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Abstract

We propose a novel approach to cross-lingual
dependency parsing based on word reorder-
ing. The words in each sentence of a source
language corpus are rearranged to meet the
word order in a target language under the guid-
ance of a part-of-speech based language model
(LM). To obtain the highest reordering score
under the LM, a population-based optimiza-
tion algorithm and its genetic operators are de-
signed to deal with the combinatorial nature
of such word reordering. A parser trained on
the reordered corpus then can be used to parse
sentences in the target language. We demon-
strate through extensive experimentation that
our approach achieves better or comparable
results across 25 target languages (1.73% in-
crease in average), and outperforms a baseline
by a significant margin on the languages that
are greatly different from the source one. For
example, when transferring the English parser
to Hindi and Latin, our approach outperforms
the baseline by 15.3% and 6.7% respectively.

1 Introduction

The rise of machine learning (ML) methods and
the availability of treebanks (Buchholz and Marsi,
2006) for a wide variety of languages have led to
a rapid increase in research on data-driven depen-
dency parsing (McDonald and Pereira, 2006; Nivre,
2008; Kiperwasser and Goldberg, 2016). However,
the performance of dependency parsers heavily re-
lies on the size of corpus. Due to the great cost
and difficulty of acquiring sufficient training data,
ML-based methods cannot be trivially applied to
low-resource languages.

Cross-lingual transfer is a promising approach
to tackle the lack of sufficient data. The idea is to
train a cross-lingual model that transfers knowledge
learned in one or multiple high-resource source lan-
guages to target ones. This approach has been suc-
cessfully applied in various tasks, including part-

of-speech (POS) tagging (Kim et al., 2017), depen-
dency parsing (McDonald et al., 2011), named en-
tity recognition (Xie et al., 2018), entity linking (Sil
et al., 2018), question answering (Joty et al., 2017),
and coreference resolution (Kundu et al., 2018).

A key challenge for cross-lingual parsing is the
difficulty to handle word order difference between
source and target languages, which often causes
a significant drop in performance (Rasooli and
Collins, 2017; Ahmad et al., 2019). Inspired by the
idea that POS sequences often reflect the syntac-
tic structure of a language, we propose CURSOR
(Cross lingUal paRSing by wOrd Reordering) to
overcome the word order difference issue in cross-
lingual transfer. Specifically, we assume we have
a treebank in the source language and annotated
POS corpus in the target language1. We first train
a POS-based language model on a corpus in the
target language. Then, we reorder words in each
sentence on the source corpus based on the POS-
based language model to create pseudo sentences
with target word order. The resulting reordered
treebank can be used to train a cross-lingual parser
with multi-lingual word embeddings.

We formalize word reordering as a combinatorial
optimization problem to find the permutation with
the highest probability estimated by a POS-based
language model. However, it is computationally
difficult to obtain the optimal word order. To find a
near-optimal result, we develop a population-based
optimization algorithm. The algorithm is initial-
ized with a population of feasible solutions and
iteratively produces new generations by specially
designed genetic operators. At each iteration, bet-
ter solutions are generated by applying selection,
crossover, and mutation subroutines to individuals
in the previous iteration.

Our contributions are summarized as follows:

1It is much easier to annotate POS than a treebank.
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(i) We propose a novel cross-lingual parsing ap-
proach, called CURSOR, to overcome the word
order difference issue in cross-lingual transfer by
POS-guided word reordering. We formalize word
reordering as a combinatorial optimization prob-
lem and develop a population-based optimization
algorithm to find a near-optimal reordering result.

(ii) Extensive experimentation with different neu-
ral network architectures and two dominant pars-
ing paradigms (graph-based and transition-based)
shows that our approach achieves an increase of
1.73% in average UAS, if English is taken as the
source language and the performance is evaluated
on other 25 target languages. Specifically, for the
RNN-Graph model, our approach gains an increase
of 2.5% in average UAS, and the improvement
rises to 4.12% by the combination of our data aug-
mentation and ensemble method.

(iii) Our approach performs exceptionally well
when the target languages are quite different from
the source one in their word orders. For example,
when transferring the English RNN-Graph parser
to Hindi and Latin, our approach outperforms a
baseline by 15.3% and 6.7%, respectively.

2 Related Work

Many efforts (Zeman and Resnik, 2008; Cohen
et al., 2011; Rosa and Žabokrtskỳ, 2015) have been
devoted to cross-lingual dependency parsing via
transfer learning, in which manually annotated cor-
pora are no longer required for low-resource lan-
guages. One of the challenges is the word orders
in source and target languages might be different
(e.g., some languages are prepositional and some
are postpositional). Various studies have been dedi-
cated to addressing this issue (Naseem et al., 2012;
Zhang and Barzilay, 2015; Wang and Eisner, 2017).

In particular, some studies proposed to bypass
word order issue by selecting source languages that
have similar word orders to the target language
(Naseem et al., 2012; Rosa and Žabokrtskỳ, 2015).
Good source languages can be selected by measur-
ing the similarity of POS sequences between the
source and target languages (Agic, 2017), query-
ing the information stored in topological databases
(Deri and Knight, 2016), and formalizing such se-
lection as a ranking problem (Lin et al., 2019).

Treebank translation (Tiedemann et al., 2014;
Tiedemann and Agić, 2016) tackles this problem
by transforming an annotated source treebank to
instances with target language grammar through

machine translation. However, this method may
suffer from imperfect word alignment between two
languages. Zhang et al. (2019) proposed to perform
such syntactic transfer by code mixing in which
only the confident words in a source treebank will
be transformed.

Another interesting solution to cross-lingual
transfer is an annotation projection (Hwa et al.,
2005; Ganchev et al., 2009; Ma and Xia, 2014).
In this approach, source-side sentences of a par-
allel corpus are parsed by the parser trained on
the source treebank, then the source dependencies
are projected onto the target sentences using the
results of word alignments. However, the result-
ing treebank could be highly noisy because the
source dependency trees are constructed automati-
cally and cannot be taken as ground truth. Lacroix
et al. (2016) considered removing not well-aligned
sentences to obtain high-quality data.

Täckström et al. (2013) trained a parser on mul-
tiple source languages instead of a single one.
Ponti et al. (2018) proposed a typologically driven
method to reduce anisomorphism. Ahmad et al.
(2019) designed an order-free model to extract the
order features from the source language. Meng
et al. (2019) embraced the linguistic knowledge
of target languages to guide the inference. Some
researchers also exploit lexical features to enhance
the parsing models. Cross-lingual word clusters
(Täckström et al., 2012), word embeddings (Guo
et al., 2015, 2016; Ammar et al., 2016), and dic-
tionaries (Durrett et al., 2012; Rasooli and Collins,
2017) are used as the features to better transfer
linguistic knowledge among different languages.

Our work is in line with a recently proposed
solution, namely treebank reordering (Wang and
Eisner, 2016, 2018; Rasooli and Collins, 2019),
which aims to rearrange the word order in source
sentences to make them more similar to the target
one. Wang and Eisner (2018) proposed to permute
the constituents of an existing dependency treebank
to make its surface POS statistics approximately
match those of the target language. However, they
used POS bigrams to measure the surface closeness
between two languages, which is unable to capture
global information. Rasooli and Collins (2019) pro-
posed two different syntactic reordering methods,
one is based on the dominant dependency direction
in the target language, the other learns a reordering
classifier, but both methods rely on parallel corpus.

In this study, we explore the feasibility of utiliz-
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ing a POS-based neural language model to guide
treebank reordering. Our approach does not require
any parallel corpus, and can be applied to a pair of
source and target languages as long as their POS
tags are available. We designed a population-based
optimization algorithm to deal with the combina-
torial nature of word reordering. This algorithm
is able to find the close-to-optimal results of re-
ordering, which yields a new state-of-the-art for
cross-lingual parsing in various languages.

3 Approach

In this section, we first formalize the word reorder-
ing as a combinatorial optimization problem, and
then present our method to solve the problem.

3.1 Problem Definition
Given a sentence x = {x1, x2, ..., xn} in the source
dataset S , we aim to permute the words in the sen-
tence to mimic the order in the target language. To
measure the goodness of a permutation, we train a
POS-based language model pT on the target corpus
T using a multi-layer LSTM. The log-likelihood of
a sentence under pT can be formulated as follows:

pT (x) =

n∏
i=1

pT (xi‖x<i). (1)

The objective is to find one permutation x∗ so
that the reordered sentence will achieve a high prob-
ability estimated by the language model:

x∗ = arg max
x′∈R(x)

pT (x
′), (2)

where R(x) is a set of all possible permutations
of the words in x. In theory, the number of the
feasible candidates is n!, while most of the permu-
tations may be radically different from the original
sentence and break the meaning. To avoid that, we
apply a syntactic constraint when generating R(x):
a sub-sequence that forms a constituent in the orig-
inal sentence should still be a sub-sequence after
reordering, while the inner order of words in the
sub-sequence may change.

3.2 Population-based Optimization
Finding the optimal x∗ in Equation (2) can be re-
duced to a well-known travelling salesperson prob-
lem2, which is NP-hard. Therefore, the optimal re-
ordering is computationally difficult to obtain, and
we design a genetic algorithm to find near-optimal
results instead.

2If we consider words as cities, the best word order as the
shortest possible route.

a surgeryI hadroutine .

a surgeryI hadroutine .

a surgeryI had routine .
!"#$%&'

!"#$%&(

(a) Crossover

a surgeryI had routine . a surgeryI hadroutine .

(b) Mutation

Figure 1: Example mutation and crossover operators.

Genetic algorithm is a heuristic search method
inspired by the process of natural selection, which
iteratively evolves a population of candidate solu-
tions towards better ones. The population of each
iteration is called a generation. The algorithm starts
by executing initialization operator to create the
initial generation. At each generation, the fitness
of every individual in the population is evaluated,
and individuals with higher fitness score have more
chance to breed the next generation by applying
selection operator. The next generation is produced
through a combination of two genetic operators:
crossover and mutation. The crossover operator
combines the genetic information of two parents to
generate new offspring, while the mutation opera-
tor introduces diversity into the sampled population.
Genetic algorithms are known to perform well in
solving combinatorial optimization problems (An-
derson and Ferris, 1994; Mühlenbein, 1989) and
are suitable for the word reordering problem.

In order to meet the syntactic constraint, we de-
sign the crossover and mutation operators at the
subtree level, which means whenever a word is
moved to some other place, the subtree of it should
be moved at the same time. We describe each com-
ponents of the proposed genetic algorithm below:

Fitness: The fitness score of an individual is
defined by its log-likelihood in the target language
model as Equation (1).

Selection: In a generation, “fitter” solutions are
more likely to be selected for breeding the next
generation. We normalize the fitness score of sen-
tences in the generation and use it as the probability
that each sentence may be selected randomly.

Crossover: We use the example shown in Fig-
ure 1a to better describe the crossover operator.
Given two parents parent1 and parent2 chosen
randomly by the selection operator, we then ran-
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Algorithm 1 Genetic algorithm-based reordering
Input: S: source treebank; Ng: the number of generations;

Np: the number of populations; α: mutation probability
Output: reordered treebank S ′
1: for xorig ∈ S do
2: for i = 1, · · · , Np do
3: P 0

i = Mutation(xorig)
4: end for
5: for g = 1, · · · , Ng do
6: P g = P g−1

7: for i = 1, · · · , Np do
8: F g−1

i = pT (P
g−1
i )

9: end for
10: pselection = Normalize(F g−1)
11: for i = 1, · · · , Np in population do
12: Sample parent1 from P g−1 with pselection
13: Sample parent2 from P g−1 with pselection
14: child = Crossover(parent1, parent2)
15: if UniformSampling(0, 1) <α then
16: child = Mutation(child)
17: end if
18: Add child to P g

19: end for
20: P g = top-Np elements in P g with largest fitness
21: end for
22: x∗ = arg max

x∈Pg
pT (x)

23: Add x∗ to S ′
24: end for

domly pick a word (“surgery” in the example) as
the crossover point. We copy the entire inside tree
(“a surgery routine” in parent1 ) and then merge it
with the remaining words as the order occurred in
parent2 to produce an offspring sentence.

Mutation: We move a child node (along with
its subtree) from one side of its head node to the
opposite side. An example of mutation is shown
in Figure 1b, we first randomly select a pair of
words (“had” → “surgery”), and then move the
word “surgery” and its subtree to the left side of
the head word “had”.

Initialization: We repeatedly apply the muta-
tion operator (discussed above) to the original sen-
tence to generate an initial generation.

The overall algorithm is listed in Algorithm 1.
For each sentence in S, the descendant with the
highest fitness score is added to the reordered tree-
bank S ′. After reordering the corpus, a parser
trained on S ′ can be used to analyse the target
language since the instances in S ′ are conformed
with the grammar of the target language.

4 Experiments

We evaluate CURSOR by transferring four differ-
ent parsing models trained on English corpus to 30
target languages. We first introduce the experimen-
tal setup, then discuss the results as well as in-depth

analysis, and finally, we propose a combined ap-
proach to further improve the performance.

4.1 Setup

Data We conduct experiments on Universal De-
pendencies (UD) Treebanks (v2.2) (Nivre et al.,
2018), in which 31 different languages (one as the
source and others as target languages) are selected
for evaluation. The number of tokens is more than
100K for each selected language. We take English
as the source language and 30 other languages as
target ones. 5 target languages are used to tune the
hyperparameters and remaining 25 languages are
held out for final evaluation.

Parsing Models We evaluate CURSOR with
four different parsing models described by Ah-
mad et al. (2019): SelfAtt-Graph, RNN-Graph,
SelfAtt-Stack, and RNN-Stack. These models are
built upon two encoders (SelfAtt/RNN) as well as
two decoders (Graph/Stack). RNN encoder uses
bidirectional LSTMs while SelfAtt encoder uses a
transformer (Vaswani et al., 2017) instead. Graph
decoder utilizes a deep biaffine attentional scorer
proposed by Dozat and Manning (2017), and Stack
decoder is a top-down transition-based decoder pro-
posed by Ma et al. (2018).

Lexicalized Features Following (Ahmad et al.,
2019), all the parsing models take words as well
as their gold POS tags as input. We also lever-
age pre-trained multilingual embeddings from Fast-
Text (Bojanowski et al., 2017) that project the
word embeddings from different languages into the
same space using an offline transformation method
(Smith et al., 2017; Conneau et al., 2018).

Training Details For fair comparison, we use
the same hyper-parameter settings and the training
strategy as Ahmad et al. (2019) to train the parsing
models. Each POS-based language model for word
reordering is trained on the training set of a corre-
sponding target language, in which the POS tag di-
mension is set to 50 (as the same as that in the pars-
ing models), the hidden size h ∈ {50, 100} and the
number of layers l ∈ {1, 2, 3} are tuned on the de-
velopment sets of 5 non-held-out languages. In Al-
gorithm 1, we introduce three new hyperparameters
ofNp, Ng, α , and thier values are tuned from a few
choices: Np ∈ {5, 10, 20}, Ng ∈ {5, 10, 20}, α ∈
{0.5, 0.8, 1.0}. On the five non-held-out target lan-
guages, the best performance is obtained with the
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Lang SelfAtt-Graph RNN-Graph SelfAtt-Stack RNN-Stack
Baseline CURSOR Baseline CURSOR Baseline CURSOR Baseline CURSOR

en 90.4/88.4 - 90.4/88.3 - 90.2/88.1 - 91.8/89.9 -
sl 68.2/56.5 68.7/56.5 ↑ 66.3/54.6 68.9/56.9 ↑ 66.6/54.6 66.6/54.1 ↑ 67.8/55.7 70.2/54.7 ↑
cs 63.1/53.8 65.6/55.2 ↑ 61.9/52.8 65.1/55.8 ↑ 61.3/51.9 63.9/53.3 ↑ 62.3/52.3 64.8/54.2 ↑
ro 65.1/54.1 67.6/56.2 ↑ 63.2/52.1 67.4/56.8 ↑ 62.5/51.5 64.5/53.0 ↑ 61.0/49.8 65.9/54.5 ↑

zh∗ 42.5/25.1 39.8/24.1 41.5/24.3 40.3/24.1 40.6/23.3 37.2/20.4 40.9/23.5 39.9/21.9
ja∗ 28.2/20.9 41.6/32.5 ↑ 18.4/12.0 37.6/29.9 ↑ 20.7/13.2 38.9/30.7 ↑ 15.2/9.3 40.7/31.9 ↑

Average 53.4/42.1 56.7/44.9 ↑ 50.3/39.2 55.9/44.7 ↑ 50.3/38.9 54.2/42.3 ↑ 49.4/38.1 56.3/44.0 ↑
no 80.8/72.8 77.5/69.7 80.7/72.8 77.9/70.5 80.3/72.1 76.4/68.6 81.8/73.3 78.7/70.7
sv 81.0/73.2 78.2/70.5 81.2/73.5 79.2/71.6 80.6/72.8 77.8/70.0 82.6/74.3 80.1/71.8
fr 77.9/72.8 79.2/74.2 ↑ 78.4/73.5 79.9/74.9 ↑ 76.8/71.8 78.1/72.8 ↑ 75.5/70.5 79.3/74.2 ↑
pt 76.6/67.8 76.7/67.0 ↑ 76.5/68.0 77.3/68.2 ↑ 75.4/66.7 75.3/65.4 74.6/66.1 76.8/67.4 ↑
da 76.6/67.9 75.5/67.1 77.4/68.8 76.7/68.2 76.4/67.5 74.7/66.1 78.2/68.8 75.7/66.7
es 74.5/66.4 74.1/65.9 74.9/66.9 75.2/66.7 ↑ 73.2/65.1 72.9/64.9 73.1/64.8 75.1/66.8 ↑
it 80.8/75.8 81.0/75.6 ↑ 81.1/76.2 81.4/76.3 ↑ 79.1/74.2 79.2/73.9 ↑ 80.4/75.3 81.2/76.2 ↑
hr 61.9/52.9 64.0/52.9 ↑ 60.1/50.7 65.2/54.9 ↑ 60.6/51.1 62.0/50.8 ↑ 60.8/51.1 62.0/51.4 ↑
ca 73.8/65.1 74.2/65.4 ↑ 74.2/65.6 74.6/65.9 ↑ 72.4/63.7 72.8/63.9 ↑ 72.0/63.0 73.7/65.1 ↑
pl 74.6/62.2 79.2/66.7 ↑ 71.9/58.6 78.6/66.3 ↑ 73.5/60.5 78.5/65.4 ↑ 72.1/59.8 78.5/65.5 ↑
uk 60.1/52.3 62.1/53.2 ↑ 58.5/51.1 60.2/52.0 ↑ 57.4/49.7 56.4/48.0 59.7/51.9 59.8/50.9 ↑
nl 68.6/60.3 69.1/61.5 ↑ 67.9/60.1 70.2/62.8 ↑ 67.9/59.5 68.2/60.7 ↑ 69.6/61.6 70.4/63.3 ↑
bg 79.4/68.2 78.4/67.1 78.1/66.7 79.3/67.6 ↑ 78.2/67.0 76.2/64.8 78.8/67.6 79.1/67.8 ↑
ru 60.6/51.6 62.3/52.7 ↑ 60.0/50.8 62.8/53.5 ↑ 59.4/50.3 60.1/50.0 ↑ 60.9/52.0 59.9/50.5
de 71.3/61.6 75.9/67.1 ↑ 69.5/59.3 76.5/67.8 ↑ 69.9/60.1 73.7/65.1 ↑ 69.6/59.6 76.7/68.1 ↑
he 55.3/48.0 56.3/48.9 ↑ 54.6/46.9 57.2/50.6 ↑ 53.2/45.7 53.8/46.6 ↑ 54.9/41.0 55.0/44.7 ↑
sk 66.7/58.2 69.9/59.7 ↑ 65.4/57.0 68.5/59.6 ↑ 65.3/56.7 67.9/57.3 ↑ 66.6/57.5 69.7/59.2 ↑
id 49.2/43.5 54.8/47.4 ↑ 47.1/42.1 52.1/46.4 ↑ 47.3/41.7 53.2/45.4 ↑ 46.8/41.3 53.1/46.2 ↑
lv 70.8/49.3 66.3/46.7 71.4/49.6 68.9/49.1 69.0/47.8 63.7/44.4 70.6/48.5 69.0/48.6
fi 66.3/48.7 63.9/47.3 66.4/48.7 64.7/47.8 64.8/47.5 60.8/43.9 66.3/48.3 64.3/47.1
et 65.7/44.9 65.1/46.0 65.3/44.4 64.9/46.0 64.1/43.3 61.4/43.2 64.3/43.5 63.5/44.7
ar 38.1/28.0 42.9/32.9 ↑ 33.0/25.5 38.2/31.2 ↑ 32.6/23.7 38.4/29.4 ↑ 32.9/25.0 38.8/30.5 ↑
la 48.0/35.2 52.9/38.2 ↑ 46.0/33.9 52.7/38.8 ↑ 45.5/33.2 51.0/36.2 ↑ 43.9/31.3 52.6/37.6 ↑
ko 34.5/16.4 36.2/19.3 ↑ 33.7/15.4 37.3/19.9 ↑ 32.8/15.0 33.3/17.4 ↑ 33.1/14.3 35.6/18.4 ↑
hi 35.5/26.5 45.1/34.4 ↑ 29.3/21.4 44.6/34.9 ↑ 31.4/23.1 41.8/32.3 ↑ 25.9/18.1 44.1/34.4 ↑

Average 65.1/54.8 66.4/55.9 ↑ 64.1/53.9 66.6/56.4 ↑ 63.5/53.2 64.3/53.9 ↑ 63.8/53.1 66.1/55.5 ↑

Table 1: Cross-lingual transfer performance (UAS%/LAS%, punctuation excluded) on the test sets. We use English
as the source language and the first five languages to tune the hyperparameters. The languages listed are sorted in
ascending order by their distances to English as reported by Ahmad et al. (2019). We use ‘∗’ to indicate the results
of delexicalized models.

setting of h = 100, l = 2, Np = 10, Ng = 10 and
α = 0.5.

Methods for Comparison We mainly compare
CURSOR to the models described by Ahmad et al.
(2019), denoted as “Baseline”, which is different
from CURSOR in that the words of the sentences
from source languages are not reordered. We also
compare CURSOR to two models proposed by
Wang and Eisner (2018) and Meng et al. (2019),
respectively denoted as MiniDiver and LagraRelax.
MiniDiver is also based on word reordering, which
reorders the words of the source sentences to mini-
mize the difference in POS sequence distribution
between the source and the target languages. La-
graRelax solves the word order difference problem
by using a Lagrangian relaxation to force the con-
straints derived from corpus-statistics in the infer-
ence time, which yields a significant improvement
in transfer parsing. Different external resources are

used by these approaches. MiniDiver assumes that
the target POS corpus is available like CURSOR,
while LagraRelax utilizes World Atlas of Language
Structures (WALS) (Dryer and Haspelmath, 2013)
linguistic features.

4.2 Results

We report in Table 1 the results of Baseline and
CURSOR on the test sets for 30 different languages.
Those languages are sorted in ascending order by
their typology distances to English as reported by
Ahmad et al. (2019). Following their recommenda-
tion, we use delexicalized models where only POS
tags are used as inputs for two target languages
of Chinese (zh) and Japanese (ja) since their word
embeddings were found to be not well aligned with
those of the others.

As we can see from Table 1, comparing to the
baseline, the cross-lingual transfer performances
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Figure 2: Transfer parsing performance versus similarity between languages. (a) shows the correlation between the
transfer performance and the similarity of source and target languages in their word orders. (b) demonstrates that
by increasing the similarity in their word orders our method can substantially improve the transfer performance.
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Figure 3: Comparison with the competitors. CUR-
SOR outperforms MiniDiver in most languages, and
achieves slightly better results than LagraRelax.

are all improved with four different parsing models
trained on the corpora after the word reordering.
The models using RNN encoder benefit more than
others probably because they are more sensitive to
the word orders than those using SelfAtt encoder.
RNN-Graph model enhanced by our treebank re-
ordering achieved the best average UAS of 66.6%,
which beats the baseline by 2.5%. The improve-
ments are exceptionally significant for those lan-
guages whose word orders are quite different from
English, such as Hindi (hi) and Latin (la).

We report in Figure 3 the results of comparing
our approach to other competitors. The results of
CURSOR are those achieved by the model based
on RNN-Graph architecture. For MiniDiver, we
use the code released by Wang and Eisner (2018) to
reorder source treebanks, then train an RNN-Graph
parser on the reordered treebank. The results of
LargraRelax are excerpted from Meng et al. (2019).
It shows that CURSOR performs better than Mini-
Diver in almost all languages, which demonstrates

that the POS-based neural language model can lead
to better results of word reordering than the bi-
gram language model. Besides, CURSOR achieves
slightly better results than LagraRelax (the aver-
age UAS of CURSOR is 66.6%, while that of
LagraRelax is 66.3%). However, our reordering
method can be applied to both the graph-based
and transition-based parsing paradigms, while La-
graRelax can only be used for the graph-based pars-
ing. Furthermore, the performance of CURSOR
can be further improved to 68.21% by the com-
bination of our data augmentation and ensemble
method (see Section 4.4).

Although all the experimental results reported
so far take English as the source language, our
approach can be applied to the case where any lan-
guage is chosen as the source language without any
additional effort. We also run experiments in which
Hebrew (he) is taken as the source language. Exper-
imental results with four different parsing models
show that CURSOR can consistently improve the
average UAS across 30 target languages by 4.23%,
6.48%, 2.91%, and 5.52% respectively.

4.3 Analysis

In this section, we study the relationship between
the cross-lingual transfer parsing performances and
the similarities of the source and target languages,
and how the difference in arc directionality and arc
distance impact on the performance.

4.3.1 Performance versus Similarity between
Languages

We here first validate our hypothesis that “if two
languages have higher similarity, the transfer per-
formance will be better”. Then, we demonstrate
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Figure 4: Analysis in Japanese (ja) and Hindi (hi), the values of α are calculated on the training sets. (a) and
(c) show that the differences in the directionality between source and target corpus can be reduced by our word
reordering method. (b) and (d) show that large differences will lead to poor transfer performance, and CURSOR
can benefit from the reduced differences.

that our word reordering method can make two
different languages “closer” in their typology dis-
tance, which usually leads to an improvement in
the cross-lingual transfer.

We define a metric M to measure how a source
language S is similar to a target one T with the help
of the POS-based language model pT as follows:

M(S‖T ) = 1

|S|
∑
x∈S

1

|x| logpT (x) (3)

We show the correlation between the transfer
performance and the similarity of source and target
languages in Figure 2a, and found that they are cor-
related in general, especially when the value of M
is less than −8. Figure 2b shows that after reorder-
ing S, its similarity to T increases, and the corre-
sponding cross-lingual parsing performance will
improve. Particularly, target languages with greater
differences to the source one in their word order
will benefit more from our reordering method.

4.3.2 Performance versus Difference in Arc
Directionality

We will show that given a specific arc label, the
transfer performance is significantly affected by
the difference in the directionality (Wang and Eis-
ner, 2017) of the source and target languages, and

demonstrate that CURSOR can reduce such differ-
ence thus improving the performance.

Given a label l, we define the directionality
α(l) ∈ [0, 1] as the probability that a modifier is at
the right side of its head. For the label l, the differ-
ence of directionality between the source (English)
and target language T can be calculated as:

δT (l) = |αen(l)− αT (l)| (4)

In Figure 4, we sort the arc labels by their cor-
responding δT (l) in ascending order. As shown
in Figure 4b and 4d, large δT (l) will lead to poor
transfer performance. We also observe that our
word reordering method can effectively reduce the
difference of such directionality, which usually
improves the performance of cross-lingual trans-
fer. For example (see Figure 4a), δja(cop) and
δja(aux) are greatly reduced after reordering. As
a result, the parsing UAS of these two labels im-
proves significantly as shown in Figure 4b (from
10.12% to 44.64% and from 13.84% to 64.09%,
respectively).

4.3.3 Performance versus Arc Distance
We show in Figure 5 the parsing performances ver-
sus the arc distances for German (de). The arc dis-
tance of a modifier and its head is calculated by the
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Figure 5: Performance versus arc distance. CURSOR
outperforms the baseline across different arc distances.
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Figure 6: The performance of CURSOR can be further
improved by the ensemble method in almost all target
languages.

number of words staying between them. It shows
that CURSOR outperforms the baseline by a sig-
nificant margin in all cases. Such margin increases
when the arc distance becomes longer, indicating
that the model is more sensitive to the correctness
of word order when making predictions on the long-
distance dependencies.

4.4 Combined Approach

We here explore the feasibility of improving the
cross-lingual parsing based on RNN-Graph by data
augmentation and ensemble method.

4.4.1 Data Augmentation
In Algorithm 1, we only add the result of word
reordering with the highest fitness score to the re-
ordered training treebank S ′. However, the fitness
scores of the top-k results are normally very close,
and we try to use all these results to train the pars-
ing model. As shown in table 2, increasing the
number of the top-k word reordering results can
improve the transfer parsing performance, and the
highest performance is achieved when k = 3.

4.4.2 Model Ensemble
Although the population-based optimization can
reduce the difference in word order between two
languages, it may change the well-formed syntactic

Model UAS% LAS%
Baseline 64.09 53.90
CURSOR (k = 1) 66.55 56.44
CURSOR (k = 2) 67.04 56.86
CURSOR (k = 3) 67.56 57.35
CURSOR (k = 4) 67.49 57.30
CURSOR (k = 1) + Baseline 67.63 57.48
CURSOR (k = 3) + Baseline 68.21 58.04

Table 2: Results of RNN-Graph parser across 25 tar-
get languages in average UAS and LAS. Generally, the
more number (k) of the word reordering results are
used to train the model, the better the performance will
be. Ensembling CURSOR (k = 3) with the baseline
achieves the highest accuracy in both UAS and LAS.

structure of a source language. For a pair of similar
languages, such change may cause a drop in the
performance. We thus propose an inference-time
ensemble method which combines the output of
CURSOR and Baseline by:

w(m,h) =γT · wBaseline(m,h)

+ (1− γT ) · wCURSOR(m,h)

γT = 0.5×
(
1− maxM (S‖·)−M (S‖T )

maxM (S‖·)−minM (S‖·)

) (5)

where w(m,h) denotes the score that h is the head
of m, γT governs the relative importance of two
models, maxM (S‖·) and minM (S‖·) are the
highest and lowest scores computed as Equation (3)
among 25 target languages. If the target language
is more similar to the source one we will put more
weights on Baseline.

We show in Figure 6 that the ensemble method
can further improve the transfer performance of
CURSOR, and outperform Baseline in all lan-
guages. Ensembling CURSOR (k = 3) with Base-
line achieves the best performance (68.21% in UAS
and 58.04% in LAS), establishing a new start-of-
the-art as shown in Table 2.

5 Conclusion

We propose a treebank reordering approach for
cross-lingual dependency parsing. Our approach
does not require any parallel corpus and can be
applied to any pair of source and target languages
as long as their POS tags are available. Extensive
experimentation with different network architec-
tures across 30 languages demonstrates that our ap-
proach can substantially improve the performance
of the cross-lingual parsing.
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Željko Agic. 2017. Cross-lingual parser selection

for low-resource languages. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies, 22 May, Gothenburg Sweden, 135, pages 1–10.
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Jaradat. 2017. Cross-language learning with adver-
sarial neural networks. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 226–237.

Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya, and
Eric Fosler-Lussier. 2017. Cross-lingual transfer
learning for pos tagging without cross-lingual re-
sources. In Proceedings of the 2017 conference on
empirical methods in natural language processing,
pages 2832–2838.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.



2947

Gourab Kundu, Avirup Sil, Radu Florian, and Wael
Hamza. 2018. Neural cross-lingual coreference res-
olution and its application to entity linking. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 395–400.
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