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Abstract
Our work aims to leverage visual feature space
to pass information across languages. We
show that models trained to generate textual
captions in more than one language condi-
tioned on an input image can leverage their
jointly trained feature space during inference
to pivot across languages. We particularly
demonstrate improved quality on a caption
generated from an input image, by leveraging
a caption in a second language. More impor-
tantly, we demonstrate that even without condi-
tioning on any visual input, the model demon-
strates to have learned implicitly to perform to
some extent machine translation from one lan-
guage to another in their shared visual feature
space. We show results in German-English,
and Japanese-English language pairs that pave
the way for using the visual world to learn a
common representation for language.

1 Introduction

There has been great interest in learning visual rep-
resentations from images paired with natural lan-
guage annotations. While tasks such as image cap-
tion generation e.g. (Young et al., 2014; Lin et al.,
2014) have focused mostly on English text, there is
a growing body of work extending to a larger set of
languages (Calixto et al., 2012; Elliott et al., 2015,
2016). Images annotated in multiple languages of-
fer the possibility of studying grounded models of
languages along with their commonalities and in-
trinsics in direct connection with the visual world.

We focus in the multilingual image description
generation setting where we train an image encoder
with soft-attention (Xu et al., 2015) and multiple
text decoders for each target language. Then, we
demonstrate that information from one language
can be transferred to another language using energy
based inference (LeCun et al., 2006) in an iterative
fashion by leveraging the backpropagation algo-
rithm at test time. Effectively, we demonstrate that

a group of men are 
fishing on a beach

drei Männer in einem 
Ruderboot

Visual Feature Space

a brown dog runs after 
a black dog on a shore

zwei Hunde spielen auf 
dem Strand

girl hits a ball and the 
catcher looks on

ein Schiedsrichter beobachtet 
zwei Baseballspieler

Figure 1: Our work shows how visual features capture
multi-lingual information in image conditioned mod-
els (solid blue arrows) and how to pivot this informa-
tion across languages during inference by incorporat-
ing feedback connections (dotted red arrows) from lan-
guage back to visual feature space.

the common visual feature space used to generate
text in the target languages also learns implicitly
alignments between them and thus acts as its own
form of “visual language”. Figure 1 shows some
example images and textual descriptions in Ger-
man and English, as well as a general outline of
our approach. We demonstrate our findings by (1)
showing that a textual description in a second lan-
guage helps improving generated image description
quality in a target language, and (2) showing how
to use the visual feature space in an image encoder
to translate sentences among target languages even
in the absence of visual input. Stated otherwise,
our claim is that multi-lingual image captioning
models can act as incidental machine translators.

More broadly, our work explores the possibility
of using visually grounded representation learning
as a unifying medium across languages, where a
single model is used for learning mappings across
an exhaustive number of language pairs among
target languages. We demonstrate our approach
on two datasets of images annotated with German,
English, and Japanese, English respectively.
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2 Background

Our work is different from work in both general
neural machine translation (NMT) (Kalchbrenner
and Blunsom, 2013; Bahdanau et al., 2015; Lu-
ong et al., 2015), and multimodal machine transla-
tion (MMT) (Elliott, 2018; Caglayan et al., 2019;
Raunak et al., 2019) in that we do not use paral-
lel corpora across languages. This distinction is
important and perhaps confusing as we rely on
the Multi30k dataset for which several versions
and tasks exist (Elliott et al., 2016; Barrault et al.,
2018). The first task, task 1, is perhaps the most
popular, containing parallel text among languages
(German, English, French and Czech) describing
30,000 images from the Flickr30k dataset (Young
et al., 2014) with a single caption in each language.
This task has often been used also as a pure ma-
chine translation benchmark by discarding the im-
age information. The second task, task 2, is the
one that concerns our work and is one of the tasks
we leverage for training, which is the mutilingual
image description generation task, where each of
the 30,000 images is annotated with 5 independent
(unpaired) captions in German and English.

Using visual features as “pivoting” variables is
related to using conditional latent variables to iter-
atively perform inference using backpropagation.
A version of this idea was perhaps first mentioned
in LeCun et al. (2006) as noted by Belanger and
McCallum (2016). Besides work on Generative Ad-
versarial Networks (Goodfellow et al., 2014), there
are only a few works since then that have inde-
pendently proposed to use iterative inference with
backpropagation including Stoyanov et al. (2011);
Domke (2013); Wang et al. (2018). We particularly
adopt the single layer version of the most recenlty
proposed feedback propagation approach of Wang
et al. (2018) as it was more directly applied to con-
volutional neural networks for visual recognition.
Unlike this previous work, we are the first to show
that feedback propagation can leverage its latent
space to use interactions among target variables
even in the absence of any visual input at test time.

3 Method

As mentioned earlier, our base model consists of
the image captioning model with “soft” attention
proposed by Xu et al. (2015) but trained with inde-
pendent textual decoders for each target language.
In this model, the image encoder consists of a con-
volutional neural network and the textual decoders

consist of recurrent neural networks with Long
Short Term Memory (LSTM) units. The output soft
spatial attention vector computed from the input
image is used as input for the decoders to gener-
ate captions in each target language. Let the input
image be I , and let us consider the bilingual case
of language a and language b where the targets are
text sequences ta and tb respectively. The model
can then be expressed as:

F (I) = [fa(z), fb(z)], (1)

where z = g(I) is the output of a visual feature
extractor g, and fa and fb are text decoders for
each language that try to approximate ta and tb by
producing a joint pseudo-distribution from where
to sample text.

While the trained model amounts to a traditional
image captioning model under a multi-lingual ob-
jective, at test time we experiment with the follow-
ing settings: (1) Predicting image descriptions in
multiple languages conditioned on the visual input,
(2) predicting text in one language conditioned on
the visual input and text in a second language (or
languages), and (3) predicting text in one language
conditioned on the other language (or languages)
but with no visual input. The first case can be per-
formed directly by standard decoding techniques
on the outputs fa(z) and fb(z) such as beam search.
So we explain here in detail the latter two cases:

Visual Input + Second Language In order to
use the latent feature space to predict ta condi-
tioned on tb and I , we estimate a pivoting variable
ẑ by iteratively minimizing using backpropagation
the following:

ẑ = argmin
z

E(tb, fb(z)), (2)

where E is an energy function that measures the
compatibility between tb and and fb(z). In other
words we try to synthesize a feature ẑ that can plau-
sibly generate the target text in language b. Pivoting
variable z in the first iteration is computed from
input image I as z = g(I). In practice we used the
same loss function used to approximate our text
decoders for our energy function during inference
(cross entropy loss). This general approach referred
as energy-based inference in LeCun et al. (2006) is
referred as feedback-based inference in Wang et al.
(2018) and z as a pivoting variable, we adopt this
later terminology. The target text description in
language a can be obtained by standard decoding
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Input Target BLEU-4 ROUGE-L CIDEr
Image DE 16.29 40.85 44.88
Image EN 24.89 47.22 51.60
Image + EN DE 21.36 46.51 58.57
Image + DE EN 27.22 50.34 61.61
EN DE 15.23 41.79 40.45
DE EN 18.37 44.43 40.15

Table 1: Results on Multi30k dataset with German
(DE) and English (EN) unpaired textual captions.

techniques such as beam search from the pseudo-
distribution fa(ẑ).

No Visual Input In our third type of inference
we use the latent feature space to predict ta con-
ditioned exclusively on tb but without access to
any image input. We optimize the same expression
as in Equation 2 but initialize z as z = g(ξ) in-
stead, where ξ is a trivial input image with pixel val-
ues sampled from a gaussian distributionN (µ, σ2)
with a mean and standard deviation estimated from
pixel values in the training data. In this case the
final value of the visual feature ẑ is iteratively syn-
thesized only from the textual information in tb. As
in the previous case, the target textual description
in language a can be obtained by standard decoding
techniques from the pseudo-distribution fa(ẑ).

The approach outlined in this section is gen-
eral and can be extended for arbitrary languages a
and b and to an arbitrary number of languages by
adding more textual decoders such that F (I) =
[f1(z), f2(z), ..., fn(z)], and for arbitrary condi-
tioning during inference such that Equation 2 be-
comes:

ẑ = argmin
z

∑
k∈K

Ek(tk, fk(z)),

where K ⊂ V is the support subset of languages
used as feedback during inference, and V is the set
of all target languages.

In addition, the presented approach is also ag-
nostic to the neural network architecture of the
underlying language grounding model as long as
the model is end-to-end differentiable.

4 Experiments

Data We use task 2 in Multi30k (Elliott et al.,
2016), which has 29, 000, 1, 014, and 1, 000 im-
ages for training, validation, and testing respec-
tively. Each image has 5 English and 5 German
unpaired textual descriptions. Therefore, there are

Input Target BLEU-4 ROUGE-L CIDEr
Image JP 40.36 57.42 101.03
Image EN 32.68 51.99 99.79
Image + EN JP 42.33 58.92 110.82
Image + JP EN 34.29 53.22 108.53
EN JP 31.92 52.35 84.64
JP EN 24.75 46.81 81.38

Table 2: Results COCO+STAIR with Japanese (JP) and
English (EN) unpaired textual captions.

145, 000, 5, 070, and 5, 000 captions for training,
validation and testing for each language. We jointly
train the image captioning model to generate cap-
tions for both languages. Multi30k provides pre-
processed lowercase tokens for all the sentences.
We also use STAIR Captions (Yoshikawa et al.,
2017), which contains Japanese captions for all im-
ages in the MS COCO dataset (Lin et al., 2014).
The Japanese captions are also collected indepen-
dently from the English captions in MS COCO,
thus not being paired.

Model We use Resnet-50 (He et al., 2016) in the
image encoder and keep the same settings as in (Xu
et al., 2015). The attention, embedding and decoder
dimensions are all set to 512. During training, we
use teacher-forcing for several epochs and finetune
the whole model including the image encoder us-
ing cross entropy losses over the vocabulary of
words for each language. The learning rate for text
decoders is 4e-4 and 1e-4 for the image encoder.
During feedback propagation, we choose the inter-
mediate representation after the Conv-40 layer in
Resnet-50 as pivot variable (We chose this layer
over Conv-22 and Conv-49 using a held out set)
and we empirically determine the number of steps
and update rate in the iterative optimization empiri-
cally1. For the text decoders, the vocabulary size
for all the languages is 10, 000. All captions are
sampled using beam search with a beam size of 5.

Results Table 1 and Table 2 shows our results
on Multi30k and COCO+STAIR respectively un-
der six possible different scenarios depending on
inputs and outputs and reporting BLEU-4, ROUGE-
L and CIDEr evaluation metrics. Our results
are remarkably consistent across languages and
datasets in that (1) —a caption from a second lan-
guage always improves image caption quality in

1code is available at https://github.com/
uvavision/visual-pivoting

https://github.com/uvavision/visual-pivoting
https://github.com/uvavision/visual-pivoting
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the first language, this is true for all pairs and direc-
tions English-German, German-English, English-
Japanese, Japanese-English (2) In both datasets,
but especially in the Japanese-English, English-
Japanese case, models show a remarkable ability to
learn alignments between languages even in the ab-
sence of visual input. This difference in gains might
be due to COCO+STAIR having a larger training
data. Qualitative results are shown in Figure 2 for
both image + second language caption generation,
and caption to caption translation. For instance in
the top example, the gender of the subject is identi-
fied from the visual input but the location is clearly
leveraging the input German caption.

Since the sentences are only paired with the un-
derlying image, we might have an input caption as
“The young boy is playing with a red ball”, and five
reference captions such as “Ein Junge spielt mit
dem Sand” (a young boy plays in the sand). How
well would a machine translation system perform
on this task? We used Google Translate for this
purpose and found that it obtains BLEU: 16.75,
ROUGE: 42.54 and CIDEr: 50.09 on English to
German in the Multi30k dataset. These numbers
are contrasted with our results in the last row of Ta-
ble 1 where our method obtains comparable results
with BLEU: 18.37, ROUGE: 44.43 and CIDEr:
40.15. Google Translate which is a system not
tuned specifically for this data, only performs sig-
nificantly better in terms of CIDEr scores which is a
metric that rewards matches in infrequent n-grams.

5 Related Work

Our work is closely related to the problem of lex-
icon induction from images which has been used
to address the issue when paired texts are not avail-
able for machine translation. Works that have
leveraged visual features to build such lexicon in-
clude Bergsma and Van Durme (2011); Kiela et al.
(2015); Hewitt et al. (2018). Other works with
similar goals include Hitschler et al. (2016) where
visual features are used to assemble a weakly super-
vised set of text pairs, Gu et al. (2018) where the
objective is to leverage both image-caption pairs
and multilingual parallel corpora, and Gella et al.
(2017) where the images are used as pivot between
languages to learn multimodal multilingual com-
mon representations. Our work leverages only un-
paired data and does not aim to train a machine
translation model or obtain multimodal representa-
tions explicitly. Related to our goals is also work

image: A man in a white shirt is
jumping in the air.

image + de: A man is playing with
a red ball on the beach. 

ein Mann fängt das Ball
am Strand.

INPUTS OUTPUTS

新聞紙の上に無数の
はさみがおいてある

image: A group of blue and 
white cake on a table.

image + jp: A table topped with
lots of blue and white scissors. 

ein Kleinkind spielt mit einer
gelben Plastikschippe.

der Bub spielt mit dem Sand.

ein Junge spielt mit einer
Spielzeugschaufel auf
steinigem Boden.

a baby is playing with a yellow
ball in the grass.

a child is playing in the sand.

a young boy playing with a toy
in a patch of grass.

a laptop computer sitting on top 
of a desk.

a room with a wooden door and 
a door.

a black cat sitting on top of a
computer desk.

a desk with a laptop and a
book.

デスクにパソコンが置いて
ある

⽊製のテーブルと棚にパソ
コンとプリンターが置いて
ある

デスク上のパソコンの横に
⽔が⼊ったペットボトルが
置かれている

デスクの上にパソコンやラ
イト、本が置かれている

INPUTS OUTPUTS

eine Frau in gestreiftem
Shirt klettert an einer

Felswand

image: a man is standing on a 
rock overlooking a valley.

image + de: a woman in a striped
shirt is standing on a rock .

Figure 2: Here we showcase interesting examples of
the types of translations obtained with our approach.
Casing and color coding were added manually.

aiming to translate neural network internal repre-
sentations into natural language e.g. (Andreas et al.,
2017; Evtimova et al., 2018). Moreover, general
work in multimodal machine translation under su-
pervised/unsupervised learning is also related to
our work. Elliott and Kádár (2017) and Helcl et al.
(2018) investigate visually grounded representa-
tions to improve supervised multimodal machine
translation, and ignore input images at test time.
Using reinforcement learning, Chen et al. (2018)
jointly optimizes a captioner and a neural machine
translator to achieve unsupervised multimodal ma-
chine translation, while Su et al. (2019) and Huang
et al. (2020) explore transformers (Vaswani et al.,
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2017) to construct a text encoder-decoder for the
same goal. Our work is different from referred
multimodal machine translation works since our
work starts from multilingual image captioning and
is applied to machine translation, while some of
the other methods start from a multimodal machine
translation and are applied to machine translation,
however building models that take advantage from
these two tasks is a possible avenue for future work.
Many of previous methods rely on pre-training
on external data for either captioning or machine
translation and finetune models using task 1 data
from Multi30k, while we rely on only the provided
task 2 data from Multi30k. For example, Su et al.
(2019) and Huang et al. (2020) both utilize WMT
News Crawl datasets to pre-train machine transla-
tion models.

6 Conclusions

We show that visual feature space can be used as a
pivot for transferring information across languages.
We demonstrated this by showing how having ac-
cess to captions in a second language can improve
the generated caption quality in a target language.
Moreover, we present the key result that we can per-
form arbitrary mappings among target languages in
an image conditioned model, even when remov-
ing the requirement of visual input, essentially
demonstrating the model learns mappings across
languages similar to machine translation models.
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