
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 281–296
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

281

Understanding tables with intermediate pre-training

Julian Martin Eisenschlos, Syrine Krichene, Thomas Müller

Google Research, Zürich
{eisenjulian,syrinekrichene,thomasmueller}@google.com

Abstract

Table entailment, the binary classification task
of finding if a sentence is supported or re-
futed by the content of a table, requires pars-
ing language and table structure as well as nu-
merical and discrete reasoning. While there
is extensive work on textual entailment, ta-
ble entailment is less well studied. We adapt
TAPAS (Herzig et al., 2020), a table-based
BERT model, to recognize entailment. Moti-
vated by the benefits of data augmentation, we
create a balanced dataset of millions of auto-
matically created training examples which are
learned in an intermediate step prior to fine-
tuning. This new data is not only useful for
table entailment, but also for SQA (Iyyer et al.,
2017), a sequential table QA task. To be able
to use long examples as input of BERT mod-
els, we evaluate table pruning techniques as
a pre-processing step to drastically improve
the training and prediction efficiency at a mod-
erate drop in accuracy. The different meth-
ods set the new state-of-the-art on the TAB-
FACT (Chen et al., 2020) and SQA datasets.

1 Introduction

Textual entailment (Dagan et al., 2005), also known
as natural language inference (Bowman et al.,
2015), is a core natural language processing (NLP)
task. It can predict effectiveness of reading com-
prehension (Dagan et al., 2010), which argues that
it can form the foundation of many other NLP tasks,
and is a useful neural pre-training task (Subrama-
nian et al., 2018; Conneau et al., 2017).

Textual entailment is well studied, but many rele-
vant data sources are structured or semi-structured:
health data both worldwide and personal, fitness
trackers, stock markets, and sport statistics. While
some information needs can be anticipated by hand-
crafted templates, user queries are often surprising,
and having models that can reason and parse that
structure can have a great impact in real world ap-
plications (Khashabi et al., 2016; Clark, 2019).

A recent example is TABFACT (Chen et al.,
2020), a dataset of statements that are either en-
tailed or refuted by tables from Wikipedia (Fig-
ure 1). Because solving these entailment problems
requires sophisticated reasoning and higher-order
operations like argmax, averaging, or comparing,
human accuracy remains substantially (18 points)
ahead of the best models (Zhong et al., 2020).

The current models are dominated by semantic
parsing approaches that attempt to create logical
forms from weak supervision. We, on the other
hand, follow Herzig et al. (2020) and Chen et al.
(2020) and encode the tables with BERT-based
models to directly predict the entailment decision.
But while BERT models for text have been scru-
tinized and optimized for how to best pre-train
and represent textual data, the same attention has
not been applied to tabular data, limiting the ef-
fectiveness in this setting. This paper addresses
these shortcomings using intermediate task pre-
training (Pruksachatkun et al., 2020), creating effi-
cient data representations, and applying these im-
provements to the tabular entailment task.

Our methods are tested on the English language,
mainly due to the availability of the end task re-
sources. However, we believe that the proposed so-
lutions could be applied in other languages where
a pre-training corpus of text and tables is available,
such as the Wikipedia datasets.

Our main contributions are the following:
i) We introduce two intermediate pre-training

tasks, which are learned from a trained MASK-
LM model, one based on synthetic and the other
from counterfactual statements. The first one gen-
erates a sentence by sampling from a set of logical
expressions that filter, combine and compare the
information on the table, which is required in ta-
ble entailment (e.g., knowing that Gerald Ford is
taller than the average president requires summing
all presidents and dividing by the number of pres-
idents). The second one corrupts sentences about

282

Rank Player Country Earnings Events Wins
1 Greg Norman Australia 1,654,959 16 3
2 Billy Mayfair United States 1,543,192 28 2
3 Lee Janzen United States 1,378,966 28 3
4 Corey Pavin United States 1,340,079 22 2
5 Steve Elkington Australia 1,254,352 21 2

Entailed: Greg Norman and Steve Elkington are from the same country.

Greg Norman and Lee Janzen both have 3 wins.

Refuted: Greg Norman is from the US and Steve Elkington is from Australia.

Greg Norman and Billy Mayfair tie in rank.

Counterfactual: Greg Norman has the highest earnings.

Steve Elkington has the highest earnings.

Synthetic: 2 is less than wins when Player is Lee Janzen.

The sum of Earnings when Country is Australia is 2, 909, 311.

Figure 1: A TABFACT table with real statements1and counterfactual and synthetic examples.

tables appearing on Wikipedia by swapping enti-
ties for plausible alternatives. Examples of the two
tasks can be seen in Figure 1. The procedure is
described in detail in section 3.

ii) We demonstrate column pruning to be an ef-
fective means of lowering computational cost at
minor drops in accuracy, doubling the inference
speed at the cost of less than one accuracy point.

iii) Using the pre-training tasks, we set the new
state-of-the-art on TABFACT out-performing previ-
ous models by 6 points when using a BERT-base
model and 9 points for a BERT-large model. The
procedure is data efficient and can get comparable
accuracies to previous approaches when using only
10% of the data. We perform a detailed analysis of
the improvements in Section 6. Finally, we show
that our method improves the state-of-the-art on a
question answering task (SQA) by 4 points.

We release the pre-training checkpoints, data
generation and training code at github.com/google-
research/tapas.

2 Model

We use a model architecture derived from BERT
and add additional embeddings to encode the table
structure, following the approach of Herzig et al.
(2020) to encode the input.

The statement and table in a pair are tokenized
into word pieces and concatenated using the stan-
dard [CLS] and [SEP] tokens in between. The
table is flattened row by row and no additional sep-
arator is added between the cells or rows.

1Based on table 2-14611590-3.html with light edits.

Six types of learnable input embeddings are
added together as shown in Appendix B. Token
embeddings, position embeddings and segment
embeddings are analogous to the ones used in
standard BERT. Additionally we follow Herzig
et al. (2020) and use column and row embed-
dings which encode the two dimensional position
of the cell that the token corresponds to and rank
embeddings for numeric columns that encode the
numeric rank of the cell with respect to the column,
and provide a simple way for the model to know
how a row is ranked according to a specific column.

Recall that the bi-directional self-attention mech-
anism in transformers is unaware of order, which
motivates the usage of positional and segment em-
beddings for text in BERT, and generalizes natu-
rally to column and row embeddings when process-
ing tables, in the 2-dimensional case.

Let s and T represent the sentence and ta-
ble respectively and Es and ET be their cor-
responding input embeddings. The sequence
E = [E[CLS];Es;E[SEP];ET] is passed through
a transformer (Vaswani et al., 2017) denoted f and
a contextual representation is obtained for every
token. We model the probability of entailment
P (s|T) with a single hidden layer neural network
computed from the output of the [CLS] token:

P (s|T) = MLP
(
f[CLS] (E)

)
where the middle layer has the same size as the
hidden dimension and uses a tanh activation and
the final layer uses a sigmoid activation.

https://github.com/google-research/tapas
https://github.com/google-research/tapas

283

3 Methods

The use of challenging pre-training tasks has
been successful in improving downstream accu-
racy (Clark et al., 2020). One clear caveat of the
method adopted in Herzig et al. (2020) which at-
tempts to fill in the blanks of sentences and cells
in the table is that not much understanding of the
table in relation with the sentence is needed.

With that in mind, we propose two tasks that
require sentence-table reasoning and feature com-
plex operations performed on the table and entities
grounded in sentences in non-trivial forms.

We discuss two methods to create pre-training
data that lead to stronger table entailment mod-
els. Both methods create statements for existing
Wikipedia tables2. We extract all tables that have
at least two columns, a header row and two data
rows. We recursively split tables row-wise into the
upper and lower half until they have at most 50
cells. This way we obtain 3.7 million tables.

3.1 Counterfactual Statements

Motivated by work on counterfactually-augmented
data (Kaushik et al., 2020; Gardner et al., 2020),
we propose an automated and scalable method to
get table entailments from Wikipedia and, for each
such positive examples, create a minimally differ-
ing refuted example. For this pair to be useful we
want that their truth value can be predicted from
the associated table but not without it.

The tables and sentences are extracted from
Wikipedia as follows: We use the page title, de-
scription, section title, text and caption. We also
use all sentences on Wikipedia that link to the ta-
ble’s page and mentions at least one page (entity)
that is also mentioned in the table. Then these snip-
pets are split into sentences using the NLTK (Loper
and Bird, 2002) implementation of Punkt (Kiss and
Strunk, 2006). For each relevant sentence we create
one positive and one negative statement.

Consider the table in Figure 1 and the sentence
‘[Greg Norman] is [Australian].’ (Square brackets
indicate mention boundaries.). A mention3 is a
potential focus mention if the same entity or value
is also mentioned in the table. In our example,
Greg Norman and Australian are potential focus
mentions. Given a focus mention (Greg Norman)

2Extracted from a Wikipedia dump from 12-2019.
3We annotate numbers and dates in the table and sentence

with a simple parser and rely on the Wikipedia mention anno-
tations (anchors) for identifying entities.

we define all the mentions that occur in the same
column (but do not refer to the same entity) as the
replacement mentions (e.g., Billy Mayfair, Lee
Janzen, . . .). We expect to create a false statement
if we replace the focus mention with a replacement
mention (e.g., ‘Billy Mayfair is Australian.’), but
there is no guarantee it will be actually false.

We call a mention of an entity that occurs in the
same row as the focus entity a supporting men-
tion, because it increases the chance that we falsify
the statement by replacing the focus entity. In our
example, Australian would be a supporting men-
tion for Greg Norman (and vice versa). If we find
a supporting mention we restrict the replacement
candidates to the ones that have a different value.
In the example, we would not use Steve Elkington
since his row also refers to Australia.

Some replacements can lead to ungrammatical
statements that a model could use to identify the
negative statements, so we found it is useful to also
replace the entity in the original positive sentence
from Wikipedia with the mention from the table.4

We also introduce a simple type system for entities
(named entity, date, cardinal number and ordinal
number) and only replace entities of the same type.
Short sentences having less than 4 tokens not count-
ing the mention, are filtered out.

Using this approach we extract 4.1 million coun-
terfactual pairs of which 546 thousand do have a
supporting mention and the remaining do not.

We evaluated 100 random examples manually
and found that the percentage of negative state-
ments that are false and can be refuted by the table
is 82% when they have a supporting mention and
22% otherwise. Despite this low value we still
found the examples without supporting mention to
improve accuracy on the end tasks (Appendix F).

3.2 Synthetic Statements

Motivated by previous work (Geva et al., 2020),
we propose a synthetic data generation method to
improve the handling of numerical operations and
comparisons. We build a table-dependent statement
that compares two simplified SQL-like expressions.
We define the (probabilistic) context-free grammar
shown in Figure 2. Synthetic statements are sam-
pled from the CFG. We constrain the 〈select〉 val-
ues of the left and right expression to be either both
the count or to have the same value for 〈column〉.

4 Consider that if Australian is our focus and we replace it
with United States we get ‘Greg Norman is United States.’.

284

〈statement〉 → 〈expr〉〈compare〉〈expr〉
〈expr〉 → 〈select〉 when 〈where〉 |

〈select〉
〈select〉 → 〈column〉 |

the 〈aggr〉 of 〈column〉 |
the count

〈where〉 → 〈column〉〈compare〉〈value〉 |
〈where〉 and 〈where〉

〈aggr〉 → first | last |
lowest | greatest |
sum | average | range

〈compare〉 → is |
is greater than |
is less than

〈value〉 → 〈string〉 | 〈number〉

Figure 2: Grammar of synthetic phrases. 〈column〉 is
the set of column names in the table. We also gener-
ate constant expressions by replacing expressions with
their values. Aggregations are defined in Table 1.

Name Result
first the value in C with the lowest row index.
last the value in C with the highest row index.
greatest the value in C with the highest numeric value.
lowest the value in C with the lowest numeric value.
sum The sum of all the numeric values.
average The average of all the numeric values.
range The difference between greatest and lowest.

Table 1: Aggregations used in synthetic statements,
where C are the column values. When C is empty or a
singleton, it results in an error. Numeric functions also
fail if any of their values is non-numeric.

This guarantees that the domains of both expres-
sions are comparable. 〈value〉 is chosen as at ran-
dom from the respective column. A statement is
redrawn if it yields an error (see Table 1).

With probability 0.5 we replace one of both ex-
pressions by the values it evaluates to. In the exam-
ple given in figure 1, “[The [sum] of [Earnings]]
when [[Country] [is] [Australia]]” is an 〈expr〉 that
can be replaced by the constant value 2, 909, 311.

We set P (〈select〉 → the count) to 0.2 in all our
experiments. Everything else is sampled uniformly.
For each Wikipedia table we generate a positive
and a negative statement which yields 3.7M pairs.

3.3 Table pruning

Some input examples from TABFACT can be too
long for BERT-based models. We evaluate table
pruning techniques as a pre-processing step to se-
lect relevant columns that respect the input example

length limits. As described in section 2, an exam-
ple is built by concatenating the statement with the
flattened table. For large tables the example length
can exceed the capacity limit of the transformer.

The TAPAS model handles this by shrinking
the text in cells. A token selection algorithm loops
over the cells. For each cell it starts by selecting
the first token, then the second and so on until the
maximal length is reached. Unless stated otherwise
we use the same approach. Crucially, selecting only
relevant columns would allow longer examples to
fit without discarding potentially relevant tokens.

Heuristic entity linking (HEL) is used as a
baseline. It is the table pruning used in TABLE-
BERT (Chen et al., 2020). The algorithm aligns
spans in statement to the columns by extracting the
longest character n-gram that matches a cell. The
span matches represent linked entities. Each entity
in the statement can be linked to only one column.
We use the provided entity linking statements data5.
We run the TAPAS algorithm on top of the input
data to limit the input size.

We propose a different method that tries to re-
tain as many columns as possible. In our method,
the columns are ranked by a relevance score and
added in order of decreasing relevance. Columns
that exceed the maximum input length are skipped.
The algorithm is detailed in Appendix F. Heuristic
exact match (HEM) computes the Jaccard coeffi-
cient between the statement and each column. Let
TS be the set of tokens in the statement S and TC
the tokens in column C, with C ∈ C the set of
columns. Then the score between the statement
and column is given by |TS∩TC ||TS∪TC | .

We also experimented with approaches based on
word2vec (Mikolov et al., 2013), character overlap
and TF-IDF. Generally, they produced worse re-
sults than HEM. Details are shown in Appendix F.

4 Experimental Setup

In all experiments, we start with the public TAPAS
checkpoint,6 train an entailment model on the data
from Section 3 and then fine-tune on the end task
(TABFACT or SQA). We report the median accu-
racy values over 3 pre-training and 3 fine-tuning
runs (9 runs in total). We estimate the error margin
as half the interquartile range, that is half the dif-
ference between the 25th and 75th percentiles. The

5github.com/wenhuchen/Table-Fact-Checking/
blob/master/tokenized_data

6github.com/google-research/tapas

https://github.com/wenhuchen/Table-Fact-Checking/blob/master/tokenized_data
https://github.com/wenhuchen/Table-Fact-Checking/blob/master/tokenized_data
https://github.com/google-research/tapas

285

hyper-parameters, how we chose them, hardware
and other information to reproduce our experiments
are explained in detail in Appendix A.

The training time depends on the sequence
length used. For a BERT-Base model it takes
around 78 minutes using 128 tokens and it scales al-
most linearly up to 512. For our pre-training tasks,
we explore multiple lengths and how they trade-off
speed for downstream results.

4.1 Datasets

We evaluate our model on the recently released
TABFACT dataset (Chen et al., 2020). The tables
are extracted from Wikipedia and the sentences
written by crowd workers in two batches. The first
batch consisted of simple sentences, that instructed
the writers to refer to a single row in the table. The
second one, created complex sentences by asking
writers to use information from multiple rows.

In both cases, crowd workers initially created
only positive (entailed) pairs, and in a subsequent
annotation job, the sentences were copied and
edited into negative ones, with instructions of avoid-
ing simple negations. Finally, there was a third
verification step to filter out bad rewrites. The fi-
nal count is 118, 000. The split sizes are given in
Appendix C. An example of a table and the sen-
tences is shown in Figure 1. We use the standard
TABFACT split and the official accuracy metric.

We also use the SQA (Iyyer et al., 2017) dataset
for pre-training (following Herzig et al. (2020))
and for testing if our pre-training is useful for re-
lated tasks. SQA is a question answering dataset
that was created by asking crowd workers to split a
compositional subset of WikiTableQuestions (Pa-
supat and Liang, 2015) into multiple referential
questions. The dataset consists of 6,066 sequences
(2.9 question per sequence on average). We use the
standard split and official evaluation script.

4.2 Baselines

Chen et al. (2020) present two models, TABLE-
BERT and the Latent Program Algorithm (LPA),
that yield similar accuracy on the TABFACT data.

LPA tries to predict a latent program that is then
executed to verify if the statement is correct or false.
The search over programs is restricted using lexical
heuristics. Each program and sentence is encoded
with an independent transformer model and then
a linear layer gives a relevance score to the pair.
The model is trained with weak supervision where

programs that give the correct binary answer are
considered positive and the rest negative.

TABLE-BERT is a BERT-base model that simi-
lar to our approach directly predicts the truth value
of the statement. However, the model does not use
special embeddings to encode the table structure
but relies on a template approach to format the ta-
ble as natural language. The table is mapped into a
single sequence of the form: “Row 1 Rank is 1; the
Player is Greg Norman; Row 2 ...”. The model
is also not pre-trained on table data.

LOGICALFACTCHECKER (Zhong et al., 2020)
is another transformer-based model that given a
candidate logical expression, combines contextual
embeddings of program, sentence and table, with
a tree-RNN (Socher et al., 2013) to encode the
parse tree of the expression. The programs are
obtained through either LPA or an LSTM generator
(Seq2Action).

5 Results

TABFACT In Table 2 we find that our approach
outperforms the previous state-of-the-art on TAB-
FACT by more than 6 points (Base) or more than 9
points (Large). A model initialized only with the
public TAPAS MASK-LM checkpoint is behind
state-of-the-art by 2 points (71.7% vs 69.9%). If
we train on the counterfactual data, it out-performs
LOGICALFACTCHECKER and reaches 75.2% test
accuracy (+5.3), slightly above using SQA. Only
using the synthetic data is better (77.9%), and when
using both datasets it achieves 78.5%. Switching
from BERT-Base to Large improves the accuracy
by another 2.5 points. The improvements are con-
sistent across all test sets.

Zero-Shot Accuracy and low resource regimes
The pre-trained models are in principle already
complete table entailment predictors. Therefore
it is interesting to look at their accuracy on the
TABFACT evaluation set before fine-tuning them.
We find that the best model trained on all the pre-
training data is only two points behind the fully
trained TABLE-BERT (63.8% vs 66.1%). This
relatively good accuracy mostly stems from the
counterfactual data.

When looking at low data regimes in Figure
3 we find that pre-training on SQA or our artifi-
cial data consistently leads to better results than
just training with the MASK-LM objective. The
models with synthetic pre-training data start out-
performing TABLE-BERT when using 5% of the

286

Model Val Test Testsimple Testcomplex Testsmall

BERT classifier w/o Table 50.9 50.5 51.0 50.1 50.4

TABLE-BERT-Horizontal-T+F-Template 66.1 65.1 79.1 58.2 68.1
LPA-Ranking w/ Discriminator (Caption) 65.1 65.3 78.7 58.5 68.9
LOGICALFACTCHECKER (program from LPA) 71.7 71.6 85.5 64.8 74.2
LOGICALFACTCHECKER (program from Seq2Action) 71.8 71.7 85.4 65.1 74.3

OURS Base MASK-LM 69.6 ±4.4 69.9 ±3.8 82.0 ±5.9 63.9 ±2.8 72.2 ±4.7
OURS Base SQA 74.9 ±0.2 74.6 ±0.2 87.2 ±0.2 68.4 ±0.4 77.3 ±0.3
OURS Base Counterfactual 75.5 ±0.5 75.2 ±0.4 87.8 ±0.4 68.9 ±0.5 77.4 ±0.3
OURS Base Synthetic 77.6 ±0.2 77.9 ±0.3 89.7 ±0.4 72.0 ±0.2 80.4 ±0.2
OURS Base Counterfactual + Synthetic 78.6 ±0.3 78.5 ±0.3 90.5 ±0.4 72.5 ±0.3 81.0 ±0.3

OURS Large Counterfactual + Synthetic 81.0 ±0.1 81.0 ±0.1 92.3 ±0.3 75.6 ±0.1 83.9 ±0.3

Human Performance - - - - 92.1

Table 2: The TABFACT results. Baseline and human results are taken from Chen et al. (2020) and Zhong et al.
(2020). The best BERT-base model while comparable in parameters out-performs TABLE-BERT by more than
12 points. Pre-training with counterfactual and synthetic data gives an accuracy 8 points higher than only using
MASK-LM and more than 3 points higher than using SQA. Both counterfactual and synthetic data out-perform
pre-training with a MASK-LM objective and SQA. Joining the two datasets gives an additional improvement.
Error margins are estimated as half the interquartile range.

0 5 10 50 100
Train Size in %

50

55

60

65

70

75

80

Ta
bf

ac
t V

al
 A

cc
ur

ac
y

TABLE-BERT

LogicalFactChecker

Counterfactual + Synthetic
Synthetic
Counterfactual
SQA
MASK-LM

Figure 3: Results for training on a subset of the
data. Counterfactual + Synthetic (C+S) consistently
out-performs only Counterfactual (C) or Synthetic (S),
which in turn out-perform pre-training on SQA. C+S
and S surpass TABLE-BERT at 5% (around 4,500) of
examples, C and SQA at 10%. C+S is comparable with
LOGICALFACTCHECKER when using 10% of the data.

training set. The setup with all the data is con-
sistently better than the others and synthetic and
counterfactual are both better than SQA.

SQA Our pre-training data also improves the ac-
curacy on a QA task. On SQA (Iyyer et al., 2017) a
model pre-trained on the synthetic entailment data
outperforms one pre-trained on the MASK-LM task
alone (Table 3). Our best BERT Base model out-
peforms the BERT-Large model of Herzig et al.
(2020) and a BERT-Large model trained on our
data improves the previous state-of-the-art by 4
points on average question and sequence accuracy.
See dev results and error bars in Appendix E.

Data Size ALL SEQ

Iyyer et al. (2017) 44.7 12.8
Mueller et al. (2019) 55.1 28.1
Herzig et al. (2020) Large 67.2 40.4

MASK-LM Base 64.0 ±0.2 34.6 ±0.0
Counterfactual Base 65.0 ±0.5 36.5 ±0.6
Synthetic Base 67.4 ±0.2 39.8 ±0.4
Counterf. + Synthetic Base 67.9 ±0.3 40.5 ±0.7

Counterf. + Synthetic Large 71.0 ±0.4 44.8 ±0.8

Table 3: SQA test results. ALL is the average question
accuracy and SEQ the sequence accuracy. Both coun-
terfactual and synthetic data out-perform the MASK-
LM objective. Our Large model outperforms the
MASK-LM model by almost 4 points on both metrics.
Our best Base model is comparable to the previous
state-of-the-art. Error margins are estimated as half the
interquartile range.

Efficiency As discussed in Section 3.3 and Ap-
pendix A.4, we can increase the model efficiency
by reducing the input length. By pruning the in-
put of the TABFACT data we can improve training
as well as inference time. We compare pruning
with the heuristic entity linking (HEL) (Chen et al.,
2020) and heuristic exact match (HEM) to differ-
ent target lengths. We also studied other pruning
methods, the results are reported in Appendix F.
In Table 4 we find that HEM consistently outper-
forms HEL. The best model at length 256, while
twice as fast to train (and apply), is only 0.8 points
behind the best full length model. Even the model

287

Method PT Size FT Size Val

TABLE-BERT 5127 66.1

OURS 512 512 78.3 ±0.2
256 512 78.6 ±0.3
128 512 77.5 ±0.3

OURS - HEL 128 512 76.7 ±0.4
128 256 76.3 ±0.1
128 128 71.0 ±0.3

OURS - HEM 256 512 78.8 ±0.3
256 256 78.1 ±0.1
128 512 78.2 ±0.4
128 256 77.0 ±0.2
128 128 72.7 ±0.2

Table 4: Accuracy of column pruning methods, that re-
duce input length for faster training and prediction: The
heuristic entity linking (HEL) (Chen et al., 2020) and
Heuristic exact match (HEM) at various pre-training
(PT) and fine-tuning (FT) sizes. HEM out-performs
HEL on all input sizes, and in the faster case (128) out-
performs TABLE-BERT by 6.6 points. Accuracy with
size 256 is 0.7 points behind the full input size. Error
margins are estimated as half the interquartile range.

C+S MASK-LM
Size Acc ER Acc ∆Acc ∆ER

Validation 100.0 78.6 21.4 69.6 9.0 9.0

Superlatives 13.4 79.6 2.7 66.9 12.6 1.7
Aggregations 11.6 71.1 3.4 62.3 8.9 1.0
Comparatives 10.4 72.3 2.9 62.6 9.7 1.0
Negations 3.3 72.6 0.9 60.5 12.1 0.4

Multiple of the above 9.2 72.0 2.6 63.9 8.2 0.8
Other 51.9 82.6 9.1 75.2 7.4 3.8

Table 5: Comparing accuracy and total error rate (ER)
for counterfactual and synthetic (C+S) and MASK-LM.
Groups are derived from word heuristics. The error rate
in each group is taken with respect to the full set. Nega-
tions and superlatives show the highest relative gains.

with length 128, while using a much shorter length,
out-performs TABLE-BERT by more than 7 points.

Given a pre-trained MASK-LM model our train-
ing consists of training on the artificial pre-training
data and then fine-tuning on TABFACT. We can
therefore improve the training time by pre-training
with shorter input sizes. Table 4 shows that 512
and 256 give similar accuracy while the results for
128 are about 1 point lower.

6 Analysis

Salient Groups To obtain detailed information
of the improvements of our approach, we manually
annotated 200 random examples with the complex
operations needed to answer them. We found 4
salient groups: Aggregations, superlatives, com-

7Not explicitly mentioned in the paper but implied by the
batch size given (6) and the defaults in the code.

paratives and negations, and sort pairs into these
groups via keywords in the text. To make the
groups exclusive, we add a fifth case when more
than one operation is needed. The accuracy of the
heuristics was validated through further manual
inspection of 50 samples per group. The trigger
words of each group are described in Appendix G.

For each group within the validation set, we look
at the difference in accuracy between different mod-
els. We also look at how the total error rate is
divided among the groups as a way to guide the
focus on pre-training tasks and modeling. The error
rate defined in this way measures potential accu-
racy gains if all the errors in a group S were fixed:
ER(S) = |{ Errors in S}|

|{ Validation examples}| .
Among the groups, the intermediate task data

improve superlatives (39% error reduction) and
negations (31%) most (Table 5). For example, we
see that the accuracy is higher for superlatives than
the for the overall validation set.

In Figure 4 we show examples in every group
where our model is correct on the majority of the
cases (across 9 trials), and the MASK-LM baseline
is not. We also show examples that continue to pro-
duce errors after our pre-training. Many examples
in this last group require multi-hop reasoning or
complex numerical operations.

Model Agreement Similar to other complex bi-
nary classification datasets such as BOOLQ (Clark
et al., 2019), for TABFACT one may question
whether models are guessing the right answer. To
detect the magnitude of this issue we look at 9 in-
dependent runs of each variant and analyze how
many of them agree on the correct answer. Figure 5
shows that while for MASK-LM only for 24.2% of
the examples all models agree on the right answer,
it goes up to 55.5% when using using the counter-
factual and synthetic pre-training. This suggests
that the amount of guessing decreases substantially.

7 Related Work

Logic-free Semantic Parsing Recently, meth-
ods that skip creating logical forms and generate
answers directly have been used successfully for se-
mantic parsing (Mueller et al., 2019). In this group,
TAPAS (Herzig et al., 2020) uses special learned
embeddings to encode row/column index and nu-
merical order and pretrains a MASK-LM model
on a large corpus of text and tables co-occurring
on Wikipedia articles. Importantly, next sentence
prediction from Devlin et al. (2019), which in this

288

Group Consistently Better Persisting Errors
Aggregations Choi Moon - Sik played in Seoul three times in

total.
The total number of bronze medals were half of
the total number of medals.

Superlatives Mapiu school has the highest roll in the state
authority.

Carlos Moya won the most tournaments with
two wins.

Comparatives Bernard Holsey has 3 more yards than Angel
Rubio.

In 1982, the Kansas City Chiefs played more
away games than home games.

Negations The Warriors were not the home team at the
game on 11-24-2006.

Dean Semmens is not one of the four players
born after 1981.

Figure 4: On the left column we show examples that our model gets correct for most runs and that MASK-LM gets
wrong for most runs. The right column shows examples that the model continues to make mistakes on. Many of
those include deeper chains of reasoning or more complex numeric operations.

5 6 7 8 9
Number of models producing the correct answer

10

20

30

40

50

Re
la

tiv
e

Fr
eq

ue
nc

y
in

 %

Synthetic + Counterfactual
Synthetic
Counterfactual
SQA
MASK-LM

Figure 5: Frequency of the number of models that give
the correct answer, out of 9 runs. Better pre-training
leads to more consistency across models. The ratio of
samples answered correctly by all models is 24.2% for
MASK-LM but 55.5% for Synthetic + Counterfactual.

context amounts to detecting whether the table and
the sentence appear in the same article, was not
found to be effective. Our hypothesis is that the
task was not hard enough to provide a training
signal. We build on top of the TAPAS model
and propose harder and more effective pre-training
tasks to achieve strong performance on the TAB-
FACT dataset.

Entailment tasks Recognizing entailment has a
long history in NLP (Dagan et al., 2010). Recently,
the text to text framework has been expanded to
incorporate structured data, like knowledge graphs
(Vlachos and Riedel, 2015), tables (Jo et al., 2019;
Gupta et al., 2020) or images (Suhr et al., 2017,
2019). The large-scale TABFACT dataset (Chen
et al., 2020) is one such example. Among the top
performing models in the task is a BERT based
model, acting on a flattened versioned of the table
using textual templates to make the tables resemble
natural text. Our approach has two key improve-
ments: the usage of special embeddings, as intro-
duced in Herzig et al. (2020), and our novel coun-
terfactual and synthetic pre-training (Section 3).

Pre-training objectives Next Sentence Predic-
tion (NSP) was introduced in Devlin et al. (2019),
but follow-up work such as Liu et al. (2019) identi-
fied that it did not contribute to model performance
in some tasks. Other studies have found that appli-
cation specific self-supervised pre-training objec-
tives can improve performance of MASK-LM mod-
els. One examples of such an objective is the In-
verse Cloze Task (ICT) (Lee et al., 2019), that uses
in-batch negatives and a two-tower dot-product sim-
ilarity metric. Chang et al. (2020) further expands
on this idea and uses hyperlinks in Wikipedia as a
weak label for topic overlap.

Intermediate Pre-training Language model
fine-tuning (Howard and Ruder, 2018) also know
as domain adaptive pre-training (Gururangan et al.,
2020) has been studied as a way to handle covari-
ate shift. Our work is closer to intermediate task
fine-tuning (Pruksachatkun et al., 2020) where one
tries to teach the model higher-level abilities. Sim-
ilarly we try to improve the discrete and numeric
reasoning capabilities of the model.

Counterfactual data generation The most sim-
ilar approach to ours appears in Xiong et al. (2020),
replacing entities in Wikipedia by others with the
same type for a MASK-LM model objective. We,
on the one hand, take advantage of other rows in
the table to produce plausible negatives, and also
replace dates and numbers. Recently, Kaushik et al.
(2020); Gardner et al. (2020) have shown that ex-
posing models to pairs of examples which are sim-
ilar but have different labels can help to improve
generalization, in some sense our Counterfactual
task is a heuristic version of this, that does not rely
on manual annotation. Sellam et al. (2020) use per-
turbations of Wikipedia sentences for intermediate
pre-training of a learned metric for text generation.

Numeric reasoning Numeric reasoning in Nat-
ural Language processing has been recognized as

289

an important part in entailment models (Sammons
et al., 2010) and reading comprehension (Ran et al.,
2019). Wallace et al. (2019) studied the capacity
of different models on understanding numerical
operations and show that BERT-based model still
have headroom. This motivates the use of the syn-
thetic generation approach to improve numerical
reasoning in our model.

Synthetic data generation Synthetic data has
been used to improve learning in NLP tasks (Al-
berti et al., 2019; Lewis et al., 2019; Wu et al.,
2016; Leonandya et al., 2019). In semantic parsing
for example (Wang et al., 2015; Iyer et al., 2017;
Weir et al., 2020), templates are used to bootstrap
models that map text to logical forms or SQL. Sal-
vatore et al. (2019) use synthetic data generated
from logical forms to evaluate the performance of
textual entailment models (e.g., BERT). Geiger
et al. (2019) use synthetic data to create fair evalua-
tion sets for natural language inference. Geva et al.
(2020) show the importance of injecting numeri-
cal reasoning via generated data into the model to
solve reading comprehension tasks. They propose
different templates for generating synthetic numer-
ical examples. In our work we use a method that is
better suited for tables and to the entailment task,
and is arguably simpler.

8 Conclusion

We introduced two pre-training tasks, counterfac-
tual and synthetic, to obtain state-of-the-art results
on the TABFACT (Chen et al., 2020) entailment
task on tabular data. We adapted the BERT-based
architecture of TAPAS (Herzig et al., 2020) to bi-
nary classification and showed that pre-training on
both tasks yields substantial improvements on TAB-
FACT but also on a QA dataset, SQA (Iyyer et al.,
2017), even with only a subset of the training data.

We ran a study on column selection methods to
speed-up training and inference. We found that
we can speed up the model by a factor of 2 at a
moderate drop in accuracy (≈ 1 point) and by a
factor of 4 at a larger drop but still with higher
accuracy than previous approaches.

We characterized the complex operations re-
quired for table entailment to guide future research
in this topic. Our code and models will be open-
sourced.

Acknowledgments

We would like to thank Jordan Boyd-Graber,
Yasemin Altun, Emily Pitler, Benjamin Boer-
schinger, William Cohen, Jonathan Herzig, Slav
Petrov, and the anonymous reviewers for their time,
constructive feedback, useful comments and sug-
gestions about this work.

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-

vlin, and Michael Collins. 2019. Synthetic QA cor-
pora generation with roundtrip consistency. In Pro-
ceedings of the Association for Computational Lin-
guistics, pages 6168–6173, Florence, Italy. Associa-
tion for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of Empirical Methods in Natural
Language Processing, pages 632–642, Lisbon, Por-
tugal. Association for Computational Linguistics.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training
tasks for embedding-based large-scale retrieval. In
Proceedings of the International Conference on
Learning Representations, Addis Ababa, Ethiopia.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification. In Proceed-
ings of the International Conference on Learning
Representations, Addis Ababa, Ethiopia.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 2924–2936,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-
training text encoders as discriminators rather than
generators. In Proceedings of the International Con-
ference on Learning Representations, Addis Ababa,
Ethiopia.

Peter Clark. 2019. Project aristo: Towards machines
that capture and reason with science knowledge. In
Proceedings of the 10th International Conference on
Knowledge Capture, K-CAP âĂŹ19, page 1âĂŞ2,
New York, NY, USA. Association for Computing
Machinery.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised

https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://openreview.net/forum?id=rkg-mA4FDr
https://openreview.net/forum?id=rkg-mA4FDr
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.1145/3360901.3364451
https://doi.org/10.1145/3360901.3364451
https://doi.org/10.18653/v1/D17-1070

290

learning of universal sentence representations from
natural language inference data. In Proceedings of
Empirical Methods in Natural Language Processing,
pages 670–680, Copenhagen, Denmark. Association
for Computational Linguistics.

Ido Dagan, Bill Dolan, Bernardo Magnini, and Dan
Roth. 2010. Recognizing textual entailment: Ratio-
nale, evaluation and approaches. Journal of Natural
Language Engineering, 4.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results.
In Proceedings of Empirical Methods in Natu-
ral Language Processing, pages 2185–2194, Hong
Kong, China. Association for Computational Lin-
guistics.

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hanna Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating NLP models via contrast sets.
CoRR, abs/2004.02709.

Atticus Geiger, Ignacio Cases, Lauri Karttunen, and
Christopher Potts. 2019. Posing fair generalization
tasks for natural language inference. In Proceedings
of Empirical Methods in Natural Language Process-
ing, pages 4485–4495, Hong Kong, China. Associa-
tion for Computational Linguistics.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In acl, pages 946–958, Online. Association
for Computational Linguistics.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Elliot Karro, and D. Sculley,
editors. 2017. Google Vizier: A Service for Black-
Box Optimization.

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020. Infotabs: Inference on tables as
semi-structured data. In Proceedings of the Associ-
ation for Computational Linguistics, Seattle, Wash-
ington. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the Association for Computational
Linguistics, Seattle, Washington. Association for
Computational Linguistics.

Peter Henderson, Riashat Islam, Philip Bachman,
Joelle Pineau, Doina Precup, and David Meger.
2018. Deep reinforcement learning that matters. In
Association for the Advancement of Artificial Intelli-
gence.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the Association for
Computational Linguistics, pages 4320–4333, On-
line. Association for Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the Association for Computational
Linguistics, pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Shankar Iyer, Nikhil Dandekar, , and Kornél Csernai.
2017. Quora question pairs.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the Asso-
ciation for Computational Linguistics, pages 1821–
1831, Vancouver, Canada. Association for Computa-
tional Linguistics.

Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi
Wang, Cong Yu, Daniel Liu, and Niyati Mehta.
2019. Aggchecker: A fact-checking system for
text summaries of relational data sets. Inter-
national Conference on Very Large Databases,
12(12):1938âĂŞ1941.

Divyansh Kaushik, Eduard H. Hovy, and
Zachary Chase Lipton. 2020. Learning the differ-
ence that makes A difference with counterfactually-
augmented data. In Proceedings of the International
Conference on Learning Representations, Addis
Ababa, Ethiopia.

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Pe-
ter Clark, Oren Etzioni, and Dan Roth. 2016. Ques-
tion answering via integer programming over semi-
structured knowledge. In International Joint Con-
ference on Artificial Intelligence, IJCAIâĂŹ16, page
1145âĂŞ1152. AAAI Press.

Tibor Kiss and Jan Strunk. 2006. Unsupervised mul-
tilingual sentence boundary detection. Computa-
tional Linguistics, 32(4):485–525.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the

https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224
http://arxiv.org/abs/2004.02709
https://doi.org/10.18653/v1/D19-1456
https://doi.org/10.18653/v1/D19-1456
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
https://arxiv.org/abs/2005.06117
https://arxiv.org/abs/2005.06117
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.14778/3352063.3352104
https://doi.org/10.14778/3352063.3352104
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://www.ijcai.org/Abstract/16/166
https://www.ijcai.org/Abstract/16/166
https://www.ijcai.org/Abstract/16/166
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612

291

Association for Computational Linguistics, pages
6086–6096, Florence, Italy. Association for Compu-
tational Linguistics.

Rezka Leonandya, Dieuwke Hupkes, Elia Bruni, and
Germán Kruszewski. 2019. The fast and the flexi-
ble: Training neural networks to learn to follow in-
structions from small data. In Proceedings of the
International Conference on Computational Seman-
tics, pages 223–234, Gothenburg, Sweden. Associa-
tion for Computational Linguistics.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel.
2019. Unsupervised question answering by cloze
translation. In Proceedings of the Association for
Computational Linguistics, pages 4896–4910, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Edward Loper and Steven Bird. 2002. NLTK: the natu-
ral language toolkit. In Tools and methodologies for
teaching.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their compo-
sitionality. In Proceedings of Advances in Neural
Information Processing Systems, NIPSâĂŹ13, page
3111âĂŞ3119, Lake Tahoe, Nevada. Curran Asso-
ciates Inc.

Thomas Mueller, Francesco Piccinno, Peter Shaw,
Massimo Nicosia, and Yasemin Altun. 2019. An-
swering conversational questions on structured data
without logical forms. In Proceedings of Empiri-
cal Methods in Natural Language Processing, pages
5902–5910, Hong Kong, China. Association for
Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the Association for Computational
Linguistics, pages 1470–1480, Beijing, China. As-
sociation for Computational Linguistics.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R.
Bowman. 2020. Intermediate-task transfer learning
with pretrained models for natural language under-
standing: When and why does it work? In Proceed-
ings of the Association for Computational Linguis-
tics, Seattle, Washington. Association for Computa-
tional Linguistics.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan
Liu. 2019. NumNet: Machine reading comprehen-
sion with numerical reasoning. In Proceedings of
Empirical Methods in Natural Language Processing,

pages 2474–2484, Hong Kong, China. Association
for Computational Linguistics.

Felipe Salvatore, Marcelo Finger, and Roberto Hi-
rata Jr. 2019. A logical-based corpus for cross-
lingual evaluation. In Proceedings of the 2nd
Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo 2019), pages 22–30, Hong
Kong, China. Association for Computational Lin-
guistics.

Mark Sammons, V.G.Vinod Vydiswaran, and Dan
Roth. 2010. “ask not what textual entailment can
do for you...”. In Proceedings of the Association for
Computational Linguistics, pages 1199–1208, Up-
psala, Sweden. Association for Computational Lin-
guistics.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. Bleurt: Learning robust metrics for text gen-
eration. In Proceedings of the Association for Com-
putational Linguistics, Seattle, Washington. Associ-
ation for Computational Linguistics.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with composi-
tional vector grammars. In Proceedings of the As-
sociation for Computational Linguistics, pages 455–
465, Sofia, Bulgaria. Association for Computational
Linguistics.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher J Pal. 2018. Learning gen-
eral purpose distributed sentence representations via
large scale multi-task learning. In Proceedings of
the International Conference on Learning Represen-
tations.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi.
2017. A corpus of natural language for visual rea-
soning. In Proceedings of the Association for Com-
putational Linguistics, pages 217–223, Vancouver,
Canada. Association for Computational Linguistics.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the Association for
Computational Linguistics, pages 6418–6428, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Proceedings of Advances in Neural
Information Processing Systems, pages 5998–6008.
Curran Associates, Inc.

Andreas Vlachos and Sebastian Riedel. 2015. Identifi-
cation and verification of simple claims about statis-
tical properties. In Proceedings of Empirical Meth-
ods in Natural Language Processing, pages 2596–
2601, Lisbon, Portugal. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/W19-0419
https://doi.org/10.18653/v1/W19-0419
https://doi.org/10.18653/v1/W19-0419
https://doi.org/10.18653/v1/P19-1484
https://doi.org/10.18653/v1/P19-1484
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://doi.org/10.18653/v1/D19-1603
https://doi.org/10.18653/v1/D19-1603
https://doi.org/10.18653/v1/D19-1603
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://arxiv.org/abs/2005.00628
https://arxiv.org/abs/2005.00628
https://arxiv.org/abs/2005.00628
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/D19-6103
https://doi.org/10.18653/v1/D19-6103
https://www.aclweb.org/anthology/P10-1122
https://www.aclweb.org/anthology/P10-1122
https://arxiv.org/abs/2004.04696
https://arxiv.org/abs/2004.04696
https://www.aclweb.org/anthology/P13-1045
https://www.aclweb.org/anthology/P13-1045
https://openreview.net/forum?id=B18WgG-CZ
https://openreview.net/forum?id=B18WgG-CZ
https://openreview.net/forum?id=B18WgG-CZ
https://doi.org/10.18653/v1/P17-2034
https://doi.org/10.18653/v1/P17-2034
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/D15-1312
https://doi.org/10.18653/v1/D15-1312
https://doi.org/10.18653/v1/D15-1312

292

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know
numbers? probing numeracy in embeddings. In Pro-
ceedings of Empirical Methods in Natural Language
Processing, pages 5307–5315, Hong Kong, China.
Association for Computational Linguistics.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the Association for Computational Linguis-
tics, pages 1332–1342, Beijing, China. Association
for Computational Linguistics.

Nathaniel Weir, Prasetya Utama, Alex Galakatos, An-
drew Crotty, Amir Ilkhechi, Shekar Ramaswamy,
Rohin Bhushan, Nadja Geisler, Benjamin Hättasch,
Steffen Eger, Ugur Cetintemel, and Carsten Binnig.
2020. Dbpal: A fully pluggable nl2sql training
pipeline. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIG-
MOD âĂŹ20, page 2347âĂŞ2361, New York, NY,
USA. Association for Computing Machinery.

Changxing Wu, Xiaodong Shi, Yidong Chen, Yanzhou
Huang, and Jinsong Su. 2016. Bilingually-
constrained synthetic data for implicit discourse rela-
tion recognition. In Proceedings of Empirical Meth-
ods in Natural Language Processing, pages 2306–
2312, Austin, Texas. Association for Computational
Linguistics.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In Proceedings of the International Con-
ference on Learning Representations, Addis Ababa,
Ethiopia.

Wanjun Zhong, Duyu Tang, Zhangyin Feng, Nan
Duan, Ming Zhou, Ming Gong, Linjun Shou, Daxin
Jiang, Jiahai Wang, and Jian Yin. 2020. Logical-
FactChecker: Leveraging logical operations for fact
checking with graph module network. In Proceed-
ings of the Association for Computational Linguis-
tics, Seattle, Washington. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.18653/v1/D16-1253
https://doi.org/10.18653/v1/D16-1253
https://doi.org/10.18653/v1/D16-1253
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://arxiv.org/abs/2004.13659
https://arxiv.org/abs/2004.13659
https://arxiv.org/abs/2004.13659

293

Appendix

We provide details on our experimental setup and
hyper-parameter tuning in Section A. Section B
and C give additional information on model and the
TABFACT dataset. We give details and results re-
garding our column pruning approach in Section D.
Full results for SQA are displayed in Section E.
Section F shows the accuracy on the pre-training
tasks held-out sets. Section G contains the trigger
words used for identifying the salient groups in the
analysis section.

A Reproducibility

A.1 Hyper-Parameter Search

The hyper-parameters are optimized using a
black box Bayesian optimizer similar to Google
Vizier (Golovin et al., 2017) which looked at vali-
dation accuracy after 8, 000 steps only, in order to
prevent over-fitting and use resources effectively.
The ranges used were a learning rate from 10−6 to
3× 10−4, dropout probabilities from 0 to 0.2 and
warm-up ratio from 0 to 0.05. We used 200 runs
and kept the median values for the top 20 trials.

In order to show the impact of the number of
trials in the expected validation results, we fol-
low Henderson et al. (2018) and Dodge et al.
(2019). Given that we used Bayesian optimiza-
tion instead of random search, we applied the boot-
strap method to estimate mean and variance of the
max validation accuracy at 8, 000 steps for differ-
ent number of trials. From trial 10 to 200 we noted
an increase of 0.4% in accuracy and a standard
deviation that decreases from 2% to 1.3%.

A.2 Hyper-Parameters

We use the same hyper-parameters for pre-training
and fine-tuning. For pre-training, the input length is
256 and 512 for fine-tuning if not stated otherwise.
We use 80, 000 training steps, a learning rate of
2e−5 and a warm-up ratio of 0.05. We disable
the attention dropout in BERT but use a hidden
dropout probability of 0.07 . Finally, we use an
Adam optimizer with weight decay with the same
configuration as BERT.

For SQA we do not use any search algorithm and
use the same model and the same hyper-parameters
as the ones used in Herzig et al. (2020). The only
difference is that we start the fine-tuning from a
checkpoint trained on our intermediate pre-training
entailment task.

[CLS] a claim [SEP] col ##1 col ##2 0 1 2 3

SEG0 SEG0 SEG0 SEG0 SEG1 SEG1 SEG1 SEG1 SEG1 SEG1 SEG1 SEG1

COL0 COL0 COL0 COL0 COL1 COL1 COL2 COL2 COL1 COL2 COL1 COL2

ROW0 ROW0 ROW0 ROW0 ROW0 ROW0 ROW0 ROW0 ROW1 ROW1 ROW2 ROW2

Segment
Embeddings

Column
Embeddings

Row
Embeddings

col1 col2

0 1

2 3

RANK0

Token
Embeddings

RANK0 RANK0 RANK0 RANK0 RANK0 RANK0 RANK1 RANK2 RANK1 RANK2
Rank
Embeddings RANK0

POS0 POS1 POS2 POS3 POS4 POS5 POS6 POS7 POS8 POS9 POS10 POS11
Position
Embeddings

Table

Figure 6: Input representation for model.

A.3 Number of Parameters

The number of parameters is the same as for BERT:
110M for base models and 340M for Large mod-
els.

A.4 Training Time

We train all our models on Cloud TPUs V3. The
input length has a big impact on the processing
speed of the batches and thus on the overall train-
ing time and training cost. For a BERT-Base
model during training, we can process approxi-
mately 8700 examples per second at input length
128, 5100 at input length 256 and 2600 at input
length 512. This corresponds to training times of
approx. 78 minutes, 133 minutes and 262 min-
utes, respectively.

A BERT-Large model processes approximately
800 examples per second at length 512 and takes
14 hours to train.

B Model

For illustrative purposes, we include the input rep-
resentation using the 6 types of embeddings, as
depicted by Herzig et al. (2020).

C Dataset

Statistics of the TABFACT dataset can be found in
table 6.

Statements Tables

Train 92,283 13,182
Val 12,792 1,696
Test 12,779 1,695

Total 118,275 16,573

Simple 50,244 9,189
Complex 68,031 7,392

Table 6: TABFACT dataset statistics.

294

128 256 512 1024
Example length

0

1000

2000

3000

4000

5000
Fr

eq
ue

nc
y

Figure 7: Input length histogram for TABFACT valida-
tion dataset when tokenized with BERT tokenizer.

D Columns selection algorithm

Let cost(.) ∈ N be the function that computes the
number of tokens given a text using the BERT to-
kenizer, ts the tokenized statement text, tci the
text of the column i. We denote the columns as
(c1, .., cn) ordered by their scores

∀i ∈ [1, ..n− 1]f(ci) > f(ci+1)

where n is the number of columns. Let m be the
maximum number of tokens. Then the cost of the
column must verify the following condition.

∀i ∈ [1..n], ci ∈ C+i if
2 + cost(ts) +

∑
tcj∈C+i−1

cost(tcj) + cost(tci) ≤ m

where C+i is the set of retained columns at
the iteration i. 2 is added to the condition
as two special tokens are added to the input:
[CLS], ts, [SEP], tc1, ..., tcn. If a current column
ci doesn’t respect the condition then the column
is not selected. Whether or not the column is re-
tained, the algorithm continues and verifies if the
next column can fit. It follows C+n contains the
maximum number of columns that can fit under m
by respecting the columns scoring order.

There is a number of heuristic pruning ap-
proaches we have experimented with. Results are
given in 7.

Word2Vec (W2V) uses a publicly available
word2vec (Mikolov et al., 2013) model8 to extract
one embedding for each token. Let TS be the set
of tokens in the statement and TC the set of tokens
in a column. The cosine similarity for each pair is
given by ∀(s, c) ∈ TS × TC

f(s, c) =

1 if s = c
0 if s or c are unknown
cos(vs, vc) else

8https://tfhub.dev/google/tf2-preview/
gnews-swivel-20dim/1

where vi represents the embedding of the token
i. For a given column token c we define the rele-
vance with respect to the statement as the average
similarity to every token:

f(S, c) = avgs∈TS :f(s,c)>τ f(s, c)

Where τ is a threshold that helps to remove noise
from unrelated word embeddings. We set τ to 0.89.
We experimented with max and sum as other ag-
gregation function but found the average to perform
best. The final score between the statement S and
the column C is given by

f(S,C) = max
c∈TC

f(S, c)

Term frequencyâĂŞinverse document fre-
quency (IWF) Scores the columns’ tokens
proportional to the word frequency in the statement
and offset by the word frequency computed over
all the tables and statements from the training set.

f(ts, c) =
TF (ts, c)

log(WF (c) + 1)

Where TF (ts, c) is how often the token c occurs
in the statement ts, and WF (c) is the frequency of
c in a word count list. The final score of a column
C is given by

f(ts, C) = max
c∈TC

(
TF (ts, c)

log(WF (c) + 1)

)

Character N-gram (CHAR) Scores columns by
character overlap with the statement. This method
looks for sub-list of wordâĂŹs characters in the
statement. The length of the characters’ list has
a minimum and maximum length allowed. In the
experiments we use 5 and 20 as minimum and max-
imum length. Let Ls,c be the set of all the over-
lapping characters’ lengths. The scoring for each
column is given by

f(ts, tc) =
min(max(Ls,c, 5)), 20)

cost(tc)

https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1
https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1

295

Method PT Size FT Size Val

TABLE-BERT 512 66.1

OURS 512 512 78.3 ±0.2
256 512 78.6 ±0.3
128 512 77.5 ±0.3

OURS - HEL 128 512 76.7 ±0.4
128 256 76.3 ±0.1
128 128 71.0 ±0.3

OURS - HEM 256 512 78.8 ±0.3
256 256 78.1 ±0.1
128 512 78.2 ±0.4
128 256 77.0 ±0.2
128 128 72.7 ±0.2

OURS- W2V 128 512 77.7 ±0.3
128 256 76.0 ±0.2
128 128 70.6 ±0.3

OURS- IWF 128 512 77.9 ±0.2
128 256 77.2 ±0.1
128 128 72.7 ±0.3

OURS- CHAR 128 512 77.5 ±0.2
128 256 74.8 ±0.1
128 128 68.7 ±0.0

Table 7: Accuracy of different pruning methods: The
heuristic entity linking (HEL) (Chen et al., 2020),
Heuristic exact match (HEM), word-to-vec (W2V), in-
verse word frequency (IWF), character ngram (CHAR)
at different pre-training (PT) and fine-tuning (FT) sizes.
Error margins are estimated as half the interquartile
range.

E SQA

Table 8 shows the accuracy on the first develop-
ment fold and the test set. As for the main results,
the error margins displayed are half the interquar-
tile range over 9 runs, which is half the difference
between the first and third quartile. This range con-
tains half of the runs and provides a measure of
robustness.

F Pre-Training Data

When training on the pre-training data we hold out
approximately 1% of the data for testing how well
the model is solving the pre-training task. In Table
9, we compare the test pre-training accuracy on
synthetic and counterfactual data to models that
are only trained on the statements to understand
whether there is considerable bias in the data. Both
datasets have some bias (i.e. the accuracy without
table is higher than 50%.). Still there is a sufficient
enough gap between training with and without ta-
bles so that the data is still useful.

The synthetic data can be solved almost perfectly
whereas for the counterfactual data we only reach

an accuracy of 84.3%. This is expected as there is
no guarantee that the model has enough informa-
tion to decide whether a statement is true or false
for the counterfactual examples.

Data Model PT Size ValS ValC
Counterfactual base 128 82.0
Counterfactual w/o table base 128 76.0

Synthetic base 128 94.3
Synthetic w/o table base 128 77.8

Synthetic + Counterfactual base 128 93.7 79.3
base 256 98.0 83.9
base 512 98.4 84.3

Synthetic + Counterfactual large 128 94.3 81.0
large 256 98.5 86.8
large 512 98.9 87.3

Table 9: Accuracy on synthetic (ValS) and counterfac-
tual held-out sets (ValC) of the pre-traininig data.

In table 10 we show the ablation results when
removing the counterfactual statements that lack
a supporting entity, that is a second entity that ap-
pears in both the table and sentence. This increases
the probability that our generated negative pairs are
incorrect, but it also discards 7 out of 8 examples,
which ends up hurting the results.

Data Val
Synthetic 77.6

Counterfactual 75.5
Counterfactual + Synthetic 78.6

Counterfactual (only supported) 73.6
Counterfactual (only supported) + Synthetic 77.1

Table 10: Comparisons of training on counterfactual
data with and without statements that don’t have sup-
port mentions.

G Salient Groups Definition

In table 11 we show the words that are used as
markers to define each of the groups. We first
identified manually the operations that were most
often needed to solve the task and found relevant
words linked with each group. The heuristic was
validated by manually inspecting 50 samples from
each group and observing higher than 90% accu-
racy.

296

ALL SEQ Q1 Q2 Q3
Data Size Dev Test Dev Test Dev Test Dev Test Dev Test

MASK-LM Base 60.0 ±0.3 64.0 ±0.2 35.3 ±0.7 34.6 ±0.0 72.4 ±0.4 79.2 ±0.6 59.7 ±0.4 61.2 ±0.4 50.5 ±1.1 55.6 ±0.7
Counterfactual Base 63.2 ±0.7 65.0 ±0.5 39.3 ±0.6 36.5 ±0.6 74.7 ±0.3 78.4 ±0.4 63.8 ±1.2 63.7 ±0.3 52.4 ±0.7 57.5 ±0.7
Synthetic Base 64.1 ±0.4 67.4 ±0.2 41.6 ±0.8 39.8 ±0.4 75.3 ±0.7 79.3 ±0.1 64.4 ±0.6 66.2 ±0.2 55.8 ±0.7 60.2 ±0.6
Counterfactual + Synthetic Base 64.5 ±0.2 67.9 ±0.3 40.2 ±0.4 40.5 ±0.7 75.6 ±0.3 79.3 ±0.3 65.3 ±0.6 67.0 ±0.3 55.4 ±0.5 61.1 ±0.9

Counterfactual + Synthetic Large 68.0 ±0.2 71.0 ±0.4 45.8 ±0.3 44.8 ±0.8 77.7 ±0.6 80.9 ±0.5 68.8 ±0.4 70.6 ±0.3 59.6 ±0.5 64.0 ±0.3

Table 8: SQA dev (first fold) and test results. ALL is the average question accuracy, SEQ the sequence accuracy,
and QX, the accuracy of the X’th question in a sequence. We show the median over 9 trials, and errors are estimated
with half the interquartile range .

Slice Words

Aggregations total, count, average, sum,
amount, there, only

Superlatives first, highest, best,
newest, most, greatest, latest,
biggest and their opposites

Comparatives than, less, more, better,
worse, higher, lower, shorter, same

Negations not, any, none, no, never

Table 11: Trigger words for different groups.

