
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4066–4075,
November 16–20, 2020. c©2020 Association for Computational Linguistics

4066

Towards Better Context-aware Lexical Semantics:
Adjusting Contextualized Representations through Static Anchors

Qianchu Liu, Diana McCarthy, Anna Korhonen
Language Technology Lab, TAL, University of Cambridge, UK

ql261@cam.ac.uk, diana@dianamccarthy.co.uk, alk23@cam.ac.uk

Abstract

One of the most powerful features of con-
textualized models is their dynamic embed-
dings for words in context, leading to state-of-
the-art representations for context-aware lex-
ical semantics. In this paper, we present a
post-processing technique that enhances these
representations by learning a transformation
through static anchors. Our method requires
only another pre-trained model and no labeled
data is needed. We show consistent improve-
ment in a range of benchmark tasks that test
contextual variations of meaning both across
different usages of a word and across different
words as they are used in context. We demon-
strate that while the original contextual rep-
resentations can be improved by another em-
bedding space from either contextualized or
static models, the static embeddings, which
have lower computational requirements, pro-
vide the most gains.

1 Introduction

Word representations are fundamental in Natural
Language Processing (NLP) (Bengio et al., 2003).
Recently, there has been a surge of contextualized
models that achieve state-of-the-art in many NLP
benchmark tasks (Peters et al., 2018; Devlin et al.,
2019; Liu et al., 2019b; Yang et al., 2019). Even
better performance has been reported from fine-
tuning or training multiple contextualized models
for a specific task such as question answering (De-
vlin et al., 2019; Xu et al., 2020). However, little
has been explored on directly leveraging the many
off-the-shelf pre-trained models to improve task-
independent representations for lexical semantics.
Furthermore, classic static embeddings are often
overlooked in this trend towards contextualized
models. As opposed to contextualized embeddings
that generate dynamic representations for words
in context, static embeddings such as word2vec
(Mikolov et al., 2013) assign one fixed representa-
tion for each word. Despite being less effective in

capturing context-sensitive word meanings, static
embeddings still achieve better performance than
contextualized embeddings in traditional context-
independent lexical semantic tasks including word
similarity and analogy (Wang et al., 2019). This
suggests that static embeddings have the potential
to offer complementary semantic information to en-
hance contextualized models for lexical semantics.

We bridge the aforementioned gaps and propose
a general framework that improves contextualized
representations by leveraging other pre-trained con-
textualized/static models. We achieve this by using
static anchors (the average contextual representa-
tions for each word) to transform the original con-
textualized model, guided by the embedding space
from another model. We assess the overall quality
of a model’s lexical semantic representation by two
Inter Word tasks that measure relations between dif-
ferent words in context. We also evaluate on three
Within Word tasks that test the contextual effect
from different usages of the same word/word pair.
Our method obtains consistent improvement across
all these context-aware lexical semantic tasks. We
demonstrate the particular strength of leveraging
static embeddings, and offer insights on the reasons
behind the improvement. Our method also has min-
imum computational complexity and requires no
labeled data.

2 Background

This section briefly introduces the contextual-
ized/static models that we experimented in this
study. For static models, we select three repre-
sentative methods. SGNS (Mikolov et al., 2013),
as the most successful variant of word2vec, trains
a log linear model to predict context words given
a target word with negative sampling in the objec-
tive. FastText improves over SGNS by training
at the n-gram level and can generalize to unseen
words (Bojanowski et al., 2017). In addition to
these two prediction-based models, we also include
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one count-based model, GloVe (Pennington et al.,
2014). GloVe is trained to encode semantic rela-
tions exhibited in the ratios of word-word occur-
rence probabilities into word vectors.

As opposed to static embeddings, contextualized
models provide dynamic lexical representations as
hidden layers in deep neural networks typically
pre-trained with language modeling objectives. In
our study, we choose three state-of-the-art con-
textualized models. BERT (Devlin et al., 2019)
trains bidirectional transformers (Vaswani et al.,
2017) with masked language modeling and next
sentence prediction objectives. Liu et al. (2019b)’s
RoBERTa further improves upon BERT by care-
fully optimizing a series of design decisions. XL-
Net (Yang et al., 2019) takes a generalized auto-
regressive pre-training approach and integrates
ideas from Transformer-XL (Dai et al., 2019). For
the best performance, we use the Large Cased1

variant for each contextualized model. Since our
study focuses on generic lexical representations
and many of the lexical semantic tasks do not
provide training data, we extract features2 from
these contextualized models without fine-tuning
the weights for a specific task. This feature-based
approach is also more efficient compared with fine-
tuning the increasingly larger models which can
have hundreds of millions of parameters.

3 Method

Our method3 is built from a recently proposed
cross-lingual alignment technique called meeting
in the middle (Doval et al., 2018). Their method
relies on manual translations to learn a transfor-
mation over an orthogonal alignment for better
cross-lingual static embeddings. We show that
by a similar alignment + transformation technique,
we can improve monolingual contextualized em-
beddings without resorting to any labeled data.

The direct correspondence among contextual-
ized and static embeddings for alignment is not
straightforward, as contextualized models can com-
pute infinite representations for infinite contexts.
Inspired by previous study (Schuster et al., 2019)
that found contextualized embeddings roughly
form word clusters, we take the average of each
word’s contextual representations as anchors of a
contextualized model. We call them static anchors

11024 dimensions with case-preserving vocabulary.
2Appendix A contains more details on feature extraction.
3Implementation details are listed in Appendix B.

as they provide one fixed representation per word,
and therefore correspond to word embeddings from
a static model such as FastText. We also use these
anchors to align between contextualized models.
To form the vocabulary for creating static anchors
in our experiments, we take the top 200k most fre-
quent words and extract their contexts from English
Wikipedia.

To describe the method in more detail, we repre-
sent the anchor embeddings from the original con-
textualized model as our source matrix S, and the
corresponding representations from another con-
textualized/static model as target matrix T. si and
ti are the source and target vectors for the ith word
in the vocabulary (V ). We first find an orthogonal
alignment matrix W that rotates the target space to
the source space by solving the least squares linear
regression problem in Eq. 1. W is found through
Procrustes analysis (Schönemann, 1966).

W = argmin
W

|V |∑
i=1

‖Wti − si‖2 s.t. WTW = I. (1)

As described in Eq. 2, we then learn a linear
mapping M to transform the source space towards
the average of source and the rotated target space,
by minimizing the squared Euclidean distance be-
tween each transformed source vector Msi and the
mean vector µi (µi = (si + Wti)/2). M is the
mapping we will use to transform the original con-
textualized space. Following Doval et al. (2018),
M is found via a closed-form solution.

M = argmin
M

|V |∑
i

‖Msi − µi‖
2 (2)

For improved alignment quality, as advised by
Artetxe et al. (2016), we normalize and mean-
center4 the embeddings in S and T a priori.

4 Experiments

Task Descriptions5 We evaluate on three Within
Word tasks. Usage Similarity (Usim) (Erk et al.,
2013) dataset measures graded similarity of the
same word in pairs of different contexts on the
scale from 1 to 5. Word in Context (WiC) (Pilehvar
and Camacho-Collados, 2019) dataset challenges a
system to predict a binary choice of whether a pair
of contexts for the same word belongs to the same

4We pre-process representations with the same centering
and normalization in all tasks. Our reported results are similar
or better than the results from un-preprocessed representations.

5Appendix C reports details for each task and experiment.
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meaning or not. We follow the advised training
scheme in the original paper to learn a cosine simi-
larity threshold on the representations. The recently
proposed CoSimlex (Armendariz et al., 2019) task
provides contexts for selected word pairs from the
word similarity benchmark SimLex-999 (Hill et al.,
2015) and measures the graded contextual effect.
We use the English dataset from this task. Its first
subtask, CoSimlex-I, evaluates the change in simi-
larity between the same word pair under different
contexts. As it requires a system to capture dif-
ferent contextual representations of the same word
in order to correctly predict the change of simi-
larity to the other word in the pair, CoSimlex-I
indirectly measures within-word contextual effect
and therefore provides our third Within Word task.
The second CoSimLex subtask, CoSimlex-II, is an
Inter Word task as it requires a system to predict
the absolute gold rating of each word pair consist-
ing of different words in each context. We also
evaluate on another related Inter Word task, Stan-
ford Contextual Word Similarity (SCWS), which
provides graded similarity scores of word pairs in
independent contexts. Compared with the two In-
ter Word tasks, the three Within Word tasks are
more sensitive to contextual effects since they pe-
nalize strongly a static model (eg. FastText) as
being no better than a random baseline. By con-
trast, we might expect a context-independent static
model to perform reasonably, though not as good
as a context-sensitive model, in InterWord tasks
(Armendariz et al., 2019).

Results: Table 1 reports the performance of each
contextualized model before and after the transfor-
mation guided by each of the other contextual/static
embeddings. In this table, → indicates the direc-
tion of the transformation. For example, RoBERTa
→ FastText denotes using FastText as the target
space to transform RoBERTa.

We find that applying transformation is gener-
ally able to improve each contextualized model,
obtaining the best performance across all the tasks.
In particular, we observe substantial improvements
in Usim (ca. 0.04 increase of ρ) and SCWS (ca.
0.03 increase of ρ). The most consistent improve-
ment comes from leveraging static embeddings.
This is especially evident in Inter Word tasks where
transforming towards FastText achieves the best
performance but leveraging another contextualized
model often brings harm. This suggests that the
static embeddings are able to inject better inter-

word relations (Wang et al., 2019) into a contextu-
alized model. At the same time, static embeddings
consistently improve performance in Within Word
tasks in 24 out of the total 27 configurations, reas-
suring us that the contextualization power of the
original contextual space is not only preserved but
even enhanced. Overall, FastText is the most robust
target space as it improves all the contextualized
source representations for all the tasks except for
XLNet in WiC. SGNS and GloVe are also competi-
tive especially in improving Within Word tasks.

Analysis: The overall improvement in both Within
Word and Inter Word tasks suggests two possible
benefits from the transformation: better within-
word contextualization and better overall inter-
word semantic space. We perform controlled stud-
ies that test for these two sources of improvement
in isolation. We test on the best base contextualized
space (RoBERTa) with the various transformations.

The fact that a static embedding (FastText) per-
forms better than a random baseline in Within Word
tasks (see Table 1) suggests that there are some
lexical cues in the target words (eg. morphological
variations) that can help solve the task alongside
the context. To highlight the improvement in con-
textualization alone, since the Within Word tasks
before lemmatization may contain different word
forms of the same lemma as the target words in
each pair, we lemmatize all the target words in
the dataset. As a result, each pair in the Within
Word tasks now contains the identical target word.
We observe that the results after lemmatization are
slightly lower than before but the transformation
especially towards static embeddings is indeed able
to improve the contextualization across all the tasks
(Table 2).

To test solely the effect on the overall inter word
semantic space of the contextualized model be-
comes better after the transformation, we ‘decon-
textualize’ the model by evaluating only on the
static anchors of the contextualized embeddings.
These static anchors are not sensitive to a particu-
lar context and can thus only reflect overall inter
word semantic space like embeddings from a static
model. We observe improvement from the trans-
formation on the static anchors in Inter Word tasks.
In particular, aligning towards FastText brings the
largest and the most consistent gains. This suggests
that FastText may have offered a better ensemble
space with RoBERTa and results in a better overall
inter word semantic space.
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Within Word Inter Word

Usim (ρ) WiC (acc%) CoSimlex-I (r) CoSimlex-II (ρ) SCWS (ρ)
Random 0. 0. 50. 0. 0.
FastText 0.1290 56.21 0.2776 0.4481 0.6782
RoBERTa 0.6196 68.28 0.7713 0.7249 0.6884
→ BERT 0.6529 68.21 0.7814 0.7087 0.6938
→ XLNet 0.6371 67.50 0.7622 0.6977 0.6689
→ FastText 0.6544 69.00 0.7794 0.7344 0.7159
→ SGNS 0.6473 70.07 0.7761 0.7140 0.7009
→ GloVe 0.6556 67.85 0.7783 0.7254 0.6763

BERT 0.5995 66.29 0.7595 0.7228 0.7305
→ RoBERTa 0.6185 66.71 0.7684 0.7172 0.7276
→ XLNet 0.6165 66.57 0.7633 0.7103 0.7196
→ FastText 0.6388 67.57 0.7701 0.7315 0.7507
→ SGNS 0.6371 68.28 0.7712 0.7224 0.7421
→ GloVe 0.6403 66.79 0.7710 0.7311 0.7327

XLNet 0.4944 63.14 0.7727 0.7450 0.7047
→ BERT 0.5382 62.35 0.7842 0.7414 0.7369
→ RoBERTa 0.5185 62.64 0.7791 0.7430 0.7230
→ FastText 0.5223 62.50 0.7805 0.7473 0.7563
→ SGNS 0.5313 63.71 0.7780 0.7338 0.7481
→ GloVe 0.5349 62.14 0.7824 0.7411 0.7246

Table 1: Performance on context-aware lexical semantic tasks before and after adjusting RoBERTa, BERT and XL-
Net to other static (red rows) and contextualized embeddings (blue rows). A static embedding baseline (FastText)
is also provided. BERT and RoBERTa are reported as the best models without external resources in WiC (Pile-
hvar and Camacho-Collados, 2019) and Usim (Garı́ Soler et al., 2019); the previous best reported score is 0.693
(Neelakantan et al., 2014) for SCWS. (r: uncentered Pearson correlation, ρ: Spearman correlation, acc: Accuracy)

Within Word Inter Word

Usim (ρ) WiC (acc%) CoSimlex-I (r) CoSimlex-II (ρ) SCWS (ρ)
RoBERTa (lemma) 0.5657 66.35 0.7305 0.6884 0.6693
→ BERT 0.6189 68.07 0.6884 0.6850 0.6727
→ XLNet 0.6022 66.93 0.7358 0.6716 0.6501
→ FastText 0.6260 68.36 0.7666 0.7150 0.7000
→ SGNS 0.6169 68.85 0.7636 0.6960 0.6863
→ GloVe 0.6277 68.42 0.7535 0.6925 0.6558

RoBERTa (lemma decon) - - - 0.4894 0.5994
→ BERT - - - 0.4945 0.6310
→ XLNet - - - 0.4868 0.5940
→ FastText - - - 0.5073 0.6497
→ SGNS - - - 0.4847 0.6518
→ GloVe - - - 0.5016 0.6378

Table 2: Controlled experiments on lemmatised (lemma) and decontextualized (decon) RoBERTa before and after
transformation towards static embeddings (red rows) or another contextualized embedding (blue rows). The lemma
decon condition in the Within Word task is irrelevant as the results will be equivalent to random baselines. (r:
uncentered Pearson correlation, ρ: Spearman correlation, acc: Accuracy)
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To better understand the contextualization im-
provement in the Within Word scenario, we focus
on WiC to perform more detailed analysis. While
we report results on the test set in Table 1, we
present the following analysis on the train and de-
velopment sets because the test set labels have not
been released. We focus on the best performing
model in the task, RoBERTa → SGNS, to examine
the difference before and after the transformation.

Overall, we observe a trend for the within-word
contextual representations to move slightly closer
to each other after the transformation, as the mean
cosine similarity of a pair’s contextual word repre-
sentations across all instances has increased from
0.516 to 0.542. We further break down cases ac-
cording to their labels and find that the transforma-
tion mainly brings the representations closer for
TRUE pairs (where the context pairs of the word
are indeed expressing the same meaning) with the
mean cosine similarity increased from 0.606 to
0.651. For FALSE cases where the context pairs
refer to distinct meanings of the target word, there
is less increase in similarity (from 0.426 to 0.433).
We also find that the improved performance in this
task can be largely attributed to correcting many
erroneous FALSE predictions in the original space
as these representations are drawn closer after the
transformation (See Appendix D). We qualitatively
examine these corrected TRUE cases (Examples
are provided in Appendix E), and found that the im-
provement typically comes from reduced variance
for the contextual representations of monosemous
words. An example is the word daughter. We
observe very low cosine similarity among its con-
textual representations in the original space. These
representations are drawn closer after the transfor-
mation (eg. cosine similarity from 0.48 to 0.67).
We suspect this might be related to contextualized
models’ over-sensitivity to context changes (Shi
et al., 2019).

To summarize the analysis, our controlled ex-
periments confirm our two hypotheses that the
transformation brings two independent effects: im-
proved overall inter-word semantic space and im-
proved within-word contextualization. Our qualita-
tive analysis shows that the improved within-word
contextualization is likely to be the result of context
variance reduction.

5 Related Work

It has been shown that combining different static
word representations (for example through aver-
aging or concatenation) into a meta embedding
can usually lead to better lexical representations
(Coates and Bollegala, 2018; Yin and Schütze,
2016). While these task-independent meta embed-
ding techniques are mainly applied on static em-
beddings, research has started to explore leveraging
ensemble contextualized models when performing
fine-tuning on a specific task (Devlin et al., 2019;
Xu et al., 2020). Our method, as a post-processing
transformation over task-independent contextual
representations, is inherently different from these
meta embedding and ensemble approaches. Com-
putationally, our method does not require maintain-
ing multiple models at test time, and is therefore
more efficient. Our method is also by far the most
effective way to leverage static embeddings to im-
prove contextualized representations.6

Our methodology is related to studies on align-
ing cross-lingual embeddings (Doval et al., 2018;
Liu et al., 2019a; Schuster et al., 2019). While
these works mainly focus on obtaining better cross-
lingual representations, our study is the first attempt
to show that some of the cross-lingual alignment
methods can be applied to improve monolingual
contextualized representations with no manual re-
sources required.

6 Conclusion

We present an effective post-processing method
that transforms and enhances contextual word rep-
resentations through static anchors with guidance
from other contextualized/static embeddings. We
show leveraging static embeddings, with no labeled
data, consistently improves (across almost all con-
figurations) on both Inter Word and surprisingly
Within Word context-aware lexical semantic tasks.
We also perform controlled analysis to highlight, in
isolation, the improvement from the transformation
on both contextualization and on an overall inter-
word semantic space. In the future, we plan to ap-
ply the transformed representations on more lexical
semantics tasks such as word sense disambiguation
within an application (Navigli and Vannella, 2013).

6A simple meta embedding baseline that concatenates con-
textualized and static representations generally impairs the
performance. (Appendix F)
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A Details on extracting contextual word
representations

We take the average of the last 12 layers from
BERT and RoBERTa, and of the full 24 layers from
XLNet as feature representations. We empirically
found averaging the last 12 layers performs better
than averaging the full 24 layers or the last layer
for BERT and RoBERTa. This is in line with Ten-
ney et al. (2019) that found semantic information
is better captured in higher layers in BERT.

If a word is split into subwords after tokeniza-
tion, we average the subword representations. We
leave other ways of extracting the features for fu-
ture work.

B Implementation details

For the input pre-trained models, we report their
hyper-parameters and training details in the follow-
ing:

Models Hyper-parameters &
Training details

RoBERTa
1024 dimensions; 24 lay-
ers; 16-heads, 355M pa-
rameters.

BERT
1024 dimensions; 24 lay-
ers; 16-heads, 340M pa-
rameters.

XLNet
1024 dimensions; 24 lay-
ers; 16-heads, 340M pa-
rameters.

Static models
(eg. FastText)

300-d vectors trained
on the latest English
Wikipedia. We pad these
vectors to 1024 to match
the dimension size of the
contextualized models.

As to our transformation method, we report the fol-
lowing details:

no. of parameter 1024*1024
Average runtime 10 seconds

Computing infras-
tructure

GeForce GTX 1080
Ti

We release our code at https://github.com/

qianchu/adjust_cwe.git

C Details for experiments and data sets
in this study

We provide the statistics for each task including
number of examples, train/dev/test splits, and links
to downloadable versions of the data in Table 3.

We also report the validation performance for
WiC as the only supervised task in our study.
Results on the development set and the hyper-
parameters (the cosine similarity threshold) are
listed in Table 4. The threshold is searched with
0.01 step size until we find the model that achieves
the highest accuracy.

D Changes in model prediction on WiC
before and after the transformation

Table 5 lists the changes in predicted labels after
transforming RoBERTa towards SGNS. We catego-
rize the changes into four groups according to the
prediction changes after the transformation. The
largest group contains 153 cases that were orig-
inally predicted as false negatives and were cor-
rected after the transformation.

E Examples of corrected TRUE cases
after transformation in WiC

Below are examples that were corrected to TRUE
labels after the transformation in RoBERTa →
SGNS. We also report changes in the cosine simi-
larity of contextual representations in each example.

Examples similarity
change

I [know] it ’s time. 0.42→0.65
It is vital that he not [know].
I already have a son , so I would
like to have a [daughter].

0.48→0.67

Her [daughter] cared for her in
her old age.

F Results on concatenating
contextualized and static embeddings

Please refer to Table 6 for a simple baseline that
concatenates FastText and each of the contextual-
ized model. We report results for FastText only as
it has proved to be the most robust static embed-
ding target space. We found similar results for con-
catenating with other static embeddings. In short,
the simple concatenation with a static embedding
generally brings more harm for the contextualized
model.

https://github.com/qianchu/adjust_cwe.git
https://github.com/qianchu/adjust_cwe.git
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Task Statistics Links
Usim We exclude one sentence that

caused xml parsing errors
(call.v.1211) and 9 pairs involv-
ing this sentence. The final
testset contains 1133 context
pairs.

http://www.

dianamccarthy.

co.uk/downloads/

WordMeaningAnno2012/

WiC We use the original dataset with
train/development/test splits
containing 5428/638/1400
instances respectively.

Link to train and
development sets:
https://pilehvar.

github.io/wic/

Link to test
set: https:

//competitions.

codalab.org/

competitions/

20010

CoSimlex Contains 333 word pairs and
each pair has two different con-
texts. We test on the whole
dataset

https://

competitions.

codalab.org/

competitions/

20905

SCWS 2003 word pairs with contexts shorturl.at/

swMS3

Table 3: Statistics for each task evaluated in the study

WiC (acc%) threshold
RoBERTa 67.24 0.5300
→ BERT 67.86 0.5600
→ XLNet 67.40 0.5500
→ FastText 68.49 0.5700
→ SGNS 69.12 0.5600
→ GloVe 69.59 0.6000

BERT 68.65 0.5500
→ RoBERTa 68.34 0.5400
→ XLNet 68.80 0.5400
→ FastText 68.65 0.5400

→ SGNS 69.44 0.5500
→ GloVe 68.18 0.5600
XLNet 62.70 0.5300
→ BERT 62.70 0.5900
→ RoBERTa 62.54 0.5800

→ FastText 62.07 0.5700
→ SGNS 61.91 0.5900
→ GloVe 61.75 0.6600

Table 4: Performance on the development set of WiC

http://www.dianamccarthy.co.uk/downloads/WordMeaningAnno2012/
http://www.dianamccarthy.co.uk/downloads/WordMeaningAnno2012/
http://www.dianamccarthy.co.uk/downloads/WordMeaningAnno2012/
http://www.dianamccarthy.co.uk/downloads/WordMeaningAnno2012/
https://pilehvar.github.io/wic/
https://pilehvar.github.io/wic/
https://competitions.codalab.org/competitions/20010
https://competitions.codalab.org/competitions/20010
https://competitions.codalab.org/competitions/20010
https://competitions.codalab.org/competitions/20010
https://competitions.codalab.org/competitions/20010
https://competitions.codalab.org/competitions/20905
https://competitions.codalab.org/competitions/20905
https://competitions.codalab.org/competitions/20905
https://competitions.codalab.org/competitions/20905
https://competitions.codalab.org/competitions/20905
shorturl.at/swMS3
shorturl.at/swMS3


4075

TRUE (gold) FALSE (gold)
FALSE (before) → TRUE (after) 153 99
TRUE (before) → FALSE (after) 116 145

Table 5: Change of predicted labels after the transformation of RoBERTa → SGNS. The left most column shows
the predicted labels before and after the transformation, and the top row shows the gold label. The shaded cells
report the number of cases corrected by the transformation.

Within Word Inter Word

Usim ρ WiC acc% CoSimlex-I r CoSimlex-II ρ SCWS ρ
RoBERTa 0.6196 68.28 0.7713 0.7249 0.6996
→ FastText 0.6544 69.00 0.7794 0.7344 0.7159
+ FastText 0.3301 66.85 0.5854 0.587 0.7179

BERT 0.5995 66.29 0.7595 0.7228 0.7520
→ FastText 0.6388 67.57 0.7701 0.7315 0.7507
+ FastText 0.3663 65.64 0.764 0.6763 0.7488

XLNet 0.4944 63.14 0.7727 0.7450 0.7242
→ FastText 0.5223 62.50 0.7805 0.7473 0.7563
+ FastText 0.2792 61.21 0.7641 0.6688 .7363

Table 6: Comparing concatenation (+) and our transformation method (→) on leveraging static embeddings. While
concatenation may sometimes achieve slightly better results in SCWS, it largely worsens the performance in gen-
eral. By contrast, our method achieves the most consistent and robust improvements (r: uncentered Pearson
correlation; ρ: Spearman correlation; acc: Accuracy)


