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Abstract

State of the art research for date-time1 entity
extraction from text is task agnostic. Conse-
quently, while the methods proposed in litera-
ture perform well for generic date-time extrac-
tion from texts, they don’t fare as well on task
specific date-time entity extraction where only
a subset of the date-time entities present in the
text are pertinent to solving the task. Further-
more, some tasks require identifying negation
constraints associated with the date-time enti-
ties to correctly reason over time. We show-
case a novel model for extracting task-specific
date-time entities along with their negation
constraints. We show the efficacy of our
method on the task of date-time understand-
ing in the context of scheduling meetings for
an email-based digital AI scheduling assistant.
Our method achieves an absolute gain of 19%
f-score points compared to baseline methods
in detecting the date-time entities relevant to
scheduling meetings and a 4% improvement
over baseline methods for detecting negation
constraints over date-time entities.

1 Introduction

Temporal entity extraction and normalization is an
important aspect of Natural Language Processing
(Alonso et al., 2011; Campos et al., 2014). There
has been a substantial body of work on the task
and there exist numerous well performing publicly
available models for identifying and normalizing
temporal entities (Strötgen and Gertz, 2010; Chang
and Manning, 2012; Zhong and Cambria, 2018).

There exist however a growing number of NLP
applications which require extraction of only a rel-
evant subset of time entities that are useful for
solving specific problems within a larger body of
text. Examples of such tasks include understanding

1We use date-time entities, date entities, time entities and
temporal entities interchangeably to denote entities associated
with dates and/ or times.

search queries (“Find me all emails sent by April
between May 11th and May 21st”), Goal Oriented
Dialogue Systems (“Deliver George Orwell’s 1984
by next week.”, “Send the “FY 2020 Budget” to
Watson Monday morning.”) etc. Using the tem-
poral entity extraction models for these tasks is in-
sufficient, since they fail to disambiguate between
general date-time entities and entities necessary to
solve the task.

In this paper, we address the task of recogniz-
ing date-time entities required by an AI scheduling
assistant for correctly scheduling meetings. Cor-
tana from Microsoft Scheduler, Clara from Clara
Labs and Amy from X.ai are examples of such
email based digital assistants for scheduling meet-
ings. For such systems, a user organizing the meet-
ing adds the digital assistant as a recipient in an
email with other attendees and delegates the task
of scheduling to the digital assistant in natural lan-
guage. For the assistant to correctly schedule the
meeting, it must correctly extract the date-time en-
tities expressed by the user in the email to indicate
the times they want the meeting scheduled, as well
as the times that do not work for them. The verbose
nature of emails often exacerbates the difficulty of
identifying relevant date-time entities; since the
number of distractor (i.e valid date-time entities
not pertinent to the task) tend to increase (Eg: In
Fig. 1 “today” serves as a distractor entity).

To this end, we present SHERLOCK:
ScHeduling Entity Recovery by LOoking at
Contextual Knowledge, a novel model for de-
tecting relevant date-time entities in the context
of scheduling as well as identifying the entities
associated with a negation constraint. SHERLOCK
comprises of 3 modules for identifying the relevant
entities as well as negation constraints associated
with them:
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Figure 1: The 3 modules of SHERLOCK: First a high recall rule based extractor generates the potential entities.
The neural module then takes the email and the entities and generates scores for each entity. Only the relevant
entities are passed to the final negation module to detect times to schedule and times to avoid.

Date-Time Extractor: A high recall date-time
entity extractor to identify all date-time entities in
an email

Entity Relevance Scorer: A neural model to
classify each of the extracted entities as being rele-
vant to scheduling or not by considering the context
presented in the email.

Negation Detector: A negation module to
identify if there exists a negation constraint
associated with each of the extracted relevant
entities.

Fig. 1 illustrates each module: the entity ex-
tractor extracts “today”, “next week”, “Wednes-
day” and “May”. Each of these entities is scored
by the neural module, and only “next week” and
“Wednesday” are identified as being relevant to
scheduling. Finally, the negation module identi-
fies that “Wednesday” has a negation constraint.
While SHERLOCK focuses on the task of schedul-
ing, we believe that a similar approach can be used
to tackle the problem of extracting relevant date-
time entities from documents for other tasks.

The contributions of this paper are as follows:

Task specific date-time extractor: A novel
method for combining conventional high recall
rule-based model with a novel neural model for
incorporating contextual information to identify
relevant date-time entities for the task at hand.

Identifying negation constraints for temporal
entities: A heuristic negation module that helps

identify negation constraints associated with time
entities in the context of scheduling meetings. To
the best of our knowledge, prior to this work, nega-
tion constraints associated with time-entity extrac-
tion have not been studied before.

We first present our proposed method for extract-
ing time entities relevant to the task of scheduling
a meeting in (§2). Next, we describe our approach
for identifying negation constraints associated with
extracted entities in (§3). In (§4), we describe our
experimental setup and baselines. We discuss the
results in (§5) and show that SHERLOCK helps
improve performance both on the task of identify-
ing relevant entities as well as identifying negation
constraints. We then present the related work in
(§6), and finally conclude in (§7).

2 Contextual Date-Time Extraction

In order to correctly extract relevant temporal en-
tities in the context of scheduling meetings from
an email, we first extract potential entities using an
off-the-shelf date-time entity extractor. Both the
email and the extracted entities are then encoded
using neural modules. For each extracted entity,
we then generate a context embedding using the
encoded email and the encoded entity. Both the
contextual and encoded entity embedding are then
used to predict if an entity is relevant or not. We
describe each component in detail below:

2.1 Entity Extraction and Encoding
Given an email X = {w1 · · ·wn}, we first use a
rule-based tagger for extracting potential date-time
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entities from an email. Specifically, we use LUIS2

(Williams et al., 2015) for extracting the entities.
The model is recall heavy and identifies potential
time utterances (Eg: in Figure 1, LUIS detects
“today”, “next week”, “wednesday”, “may”). We
denote the extracted entities as E = {e1 · · · em},
where ei = {ei,1 · · · ei,li} represents the ith entity
and li denotes the length of ei.

For each entity ei, we generate an embedding
uei 2 Rde (where de denotes the entity embedding
dimension) as follows:

ti,j = LookUp(ei,j)

ri,j = CharEncoder(ei,j)

hi,j = [ri,j ; ti,j ]

uei = Seq2SeqEncoder(hi,1 · · ·hi,li)

(1)

In Equation (1), ti,j denotes the word level em-
bedding of the jth word if the ith entity (ei,j). As
is standard practice, OOV words all share a com-
mon word embedding, while other entities encoun-
tered during training are represented by a learnt
vector. We also augment this with an embedding
from a character level encoder. ri,j denotes the
word level embedding obtained by passing ei,j3

through a character level encoder, which allows the
model to represent OOV entities. The two embed-
dings are concatenated, and then passed through an-
other Seq2SeqEncoder model (any Sequence-
to-Sequence encoder (Sutskever et al., 2014)) to
get the final entity encoding uei

4.

2.2 Contextual Entity Embeddings
From Figure 1, we can observe that it is clear from
context that “May” is not a time entity, and “today”
is not an entity relevant to scheduling. We want to
capture this contextual information for each entity.
To do so, we first encode the email as follows:

(vw1 · · · vwn) = Seq2SeqEncoder(w1 · · ·wn)
(2)

In Equation (2), vwi denotes the embedding for
the ith word of the email X . dw here denotes the
embedding size for the email embedding.

Once we have the email embeddings, we then
compute the contextual embedding for each en-
tity using an attention mechanism (Bahdanau

2https://www.luis.ai/home
3Technically the embeddings associated with characters of

ei,j are passed to the character level encoder
4For a unidirectional encoder, the final hidden state is used

as the embedding. The concatenation of the forward and
backward hidden states is used for a bidirectional encoder

et al., 2014). For entity ei, given the en-
tity embedding uei , and the email embeddings
(vw1 · · ·wwn), vwi 2 Rdw , the contextual embed-
ding cei 2 Rdw is obtained as follows:

awj = Avwj + b

bwj = tanh(awj + uei)

logitwj = Bbwj + d

↵wj = softmax(logitwj )

cei =
X

w02{w1···wn}

↵w0vw0

(3)

Where A 2 Rde⇥dw , b 2 Rde , B 2 Rde⇥1, d 2
R are learned parameters. The final entity embed-
ding (fei) is the concatenation of the entity em-
bedding and the contextual embedding. Finally,
for each entity, we generate a probability score to
indicate if an entity is relevant or not.

fei = [uei ; cei ]

sei = �(Mfei + g)
(4)

Where M 2 R(de+dw)⇥1, g 2 R are learned
parameters, and � indicates the sigmoid function.

2.3 Learning

Given the entities that are relevant to scheduling
Y ✓ E (Eg: “next week” and “Wednesday” in
Figure 1), we train the model with a scoring loss as
follows:

Ls = �(
X

e2Y
log(se) +

X

e2E\Y

log(1� se)) (5)

Similar to (Ruder, 2017; Gehrmann et al., 2018;
Li et al., 2018), we find that augmenting the learn-
ing with a related auxiliary task helps improve per-
formance. In this case, a simple related auxiliary
function is the task of sequence tagging. Specifi-
cally, given the email X , and the relevant entities
Y , we tag the location of each entity with I-Time
tag, and every other token with an O tag. Let the
generated tags be z = (z1 · · · zn) and let C denote
the set of possible tagging labels (in our case 2:
{I-Time, O}) We then train a standard CRF for

https://www.luis.ai/home
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tagging as follows:

gi = Pvi + q

score(X, z) =
nX

i=2

Tzi,zi�1 +
nX

i=1

gi,zi

p(z|X) =
escore(X,z)

P
z02Z escore(X,z0)

Lt = �(score(X, z)�

log(
X

z02Z
escore(X,z0)))

(6)

Where P 2 Rdw⇥|C|, q 2 R|C| are trainable
parameters, T 2 R|C|⇥|C| is the transition matrix
and Z is the set of all possible sequence labels.

The final loss that we optimize for is

Lfinal = �Ls + (1� �)Lt (7)

Where � balances between the two loss functions.

2.4 Choosing the Prediction Threshold
In order to find the threshold for classifying the
positive class (i.e t such that ei = 1 if sei > t),
we compute the F1 score on the validation set us-
ing a grid of thresholds5, and choose the threshold
maximizing the F1 score.

3 Identifying Negation Constraints

For a Scheduling Assistant to be able to correctly
schedule meetings, understanding negations is cru-
cial; otherwise it can lead to an unsatisfactory user
experience (E.g.: In Figure 1, the meeting being
scheduled on Wednesday would be a frustrating
experience for the organizer Sherlock). Only about
10% of scheduling requests in our dataset have
negation constraints. Building a model directly for
the task did not show promising results from our
preliminary experiments. We hypothesize this was
due to the small volume of the data as well as the
lack of good quality supervised data. Consequently,
to find negated time-entities, we adopt the approach
of first finding the negation scope. If an entity oc-
curs inside the negation scope, we mark it to be
negated.

In order to find the negation scope, we build on
the approach proposed in Rosenberg (2013). We
first find the negation cue (“except” in Figure 1).
To find the negation cue, we first tokenize the email

5We use the precision recall curve provided by sklearn
(Buitinck et al., 2013)

into sentences. For each sentence, we try fo find
if cue from a set of negating cues (Appendix A)
occurs in the sentence.

After finding the negation cue, we identify the
POS tag of the negating cue (Prep. for “except”).
Given the POS tag and the negation cue, we trigger
a set of heuristics to identify the negation scope.
Most heuristics work by identifying the negation
cue from the dependency parse of the sentence as
well as the governor of the negating word. Gener-
ating the narrow scope of negation (i.e. not con-
taining the subject) then involves identifying the
constituent from the constituency parse that con-
tains both the negation cue and the governor word
(“any day except Wednesday”, see Figure 2). This
constituent is considered to be the candidate nar-
row scope, and usually, the part following the cue
is considered to be the narrow scope.

For some cases, the narrow negation scope is not
enough to identify the time entity being negated.
Consider the second example from Figure 2:

Example: Next week does not work Watson.

Narrow: Next week does not [work Watson].

Wide: [Next week] [does] not [work Watson].

For this case, the narrow scope is not enough
to identify the entity being negated (“next week”).
To find the wide scope, the heuristics leveraging
the dependency path starting from the governor
word are used. The main idea is to find the subject
associated with the governor node, and extract that
as the wide scope (“Next week”). Following the
guidelines set by Morante and Daelemans (2012),
we also include the aux dependency node in the
wide scope (“does”).

We also expand the heuristic set presented in
Rosenberg (2013), adding the following rules:

• If a Noun Phrase (NP) acting as an adverbial
modifier acts as a subject to the governor, we
include it in the wide scope (Figure 2)

• If a NP exists as a subject of a passive clause,
we include it in the wide scope, as well as the
passive auxiliary associated with it.

• A Prepositional Phrase (PP) acting as a subject
to the governor is included in the wide scope.

• For the narrow scope, we prune out the subtree
that exists as an object an adverbial clause
relation (advcl) headed by the governor node.

Due to space constraints, we include examples for
the above in Appendix B.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
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Figure 2: The negation extraction model. Orange indicates the negation cue, Green denotes the governing node.
Purple denotes the narrow scope, and Light Blue denotes the wide scope.

After obtaining the narrow and wide scopes, we
check if any entities are found in the narrow scope.
If found, those entities are scored negated. If no
entities are found in the narrow scope, we then
check the wide scope to find negated entities.

Finally, for some cases, we also use domain spe-
cific cues that imply a non-availability (For exam-
ple, in “Dr. John out of office on Monday.”, “out
of office” implies an unavailability to meet.) When
such implied negation cues are encountered, we de-
fault to a custom heuristic which marks any entity
occurring within the sentence containing the cue
word as a negation.

4 Experimental Setup

We first show the effectiveness of our proposed
entity scoring method of incorporating context
for improving temporal entity extraction on the
TempEval-3 dataset (UzZaman et al., 2013) (§4.1).
We then show the efficacy of SHERLOCK for
the task of extracting the correct temporal entities
relevant for the context of scheduling, a task for
which context becomes substantially more impor-
tant (§4.2). Finally, we show that SHERLOCK’s
negation module outperforms baseline methods on
the task of identifying the entities with negation
constraints (§4.3). All our models have been imple-
mented using the AllenNLP framework (Gardner
et al., 2017). The hyperparameters for all the ex-
periments can be found in Appendix C and D.

4.1 TempEval-2013
4.1.1 Dataset
We use the TimeBank dataset (Pustejovsky et al.,
2003) which serves as the benchmark dataset for

the TempEval series. The dataset consists of
256 documents, comprising of 95,391 tokens and
1,822 TimeEx entities for training and validation
purposes, and 20 documents (6,375 tokens, 138
TimeEx) for serving as the test set.

4.1.2 Baseline Models
We show the performance of augmenting 3 rule-
based models with our proposed model. Specifi-
cally, we consider SUTime (Chang and Manning,
2012), HeidelTime (Strötgen and Gertz, 2010) and
Syntime (Zhong et al., 2017) as the rule-based ex-
tractors. We also compare against UWTime (Lee
et al., 2014), a learning based model.

4.1.3 Evaluation
We use the official TempEval-3 scoring script and
report the standard metrics. Specifically, we re-
port the detection precision, recall and F1 with the
relaxed and strict metrics. A gold mention is con-
sidered for the relaxed metric if any of the output
candidates overlap with it and for the strict case, an
exact string match is considered.

4.2 Date-Time extraction for Scheduling
This task aims at extracting the date-time entities
necessary for the Scheduling Agent to correctly
schedule the meeting. The task necessarily needs
the model to incorporate context for making the
correct prediction (E.g.: In Figure 1, “today” is a
valid date-time entity, but not relevant for schedul-
ing, while “May” refers to a person.)

4.2.1 Dataset
We use an internal scheduling dataset for training
and evaluating the models. The dataset consists
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of emails and annotated times to schedule. The
training and validation set consists of 44,214 emails
(4,589,631 tokens, and 48083 entities), while the
test set consists of 4914 emails (519,021 tokens,
5233 entities).

4.2.2 Baseline Models
We compare the performance of our model against
SUTime, HidelTime and LUIS. We use LUIS as our
base date-time extractor since it provides a much
larger coverage for date-time entities 6.

4.2.3 Evaluation
We use the Strict F1 measure to compare the per-
formance of the different models proposed.

4.3 Negation Detection

Finally, we compare the performance of our pro-
posed model on the task of negation extraction.

4.3.1 Dataset
We use an internal dataset for comparing different
models on the task of negation extraction. The
dataset consists of 1253 emails for which time-
entities that are relevant to scheduling are selected,
and those that are a part of a negation constraint
are marked as negated entities. There exist 3231
time-entities, of which 1589 are negated entities.

4.3.2 Baselines
We compare our proposed method against a naive
heuristic method as well as a neural model trained
on a publicly available negation scope detection
dataset.

Heuristic: A naive heuristic model. If a nega-
tion cue is identified in a sentence, the model pre-
dicts that all entities in that sentence are negated.

NegNN: We use a NegNN model (Fancellu et al.,
2016), modified to use BERT contextual embed-
dings and trained on the *SEM2012 Shared task
(Morante and Blanco, 2012). The training, devel-
opment and test sets are a collection of stories from
Conan Doyle’s Sherlock Holmes, with the cue and
scope annotated. An entity is considered negated if
it is a part of a negated scope, as predicted by the
model. The performance of the modified NegNN
model on the *SEM2012 Task can be found in
Appendix E.

6For example, LUIS recognizes military time (“1530”),
and has a much larger coverage for holidays

4.3.3 Evaluation
We measure the performance of different models
by comparing the predicted set of negated entities
and the gold labels for the entities. If the model
makes a mistake (i.e. it predicts an entity to be
negated, when it’s not), that’s considered a false
positive. Likewise, any negated entities missed by
the model contribute to the false negatives. We thus
report the precision, recall and F1 score.

5 Results and Analysis

5.1 TempEval-2013

Model Strict Relaxed
Pre. Rec. F1 Pre. Rec. F1

SUTime 80.0 81.2 80.6 90.0 91.3 90.7
SUTime(+) 85.9 79.7 82.7 93.6 87.0 90.2

HeidelTime 83.9 79.7 81.7 93.1 88.4 90.7
HeidelTime(+) 84.6 79.7 82.1 93.1 87.7 90.3

Syntime 91.4 92.7 92.1 94.3 95.7 95.0
Syntime(+) 92.7 92.0 92.4 94.9 94.2 94.6

UWTime 84.6 83.4 84.0 92.8 91.5 92.1

Table 1: Performance on TempEval Dataset. Models
with (+) indicate that the base extractor is augmented
with the entity scoring module (Scale: 0-100)

Table 1 shows the performance of SHERLOCK’s
entity scoring module on the TempEval-2013
dataset. Note that SHERLOCK is limited by the
recall of the base rule-based extractor7. We ob-
serve that augmenting the rule-based model with
SHERLOCK improves the precision for all three
cases without a substantial drop in recall. Further-
more, the precision obtained for all the augmented
models compares favorably with UWTime.

5.2 Date-Time extraction for Scheduling

Model Precision Recall F1

LUIS 0.38 0.98 0.54
SUTime 0.59 0.79 0.68
HidelTime 0.66 0.86 0.75
SHERLOCK - Lt 0.91 0.96 0.93
SHERLOCK 0.91 0.98 0.94

Table 2: Performance on Date-Time Extraction for
Scheduling. SHERLOCK - Lt denotes the SHER-
LOCK model without the tagging loss (Scale: 0 - 1)

Table 2 shows the performance of SHERLOCK
for the Scheduling related date-time extraction task.

7The model only scores the predictions of the base extrac-
tor
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As can be seen, being able to incorporate context
yields a substantial improvement over the baseline
methods.

We also observed that incorporating the tagging
loss Lt helped improve performance (SHERLOCK
vs SHERLOCK - Lt). On investigating further, we
observed that the attention weights associated with
an entity for a model trained with Lt concentrated
much better around the position of the entity in the
email than for the model without it. To see why that
is advantageous, consider the following example:

“Let’s schedule for tomorrow. Next month, I

plan on taking up Mr Baskerville’s case”

Here, the model without Lt generates high at-
tention weights for embeddings associated with
“tomorrow”, since the localization of the attention
weights is much more spread out. Consequently, it
also uses the embeddings associated with “tomor-
row” for predicting the label of “next month”, and
hence, predicts it to be relevant to scheduling when
it is not. Due to space constraints, we include our
localization experiments in Appendix F.

5.3 Negation Detection

Model Precision Recall F1

NegNN 0.73 0.13 0.22
Heuristic 0.78 0.63 0.70
SHERLOCK 0.91 0.62 0.74

Table 3: Negation Performance (Scale: 0 - 1)

Category Model Precision Recall F1

Explicit
NegNN 0.83 0.25 0.39

Heuristic 0.76 0.86 0.81
SHERLOCK 0.94 0.87 0.90

Implied
NegNN 0.23 0.01 0.03

Heuristic 0.83 0.42 0.56
SHERLOCK 0.87 0.40 0.54

Table 4: Explicit vs implied negations (Scale: 0 - 1)

Table 3 shows the performance of SHERLOCK
compared to the baseline methods. We hypothe-
size the reason why SHERLOCK and the simple
heuristic model outperform the neural baseline is
two-fold: the neural negation model was trained
on a dataset of Sherlock Holmes stories and conse-
quently does not adapt well when used for negation
extraction for emails; and that the neural model has
no notion of implied negations.

To test this hypothesis, we split the negations
into two categories: explicit negations (defined as a

negation where the cue is one of the explicit nega-
tion cues), and the case wherein the negation is
implied (any case that was not explicit was deemed
implied). 50% of emails in the negation dataset
contained explicit negations only, 48% contained
implied negations only and 2% contained both.

Table 4 shows the performance of SHERLOCK
and the baselines for both the explicit negation and
the implied negation cases. Unsurprisingly, we see
that both the baselines as well as SHERLOCK per-
form better on explicit negations than they do on
implied negations. However, the gains observed
by both the heuristic model and SHERLOCK sub-
stantially outperform NegNN, with SHERLOCK
substantially outperforming the heuristic. Exam-
ples 1 and 2 in Table 5 give qualitative examples of
where SHERLOCK outperforms the heuristic.

The primary source of errors for detecting im-
plied negations is from failing to identify the cor-
rect cue. Since heuristics for implied negations are
more heavily focused on precision, the absence of
negation cues results in the model not detecting the
implied negation, which in turn negatively impacts
the recall. Examples 3, 4 and 5 in Table 5 show
cases where the cue is not present in the heuristic
set of implied cues.

For explicit negations, one source of errors is
due to entity co-referencing. Consider Example
6: the negated time instance Tuesday is referenced
as “then” and hence the negation scope “then” is
insufficient to identify the correct negated entity. A
few errors also stem from inherent ambiguity: in
Example 7, the request can either be interpreted
as being for anytime next week except Thursday
10am, or for 10 am on all days except Thursday.
Finally, we also observe errors due to double nega-
tions (Example 8) and due to incorrect constituency
and dependency parses.

6 Related Work

Existing approaches for time expression extraction
can be categorized into rule-based methods and
learning-based methods.

Rule-based Methods Rule-based methods like
HeidelTime, and SUTime mainly handcraft deter-
ministic rules to identify time expressions. Tem-
pEx and GUTime use both hand-crafted rules and
machine-learnt rules to resolve time expressions
(Mani and Wilson, 2000; Verhagen et al., 2005;
Blamey et al., 2013). HeidelTime manually de-
signs rules with time resources to recognize time
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Idx Example Heuristic SHERLOCK Correct

1 Mycroft cannot do Monday but Tuesday
should work fine. [Monday, Tuesday] [Monday] [Monday]

2 If Watson is not busy, Wednesday also works. [Wednesday] [] []

3 I’m slammed on Thursday. - Lestrade [] [] [Thursday]

4 I am out of town on Wednesday Irene but
Thursday might work. [] [] [Wednesday]

5
I am completely booked with
appointments on Thursday Sherlock.
– Watson

[] [] [Thursday]

6 Mr. Holmes, my trip’s on Tuesday.
I really can’t meet then. [] [] [Tuesday]

7 Let’s just meet next week any day except
Thursday at 10:00 am. - Holmes

[next week,
Thursday at 10:00 am] [Thursday] [Thursday at 10:00 am]

8 Next week would not be possible, except
on Friday. [Next week, Friday] [Next week, Friday] [next week]

Table 5: Examples of SHERLOCK’s Negation Model’s predictions and errors

expressions (Strötgen and Gertz, 2010). SUTime
designs deterministic rules at three levels (i.e., indi-
vidual word level, chunk level, and time expression
level) for time expression recognition (Chang and
Manning, 2012). A recent type-based time tagger,
SynTime, designs general heuristic rules with a
token type system to recognize time expressions
(Zhong et al., 2017). TOMN (Zhong and Cambria,
2018) uses the token regular expressions, similar to
SUTime (Chang and Manning, 2012) and SynTime
(Zhong et al., 2017), and further groups them into
three token types, similar to SynTime. TOMN also
leverages statistical information from entire corpus
to improve the precisions and alleviate the deter-
ministic role of deterministic and heuristic rules.

Learning-based Method Learning-based meth-
ods in TempEval series mainly extract features
from text (e.g., character features, word features,
syntactic features, and semantic features), and on
the features apply statistical models (e.g., CRFs)
to model time expressions (Bethard, 2013; Filan-
nino et al., 2013; Llorens et al., 2010; UzZaman
and Allen, 2010). Besides the standard methods,
(Angeli et al., 2012; Angeli and Uszkoreit, 2013)
exploit an EM-style approach with compositional
grammar to learn latent time parsers. (Lee et al.,
2014) leverage a learnt CCG (Steedman, 1996)
parser and define a lexicon with linguistic context
to model time expressions, using the loose struc-
ture information by grouping the constituent words
of time expression under three token types.

Negation Scope Detection: Most negation de-
tection research has focused in the Bio-Medical

domain (Mehrabi et al., 2015; Agarwal and Yu,
2010). Non Bio-Medical text related negation de-
tection tasks usually involve learning supervised
classifiers over hand-crafted features leveraging
syntactic structure (constituency and dependency
parses) (Velldal et al., 2012; Lapponi et al., 2012;
Chowdhury and Mahbub, 2012; White, 2012; Abu-
Jbara and Radev, 2012). The current state of the art
learned method uses a Neural BiLSTM-CRF model
(Fancellu et al., 2016). However, the corpus avail-
able for negation detection is on Sherlock Holmes
stories (*SEM2012 Shared task (Morante and
Daelemans, 2012)), and consequently, as shown
in this work, do not adapt well on language used in
other document styles (like emails). In this work,
we built over the work of (Rosenberg, 2013), who
develop linguistic rules over constituency and de-
pendency parses to identify negation scopes. The
primary advantage of leveraging their work is that
it is not strongly tied to the *SEM 2012 dataset,
and we found this to generalize better.

Finally, there has been some work on directly
training a model to extract entities and associated
negation constraints (Bhatia et al., 2019). However,
these works usually assume the availability of good
quality annotated negated entities. Given enough
annotated data, exploring this direction would be
an interesting line of future work.

7 Conclusion

In this paper, we presented a novel model that lever-
ages conventional high recall rule-based models
and neural models for utilizing contextual informa-
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tion for identifying task relevant temporal entities.
Our proposed model, when used in conjunction
with 3 different rule-based models, achieves sub-
stantial precision gains for all of them without suf-
fering from a huge recall drop. Further, the model
substantially outperforms baseline methods for the
task of identifying relevant date-time entities for
the task of scheduling a meeting.

We also presented a novel approach for identi-
fying the negation constraints of date-time entities.
Identifying the negation constraints associated with
date-time entities correctly is necessary for the task
of scheduling. We showed that the existing neural
approaches for detecting negation scopes do not
transfer well, and that our proposed model based
on heuristics defined over constituency and depen-
dency parses achieves strong performance gains,
especially for the case of explicit negations.
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