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Abstract

Data programming aims to reduce the cost
of curating training data by encoding domain
knowledge as labeling functions over source
data. As such it not only requires domain
expertise but also programming experience,
a skill that many subject matter experts
lack. Additionally, generating functions by
enumerating rules is not only time consuming
but also inherently difficult, even for peo-
ple with programming experience. In this
paper we introduce RULER, an interactive
system that synthesizes labeling rules using
span-level interactive demonstrations over
document examples. RULER is a first-of-a-
kind implementation of data programming by
demonstration (DPBD). This new framework
aims to relieve users from the burden of writing
labeling functions, enabling them to focus on
higher-level semantic analysis, such as iden-
tifying relevant signals for the labeling task.
We compare RULER with conventional data
programming through a user study conducted
with 10 data scientists who were asked to create
labeling functions for sentiment and spam
classification tasks. Results show RULER is
easier to learn and to use, and that it offers
higher overall user-satisfaction while provid-
ing model performances comparable to those
achieved by conventional data programming.

1 Introduction

Machine learning (ML) models used today are
predominantly supervised and rely on large datasets
labeled for training. However, the cost of collecting
and maintaining labeled training data remains a
bottleneck for training high-capacity supervised
models [33].

Weak supervision methods such as crowdsourc-
ing [15], distant supervision [26], and user-defined
heuristics [10] enable the use of noisy or imprecise
sources to gather large training datasets. Data

Interactive Statistics

Labeling Interaction

Function Generation

Figure 1: RULER enables the user to interactively
generate a diverse set of labeling functions through
simple, non-programmatic text annotations. Dynami-
cally updated statistics allow the user to quickly test and
evaluate ideas.

programming [6, 30, 31] aims to address the
difficulty of collecting labeled data by using a
programmatic approach to weak supervision by
heuristics, where domain experts are expected to
provide data programs (labeling functions) incorpo-
rating their domain knowledge. Prior work on data
programming focuses on modeling and aggregating
labeling functions written manually [30, 31] or
generated automatically [13, 35] to create training
data. However, little is known about user experience
in writing labeling functions and how to improve
it [2]. Many domain experts or lay users have little
or no programming literacy. Even for proficient
programmers, it is often difficult to convert domain
knowledge to a set of rules by writing programs.

We introduce RULER (Figure 1), an interactive
system that enables more accessible data pro-
gramming to create labeled training datasets for
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document classification models. RULER automat-
ically generates labeling rules from user’s labeling
rationales or intents as demonstrated by span-level
annotations and their relations provided by the user
for specific examples. RULER bears some similar-
ities to rule-based information extraction systems,
that have been made accessible to domain experts
by prior work such as PropMiner [3]. RULER,
however, has a focus on creating training data,
rather than a final model. This distinction is critical
because while such information extraction systems
focus on high-accuracy rules, RULER intentionally
guides the user towards noisy heuristics in order to
intelligently combine them, making the resulting
data useful for training a supervised model that can
better handle diverse inputs such as ungrammatical
text. Additionally, RULER leverages features to
classify the documents themselves, rather than for
information extraction.

We also introduce DPBD, a new human-in-the-
loop framework that moves the burden of writing
labeling functions to an intelligent synthesizer
while enabling users to steer the synthesis process at
multiple semantic levels, from providing rationales
relevant for their labeling choices to interactively
filtering the proposed functions. RULER is based on
this framework, demonstrating how these concepts
can apply to text documents. The DPBD framework
builds primarily on two lines of research: the
first is programming by demonstration (PBD) or
example (PBE), e.g., [9, 22], which aims to make
programming easier by synthesizing programs
based on user interactions or input and output
examples. The second is interactive learning from
user-provided features or rationales [38, 39].

Through a user study conducted with 10 data
scientists, we evaluate RULER alongside manual
data programming using Snorkel [30]. We measure
the predictive performances of models created by
participants for sentiment classification and spam
detection. We also elicit ratings and qualitative
feedback from participants on multiple measures,
including ease of use, ease of learning, expressivity,
and overall satisfaction. We find RULER better
facilitates the creation of labeling functions without
any loss in the quality of learned labeling models.

Our main contributions include (1) DPBD, a gen-
eral data-independent framework for interactively
learning labeling rules; (2) an interactive system
RULER based on our framework to enable labeling
rule generation by interactive demonstration for
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Figure 2: Overview of the data programming by demon-
stration (DPBD) framework. Straight lines indicate the
flow of domain knowledge, and dashed lines indicate
the flow of data. By extending data programming with
programming by example, we bridge the gap between
scalable training data generation and domain experts.

document classification tasks; and (3) a compar-
ative user study conducted with data scientists in
performing real-world tasks to evaluate RULER and
conventional data programming. We also make our
research artifacts, including the RULER code and
demo, publicly available 1.

2 DPBD Framework

Problem Statement Given a dataset D =
{d1,...,dm} of data records and a set of labels
L= {l1,...,ln}, we aim to develop a framework that
enables human labelers to assign a label from L for
each data record intelligently sampled from D′⊂D
(|D′|�|D|), while demonstrating their rationales
for label assignments through visual interaction.
Given a triplet (d′i,vi,lj) of a data record, a visual
interaction from the labeler, and the label assigned,
we want this framework to effectively synthesize
and propose labeling rulesRij= {r1,...,rk} for the
labeler to choose from. Finally, we want the frame-
work to optimally aggregate all the chosen rules
(labeling functions) in order to create a labeled train-
ing set fromD\D′ with probabilistic labels in order
to subsequently train discriminative models on it.
Framework Overview

The data programming by demonstration
(DPBD) framework (Figure 2) has two input
sources: the human labeler and the raw text
data. The labeler is the subject matter expert who
has sufficient domain understanding to extract
useful data signals and does not necessarily have
programming experience. Given a dataset, our
framework enables the labeler to label each record
with a categorical label, while providing their
labeling rationales by interactively marking relevant
parts of the record and specifying relationships.
1https://github.com/megagonlabs/ruler

https://github.com/megagonlabs/ruler
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The output is a labeling model, trained to produce
labels for the large unlabeled dataset automatically.

The DPBD framework has four main com-
ponents. The labeler interacts with data via the
labeling interface. The labeling interface records
the labeler’s interaction and compiles the interaction
into a set of conditions. The synthesizer synthesizes
labeling rules from these conditions and translates
those chosen by the labeler into functions. Then, the
selected functions are passed to the modeler, which
builds a labeling model by optimally aggregating
the generated functions.

Until a particular stopping criterion is met (e.g.,
reaching the desired model quality) or the labeler
decides to exit, the active sampler selects the next
data record to present the labeler.

2.1 Labeling Interface
The labeling interface is the workplace where the
labeler quickly and intuitively encodes domain
knowledge into labeling rules. It provides a way to
express noisy explanations for labeling decisions
using a visual interaction language, allowing
the user to express domain knowledge without
formalizing their ideas into computer programs
or natural language explanations. This allows for
more focus on patterns in the data while abstracting
away any implementation concerns.

2.2 Generalized Labeling Model
The generalized labeling model (GLM) models
the data records with concepts and relationships
in a way that is interpretable to the user. The GLM
views the data record as a series of tokens, where
a token is a continuous subset of a record with
no semantics attached. For example, in text data,
a token can be any span (single char to multiple
words) of the data record; in an image data record, it
would be a 2D region, rectangular or free form; and
in an audio data record, it would be a 1D window
of the data record (e.g., a phoneme).

A concept is a group of tokens that the labeler be-
lieves share common semantics. For instance, over
text data, the labeler might define a concept of pos-
itive adjectives consisting of a set of tokens, each of
which can imply a positive review. When labeling
audio data, the labeler might create a concept to ag-
gregate all clips that denote excitement or a specific
speaker. This abstraction allows the user to teach the
GLM what generalizations are relevant to the task.

A relationship represents a binary correlation
between token-token, token-concept, or concept-

concept. Some examples are membership (e.g., a
token is in a concept), co-existence (e.g., opinion
and aspect tokens), and positional (e.g., a person
is standing left to a table [12]).

Table 1: Mapping from GLM elements to operations in
the labeling interface.

GLM Element Operations

token select, assign concept
concept create, add, delete

relationship link, direct to

Mapping GLM Elements to Operations Given
the GLM specification described above, our
framework also defines the operations that can be
applied to those elements. Table 1 lists the GLM
elements and the corresponding operations.

The implementation of both the labeling interface
and the operations described in Table 1 would vary
across data types and token definitions. The GLM
may also perform transformations over the set of
tokens to add expressivity, as we describe in the
next section.
Compiling Operations into Labeling Rules
Once the labeler finishes annotating an example
using the provided operations and selects a label,
the tokens are extracted from the annotation and
used as the initial set of conditions to build rules.
The synthesizer combines these conditions into
labeling rules by selecting subsets of the conditions
combined with different conjunctive formulas,
according to the relationships the user has annotated.
The synthesizer presents these extended labeling
rules for the labeler to select from, choosing desired
ones based on domain knowledge.

A labeling rule serves as an intermediate
representation, interpretable by both the labeler
and the synthesizer. In our framework, we adapt
the notation of domain relational calculus [16]
to represent these rules, which can be expressed
as: {tokens | conditions} ⇒ label. The
variable tokens is a sequence of tokens with
existential quantification, and conditions is
a conjunctive formula over boolean predicates
that is tested over tokens on a data record. The
predicates are first-order expressions, and each can
be expressed as a tuple (T,lhs,op,rhs). T is an op-
tional transformation function on a token identifier,
a process of mapping the raw token to more gen-
eralized forms. Some example transformations are
word lemmatization for text labeling, speech-to-text
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detection in audio labeling, or object recognition
in image labeling. lhs is a token, while rhs can be
either a token, literal, or set. If rhs denotes a token,
the transformation functionT may also apply to rhs.
op is an operator whose type depends of the type
of rhs. If rhs is a token or literal, op detects a po-
sitional or an (in)equality relationship. Otherwise,
if rhs is a set, op is one of the set operators {∈, 6∈}.
Since the conditions is in the conjunctive form,
the order of labeler’s interactions does not matter.

Example: Consider the binary sentiment classifi-
cation (positive or negative) task on Amazon review
data [14]. Observe the following review:
This book was so great! I loved

and read it so many times that I
will soon have to buy a new copy.

If the labeler thinks this data record has a positive
sentiment, she can express her decision rationale
using GLM. First, she may select two tokens that
are related to the sentiment: book and great. As-
sume there are two concepts the labeler previously
created: (1) item= {book, electronics};
and (2) padj= {wonderful}. The labeler re-
alizes the token great can be generalized by the
padj (positive adjective) concept, which means
that the labeling rule will still be valid for any to-
kens in the concept, so she adds this token to the
concept. Finally, the labeler creates a positional
relationship from book to token great to indi-
cate that they appear in the same sentence, be-
fore completing the labeling process. These op-
erations compile into the labeling rule r : {t1,t2 |
t1 = book∧ t2 ∈ padj∧ sentence idx(t1) ==
sentence idx(t2)} ⇒ positive. This rule is
sent to the synthesizer for expansion and program
synthesis.

2.3 Synthesizer

Given the compiled labeling rule from the labeling
interface, the synthesizer extends one single label-
ing rule from the labeler’s interaction to a set of more
general labeling rules; and translates those labeling
rules into computer programs. It is straightforward
to translate the rules into executable computer pro-
grams (labeling functions), so in this section, we fo-
cus on how to synthesize the extended labeling rules.

The synthesizer generates labeling rules by
optimizing two competing goals: maximizing
generalization, so that more (unseen) data can be
accurately labeled; and maximizing the coverage
of the labeler’s interaction, simply because labeler’s

interaction is the most valuable signal for labeling
from domain knowledge. Of course, the larger the
set of annotations in an interaction, the larger the
set of labeling functions that can be synthesized. To
keep rule selection as straightforward as possible for
the user, we prioritize rules that cover more of the
interaction, assuming that there is little redundancy.

We achieve generalization of the given rules us-
ing the following heuristics: (1) substituting tokens
with concepts; (2) replacing general co-existence
relationships with position-specific ones; and (3)
applying the available transformations over the
tokens. In RULER, we implement transformations
that recognize named entity types such as person
and location, extracted using the spaCy
library [1]. These annotations are made visible
to the user, and annotations containing named
entities will generate functions that generalize to
all instances of that entity.

Once the extended rules are generated, the
rules are ranked by their generalization score—a
measurement of how applicable a particular rule is.
We define a data-independent generalization score
for a labeling rule r as: G(r)=

∏
c∈r.conds|c.rhs|.

Intuitively, G(r) is calculated by counting how
many different data instances that r can be used.

Example: Continuing with our Amazon review
example, the synthesizer can derive the following
labeling rules from r using these heuristics:

1. {t1,t2 | t1∈item∧t2∈padj}⇒positive

2. {t1,t2 | t1∈item∧t2∈padj∧idx(t1)<idx(t2)}⇒
positive

3. {t1,t2 | t1=book∧t2∈padj}⇒positive

Note that labeling rule (1) is more general than (2)
and (3) because all data records that can be labeled
by (2) and (3) will be labeled the same way using
labeling rule (1).

The top-k candidates ranked by the generaliza-
tion score are displayed in the labeling interface for
the labeler to accept or reject.

2.4 Modeler
The modeler component trains a model that can be
used to annotate unlabeled datasets automatically.
Naively aggregating the labeling functions can
be either inaccurate (since labeling functions can
be conflicting and correlated) or does not scale
with large sets of unlabeled data [30]. Instead, the
modeler encapsulates the ideas from traditional
data programming [6, 30, 31] to build a generative
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model that denoises the labeling functions and
create training data. The user can then train a
discriminative model to leverage other features
beyond what is expressed by the labeling functions.

2.5 Active Sampler

To improve the model quality at faster rates, our
framework uses an active sampler to choose
the next data record for labeling. The active
sampler selects the data record x∗ with the
highest entropy (i.e., the one that the labeling
model is currently the most uncertain about):
x∗=argmaxx−

∑|L|
i pθ(Li |x)logpθ(Li |x)where

pθ(Li |x) is the probability that example x belongs
to class Li, as predicted by the trained label model.

3 Ruler Interface

RULER is a web-based interactive system that builds
on the data programming by demonstration (DPBD)
framework introduced above to facilitate labeled
training data preparation for document-level text
classification models. For this, RULER leverages
span-level features and relations in text documents
demonstrated through visual interactions by users
(labelers), as formalized by the DPBD framework.
To begin a labeling task, the data owner needs to
upload their unlabelled dataset, in addition to a
small labeled development set, and optionally a
small test and validation set. This mirrors the data re-
quirements of Snorkel, which the underlying DPBD
modeler encapsulates. In the rest of this section, we
discuss the user interface and interactions of RULER

along with its implementation details in operational-
izing DPBD for text document classification.

Recall that the purpose of the labeling interface
in DPBD ( Section 2.1) is to enable the labeler to
encode domain knowledge into rules through visual
interaction. To this end, RULER interface provides
affordances through 6 basic views (Figure 3), which
we briefly describe below—the letters A-F refer to
annotations in Figure 3.
Labeling Pane (A) is the main view where the
user interacts with document text. The Labeling
Pane (Figure 4) shows a single document at a time
and supports all the labeling operations defined
by the GLM in the context of text data. The user
can annotate spans by highlighting them directly
with the cursor or adding them to a concept. These
spans can be linked together if the relationship
between them is significant to the user. Once the
user selects a document label (class) from the

options displayed, the system generates a diverse
set of labeling functions to suggest to the user.
Concepts Pane (B) allows users to create concepts,
add and edit tokens (whole words surrounded by
non-alphabetical characters) or regular expressions,
and see annotations over their text automatically
added when a match is found (Figure 5). This
interaction allows users to abstract away details
about specific language use by grouping tokens or
regular expressions into concepts.
Suggested Functions (C) shows the labeling
functions suggested by the system. The user can
select any functions that seem reasonable, and
only then are they added to the underlying labeling
model that is iteratively built.
Labeling Statistics (D) displays current statistics
of the label model computed over the development
set, and differential changes incurred by the last
data interaction. Because this panel updates as
the user interacts, the user can explore the space
of labeling functions efficiently in terms of time,
computation, and human effort.
End-model Statistics (E) shows the performance
statistics for an end-discriminative model for
which the user intends to collect training data.
For example, in our user study, we used a logistic
regression model with a bag of words features on
the generated training data. We evaluate this model
on the small held-out test set and show the statistics
in this pane. This panel updates only when the
user chooses to retrain the model, to deter from
overfitting to the development set.
Selected Functions (F) lists of currently selected
labeling rules that make up the labeling model and
shows each rule’s performance statistics based on
the development set. The user can click to open a
details panel showing observed incorrect labels and
sample texts labeled by this function.

4 Evaluation

We evaluated RULER alongside manual data
programming using Snorkel [30]. Although non-
programmer domain experts are a target audience
for this technology, we wanted our evaluation
to show that the RULER labeling language is
expressive enough to create models comparable
to manual data programming. We also wanted
to understand the trade-offs afforded by each
method in order to help programming-proficient
users decide which is best for their situation. In
order to make these comparisons, we conducted
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Figure 3: RULER User Interface. RULER synthesizes labeling rules based on rationales expressed by users by
interactively marking relevant parts of the example and specifying implied semantic relations among them.

Figure 4: RULER Labeling Pane: User conveys
domain knowledge using a visual interaction language.
Annotations are color coded by the concepts they are
assigned to. This example is from the Amazon reviews
dataset [14].

a user study with 10 programming-proficient data
scientists and measured their task performance
accuracy in completing two labeling tasks using the
two methods. In addition to task performance, we
analyzed both accessibility and expressivity using
the qualitative feedback elicited from participants.

In an initial pilot study, we included a third
condition, BabbleLabble [13]. For this method,
users express labeling rationales in natural language,
which the tool then parses into labeling rules. Partic-
ipants found BabbleLabble to be limited in terms of

Figure 5: Left: Example concept created to capture
negation. Right: example text highlighting as concept
elements are matched in the text, and annotations
created once the element is submitted.

what patterns they could express and how to express
them, as they “tried to express it in a parsable
sentence” and faced errors. The preliminary results
led us to believe that although BabbleLabble
may be suitable for high-volume approaches
like crowd-sourcing, it can be frustrating for a
domain expert or lay user who is both providing the
explanations and creating and debugging the label
model. Based on these observations, we removed
BabbleLabble from our evaluation.
Participants We recruited participants with Python
programming experience through our professional
network (none were involved in this project). Note
that RULER can be used by programmers and
non-programmer domain experts alike, but a fair
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comparison with Snorkel requires proficiency in
conventional programming. All participants had
significant programming experience (avg=12.1
years, std=6.5). Their experience with Python
programming ranged from 2 to 10 years, with an
average of 5.2 years (std=2.8).
Experimental Design We carried out the study us-
ing a within-subjects experiment design, where all
participants performed tasks using both conditions
(tools). The sole independent variable controlled
was the method of creating labeling functions.
We counterbalanced the order in which the tools
were used, as well as which classification task was
performed with which tool.
Tasks and Procedure We asked participants to
write labeling functions for two prevalent labeling
tasks: spam detection and sentiment classification.
These tasks were chosen because the user does not
need to be a domain expert to understand the differ-
ences between the classes. Participants performed
these two tasks on YouTube Comments and Ama-
zon Reviews, respectively. Participants received 15
mins of instruction on how to use each tool, using a
topic classification task (electronics vs. guns) over
a newsgroup dataset [32]. We asked participants
to write as many functions as they considered
necessary for the goal of the task. There were given
30 mins to complete each task, and we recorded the
labeling functions they created as well as these func-
tions’ individual and aggregate performances. After
completing both tasks, participants also filled out
an exit survey, providing their qualitative feedback.

For the manual programming condition, we
iteratively developed a Jupyter notebook interface
based on the Snorkel tutorial. We provided a section
for writing functions, a section with diverse analysis
tools, and a section to train a logistic regression
model on the labels they had generated (evaluated on
the test set shown to the user, which is separate from
our held-out test set used for the final evaluation).

5 Results

To analyze the performance of participants’ labeling
functions for each condition, we select the labeling
model that achieves the highest f1 score on the
development set. For example, if a user performs
the spam classification task using RULER, and the
set of functions that they created 20 minutes into
their 30-minute session attains the highest score on
the development set, we use that model to evaluate
this condition, rather than strictly using whatever
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Figure 6: Performances of the classifier models trained
on the probabilistic labels generated by participants’ la-
beling models. Error bars show one standard deviation.
Although manual programming allows participants
to use existing packages (e.g., sentiment analysis
packages), RULER performs comparably with Snorkel
in both tasks.

model the participant has at the end of the 30-minute
session. We use each label model to generate a
training dataset, which we then use to train a logistic
regression model with bag-of-words features.
Finally, we evaluate the logistic regression model’s
performance on a held-out test set (400 examples).
We also analyze participants’ subjective ratings on
a Likert scale of 5 (1–5, higher is better) in their exit
surveys. We use the paired Wilcoxon signed-rank
test to assess the significance of differences in
prediction metrics and subjective ratings between
RULER and Snorkel. We also report the effect size
r for all our statistical comparisons.
Model Performance We find that RULER and
Snorkel provide comparable model performances
(Figure 7). The logistic regression models trained
on data produced by labeling models created using
RULER have slightly higher f1 (W =35, p=0.49,
r=0.24 ), precision (W =30, p=0.85, r=0.08),
and recall (W =25, p=0.85, r=0.08) scores on
average. Conversely, accuracy is slightly higher
(W = 17, p= 0.32, r = 0.15) for Snorkel models
on average than RULER. While these differences
are not statistically significant, it indicates that the
users achieved compareable performance through a
demonstration as opposed to programming labeling
functions, suggesting a broader user base.
Subjective Ratings and Preferences Participants
find RULER to be significantly easier to use (W =
34, p=0.03< 0.05, r=0.72) than Snorkel. Simi-
larly, they consider RULER easier to learn (W =30,
p=0.1, r=0.59) than Snorkel. On the other hand,
as we expected, participants report Snorkel to be
more expressive (W =0, p=0.05, r=0.70) than
RULER. However, our participants appear to con-
sider accessibility (ease of use and ease of learning)
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Figure 7: Participants’ subjective ratings on ease of use,
expressivity, ease of learning and overall satisfaction,
on a 5-point Likert scale. Error bars show one standard
deviation. RULER is considered by participants to
easier to use and learn, though using Snorkel alone is
considered to be more expressive.

to be more important criteria, rating RULER higher
(W = 43, p = 0.12, r = 0.51) than manual data
programming with Snorkel for overall satisfaction.

When asked which tool they prefer overall, two
users preferred Snorkel, four preferred RULER,
and the remaining four said it depends on the
task and data. If they wanted to get data quickly
or the dataset required many domain-specific
keywords, they would opt for RULER, whereas
Snorkel would be preferred if given more time. One
user summarized it as “Simple label function[s]
that rely on keywords are much easier and faster to
write with RULER. For both tasks, I did not write
complex label logic, so with the same time, I can
write more label functions with RULER.”

The reason some users preferred Snorkel in
certain situations was expressivity, yet interestingly
almost three-quarters (72.3%) of the functions that
users wrote in Snorkel could be captured through
RULER interactions. The types of functions not
captured included: functions that used Python senti-
ment analysis packages, and functions that counted
the number of occurrences of a word, the length of
the text, or, in one case, the ratio of alphabetical char-
acters. This suggests that even skilled programmers
can benefit from using both systems, using RULER

to more quickly capture domain-specific concepts
and language use, and then manually adding func-
tions based on their new understanding of the data.

For users who are not skilled at programming,
RULER is, to the best of our knowledge, the only
tool available to help leverage data programming
with full control over the functions. Our user study
shows that in addition to the benefit RULER provides
to this group, it may even help skilled program-
mers save time and create better models, either in
conjunction with traditional programming or alone.

6 Related Work

We build on earlier work in weak supervision,
programming by demonstration, and learning from
feature annotations provided by users.
Weak Supervision In order to reduce the cost
of labeled data collection, weak supervision
methods leverage noisy, limited, or low precision
sources such as crowdsourcing [15], distant
supervision [26], and user-defined heuristics [10]
to gather large training data for supervised learning.
Data programming [30, 31] is a programmatic
approach to weak supervision by heuristics, where
domain experts provide functions which are then
used to label training data at scale and train ML
models using probabilistic labels. RULER aims to
make data programming easier and more accessible
for document classification tasks.
Program Synthesis by Demonstration Auto-
mated synthesis of programs that satisfy a given
specification is a classical artificial intelligence (AI)
problem [37]. Generating programs by example
or demonstration is an instance of this problem.
The terms programming by example (PBE), or
programming by demonstration (PBD) are often
used interchangeably, though their adoption and
exact meaning might diverge across fields and appli-
cations. There is a rich research literature of PBD
systems, which generate programs satisfying given
input-output examples, being applied to automate
various data analysis tasks [9]. PBD systems aim
to empower end-user programming in order to
improve user productivity [4, 7, 18, 19, 23, 27, 28].
One of the core research questions in PBD is how to
generalize from seen examples or demonstrations.
To generalize, PBD systems need to resolve the
semantic meaning of user actions over relevant
(e.g., data) items. Prior approaches incorporate
a spectrum of user involvement, from making no
inference (e.g., [11, 28]) to using AI models with
no or minimal user involvement, to synthesize a
generalized program (e.g., [9, 17, 20, 24, 25]). Our
framework takes a hybrid approach within the spec-
trum above and combines inference and statistical
ranking along with interactive demonstration.
Learning from Feature Annotations Prior work
proposes methods for learning from user provided
features [8, 21, 29], rationales [5, 36, 38, 39], and
natural language explanations [13, 34]. Babble-
Labble [13] uses a rule-based parser to turn natural
language explanations into labeling functions and
aggregates these functions using Snorkel. RULER
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also learns labeling functions from high level
imprecise explanations and aggregates them using
the Snorkel framework. However, RULER enables
users to supply their rationales through interactive
visual demonstrations, removing the cognitive load
of having to formalize one’s intuition into either a
programming or natural language.

7 Discussion

RULER prioritizes accessibility over expressivity.
Is this trade-off inevitable? There are many ways
we could improve the expressivity of RULER, for
example, by extending analysis on the context of
user demonstrations, or by giving users more direct
control over the synthesized labeling functions.
However, many of these improvements can only be
informed by how people use RULER in real-world
applications. With this in mind, deriving additional
insights into how users without programming pro-
ficiency use RULER is an essential area to explore,
and open-sourcing RULER is a step forward in this
direction. We especially hope that RULER can be
beneficial for domains like healthcare, where the
domain expert’s time is very valuable and there is
little tolerance for low-quality models.

Future research also includes developing fast
search and ranking algorithms, and experimenting
with different active learning strategies to effec-
tively search and navigate the vast joint space of
labeling functions and data examples.

Accessibility is a key to wider adoption of any
technology and machine learning (ML), especially
in data-hungry supervised forms, is no exception.
In this paper, we presented RULER, a data program-
ming by demonstration (DPBD) system for quickly
generating labeling functions to create training
datasets for document-level classification tasks.
RULER uses the DPBD framework to convert user
rationales, interactively expressed as span-level
annotations and relations, to labeling rules. DPDB
is a general human-in-the-loop framework that
aims to ease writing labeling functions, improving
data programming’s accessibility and efficiency.
Through a user study with 10 data scientists per-
forming real-world labeling tasks for classification,
we evaluated RULER together with conventional
data programming and found that RULER enables
more accessible data programming without any
loss of performance in the final models. Our study
results also suggest that RULER may benefit even
skilled programmers, as many functions can be

captured more easily through visual interactions
using our system than by coding them from scratch.
We release RULER as open-source software to
support future applications and extended research.
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