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Abstract
We attempt to replicate a named entity recog-
nition (NER) model implemented in a popu-
lar toolkit and discover that a critical barrier to
doing so is the inconsistent evaluation of im-
proper label sequences. We define these se-
quences and examine how two scorers differ
in their handling of them, finding that one ap-
proach produces F1 scores approximately 0.5
points higher on the CoNLL 2003 English de-
velopment and test sets. We propose best prac-
tices to increase the replicability of NER eval-
uations by increasing transparency regarding
the handling of improper label sequences.

1 Introduction

The goal of this paper is to demonstrate an issue
that complicates the comparison and replication of
named entity recognition (NER) systems. Standard
F1-based evaluation of NER models in the man-
ner made popular by the CoNLL 2002–3 shared
tasks (Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) requires decoding a sequence
of per-token labels into entity mentions and com-
puting precision and recall by evaluating the types
and spans of the mentions. While there are popular
scorer implementations and popular NER toolk-
its, there is little transparency regarding the exact
process that scorers use to decode label sequences.

In the case where all label sequences are prop-
erly formed, this lack of transparency should have
no impact; all correct decoding processes should
produce the same result. However, many systems
can produce what we call improper label sequences
(see Section 3.2), and different approaches to de-
coding improper label sequences for evaluation
produce different scores. As the processes for label
decoding have not been standardized and are of-
ten undocumented, comparisons between reported
scores may not be fair, and replication of those
scores can prove difficult.

2 Our negative result

We did not intend to begin a project on NER evalu-
ation reproducibility. The discovery process for our
negative result began with three separate research
projects encountering the same issue: higher-than-
expected F1 scores for a certain class of models
implemented in a popular NER toolkit, NCRF++
(Yang et al., 2018; Yang and Zhang, 2018).

One of the authors of this paper attempted to
reimplement NCRF++’s models as a learning ex-
ercise. The reimplementation yielded similar F1
scores to NCRF++ when a CRF output layer was
used but produced lower F1 scores when using
softmax output. After the other author found the
same result in an independent reimplementation,
we turned our attention to the only commonality
between our implementations: an open-source ex-
ternal scorer. We consulted with researchers in our
lab using NCRF++ for two other projects, and a
consistent story began to emerge: when scoring
softmax models, NCRF++’s internal scorer pro-
duced higher scores than other NER scorers.

Our negative result was a failure to replicate the
performance of NCRF++, and the cause of this fail-
ure was that we did not understand its approach to
evaluation. NCRF++’s scorer differs from others
in how it treats improper label sequences, and its
approach consistently produces higher F1 scores
for softmax-output models. The handling of these
sequences is effectively undefined behavior for an
NER scorer; there is no single correct strategy. In
this paper, we quantify the impact of those strate-
gies and propose an evaluation approach that would
improve reproducibility by requiring explicit, trans-
parent handling of improper label sequences.

Supplemental material and the resources needed
to replicate this study are available at https://
lignos.org/repro-ner.

https://lignos.org/repro-ner
https://lignos.org/repro-ner
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3 Entity encoding and decoding

3.1 Proper label sequences

As the focus of this venue is on insights from nega-
tive results and not the finer points of NER systems,
we will first review the process of entity encoding
and decoding. Consider the following sentence
fragment from the CoNLL 2003 English NER data:

[Australian]MISC [Davis Cup]MISC cap-
tain [John Newcombe]PER.

In this fragment, three entity mentions are anno-
tated. Table 1 shows three well-known approaches
to encoding these tokens as a label sequence.

Encoding Labels

IOB I-MISC B-MISC I-MISC O I-PER I-PER
BIO B-MISC B-MISC I-MISC O B-PER I-PER
BIOES S-MISC B-MISC E-MISC O B-PER E-PER

Table 1: Proper entity encodings for the tokens of the
string Australian Davis Cup captain John Newcombe.

Note that in BIO (Begin, Inside, Outside) en-
coding, every mention begins with a B label; in
IOB encoding, mentions begin with I except where
necessary to differentiate from the continuation of
a preceding same-type mention by using a B la-
bel (e.g., I-PER B-PER for two adjacent single-
token names). In the BIOES encoding, single-
token entities use a single S label, and multi-token
entities begin with B, end with E, and use I for
everything but the first and last tokens.1

3.2 Improper label sequences

This paper is concerned with the implications
for evaluation in NER when unexpected label se-
quences are produced. While there does not appear
to be any standard term for this phenomenon, we
define an improper label sequence as one where
the label sequence does not conform to a sequence
of labels allowed by the encoding. Consider the
improper label sequences given in Table 2.

In all three cases, it is possible to infer the
likely “intent” of the system that produced these

1Historically, it has not been possible to identify with cer-
tainty the entity encoding an NER study uses based on the
acronym used. In early work there was confusion between the
IOB (IOB1, Ramshaw and Marcus, 1995; Tjong Kim Sang
and Veenstra, 1999) and BIO (IOB2) encodings, and later
similar confusion between BIOES and IOBES. Readers may
disagree regarding precisely what entity encodings are signi-
fied by these acronyms. We do not discuss BMES and BILOU
in this paper and consider them isomorphic to BIOES.

Encoding Labels

IOB I-MISC B-MISC I-MISC O B-PER I-PER
BIO B-MISC B-MISC I-MISC O I-PER I-PER
BIOES S-MISC B-MISC I-MISC O B-PER E-PER

Table 2: Improper entity encodings for the tokens of the
string Australian Davis Cup captain John Newcombe,
with improper labels identified using bold.

label sequences. For IOB and BIO encodings, the
conlleval scorer (Tjong Kim Sang, 2004) used
for the CoNLL 2002–3 NER evaluations (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meul-
der, 2003) would effectively “repair”2 these label
sequences, such that they would produce the same
entity mentions as the proper encodings in Table 1.
We refer to this approach to interpreting improper
label sequences as CoNLL-style in this paper.

An alternative would be to interpret the label
sequence more strictly. An obvious approach for
BIO encoding would be to only begin a mention
when a B label was encountered. In this example,
only two mentions would be created, as the final
two tokens do not have a proper beginning label.

The conlleval scorer does not support
the BIOES/IOBES encodings, but seqeval
(chakki, 2019), a Python library that replicates
conlleval’s BIO decoding, supports them and
uses similar CoNLL-style repair logic for improper
BIOES/IOBES sequences. We return to the issue
of BIOES/IOBES decoding in Section 5.1.

3.3 Softmax output
Since at least HMM-based NER systems of the late
90s, sequence NER models have identified the most
likely label sequence by taking into account the re-
lationship between a label and preceding labels.
The most common modern approach to modeling
this relationship is to use a conditional random
field (CRF), which can learn to avoid producing
improper label sequences or be forced to, either
through manual manipulation of its weights or for-
bidding improper transitions entirely.

With the advent of neural models capable of cap-
turing substantial contextual information before the
output layer, it is now feasible to create relatively
good NER models without a CRF by using soft-
max to select the highest-scoring label for each

2It is not clear whether it was an explicit design goal to
repair these sequences or they are simply the consequence of
implementing a universal decoder for IOB and BIO encodings.
Readers interested in examining the decoding logic should
inspect the startOfChunk and endOfChunk functions.
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token independently, which is significantly faster.
While the model will still indirectly learn to prefer
proper label sequences, there is no explicit repre-
sentation of the sequential relationship between la-
bels. When sufficiently trained, a model with CRF
output rarely produces improper label sequences,
but softmax-output models do so more frequently.

4 Results

The goal of our experiments is to estimate the in-
crease in F1 scores that can be attributed to use of
NCRF++’s internal decoding compared to CoNLL-
style decoding when evaluating softmax-output
models. We trained models using NCRF++ after
modifying it to additionally use an external CoNLL-
style scorer, seqeval.3 We report scores from the
internal and external scorer. We use a bidirectional
LSTM architecture at the word level and test multi-
ple character-level architectures: a bi-LSTM, CNN,
and no character-level representation. We use the
same hyperparameters, pretrained word embedding
(GLoVe 100d), and data (CoNLL 2003 English)
used by Yang et al. (2018). Each configuration was
run ten times using different random initializations
(seeds 0–9). The test set was evaluated using the
model from the epoch that attained the highest de-
velopment set F1 (as scored internally by NCRF++)
during training.

Table 3 gives F1 scores for entity mentions for
BIOES and BIO encodings across all character-
level architectures, including values previously
reported by Yang et al. (2018). When using
NCRF++’s internal scorer, our results are close
to the those previously reported. However, evaluat-
ing the same output with an external scorer leads
to lower scores.

Table 4 reports the distribution of the increase
in F1 scores (NCRF++’s internal score minus the
external score) for each system output across en-
codings and evaluation sets. We computed how
much NCRF++’s scoring procedure increases F1
for each run’s output and then average across all
runs (character-level architectures and random ini-
tializations). To demonstrate the statistical relia-
bility of this increase, we performed a Wilcoxon
signed-rank test—a non-parametric version of the
paired t-test—for each combination of encoding

3We selected seqeval after reviewing its label decoding
procedure and confirming that produces the same scores for
BIO as conlleval. We chose it because it supports both
BIO and BIOES encoding and provides greater numerical
precision than conlleval.

and evaluation set. All four p-values were be-
low 0.0001, and the 95% confidence intervals of
the differences were .49–.58 (BIOES) and .38–.43
(BIO) for development, .54–63 (BIOES) and .48–
.56 (BIO) for test. In summary, for softmax mod-
els, the NCRF++ internal scorer produces scores
approximately half a point of F1 higher.

All scores reported so far have been from con-
verged models. It is also of interest to explore what
the increase in scores looks like during training.
Figure 1 gives the increase in development set F1
scores across all training epochs for all configura-
tions we ran, displaying 3,000 points per encod-
ing. Early in training, NCRF++’s internal scorer
can produce F1 scores several points higher than a
CoNLL-style scorer, presumably due to producing
a high number of improper label sequences pre-
convergence. Crucially, in all 6,000 development
set epochs we evaluated, NCRF++’s internal scorer
always reported a higher F1 than seqeval in our
evaluation of softmax-output models.

5 Discussion

5.1 Analysis

Before we discuss the insights gained from our
study, it is important contextualize our findings.
Our goals are to motivate the establishment of stan-
dard evaluation practices for NER, explain the im-
pact of improper label sequence decoding, and en-
courage authors to be transparent about their ap-
proach to evaluation.

We must emphasize that we are not claiming that
the way that NCRF++’s scorer decodes improper
label sequences is incorrect; it is one of many pos-
sible ways of doing so, and we do not wish to
single out NCRF++ or its authors specifically for
criticism. NCRF++’s approach to decoding im-
proper label sequences is, however, different than
the popular approach defined by the widely-used
conlleval scorer for the CoNLL 2002–3 NER
shared tasks (later faithfully reimplemented and
extended by seqeval), and thus one must exer-
cise caution when comparing scores it generates to
those of other scorers.

While we find the NCRF++ entity mention de-
coder difficult to fully understand, our inspection
of the code leads us to believe that it will only begin
a mention when the proper tag—B for BIO, B or S
for BIOES—is supplied. It is effectively removing
some improper label sequences by treating some
labels as if they were O.
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BIOES BIO

Source N Scorer No Char. Char. LSTM Char. CNN No Char. Char. LSTM Char. CNN

Reported 5 NCRF++ 88.49± .17 90.77± .06 90.60± .11 - - -

Reproduction 10 NCRF++ 88.78± .28 90.76± .12 90.62± .15 88.41± .21 90.49± .15 90.46± .58
Reproduction 10 External 88.21± .27 90.20± .09 89.99± .19 87.98± .21 89.93± .19 89.88± .21

Table 3: Means and standard deviation of test set F1 for each tested configuration and from previously reported
results (Yang et al., 2018, Table 4). Empty cells indicate configurations without previously reported scores. N
gives the number of runs used to compute each value in the row (e.g., each mean was computed over N values).

Figure 1: Increase in development set F1 due to NCRF++’s internal scorer for softmax output models across all
training epochs, with a local regression (LOESS) fit line.

Data Set N BIOES BIO

Development 30 0.53± 0.11 0.40± 0.06
Test 30 0.58± 0.12 0.52± 0.11

Table 4: Means and standard deviations for softmax
models of the increase in F1 due to using NCRF++’s
internal scorer.

Why would it be advantageous for a system to
decode in this way? Unlike in Table 2, where re-
pairing the improper sequences would result in
correct answers, many improper sequences repre-
sent generalization errors. For example, consider
a system using a BIO encoding that observed Pat
Jones as B-PER I-PER frequently in training and
must predict labels for Charity Jones, annotated
as a person in the gold standard. If it has never
seen the token Charity with the label B-PER and
has seen Jones frequently with the label I-PER,
it might predict the tag sequence O I-PER. A le-
nient CoNLL-style decoder would decode this as
a mention of type PER for the token Jones, which
would result in a false alarm (precision error) and
a miss (recall error).

However, a stricter BIO decoder like NCRF++’s

would predict no mentions, resulting in a miss but
no false alarm. For softmax output, it appears to be
universally advantageous to decode this way; for
the 6,000 epochs we scored using the development
set, NCRF++’s scorer always gave a higher F1.

Our examples have focused on decoding BIO
sequences, partly because conlleval set a stan-
dard approach to doing so almost two decades
ago. Repairing improper BIOES label se-
quences is much more complex; for example,
in the sequences B-PER E-PER E-PER and
S-PER I-PER E-PER, how many entity men-
tions should be created? There is not a single an-
swer, but seqeval implements an approach in
the spirit of what conlleval does for BIO, and
NCRF++ appears to implement a stricter decoder.

While we were not able to find any published
or unpublished papers specifically discussing the
effect of decoding improper label sequences on F1,
as we prepared this paper for submission we dis-
covered a closed GitHub issue4 opened by Mike
Kroutikov pointing out that the way NCRF++ de-
codes label sequences does not match other NER

4https://github.com/jiesutd/NCRFpp/
issues/87

https://github.com/jiesutd/NCRFpp/issues/87
https://github.com/jiesutd/NCRFpp/issues/87
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systems. Reviewing this issue and other issues
opened against NCRF++, it is clear that we are
not the first to identify its departure from CoNLL-
style label decoding. In addition to opening an
issue, Kroutikov (2019) blogged about the many
potential ways to decode BIOES and examined the
approaches taken by other NER implementations.

Our findings raise the question of whether
NCRF++’s internal scorer also differs from the
external scorer when evaluating models that use
CRF output. We performed a post-hoc study where
we repeated the same set of experiments we per-
formed for softmax-output models with ones that
used a CRF. While NCRF++’s scorer does not give
the exact same scores as the external scorer, the
increase in F1 attributable to NCRF++’s scoring
procedure is quite small when measured on the
development set (BIOES 0.0032 ± 0.0040; BIO
0.0072± 0.0073), and test set (BIOES −0.015±
0.020; BIO 0.0040 ± 0.0051). The experiments
using BIOES encoding and evaluating on the test
set are the only ones we performed in which on
average NCRF++’s internal scorer produced lower
scores than the external one.

5.2 Insights

What insights have we gained from our negative
result? First, we have clarified how well softmax-
output NER models perform when evaluated using
CoNLL-style label decoding, which gives lower
scores than NCRF++’s internal scorer. The issue
of improper label decoding is unlikely to signifi-
cantly affect any state of the art results, which do
not generally use softmax output, but may affect
decision-making for NER system designers explor-
ing whether adding a CRF to a system is worth the
performance penalty.

Second, we believe our study will help users
of a popular toolkit—which received the COL-
ING 2018 “Most reproducible” best paper award—
understand how it computes scores and why at-
tempts at replication will fail if they do not also
replicate NCRF++’s approach to improper label
sequence decoding.

More broadly, the insights from this negative
result highlight for all NLP researchers the im-
portance of using a standard evaluation proce-
dure. When possible, using widely-used, well-
documented scorers enables fair comparisons of
scores across systems.

6 A vision for NER evaluation

Our study leads us to propose a vision for NER
evaluation as follows:
1. We should have a well-tested, well-documented,
open-source scorer which has been developed
independently of any particular model. This
scorer should only accept properly-formed label
sequences, avoiding the question of the “right” way
to decode improper label sequences.
2. The scorer should be accompanied by imple-
mentations of standard processes for converting
improper label sequences into proper ones. These
approaches should include the CoNLL-style ap-
proach and a more strict one, like NCRF++’s.
3. Work which wants to use an alternative approach
to converting improper label sequences to proper
ones should contain a documented, replicable pro-
cess for doing so.

This procedure separates the process of scoring
from the process of interpreting improper label se-
quences. It also suggests a new research avenue
of designing methods for optimally converting im-
proper label sequences into proper ones.

Until the tools required for our vision—perhaps
something like SacreBLEU (Post, 2018)—are de-
veloped, we recommend seqeval as the best so-
lution for NER scoring. It is an easy-to-inspect,
faithful reimplementation of conlleval. Unlike
conlleval, it can be called directly from Python
and does not truncate scores, avoiding systematic
downward bias when aggregating them.

Regarding extensions to this study, while we
evaluated on the CoNLL 2003 English data to com-
pare with Yang et al. (2018), evaluating in more
languages is essential. Looking beyond the other
CoNLL 2002–3 languages, testing against smaller
annotated data sets and in lower-resourced lan-
guages may reveal more complexity to the problem
of decoding improper sequences.
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