
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1118–1123
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1118

LGPSolver - Solving Logic Grid Puzzles Automatically

Elgun Jabrayilzade
Department of Computer Engineering

Izmir Institute of Technology
elgun1999@gmail.com

Selma Tekir
Department of Computer Engineering

Izmir Institute of Technology
selmatekir@iyte.edu.tr

Abstract

Logic grid puzzle (LGP) is a type of word
problem where the task is to solve a problem
in logic. Constraints for the problem are given
in the form of textual clues. Once these clues
are transformed into formal logic, a deductive
reasoning process provides the solution.

Solving logic grid puzzles in a fully automatic
manner has been a challenge since a precise
understanding of clues is necessary to develop
the corresponding formal logic representation.
To meet this challenge, we propose a solution
that uses a DistilBERT-based classifier to clas-
sify a clue into one of the predefined predi-
cate types for logic grid puzzles. Another nov-
elty of the proposed solution is the recognition
of comparison structures in clues. By collect-
ing comparative adjectives from existing dic-
tionaries and utilizing a semantic framework
to catch comparative quantifiers, the semantics
of clues concerning comparison structures are
better understood, ensuring conversion to cor-
rect logic representation. Our approach solves
logic grid puzzles in a fully automated man-
ner with 100% accuracy on the given puzzle
datasets and outperforms state-of-the-art solu-
tions by a large margin.

1 Introduction

Logic grid puzzle (LGP) is a type of word problem
where the task is to solve a problem in logic. LGP
can be on any domain. Constraints for an LGP are
provided as textual clues. The precise understand-
ing of these clues is crucial to correctly solve the
puzzle because the representation of clues leads the
logical reasoning process.

Automatically solving any word problem paves
the way for more equipped digital assistants that
take textual commands. Both word algebra prob-
lems and logic puzzles appear in admission tests
such as the Graduate Record Exam (GRE). Thus,
automation improves the understanding of these

problems and can be used in the training of stu-
dents.

In the field of Natural Language Processing
(NLP), semantic representations are improved day
by day. State-of-the-art BERT (Devlin et al., 2019)
representations have boosted performance in a wide
variety of NLP tasks. The rising interest is on
frameworks that combine neural network-driven
representations with logic representations to rea-
son about language and predict correct outputs for
tasks such as natural language inference (NLI) (Li
et al., 2019). Logic puzzle solving is a task that is
considered in this direction, as well.

LGPs are usually defined by a description and
clues. The description part introduces categories
and instances associated with each of them, and
clues provide the definitions of constraints on the
relationships between instances. The description
can be represented by anN×M matrix whereN is
the number of categories, and M is the number of
instances of a category. The main rule of logic grid
puzzles is that one instance of a category should
match only one instance of another category. The
solution is provided as a tuple of instances for each
category. Here is an example of a simple 3 × 4
logic grid puzzle taken from puzzlebaron1:

• Students: {Alex, Emma, Alice, Taylor},

• Scholarships:{$25k, $30k, $35k,$40k},

• Majors: {Astronomy, English, Philosophy,
Physics}

with sample clues such as:

The student who studies Astronomy gets a
smaller scholarship than Alice,
Alice is either the one who studies English or the
one who studies Philosophy,

1https://logic.puzzlebaron.com/
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The student who studies Physics has a $5000
bigger scholarship than Alex.

There has been some work that can automati-
cally solve an LGP. Puzzler (Milicevic et al., 2012)
uses an architecture that is composed of a parser
and an inference module. In the parser module,
clues are parsed using a Link Grammar parser, and
the resultant parse trees are converted into logic
representations by a semantic translator. Puzzler
runs constraints in logic representation through the
Alloy language to provide the solution. The sys-
tem is designed around the Zebra puzzle and tested
on a small dataset. Baral and Dzifcak (2012) use a
trained model that consists of clues along with their
desired representations in the form of λ-calculus
rules to translate clues into Answer Set Program-
ming (ASP). To distinguish between the multiple
meanings of words, their system governs word to
λ-ASP-Calculus rule association through probabil-
ities. Logicia (Mitra and Baral, 2015) introduces a
Maximum-Entropy based model for categorizing
clues using features such as dependency trees, POS
tags, etc. With the use of Answer Set Program-
ming, it correctly solves 71 puzzles out of 100.
LogicSolver (Nordstrom, 2017) generalizes and
improves Puzzler’s (Milicevic et al., 2012) parser
method by adding more regular expression rules.
In the solver module, puzzle is solved using custom
first-order predicate logic parser on the predicates
of type is, not, xor, and comparison predicates. He
uses a dataset of 68 puzzles with various difficulties
to evaluate LogicSolver.

LGPSolver differs from the aforementioned sys-
tems in two ways. In LGPs, semantic representa-
tion of clues is crucial because it leads the logical
reasoning process to solve the puzzle. Considering
this, we use a DistilBERT-based (Sanh et al., 2019)
classifier, where a transformer model is combined
with a Feed-Forward Layer and Softmax to perform
clue classification. Language models like Distil-
BERT take word order and context into account,
which are distinctive features of clues. Another
notable characteristic of clues is that they consist
of comparison structures. In general, a comparison
is given among locations, times, or some numbers
in the selected domain. We use a collected set of
comparative adjectives and a semantic framework
to identify comparative quantifiers. By categoriz-
ing these comparison quantifiers, LGPSolver can
parse comparison clues.

Our experimental results show that our approach
outperforms state-of-the-art solutions by a large
margin by reaching 100% accuracy on the given
puzzle datasets.

2 Methodology

Our approach to solving LGPs consists of four
steps: parsing and classifying the given clues, defin-
ing the category instances in Prolog, converting the
parsed clues into logic representations, and solving
puzzles using the reasoning module. The source
code with dependencies is provided as a download-
able link 2.

2.1 Parsing and Classifying the Given Clues

First of all, LGPSolver takes the category informa-
tion and puzzle clues as input. A custom category
recognizer is used to extract the category instances
that the clue refers to. In the sentence, ”Emma
has a $10000 bigger scholarship than Alex”, the
extracted instances are ”Emma” and ”Alex”. The
category recognizer returns category instances in
clues with the assumption that the given input is in
the correct form, meaning that in the description
part, each category is given in different lines, and
each line contains only those instances that cor-
respond to that category. Thus, LGPSolver does
not need to know if Alice is actually a Person or a
Subject as long as Alex, Emma, Alice, and Taylor
(i.e., people) are given in the same line of input.

The date and time related category instances are
tagged using the TimeML (Pustejovsky et al., 2003)
annotations provided by HeidelTime (Strötgen and
Gertz, 2013) temporal tagger. TimeML provides
time expressions as hh:mm. These expressions
are normalized to minutes (60 ∗ hour +minute)
to make their Prolog representations invariant.

The next step is the classification of clues. Gen-
erally, logic grid puzzles contain only a specific set
of clue types. All the clues we have in our dataset
can be represented by one of these clue types, as
shown in Table 1.

Our observations state that clue types can be
classified using some keywords and the order of
words in the sentences. For example, the ”Pair
different” clue type usually starts with the ”Of”
keyword, whereas the ”Comparison” type has a
comparative adjective, quantifier, or ”than” key-
word most of the time. Successful classification of
clues requires a model that takes these features into

2https://github.com/jelgun/LGPSolver
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Clue Type Example
Is The Worul is made by Techtrin.
Either Alice is either the one who studies English or the one who studies Philosophy.
All different The four pandas were ”A”, ”B”, ”C”, and ”D”.
Pair different Of Wade’s computer and Jack’s build, one has ”A”, other has ”B”.
Comparison The student who studies Physics has a $5000 bigger scholarship than Alex.

Table 1: Clue types.

DistilBERTTokenized 
Clue

1

2

3

4

5

Clue type

S
O
F
T
M
A
X

Figure 1: The classification algorithm.

account. Thus, we utilized the fine-tuned version of
DistilBERT (Sanh et al., 2019) for the classification
method as it can capture the word order and distinc-
tive features of the types of clues. Ktrain (Maiya,
2020) Python package is used for this task as it
contains the adjusted algorithm for classification
tasks (Feed-forward neural network with Softmax
activation on top). The classification workflow is
shown in Figure 1.

The DistilBERT-based classifier is a funda-
mental component of our workflow because it
can capture the context of clues. Traditional
machine learning classifiers are behind DistilBERT
in performance, and generally, they misclassify
some Comparison type clues as Is type. For
example, those classifiers encounter difficulty
in distinguishing the following clues of Is and
Comparison type respectively:

Jed Jarvis is the teacher.
Ed Ewing finished before the teacher.

DistilBERT is still a better choice than a rule-
based classifier since every little variation in clues
introduces an update to the rule base. Instead, a
pretrained language model is quite robust and able
to classify a clue even there are small variations
in the sentence structure. Moreover, DistilBERT
easily adapts to a new clue type by increasing the
number of clue types in the output layer, while in
the case of a rule-based classifier, an explicit regex
rule must be written.

2.2 Representation of Category Instances

The designed architecture is implemented so that
the instance of one category is defined as the pair
of matched instances of other categories. This
representation simplifies the solver part described
in Section 2.4. For our example scenario, the
Prolog statements that represent the instances are:

Alex = [Alex scholarship,Alex major],
Emma = [Emma scholarship, Emma major],
Alice = [Alice scholarship,Alice major],
Taylor = [Taylor scholarship, Taylor major]

Here, Alex scholarship and Alex major
define the scholarship and the major associated
with Alex. Additionally, we have an all members
rule that ensures each student has a different
scholarship and major. The predicates for our
example are shown below:

all members([25000, 30000, 35000, 40000],
[Alex scholarship, Emma scholarship, Al-
ice scholarship, Taylor scholarship])

all members([astronomy, english, philosophy,
physics], [Alex major, Emma major, Alice major,
Taylor major])

These Prolog predicates are automatically gener-
ated by LGPSolver using the information given in
input files.

2.3 Logic Representation of Clues

After defining the instances, clues need to be
translated into Prolog statements. The translation
method is shown in Table 2. Ik represents the kth

referenced instance in the clue. Is relationship
matches the given two instances. Other clue types
are represented using the combination of Is rela-
tionship with and, or, not logical operators.

Comparison clues need additional consideration.
They usually contain two instances, a quantifier,
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Clue Prolog description
Is(I1, I2) I1 =:= I2

Either (I1, I2, I3)
A = Is(I1, I2), B = Is(I1, I3)
and(or(A,B), not(and(A,B)))

All-diff(I1, I2, I3, ...)
A = Is(I1, I2), B = Is(I1, I3), C = Is(I2, I3), ...
not(A), not(B), not(C), ...

Pair-diff(I1, I2, I3, I4)
A = Is(I1, I3), B = Is(I2, I4), C = Is(I1, I4), D = Is(I2, I3)
or(and(A,B), and(C,D))

Comparison(I1, I2, >, quant) I1 val–I2 val =:= quant

Table 2: Clue to Prolog translation table.

and a comparative adjective. These clues are di-
vided into two types: less and more (e.g. ”lower
than” is a less type while ”bigger than” is of more
type). These types represent whether the first ref-
erenced instance’s corresponding value is less or
more than the value of the second instance. Types
are defined as ’<’ (smaller sign) and ’>’ (greater
sign) in Prolog. We have gathered a list of com-
parative adjectives in English from curso-ingles3

and with the help of Semantic Framework for com-
parison structures (Bakhshandeh and Allen, 2015),
they are categorized as less type, more type, or
none of them. In total, we acquired 41 comparative
adjectives that are commonly used in LGPs.

Comparison quantifiers (e.g. $5000) in clues
are recognized using the regex patterns and ex-
pressions provided by HeidelTime (Strötgen and
Gertz, 2013). Furthermore, due to the limitation
of the HeidelTime tagger in capturing fractional
time units (e.g., half an hour), we have extended
the tagger’s ruleset to include them.

The comparison clue’s Prolog description in-
cludes Ik val keyword to represent the matched in-
stance of the compared category with the Ik. In our
case, the compared category is the scholarship.
Generally, the compared category in LGPs is the
one that has numerical instances. In the case of mul-
tiple numerical categories, the instances of compar-
ison clues are analyzed. LGPSolver chooses the
unmentioned category as the compared one (the
subject of comparison). For example, in clue ”The
student who studies Astronomy gets a smaller schol-
arship than Alice”, the categories of mentioned
instances are students and majors. In contrast,
no instance of the scholarships category is men-
tioned.

3https://www.curso-ingles.com/en/resources/cheat-
sheets/adjectives/list-of-comparatives-and-superlatives

2.4 Solving the Puzzle

To get the puzzle’s solution, the instances
of one category should be given as a query
to the Prolog. For example, the query of
(Alex,Emma,Alice, Taylor) will return the
matched scholarships and majors for each of these
students. For a given query, Prolog recursively
binds the query parameters to their possible values
and returns the matched values if all the predicates
are true. This is accomplished by the Prolog’s built-
in backtracking search algorithm. Pyswip (Tekol,
2020) package is used to execute the generated
Prolog scripts inside a Python code.

3 Results

For the work’s evaluation, we have used the
datasets provided by Logicia (Mitra and Baral,
2015) and LogicSolver (Nordstrom, 2017). Lo-
gicia dataset has 150 LGPs, whereas LogicSolver
has 68 LGPs. We have used the 50 LGPs (the train-
ing set in Logicia) from the Logicia dataset for
DistilBERT training, and the remaining 100 LGPs
are used for the testing purposes. The 68 LGPs in
the LogicSolver dataset are also used as a test set
without additional training. In brief, there are 50
training and 168 test samples. The details of these
datasets are given in Table 3 and Table 4.

The evaluation is based on two factors: parser
and solver accuracies. Parser accuracy is defined
as the percentage of the correctly parsed clues (in-
cluding classification), while solver accuracy is the
percentage of correctly solved puzzles. The perfor-
mance of LGPSolver was compared to LogicSolver
and Logicia. The experimental results are shown
in Table 5.

The DistilBERT-based classifier successfully
classified all the clues in the test puzzle sets, and
LGPSolver has correctly solved all the LGPs in the
given datasets. It should also be noted that to solve
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# of puzzles 50
# of clues 245
# of category instances in clues 584
Avg. # of clues / category instance 0.42
Avg. # of clues / puzzle 4.9
# of Is clue type 57
# of Either clue type 36
# of Comparison clue type 120
# of All-diff clue type 16
# of Pair-diff clue type 16

Table 3: Details of the training set.

LogicSolver Logicia
# of puzzles 68 100
# of clues 297 457
# of category instances in clues 756 1112
Avg. # of clues / category instance 0.39 0.41
Avg. # of clues / puzzle 4.36 4.57
# of Is clue type 65 114
# of Either clue type 53 74
# of Comparison clue type 125 203
# of All-diff clue type 15 22
# of Pair-diff clue type 39 40

Table 4: Details of the test set.

LGPs successfully with the reasoning module of
Prolog; the puzzle description should be parsed
without any errors.

4 Conclusion and Future Work

This paper presents a system that automatically
solves logic grid puzzles. Better identification
of comparison structures in clues and using a
DistilBERT-based clue classification solution are
the two highlights of the system. LGPSolver
achieves full accuracy in a fully automated manner.

The DistilBERT-based classifier is a fundamen-
tal component of our workflow because it can cap-
ture the context of clues. The traditional classi-
fiers (e.g., Naive Bayes, SVM, Logistic Regression)
have a lower accuracy, which can be attributed
mostly to the misclassification of Comparison type
clues as Is type clues. Furthermore, rule-based clas-
sifiers (e.g., regex patterns) were not preferred due
to their generalizability issues as every little varia-
tion in clues introduces an update to the rule base.
On the other hand, a pretrained language model is
quite robust and able to classify a clue even there
are small variations in the sentence structure.

The parser module requires to recognize and nor-
malize time and date related information in clues

LGPSolver LogicSolver
Parser 100%(297/297) 74.4%(221/297)
Solver 100%(68/68) 83%(≈ 56/68)

(a) 297 clues and 68 puzzles.

LGPSolver Logicia
Parser 100%(450/450) 90.9%(410/450)
Solver 100%(100/100) 71%(71/100)

(b) 450 clues and 100 puzzles.

Table 5: Accuracy of parser and solver modules.

to process comparisons in the correct way. Tempo-
ral taggers can be used for this purpose. However,
temporal taggers’ numeric normalizers have lim-
itations in capturing fractional time units (Chang
and Manning, 2012)(Angeli and Uszkoreit, 2013).
Thus, we have extended the rule set of HeidelTime
(Strötgen and Gertz, 2013) to resolve the issue.

As LGPs contain only a specific set of clue types,
the problem of clue classification is formulated on
a fixed number of clue types. A more sophisti-
cated system would be able to learn the number of
clue types automatically by the processing of clues.
Thus, to further reason about language, seeking an
automatic mapping between an NLP-based seman-
tic representation and a logic representation is an
important future direction.
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