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Abstract

We study knowledge-grounded dialogue gen-
eration with pre-trained language models. To
leverage the redundant external knowledge un-
der capacity constraint, we propose equip-
ping response generation defined by a pre-
trained language model with a knowledge se-
lection module, and an unsupervised approach
to jointly optimizing knowledge selection and
response generation with unlabeled dialogues.
Empirical results on two benchmarks indi-
cate that our model can significantly outper-
form state-of-the-art methods in both auto-
matic evaluation and human judgment.

1 Introduction

With advances in neural machine learning
(Sutskever et al., 2014; Gehring et al., 2017;
Vaswani et al., 2017) and availability of the huge
amount of human conversations on social media
(Adiwardana et al., 2020), building an open do-
main dialogue system with data-driven approaches
has attracted increasing attention from the commu-
nity of artificial intelligence and natural language
processing. In this work, we are interested in gen-
erative approaches. Generative models for open
domain dialogues are notorious for replying with
generic and bland responses, resulting in mean-
ingless and boring conversations (Li et al., 2015).
Such deficiency is particularly severe when human
participants attempt to dive into specific topics in
conversation (Dinan et al., 2019). As a result, there
is still a big gap between conversation with existing
systems and conversation with humans.

Very recently, there emerge two lines of research
that seem promising to bridge the gap. One is
to apply large-scale pre-trained language models,
such as GPT-2 (Radford et al., 2019), to the task
of open domain dialogue generation. Prototypes
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Context
A I just discovered star trek and I really like

watching star trek .
B Gene Roddenberry created it based upon

science fiction and it is American media.
...

A If I remember Captain Kirk was not the
original captain .

B The Star Trek Canon of the series an ani-
mated had 5 spin offs.

A I watched a little of the next generation
but could not get into it like i did with the
original show .

Response
Human These adventures went on but were short

lived and six feature films.
DialoGPT I think it’s worth it.

Table 1: An example from the test set (Test Seen) of
Wizard of Wikipedia (Dinan et al., 2019) .

such as DialoGPT (Zhang et al., 2019c) have ex-
hibited compelling performance on generating re-
sponses that make sense under conversation con-
texts and at the same time carry specific content
for keeping the conversation going. While the gi-
ant language models can memorize enough pat-
terns in language during pre-training, they only
capture “average” semantics of the data (Zhang
et al., 2019c). As a result, responses could still be
bland or inappropriate when specific knowledge
is required, as illustrated by the example in Ta-
ble 1. The other line is to ground dialogue gen-
eration by extra knowledge such as unstructured
documents (Zhao et al., 2020). By the means, the
documents (e.g., wiki articles) serve as content
sources, and make a dialogue system knowledge-
able regarding to a variety of concepts in discus-
sion. However, collecting enough dialogues that
are naturally grounded on documents for model
training is not trivial. Although some benchmarks
built upon crowd-sourcing have been released by re-
cent papers (Zhou et al., 2018b; Dinan et al., 2019;
Gopalakrishnan et al., 2019), the small training size
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makes the generation models generalize badly on
unseen topics (Dinan et al., 2019) and the cost of
building such data also prevents from transferring
the techniques proved on the benchmarks to new
domains and new languages.

Encouraged by the results on pre-training for
dialogue generation and knowledge-grounded dia-
logue generation, and motivated by the problems in
both sides, we consider bringing the two together
in this work. Specifically, we propose knowledge-
grounded dialogue generation with pre-trained lan-
guage models in order to endow a generative model
with both rich knowledge and good generalization
ability1. The challenge is that pre-trained language
models often set constraints on the maximum num-
ber of tokens they can handle (e.g., the maximum
number for GPT-2 (Radford et al., 2019) is 1024),
and thus hinders exploitation of the knowledge text
which could be rather long and redundant (e.g., in
Wizard of Wikipedia (Dinan et al., 2019), on av-
erage each conversation context is associated with
61.2 sentences retrieved from wiki articles, and the
average number of tokens in the extra knowledge
is 1625.6). Indeed, the conflict between model
capacity and the ability required for processing
long knowledge input represents an essential ob-
stacle for applying pre-trained language models
to knowledge-grounded dialogue generation, since
on the one hand we always have to set up an up-
per bound to the capacity of pre-trained models
in order to handle massive text corpus, and on the
other hand we need to keep sufficient candidates
with rich enough content in the procedure of re-
sponse generation in order to guarantee the recall
of relevant knowledge.

To overcome the challenge, we consider equip-
ping the pre-trained response generation model
with a knowledge selection module whereby the re-
dundant knowledge input is slimmed with relevant
information (regarding to conversation contexts)
kept to meet the capacity constraint. While some
recent papers on knowledge-grounded dialogues
have paid attention to the problem of knowledge
selection (Lian et al., 2019; Kim et al., 2020; Ren
et al., 2019), the knowledge selection module is
either deeply coupled with the specially configured
models (Lian et al., 2019; Ren et al., 2019) and thus
is incompatible with the pre-trained language mod-
els, or it is learned with human annotations (Dinan

1In this paper, we assume that knowledge is retrieved from
documents.

et al., 2019; Kim et al., 2018) which are difficult to
obtain in practice (e.g., the dataset in (Zhou et al.,
2018b) does not contain annotations for knowledge
selection). Therefore, we propose an unsupervised
approach where learning of knowledge selection
and fine-tuning of response generation are jointly
conducted with unlabeled dialogues. Specifically,
we build the knowledge selection module on the
basis of BERT, and formalize knowledge selec-
tion as a sequence prediction process, by which
the model can take advantage of the pre-training
techniques and dynamically determine the relevant
knowledge for a given context. The learning algo-
rithm starts from training with pseudo ground-truth
that is constructed by making full use of responses
as an alternation of human annotations, and then al-
ternatively updates the knowledge selection model
and the response generation model through a re-
inforcement learning approach and a curriculum
learning approach respectively. Thus, knowledge
selection is further optimized with the feedback
from response generation, and the knowledge used
for fine-tuning the response generation model grad-
ually moves from the pseudo ground-truth to the
prediction of the knowledge selection module.

We test the proposed method on two benchmarks
of knowledge-grounded dialogue generation: Wiz-
ard of Wikipedia (Dinan et al., 2019) and CMU
Document Grounded Conversations (Zhou et al.,
2018b). Evaluation results indicate that our model
can significantly outperform state-of-the-art meth-
ods as well as a few pre-trained models used in
heuristic ways, and thus achieves new state-of-the-
art on the benchmarks. Moreover, as a byproduct,
the knowledge selection module also outperforms
the state-of-the-art model in terms of accuracy of
knowledge selection on Wizard of Wikipedia, im-
plying that other models could also benefit from
the component.

Our contributions in this paper are three-fold:
(1) proposal of a knowledge selection module for
applying pre-trained language models to the task
of knowledge-grounded dialogue generation; (2)
proposal of an unsupervised approach in which
learning of knowledge selection and fine-tuning
of the pre-trained model are conducted in a joint
manner; and (3) empirical verification of the effec-
tiveness of the proposed method on benchmarks of
knowledge-grounded dialogue generation.
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2 Related Work

Early work on end-to-end open domain dialogue
generation is inspired by the research of machine
translation (Ritter et al., 2011; Shang et al., 2015;
Vinyals and Le, 2015). Later, the vanilla encoder-
decoder architecture is widely extended to improve
diversity of responses (Li et al., 2015; Xing et al.,
2017a; Zhao et al., 2017; Tao et al., 2018); to
model the structure of conversation contexts (Ser-
ban et al., 2016, 2017; Xing et al., 2017b; Zhang
et al., 2019a); to control attributes of responses
(Xu et al., 2019; Zhou et al., 2017; Zhang et al.,
2018a; Wang et al., 2018; See et al., 2019); and to
bias responses to some specific personas (Li et al.,
2016; Zhang et al., 2018b). Recently, grounding
dialogue generation by extra knowledge is emerg-
ing as an important step towards human-like con-
versational AI, where the knowledge could be ob-
tained from knowledge graphs (Zhou et al., 2018a;
Moon et al., 2019; Tuan et al., 2019), retrieved from
unstructured documents (Dinan et al., 2019; Lian
et al., 2019; Zhao et al., 2020; Kim et al., 2020), or
extracted from visual background (Mostafazadeh
et al., 2017; Shuster et al., 2018; Huber et al., 2018).
In this work, we study document-grounded dia-
logue generation. Rather than learning from scratch
like most existing work, we take advantage of the
pre-trained language models and achieve new state-
of-the-art on the benchmarks of the task.

Big, deep neural language models pre-trained
on huge unlabeled text corpus have led to strong
improvements on numerous natural language un-
derstanding and natural language generation bench-
marks (Devlin et al., 2018; Yang et al., 2019; Liu
et al., 2019; Radford et al., 2019; Song et al., 2019;
Dong et al., 2019; Lewis et al., 2019), and there-
fore are revolutionizing almost the full spectrum
of NLP applications (Raffel et al., 2019; Sun et al.,
2019b; Qiao et al., 2019; Zhang et al., 2019b; Lam-
ple and Conneau, 2019) and some interdisciplinary
applications in NLP and computer vision (Lu et al.,
2019; Su et al., 2019; Sun et al., 2019a). In the con-
text of dialogue generation, by fine-tuning GPT-2
(Radford et al., 2019) in different sizes on social
media data, recent work has (Zhang et al., 2019c;
Wolf et al., 2019) shown promising progress on con-
versation engagement and commonsense question-
answering. In this work, we further explore the ap-
plication of pre-training to the task of open domain
dialogue generation by equipping the pre-trained
language models with external knowledge. Differ-

ent from a very recent paper on pre-training for
low-resource knowledge-grounded dialogue gen-
eration (Zhao et al., 2020), the work presents an
in-depth investigation on how to release the power
of the existing pre-trained language models on the
task when input exceeds the capacity of the models.

3 Preliminary

3.1 Problem Formalization
Suppose that we have a dataset D =
{(Ui, Di, ri)}Ni=1, where ∀i ∈ {1, . . . , N},
Ui is a dialogue context, Di is a document that
contains relevant knowledge regarding to Ui, and
ri is a response to Ui based on Di. The goal is to
learn a generation model P (r|U,D; θ) (θ denotes
the parameters of the model) from D, and thus
given a new dialogue context U associated with
a document D, one can generate a response r
following P (r|U,D; θ).

3.2 Pre-trained Language Models
We define P (r|U,D; θ) on the basis of GPT-2 from
OpenAI (Radford et al., 2019). GPT-2 are trans-
former language models with a stack of masked
multi-head self-attention layers, and are learned
from large scale web text. To apply GPT-2 to the
task of knowledge-grounded dialogue generation,
we formulate the generation problem as

P (r|U,D; θ) = P (r|g(U,D); θ)

=

lr∏
t=1

P (rt|g(U,D), r1:t−1; θ),

(1)
where g(U,D) tailors U ∪ D to meet the length
constraint of a GPT-2 model as the input of gen-
eration, and rt refers to the t-th token of r whose
length is supposed to be lr. The problem then boils
down to (1) how to define g(U,D); and (2) how to
fine-tune θ (and probably learn g(U,D)) with D.

In this work, we assume that labels that indi-
cate the ground-truth knowledge are not available,
which is practical but makes the problem even more
challenging. Since D could be rather redundant
with a lot of information irrelevant with the topic
or the context of the conversation, simply truncat-
ing the concatenation of sentences of U and D as
g(U,D) may cut the relevant knowledge and intro-
duce noise into response generation, which hurts
the performance of the GPT-2 model, as will be
demonstrated in the experiments. Therefore, we
consider learning a g(U,D) that can distill useful
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Figure 1: Architecture of the proposed model.

information from D for the GPT-2 model, as will
be elaborated in the next section.

4 Approach

Heading for learning a g(U,D) for applying GPT-2
to the task of knowledge-grounded dialogue gen-
eration, we need to deal with several challenges:
(1) how to model the correlation between a con-
text and the external knowledge; (2) how to learn
g(U,D) when labels of ground-truth knowledge
are absent; and (3) how to jointly optimize g(U,D)
and the GPT-2 model with D, and thus the two can
boost each other. Figure 1 illustrates the architec-
ture of the model. On the basis of the transformer
architecture, the knowledge selection module is
made up of a context-aware knowledge encoder
and a sequential knowledge selector. The former
captures interaction patterns between a context U
and each sentence in D through a stack of self-
attention layers, and the patterns are then fed to the
latter to decode useful knowledge one sentence per
step. Since human annotations are not accessible,
the learning method begins with pseudo ground-
truth constructed by making full use of responses,
and optimization of g(U,D) and optimization of
the GPT-2 generation model are alternatively con-
ducted with a reinforcement learning approach and
a curriculum learning approach respectively.

4.1 Context-Aware Knowledge Encoder

We choose BERT (Devlin et al., 2018) as the back-
bone of the encoder. Thus, the encoder can take
advantage of pre-training, and the multi-layer bi-
directional attention mechanism in BERT allows
a dialogue context and the associated knowledge
to sufficiently interact with each other, resulting in
context-aware knowledge representations. Specifi-
cally, let U = (u1, . . . , un) and D = (d1, . . . , dm)

be the context and the knowledge respectively, then
we concatenate {ui}ni=1 as (wu

1 , · · · , wu
lu

) with
wu
i the i-th word and lu the length of the se-

quence, and define the input of the encoder as
S = (S1, . . . , Sm) with Si formulated as

Si= [CLS]wu
1 . . .w

u
lu[SEP]wd

i,1. . .w
d
i,j . . .w

d
i,ld

[SEP],
(2)

where wd
i,j refers to the j-th word of di ∈ D,

and ld is the length of di. Each Si ∈ S passes
through the stacked self-attention layers, and is fi-
nally represented as ei = CLS(BERT(Si)) where
BERT(Si) refers to the sequence of vectors from
the last layer of the encoder and CLS(·) is a func-
tion that returns the first vector of the sequence
(i.e., the vector corresponding to the [CLS] to-
ken). The output of the encoder is given by
E = (e1, . . . , em).

4.2 Sequential Knowledge Selector

With E as input, the sequential knowledge selector
determines a subset of D (denoted as D′) as the
relevant knowledge and exploits D′ to construct
g(U,D). Since there may exist one-to-many rela-
tions between a context and the relevant knowledge
(Kim et al., 2020), the size of D′ could vary from
context to context. Therefore, we regard the con-
struction of D′ as a sequence prediction process
in which D′ starts from an empty set and gradu-
ally expands by adding one sentence from D per
step. By this means, the size of D′ can also be
viewed as a parameter and is dynamically deter-
mined according to the given context. Formally,
we maintain a sequence of hidden states {st}

TU,D
t=0

with the initial state s0 a trainable parameter, and
weight {di}mi=1 by an attention mechanism which



3381

can be formulated as

P (di|U, dj1:t−1) = exp(αt,i)/
∑
i

exp(αt,i)

αt,i = v> tanh(Weei +Wsst + b),

(3)

where We, Ws, b and v are trainable param-
eters. Then djt will be added to D′ if jt =
argmaxi∈{1,...,m} P (di|U, dj1:t−1). After that, st+1

is calculated by

st+1 = LSTM(ejt , st) (4)

To determine TU,D, we introduce a special em-
bedding espe into E, and terminate the prediction
process if espe is selected or an upper bound Tmax

is reached. Finally, g(U,D) is defined as the con-
catenation of the sentences in U ∪D′.

4.3 Learning Method
Learning a g(U,D) without human annotations is
not trivial. For example, in a recent paper (Kim
et al., 2020), when human labels are removed, the
accuracy of knowledge selection drops from 27%
to 0.3%. Moreover, since knowledge selection and
response generation are entangled, ideally we hope
g(U,D) and the GPT-2 model can enhance each
other in learning. However, as the parameters of
g(U,D) are far from optimal at the early stage, it
is very possible that noise from g(U,D) will be
fed to the GPT-2 model and then flows back to the
learning procedure of g(U,D), resulting in inferior
models on both sides. To cope with the challenges,
we propose a joint optimization strategy with weak
supervision as follows. The learning algorithm is
summarized in Algorithm 1.

Pseudo Ground-Truth Construction. To allevi-
ate error accumulation in joint optimization, we
consider constructing weak supervision and utilize
the signals to warm up the learning of g(U,D) and
the fine-tuning of GPT-2 beforehand. The intuition
is that responses from humans carry clues to rele-
vance of the knowledge candidates, and thus can
be used to construct pseudo ground-truth. To be
specific, we first sort D = {dt}mt=1 in a descend-
ing order as {djt}mt=1 according to {Sim(dt, r)}mt=1

where Sim(·, ·) denotes a similarity function, and
then build a subset of D by

D̄ = {dj1 , . . . , djm̄},
m̄ = argmaxt(Sim(dj1:t , r)),

(5)

where dj1:t refers to the concatenation of {dji}ti=1.
With D̄, g(U,D) and the GPT-2 model are

optimized via maximum likelihood estimation
(MLE) on DK = {(Ui, Di, D̄i)}Ni=1 and DG =
{(Ui, D̄i, ri)}Ni=1 respectively.

Joint Optimization: the Reinforcement Step.
We exploit the policy-gradient method (Sutton
et al., 2000) to continue-train g(U,D) by which
g(U,D) is further “supervised” by the GPT-2
model and is directly optimized for a target met-
ric (e.g., F1 in the experiments). Specifically, we
sample a D̃ according to P (di|U, dj1:t−1) (in Eq.3.)
under a termination criterion similar to D̄ at each
time step, and define the loss function as

LK = − 1

N

N∑
i=1

R̃i

|D̃i|∑
t=1

logP (di,jt |Ui, di,j1:t−1)

 ,

R̃i = R(D̃i)− b,
(6)

where R(D̃i) = Sim(r′i, ri) with r′i the response
generated by the GPT-2 model given Ui and D̃i,
and b =

∑N
i=1R(D̃i)/N is the baseline that is

used to reduce the variance of gradient estima-
tion(Clark and Manning, 2016). We can see that
minimizing LK is equivalent to maximizing the
conditional likelihood of D̃i if it obtains a higher
reward than the baseline.

Joint Optimization: the Curriculum Step.
Though g(U,D) has been pre-trained with the
pseudo ground-truth D̄, the relevant knowledge
provided by the model (i.e., D′) may still be worse
than D̄ at the beginning of fine-tuning. Therefore,
we mixD′ and D̄ and exploit a curriculum learning
strategy to fine-tune the GPT-2 model whereD′ and
D̄ are regarded as hard materials and easy materials
respectively and fine-tuning gradually moves from
D̄ toD′. Formally, the loss function for fine-tuning
the GPT-2 model is defined by

LG =− 1

N

N∑
i=1

(
zi

lr∑
t=1

logP (ri,t|Ui, D̄i, ri,1:t−1)

+(1− zi)
lr∑
t=1

logP (ri,t|Ui, D
′
i, ri,1:t−1)

)
,

(7)
where {zi} are sampled from a Bernoulli distribu-
tion parameterized by p. By gradually shrinking p,
the generation model will be exposed to more hard
materials with the learning procedure going on.
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Algorithm 1 Optimization Algorithm
1: Input: Training data D, pre-trained GPT-2, initial curriculum rate p0, exponential decay constant λ, maximum step M .
2: Construct DK and DG.
3: Optimize g(U,D) and GPT-2 using MLE on DK and DG respectively.
4: for m← 1 to M do
5: Sample a mini-batch {(Ui, Di, ri)} from D.
6: Update the parameters of g(U,D) based on Eq.6. . the Reinforcement Step.
7: Sample {zi} from a Bernoulli distribution parameterized by p, where p = p0e

−λm.
8: Update the parameters of the GPT-2 model based on Eq.7. . the Curriculum Step.
9: end for

10: return g(U,D) and GPT-2.

5 Experiments

We conduct experiments on Wizard of Wikipedia
(Wizard) and CMU Document Grounded Conver-
sations (CMU DoG) (Zhou et al., 2018b).

5.1 Datasets and Evaluation Metrics

Both datasets are built with crowd-sourcing on
Amazon Mechanical Turk, employ Wikipedia as
the knowledge base, and are split into training sets,
validation sets, and test sets by the data owners.
Topics in Wizard cover a wide range (1, 365 in
total), and each conversation happens between a
wizard who has access to the knowledge about a
specific topic and an apprentice who is just eager to
learn from the wizard about the topic. The test set
is split into two subsets: Test Seen and Test Unseen.
Test Seen contains new dialogues with topics ap-
pearing in the training set, while topics in Test Un-
seen never appear in the training set and the valida-
tion set. We follow (Dinan et al., 2019) and conduct
the pre-processing with the code published on Par-
lAI2. Different from Wizard, CMU DoG focuses
on movie domain, and besides wizard-apprentice
conversations, the data also contain conversations
between two workers who know the document and
try to discuss the content in depth. To better com-
pare with the baselines, we adopt the version shared
at https://github.com/lizekang/ITDD. In both
data, only the turns where knowledge is accessi-
ble are considered in response generation. More
details are described in supplementary material.

We choose perplexity (PPL) of the ground-truth
responses, BOW Embedding (Liu et al., 2016),
and unigram F1 (Dinan et al., 2019) as metrics,
where Embedding-based metrics are computed
with an NLG evaluation open source available at
https://github.com/Maluuba/nlg-eval, and
F1 is calculated with the code published at https:

2https://github.com/facebookresearch/
ParlAI/blob/master/projects/wizard_of_
wikipedia

//github.com/facebookresearch/ParlAI/

blob/master/parlai/core/metrics.py.
Besides automatic evaluation, we randomly sam-

ple 300 examples from Test Seen, Test Unseen, and
the test set of CMU DoG respectively, and recruit
3 well-educated native speakers as annotators for
human evaluation. To each annotator, an example
is presented with a context, the associated exter-
nal knowledge3, and model responses (top 1 in
greedy search) that are randomly shuffled to hide
their sources. The annotators then judge the quality
of the responses from three aspects, including flu-
ency, context coherence and knowledge relevance,
and assign a score in {0, 1, 2} (representing “bad”,
“fair”, and “good”) to each response for each aspect.
Each response receives 3 scores per aspect, and the
agreement among the annotators is measured via
Fleiss’ kappa (Fleiss, 1971).

5.2 Baselines

The following models are selected as baselines:
Transformer Memory Network (TMN):

the model proposed in (Dinan et al., 2019)
along with the release of the Wizard data. We
implement it using the code shared at https:

//github.com/facebookresearch/ParlAI/

blob/master/projects/wizard_of_wikipedia.
Incremental Transformer with Deliberation

Decoder (ITDD): a transformer-based model (Li
et al., 2019) that incrementally encodes multi-turn
dialogues and knowledge and decodes responses
with a deliberation technique. We implement it
using the code shared at https://github.com/
lizekang/ITDD.

Sequential Knowledge Transformer (SKT): a
sequential latent variable model with state-of-the-
art performance on knowledge selection published
in a very recent paper (Kim et al., 2020). Since
human labels that indicate ground-truth knowl-

3For ease of labeling, only the ground-truth knowledge is
shown to the annotators in Wizard.

https://github.com/lizekang/ITDD
https://github.com/Maluuba/nlg-eval
https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/metrics.py
https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/metrics.py
https://github.com/facebookresearch/ParlAI/blob/master/projects/wizard_of_wikipedia
https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/metrics.py
https://github.com/facebookresearch/ParlAI/blob/master/projects/wizard_of_wikipedia
https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/metrics.py
https://github.com/facebookresearch/ParlAI/blob/master/projects/wizard_of_wikipedia
https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/metrics.py
https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/metrics.py
https://github.com/facebookresearch/ParlAI/blob/master/projects/wizard_of_wikipedia
https://github.com/facebookresearch/ParlAI/blob/master/projects/wizard_of_wikipedia
https://github.com/facebookresearch/ParlAI/blob/master/projects/wizard_of_wikipedia
https://github.com/lizekang/ITDD
https://github.com/lizekang/ITDD
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Models
Test Seen Test Unseen

PPL F1 Average Extrema Greedy PPL F1 Average Extrema Greedy
TMN (Dinan et al., 2019) 66.5 15.9 0.844 0.427 0.658 103.6 14.3 0.839 0.408 0.645
ITDD (Li et al., 2019) 17.8 16.2 0.841 0.425 0.654 44.8 11.4 0.826 0.364 0.624
SKT* (Kim et al., 2020) 52.0 19.3 0.846 0.440 0.665 81.4 16.1 0.839 0.418 0.652
DRD (Zhao et al., 2020) 19.4 19.3 0.852 0.452 0.674 23.0 17.9 0.849 0.439 0.664
SKT+GPT-2* 17.6 20.3 0.866 0.460 0.679 23.7 17.8 0.860 0.437 0.664
GPT-2trunc 14.6(2.2) 18.7(0.7) 0.864(0.002) 0.451(0.006) 0.674(0.004) 16.9(3.1) 18.3(0.6) 0.862(0.002) 0.444(0.005) 0.668(0.003)
KnowledGPT 19.2 22.0 0.872 0.463 0.682 22.3 20.5 0.870 0.452 0.674

Table 2: Evaluation results on Wizard. Models that leverage human labels are marked with *. Numbers in bold
mean that the improvement to the best baseline is statistically significant (t-test with p-value < 0.01).

Models PPL F1 Average Extrema Greedy
TMN (Dinan et al., 2019) 75.2 9.9 0.789 0.399 0.615
ITDD (Li et al., 2019) 26.0 10.4 0.748 0.390 0.587
DRD (Zhao et al., 2020) 46.1 10.8 0.791 0.406 0.613
GPT-2trunc 18.6 10.8 0.730 0.419 0.597
KnowledGPT 20.6 13.5 0.837 0.437 0.654

Table 3: Evaluation results on CMU DoG. Numbers in
bold mean that the improvement to the best baseline is
statistically significant (t-test with p-value < 0.01).

edge are crucial to the performance of the model,
we only involve it as a baseline on the Wiz-
ard data. The model is implemented with the
code shared at https://github.com/bckim92/

sequential-knowledge-transformer.
Disentangled Response Decoder (DRD): a

model that tackles the low-resource challenge with
pre-training techniques (Zhao et al., 2020). We
choose the one in which all parameters are fine-
tuned with the full training data after pre-training
as the baseline, since such a configuration results in
state-of-the-art performance on Wizard, as reported
in (Zhao et al., 2020).

We name our model KnowledGPT. Besides
the baselines described above, the following pre-
trained models are also included in comparison in
order to have a thorough understanding towards
the proposed method: (1) GPT-2trunc. We con-
catenate a context and the associated knowledge as
a long document, and then truncate the document
to meet the length constraint of the GPT-2 model.
This is to check if the simple heuristics work for
the task. Note that in Wizard, we randomly mix the
ground-truth knowledge with others and repeat the
procedure 8 times. The means with standard devia-
tion (i.e., numbers in “( )”) are reported to remove
randomness; and (2) SKT+GPT-2. We feed the
candidate selected by SKT to GPT-2 for response
generation. This is to examine if we can simply re-
place the proposed knowledge selection module as
well as the learning approach with an off-the-shelf
knowledge selection model. Similar to SKT, the
comparison is only conducted on Wizard.

5.3 Implementation Details

In both Wizard and CMU DoG, we set the hid-
den size and the number of layers of the sequen-
tial knowledge selector as 256 and 1 respectively.
Tmax for D′ is set as 1 in Wizard, and 2 in
CMU DoG. We choose BERT (110M) and GPT-
2 (117M) as the pre-trained language models in
KnowledGPT, and implement the models with
the code in https://github.com/huggingface/

transformers. We employ greedy search in re-
sponse decoding. All models are learned with
Adam (Kingma and Ba, 2015) optimizer with
β1 = 0.9 and β2 = 0.999. In warming up, we de-
fine Sim(·, ·) as unigram F1, and optimize g(U,D)
and the GPT-2 model with the pseudo ground-truth
for 1000 steps with a batch size of 64. In joint
optimization, the batch size is set as 128, and the
learning rates for g(U,D) and GPT-2 are set as
5e− 6 and 5e− 5 respectively. The learning rate
will be halved if there is no improvement in terms
of PPL on the validation sets. The parameter p of
the Bernoulli distribution in the curriculum step
is initially set as 1.0 and anneals with a rate of
1e− 5. Early stopping on validation is adopted as
a regularization strategy.

5.4 Evaluation Results

Table 2 and Table 3 report evaluation results on
Wizard and CMU DoG respectively. KnowledGPT
achieves new state-of-the-art on most metrics in
both datasets, which demonstrates the effective-
ness of large-scale pre-trained language models on
the task of knowledge-grounded dialogue genera-
tion. GPT-2trunc is worse than KnowledGPT, due
to (1) knowledge loss: we find that in 53% test
examples (Test Seen+Test Unseen), the ground-
truth knowledge is cut. In this case, GPT-2trunc
only relies on the context, the related knowledge
in other candidates (thanks to the one-to-many re-
lations between a context and knowledge), and the
knowledge packed in the parameters of GPT-2 for
responding, which explains the comparable per-

https://github.com/bckim92/sequential-knowledge-transformer
https://github.com/bckim92/sequential-knowledge-transformer
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Models
Wizard

CMU DoG
Test Seen Test Unseen

Fluency
Context

Coherence
Knowledge
Relevance

Kappa Fluency
Context

Coherence
Knowledge
Relevance

Kappa Fluency
Context

Coherence
Knowledge
Relevance

Kappa

DRD 1.71 1.50 1.26 0.67 1.64 1.44 1.18 0.69 1.58 1.48 1.07 0.60
GPT-2trunc 1.86 1.54 1.22 0.71 1.84 1.47 1.20 0.59 1.83 1.58 1.06 0.64
KnowledGPT 1.89 1.67 1.71 0.70 1.88 1.60 1.68 0.73 1.83 1.65 1.50 0.77

Table 4: Human evaluation results on Wizard and CMU DoG.

Models
Wizard

CMU DoG
Test Seen Test Unseen

PPL F1 Average Extrema Greedy PPL F1 Average Extrema Greedy PPL F1 Average Extrema Greedy
KnowledGPT 19.2 22.0 0.872 0.463 0.682 22.3 20.5 0.870 0.452 0.674 20.6 13.5 0.837 0.437 0.654
-pseudo 22.3 18.3 0.857 0.436 0.662 24.1 17.9 0.854 0.430 0.655 23.2 12.9 0.815 0.440 0.639
-joint 20.0 20.4 0.863 0.457 0.675 21.8 19.5 0.861 0.451 0.669 22.6 11.7 0.806 0.438 0.635
-curriculum 19.4 21.2 0.867 0.457 0.677 21.5 20.3 0.866 0.451 0.672 21.9 12.4 0.816 0.443 0.644
-reinforcement 19.4 21.3 0.866 0.459 0.677 21.9 20.2 0.863 0.449 0.670 20.3 12.6 0.817 0.437 0.643

Table 5: Ablation study on Wizard and CMU DoG

formance with SKT and DRD; and (2) noisy in-
put: even though the ground-truth knowledge is
kept, the redundant and irrelevant information in
the knowledge candidates are still harmful. Ev-
idence is that GPT-2trunc is worse than Knowl-
edGPT on CMU DoG even though we do not cut
anything on the knowledge (the maximum length
of the knowledge input is 502, and thus is within
the constraint of GPT-2). KnowledGPT also outper-
forms SKT+GPT-2 on Wizard, because (1) Knowl-
edGPT is more accurate than SKT on knowledge
selection, even though it does not leverage any hu-
man annotations in learning. In fact, the accuracy
scores of knowledge selection for SKT are 26.8 and
18.3 on Test Seen and Test Unseen respectively,
while the two numbers are 28.0 and 25.4 respec-
tively for KnowledGPT; and (2) in KnowledGPT,
knowledge selection and response generation are
jointly optimized.

Table 4 shows human evaluation results. While
the three models are comparable on fluency, Knowl-
edGPT is superior to the others on both context
coherence and knowledge relevance, which is con-
sistent with the results on automatic metrics. All
kappa values are no less than 0.6, indicating sub-
stantial agreement among the annotators. We
present a case study in supplementary material.

5.5 Discussions

Ablation study. To understand the impact of the
learning strategies on model performance, we com-
pare the full KnowledGPT with the following vari-
ants: (1) -pseudo: the warming up stage is removed;
(2) -joint: the joint optimization stage is removed;
(3) -reinforcement: g(U,D) is fixed after it is op-
timized with MLE on DK ; and (4) -curriculum:

Models
Wizard

CMU DoG
Test Seen Test Unseen

PPL F1 PPL F1 PPL F1
Tmax=1 19.2 22.0 22.3 20.5 20.6 12.6
Tmax=2 18.2 21.3 21.0 20.3 20.6 13.5
Tmax=3 17.2 21.1 20.2 20.3 19.7 11.2

Table 6: Performance of KnowledGPT under different
Tmaxs.

GPT-2 is fixed after it is optimized with MLE on
DG. Table 5 reports the evaluation results. We can
conclude that (1) the pseudo ground-truth plays a
crucial role in Wizard, as removing the step causes
dramatic performance drop. This is because in Wiz-
ard, there is a strong correlation between the knowl-
edge and human responses. The results indicate
that though the pseudo ground-truth is constructed
with heuristics, it still contains valuable informa-
tion and thus allows the following joint optimiza-
tion to start from a good point. On the other hand,
in CMU DoG, the crowd-workers do not refer to
the external knowledge as much as those work-
ers do in Wizard when they form the responses;
(2) the reinforcement step and curriculum step are
useful because the reinforcement step allows the
knowledge selection module to make better use of
GPT-2’s feedback, and through the curriculum step
GPT-2 can take advantage of the output of knowl-
edge selection module progressively; (3) joint op-
timization is meaningful, as removing this stage
results in performance drop.

Impact of Tmax (i.e., the upper bound in
knowledge selection). Besides the learning strate-
gies, we are also curious about how Tmax, as part
of the termination criterion in knowledge selection
described at the end of Section 4.2, influences the
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performance of KnowledGPT. To this end, we vary
the value of Tmax in {1, 2, 3} and report the evalua-
tion results in Table 6. The larger Tmax is, the more
chances KnowledGPT has to involve the ground-
truth candidate into generation, and the lower PPL
is. This also explains why the PPL of GPT-2trunc
is lower than that of KnowledGPT in Table 2 and
Table 3. On the other hand, a larger Tmax also
means more noise in generation. That is why when
Tmax exceeds a value, F1 begins to drop.

6 Conclusions

We apply large-scaled pre-trained language mod-
els to the task of knowledge-grounded dialogue
generation. To this end, we devise a knowledge
selection module, and propose an unsupervised ap-
proach to jointly optimizing knowledge selection
and response generation. Evaluation results on two
benchmarks indicate that our model can signifi-
cantly outperform state-of-the-art methods.
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A Details of Datasets

Table 7 reports the statistics of the Wizard data and
the CMU DoG data.

Wizard of Wikipedia CMU DoG
Train Valid Test Seen Test Unseen Train Valid Test

# Utterances 166,787 17,715 8,715 8,782 74,717 4,993 13,646
# Conversations 18,430 1,948 965 968 3,373 229 619
# Topics/Documents 1,247 599 533 58 30 30 30
Avg. # of Turns 9.0 9.1 9.0 9.1 22.2 21.8 22.0

Table 7: Statistics of the two datasets.

B Comparison with DialoGPT

We compare KnowledGPT and with DialoGPT in
order to learn if a pre-trained generation model
with state-of-the-art performance on open domain
dialogues is already good enough when it is fine-
tuned with knowledge-grounded dialogues. We
discard the associated knowledge and fine-tune
DialoGPT on the knowledge-grounded dialogues.
We choose the model trained from OpenAI GPT-2
with 345M parameters, as it shows the best perfor-
mance in the evaluation in the original paper. The
model is implemented based on the code shared at
https://github.com/microsoft/DialoGPT.

Table 8 shows the results, indicating that exter-
nal knowledge is necessary even though one has
exploited a powerful pre-trained language model
for dialogue generation. In CMU DoG the gap
between DialoGPT and KnowledGPT is narrowed
because about 35% of the conversation has a weak
correlation with the document (e.g. BLEU < 0.1).

Models
Wizard

CMU DoG
Test Seen Test Unseen

PPL F1 PPL F1 PPL F1
DialoGPT 16.0 17.9 20.0 16.8 16.9 12.3
KnowledGPT 19.2 22.0 22.3 20.5 20.6 13.5

Table 8: Comparison with DialoGPT on Wizard and
CMU DoG

C Impact of Maximum Tokens of GPT-2

To further justify our claims on why GPT-2trunc
is worse than KnowledGPT, we keep the ground-
truth knowledge in the input sequence of GPT-2
and gradually increase the constraint of the maxi-
mum number of tokens on Wizard. As the maxi-
mum token limit increases, more irrelevant knowl-
edge is introduced. Note that in practice, one has
no way to perfectly locate the ground-truth, and
this experiment is only to provide more insights
to GPT-2trunc. Table 9 shows the performance
of GPT-2trunc with the increase of the maximum

Maximum Tokens
Test Seen Test Unseen Ground-truth

PercentagePPL F1 PPL F1
128 10.8 30.9 11.6 30.4 62.3%
256 9.3 25.6 10.0 24.6 20.3%
512 9.7 21.8 10.5 21.2 8.5%
768 10.1 20.6 10.7 20.2 5.5%
1024 10.7 19.7 11.3 19.4 4.1%

Table 9: Performance of GPT-2trunc under differ-
ent maximum tokens with ground-truth knowledge in-
volved.

Models
Wizard of Wikipedia

CMUDoG
Test Seen Test Unseen

PPL F1 PPL F1 PPL F1
KnowledGPT (117M) 19.2 22.0 22.3 20.5 20.6 13.5
KnowledGPT (345M) 16.1 22.0 17.9 20.6 18.1 13.4

Table 10: Performance of KnowledGPT under different
sizes of GPT-2.

number of tokens where Ground-truth Percentage
indicates the percentage of ground-truth in the in-
put knowledge. First, when the ground-truth is
forced to be kept, GPT-2trunc is always better than
the one where the ground-truth is randomly mixed
with other candidates and bears the risk to be cut.
This echoes our claim that knowledge loss is one
of the reasons for the poor performance of GPT-
2trunc used with the practical setting. Second, even
if ground-truth is retained, once more noise is intro-
duced, the performance of GPT-2trunc will become
worse. When the length is limited to 128 tokens,
the PPL of the model is not good, mainly because
under this limitation, the input sequence of some
cases only contains the dialogue context and re-
sponse.

D Impact of the Size of GPT-2

We further check if the performance of Knowl-
edGPT can be further improved when the GPT-2
model is replaced with a larger one. Table 10 shows
the results. Though GPT-2 (345M) can further re-
duce PPL, it does not bring significant improve-
ment to F1 over GPT-2 (117M), probably because
the larger model can not provide more accurate
feedback to the knowledge selection module in
learning. Therefore, to balance efficacy and cost,
GPT-2 (117M) is still favored in practice.

E Case Study

Table 11 and Table 12 show the examples from Test
Seen and Test Unseen of Wizard, each example
contains the dialogue context and the background
knowledge which is retrieved from Wikipedia given

https://github.com/microsoft/DialoGPT
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the last two turns of dialogue and the original topic.
We can see that KnowledGPT can locate the knowl-
edge more accurately due to its knowledge selec-
tion module and reinforcement learning, and make
better use of the associated knowledge with the
help of curriculum learning.
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Knowledge (Topic: Cinematography)
...
Cinematography (also called ”direction of photography”) is the science or art of motion-picture photography by recording light or other electromagnetic radiation, either electronically by
means of an image sensor, or chemically by means of a light-sensitive material such as film stock.
Typically, a lens is used to repeatedly focus the light reflected from objects into real images on the light-sensitive surface inside a camera during a questioned exposure, creating multiple
images.
With an electronic image sensor, this produces an electrical charge at each pixel, which is electronically processed and stored in a video file for subsequent display or processing.
The result with photographic emulsion is a series of invisible latent images on the film stock, which are later chemically ”developed” into a visible image.
The images on the film stock are played back at a rapid speed and projected onto a screen, creating the illusion of motion.
Cinematography finds uses in many fields of science and business as well as for entertainment purposes and mass communication.
The word ”cinematography” was created from the greek words (”kinema”), meaning ”movement, motion” and (”graphein”) meaning ”to record”, together meaning ”recording motion.”
...

Context
B Thinking about taking a class on cinematography, the direction of photography .
A I have always wanted to learn that .
B Me too, I have learned its the science and or art of recording motion picture photography .
A That is cool. did you enjoy it .

Response
TMN I think it is a great idea . It is a science fiction film that combines computer and computer science .
ITDD I did . It was developed in the late 19th century .
SKT Yes , I did . I loved it . It was used to focus the light reflected from objects into real images .
DRD I did enjoy it . It is also called “ direction of photography ” .

SKT+GPT-2 I did! I love how it’s so easy to focus light reflected from objects into real images on the light-sensitive surface inside a camera.
GPT-2trunc Yes, I did, I love the fact that it is the science and art of recording motion picture photography

KnowledGPT Yes, I did, I love cinematography, its used in many fields of science and business as well as for entertainment purposes and mass communication
Human Yes and cinematography skills can also be used in mass marketing and other fields as well

Table 11: A case from Test Seen of Wizard of Wikipedia

Knowledge(Topic: Green)
...
Green is the color between blue and yellow on the visible spectrum.
It is evoked by light which has a dominant wavelength of roughly 495570 nm.
In subtractive color systems, used in painting and color printing, it is created by a combination of yellow and blue, or yellow and cyan; in the rgb color model, used on television and
computer screens, it is one of the additive primary colors, along with red and blue, which are mixed in different combinations to create all other colors.
By far the largest contributor to green in nature is chlorophyll, the chemical by which plants photosynthesize and convert sunlight into chemical energy.
Many creatures have adapted to their green environments by taking on a green hue themselves as camouflage.
Several minerals have a green color, including the emerald, which is colored green by its chromium content.
In the middle ages and renaissance, green was the color commonly associated with merchants, bankers and the gentry, while red was reserved for the nobility.
For this reason, the costume of the ”mona lisa” by leonardo da vinci and the benches in the british house of commons are green while those in the house of lords are red.
It also has a long historical tradition as the color of ireland and of gaelic culture.
...

Context
B Green is my favorite color. Many minerals are a green color, including emeralds. I like emeralds too!
A I like green too. My eyes are green.
B So are mine! In gaelic cultures green is very popular, with a long historical tradition. It is known as the color of ireland.
A Yes I do know it is a very popular color in ireland.

Response
TMN I think it ’ s a very interesting subject . It ’ s a culture of culture.
ITDD Yes , it is one of the primary colors .
SKT It is a popular color in the us
DRD It is common in nature , especially in plants .

SKT+GPT-2 Yes, it is very popular in gaelic culture.
GPT-2trunc It is! It is also the second largest island in the british isles.

KnowledGPT Yes, it is! In the middle ages and renaissance, green was the color commonly associated with merchants, bankers and the gentry.
Human Back in the middle ages green was often associated with merchants and bankers. Red was nobility’s color of choice.

Table 12: A case from Test Uneen of Wizard of Wikipedia


