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Abstract

Several approaches to neural speed reading
have been presented at major NLP and ma-
chine learning conferences in 2017–20; i.e.,
”human-inspired” recurrent network architec-
tures that learn to ”read” text faster by skip-
ping irrelevant words, typically optimizing the
joint objective of minimizing classification er-
ror rate and FLOPs used at inference time.
This paper reflects on the meaningfulness of
the speed reading task, showing that (a) better
and faster approaches to, say, document classi-
fication, already exist, which also learn to ig-
nore part of the input (I give an example with
7% error reduction and a 136x speed-up over
the state of the art in neural speed reading);
and that (b) any claims that neural speed read-
ing is ”human-inspired”, are ill-founded.

1 Introduction

A new natural language processing (NLP) task,
called neural speed reading, or simply speed read-
ing, has attracted a lot of attention within the last
four years (Yu et al., 2017; Johansen and Socher,
2017; Gui et al., 2017; Huang et al., 2017, 2018;
Seo et al., 2018; Fu and Ma, 2018; Yu et al., 2018b;
Hansen et al., 2019; Li et al., 2019; Tao et al., 2019;
Liu et al., 2020). The basic idea is to model ”hu-
man speed reading techniques” (Fu and Ma, 2018)
for more efficient NLP, including document clas-
sification, named entity recognition, and machine
comprehension. Neural speed reading architectures
are typically recurrent neural networks – long short
term memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) – that jointly learn to process
documents and ignore parts of them in making their
decisions.

The term ”speed reading” comes from psycholin-
guistics, where it refers to fast-paced human read-
ing, associated with fewer eye fixations, short fix-
ation times, and longer saccades. However, while

Figure 1: Our argument, schematically

some of the above authors claim to model human
speed reading, e.g., Fu and Ma (2018), they do not
evaluate their ability to do so, say by evaluating
against eye-tracking data from readers.1 Surveying
the psycholinguistics literature, however, it turns
out that the notion of ”human speed reading” is
surrounded by controversy; there is in fact little
evidence that humans can read significantly faster
without also incurring a significant information loss
(McLaughlin, 1969; Rayner et al., 2016).

Neural speed reading is therefore not – and can
never be – a cognitive modeling effort of model-
ing human speed reading strategies. Neural speed
reading is therefore not a new task, but reduces
to the well-known task of computationally effi-
cient NLP, e.g., document classification with a time
budget (Xu et al., 2012; Nan et al., 2016; Nan
and Saligrama, 2017). Moreover, as I show be-

1Such data is readily available for normal-paced reading
in the form of corpora such as the Dundee Corpus and the
GECO Corpus: https://www2.ling.ohio-state.
edu/golddundee/ and http://expsy.ugent.be/
downloads/geco/, respectively. These datasets have been
used in machine learning experiments aimed at predicting fix-
ations during reading (Nilsson and Nivre, 2009; Matthies and
Søgaard, 2013), as well as as auxiliary data for various NLP
tasks (Barrett and Søgaard, 2015; Klerke et al., 2016). Klerke
et al. (2016), for example, show that jointly predicting fixa-
tions during reading is beneficial for a sentence compression
model, trying to shorten and simplify input sentences.

https://www2.ling.ohio-state.edu/golddundee/
https://www2.ling.ohio-state.edu/golddundee/
http://expsy.ugent.be/downloads/geco/
http://expsy.ugent.be/downloads/geco/
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low, neural speed reading architectures perform
poorly compared to simple baseline approaches to
fast document classification.

Contributions In sum, this paper makes the fol-
lowing contributions: (a) I argue speed reading
reduces to computationally efficient NLP, e.g., fast
document classification. (b) I therefore present
a heads-to-heads comparison of a state-of-the-art
speed reading architecture to a simple n-gram-
based classifier. (c) Our simple n-gram-based clas-
sifier is shown to be significantly better and faster
than the speed reading architecture.

2 Speed Reading

Speed reading, as a machine learning task, was only
introduced about three years ago, but has attracted
a lot of attention (Yu et al., 2017; Johansen and
Socher, 2017; Huang et al., 2017; Seo et al., 2018;
Fu and Ma, 2018; Yu et al., 2018b; Hansen et al.,
2019): All proposed models so far are extensions of
recurrent neural networks for text classification or
sequence labeling - mostly long short-term memory
networks (LSTMs) (Hochreiter and Schmidhuber,
1997) - that learn to either skip, skim or re-read
words, jump elsewhere in the text or to make early
predictions. As mentioned, none of the papers on
neural speed reading, some of which are reviewed
below, evaluate the extent to which they simulate
human speed reading strategies. While the idea of
human speed reading has intrigued modern society
for decades – at least since Evelyn Wood intro-
duced her Reading Dynamics training program in
1959 – the psycholinguistic literature argues very
convincingly that human speed reading is in fact
implausible:2 The reason is physical: In order to
read, people need to move their eyes so as to place
the fovea3 over the region that they want to process
(Rayner et al., 2016). Fixation times (150-200ms)
and saccade times (20-35ms) are relatively fixed,
and this puts a lower bound on reading time.4 In
other words, while speed reading courses claim
readers can learn to obtain information from a large
area of text in a single fixation, it seems there is lit-

2It ”is unlikely that readers will be able to double or triple
their reading speeds while still being able to understand the
text as well . . . ” (Rayner et al., 2016)

3The fovea is the 1◦ region around the center of vision.
4Even if a reader has no processing difficulties, suffers

from no fatigue effects, and only fixates on every second word,
she would at most be able to read 600 words per minute. On
average, skilled readers skip 30% of words and regress back
to words in 10% of their eye movements (Rayner et al., 2016).

tle scientific support for such claims: Humans can
not read significantly faster without a significant
loss in comprehension. Speed reading architectures
have therefore also not been evaluated against, say,
eye-tracking data from human speed reading experi-
ments, and we therefore argue neural speed reading
simply reduces to fast NLP. We review prominent
architectures below.

Speed reading architectures Yu et al. (2017)
present a model that reads a fixed number of words,
and then may decide to jump up to n words ahead
or stop reading. The number of jumps permitted
is also bounded to m, the objective is to learn how
best to spend the m jumps. The authors propose
to use simply policy gradient training (Williams,
1992) (because jumps lead to non-decomposable
loss), using classification accuracy as a reward func-
tion. Note that it is not part of the objective to
minimize the number of FLOPs. They report their
modified LSTM with jumping is up to 6 times faster
than their baseline LSTM, while maintaining the
same or even better accuracy. Extending the work
of Yu et al. (2017), Yu et al. (2018b) use actor-
critic training rather than policy gradient training
and a reward function combining task performance
and FLOP reduction. The approach taken in Fu
and Ma (2018) is also very similar to that of Yu
et al. (2017), except their model allows backwards
jumps, enabling re-reading of text snippets. Huang
et al. (2017) propose a simple speed reading ar-
chitecture that simply learns when to stop reading.
Seo et al. (2018) combine a large and a small recur-
rent neural network and learns, at each time step, to
choose which to use. The small network is thought
of as only skimming the text. Since this discrete
choice leads to non-decomposable loss, they train
the network using Gumbel softmax. Campos et al.
(2018) presents an architecture that can learn to
skip (rather than skim) individual words. Johansen
and Socher (2017) introduce a speed reading model
for sentiment classification, in which a simple sub-
model determines whether or not to use an LSTM
or an n-gram-based classifier. Their proposal, how-
ever, relies on the assumption that an LSTM, in
general, outperforms (all) n-gram-based classifiers
on these document classification problems. We
show that this assumption is false, and that (some)
n-gram-based classifiers consistently outperform
state-of-the-art speed reading architectures.

Hansen et al. (2019) will be our baseline in
the experiments below. We therefore describe



150

this model in some detail: STRUCTURAL-JUMP-
LSTM combines a standard LSTM network with
two simple agents: the skip agent and the jump
agent. Each of these agents predicts a transition dis-
tributions, from which actions can be sampled from:
Skipping amounts to ignoring the next word in the
sequence, i.e., not updating the LSTM, whereas
jumping ignores all information up to some point,
which can either be the next clausal separator sym-
bol (, or ;), or the next sentence segmentator (., !
or ?), or the end of the document.5 The motivation
for adding the jump agent, which is what differen-
tiates STRUCTURAL-JUMP-LSTM from previous
models, is the computational advantage (FLOP re-
duction) of being able to ignore n words without
having to query the skip agent n times. The input
in each time step is the previous actions of the skip
agent, of the jump agent, and of the current input.
The output from the previous LSTM state represen-
tation is used by the agents in combination with the
input to make a skip/jump decision – if the word is
skipped or jumped over, the LSTM state will not be
updated. Both agents consist of a fully connected
layer, but which is significantly smaller than the
LSTM cell size. Using these agents to skip part of
the input reduces the number of FLOPs used when
processing input sequences. Hansen et al. (2019)
use a combination of maximum likelihood and
actor-critic training to train their STRUCTURAL-
JUMP-LSTM architecture. They do so in order to
jointly minimize classification error and the num-
ber of reads. Since the number of reads does not
decompose over the input, they cannot rely solely
on maximum likelihood training and instead use
A3C training (Mnih et al., 2016) with a baseline
offset.6

3 Experiments

Datasets In our experiments, we use the three
document classification datasets most commonly
used in the speed reading literature: IMDB and
ROTTENTOMATOES are both datasets of positive

5The authors do not perform clause and segment segmen-
tation and thus ignore the ambiguity of punctuation symbols;
the jump actions therefore only approximately jump to the end
of the current clause/sentence.

6One difference between our n-gram-based classifier and
Hansen et al. (2019) is that they optimized several hyper-
parameters based on performance on task-specific validation
data. We use the same hyper-parameter setting, optimized on
IMDB held-out training data, across all tasks to avoids overly
optimistic performance estimates. This, in turn, means our
improvements over this state-of-the-art architecture for speed
reading are even more remarkable.

and negative movie reviews collected from the
IMDb moview review database. IMDB is larger
than ROTTENTOMATOES and also contains signifi-
cantly longer documents. AG NEWS, on the other
hand, is a document classification dataset, where
news are classified by their topic. The AG NEWS

corpus consists of news articles from a corpus of
news articles on the web, focusing only on the four
largest classes. The dataset contains 30,000 train-
ing examples for each class, and 1,900 examples
for each class for testing. All three datasets are
balanced classification tasks, and we thus simply
report accuracies on held-out evaluation samples.

On all three datasets, Hansen et al. (2019) report
state-of-the-art classification performance (Accu-
racy) and FLOP reductions (FLOP-r).7 We there-
fore use their system as our baseline. We refer to
their model as STRUCTURAL-JUMP-LSMT (SJ-
LSTM). As we were not able to reproduce results
with their code base,8 we use their reported results
for comparison.

Our classifier is a simple multi-layered percep-
tron with a single hidden layer of 300 dimensions.
We use the Scikits implementation with default pa-
rameters,9 except that we use early stopping and
set β1 = 0.95 based on a held-out (10%) portion of
the IMDb training data.10 For all three datasets, we
use the same hyper-parameters, and train our clas-
sifier on the k (k = 6, 000) most frequent n-grams
in the training split, with n ∈ {1, 2, 3}.11 We use

7While their classification performance is state of the art
among speed reading architectures, others have reported much
better performance on the same datasets. Howard and Ruder
(2018) report an accuracy of 0.951 on AG NEWS, which
is an error reduction of 56% over the result reported for
STRUCTURAL-JUMP-LSTM in Hansen et al. (2019). Tay
et al. (2018) present an architecture that is in many ways very
similar to state-of-the-art speed reading architectures. It does
not skip any words, but for each word queries a controller
network that determines what part of the main network to use.
They report a classification performance of 0.928 on IMDB,
which is an error reduction of 39% over the result reported for
STRUCTURAL-JUMP-LSTM in Hansen et al. (2019). Curi-
ously, Yu et al. (2017) also report slightly higher performance
than Hansen et al. (2019) on IMDB and AG NEWS, but much
worse performance on ROTTENTOMATOES; this seems to be
mostly due to differences in their baseline LSTM architectures,
though.

8https://github.com/Varyn/
Neural-Speed-Reading-with-Structural-Jump-LSTM

9https://scikit-learn.org/stable/
modules/generated/sklearn.neural_network.
MLPClassifier.html. Default parameters: Adam,
ReLUs, b = 200, β2=0.999, ε=1e−08.

10We considered β1 ∈ {0.9, 0.95, 0.99}.
11The values of k and n are also based on a held-out

(10%) portion of the IMDb training data. We considered
k ∈ {1000, 2000, . . . , 8000} and restricting n to {1, 2},

https://github.com/Varyn/Neural-Speed-Reading-with-Structural-Jump-LSTM
https://github.com/Varyn/Neural-Speed-Reading-with-Structural-Jump-LSTM
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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IMDB ROTTENTOMATOES AG NEWS

Acc ∆Acc FL-r Acc ∆Acc FL-r Acc ∆Acc FL-r

LSTM 0.882 - - 0.787 - - 0.880 - -

Hansen et al. (2019) 0.882 0.000 6.3x 0.790 0.003 2.1x 0.883 0.003 2.4x
Seo et al. (2018) - 0.001 5.8x - 0.016 2.1x - 0.001 1.4x
Yu et al. (2018b) - 0.005 3.4x - 0.002 1.5x - 0.001 1.7x
Fu and Ma (2018) - 0.008 2.1x - 0.007 1.7x - 0.020 1.3x

SIMPLE MLP 0.886 0.004 1,101x 0.791 0.004 29x 0.903 0.023 335x

Table 1: Comparing the performance of our simple n-gram-based classifier (SIMPLE MLP) with state-of-the-art
speed reading models. FLOP reductions (FLOP-r) are relative to the LSTM baseline architecture in Hansen et al.
(2019). The average error reduction over STRUCTURAL-JUMP-LSTM is 7%, and the average speed-up over
STRUCTURAL-JUMP-LSTM is 136x.

no preprocessing beyond lower-casing.
We report accuracies in Table 1. We also re-

port the absolute improvement (∆Acc) and FLOP
reductions (FL-r) over an LSTM baseline, follow-
ing Hansen et al. (2019). The FLOP reductions
are computed by dividing the FLOPs used by the
baseline architecture at test time by the number
of FLOPs used by our systems at test time: Our
first observation is that our n-gram-based classifier
consistently outperforms the reported performance
of the STRUCTURAL-JUMP-LSTM architecture.
This is remarkable, since the STRUCTURAL-JUMP-
LSTM is a novel deep learning architecture, which
employs more parameters and takes considerably
less time to train: Our total training time corre-
sponds roughly to training the baseline LSTM ar-
chitecture for one epoch, but the n-gram-based
architecture is significantly faster at inference time,
as measured in FLOP reductions. On average, we
reduce 136 times as many FLOPs as STRUCTURAL-
JUMP-LSTM. The n-gram-based classifier is also
easier to parallelize than the STRUCTURAL-JUMP-
LSTM. The n-gram-based classifier’s accuracies –
both relative and absolute – are slightly better for
IMDB and ROTTENTOMATOES, and considerably
better for AG NEWS.

4 Discussion and conclusion

We have argued that traditional n-gram classifiers
are fully adequate baselines for neural speed read-
ing architectures, in the context of document clas-
sification. In some of the neural speed reading
papers cited above, including Hansen et al. (2019),
the authors also report results on sequence label-
ing problems such as entity recognition or ma-
chine comprehension. Are those experiments more
meaningful than the document classification exper-

{1, 2, 3}, and {1, 2, 3, 4}.

iments? Not really. Yu et al. (2018a), for example,
present a non-recurrent machine comprehension
model based on local convolutions and attention
that is 4–9x faster at inference time than their re-
current baseline model and achieves significantly
superior performance. Wu et al. (2017) present
an even simpler non-recurrent model based only
on convolutions that is 100x faster than their re-
current baseline model and achieves the same per-
formance. Both papers are good examples of sig-
nificantly faster reading strategies for a sequence
labeling task – in this case, machine comprehen-
sion – that seem to outperform neural speed reading
architectures by some margin. For a more direct
comparison, Trischler et al. (2016) show that using
only convolutional encoders and similar scores on
the CBT-CN dataset seem to outperform their own
LSTM baseline, as well as STRUCTURAL-JUMP-
LSTM, by some margin.12

In conclusion, we presented a comparison of
neural speed reading architectures with a simple n-
gram-based classifier, and showed how this classi-
fier is superior to all proposed neural speed reading
architectures on standard document classification
tasks used to benchmark neural speed reading ar-
chitectures, both in terms of performance (7% error
reduction) and speed (136x reduction in FLOP).
Citing research in psycholinguistics, we observed
that speed reading without comprehension loss can-
not be observed in humans, and for this reason, we
argue that the task of neural speed reading has been
a digression, and that researchers should instead
focus on simply building fast NLP models.

12The baseline LSTM in Hansen et al. (2019) scores 0.045
lower than the LSTM baseline in Trischler et al. (2016) on the
CBT-CN dataset.
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