88 87.03
Estonian-EDT 62.29 68.20 68.37
Estonian-EWT 55.70 61.19 60.67
Finnish-TDT 73.02 84.36 84.33
Finnish-PUD 71.58 84.62 84.62
French-Sequoia 77.44 87.58 88.60
French-FQB 74.30 82.68 83.26
Italian-ISDT 71.98 90.24 90.23
Latvian-LVTB 72.41 81.81 82.40
Lithuanian-AL. 58.36 68.76 68.84
Polish-LFG 61.23 70.89 70.71
Polish-PDB 67.68 80.93 82.43
Polish-PUD 65.64 79.77 80.79
Russian-SynT. 75.27 89.21 89.47
Slovak-SNK 68.43 81.63 81.97
Swedish-Talb. 71.86 86.78 86.72
Swedish-PUD 64.70 79.35 79.37
Tamil-TTB 48.47 57.28 57.10
Ukrainian-IU 66.43 79.81 82.92

Average 67.49 79.76 80.15

Table 3 Test set results: subm = submitted, frag fix
= using our own fragment connector and quick-fix.pl
without connect-to-root, re-run = a re-run with bug
fixes, no new models but new model selection

guages, the difference in performance is large. For
et ewt, which does not have a development set,
we suspect that we overfitted our semantic parser
on the et ewt training data by allowing it to train
for 75 epochs.

Table 3 shows test set ELAS obtained on the
shared task submission site for (a) our submission
fully relying on the organiser’s quick-fix tool
to fix issues in the output of our system, (b) the
same predictions post-processed by our own frag-
ment connector that aims to minimise the num-
ber of root edges added, and (c) a re-run of our
pipeline using the same models for system com-
ponents as before but with all bugs fixed during

development applied to all predictions and new
decisions which models to apply to the test sets.
While the quick-fix tool enabled us to make a
valid submission in time, its approach of adding
edges from the root node to all unreachable to-
kens has a strong negative impact on precision, e. g.
62.26 ELAS precision on the Czech CAC develop-
ment set vs. 87.37 without post-processing. Our
own post-competition fix avoids this and would
have brought us to the top half of the competition.

4 Conclusion

In this system submission, we use a graph-based se-
mantic parser to parse enhanced dependencies and
compare to a baseline in which we create enhanced
graphs from the basic tree using a very limited set
of heuristics. Avenues for future work include:

Post-processing Predict the head and label for
edges connecting fragments (as opposed to a
dummy “0:root” edge) where this information
could come from new edges available from lower-
ing the score threshold or from the basic tree.

Label Prediction The semantic parser performs
competitively despite treating enhanced depen-
dency labels containing lemmas and case informa-
tion as atomic units. However, a more sophisticated
approach should still be tried.

Multi-treebank Parsing When randomising the
proxy treebank for multi-treebank models, use a
different randomisation for each ensemble mem-
ber. Predict the best proxy treebank for each test
sentence or paragraph (Wagner et al., 2020).

Elided Tokens Our semantic parser handles
elided tokens by appending the elided token to the
adjacency matrix and offsetting the head indices.
While we used this approach during training on
gold data, we did not predict elided tokens and we
wish to explore methods for doing so.
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