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Abstract

Natural Language Processing (NLP) tasks are
usually performed word by word on textual
inputs. We can use arbitrary symbols to rep-
resent the linguistic meaning of a word and
use these symbols as inputs. As “alterna-
tives” to a text representation, we introduce
Soundex, MetaPhone, NYSIIS, logogram to
NLP, and develop fixed-output-length coding
and its extension using Huffman coding. Each
of those codings combines different charac-
ter/digital sequences and constructs a new vo-
cabulary based on codewords. We find that the
integration of those codewords with text pro-
vides more reliable inputs to Neural-Network-
based NLP systems through redundancy than
text-alone inputs. Experiments demonstrate
that our approach outperforms the state-of-
the-art models on the application of machine
translation, language modeling, and part-of-
speech tagging. The source code is available
at https://github.com/abdulrafae/coding nmt.

1 Introduction

We introduce novel coding schemes on the inputs
of Neural-Network-based Natural Language Pro-
cessing (NN-NLP) that significantly boost the accu-
racy in three applications. The inputs of NN-NLP
rely on observable forms of mental representations
of linguistic expressions, and allow alternative de-
signs. For example, both logographic kanji and
syllabic kana represent Japanese words, and emoti-
cons and emojis can express sentiments. These
showcase that alternative human language repre-
sentation than text is possible and highlight a com-
mon belief of most linguists: the relationship be-
tween the mental representations and their phono-
logical forms is highly arbitrary, even though a
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non-arbitrary (de Saussure, 1916) mapping exists
for some special cases, e.g., the bouba/kiki effect.

In our work, we ask – Are there alternative forms
of mental representation in addition to text as we
see in Japanese and Internet language to help lan-
guage understanding in NN-NLP?

To answer this question, we blend concepts from
linguistic phonetics, grammatology, and the statis-
tics of Zipf law to find alternative language repre-
sentations to text. More precisely, we code a textual
word either naturally or artificially by exploring dif-
ferent facets of human languages, from phonetic
and logogram codings to new coding constructions
generalizable to all languages. Natural codings in-
spire the finding of artificial codings, which in turn
helps us understand and explain natural codings.

All of our codings reinforce NLP inputs by re-
constructing the character/symbol sequence of a
word in various ways with a new alphabet. These
variants and their “decomposition” are expressive
because they contain insightful information about
linguistic patterns in units smaller than words and
even smaller than characters. For example, in
the logogram Wubi (that lists in a coded form
the strokes caligraphing a Chinese character), “众”
(crowd) is coded as “www”, which is made of three
“人” (person, “w”), and “从” (follow, “ww”) is a
composition of two “人”. A representation con-
taining such granular details potentially reveals the
semantic structure and linguistic meanings inside
a word, thus enriching text and allowing a redun-
dancy that ensures more reliable NLP inputs.

Now that we have put our previous question in
context let us give an overview of how we incor-
porate coding schemes into an NLP framework in
Figure 1. For an input sentence, we apply an al-
ternative coding scheme word by word, then use
Byte-Pair-Encoding (BPE) to recombine these sym-
bols (to shorten the input lengths), and finally per-
form embeddings (EMD). In contrast to word em-
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Figure 1: Workflow on how to apply discrete coding
in NN-NLP by decomposing (phonetic, logogram, fix-
output-length, or Huffman coding) and recombining
(BPE) words.

beddings that map words to real number vectors,
our coding range is discrete. The coded sentence
and its original textual input are then combined in
three ways: concatenation, linear-interpolation at
the encoder level, and multi-source encoding with
or without Bi-LSTM, attention, and multi-head at-
tention. The combined input is fed into NN-NLP
models as a black-box to decode outputs. Our ap-
proach is language-, task-, and system-independent
and does not use any additional information besides
our algorithms.

We conduct experiments on three NLP applica-
tions and five languages, including (1) Machine
Translation (MT) on English-German, German-
English, English-French, French-English, and
Chinese-English; (2) Language Modeling (LM)
on English; and (3) Part-of-Speech (POS) Tagging
on English. Our approach significantly and consis-
tently improves over state-of-the-art neural models:
Transformer, ConvS2S, XLM, and Bi-LSTM with
attention mechanisms.

In summary, our contribution mainly lies in the
three consecutive folds:

1. Phonetic, logogram, and artificial codings.
We introduce a variety of language repre-
sentations by coding words through various
schemes of Soundex, NYSIIS, Metaphone,
Pinyin, Wubi, fixed-output-length, and Huff-
man codings, and propose different ways to
incorporate them in NLP models. （§2)

2. Synergistic coding. We introduce effec-
tive ways of combining the textual inputs
and their codewords with the state-of-the-art
neural network architectures: concatenation,
linear-interpolated encoder, and multi-source
encoding with or without Bi-LSTM, attention,

and multi-head attention. (§3)

3. NLP Applications. Our method is generaliz-
able to different languages and can be applied
to any NN-NLP system. Experiments demon-
strate that our methods improve over the state-
of-the-art models (Transformer, XLM, and
ConvS2S) on various tasks in applications in-
cluding machine translation, language model-
ing, and part-of-speech tagging. (§4)

2 Coding Words

We view each coding as a function γ that maps
a textual word from x ∈ V, a natural language
vocabulary, into a codeword γ(x) ∈ V , a codeword
vocabulary:

γ : V→ V (1)

For simplicity of exposition we will consider V to
be the image of V under γ. Each codeword γ(x) is
a non-empty σ-string over the alphabet Σ of this
coding: γ(x) = σ1, σ2, σ3 · · ·σL with code length
L. Σ+ is an infinite set of all possible non-empty
strings over Σ, and V ⊆ Σ+.

As an example (albeit one which is practi-
cally not useful) consider the mapping of four
English words to three binary codewords: V =
{“to”, “be”, “or”, “not”}, Σ = {0, 1}, Σ+ =
{0, 1, 00, 01, 10, 11, · · ·}, V = {00, 01, 11}, L =
2, γ(“to”) = 00, γ(“be”) = 01, γ(“or”) =
11, γ(“not”) = 01, |V| = 4, and |V| = 3.

To instantiate this function, we start by introduc-
ing several existing linguistically-motivated coding
schemes (and later on we will extend this to new
coding schemes we develop): the phonetic and lo-
gogram coding as surjective functions, where in
particular |V| ≥ |V|; and the fixed-output-length
and Huffman coding as bijections, where |V| = |V|.
In traditional coding theory, a compression code
has to be injective in order to be uniquely decod-
able. In our work, we only care about the task-
specific prediction and not in decoding the orig-
inal message. Therefore, we relax the injective
restriction on the codings to deviate a little from
the standard typical coding theory applications for
technical convenience.

Throughout this paper, we choose to name the
function γ as “coding” (although sometimes it is
also called “encoding”) to distinguish from the en-
coder in the NN-NLP models. An overview of our
coding schemes is illustrated in Figure 2.
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Figure 2: Examples on different coding schemes. In
contrast to Pinyin only applies to Chinese, the lo-
gogram coding Wubi and its variant apply to Japanese
Kanji and Chinese. Furthermore, phonetic codings, in-
cluding MetaPhone, Soundex, and NYSIIS, cover most
western languages. Finally, the artificial codings, i.e.,
the fixed-output-length and Huffman coding, can be ap-
plied to any language. Phonetic and logogram codings
are many-to-one mappings, while fixed-output-length
and Huffman coding are one-to-one mappings.

2.1 Phonetic Coding

We introduce three phonetic codings: Soundex,
NYSIIS, MetaPhone (and Pinyin just for compar-
ison). A phonetic algorithm (coding) is an algo-
rithm to index words by their pronunciation and
produce the corresponding phonetic-phonological
representations so that expressions, or sentences
can be pronounced by the speaker. The phonetic
form takes surface structure as its inputs and out-
puts an audible, pronounced sentence. Below are
the detail of each phonetic coding listed:

Soundex is a widely known phonetic algorithm
for indexing names by sound and avoids mis-
spelling and alternative spelling problems. It maps
homophones to the same representation despite
minor differences in spelling (Russel, 1918). Con-
tinental European family names share the 26 letters
(A to Z) in English.

NYSIIS (the New York State Identification and
Intelligence System Phonetic Code) is a phonetic
algorithm devised in 1970 (Rajkovic and Jankovic,
2007). It takes special care to handle phonemes
that occur in European and Hispanic surnames by
adding rules to Soundex.

Metaphone is another algorithm (Philips, 1990)
that improves on earlier systems such as Soundex
and NYSIIS. The Metaphone algorithm is signif-
icantly more complicated than previous ones be-
cause it includes special rules for handling spelling
inconsistencies and for looking at combinations of
consonants in addition to some vowels.

Hanyu Pinyin (or Pinyin for short) is the official
romanization system for Standard Chinese in main-
land China. Pinyin, which means “spelled sound”,
was originally developed to teach Mandarin. One
Pinyin corresponds to multiple Chinese characters.
One Chinese word is usually composed of one or
more Chinese characters.

2.2 Logogram Coding

A logogram or logograph is a written character that
represents a word or phrase. We introduce to use
Wubi for Chinese characters.

Wubi Wubizixing (or Wubi for short) is a Chi-
nese character input method primarily used to input
Chinese text with a keyboard efficiently. It de-
composes a character based on its structure rather
than its pronunciation. It is named after the rule
that every character can be written with at most
4 keystrokes including -, |,丿, hook, and丶 with
various combinations.

2.3 Zipf Law-Motivated Artificial Coding

Zipf (1935) made a key observation of human lexi-
cal systems: more frequent words tend to be shorter.
This feature enables speakers to minimize articula-
tory effort by shortening the averaged word length
in use. Modern work confirms Zipf’s original ob-
servation with new refinements in illustrating key
factors revealed by word frequency. In this work,
we introduce artificial coding by diversifying word
length to two extremes: (1) optimizing the aver-
aged length to make it the shortest and (2) fixing
the length of every word to make them equal. The
method of fixing the output codeword lengths with-
out optimization brings more diversity to the stan-
dard textual representations.

Fixed-Output-Length Coding Given a vocabu-
lary V of size |V| in any language, we convert each
word in the vocabulary into a codeword, which
is a sequence of symbols. All unique symbols
make up the alphabet. The alphabet size is the base
b, a parameter controlling the code length. Each
word is mapped to a sequence of L symbols, where
L = dlog

|V|
b e. If b = 2 an example of a codeword

is “01011”, whereas for b = 3 another example is
“0201”.

The mapping (conversion) from a word in the
textual form into a codeword follows Algorithm 1.
Firstly, we generate all possible codewords of
length L. The new codeword alphabet Σ can be a
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Algorithm 1 Fixed-Output-Length Coding
Input: A word sequence
Parameter: base b
Output: A code sequence

1: L = dlog
|V|
b e where |V| is the vocabulary size

of the input word sequences, L is the code
length, and b is the parameter of the alphabet
size.

2: Generate all possible L-long code.
3: Shuffle the vocabulary words and assign one-

to-one mapping between each word and the
code.

4: for word in vocabulary do
5: Output its mapped code
6: end for
7: return

subset of the Latin alphabets (if b ≤ 26) or that of
decimal numbers (if b ≤ 10), for instance. Then,
we uniform randomly assign each word x in the vo-
cabulary V to a unique codeword γ(x) with length
L. This assignment is a one-to-one random map-
ping. A random function is completely irrelevant
to noisy inputs.1 Each word (in the text form) in
a sentence will be replaced by its codeword. The
coding of a word never changes regardless of the
number of times it occurs in the NLP system.

Huffman Coding We consider Huffman cod-
ing (Huffman, 1952), a length-wise optimal prefix
code with variable lengths, by applying Huffman
coding on the fixed-output-length coding of the text
input with its parameter base b. The fixed-output-
length coding is random and should be incompress-
ible with significant probability. Therefore, the
Huffman coding does not significantly improve
the fixed-output-length coding with respect to the
machine translation accuracy, because it saves (at
best) an additive constant. Algorithm 2 shows the
conversion of Huffman codes.

1A random mapping does not mean that every time we
see a word we output a random value. It means that the
mapping as a whole is chosen at random. Here is an example
on their difference: if we want to assign a random bit string
of length 2 to the word “hello” then in an article, the first
time we see “hello” we may output 01 the second time 11
and so on. However, if instead of assigning i.i.d. random
values we choose a random mapping γ, then the first time we
evaluate “hello” with γ(“hello”)= 01, we will get a uniformly
random value 01, but in every subsequent time in the article
we evaluate the same word “hello” and get the same 01 value
(the mapping γ is random, and is sampled at random but only
once throughout its lifetime).

Algorithm 2 Huffman Coding
Input: A word sequence
Parameter: base b
Output: A code sequence

1: Create huffman tree on the word sequence hav-
ing b children at each level

2: Shuffle the vocabulary words and assign one-
to-one mapping between each word and the
code.

3: for word in vocabulary do
4: Output its mapped code
5: end for
6: return

3 Coding Combination

Below, we will discuss how to incorporate various
types of codings in NLP tasks. Firstly, we code
each word independently. Then, the word embed-
ding (Mikolov et al., 2013) is trained on code- and
word-based sentences separately. After that, we
treat this new form of sentence representation and
its written text form as two source inputs to the
encoder and feed their combination into a baseline
NN-NLP system. Thus, our coding is realized as
a portable module that provides inputs to any NN
architecture. We introduce three different combi-
nation methods to implement the interface of our
coding module to various NN architectures.

We implement the combination of the text and
the code forms in three ways: (1) concatenation
(see Figure 3a); (2) linear interpolation (see Fig-
ure 3b), where the dark color boxes have the op-
eration of “+”; (3) multi-source encoding on Bi-
LSTM (see Figure 3b), as well as on Transformer
(see Figure 3c). It is worth noting that there is no
additional data or information needed except for
our coding algorithms themselves.

3.1 Concatenation

Applying a coding function in Equation 1 on each
word x1, x2, x3, · · · , xi, · · · , xI′ in an input sen-
tence one-by-one generates a sequence of code-
words γ(x1), γ(x2), γ(x3), · · · , γ(xi), · · · , γ(xI′)
in the same length I ′. Note that we use the term
“word” loosely here, which can mean a word or a
subword, or even a character.

The first combination method is concatenating
two input sources. We apply the Byte-Pair-
Encoding (Sennrich et al., 2015) (BPE) and
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Figure 3: Combination methods for different NN architectures: (a) concatenation for ConvS2S and XLM; (b) linear
interpolation and multi-source encoding for Bi-LSTM with attention; (c) multi-source encoding for Transformer.

word embeddings implemented by Řehůřek
and Sojka (2010) on each word ε(x) and its
codeword εγ(γ(x)). We separately train word
embedding on code- and textual sentences.
Thus, εγ(·) and ε(·) are different functions.
As shown in Figure 3a, the input to the NLP
system is the embedded words of a sentence,
ε̃(x1), ε̃(x2), ε̃(x3), · · · , ε̃(xi), · · · , ε̃(xI), where
ε̃(xi) is the concatenation of the embedded word
ε(xi) and its codeword εγ(γ(xi)):

ε̃(xi) = [ε(xi); εγ(γ(xi))] (2)

3.2 Linear Combination

The concatenation method merges two input
sources and train one encoder for both. How-
ever, it may be beneficial to have textual and
codeword embeddings and encoders trained sep-
arately, because they have different vocabularies.
Then, those two encoders are combined linearly,
a widely applied model combination technique.
The input to the linear combiner is the encoded
sentence, represented by a sequence of hidden
states h̃1(ε(xI)), · · · , h̃j(ε(xI)), · · · , h̃J(ε(xI)) of
the last position I in each of the encoder layer
j ∈ [1, 2, · · · , J ]. J is the number of nodes at each
decoder layer. Recall that each hidden state is a

real vector Rd, and that is why we can use the vec-
tor space operations such as addition on it. For
convenience, we denote the last hidden state of the
j-th encoder layer that we take as the input to the
decoder, h̃j(ε(xI)), by h̃jI , the last hidden state of
the j-th encoder layer of the original textual sen-
tence hj(ε(xI)) by hjI , and the last hidden state of
the j-th encoder layer of the code-based sentence
hj(εγ(γ(xI))) by hγ

j
I . The combined encoder hid-

den state h̃j is a linear interpolation of the hidden
states of the textural input and its codeword input:

h̃j = (1− α)hjI + αhγ
j
I (3)

As shown in Figure (3b), the combined last hid-
den state in each layer is fed into the baseline de-
coder. The black blocks contains only the operator
of +, as shown in the gray ellipse. α is the encoder
weight of the coded sentence, and here, α = 0.5.

3.3 Multi-Source Encoding.

In the linear combination method, the weight α
is shared among all states in one encoder. To al-
low different weights for each state, we implement
variations of multi-source encoding by Zoph and
Knight (2016) for the POS tagging model (Joshi,
2018) (see Figure 3b). The combined hidden state
h̃j in a layer j is a non-linear transformation of the



1355

concatenation of word-based and code-based hid-
den states of the last position I in layer j multiplied
by the weight Wc

h̃j = tanh(Wc[h
j
I ;hγ

j
I ]). (4)

Bi-LSTM In Bi-LSTM decoder, the cell state c
of an encoder is a concatenation of the forward and
backward cell states. The combined cell state c̃
is the sum of the word-based c and code-based cγ
encoder’s cell states

c̃ = c+ cγ. (5)

Single-head Attention The attention model
looks at both word-based and code-based encoders
simultaneously. A context vector from each source
encoder ct and cγt is created instead of the just ct
in the single-source attention model. Hidden states
from the top decoder layer looks back at previous
hidden states ˜ht−1 and the context vectors of the
encoders:

h̃t = tanh(Wc[ ˜ht−1; ct; cγt]) (6)

Multi-head Attention Multi-head attention al-
lows the model to jointly attend to information
from different representation subspaces at differ-
ent positions. We apply the Fairseq (Ott et al.,
2019) implementation of Multilingual Translation
in Transformer (Vaswani et al., 2017) treating text
and codewords as two language inputs. The multi-
lingual transformer trains on two encoders in turn
iteratively. For example, in the first epoch it trains
the textual encoder then trains the codeword en-
coder; in the second epoch, it trains again the tex-
tual then the codeword encoder, and so on.

4 NLP Applications

4.1 Combination Methods

NMT We improve over two state-of-the-art Neu-
ral Machine Translation (NMT) baselines: the
Convolutional Sequence to Sequence Learning
(ConvS2S) by Gehring et al. (2017) and the Trans-
former by Vaswani et al. (2017). On ConvS2S, we
concatenate (+) the input sentence with its coded
sentence using the method in § 3.1 illustrated in
Figure 3a. On the Transformer baseline, we com-
bine the input sentence with the encoded sentence
using “multi-head attention” as described in § 3.3
and illustrated in Figure 3c.

LM For Neural Language Modeling, we treat the
text sentence as one language and the coded sen-
tence as another language and combine them with
the cross-lingual Language model (XLM; Lample
and Conneau, 2019) using the toolkit introduced
in Ott et al. (2019). The combination method is in
§ 3.1 and Figure 3a.

POS tagging We implement linear combination
illustrated in Figure 3b (with the gray area) and non-
linear multi-encoders that are described in Equa-
tions (4) to (6) and Figure 3b (without the gray
area). The input to the multi-encoder is the text
and coded sentences, and its output is directly fed
into the POS tagger. For the linear combined en-
coder, we element-wise linearly interpolate the text
encoding vector and the code coding vector, each
trained separately. For example, the subscript “0.5”
indicates an interpolation with equal weights.

4.2 Application 1: Machine Translation
Tasks and Languages. We verify our ap-
proaches on three MT tasks (datasets):
WMT’14 (WMT, 2014), WMT’18 (WMT,
2018), and IWSLT’17 (IWSLT, 2017)). We carry
out experiments for different translation directions:
English to French (EN-FR), French to English
(FR-EN), English to German (EN-DE), German
to English (DE-EN), and Chinese to English
(ZH-EN).

EN DE EN FR
Raw Sents. 4.59 2.81

Pre-processed Sents. 4.03 2.48
Before BPE R.W. 102 98 67 58
After BPE R.W. 54 56 68 60

Table 1: Number of Sentences (Sents.) and Running Word
(R.W.) as well as Vocabulary size (Voc.) [M] of WMT’14
News (EN-DE) and WMT’18 Bio (EN-FR)

Before BPE After BPE
Task WMT’14 WMT’18 WMT’14 WMT’18
Coding EN DE FR EN EN DE FR EN
Baseline 711 1500 366 338 33 35 29 24
+Soundex 717 1500 - - 33 33 - -
+Metaphone 904 1500 480 338 34 30 30 21
+NYSIIS 981 1500 523 338 34 30 30 20
+EL9 1400 1500 732 338 34 25 30 18
+Huffman9 1400 1500 732 338 34 25 30 16

Table 2: Vocabulary size [K] of WMT’14 News (EN-DE) and
WMT’18 Bio (EN-FR) before and after applying BPE with
different codings.

WMT’14 and WMT’18 We conduct experi-
ments on WMT’14 News English-German dataset,
which contains around 4.6 million sentences be-
fore pre-processing. We also conduct experiments
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Figure 4: Translation results in BLEU[%] on WMT’14
News and WMT’18 Bio task. BPE operations: 32k.
Baseline is (Gehring et al., 2017) on words. In this pa-
per, we denote baselines for all experiments on all tasks
with their names, referring to standard textual word in-
puts. Systems by adding the codeword inputs on base-
lines are denoted as “+..”.

on English-French dataset forn WMT’18 Biomed-
ical Task that contains around 2.8 million sen-
tences. Table 1 shows vocabulary statistics on the
source/target of the training data before and after
applying codings. We use Moses tokenizer and
restrict 250 characters per sentence and 1.5 length
ratio between source and target sentences as a filter
in pre-processing. The Byte-pair encoding model
is jointly trained on the source textual word inputs,
codeword inputs, and target outputs for French
and German systems, and separately trained on
the source and target for Chinese systems. We
applied concatenation for ConvS2S baselines and
multi-source encoding for transformer baselines in
all tasks, respectively. For ConvS2S we set the em-
bedding dimension as 512, the learning rate as 0.25,
the gradient clipping as 0.1, the dropout ratio as 0.2,
and the optimizer as NAG. For transformer, we set
the embedding dimension as 512, the learning rate
as 0.0005, the minimum learning rate as 10−9, the
warmup learning rate as 10−7, the optimizer batas
as 0.9 and 0.98 for adam optimizer, the dropout
ratio as 0.3, the weight decay as 0.0001, the shared
decoders and shared decoder embedding as true.
The training is terminated until the validation loss
does not decrease for five consecutive epochs. We
compute the BLEU score using sacrebleu.

As shown in Figure 4, on WMT’18 we achieve
an improvement of +0.7 BLEU points for English-
German and +0.8 BLEU points for French-English,
respectively. Some phonetic coding may be more
suitable for certain languages than others. Meta-
phone works best for English because it handles
spelling variations and inconsistencies. According
to its orthography, the German spelling is largely

phonetic (unlike English spelling), thus adding pho-
netics does not help much in DE-EN NMT.

Figure 5: Translation results in BLEU[%] on small task
IWSLT’17. FR-EN & EN-FR. BPE: 16k. Baseline is
(Vaswani et al., 2017) on words. Dev: test2013-2015;
Test: test2017.

Figure 6: Translation results in BLEU[%] on small task
IWSLT’17. ZH-EN. BPE: 16k. Baselines are (Gehring
et al., 2017; Vaswani et al., 2017) on words. Dev:
test2010-2015; Test: test2017.

Figure 7: Translation results in BLEU[%] on small task
IWSLT’17. DE-EN, EN-DE. BPE: 16k. Baselines are
(Gehring et al., 2017) on words. Dev: test2010-2015;
Test: test2017.

IWSLT In IWSLT’17 task, we achieved +5.2
BLEU point on EN-FR and +1.9 BLEU point on
FR-EN. We also add Pinyin for Chinese-English
translation on IWSLT’17 (IWSLT, 2017) as a sup-
plementary experiment. Adding Wubi also en-
hances the baseline performance. On the Trans-
former baseline, we use the codewords as the input
source test set during decoding. Note that all exper-
iments are conducted on the real datasets, without
using/verifying on any artificial noise anywhere.
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Model Complexity. We tune the dropout param-
eters for conducting the following experiments:
Words and W+Metaphone on IWSLT’17 EN-FR.
The drop out value is set by default to 0.2, and
the beam-size to 12. Figure 8 shows how transla-
tion accuracy changes by varying the dropout value.
The highest BLEU score is at a dropout of 0.2 for
the baseline and 0.2 and 0.3 in our approach. A
higher optimal value of dropout means fewer nodes
in the Neural Networks are needed to opt NMT
quality. This implies that adding auxiliary inputs
will reduce the model complexity.

Figure 8: Dropout optimum. x-axis: the dropout value.

Model parameter size. Table 3 shows the
change of the parameter size when applying our
approaches. Our parameters include weights and
biases of neural network models. The parameter
size reduces when we concatenate the original in-
puts with our codewords because the vocabulary
size reduces (although the BPE operations stay the
same as the baseline). The parameter size increases
when we use the multi-source encoding because
we added more encoder for the codeword input.

Baseline ConvS2S Transformer
WMT WMT IWSLT IWSLT

’14 ’18 ’17 ’17
SRC EN FR EN DE EN FR
TGT DE EN DE EN FR EN
Baseline 198 181 14 13 57 57
+Soundex 196 - 13 12 77 77
+NYSIIS 193 177 12 11 78 -
+Metaphone 193 178 12 11 77 77
+EL9 187 174 12 11 75 75
+Huffman9 187 173 12 11 75 75

Table 3: Number of model parameters [M] on WMT’14
News, WMT’18 Bio, and IWSLT’17 tasks. Baselines are
ConvS2S and Transformer on word input. Systems by adding
the codeword inputs on baselines are denoted as “+..”.

Training Speed. Table 5 shows the system train-
ing time (with BPE 32k operations). The total time
(in minutes) is listed in the first column, and the
number of epochs is in the second. Combining
codewords reduces the model complexity. There-
fore, the training becomes more efficient and needs

ZH-EN ZH-EN
ConvS2S 14 Transformer 59
+Pinyin 18 +Pinyin 78
+Wubi 18 +Wubi 78
+EL9 18 +EL9 77
+Huffman9 18 +Huffman9 77

Table 4: Number of model parameters [M] on IWSLT’17
Chinese-English task. Baselines are (Gehring et al., 2017)
and (Vaswani et al., 2017) on words. Systems by adding the
codeword inputs on baselines are denoted as “+..”.

a smaller number of epochs to converge. The total
training time of our approaches is comparable to
that of baselines, sometimes even less.

EN-DE FR-EN
ConvS2S 166/24 93/16
+Soundex 241/26 -
+NYSIIS 266/33 147/15
+Metaphone 233/21 143/15
+EL9 249/26 145/12
+Huffman9 245/25 151/15

Table 5: Training time (in minutes) per epoch/ epoch number.

Output example. Table 6 shows a translation ex-
ample. Combining phonetic coding helps to in-
clude more subwords that cannot be obtained from
text.

Source The firefighters were brilliant.
Reference Die Feuerwehrleute waren großartig.
ConvS2S Die Feuerwehr war brillant.

+MetaPhone Die Feuerwehrleute waren brilliant .

Table 6: An MT WMT’14 EN-DE output example: +Meta-
Phone coding generates new subwords “fire” and “fighter” that
improves the translation over the baseline ConvS2S.

4.3 Application 2: Language Modeling (LM)

Task and result. We train and evaluate the En-
glish part of EN-FR IWSLT’17 dataset and also
on English part of EN-DE WMT’14 News dataset.
We use 256 embedding dimensions, six layers, and
eight heads for efficiency. We set dropouts to 0.1,
the learning rate to 0.0001, and BPE operations to
32k. We used Adam optimizer with betas of 0.9
0.999. As shown in Table 7, adding Metaphone sig-
nificantly reduces PPL of the baseline system, i.e.,
20.1% relatively. “+NYSIIS WA” indicates the
system with NYSIIS but adding word alignments
between English and its coded form; see Table 7.

4.4 Application 3: POS Tagging

Task and result We evaluate our approach
in POS Tagging on Brown Corpus (Francis and
Kucera, 1979). Brown corpus is a well-known
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WMT’14 IWSLT’17
Dev Test Dev Test

XLM 1.17 1.18 28.04 26.07
+NYSIIS 1.17 1.18 24.00 22.64
+Metaphone 1.17 1.18 23.55 20.8 (-20.1%)
+Soundex 1.17 1.18 23.60 22.20
+NYSIIS WA 1.14 1.15 23.50 21.64
+Metaphone WA 1.14 1.15 (-2.4%) 23.49 20.94

Table 7: LM PPL improvements on the English part of a
subset of WMT’14 News EN-DE and IWSLT’17 EN-FR.

English dataset for POS and contains 57 341 sam-
ples. We uniform randomly sample 64% data as
the training set, 16% as the validation set, and 20%
as the test set. Our baseline is a Keras (Chollet,
2015) implementation (Joshi, 2018) of Bi-LSTM
POS Tagger (Wang et al., 2015). We train word
embedding (Mikolov et al., 2013) implemented
by Řehůřek and Sojka (2010) with 100 dimensions.
Each of the forward and the backward LSTM has
64 dimensions. We use a categorical cross-entropy
loss and RMSProp optimizer. We also use early
stopping based on validation loss. As in Table 8,
the linear multi-encoder with α = 0.9 brings the
best results, i.e. -15.79% relative improvement over
the baseline.

Dev Test
Loss Accuracy Error Rate

Berkeley Parser 5.24 5.08 98.67 1.33
+MetaPhone0.5 4.90 4.72 98.72 1.28 (-3.76%)
+MetaPhone0.9 4.05 4.29 98.87 1.13 (-15.04%)
+NYSIIS0.9 4.16 4.38 98.88 1.12 (-15.79%)

Table 8: POS with phonetic codings Brown corpus.

5 Related Work

Previous important work investigated the role of
auxiliary information to NLP tasks, such as poly-
semous word embedding structures by Arora et al.
(2016), factored models by Garcı́a-Martı́nez et al.
(2016), and feature compilation by Sennrich and
Haddow (2016). We emphasize that we do not use
any additional information besides our algorithms.

Hayes (1996); Johnson et al. (2015) applied ex-
plicit phonological rules or constraints to tasks such
as word segmentation. In neural networks, we
can implicitly learn from phonetic data and leave
the networks to discover hidden phonetic features
through end-to-end training opt specific NLP tasks,
instead of applying hand-coded constraints.

Closely related, but independent to our work, is
the character-based MT, such as the work of Ling
et al. (2015) and Chung et al. (2016), among many

others. We go beyond text level representations and
look for novel representations for decompositions,
sometimes even smaller than characters.

Different from the inspiring work that
uses Pinyin (Du and Way, 2017), skip-ngram
(Bojanowski et al., 2017), and Huffman on
source/target (Chitnis and DeNero, 2015), our
study aims to improve NN-NLP including NMT
overall rather than only eliminating unknown
words, introducing six new codings into NLP
in addition to Pinyin and text. Importantly, our
artificial codings apply on all languages. Moreover,
we achieve experimental improvements overall.
Liu et al. (2018) added Pinyin embedding to
robustify NMT against homophone noises. They
described that it was unknown why Pinyin also im-
proved predictions on the clean test. This is a very
interesting work, and we explain this phenomenon
through our theory that the multi-channel coding
offers an ensemble of the code words and the text,
making the communication more reliable.

6 Conclusion

In this paper, we conduct a comprehensive study
on how to code textual inputs from multiple
linguistically-motivated perspectives and how to
integrate alternative language representations into
NN-NLP systems. We propose to use Soundex,
NYSIIS, MetaPhone, logogram, fixed-output-
length, and Huffman codings into NLP and de-
scribe how to combine them in state-of-the-art NN
architectures, such as Transformer, ConvS2S, Bi-
LSTM with attentions. Our paradigm is general for
any language and adaptable to various models. We
conduct extensive experiments on five languages
over six tasks. Our approach appears to be very use-
ful and achieves up to 20.77%, 20%, and 15.79%
relative improvements on state-of-the-art models
of MT, LM, and POS, respectively.
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