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Abstract

Rephrasings or paraphrases are sentences with
similar meanings expressed in different ways.
Visual Question Answering (VQA) models are
closing the gap with the oracle performance
for datasets like VQA2.0. However, these
models fail to perform well on rephrasings of
a question, which raises some important ques-
tions like Are these models robust towards lin-
guistic variations? Is it the architecture or the
dataset that we need to optimize? In this paper,
we analyzed VQA models in the space of para-
phrasing. We explored the role of language &
cross-modal pre-training to investigate the ro-
bustness of VQA models towards lexical vari-
ations. Our experiments find that pre-trained
language encoders generate efficient represen-
tations of question rephrasings, which help
VQA models correctly infer these samples.
We empirically determine why pre-training
language encoders improve lexical robustness.
Finally, we observe that although pre-training
all VQA components obtain state-of-the-art
results on the VQA-Rephrasings dataset, it
still fails to completely close the performance
gap between original and rephrasing validation
splits.

1 Introduction

Visual Question Answering (VQA) (Antol et al.,
2015) is an image conditioned question answering
task which has gained immense popularity in vision
& language community. Since the introduction of
the VQA challenge2, there has been significant
progress in the field of VQA, where new model
architectures and training techniques are closing
the gap between the model and oracle accuracy on
benchmarking datasets like VQA2.0 (Goyal et al.,
2017). A majority of models obtained higher gains

1The work was done prior to joining Amazon.
2https://visualqa.org/challenge.html

Figure 1: Example from VQA-Rephrasings dataset
(Shah et al., 2019). The answers are obtained using
Pythia (Jiang et al., 2018) where green text refers to
correct answer and red text refers to wrong answer.

by introducing semantically rich visual features
(Anderson et al., 2018), efficient attention schemes
(Lu et al., 2016; Yang et al., 2016), and advance
multimodal fusion techniques (Fukui et al., 2016;
Yu et al., 2017).

However, to deploy these state-of-the-art VQA
models into real-world settings, the models must
be robust to linguistic variations that originate from
interactions with real users. Recently, Shah et al.
(2019) showed that state-of-the-art VQA models
(Jiang et al., 2018; Kim et al., 2018) are extremely
sensitive to the lexical variations which result in
a significant performance drop on the VQA test
datasets when the questions are replaced with their
rephrases. Figure 1 shows the shift in confidence
scores of answers for a rephrasing of the original
question. To handle these scenarios, they provided
a model-agnostic cyclic-consistency (CC) approach
that generates question rephrases on the fly during
training, which makes the underlying VQA model
lexically robust. The best-reported model with their
approach achieves 56.59% VQA accuracy on ques-
tion rephrasings.

Nevertheless, all the models that Shah et al.
(2019) experimented with their CC framework in-
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corporate an RNN based language encoder. Re-
cently, transformer-based models (Vaswani et al.,
2017) led to immense improvements in the whole
NLP task spectrum (Wang et al., 2018a). Multi-
headed self-attention, the core of transformer archi-
tecture, encodes the relationship of a word with its
neighbors in several different representational sub-
spaces, thus making these representations robust to
linguistic variations.

Since existing datasets expose VQA models to a
small subset of the language distribution, it leads
to incorrect inference when the model receives
rephrasings of the original question. Although
training on large datasets may overcome the prob-
lem, however, building such extensive annotated
datasets is time-consuming & cost-intensive. Pre-
trained models like ULMFiT (Howard and Ruder,
2018), BERT (Devlin et al., 2018), and GPT (Rad-
ford et al., 2018) have improved performances on
various NLP tasks (Rajpurkar et al., 2016; Wang
et al., 2018a) trained with limited data. Recently,
Tan and Bansal (2019); Lu et al. (2019); Chen et al.
(2019) used cross-modal pre-training methods to
alleviate this problem in VQA.

In this paper, we study the impact of using pre-
training methods to make VQA models linguisti-
cally robust. Our contributions are summarized as
follows:

• We show that pre-trained language encoders
make VQA models lexically robust. We also
analyze how pre-trained encoders efficiently
extract the same semantic information from
syntactically different sentences.

• We show that pre-training is the key to
achieve lexical robustness even with complex
transformer-based VQA architectures.

To the best of our knowledge, our work is the first
one that explores the effect of pre-training to tackle
lexical variations, especially for paraphrases, in
VQA architectures.

2 Background

In this section, we explain the building blocks of
our experiments in this study.

SBERT (Reimers and Gurevych, 2019)3 is a
BERT-based language encoder that generates se-
mantically rich sentence embeddings. It uses
siamese and triplet networks (Schroff et al., 2015)
to finetune BERT (Devlin et al., 2018), which is

3https://github.com/UKPLab/sentence-transformers

Figure 2: Distribution of cosine similarity of ORG-
REP tuples, where each tuple comprises of 1 original
sentence and its 3 rephrasings. We calculate the av-
erage cosine similarity of rephrasings with its original
sentence.

a pre-trained transformer encoder trained on large
amounts of monolingual data. It obtains state-of-
the-art results on common semantic textual similar-
ity and transfer learning tasks.

BUTD (Anderson et al., 2018)4 uses a GRU to
encode input questions and uses them to attend im-
age RoI features, enabling region-based attention
to generate the answer. BUTD is the base architec-
ture for many other VQA architectures like Pythia
(Jiang et al., 2018) and BAN (Kim et al., 2018).

LXMERT (Tan and Bansal, 2019) is a vision-
language cross-modality pre-training framework.
In contrast to single modality pre-training like
BERT, LXMERT focuses on vision-language in-
teractions, which helps to understand better visual
contents, language semantics, and the relationship
between them. It contains three transformer en-
coders, namely an object relationship encoder, a
language encoder, and a cross-modality encoder,
pre-trained using five different vision-language
tasks. It must be noted that LXMERT is just a
placeholder for transformer-based VQA architec-
tures to investigate if a model architecture plays
any role in improving lexical robustness.

3 Experiments

3.1 Dataset
We used the training split of the VQA2.0 dataset
(VQA2.0-train) for training the models in this work
and evaluated them against the two splits of the
VQA-Rephrasings (VQA-R) dataset. It contains

4https://github.com/hengyuan-hu/bottom-up-attention-
vqa



2865

Model VQA-Rephrasings

ORI REP

OA NUM Y/N O RG OA NUM Y/N O RG

BUTD 63.13 41.53 81.27 54.98 - 54.27 33.08 75.73 43.52 -

BUTD+SBERT 62.50 40.22 81.46 53.91 -0.99 57.21 35.91 77.46 47.40 +5.42

LXMERT (a) 63.86 43.38 81.86 55.54 - 54.79 33.86 75.73 44.36 -

LXMERT (b) 64.86 44.32 83.22 56.28 +1.56 58.21 39.25 78.8 47.55 +6.24

LXMERT (c) 73.61 55.88 88.56 66.9 +15.26 66.27 50.63 83.32 57.42 +20.95

Table 1: VQA Accuracy results on both splits of VQA-R. OA refers to overall accuracy. NUM, Y/N and O refers
to accuracies for number, yes/no and other answer class. RG refers to relative gain. RG for BUTD+SBERT and
LXMERT (c) (and LXMERT (b)) are computed w.r.t BUTD and LXMERT (a) respectively.

a randomly sampled 40,504 question-image pairs
from VQA2.0-val. Shah et al. (2019) collected
three rephrasings for each question using human
annotators, which amount to 121,512 pairs. Dur-
ing data collection, the authors ensured that the
rephrasings are syntactically correct and semanti-
cally aligned with original questions. We call the
original split as ORI and rephrasings split as REP
in our experiments.

3.2 Implementation Details
Unlike original BUTD architecture, we use only
36 RoI per image to obtain visual features and use
ReLU activation units. We train the model using
Adamax (Kingma and Ba, 2014) with an initial
learning rate of 2 x 10−3 on the full training set, and
the standard VQA accuracy (Antol et al., 2015) is
reported for each split of VQA-Rephrasings dataset.
In our experiments, we replace the GRU of BUTD
with SBERT to obtain BUTD+SBERT. We pass
the question embeddings from SBERT through a
fully-connected (FC) layer, which is later combined
with image embeddings to produce a multi-modal
representation of the image-question pair. The size
of SBERT embeddings is 768, and the FC layer
size is 512.

We train three variants of LXMERT: (a) all pa-
rameters are randomly initialized (b) only language
encoder is initialized with BERT weights (c) all
parameters except VQA task head are initialized
with the pre-trained LXMERT weights5. It is worth
mentioning that we don’t use any part of VQA2.0-
val during training or finetuning to ensure the fair-
ness of results on each split of VQA-R. In our

5https://github.com/airsplay/lxmert

experiments, we use the default hyperparameters
set in the original implementation. LXMERT vari-
ant (a), (b), and (c) converged at 17 (30 hours), 10
(18 hours), and 4 epochs (8 hours) respectively on
Nvidia V100 GPU.

4 Results and Analysis

4.1 Syntactic Variation causes Data
Distribution Shift

Machine learning models perform generally well
on test samples drawn from a distribution similar
to their training data and fail to generalize when
test data distribution differs. However, Wang et al.
(2018b); Agrawal et al. (2016) showed that net-
works are misled by contextual heuristics in train-
ing data instead of learning underlying generaliza-
tions. McCoy et al. (2019) showed a similar trend
in NLI and found that state-of-the-art language
models like BERT indeed adopt underlying heuris-
tics, thus failing to generalize for test samples. We
observe that the VQA2.0-train and VQA2.0-val
have similar distributions whereas the distribution
of VQA-R is different6. Since we train the lan-
guage encoder of BUTD using VQA2.0-train, it
performs significantly better on ORI than REP (in
Table 1). Therefore, a shift in the lexical distribu-
tion of REP is a contributing factor towards this
artifact.

6Distributions of question lengths are given in the supple-
mentary material
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4.2 Pre-trained Language Encoders generate
Lexically Robust Representations

Although REP and ORI contain the same amount
of semantic information, a significant performance
drop for REP is due to the poor representation
of input questions by the GRU. One can alleviate
this problem by introducing a better language en-
coder. Therefore, we replace the GRU of the BUTD
with SBERT, which is robust to lexical variations
and efficiently extracts the overall semantics. As
shown in Table 1, our approach (BUTD+SBERT)
improves the accuracy of REP by 5.41% relative to
BUTD and performs slightly better than BAN+CC
which is the reported state-of-the-art model of Shah
et al. (2019). One must note that the architecture
of BUTD is relatively simpler than BAN, and our
approach doesn’t train any auxiliary component
like the question generation module in CC.

However, BUTD+SBERT obtains a comparable
performance on ORI, whose distribution is similar
to VQA2.0-train. Since we train GRU on VQA2.0-
train, it generates semantically rich question em-
beddings of ORI than the generalized embeddings
from SBERT, which never interacts with VQA lan-
guage data. Tan and Bansal (2019) observed a
similar trend in VQA2.0-dev accuracies when they
used BERT as the language encoder. Considering
SBERT doesn’t directly improve VQA models, it
raises a question What are the underlying factors
that allow SBERT to improve the REP accuracy?

We investigate it by generating the SBERT &
GRU embeddings for the original question and its
three rephrases, and calculate the average cosine
similarity of the rephrases with their original coun-
terpart. As shown in Fig. 2, we observe that SBERT
moves the embeddings of rephrases significantly
closer to the original question in its representa-
tional vector space; whereas, GRU fails to extract
the underlying common semantics due to its lex-
ical sensitivity. The average cosine similarity of
ORG-REP tuple for SBERT and GRU is 91% and
60% respectively. Hence, we conclude that ma-
jor accuracy gains for REP are derived from the
pre-trained language encoder, thus making our ap-
proach model-agnostic.

4.3 Pre-trained Language Encoders latch on
Keywords

A sentence and its rephrases share some common
keywords which control their semantics. A lexi-
cally robust language encoder must latch on these

keywords to generate semantically rich vector rep-
resentations. In our experiment7, we build an or-
dered sequence of keywords S1 extracted from a
complete sentence S2. We encode S1 and S2 us-
ing a language encoder and measure the cosine
similarity of the pair. We hypothesize that a lex-
ically robust language encoder generates similar
representations of S1 and S2 in its vector space.
We found that the average cosine similarity over
the whole VQA-R dataset for SBERT and GRU is
0.85 and 0.64 respectively8. The ability to stress
on keywords makes SBERT circumvent syntactic
deviations in paraphrases and embed them closer
to each other in its vector space.

4.4 Transformers are Good but Pre-training
makes them Great

As shown in Table 1, LXMERT (c) achieves state-
of-the-art results on both ORI and REP. LXMERT’s
pre-training, in comparison to SBERT, is condi-
tioned on both vision & language modality, which
generates better multi-modal representations. Since
a single image is associated with multiple ques-
tions, cross-modal attention helps obtain efficient
language representations, making VQA models ro-
bust towards question rephrasings.

However, the high performance of LXMERT (c)
raises an important question Are the gains com-
ing from pre-training or LXMERT architecture?
Since LXMERT (a) achieves similar performance
to BUTD on REP split, it shows that even a com-
plex cross-modality architecture is not enough to
make VQA models lexically robust. However,
when we train LXMERT initialized with BERT
weights, we observe relative gains of 1.56% in ORI,
and 6.24% in REP. Furthermore, when we finetune
LXMERT with pre-trained language, vision, and
cross-modality encoders, the gains in REP grows
further to 20.95% relative to LXMERT (a).

Single modality pre-training, like BERT, only
captures intra-modal relationships, while VL pre-
training, like LXMERT (c), learns cross-modality
relationships. Since cross-modal attention aligns
entities across input modalities, it induces seman-
tically rich and robust joint representations, thus
outperforming BERT only initialization. These
results validate that pre-training is a crucial com-
ponent for obtaining lexical robustness even for
highly complex architectures.

7We use rake-nltk to extract keywords.
8We show the distribution of average cosine similarity of

S1 and S2 over whole VQA-R in supplementary material.
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5 Discussion

Since pre-trained language models like BERT are
trained on large and diverse data, it is generally hy-
pothesized that such models are very robust to lin-
guistic variations. Our results show that pre-trained
language encoders like SBERT indeed improve the
performance of REP split by 5.42% relative to a
GRU encoder; however, it still underperforms by
9.37% relative to semantically similar ORI ques-
tions, modeled by a GRU encoder. We observed
a similar trend with task-specific multimodal pre-
training as well, where LXMERT (c) struggles to
close the relative performance gap of about 10%
between REP and ORI. In this work, we show that
pre-training indeed improves the linguistic robust-
ness of VQA models while simultaneously reveal-
ing the limitations of pre-trained language encoders
for standard tasks.

6 Conclusion and Future Work

In this paper, we show that pre-trained language en-
coders, like SBERT, produce semantically similar
embeddings for multiple rephrases of a sentence
by latching on keywords, thus making VQA mod-
els robust to lexical variations. Combining cross-
modal pre-training with transformer-based VQA
architectures obtains state-of-the-art results on the
VQA-Rephrasings dataset.

In the future, we plan to investigate the factors
that prevent closing the accuracy gap between ORI
& REP despite using extensive cross-modal pre-
training. Further, we will study why some answer
classes like number benefits the most from pre-
training while others achieve significantly less rela-
tive performance gains.
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