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Abstract
The celebrated Seq2Seq technique and its
numerous variants achieve excellent perfor-
mance on many tasks such as neural machine
translation, semantic parsing, and math word
problem solving. However, these models ei-
ther only consider input objects as sequences
while ignoring the important structural infor-
mation for encoding, or they simply treat out-
put objects as sequence outputs instead of
structural objects for decoding. In this pa-
per, we present a novel Graph-to-Tree Neural
Networks, namely Graph2Tree consisting of a
graph encoder and a hierarchical tree decoder,
that encodes an augmented graph-structured
input and decodes a tree-structured output. In
particular, we investigated our model for solv-
ing two problems, neural semantic parsing and
math word problem. Our extensive experi-
ments demonstrate that our Graph2Tree model
outperforms or matches the performance of
other state-of-the-art models on these tasks.

1 Introduction

Learning general functional dependency between
arbitrary input and output spaces is one of the key
challenges in machine learning. While many efforts
in machine learning have mainly focused on design-
ing flexible and powerful input representations for
solving classification or regression problems, many
applications require researchers to design novel
models that can deal with complex structured in-
puts and outputs, such as graphs, trees, sequences,
or sets. In this paper, we consider the general prob-
lem of learning a mapping between a graph in-
put G ∈ G and a tree output T ∈ T , based on
a training sample of structured input-output pairs
(G1, T1), ..., (Gn, Tn) ∈ G × T drawn from some
fixed but unknown probability distribution.

Such learning problems often arise in a variety
of applications, ranging from semantic parsing, to
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SP

Text Input:
what jobs are there for web developer who know ’c++’ ?

Structured output:
answer( A , ( job ( A ) , title ( A , W ) , const ( W , ’Web
Developer’ ) , language ( A , C ) , const ( C , ’c++’ ) ) )

MWP

Text input:
0.5 of the cows are grazing grass . 0.25 of the cows are sleep-
ing and 9 cows are drinking water from the pond . find the
total number of cows .

Structured output:
( ( 0.5 * x ) + ( 0.25 * x ) ) + 9.0 = x

Table 1: Examples of structured input and output of se-
mantic parsing (SP) and math word problem (MWP).
For inputs, we consider parsing tree augmented se-
quences to get structural information. For outputs, they
are naturally a hierarchical structure with some struc-
tural meaning symbols like brackets.

math word problem, label sequence learning, and
supervised grammar learning, to name just a few.
As shown in Fig. 1, finding the parse tree of a
sentence involves a structural dependency among
the labels in the parse tree; generating a mathemat-
ical expression of a math word problem involves
a hierarchical dependency between math logical
operations and the numbers. Conventionally, there
have been efforts in generalizing kernel methods to
predict structured and inter-dependent variables in
a supervised learning setting (Tsochantaridis et al.,
2005; Altun et al., 2004; Joachims et al., 2009).

Recently, the celebrated Sequence-to-Sequence
technique (Seq2Seq) and its numerous variants
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015) achieve excellent performance in
neural machine translation. Encouraged by the suc-
cess of Seq2Seq model, there is a surge of interests
in applying Seq2Seq models to cope with other
tasks such as developing neural semantic parser
(Dong and Lapata, 2016) or solving math word
problem (Ling et al., 2017). However, the two
significant challenges making a Seq2Seq model in-
effective in these tasks are that, i) for the natural
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text description input, it often entails some hidden
syntactic structure information such as dependency,
constituency tree or even semantic structure infor-
mation like AMR parsing tree; ii) for the mean-
ingful representation output, it typically contains
abundant information in a structured object like a
parsing tree or a mathematical equation.

Inspired by these observations, in this work, we
propose a Graph-to-Tree neural networks, namely
Graph2Tree consisting of a graph encoder and a
hierarchical tree decoder, which leverages the struc-
tural information of both source graphs and target
trees. In particular, our Graph2Tree model learns
the mapping from a structured object such as a
graph to another structured object such as a tree. In
addition, we also observe that the structured object
translation typically follows a modular procedure,
which translates the individual sub-graph in the
source graph into the corresponding target one in
target tree output, and then compose them to form
the final target tree.

Therefore, we design a workflow to align with
this procedure: our graph encoder first learns from
an input graph that is constructed from the various
inputs such as combining both a word sequence and
the corresponding dependency or constituency tree,
and then our tree decoder generates the tree object
from the learned graph vector representations to ex-
plicitly capture the compositional structure of a tree.
In particular, we present a novel Graph2tree model
with a separated attention mechanism to jointly
learn a final hidden vector of the corresponding
graph nodes in order to align the generation pro-
cess between a heterogeneous graph input and a
hierarchical tree output.

To demonstrate the effectiveness of our model,
we perform experiments on two important tasks –
Semantic Parsing and Math Word Problem. First,
we compare our approach against several neural
network approaches on the Semantic Parsing task.
Our experimental results show that our Graph2Tree
model could outperform or match the performance
of other state-of-the-art models on three standard
benchmark datasets. Second, we further compare
our approach with existing recently developed neu-
ral approaches on the math word problem and our
results clearly show that our Graph2Tree model
can achieve state-of-the-art performance compared
to other baselines that use many task-specific tech-
niques. We believe our Graph2Tree model is a
solid attempt for learning structured input-output

translation.

2 Related Works

2.1 Graph Neural Networks

The graph representation learning recently attracted
a lot of attention and interest from both academia
and industry. One of the most important research
lines is the semantic embedding learning of graph
nodes or edges based upon the power of graph
neural networks (GNNs) (Li et al., 2016; Kipf and
Welling, 2017; Velickovic et al., 2017; Gilmer et al.,
2017; Hamilton et al., 2017).

Encouraged by the recent success in GNNs, var-
ious Sequence-to-Graph (Peng et al., 2018) or
Graph-to-Sequence models (Xu et al., 2018a,b,c;
Beck et al., 2018; Chen et al., 2020) have been
proposed to handle the structured inputs, structured
outputs or both of them, i.e. generating AMR graph
generation from the text sequence. More recently,
some researchers proposed the Tree-to-Tree (Chen
et al., 2018b), Graph-to-Tree (Yin et al., 2019) and
Graph-to-Graph (Guo et al., 2018) neural networks
for targeted application scenarios.

However, these works are designed exclusively
for specific downstream tasks like program transla-
tion or code edit. Compared to them, our proposed
Graph2Tree neural network with novel design of
graph encoder and tree decoder does not rely on
any specific downstream task assumption. Addi-
tionally, our Graph2Tree is the first generic neural
network translating graph inputs into tree outputs,
which may have numerous applications in practice.

2.2 Neural Semantic Parsing

Semantic parsing is the task of translating natu-
ral language utterances into machine-interpretable
meaning representations like logical forms or SQL
queries. Recent years have witnessed a surge of in-
terests in developing neural semantic parsers with
sequence-to-sequence models. These parsers have
achieved promising results (Jia and Liang, 2016;
Dong and Lapata, 2016; Ling et al., 2016). Due to
the fact that the meaning representations are usu-
ally structured objects (e.g. tree structures), many
efforts have been devoted to develop structure-
oriented decoders, including tree decoders (Dong
and Lapata, 2016; Alvarez-Melis and Jaakkola,
2017), grammar constrained decoders (Yin and
Neubig, 2017; Yin et al., 2018; Jie and Lu, 2018;
Dong and Lapata, 2018), action sequences for se-
mantic graph generation (Chen et al., 2018a), and
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modular decoders based on abstract syntax trees
(Rabinovich et al., 2017). However, those ap-
proaches could potentially be further improved be-
cause they only consider the word sequence infor-
mation and ignore other rich syntactic information,
such as dependency or constituency tree, available
at the encoder side.

Researchers recently attempted to leverage of
the power of GNNs in various NLP tasks, includ-
ing the neural machine translation (Bastings et al.,
2017; Beck et al., 2018), conversational machine
reading comprehension (Chen et al., 2019b), and
AMR-to-text (Song et al., 2018). Specifically in
the semantic parsing field, a general Graph2Seq
model (Xu et al., 2018b) is proposed to incorporate
these dependency and constituency trees with the
word sequence and then create a syntactic graph as
the encoding input. However, this approach simply
treats a logical form as a sequence, neglecting the
abundant information in a structured object like tree
in the decoder architecture. Therefore, we present
the Graph2Tree model to utilize the structure infor-
mation in both structured inputs and outputs.

2.3 Math Word Problems

The math word problem is the task of translating
the short paragraph (typically consisting with mul-
tiple short sentences) into succinct mathematical
equations. To solve a math word problem illus-
trated in Table 1, traditional approaches focus on
generating numeric answer expressions by map-
ping verbs in problems text to categories (Hosseini
et al., 2014) or by generating templates from prob-
lem texts (Kushman et al., 2014). However, these
approaches either need additional hand-crafted an-
notations for problem texts or are limited to a set
of predefined equation templates.

Inspired by the great success of Seq2Seq mod-
els in Neural Machine Translation, deep-learning
based methods are intensively explored by re-
searchers in the equation generation (Wang et al.,
2017; Ling et al., 2017; Li et al., 2018, 2019; Zou
and Lu, 2019; Xie and Sun, 2019). However, dif-
ferent forms of equations can be formed to solve
the same math problem, which often makes mod-
els fail. To resolve the equation duplication issues,
various equation normalization methods are pro-
posed in (Wang et al., 2018a, 2019) to generate a
unique expression tree with the cost of losing the
understanding of problem-solving steps in equa-
tion expressions. In contrast, we propose to use a

Graph2Tree model to solve this task without any
special mechanisms like equation normalization.
To the best of our knowledge, this is the first work
to use GNN to build a math word problem solver.

3 Problem Formulation and Structure
Object Construction

3.1 Graph-to-Tree Translation Task

In this work, we consider the problem of trans-
lating a graph input to a tree output. In partic-
ular, we consider two important tasks - Seman-
tic Parsing and Math Word Problem. Formally,
we define both tasks as follows. The input side
contains a set of text sequences, denoted as S =
{s1, s2, . . . , sn} ∈ S where si is a text sequence
consisting of a sequence of word embeddings
si = {w1, w2, . . . , w|si|} ∈ W , whereW is a pre-
trained word embedding space. We then construct
a heterogeneous graph input G = (V,E) ∈ G,
where V = [V1 V2] contains all of the original
word nodes V1 ∈ V1 as well as the relationship
nodes V2 ∈ V2 from the relationships of a parsing
tree (i.e. dependency or constituency tree), and
E ∈ E denotes if the two nodes are connected or
not. The aim is to translate a set of heterogeneous
graph inputsG = {g1, g2, . . . , gn} into a set of tree
outputs T = {t1, t2, ...tn} ∈ T where ti is a logic
form or math equation consisting of a sequence of
tree node token ti = {y1, y2, . . . , y|ti|} ∈ Y .

3.2 Constructing Graph Inputs and Tree
Outputs

To apply GNNs, the first step is to construct a graph
input by combining the word sequence with their
corresponding hidden structure information. How
to construct such graphs is critical to incorporate
the structured information and influences the final
performance. Similarly, how to construct the tree
outputs from logic form or math equations also
play an important role in the final performance
and model interpretability. In this section, we will
introduce two methods for graph construction and
one method for tree construction.

are there ada jobs outside austin

expl
compound

nsubj

case

nmod

Sentence Level FeatureDependency Feature

Figure 1: Dependency tree augmented text graph
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Combining Word Sequence with Dependency
Parse Tree. The dependency parse tree not only
represents various grammatical relationships be-
tween pairs of text words, but also is shown to have
an important role in transforming texts into logi-
cal forms (Reddy et al., 2016). Therefore, the first
method integrates two types of features by adding
dependency linkages between corresponding word
pairs in word sequence. Concretely, we transform
a dependency label into a node, which is linked
respectively with two word nodes with dependency
relationship. Figure 1 gives such an example of
constructed heterogeneous graph from a text.

PP

SQ

are there ada jobs outside austin

Sentence Level FeatureConstituency Feature

VBP EX

ND

FW NNS IN NN

NP

P

ROOT

NP

Layer 1

Layer 2

Layer 3

Figure 2: Constituency tree augmented text graph

Combining Word Sequence with Constituency
Tree. The constituency tree contains the phrase
structure information which is also critical to de-
scribe the word relationships and has shown to pro-
vide useful information for translation (Gū et al.,
2018). Since the leaf nodes in the constituency
tree are the word nodes in the text, this method
merges these nodes with the identical ones in the
bi-directional word sequence chain to create the
syntactic graph. Figure 2 shows an example of
constructed heterogeneous graph input.

Subtree Node Operator Node Operand Node

S1 + 9.0 = x

S2 S2

0.5 * x 0.25 * x

Graph
Embedding

+

Start Decoding Parent Feeding Sibling Feeding

ROOT

Figure 3: A sample tree output in our decoding process
from expression ”( ( 0.5 * x ) + ( 0.25 * x ) ) + 9.0 = x”

Constructing Tree Outputs. To effectively learn
the compositional nature of our structured outputs,

we need to firstly transform original outputs from
logic forms or math equations to tree structured
objects. Specifically, we follow the tree construc-
tion method in (Dong and Lapata, 2016), which
is a top-down manner to generate tree-structured
outputs. In original outputs containing structural
meaning symbols like brackets, we first extract sub-
tree structures and replace these sub-tree structures
with sub-tree symbols. Then we grow branches
from the generated sub-tree symbols until all hi-
erarchical structures in the original sequence are
processed. Figure 3 provides an example of con-
structed tree objects from mathematical expression.

4 Graph2Tree Neural Networks

We aim to learn a mapping that translates a het-
erogeneous graph-structured input G and its corre-
sponding tree-structured outputs T . We illustrate
the workflow of our proposed Graph2Tree model
for semantic parsing in Figure 4, and present each
component of the model as follows.

4.1 Graph Encoder
To effectively learn graph representations from our
constructed heterogeneous text graph, we present a
novel bidirectional graph node embeddings method
- BiGraphSAGE. The proposed BiGraphSAGE ex-
tends the widely used GraphSAGE (Hamilton et al.,
2017) by learning forward and backward node em-
beddings of a graph G in an interleaved fashion.

In particular, consider a word node v ∈ V1
with pretrained word embedding wv like GloVe
(Pennington et al., 2014) as v’s initial attributes.
We then generate the contextualized node embed-
dings av for all nodes v ∈ V1 using Bi-directional
Long Short Term Memory (BiLSTM) (Graves et al.,
2013). For a relationship node v ∈ V2, we initial-
ize av with randomized embeddings. These fea-
ture vectors are used as initial node embeddings
h0
v = av. Then each node embedding learns its

vector representation by aggregating information
from a node local neighborhood within K hops of
the graph.

hk
N`(v) = Mk

`({hk−1
u` , ∀u ∈ N`(v)}) (1)

hk
Na(v) = Mk

a({hk−1
ua , ∀u ∈ Na(v)}) (2)

where k ∈ {1, ...,K} is the iteration index and N
is the neighborhood function of node v. Mk

` and
Mk
a are the forward and backward aggregator func-

tions. Node v’s forward (backward) representation
hk
v` (hk

va) aggregates the information of nodes in
N`(v) (Na(v)).
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Figure 4: Overall architecture of our Graph2Tree model. We use semantic parsing task as an example.

Conceptually, one can choose to keep these
node embeddings for each direction independently,
which ignores interactions between two intermedi-
ate node embeddings during the training. There-
fore, we fuse two intermediate unidirectional node
embeddings at each hop as follows,

h1 = hk
N`(v), h2 = hk

Na(v) (3)

hk
N (v) = wg � h1 + (1− wg)� h2, (4)

wg = σ( ~Wz[h1; h2; h1 � h2; h1 − h2]) (5)

where � denotes component-wise multiplication,
σ is a sigmoid function and wg is a gating vector.

The graph encoder learns node embeddings hk
v

by repeating the following process K times:

hk
v = σ(Wk · CONCAT(hk−1

v , hk
N (v))) (6)

where Wk denotes weight matrices, σ is a non-
linearity function, K is maximum number of hops.

The final bi-directional node embeddings zv is
chosen to concatenate the two unidirectional node
embeddings at the last hop,

zv = CONCAT(hK
v`, h

K
va) (7)

g = MAXPOOL(FC(z)). (8)

After the bi-directional embeddings for all nodes
z are computed, we then feed the obtained node
embeddings into a fully-connected neural network
and apply the element-wise max-pooling operation
on all node embeddings to compute the graph-level
vector representation g, where other alternative
commutative operations such as mean or attention
based weighted sum can be used as well.

4.2 Tree Decoder

We propose a new general tree decoder fully lever-
aging the outputs of our graph encoder, i.e. the bi-
directional node embeddings and the graph embed-
ding, and faithfully generating the tree-structured
targets like logic forms or math equations.

Inspired by the thinking paradigm of human be-
ings, our tree decoder at high level uses a divide-
and-conquer strategy splitting the whole decoding
task into sub ones. Figure 3 illustrates an example
output of our tree decoder. In this example, we
firstly initialize the root tree node ROOT with the
graph embedding g, and then apply a sub-decoder
on the ROOT to generate a 1st-level coarse output
containing a sub-tree node S1. This S1 is further
decoded with the similar sub-decoder to derive the
2nd-level coarse output. This procedure is repeated
to generate the 3rd-level output in which there is
no sub-tree nodes. In this way, we get the whole
tree output in a top-down manner.

This whole procedure can be summarized as fol-
lows: 1) initialize the root tree node with the graph
embedding from our encoder and perform the first
level decoding with our LSTM based sub-decoder;
2) for each newly generated sub-tree node, a sub-
decoder is applied to derive the next level coarse
output; 3) repeat step 2 until there is no sub-tree
nodes in the last level of tree structure.

4.2.1 Sub-Decoder Design

In each of our sub-decoder task, the conditional
probability of the generated word at step t is calcu-
lated as follows:
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p(yt|y<t, x) = fpredict(st) (9)

where x denotes vectors of all input words, yt is the
predicted output word at t, st is the decoder hidden
state at t, and fpredict is a non-linear function.

The key component of Eq. (9) is the computa-
tion of st. Conceptually, this value is calculated as
st = fdecoder(yt−1, st−1), where fdecoder is usually
a RNN unit. We propose two improvements on top
of it, parent feeding and sibling feeding, to feed
more information for decoding sub-tree nodes.

Parent feeding. For a sub-task in our tree decod-
ing process, we aim to expand the sub-tree node in
the parent layer. Therefore, it is reasonable to take
the sub-tree node embedding sti into consideration.
Therefore, we add the sub-tree node embedding
as part of our input at every time-step, in order to
capture the upper-layer information for decoding.

Sibling feeding. Besides the information from
parent nodes, if two sub-tree nodes share the same
parent node, then these two sub-tasks can also be re-
lated. Inspired by this observation, we employ the
sibling feeding mechanism to feed the preceding
sibling sentence embedding to the sub-task related
to its closet neighbor sub-tree node. For example,
imagine p1 is the parent node of c1, c2, and we feed
both embeddings of p1 and c1 when decoding c2.

Therefore, our sub-decoder calculates the de-
coder hidden state st as follows:

st = fdecoder(yt−1, st−1; stparent; stsibling) (10)

where stparent stands for sub-tree node embedding
from parent layer and stsibling is the sentence em-
bedding of the closest preceding sibling. By fully
utilizing the information from parent nodes and
sibling nodes, our tree decoder can effectively gen-
erate target hierarchical outputs.

4.3 Separate Attention Mechanism to Locate
Source Sub-graph

Various attention mechanisms have been proposed
(Bahdanau et al., 2014; Luong et al., 2015) to in-
corporate the hidden vectors of the inputs into ac-
count during the decoding processing. In particu-
lar, the context vector st depends on a set of bidi-
rectional node representations of the source graph
(z1,...,z|V |) to which the decoder locates the source
sub-graph. Since our graph input is essentially
a heterogeneous graph with two different input
sources (word nodes with relationship nodes of
a parsing tree), we propose to employ a separated

attention mechanism over the node representations
corresponding to the different node types:

αt(v) =
exp(score(zv, st))

exp(
∑V1

k=1 score(zk, st))
, ∀v ∈ V1 (11)

βt(v) =
exp(score(zv, st))

exp(
∑V2

k=1 score(zk, st))
,∀v ∈ V2 (12)

where the score(·) function estimates the similarity
of zv and st. Then, we compute the context vectors
cv1 and cv2, respectively.

cv1 =
∑

αt(v)zv, ∀v ∈ V1 (13)

cv2 =
∑

βt(v)zv, ∀v ∈ V2 (14)

We concatenate the context vector cv1 , context
vector cv2 and decoder hidden state st to compute
the final attention hidden state at this time step as:

s̃t = tanh(Wc · [cv1 ; cv2 ; st] + bc) (15)

where Wc and bc are learnable parameters. The
final context vector s̃t is further used for decoding
tree structured outputs. The output probability dis-
tribution over a vocabulary at the current time step
is calculated by:

p(yt|y1, y2, . . . , yt−1, g) = softmax(Wv s̃t + bv) (16)

where Wv and bv are learnable parameters. Our
model is then jointly trained to maximize the con-
ditional log-probability of the target tree given a
heterogeneous graph input g.

5 Experiments

In this section, we evaluate the effectiveness and
generality of Graph2Tree model on two important
tasks – Semantic Parsing and Math Word Problem.
The code and data for our Graph2Tree model are
provided for research purpose 1.

5.1 Experiments for Semantic Parsing
Datasets. We evaluate our Graph2Tree on three
totally-different benchmark datasets, JOBS (Zettle-
moyer and Collins, 2005), GEO (Zettlemoyer and
Collins, 2005), and ATIS (Dahl et al., 1994), for
the semantic parsing task. The first one JOBS is
a set of 640 queries from a job listing database,
the second one GEO is a set of 880 queries on a
database of U.S. geography, and the last one ATIS
is a dataset of 5410 queries from a flight booking
system. We utilize the same train/dev/test split
standard as used in previous works. We adopt the
data preprocessing provided by (Dong and Lapata,

1https://github.com/IBM/Graph2Tree

https://github.com/IBM/Graph2Tree
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2016). Natural language utterances are in lower
case and stemmed, and entity mentions are replaced
by numbered markers. For the graph construction,
we use the dependency parser and constituency
parser from CoreNLP (Manning et al., 2014).
Settings. We use the Adam optimizer (Kingma
and Ba, 2014) with a batch size of 20. For the
JOBS and GEO datasets, our hyper-parameters are
cross-validated on the training sets. For ATIS, we
tune them on the development set. The learning
rate is set to 0.001. In graph encoder, the BiRNN
we use is a one-layer BiLSTM with a hidden size
of 150, and the hop size in GNN is chosen from
{2,3,4,5,6}. The decoder we employ is a one-layer
LSTM with a hidden size of 300. The dropout rate
is chosen from {0.1,0.3,0.5}.
Baselines. We compare our model against several
state-of-the-art neural semantic parsers: i) Seq2Seq
model with a Copy mechanism (Jia and Liang,
2016); ii) Seq2Seq and Seq2Tree models (Dong
and Lapata, 2016); iii) Graph2Seq model (Xu et al.,
2018a). We report the exact-match accuracy for
each baseline on all three benchmarks.

Methods JOBS GEO ATIS
Jia et al.(2016) - 85.0 76.3

Dong et al.(2016)-Seq2Seq 87.1 84.6 84.2
Dong et al.(2016)-Seq2Tree 90.0 87.1 84.6
Xu et al.(2018)-Graph2Seq2 88.6 85.7 83.3

Graph2Tree 92.9 88.9 84.6

Table 2: Exact-match accuracy comparison on all three
benchmarks JOBS, GEO, and ATIS for SP task

Methods Translated logic form results

Reference str
job (ANS), language (ANS, ’delphi’),

title (ANS, ’developer’), loc (ANS, ’san antonio’),
platform (ANS, ’windows’)

Graph2tree
job (ANS), language (ANS, ’delphi’),

title (ANS, ’developer’), loc (ANS, ’san antonio’),
platform (ANS, ’windows’ )

Graph2seq job (ANS), language (ANS, ’delphi’),
title (ANS, ’developer’), platform (ANS, ’windows’)

Seq2seq job (ANS), language (ANS, ’delphi’),
title (ANS, ’developer’), loc (ANS, ’san antonio’)

Table 3: Case study of SP input: “what jobs can a
delphi developer find in san antonio on windows ?”

Results. Table 2 shows that our proposed
Graph2Tree outperforms or achieves comparable
exact-match accuracy compared to other state-of-
the-art baselines, highlighting the effectiveness of
our proposed model by exploiting full utilization of
structural information in both inputs and outputs.

2We run our own implementation of Graph2Seq on these-
datasets using PyTorch.

Case study. Next we analyze the different decod-
ing results of all models for an example case in
Table 3. The challenge in semantic parsing is the
high-order neighborhood estimation of the noun
key word “jobs” to its attribute words “windows”
and “san antonio”. It is hard for the traditional se-
quence encoder to encode high-order neighborhood
(long-range dependency). For instance, there are
10 hops between the word “jobs” and “windows”
according to the sequential dependency, while there
are only two hops if we introduce the syntactic de-
pendency information. Therefore, syntactic graph
with graph encoder is an effective way to learn
a high-quality representation for decoding. This
partially explains why our Graph2tree model out-
performs Seq2Seq and Seq2Tree models.

Methods JOBS GEO
Full model 92.9 88.9
w/o const tree 90.0 86.8
w/ original GraphSage 90.7 88.2
w/ only parent feeding 91.4 87.9
w/ only sibling feeding 89.2 84.3
w/o parent & sibling feeding 88.6 83.9
w/o separated attention 83.6 77.1

w/ uniform attention 90.7 87.1
w/o bilstm 89.3 86.4

Table 4: Ablation study of Graph2Tree on the seman-
tic parsing (JOBS and GEO). We employ exact match
accuracy as evaluation metric.

Ablation study. Table 4 presents the ablation study
on our Graph2Tree using a constituency tree based
graph (on SP datasets JOBS and GEO). This is
done with test sets (JOBS and GEO have no dev
set). Firstly, We observe that the syntactic infor-
mation in constituency tree, which is helpful for
describing word relationships, is critical to our over-
all performance. And we found that our bidirec-
tional GraphSAGE, encoding from both forward
and backward nodes according to edge direction,
is proved to enhance the final performance. Fur-
thermore, parent feeding and sibling feeding mech-
anism, which can enrich both the paternal and fra-
ternal information in decoding, also play important
roles in the whole model. In addition, designed for
different types of nodes in the input graph, the sep-
arate attention mechanism is proved useful in our
model. Last but not least, it is also necessary to use
Bi-LSTM in encoder to learn the contextualized
word embeddings from the word sequences.
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5.2 Experiments for Math Word Problems

Datasets. We here evaluate our Graph2Tree model
on two benchmark datasets, MAWPS (Koncel-
Kedziorski et al., 2016) and MATHQA (Amini
et al., 2019), for the Math Word Problems auto-
matically solving task. The MAWPS dataset is a
Math Word Problem dataset in English and con-
tains 2373 pairs after harvesting equations with sin-
gle unknown variable. The other MATHQA dataset
is a recently proposed large-scale Math Word Prob-
lem dataset with 37k English pairs, where each
math expression is corresponding to an annotated
formula for better interpretability. This dataset is
more difficult for covering complex multivariate
problems.
Baselines. We compare our Graph2Tree model
against several state-of-the-art methods. We report
the solution accuracy for each baseline in test set.
On MAWPS, our baselines are: i) Retrieval, Classi-
fication, and Seq2Seq (Robaidek et al., 2018); ii)
Seq2Tree (Dong and Lapata, 2016); iii) Graph2Seq
(Xu et al., 2018a); iv) MathDQN (Wang et al.,
2018b); v) T-RNN (Wang et al., 2019); vi) Group-
Att (Li et al., 2019). On MATHQA, our baselines
are: i) Sequence-to-program (Amini et al., 2019);
ii) TP-N2F (Chen et al., 2019a); iii) Seq2Seq,
Seq2Tree and Graph2Seq.

Methods MAWPS
Oracle 84.8

Retrieval Jaccard 45.6
Cosine 38.8

Classification BiLSTM 62.8
Self-attention 60.4

Seq2seq LSTM 25.6
CNN 44.0

Seq2Tree 65.2
Graph2Seq 70.4
MathDQN 60.25

T-RNN
Full model 66.8

W/o equantion normalization 63.9
W/o self-attention 66.3

Group-Att 76.1

Graph2Tree with constituency graph 78.8
with dependency graph 76.8

Table 5: Solution accuracy comparison on MAWPS

Results. As shown in Table 5, our Graph2Tree
model consistently outperforms other state-of-the-
art baselines by a large margin up to 10 points ab-
solute accuracy except Group-Att baseline. To the
best of our knowledge, we make the first attempt to
employ the graph neural network for solving Math
Word Problems, and our Graph2Tree model with
constituency graph achieves the best performance

Methods MATHQA
Seq2Prog 51.9

Seq2Prog+Cat 54.2
TP-N2F 55.95
Seq2seq 58.36
Seq2Tree 64.15

Graph2Seq 65.36

Graph2Tree with constituency graph 69.65
with dependency graph 65.66

Table 6: Solution accuracy comparison on MATHQA

so far on this MAWPS benchmark. We have ob-
served similar conclusions on a more challenging
and larger dataset – MATHQA. This highlights the
importance of having our Graph2Tree neural net-
works that can leverage the structured information
from both inputs and outputs for automatic solving
of math problems.

It is worth noting that our hierarchical tree de-
coder directly generates original mathematical ex-
pressions, which faithfully reflect reasoning steps
when building math equations. However, state-of-
the-art math word problem solvers like Group-Att
(Li et al., 2019) or T-RNN (Wang et al., 2019)
have achieved high performance by utilizing Equa-
tion Normalization (EN) proposed by (Wang et al.,
2019) to keep structures of output equations uni-
fied. This method can improve solution accuracy
because it reduces the difficulty of equation gener-
ation. On the other hand, the normalized equations
completely lose the semantic meaning of operands
and operators, making them difficult to reason ra-
tionales how answer math equations are built.
Attention visualization. For better understanding
of our separated attention, we give a visualization
sample from MAWPS. As shown in Figure 5(a),
we give an augmented graph input and equation
tree, where 〈N〉 is sub-tree node and 1, 2 are in-
dexed markers for original numbers. Specifically,
Figure 5(b) and 5(c) illustrates alignments with
word nodes and compositional nodes in graph in-
put respectively. For example, in Figure 5(c), the
equation part “2 * 1” is matched with “a bee has
2 legs” in the original natural language sentence
which is actually semantically connected with “NP”
and “VP” in the constituency tree.
Ablation study. Similarly, we also perform the
ablation study for math word problem (MAWAPS),
as shown in Table 7. This is done with dev set.
Attention mechanism, constituency structure and
other components in our model play significant
roles for Graph2tree to achieve high performance
in MWP solving, which is consistent with our ob-
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a bee has 2 legs

NP

?

VP

NP

......

SBAR

S

=x N

2 * 1

(a) A graph-to-tree translation example

a bee has   2   legs  ,   how many legs do 1 bees have ?

X

=

<N>

<E>

2

*

1

<E>

(b) Attention for word nodes

S     NP  VP  NP  SBAR S          VP  S     NP

WHADJP

X
=

<N>
<E>

2
*
1

<E>

(c) Attention for structure nodes

Figure 5: Effect visualization of our separated attentions on both word and structure nodes in a graph.

Methods MAWAPS
Full model 78.8
w/o const tree 75.6
w/ original GraphSage 76.4
w/ only parent feeding 75.6
w/ only sibling feeding 72.4
w/o parent & sibling feeding 67.6
w/o separated attention 67.6

w/ uniform attention 71.6
w/o bilstm 72.8

Table 7: Ablation study of Graph2Tree on the math
word problem (MAWAPS). We employ solution accu-
racy as evaluation metric. The Methods settings is
same as Table 4.

servation in the semantic parsing task. However, it
is worth noting that, according to the experiment,
the sibling mechanism is obviously more impor-
tant to the MWP task than the semantic parsing
task, which is in line with our expectations. In the
MWP task, the result of decoding, math expres-
sions, is relatively simple compared to semantic
parsing. And in math expressions, the order be-
tween leaf nodes (numbers), which directly affects
the correctness of expressions, is very important.
The sibling mechanism plays exactly such a role.
One potential interesting extension is that, if we can
connect leaf nodes in the input graph and employ
edge weights to dynamically represent the order
between the nodes, it may achieve a similar or even
better effect than the sibling mechanism.

6 Conclusion and Future Work

We presented a novel Graph2Tree model consist-
ing of a graph encoder and a hierarchical tree de-
coder, for learning the translation between struc-
tured inputs and structured outputs. Studies on two
tasks - Semantic Parsing and Math Word Problem
demonstrated our model consistently outperformed

or matched the performance of the state-of-the-art.
Our Graph2Tree model is generic and agnostic to
the downstream tasks and thus one of the future
works is to adapt it to the other NLP applications.
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