
Proceedings of the 28th International Conference on Computational Linguistics, pages 3671–3683
Barcelona, Spain (Online), December 8-13, 2020

3671

Invertible Tree Embeddings using a Cryptographic Role Embedding
Scheme

Coleman Haley1 and Paul Smolensky1, 2

1Department of Cognitive Science, Johns Hopkins University, Baltimore, MD
2Microsoft Research AI, Redmond, WA
{chaley7, smolensky}@jhu.edu

Abstract

We present a novel method for embedding trees in a vector space based on Tensor-Product
Representations (TPRs) which allows for inversion: the retrieval of the original tree structure and
nodes from the vectorial embedding. Unlike previous attempts, this does not come at the cost
of intractable representation size; we utilize a method for non-exact inversion, showing that it
works well when there is sufficient randomness in the representation scheme for simple data and
providing an upper bound on its error. To handle the huge number of possible tree positions without
memoizing position representation vectors, we present a method (Cryptographic Role Embedding)
using cryptographic hashing algorithms that allows for the representation of unboundedly many
positions. Through experiments on parse tree data, we show a 30,000-dimensional Cryptographic
Role Embedding of trees can provide invertibility with error < 1% that previous methods would
require 8.6× 1057 dimensions to represent.

1 Introduction: Compositional structure in neural representations

One thing that critics and advocates of deep learning (DL) agree on is that DL models would benefit greatly
from stronger compositional generalization: the ability to freely generalize, on relatively scant training data,
to novel combinations of familiar constituents (Lake and Baroni, 2017; Marcus, 2020; Russin et al., 2020).
Symbolic systems achieve strong compositional generalization — especially in language — by leveraging
compositional structure within the model’s internal representations themselves (Frege and Beaney, 1997).
While it is conceivable that DL models in NLP will achieve strong compositional generalization without
compositional representations (Baroni, 2020), we believe it is important to investigate neural instantiations
of the one method known to underlie such generalization: structured representations. But how can
compositional structure be encoded without sacrificing the hallmarks — and sources of power — of neural
computation: distributed representation (as opposed to physically separate encodings of constituents) and
fully parallel processing (as opposed to operating sequentially on separate constituents)?

The question of distributed neural representations with compositional structure has been debated for
decades. That such representations are even possible, claims to the contrary notwithstanding (Fodor
and Pylyshyn, 1988), was established early on, by several techniques (Pollack, 1989; Smolensky, 1990;
Shastri and Ajjanagadde, 1993; Plate, 1995, a.o.). It turns out that all these techniques are, up to
elementwise nonlinear squashing, special cases of a general technique: tensor product representations
(TPRs) (Smolensky and Tesar, 2006). This suggests that TPRs may be a universal form of compositional
distributed representation, raising the question of whether standard DL models learn them spontaneously.
This has recently shown to be true, up to an affine transformation, for simple, highly compositional
functions and extensive training data (McCoy et al., 2019; Soulos et al., 2019). Alongside this provocative
suggestion that TPRs may be necessary for compositional encoding in neural nets, there are formal
demonstrations of the sufficiency of TPRs to enable NNs to compute recursive symbolic functions —
strongly compositional behavior (Smolensky, 2012). These representations are typically fully distributed

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

3672

(each neuron contributes to the encoding of each constituent) and the function computation is fully parallel
(for many complex functions, a single step).

TPRs introduce bona fide structure to neural representations via the neural embedding of roles that
define a particular type of compositional structure. For binary trees, one such role could be left-child-of-right-
child-of-root. The fillers of these roles, whether they are atomic or structures themselves, are bound to their
respective roles by taking the tensor product of the neural embedding of each filler and the embedding of
its structural role. The sum of these tensor-product filler-role bindings is the TPR for the whole structure.

When the embeddings of the roles are orthonormal vectors, the filler of any given role r with embedding
r can be exactly recovered from the embedding S of the structure as a whole simply by taking the
inner product: S · r (see Sec. 2.2, which also shows that the same invertibility property holds if the role
embeddings are merely linearly independent.) This unbinding process can lead to an error if another role
has an embedding r′ that is not orthogonal to r: unbinding r will induce an intrusion of the filler of r′

with a magnitude proportional to the inner product r′ · r.
Orthogonality of the role embeddings is of course possible only if their dimension is at least as large as

the number of possible roles. Thus for a k-branching tree of depth δ, the size of the TPR is proportional
to kδ. This contrasts with the size of a corresponding symbolic representation, which is proportional to
the occupancy of the tree: the number of roles with non-null fillers. In NLP, where parse trees are often
relatively sparse, this can be a large difference.

The source of this disparity is that, unlike symbolic representations, distributed neural representations
must pre-allocate space for all possible items that may need to be encoded: here, a dimension of the TPR
for each possible atomic-filler/role pair, which is required for exact invertibility.

However, we know that, in high-dimensional vector spaces, randomly chosen vectors are most likely
to be approximately orthogonal (see Sec. 2.3). The work presented here investigates the Occupancy-
Scaling Hypothesis: in high-dimensional embedding spaces, TPRs for trees can be invertible to a good
approximation provided the occupancy k of the tree is smaller than γ times the role-embedding dimension
n, k < γn, where γ = O(1). The hypothesis will hold if, under such conditions, role vectors can be
assigned so that, with sufficiently high probability, pairs of occupied roles have embedding vectors that are
sufficiently close to orthogonal: then intrusion will not lead to unbinding errors. If true, this means that
TPRs scale like their symbolic counterparts: the number of possible roles is irrelevant; only the number of
occupied roles matters.

The contributions of the paper consist in a sequence of tests of the Occupancy-Scaling Hypothesis in
settings of varying difficulty. In Sec. 3, we first investigate the hypothesis in the case of random symbol
strings, with random embeddings both of the roles and of the symbols that fill them. We next examine the
case of natural-language sentences, considered as strings of word tokens: now the fillers are not random,
although the filled roles are still predictable (positions 1 through N = length of the sentence). We then
present experimental verification of a new theoretical worst-case bound on unbinding error (Appendix B).

The main contributions of the paper lie in Sec. 4, where we consider encodings of constituency-parsed
sentences in which the roles filled in the parse tree are variable across sentences and the number of possible
roles (tree positions) is essentially infinite. The primary innovation of the paper, the Cryptographic Role
Embedding technique, is shown to effectively encode a huge number of role vectors in a fixed embedding
dimension.

Our results show that, even when embeddings of symbols are highly compressed and an unbounded set
of structural positions are embedded in a modest-sized space, the Occupancy-Scaling Hypothesis holds
with a scaling coefficient particular to the type of data being represented. For example, in Sec. 4.3 we show
that where exact invertibility would require an embedding dimension of 8.6× 1057, a 30,000-dimensional
Cryptographic Role Embedding of trees can provide invertibility with error < 1%.

2 Background

2.1 Tensor Product Representations (TPRs)

TPRs provide a principled way of representing information with compositional structure in vector spaces,
such as those used as the input and output domains of neural networks (Smolensky, 1990). Developing

3673

a tensor-product-based representational scheme begins by decomposing a compositional structure into
structural roles, which define a structural type (Newell, 1980); a string can be defined by roles first-position,
second-position, etc., and a tree by root, first-child-of-root, etc. A particular instance of the structural type is
defined by assigning fillers to (some of) these roles. For a specific string, first-position might be filled by
Kim; for a tree, first-child-of-first-child-of-root might be filled by the. A compositional structure can then
be represented as the bindings of fillers to roles. Once decomposed, roles and fillers are embedded into
their respective representational vector spaces. Let some information (e.g., a sentence) be encoded as a
particular instance S of a structural type defined by a set of indexed roles {rj}, and let the possible fillers
constitute an indexed set {fi}. Now let bS be a list of ordered pairs (i, j) representing that in S, the filler
with index i (embedded as vector f̂i) is bound to the role with index j (embedded as vector r̂j). The tensor
product representation (TPR) T of S is then given by

T =
∑

(i,j)∈bS

f̂i ⊗ r̂j (1)

In certain settings, this TPR may itself be used as a filler and subsequently be bound to another role
vector (Legendre et al., 1991). This process results in a TPR that represents hierarchical compositional
structure. Here we adopt a setting in which the filler of each role is an atom (e.g., a word), and hierarchical
structure, e.g. of a tree, is encoded in the roles themselves, which include embedded roles such as
first-child-of-second-child-of root.

2.2 Invertibility: Unbinding from TPRs

TPRs are useful because they embed arbitrary symbolic structure in a vector space in such a way that
simple linear algebra operations may be used to retrieve the form of the symbolic structure, including its
compositional structure. The core operation in retrieving this structure is called unbinding. We may use
unbinding to query a role for its filler. When the role vectors are linearly independent, there is a method
for exact unbinding (see (Smolensky, 1990) for details). When the dimension of the role-embedding
space is smaller than the number of distinct roles, the case we explore below, we must use an approximate
unbinding method. This ‘self-addressing’1 unbinding method is what we will use to attempt to invert TPR
embeddings to recover the filler of any given role as we test the Occupancy-Scaling Hypothesis, exploring
how small a TPR we can use and still retain invertibility to a good degree of approximation.

Self-addressing unbinding retrieves the filler f̃i for the role r̂i by simply computing the inner product
between the role vector and the TPR: f̃i = T · r̂i =

∑k
j=1(r̂j · r̂i)f̂i. (Here and henceforth we assume all

role vectors have been normalized.) This unbinding is exact if the role vectors are orthogonal. Otherwise,
the intrusion of the filler of role j, f̂j , into the unbound filler of role i, f̃i, is cos θjif̂j , where θji is the
angle between the role vectors r̂j and r̂i.

While this unbinding is not exact, often we are interested in the case in which there is a fixed, known
filler vocabulary with a given vector embedding. In such a case, it may be possible to use a similarity
metric to compare the vector obtained from unbinding to the vectors embedding the vocabulary of fillers
and selecting the vocabulary item with the highest value of the metric. Here, the cosine similarity of the
two vectors is used as the metric; thus, we say an unbinding error for role i has occurred when there exists
j 6= i s.t.

f̂j · f̃i
‖f̂j‖‖f̃i‖

≥ f̂i · f̃i
‖f̂i‖‖f̃i‖

. (2)

2.3 The geometry of Sn

In this section, we briefly present two geometric motivations for the hypothesis that, in high-dimensional
spaces, random unit vectors may approximate orthogonality sufficiently for TPR unbinding. We also
review a simple method for sampling from Sn, used throughout the paper to generate uniformly distributed
unit vectors.

1The procedure is so called because the role vector is used to access its own filler.

3674

Figure 1: Left: Percentage of Sn forming an angle with the north pole in the range 90° ± 2.5°. Right:
Empirical distribution (and normal estimate) of the dot products of 5000 random vectors in R100.

The first factor to note is that for a unit vector u ∈ Rn, as n→∞, the proportion of the n-dimensional
unit sphere Sn with an angle φ ≤ Θ of u goes to 0 for all values of Θ < 90 degrees. This has the
implication that the proportion of Sn forming an angle of 90 − ε ≤ φ ≤ 90 + ε (thus within ε of
orthogonality) goes to 1. We can empirically estimate the rate at which this limit is approached, using Li
(2011). As seen in Fig. 1 (left), the rate at which this region grows slows as the dimension increases, but
the area is nevertheless large even for fairly small dimensions.

Another manifestation of the increased mass of Sn close to orthogonality to a given vector in higher
dimensions can be found by considering the dot products of points selected at random from Sn. As shown
in Appendix A, the mean and variance of the dot product of two random unit vectors in Rn is 0 and 1/n.
In high dimensions, the distribution appears to be well-approximated by a normal distribution: Fig. 1
(right) shows the distribution for R100. Therefore, most dot products are fairly small, and the larger the
dot product, the less common it is. Finally, note that it is possible to sample uniformly from Sn (and
thus sample a random unit vector) simply by sampling from the standard normal distribution. Samples
Z1, Z2, ..., Zn−1 are taken from the standard normal distribution. Then the ith coordinate of the sampled

vector v ∈ Sn can be obtained by Z1, Z2, ..., Zn, [v]i = Zi/
√∑n−1

j=1 Zj (Muller, 1959).

3 Lower and Upper Bounds on Unbinding Error

First, we consider a lower bound on error: fully random TPRs. In this case, both filler vectors and
role vectors are drawn uniformly from the unit sphere, and filler-role bindings are selected from the
uniform distribution. This eliminates some potential contributions to error: there is no special relation
between the representations of filler vectors, and no special co-occurence properties of roles or fillers.
In this case, the intrusions of other fillers on the unbinding will typically be destructive, and the ex-
pected value of the intrusion term will be 0. Nevertheless, as the number of bound roles becomes large
compared to the role dimension, the variance of the intrusion term becomes larger, resulting in errors.

Figure 2: Example error for random TPRs.

In each simulation run, the size N of the set of pos-
sible fillers and the filler embedding dimension d were
fixed. We perform a number of samples for each simu-
lation, each time drawing a new set of n-dimensional role
vectors {r̂i}ki=0 ∼ U(Sn−1) that will be bound to fillers (so
the occupancy is k). dings k is fixed and the dimension of
the role vectors n is varied, while in others n is fixed and
k is varied. The former simulations can be thought of as
answering the question “How large of role vectors do I need
if my symbolic structures are no larger than k?”, while the
latter answer “How much information can be packed into
TPRs using roles of size n?” The filler embedding that will
be bound to each r̂i is drawn IID from a uniform distribution over the set of N possible fillers. For each

3675

fixed set of parameters, we select the filler-role bindings and create the TPR according to Equation (1). We
then unbind all the roles using the self-addressing unbinding procedure, compute the similarities between
the result of the unbinding f̃ and each of the filler vectors f̂j , recording whether an error was made. We
divide the number of errors made by the total number of bindings to obtain a simple maximum likelihood
estimate of the error probability for any one combination of N , d, n, and k. Simulations were computed
in batches using PyTorch (Paszke et al., 2019).

This experiment was conducted with both the role dimension n fixed and the number of bindings k
varied and vice-versa, for fixed n, k = 25, 100, 200, with d = 100, N = 2000, 10000, 50000. Results for
fixed n and varied k and fixed k and varied n showed analogous patterns of error, suggesting that the ratio
of n/k is the relevant factor for error, rather than their independent values. The number of possible fillers
N did not seem to substantially effect the error rate. Overall, across all combinations of n and k, the
error for k/n < 2 was generally less than 1%. This constitutes a confirmation of the Occupancy-Scaling
Hypothesis, with scaling coefficient γ = 2: unbinding error is < 1% when k < 2n. Representative results
are shown in Fig. 2.

Figure 3: Sentence embedding error with
role dimension n = 25.

Another relatively simple but more challenging setting is
given by embedding English sentences. We use the Reuters
corpus from the NLTK Python package (Bird et al., 2009),
taking only the sentences of length ≤ 50, yielding 49442
sentences. Here we construct at TPR as follows: if wi is
the ith word in a sentence from the corpus, the filler vector
f̂i is the embedding of wi in some vector space; this is
bound to an embedding ri of the role denoting the ith linear
position in the sentence. As before, the role vectors are
randomly chosen from the uniform distribution on the unit
sphere Sn−1 ⊂ Rn. For the word embeddings, we use
300-dimensional word2vec vectors taken from the Google
News vectors (Mikolov et al., 2013). There are a number of
potential issues here: the fillers cannot be modeled as being

drawn from a uniform distribution; since the fillers are words, common words will appear in TPRs more
often, being drawn from a distribution which is approximately Zipfian (Zipf, 1949). If a word appears
more than once in a sentence (and thus TPR), that increases the chance of constructive interference in the
direction of that word. Another challenge is the non-uniformity of word2vec vectors: since word2vec
creates vectors on the basis that words that occur near each other (e.g. in the same sentence) should have
more similar vectorial embeddings. This means the embeddings of the intruding vectors will be closer to
the true filler than a random vector would be expected to be, leading to a potential for errors. Finally, the
density of the filler space in this experiment is much greater than in the previous experiments, as there
are approximately 3,000,000 GoogleNews vectors, with a dimension of 300 (N/d = 10000), increasing
the change of a random error. Due to this large filler dimension, we also consider a top-5 setting, which
reduces errors. Despite these potential issues, using role dimension n = 25 and letting k (here, the number
of words in the sentence) vary, we again find γ ≈ 2 with a tolerance of 1% error, as shown in Fig. 3.

Figure 4: Maximal intrusion error (empiri-
cal and upper bound).

Finally, we present a worst-case scenario. Consider a
TPR where role vectors are uniformly drawn from the unit
sphere Sn−1 and where each role is bound to one of only
two fillers â or b̂. Specifically, r̂0 is bound to â, and for
all i 6= 0, r̂i is bound to b̂. When unbinding a role from
a TPR where the fillers are widely scattered, there will be
destructive interference causing cancellation between the
intrusions of the fillers of other roles; in this case, however,
when unbinding r̂0 there will be no such destructive interfer-
ence, but instead constructive interference in the direction
of b̂. Thus, we call this scenario maximal intrusion. The

3676

0011010101110101001010100010101001100011010100101010100010…

NP& 10100

NP 010 VP& 100 110

D 01010
N& 10010

V 01100

#the #dog #bit #Kim
SHAKE256

norm

0.274503 0.193874

Box-Muller
0.482094 −0.892045

norm

∈ U ({0,1}3∙8∙n)

∈ N (0;1)n

∈ U (S n−1)

∈ U ([0,1]n)

(0.004837, …)r10100 = −0.019289,

S 1

Figure 5: Cryptographic Role Embedding. Here the branching factor b = 3; dotted edges lead to
unoccupied subtrees. Daughters are coded as 01 (left); 10 (center); 11 (right). Nodes are addressed by
bit strings encoding the path to the root. Rightmost daughters’ labels have a suffix ‘&’; terminal nodes
have a prefix ‘#’. Together, we refer to these nodes as final nodes. The numbers below the tree derive the
vector embedding of the node with address 10100. The derivation follows the steps given in Sec. 4.1,
with the distribution of quantities at each step shown to the right.

error in this case risks being rather high, although this scenario is very unlikely in real-data settings.
The probability that unbinding r̂0 will erroneously yield b̂ rather than the correct result b̂ is bounded by
P (Error) < e−n/2k√

2πn/k
(see Appendix B for proof.)

In Fig. 4, we can see that this bound is not tight, with the observed error being substantially lower.
Still, the bound has the property of being exponentially decreasing in n–that is, for a fixed number of
bindings k, the error drops off at a rate proportional to 1

en , so even in this worst-case scenario it is possible
to unbind with a low error rate with a number of roles favorably proportional to the number of bindings,
provided k is not� than the desired n.

4 Invertible Tree Representations

The TPR embedding of trees is guaranteed to be perfectly invertible if the role embeddings are linearly
independent. The roles here are the possible positions in a k-ary tree, so the number of tree roles grows
exponentially with the depth of the tree; as such, maintaining the linear independence of all role vectors
that is required for exact unbinding would require extremely large role vectors. However, the experiments
presented in Section 3 suggest that sufficiently-high-dimensional random role vectors may be close enough
to orthogonal that trees can be represented with relatively small role vectors while introducing only a small
amount of error in inverting the embedding (i.e., only a small probability of unbinding errors). However,
purely random roles are not feasible in the tree context, as the number of roles is potentially infinite and
grows exponentially in the depth. In this section, we present a scalable role scheme for the representation
of tree TPRs, and demonstrate its efficiency in representing syntax trees with minimal information loss
(as demonstrated by reconstruction).

3677

4.1 Cryptographic Role Embedding: A pseudorandom, deterministic role scheme2.

This tree representation scheme is designed with a few goals in mind. First, in conformity with the
Occupancy-Scaling Hypothesis, the size of the representation should scale not with the depth, but with
the number of filled nodes in the tree: the occupancy of the tree. Thus, sparse trees should enable a
smaller representation than complete trees, even if the sparse trees are much deeper. Additionally, the
roles should be close to random. independent samples from the unit sphere. The theoretical and empirical
work presented here indicates that while orthogonality of role vectors is required for guaranteed perfect
accuracy in role unbinding, a high degree of accuracy across varied scenarios is possible when roles are
randomly drawn from the unit sphere of sufficiently high dimension. We seek then to represent positions
in a tree as random points on the unit sphere; however, simply drawing randomly from the unit sphere
is not scalable. For each position in the tree, a unique random vector is needed. The number of such
positions in a k-ary branching tree of depth d is (kd− 1)/(k− 1). To avoid storing an exponential number
of vectors and requiring a maximal depth, we propose a system in which no vectors need be stored, but
the (pseudo)random vector for any position can instead be generated on-demand repeatedly.

The generation of an n-dimensional role vector in the proposed scheme can be divided into 4 steps (see
Fig. 5.):

1. Tree position→ bit string

2. Bit string→ 3n pseudorandom uniform bytes (SHAKE256)

3. 3n pseudorandom uniform bytes→ n pseudorandom independent Gaussian samples (Box-Muller)

4. n pseudorandom independent Gaussian samples→ n-dimensional pseudorandom unit vector

Each role (tree-node position) is addressed by variable-length bit string which encodes the path from the
node to the root according to a simple set of rules.3 This string must then be used to deterministically
generate a sequence of pseudorandom bits. Since the string representation is such that similar roles have
similar strings (in terms of, e.g., edit distance), it is essential that this generation process not map similar
strings to similar sequences of bits if the independence of roles is to be maintained.

Cryptographic hash functions are a class of functions designed to solve exactly this problem. These
functions map input strings of any length to a fixed number of output bits such that 1) it is not feasible
to find 2 inputs which map to the same output, 2) a small change to the input results in a large change
in the output, and 3) the process is fully deterministic, relying on no source of randomness. These
attributes of hash functions point towards the output bits of different tree position strings being random
and uncorrelated. In this work, the SHAKE256 variable-length hash function was applied to the tree
position strings to generate a sequence of output bits (FIPS 202, 2015).

The output bits of the SHAKE256 hash function are effectively uniformly distributed; however, in
order to obtain a uniform sample of unit vectors, random samples from a Gaussian distribution are
needed (see Section 2.3). The Box-Muller transform takes uniform samples on the interval [0, 1] and
deterministically produces independent normally-distributed samples. To obtain samples on the interval
[0, 1] from the output of the hash function (a sequence of random bits), 3 (8-bit) bytes of output were
taken at a time and normalized by dividing by 2(3·8). This results in n uniform samples to which the
Box-Muller transform may be applied 4. The Box-Muller transform takes 2 (pseudo)random uniform

2Code for the representations developed here, as well as the other experiments and results in this paper is available at
https://github.com/ColemanHaley/InvertibleTreeRepresentations

3The root node was represented by “1”, all other strings are constructed right-to-left and begin with “0”. Let the arity of the
tree (maximum allowed amount of branching) be denoted k; then the remainder of the tree representation is divided into sections
of dlog2(k + 1)e bits. Each section contains the binary value of the distance from the leftmost child of the parent of the node
(plus one). For example, consider in a binary tree the root’s right child’s left child’s right child (RLR for short). In this case, each
section is 2 bits long (plus the rightmost 0 representing the root), so the string representing this position is 1001100.)

4The SHAKE256 hash function was selected due to its ability to produce variable length outputs, allowing the appropriate
number of output bits to be created; note however, that the amount of entropy of the output is fixed, meaning that for extremely
long output lengths (for large n), there is a chance the function may be insufficiently random.

3678

samples U1 and U2 as input, and produces 2 (pseudo)random Gaussian-distributed samples Z1 and Z2 as
output according to the following formulae:

Z1 =
√
−2 lnU1 cos(2πU2) Z2 =

√
−2 lnU2 cos(2πU1)

While the formulae are similar, it has been proven that Z1 and Z2 are independent samples. The Box-
Muller transform is applied iteratively to pairs of the uniform samples derived from the hash function
output until n independent Gaussian samples are generated. With these Gaussian samples Z1, Z2, ..., Zn,
the i-th coordinate of the node’s role vector r is given by [r]i = Zi/

√∑n
j=1 Zj .

To test how close to uniformly distributed these role vectors are, the branching factor was set to 3 and
the vectors for all tree positions up to depth 5 were generated (1093 vectors). The dot products of all pairs
of vectors were computed, and the distribution was compared with an analogous distribution for 1093
randomly sampled unit vectors using Levene’s test for variance equality, which showed equal variances
with p > 0.99.

4.2 The filler space

We assume the vocabulary of words (terminal labels) and nonterminal labels is fixed and known, and
relatively small compared to the number of tree positions. Thus, we memoize the filler vectors, and we
need not use any sort of generation scheme in contrast to the roles. Each filler vector is an independent
random sample from the unit sphere in Rd, Sd−1, where d is the filler vector dimension.

In inverting a tree embedding, determining which positions are actually present in the tree and which
are empty is a non-trivial issue — unless a node has the maximum number of children, it may have further
children to the right of the child being processed; it is similarly possible that a leaf node may have further
children. In the TPR scheme these unfilled roles are implicitly bound to the 0 filler vector; however,
empirically no threshold was identified for filler magnitude to reliably distinguish filled positions and
unfilled positions. As a result, special fillers were created representing each filler when it is the rightmost
child of a parent (adding the suffix “&”) and when it is a leaf (adding the prefix “#”); these fillers and
their associated vectors are used instead of the true fillers in the representations. When inverting the
representation, the prefixes are used to guide the search through the tree to only filled positions and are
stripped from the fillers in order to reconstruct the true tree.

4.3 Experiments

Figure 6: The largest number of nodes (k)
for which a given filler and role dimen-
sion combination has error < 1% for all
smaller tree sizes.5

In order to test the invertibility of this representation scheme
and its utility in representing naturalistic data, we carry out
experiments on syntactic trees from the MASC dataset (Ide
et al., 2010). This dataset contains approximately 500,000
words of text from diverse domains, separated into sen-
tences which are annotated into parse trees in the Penn
Treebank format. This dataset contains a wide variety of
trees — its most branching node has 98 children, and its
deepest tree has a depth of 43 nodes. This means there are
9843 ≈ 4.19×1085 possible tree positions to be represented
by role vectors. Extreme outliers in terms of number of
nodes were removed by taking all trees of size (occupancy)
< 183 (approx. 99% of trees), yielding 35,379 syntax trees.
Inversion of the representation is accomplished by conduct-
ing a breadth-first tree traversal by enqueuing possible tree
positions, then at each position producing the appropriate
role vector through the process outlined in Section 4.1, unbinding and seeing if the bound symbols are
marked as rightmost or leaf symbols, and using that to keep empty sibling and child positions out of the
queue.

3679

The reconstructed tree and the original tree may not contain the same set of nodes — there may be, for
instance, positions found in the reconstruction that are not present in the true tree. Due to the multiple
types of errors possible, to produce a unified metric we take the F-score over the pairs of positions and
node labels (thus, an incorrect filler for a correct role is treated as 2 errors). 1− F is then treated as the
“error.” Within each experiment, the role and filler dimensions are held constant and evaluated over all
sentences in MASC. Sentences are grouped by the total number of nodes in their tree representations. The
role and filler dimensions were then varied independently. Figure 6 shows the largest tree size (in terms of
number of occupied nodes) for which error is below < 1% and the error for all smaller trees is < 1%–the
last point at which error is consistently below 1%.

The data indicates that while filler dimension plays a role in representation quality, there seems to be a
“threshold size” in these experiments, 150, above which the filler dimension does not substantially aid
performance. In contrast, no such upper bound was identified for increasing role dimension. In terms
of the Occupancy-Scaling Hypothesis, we find a more complex story here. For sufficiently large filler
dim. d ≥ 150, values of γ = k/n range from 0.69 to 1. Further experimentation is needed to definitively
confirm whether the Occupancy-Scaling Hypothesisholds in this case; if it does, its value likely lies within
this range.

We found that for trees of length < 150, Error was consistently below 1% for role dimension 200 and
filler dimension 150 (γ = 0.75). Since the deepest tree of length≤ 150 has depth 29, the widest branching
has 98-ary branching, and there, it would take roles of dimension (9829 − 1)/(98 − 1) ≈ 5.7 × 1055

to achieve the linear independence required to represent this exactly, yielding representations of approx
8.6× 1057 units if using the 150-dimensional filler-vectors used here.

The reconstruction of tree-structured data presents a significant challenge that may account for the
higher error in this case than previous cases — in a tree, a large percentage of nodes are either the
rightmost child of their parent or a leaf. This means that there are many opportunities to make an error in
reconstructing these nodes — when such an error is made, it often results in a final node being mistaken as
a non-final node or vice-versa, leading to spurious unbinding of roles that are unbound or not traversing an
entire subtree. In addition, the branching nature of tree structure means that such errors easily result in an
exponential number of additional errors. This is an issue with the nature of the task, not the representation.
Preliminary investigation by the authors into augmenting the unbinding process with an oracle determining
which nodes are and are not final, indicated γ ≈ 2, similar to the random TPR and sentence TPR results
in Section 3; however, this is not pursued here because it a less challenging task that requires burdensome
assumptions for use.

5 Summary and conclusion

Can trees of potentially large depth be encoded as distributed representations in such a way as to
enable fully parallel processing and high-accuracy decoding without requiring representations with a
dimensionality that grows rapidly with the maximum possible depth? General hand-designed methods
for neural encoding of compositional structure, and learned internal neural representations for strongly
compositional tasks, have been shown to be cases of tensor product representations (TPRs), which provide
distributed representations that enable parallel processing and accurate decoding — if the dimension
of the representation is very large, growing exponentially with tree depth. A method is presented here
for designing distributed tree embeddings (TPRs) that, by contrast, have the same scaling properties as
symbolic tree representations: they grow with the number of labelled tree nodes, independently of tree
depth. This technique uses Cryptographic Role embeddings to encode tree positions. This is essentially a
means of hashing tree positions onto a high-dimensional unit sphere such that nearby tree positions are not
mapped to nearby unit vectors, minimizing interference between decoding symbols that are close together
in the tree. The use of a cryptographic hash means there are no burdensome requirements of memoization,
allowing the flexible handling of extremely large or unbounded role schemes for complex compositional
structures. Experiments show that trees that would require TPRs of size 8.6 × 1057 to enable exact

5To mitigate noise and indicate the true error trends in the data, trees were binned by length to the nearest 10. E.g., all trees of
length 140, 141, ..., 149 contribute to a common average error for 140.

3680

decoding can, with Cryptographic Role embeddings, be embedded as vectors of dimension 30,000 while
keeping the probability of error in decoding a tree position less than 1%. Because the representation size
is fixed, any of the 80000

(
98·150
150

)
= 8.34× 10213 trees of 150 nodes can be represented with this scheme.

This success, coupled with the upper and lower bounds on error shown in Section 3, point to a powerful
potential for TPR-based representations of many types of structure in language and other compositional
domains.

Acknowledgements

The authors would like to thank Colin Wilson and the Neuro-Symbolic Computation Lab at Johns Hopkins
University for their helpful comments. This work was in part supported by a Provost’s Undergraduate
Research Award at Johns Hopkins University. This work utilizes resources supported by the National
Science Foundation’s Major Research Instrumentation program, grant #1725729, as well as the University
of Illinois at Urbana-Champaign.

References
Marco Baroni. 2020. Linguistic generalization and compositionality in modern artificial neural networks. Philo-

sophical Transactions of the Royal Society B, 375(1791):20190307.

Steven Bird, Edward Loper, and Ewan Klein. 2009. Natural Language Processing with Python. O’Reilly Media
Inc.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71.

Gottlob Frege and Michael Beaney. 1997. The Frege Reader. Blackwell.

Nancy Ide, Collin Baker, Christiane Fellbaum, and Rebecca Passonneau. 2010. The manually annotated sub-
corpus: A community resource for and by the people. In Proceedings of the ACL 2010 Conference Short
Papers, pages 68–73, Uppsala, Sweden, July. Association for Computational Linguistics.

Brenden M Lake and Marco Baroni. 2017. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Proceedings of the 35th International Conference on Machine
Learning, pages 2879–2888.

Géraldine Legendre, Yoshiro Miyata, and Paul Smolensky. 1991. Distributed recursive structure processing. In
Advances in Neural Information Processing Systems, pages 591–597.

Song Lin Li. 2011. Concise formulas for the area and volume of a hyperspherical cap. Asian Journal of Mathe-
matics & Statistics, 4:66–70.

Gary Marcus. 2020. The next decade in AI: Four steps towards robust artificial intelligence. arXiv preprint
arXiv:2002.06177.

R Thomas McCoy, Tal Linzen, Ewan Dunbar, and Paul Smolensky. 2019. RNNs implicitly implement tensor
product representations. In International Conference on Learning Representations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3111–3119. Curran
Associates, Inc.

Mervin E. Muller. 1959. A note on a method for generating points uniformly on n-dimensional spheres. Commun.
ACM, 2(4):19–20, April.

Allen Newell. 1980. Physical symbol systems. Cognitive Science, 4(2):135–183.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8026–8037. Curran Associates, Inc.

3681

Tony A Plate. 1995. Holographic Reduced Representations. IEEE Transactions on Neural networks, 6(3):623–
641.

Jordan B Pollack. 1989. Implications of recursive distributed representations. In Advances in Neural Information
Processing Systems, pages 527–536.

Jacob Russin, Jason Jo, Randall O’Reilly, and Yoshua Bengio. 2020. Compositional generalization by factorizing
alignment and translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics: Student Research Workshop, pages 313–327, Online, July. Association for Computational Linguistics.

Lokendra Shastri and Venkat Ajjanagadde. 1993. From simple associations to systematic reasoning: A connec-
tionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioral and brain
sciences, 16:417–417.

Paul Smolensky and Bruce B. Tesar. 2006. Symbolic computation with activation patterns. In Paul Smolensky and
Géraldine Legendre, editors, The harmonic mind: From neural computation to optimality-theoretic grammar,
volume 1, pages 235–270. MIT Press.

Paul Smolensky. 1990. Tensor product variable binding and the representation of symbolic structures in connec-
tionist systems. Artificial Intelligence, 46(1-2):159–216.

Paul Smolensky. 2012. Symbolic functions from neural computation. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 370(1971):3543–3569.

Paul Soulos, Tom McCoy, Tal Linzen, and Paul Smolensky. 2019. Discovering the compositional structure of
vector representations with role learning networks. In NeurIPS Workshop on Context and Composition in Bio-
logical and Artificial Neural Systems, arXiv:1910.09113.

G. K. Zipf. 1949. Human behavior and the principle of least effort. Addison-Wesley Press.

A Proof that the variance σ2
n of s1,n as n→∞ is 1/n

Let s1,n ≡ r̂i · r̂0 be a random function of r̂i ∈ Rn ∼ U(Sn−1). Its variance is

σ2n =

∫ ∞
0

(r̂i · r̂0)2p(r̂i · r̂0 = cos θ)dθ =

∫ ∞
0

cos2 θp(r̂i · r̂0 = cos θ)dθ (3)

Represent r̂ vectors in an orthonormal basis in which r̂0 = ê0. Then

{r̂i|r̂i · r̂0 = cos(θ)} = {r̂i|[r̂i]0 = cos(θ)} (4)

=

r̂i

∣∣∣∣∣∣1 =
n∑
q=0

[r̂i]
2
q = cos2 θ +

n∑
q=1

[r̂i]
2
q

 (5)

=

r̂i

∣∣∣∣∣∣
n∑
q=1

[r̂i]
2
q = 1− cos2 θ = sin2 θ

 (6)

= Sn−2(sin θ) (7)

Letting the hyper-surface area of the radius-r sphere Sn−1(r) ⊂ Rn be An−1(r) = Cn−1r
n−1, we have

σ2n =

∫ ∞
0

cos2 θp(r̂i · r̂0 = cos θ)dθ (8)

=

∫ π

0
cos2 θ

An−2(sin θ)

An−1(1)
dθ (9)

= 2
Cn−2
Cn−1

∫ π/2

0
(1− sin2 θ)(sinn−2 θ)dθ (10)

= 2
Cn−2
Cn−1

[I(n− 2)− I(n)] (11)

3682

with

Cn−1 =
2πn/2

Γ(n/2)
⇒ Cn−2 =

2π[n−1]/2

Γ([n− 1]/2)
=

2πn/2−1/2

Γ([n/2− 1] + 1/2)
(12)

and

I(m) ≡
∫ π/2

0
sinm θdθ (13)

=

√
π

2

Γ(m2 + 1
2)

Γ(m2 + 1)
(14)

Assume henceforth that n is even:

u ≡ n

2
∈ Z⇒ n− 2

2
= u− 1 ∈ Z (15)

Then we can use, for v ∈ Z:

Γ(v +
1

2
) =

(2v)!

4vv!

√
π (16)

which together with
Γ(v) = (v − 1)! (17)

and v ≡ m/2 entails

I(m) =

√
π

2

(
(2v)!

4vv!

√
π

)
1

v!
(18)

=
π

2

(2v)!

4v(v!)2
(19)

hence

I(m− 2) =
π

2

(2[v − 1])!

4v−1([v − 1]!)2
(20)

Note that when n = 2u is even, (12) becomes

Cn−1 =
2πu

(u− 1)!
(21)

Then, from (11), (15), (19) and (20) we get

σ2n = 2
Cn−2
Cn−1

π

2

[
(2[u− 1])!

4u−1([u− 1]!)2
− (2u)!

4u(u!)2

]
(22)

= π
Cn−2
Cn−1

(2[u− 1])!

4u−1([u− 1]!)2

[
1− (2u)(2u− 1)

4(u)2

]
(23)

= π
Cn−2
Cn−1

(2[u− 1])!

4u−1([u− 1]!)2
1

2u
(24)

= π
Cn−2
Cn−1

(2x)!

4x(x!)2
1

2(x+ 1)
(25)

where
x ≡ u− 1 = n/2− 1 (26)

Further, from (12), (16) and (21), we have

Cn−2
Cn−1

=
2πuπ−1/2

Γ([u− 1] + 1/2)

(u− 1)!

2πu
(27)

=
1√
π

4u−1(u− 1)!√
π(2[u− 1])!

(u− 1)! (28)

=
4x(x!)2

π(2x)!
(29)

3683

Then

σ2n = π
4x(x!)2

π(2x)!

(2x)!

4x(x!)2
1

2(x+ 1)
(30)

=
1

2(x+ 1)
=

1

n
(31)

B Proof of bound on maximal intrusion error

In the restricted worst-case scenario of maximal intrusion, we can prove an upper bound on a restricted
case of error. We will consider it a Type I error when the unbinding f̃0 of r̂0 is closer to b̂ than the correct
filler vector â. What will call a Type II Error arises if there exists any j < N such that f̂j is closer to
f̃0 than â is. Note that Type II Error is the type of error we have been considering so far. In this case,
all intrusion is in the direction of b̂, so we expect that Type I errors will constitute the majority of Type
II errors. We can express the unbinding of r̂0 as f̃ = â + sk,nb̂ where sk,n ≡

∑k
i=1 i · r̂0 is a random

variable with distribution determined by the independently uniform distribution of {r̂}ki=0 ⊂ Sn−1. A
Type I error occurs iff

1 + sk,nc < c+ sk,n ⇔ 1− c < sk,n(1− c)⇔ sk,n > 1, (32)

where c ≡ â · b̂ ∈ [−1, 1]. Thus,

P (Type I error) = P
(
sk,n ≡

k∑
i=1

r̂i · r̂0 > 1
∣∣∣ r̂i ∼ U(Sn−1)

)
. (33)

Under the assumption k � 1, we can derive an upper bound on this error probability as a function of k
and n. By the Central Limit Theorem, if the distribution of s1,n ≡ r̂i · r̂0 has mean zero and variance
σ2n(∀i = 1, ..., k), then as k →∞,

P

(
1

k

k∑
i=1

r̂i · r̂0 > 0

)
→ P (X > a |X ∼ N (0, σ2n)) (34)

= P
(
Y >

a

σn
|Y ∼ N (0, 1)

)
. (35)

So

P (Type I error) = P (

k∑
i=1

r̂i · r̂0 > 1) (36)

= P (
1√
k

k∑
i=1

r̂i · r̂0 >
1√
k

) (37)

→ P

(
Y >

1√
k σn

|Y ∼ N (0, 1)

)
(38)

for k � 1. As shown in Appendix A, σ2n = 1/n, so

P (Type I error)→ P (Y >
√
n/k |Y ∼ N (0, 1)) (39)

<
e−n/2k√
2πn/k

. (40)

While the bound is on Type I error and not the more general Type II error, we found empirically almost
errors are of Type I, as all intrusion is in the direction of a Type I error.

