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Abstract

The idea that a shift in concreteness within a
sentence indicates the presence of a metaphor
has been around for a while. However, recent
methods of detecting metaphor that have re-
lied on deep neural models have ignored con-
creteness and related psycholinguistic infor-
mation. We hypothesis that this information
is not available to these models and that their
addition will boost the performance of these
models in detecting metaphor. We test this
hypothesis on the Metaphor Detection Shared
Task 2020 and find that the addition of con-
creteness information does in fact boost deep
neural models. We also run tests on data from
a previous shared task and show similar re-
sults.

1 Introduction

The automatic detection and processing of
metaphor is an ongoing challenge for true deep
semantic understanding of natural language text.
Metaphors often convey unrelated concepts to
their literal meaning and the meaning of metaphor
involves more than just its words meaning, but
it incorporates the whole context with a wider
knowledge of their conceptual domain.

Traditional methods of metaphor detection that
do not make use of neural networks have used
concreteness scores to improve metaphor detec-
tion (Turney et al., 2011; Tsvetkov et al., 2013)
. However, neural models that use distributional
semantics (i.e. word embeddings: Mikolov et al.
(2013)) have shown promising and often state-of-
the-art results in a range of NLP tasks and have
recently produced promising results in metaphor
detection (Mao et al., 2018; Mishra et al., 2019;
Rei et al., 2017). These models, however, focus on
the textual information provided by the word em-
beddings and do not further explore the use and ef-
fect of combining other lexical information. This

paper reports the result of combining neural net-
works with a lexical resource for measuring con-
creteness for word-level metaphor detection.

Despite the success of deep neural models, we
hypothesise that they do not have access to con-
creteness information with their structure. To test
this, we explicitly add concreteness information
to deep neural models and compare their perfor-
mance with and without this information. Our ex-
periments show that deep neural models, like more
traditional models, do benefit from concreteness
information.

2 Related Work

Early work, by Turney et al. (2011) on the use
of concreteness to detect metaphor made use of
the relatively small MRC psycholinguistic dataset
(Coltheart, 1981) for concreteness scores. Their
work uses a logistic regression model to detect
the metaphoricity of adj-noun pairs in the TroFi
dataset (Birke and Sarkar, 2006). Subsequently,
Tsvetkov et al. (2013) made use of the same MRC
dataset to detect subject-verb-obj metaphors from
TroiFi dataset. They also train a supervised logis-
tic regression classifier on English triples and test
on a Russian dataset. Köper and Schulte im Walde
(2017b) extend this work by using a significantly
larger dataset (Brysbaert et al., 2014) of concrete-
ness ratings and propagating the concreteness rat-
ing to phrases using word2vec (Mikolov et al.,
2013). Their experiments use Leong et al. (2018)’s
Logistic Regression classifier on VUAMC for
verbs using ten-fold cross-validation process.

The context that a word occurs in plays an
important role in metaphor detection (Klebanov
et al., 2014). Words and phrases often convey very
different meanings in different contexts. Con-
sider the phrase “cut down” in the sentence “She
cut down his advances with her words.” In ab-
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sence of the context, it is not clear that “cut down”
is metaphorical. Many supervised learning ap-
proaches, including those described above, utilise
bag of words methods, thus focusing on sets of
features which do not capture context. Those that
do consider context, do so only to a small ex-
tent, for example by focusing only on specific sen-
tence constructs like adj-noun pairs (Bizzoni et al.,
2017) or subj-verb-obj (Tsvetkov et al., 2013).

Given the importance of context and the power
of neural models in capturing context, it was only
natural to use deep neural models for metaphor de-
tection. Gao et al. (2018) make use of deep neural
networks to detect metaphor with significant suc-
cess across multiple datasets including VUAMC.
In particular they use Bidirectional Long Short
Term Memory networks (Bi-LSTM) that cap-
ture relations in both directions for word-level
metaphor classification with word-embeddings as
input.

Other work on using concreteness and similar
psycholinguistic features for metaphor detection
include that by Bulat et al. (2017) who combined
concreteness with property norms to formulate
representations. Ljubešić et al. (2018) combine
imageability scores with concreteness for cross-
lingual metaphor detection and Dunn (2015) make
use of abstractness.

This paper reports the result of applying con-
creteness score to individual words in the token-
level metaphor classification for the Metaphor De-
tection Shared Task competition 2020. We build
on Gao et al. (2018)’s sequence labelling network
by adding concreteness scores to individual words.

The arrival of deep neural networks has meant
that psycholinguistic features are no longer explic-
itly considered and, as mentioned in Section 1, we
hypothesise that deep neural networks do not have
access to this information. In this work, we show
that this is the case and that access to this infor-
mation improves the accuracy of deep neural net-
works by testing on multiple datasets.

3 Generalising Concreteness Scores

We used the resource created by Brysbaert et al.
(2014) for concreteness scores. This is a list of
about 40,000 English words rated for concreteness
between 1 to 5 where 1 is most abstract and 5 is
most concrete. As an illustration, “wood” has a
rating of 4.85, “counterargument” a rating of 2.17
and “conventionalism” 1.18.

Before we can use concreteness scores for
metaphor detection, we need a way of handling
those words in our dataset that do not have corre-
sponding concreteness scores in the concreteness
lexical resource created by Brysbaert et al. (2014).
The most obvious solution is to set the concrete-
ness scores of these words to 0. However, the
fact that a large number of words in our dataset do
not have corresponding concreteness scores makes
this impractical.

To get around this, we use the concreteness
values available to train a Support Vector Ma-
chine. We use BERT (Devlin et al., 2018) em-
beddings as features to the SVM and the rounded
up concreteness values as output classes. So as
to use BERT embeddings as input to an SVM, we
extract static, non-contextual BERT embeddings.
We choose to use BERT, as opposed to static em-
bedding like word2vec, due to BERT’s unique to-
kenizer that allows for the generation of embed-
dings for all words in our dictionary. We use the
following hyperparameters for the SVM: hidden
layer sizes 100, activation identity, solver adam,
alpha 0.0001, batch size auto, learning rate adap-
tive, learning rate init 0.001, powert 0.5, max it-
eration 200, shuffle True, random state None, tol
0.0001, verbose False, warm start False, momen-
tum 0.9, nesterovs momentum True, early stop-
ping False, validation fraction 0.1, beta1 0.9, beta2
0.999, epsilon 1e-08, and niter no change 10.

4 Neural Metaphor Detection with
Concreteness

We use Gao et al. (2018)’s sequence labeling
model as the baseline and modify it to include
a concreteness rating as follows. For every in-
put word xi we modify wi, the 300-D GloVe pre-
trained embedding for xi, with the concreteness
class assignment ci of xi. This results in a 301-
D representation [wi : ci] for each of the input
words. These representations of words are fed to
the sequence labeling model, which consists of a
Bi-LSTM which generates a contextual represen-
tation of each word. These are then fed to feed-
forward neural networks which predict a label for
each word. Figure 1 provides an illustration of the
sequence labeling model, wherein the Bi-LSTM
is represented by pink blocks and the blue blocks
represent the feedforward neural networks.

We also test appending the probabilities of each
of the four concreteness classes output by the
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SVM. In this case the 300-D pre-trained represen-
tation wi is concatenated with a vector pi of length
four, where each digit represents the probability of
this word belonging to the output class 1, 2, 3 or
4 respectively. This results in a 304-D represen-
tation [wi : pi] for each word. This method of
using the probability distribution is unlike previ-
ous methods that have used a single concreteness
score. We use the concreteness scorers generated
by our SVM model even when a word and the cor-
responding concreteness score is included in the
dataset provided (Brysbaert et al., 2014) and used
as the training data for our SVM. We find that the
addition of probabilities is far more effective than
the addition of a single score possibly because this
provides more of a signal for the model to pick up
on (4 features not 1).

Figure 1: The sequence classification model architec-
ture used in the experiment.

Importantly, if pre-trained embeddings (in our
case GloVe) contained concreteness information,
the explicit addition of this information by means
of appending it to the embeddings should not im-
prove the performance of a well trained Bi-LSTM
model as such models are capable of extracting
relevant information from their input. An im-
provement in performance with the addition of
concreteness information would imply that such
information is not contained in the pre-trained em-
beddings we use.

5 Results

The metaphor detection shared task allowed mul-
tiple submissions and we use this to evaluate dif-
ferent models, both with and without concrete-
ness scores. We present this comparative analy-
sis of our models first before describing our per-
formance in Section 5.2. We also test our models
on the previous shared and present these results in

Section 5.3.

5.1 Comparitive Analysis

Table 1 summarises the results of our experiments
on the VUA ALLPOS dataset. The results on the
Shared Task data without concreteness rating is
considered the baseline for measuring the model’s
performance. “Single Class Rating” refers to the
model where a single number representing the
class of the word was appended to the word’s em-
bedding, “Probability Rating” refers to the model
where the probability for each class output by the
SVM was was concatenated to the word embed-
dings.

Experiment Preci-
sion Recall F1

Gao et al.
(2018) with
Shared Task

Dataset

64.9% 48.9% 55.8%

Single class
rating 60.3% 53.7% 56.8%

Probability
rating 63.6% 52.9% 57.8%

Probability
with rating 2

layers
65.5% 53.2% 58.7%

Probability
rating with 3

layers
65.3% 54.8% 59.6%

Table 1: A comparison of models with and without
concreteness.

Interestingly, the model that used the probabil-
ities of each of the output classes performs the
best. Further hyperparameter optimisation (by in-
creasing the number of layers by one) increased
F1 score to reach 59.6%. Modifying other hyper-
parameters did not improve performance. The val-
ues of the hyperparameters we use are: 10 epochs,
hidden size of 300, batch size of 64, learning rate
of 0.005, 1 hidden layer, and LSTM dropouts of
0.5 0 and .1 for input hidden and output layers re-
spectively. So as to ensure that the addition of con-
creteness rankings is not simply introducing noise,
we plot the loss for training and validation which
is presented in Figure 2. A subjective analysis of
these results is presented in Section 6.

5.2 Shared Task Results

We test our model on the VU Amsterdam
Metaphoricial Corpus (VUAMC) by participating
in the The Second Shared Task on Metaphor De-
tection for VUA AllPOS dataset. Our performance
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Figure 2: The training and validation loss for the se-
quence classification model.

on the task is show in Table 2

Rank Team F1
1 DeepMet 76.9%
2 xchenets 73.4%
3 meta-phor 73.0%

. . .
13 UoB Team 59.6%
14 eduardgzaharia 55.2%

Table 2: Our performance on the shared task.

The lackluster performance on the task can pos-
sibly be attributed to our use of static embed-
dings as opposed to the more powerful contex-
tual pre-trained embeddings such as BERT. We in-
tend to integrate concreteness into BERT models
for metaphor detection in our future experiments
(Section 7).

5.3 Further Experiments with Verbal
Metaphor Detection

In addition to participating in the shared task we
also experiment with the Gao et al. (2018)’s ver-
sion of VUAMC dataset published by Leong et al.
(2018) for 2018 Metaphor Shared Task. It should
be noted that Gao et al. (2018) modify the task
of metaphor detection to one of classification.
While the shared task required the classification of
metaphor at the word-level, Gao et al. (2018) pro-
vide a verb and a sentence containing that verb as
input and required classifying that verb into either
“Metaphor” or “Not Metaphor”.

Once again, we use our reproduced results1

of the target classification model by Gao et al.
1Gao et al. (2018) note that the model that they make

available does not include the final hyperparameters used to
generate their reported results.

(2018) as our baseline and augment it with con-
creteness scores as we did for this year’s tasks.
The classification model, like the sequence la-
beling model feeds word representations to a Bi-
LSTM which generates a contextual representa-
tion of each word. Unlike in the sequence labeling
model, the BiLSTM includes attention and these
representations are concatenated and fed to a sin-
gle feedforward neural network which predicts the
label of the verb. Figure 3 provides an illustra-
tion of the classification model, wherein the Bi-
LSTM is represented by pink blocks, the concate-
nated representation as the red square and the blue
block represents the feedforward neural network.
The coloured in circle represents the (highlighted)
verb of interest in the sentence.

Figure 3: The classification model used for verb
metaphor detection.

The values of the hyperparameters we use: 20
epochs, hidden size of 128, batch size of 16,
learning rate of 0.01, hidden layers 1, and LSTM
dropouts of 0.5 0.0 and 0.2 for input hidden and
output layers respectively. The results of our ex-
periments are presented in Table 3.

The classification model also has ELMo Pe-
ters et al. (2018) embeddings concatenated to the
GloVe embeddings and concreteness score. The
incorporation of ELMo embeddings ensures that
we capture contextual information. The fact that
the addition of concreteness to contextual embed-
dings shows improvement implies that contextual
embeddings do not have access to concreteness in-
formation either.
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Experiment Pre-
cision

Re-
call F1

Gao et al. (2018)
classification
reproduced 55.85% 49.80% 52.65%

Single class rating 57.93% 44.57% 50.38%

One-hot encoding 54.66% 52.18% 55.41%

Probability rating 52.02% 62.86% 56.92%
Probability rating +

hyperparameter tuning 54.21% 62.46% 58.04%

Table 3: Summary of the experiments results on the
classification task.

6 Analysis and Discussion

The training data from the VUAMC dataset has
181,501 tokens, 19,177 of which are labeled
metaphor with 162,324 labeled literal. An ex-
ploration of the results shows that the most fre-
quently occurring words in the dataset are preposi-
tions. The word of, for example, occurs 4,638 but
is labeled as a metaphor only 151 times. With, on
the other hand, appears 995 times and is labelled
as a metaphor 620 times and up is labelled 137
times as metaphor out of 335 occurrences. Table
5 shows a couple of most frequent words in the
dataset along with the number of true positives and
false negatives. It appears that prepositions appear
so frequently that the distinction between their lit-
eral and metaphorical sense is hard to distinguish.
For example, the model incorrectly classified the
word of as literal in the the sentence “Francesca
Simon describes some of the pitfalls and how to
avoid them.”

In addition, prepositions also appear as part of
phrases, such as in “some of the” making it harder
still to classify them correctly. Often, the mean-
ing of a phrasal verb differs significantly from that
meaning of its parts. Additionally, concreteness
of each of the individual parts is also different
from that of the phrase. For example, in the sen-
tence “The use of role play, incorporating previ-
ously discussed difficulties (i.e. homework assign-
ment session 4) in real or set up situations provide
an opportunity for testing these skills.”, the over-
all meaning of the phrase set up is different from
the meaning of set and up. Additionally, we were
able to successfully classified set as a metaphor,
but failed to classify up as a metaphor in this con-
text.

The partial sentence “real or set up situations”

has the following information: The word real, a
literal, has concreteness rating equals to 2 is cor-
rectly classified as literal. The word or is correctly
labelled as literal has concreteness rating of 1. The
word set is correctly classified as metaphor has
concreteness rating of 3. Followed by the word
up which is incorrectly labelled as literal has con-
creteness of 3. Lastly, the word situations is incor-
rectly classified as literal has concreteness rating
of 2. The noticeable shift in concreteness from
rating 1 to 3 for or and set could lead to success-
fully classifying set as a metaphor but failed to
classify up as also a metaphor, although the two
forms the meaning of the phrasal vary, because
up’s rating is not very far from set’s rating. A sim-
ilar error occurs when classifying the phrasal verb
“put up with” in the sentence “they also have to
put up with the heaviest police presence .”

Each word meaning by itself differs from the
meaning of the whole phrase. Put means to place
something physically, up means the position up
and with mean accompanied by someone or some-
thing; however, these three together refer “to ac-
cept an unpleasant situation, something or some-
one (willingly or not).” As for their and their near
context degrees of abstractness are as follows: The
word to is correctly labelled as literal has rating
equal to metaphor, put is correctly labelled as lit-
eral has rating 2 as its concreteness rating, fol-
lowed by the word up that is correctly labelled as
literal and has a rating of 3. Next is the word with
that is incorrectly classified as literal has concrete-
ness of 2 and lastly, the word the is correctly clas-
sified as literal has concreteness of 1. Since there
is no drastic shift in concreteness or their senses,
the model fails to spot the hits and labels them all
as literal.

Of the 15,439 unique tokens in the dataset, 7527
tokens appear exactly once. For example, “There
were others , but Lucy never disclosed any of them
to us” the word disclosed is labelled as metaphor
but incorrectly classified as literal. There are two
interpretations for this sentence. The metaphorical
sentence talks about uncovering “people’s iden-
tities” Lucy knew when referencing others and
them, or could literally talks about uncovering
of “secrets” Lucy hides, which are referenced by
them and others. As for the concreteness ratings
for the sentence’s words, the rating range between
1 and 2, other than Lucy that has rating of 4; there-
fore, we could say that the rating did not help to
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The sentence The label
The

Predicted
Label

Concrete-
ness

Rating
And they told it without onscreen questioning , though the programme
is skilfully structured to give it a coherence it might have lacked . 0 0 1

The burn threads a wild and inhospitable crevice of the hills , where
the wind blows cold and the sense of isolation grows with each lonely
mile .

1 0 2

Although that is the position in law , the court emphasised that as a
matter of sense a tenant should first complain to the landlord before
exercising the right to prosecute .

1 1 2

Table 4: Sample of sentences that contain words used only once throughout the dataset, their label, predicted label
and their concreteness rating.

Word
True
Posi-
tive

False
Nega-
tive

Count

of 3 148 4638
to 538 239 3731
in 1198 285 2811

with 510 110 995
go 24 40 258

Table 5: Sample of words with the highest word counts
in the dataset, and their counts for how many times the
model correctly classified them as metaphors or failed
by classifying them as literal.

clarify the meaning. To better understand the in-
tended meaning (literal or metaphorical), this am-
biguous sentence needs more context. The same
can be said about the word corruption in “Bribery
and corruption!” This sentence word’s concrete-
ness ratings are (2, 1, and 2) respectively; thus,
to correctly classify corruption as metaphor, more
context is required. Table 4 show more sentences
containing words that appeared only once along
with their labels, predicted labels and concreteness
classes.

7 Conclusion and Future Work

This paper reports the results of providing deep
neural models with concreteness information by
appending a measure of concreteness to word em-
bedding for all content words. Our hypothesis
is that explicitly adding a concreteness rating to
the word representation will boost the neural net-
work performance in detecting metaphors as neu-
ral models do not have access to this informa-
tion. We tested two representations of concrete-
ness, one as a scale and the other is class probabili-
ties using the VUA ALLPOS data from the Second
Metaphor Detection Shared Task 2020 and data
from the First Metaphor Detection Shared Task

2018 and find that this information does boost per-
formance in all cases.

We plan on testing the effectiveness of incor-
porating other psycholinguistic information, such
as imageability, into deep neural models so as to
establish their impact on metaphor detection. We
also intend to incorporate these features into con-
textual pre-trained models, such as BERT (Devlin
et al., 2018) as context is critical to identifying
metaphor. In this current work, BERT pre-trained
representations were used only in training an SVM
and not in the Bi-LSTM that detects metaphor.

We also intend to use more complex models to
expand concreteness, imageability and other such
features to a larger vocabulary. These models will
be designed to perform classification better and
also capture context so as to better identify the
concreteness of words in context. Finally, we in-
tend to extend our work to include phrases a sig-
nificant source of errors in this task.
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