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Abstract

Recently BERT has achieved a state-of-the-
art performance in temporal relation extraction
from clinical Electronic Medical Records text.
However, the current approach is inefficient
as it requires multiple passes through each in-
put sequence. We extend a recently-proposed
one-pass model for relation classification to
a one-pass model for relation extraction. We
augment this framework by introducing global
embeddings to help with long-distance rela-
tion inference, and by multi-task learning to
increase model performance and generalizabil-
ity. Our proposed model produces results on
par with the state-of-the-art in temporal rela-
tion extraction on the THYME corpus and is
much “greener” in computational cost.

1 Introduction

The analysis of many medical phenomena (e.g.,
disease progression, longitudinal effects of medi-
cations, treatment regimen and outcomes) heavily
depends on temporal relation extraction from the
clinical free text embedded in the Electronic Medi-
cal Records (EMRs). At a coarse level, a clinical
event can be linked to the document creation time
(DCT) as Document Time Relations (DocTimeRel),
with possible values of BEFORE, AFTER, OVER-
LAP, and BEFORE OVERLAP (Styler IV et al.,
2014). At a finer level, a narrative container
(Pustejovsky and Stubbs, 2011) can temporally
subsume an event as a contains relation. The
THYME corpus (Styler IV et al., 2014) consists
of EMR clinical text and is annotated with time
expressions (TIMEX3), events (EVENT), and tem-
poral relations (TLINK) using an extension of
TimeML (Pustejovsky et al., 2003; Pustejovsky and
Stubbs, 2011). It was used in the Clinical Temp-
Eval series (Bethard et al., 2015, 2016, 2017).

While the performance of DocTimeRel models
has reached above 0.8 F1 on the THYME corpus,

the CONTAINS task remains a challenge for both
conventional learning approaches (Sun et al., 2013;
Bethard et al., 2015, 2016, 2017) and neural models
(structured perceptrons (Leeuwenberg and Moens,
2017), convolutional neural networks (CNNs) (Dli-
gach et al., 2017; Lin et al., 2017), and Long Short-
Term memory (LSTM) networks (Tourille et al.,
2017; Dligach et al., 2017; Lin et al., 2018; Galvan
et al., 2018)). The difficulty is that the limited la-
beled data is insufficient for training deep neural
models for complex linguistic phenomena. Some
recent work (Lin et al., 2019) has used massive
pre-trained language models (BERT; Devlin et al.,
2018) and their variations (Lee et al., 2019) for this
task and significantly increased the CONTAINS
score by taking advantage of the rich BERT rep-
resentations. However, that approach has an input
representation that is highly wasteful – the same
sentence must be processed multiple times, once
for each candidate relation pair.

Inspired by recent work in Green AI (Schwartz
et al., 2019; Strubell et al., 2019), and one-pass en-
codings for multiple relations extraction (Wang
et al., 2019), we propose a one-pass encoding
mechanism for the CONTAINS relation extraction
task, which can significantly increase the efficiency
and scalability. The architecture is shown in Fig-
ure 1. The three novel modifications to the original
one-pass relational model of Wang et al. (2019)
are: (1) Unlike Wang et al. (2019), our model
operates in the relation extraction setting, mean-
ing it must distinguish between relations and non-
relations, as well as classifying by relation type.
(2) We introduce a pooled embedding for relational
classification across long distances. Wang et al.
(2019) focused on short-distance relations, but clin-
ical CONTAINS relations often span multiple sen-
tences, so a sequence-level embedding is necessary
for such long-distance inference. (3) We use the
same BERT encoding of the input instance for both
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Figure 1: Model Architecture. e1, e2, and t repre-
sent entity-embeddings for “surgery”, “scheduled”, and
“March 11, 2014” respectively. G is the pooled embed-
ding for the entire input instance.

DocTimeRel and CONTAINS tasks, i.e. adding
multi-task learning (MTL) on top of one-pass en-
coding. DocTimeRel and CONTAINS are related
tasks. For example, if a medical event A happens
BEFORE the DCT, while event B happens AFTER
the DCT, it is unlikely that there is a CONTAINS
relation between A and B. MTL provides an effec-
tive way to leverage useful knowledge learned in
one task to benefit other tasks. What is more, MTL
can potentially employ a regularization effect that
alleviates overfitting to a specific task.

2 Methodology

2.1 Twin Tasks

Apache cTAKES (Savova et al., 2010)(http://
ctakes.apache.org) is used for segmenting and
tokenizing the THYME corpus in order to gen-
erate instances. Each instance is a sequence of
tokens with the gold standard event and time ex-
pression annotations marked in the token sequences
by logging their positional information. Using the
entity-aware self-attention based on relative dis-
tance (Wang et al., 2019), we can encode every
entity, Ei, by its BERT embedding, ei. If an entity
ei consists of multiple tokens (many time expres-
sions are multi-token), it is average-pooled (local
pool in Figure 1) over the embedding of the corre-
sponding tokens in the last BERT layer.

For the CONTAINS task, we create relation can-
didates from all pairs of entities within an input
sequence. Each candidate is represented by the
concatenation of three embeddings, ei, ej , and G,
as [G:ei:ej], where G is an average-pooled embed-
ding over the entire sequence, and is different from
the embedding of [CLS] token. The [CLS] token is

the conventional token BERT inserts at the start of
every input sequence and its embedding is viewed
as the representation of the entire sequence. The
concatenated embedding is passed to a linear classi-
fier to predict the CONTAINS, CONTAINED-BY,
or NONE relation, r̂ij , as in eq. (1).

P (r̂ij |x, Ei, Ej)=softmax(W
L[G : ei : ej ] + b)

(1)

where WL ∈ R3dz×lr , dz is the dimension of the
BERT embedding, lr = 3 for the CONTAINS la-
bels, b is the bias, and x is the input sequence.

Similarly, for the DocTimeRel (dtr) task we
feed each entity’s embedding, ei, together with the
global pooling G, to another linear classifier to pre-
dict the entity’s five “temporal statuses”: TIMEX
if the entity is a time expression or the dtr type
(BEFORE, AFTER, etc.) if the entity is an event:

P ( ˆdtri|x, Ei) = softmax(WD[G : ei] + b)
(2)

where WD ∈ R2dz×ld , and ld = 5.
For the combined task, we define loss as:

L(r̂ij , rij) + α(L( ˆdtri, dtri) + L( ˆdtrj , dtrj))
(3)

where r̂ij is the predicted relation type, ˆdtri and
ˆdtrj are the predicted temporal statuses for Ei and
Ej respectively, rij is the gold relation type, and
dtri and dtrj are the gold temporal statuses. α is a
weight to balance CONTAINS loss and dtr loss.

2.2 Window-based token sequence processing
Following Lin et al. (2019), we use a set window of
tokens (Token-Window) disregarding natural sen-
tence boundaries for generating instances. BERT
may still take punctuation tokens into account.
Each token sequence is limited by a set number
of entities (Entity-Window) to be processed. We
apply a sliding token window (windows may over-
lap), thus every entity gets processed. Positional
information for each entity is output along the to-
ken sequence and is propagated through different
layers via the entity-aware self-attention mecha-
nism (Wang et al., 2019).

3 Experiments

3.1 Data and Settings
We adopt the THYME corpus (Styler IV et al.,
2014) for model fine-tuning and evaluation. The

http://ctakes.apache.org
http://ctakes.apache.org
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Model P R F1
Multi-pass 0.735 0.613 0.669
Multi-pass+Silver 0.674 0.695 0.684
One-pass 0.647 0.671 0.659
One-pass+[CLS] 0.665 0.673 0.669
One-pass+Pooling 0.670 0.689 0.680
One-pass+Pooling+MTL 0.686 0.687 0.686

Table 1: Model performance of CONTAINS relation on
colon cancer test set. Multi-pass baselines are from Lin
et al. (2019)’s system without and with self-training us-
ing silver instances (system predictions on a unlabeled
colon cancer set). We tested a one pass system with
just argument embeddings; with the [CLS] token as the
global context vector ([CLS]); with argument embed-
dings plus a globally pooled context vector (Pooling);
and with global pooling as well as multi-task learning
(MTL) with DocTimeRel.

one-pass multi-task model is fine-tuned on the
THYME Colon Cancer training set with un-
cased BERT base model, using the code released
by Wang et al. (2019)1 as a base. The batch size
is set to 4, the learning rate is selected from (1e-5,
2e-5, 3e-5, 5e-5), the Token-Window size is se-
lected from (60, 70, 100), the Entity-Window size
is selected from (8, 10, 16), the training epochs
are selected from (2, 3, 4, 5), the clipping distance
k (the maximum relative position to consider) is
selected from (3, 4, 5), and α is selected from (0.01,
0.05). A single NVIDIA GTX Titan Xp GPU is
used for the computation. The best model is se-
lected on the Colon cancer development set and
tested on the Colon cancer test set, and on THYME
Brain cancer test set for portability assessment.

3.2 Results on THYME

Table 1 shows performance of our one-pass models
for the CONTAINS task on the Clinical TempEval
colon cancer test set. The one-pass (OP) model
alone obtains an F1 score of 0.659. Adding the
[CLS] token as the global context vector increases
the F1 score to 0.669. Using a globally average-
pooled context vectors G instead of [CLS] im-
proves performance to 0.680, better than the multi-
pass model without silver instances (Lin et al.,
2019). Applying the MTL setting, the one-pass
twin-task (CONTAINS and DocTimeRel) model
without any silver data reaches 0.686 F1, which
is on par with the multi-pass model trained with
additional silver instances on the CONTAINS task,

1https://github.com/helloeve/mre-in-one-pass

Model Single MTL
AFTER 0.86 0.83
BEFORE 0.88 0.89
BEFORE/OVERLAP 0.63 0.56
OVERLAP 0.89 0.85
TIMEX 0.98 0.98
OVERALL 0.88 0.86

Table 2: Model performance in F1-scores of tem-
poral statuses on colon cancer test set. Single:
One-pass+Pooling for a single dtr Task; MTL: One-
pass+Pooling for twin tasks: CONTAINS and dtr.

Model P R F1
Lin et al. (2019) 0.473 0.700 0.565
One-pass+Pooling 0.506 0.643 0.566
One-pass+Pooling+MTL 0.545 0.624 0.582

Table 3: Model performance of CONTAINS relation on
brain cancer test set.

0.684 F1 (Lin et al., 2019).
Table 2 shows the performance of our one-pass

models for the DocTimeRel task on the Clinical
TempEval colon cancer test set. The single-task
model achieves 0.88 weighted average F1, while
the MTL model compromises the performance to
0.86 F1. Of note, this result is not directly com-
parable to Bethard et al. (2016) results because
the Clinical TempEval evaluation script does not
take into account if an entity is correctly recog-
nized as a time expression (TIMEX). There are two
types of entities in the THYME annotation: events
and time expressions (TIMEX). The Bethard et al.
(2016) evaluation on DocTimeRel was focused on
all events, and classified an event into four Doc-
TimeRel types. Our evaluation was for all entities.
For a given entity, we classify it as a TIMEX or
an event; if it is an event, we classify it into four
DocTimeRel types, for a total of five classes.

Table 3 shows the portability of our one-pass
models on the THYME brain cancer test set. With-
out any tuning on brain cancer data, the MTL
model with global pooling performs at 0.582 F1,
which is better than the multi-pass model trained
with additional silver instances (0.565 F1) re-
ported in Lin et al. (2019), trading roughly equal
amounts of precision for recall to obtain a bet-
ter balance. Without MTL, the one-pass CON-
TAINS model with global context embeddings
(One-pass+Pooling) achieves 0.566 F1 on the brain
cancer test set, significantly lower than the MTL
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Model flops/inst inst# Ratio
OP 218,767,889 20k 1
OP+MTL 218,783,260 20k 1
Multi-pass 218,724,880 427k 23
Multi-pass+Silver 218,724,880 497k 25

Table 4: Computational complexity in flops per in-
stance (flops/inst)×total number of instances (inst#).

model (using a Wilcoxon Signed-rank test over
document-by-document comparisons, as in (Cherry
et al., 2013), p-value=0.01962).

3.3 Computational Efficiency

Table 4 shows the computational burden for dif-
ferent models in terms of floating point operations
(flops). The flops are derived from TensorFlow’s
profiling tool on saved model graphs. The sec-
ond column is the flops per one training instance,
the third column lists the number of instances for
different model settings. The total computational
complexity for one training epoch is thus the mul-
tiplication between column 2 and 3. The Ratio
column is the relative ratio of total complexity us-
ing the OP total flops as the comparator.

For relation extraction, all entities within a se-
quence must be paired. If there are n entities in
a token sequence, there are n × (n − 1)/2 ways
to combine those entities for relational candidates.
The multi-pass model would encode the same se-
quence n × (n − 1)/2 times, while the one-pass
model would only encode it once and add the pair-
ing computation on top of the BERT encoding rep-
resented in Figure 1 with very minor increase in
computation per one instance (about 43K flops);
and the MTL model adds another 15k flops; but
they are of the same magnitude, 219K flops. The
one-pass models save a lot of passes on the training
instances, 20k vs. 497k, which results in a signif-
icant difference in computational load, 1 vs. 25,
which could be several hours to several days differ-
ence in GPU hours. The exact number of training
instances processed by the one-pass model is af-
fected by the Token-Window and Entity-Window
hyper-parameters. However, even in the worst case
scenario, when the Token-Window is set to 100,
and the Entity-Window is set to 8, there are 108K
training instances for the one-pass model, which
is still substantially fewer training instances than
what are used for the multi-pass model. In addi-
tion, since the one-pass models do not run the extra

steps used for generating silver instances (Lin et al.,
2019), the time savings is even greater.

4 Discussion

Through table 1 row 3-5, we can see that sequence-
wise embedding, either global pooling G or [CLS],
is important for clinical temporal relation extrac-
tion which involves long-distance relations that
may go across multiple natural sentences. Entity
embeddings are good for tasks that focus on short-
distance relations (such as (Gábor et al., 2018)), but
may not be sufficient for picking enough context
for long-distance relations.

Combining MTL with a one-pass mechanism
produces a more efficient and generalizable model.
With merely additional 15k flops (table 4 row 1
and 2), the model achieves high performance for
both tasks. However, we found that it is hard for
both tasks to get top performance. If the weight
for dtr loss is increased, the dtr F1 increases at
the cost of the CONTAINS scores. Even though
the majority of entities in CONTAINS relations
have aligned dtr values (e.g., in Figure 2(#1), both
entities have matching dtr value, AFTER), some re-
lations do have conflicted dtr values. For example,
in Figure 2(#2), the dtr for screening is BEFORE,
while test is a BEFORE OVERLAP (the present
perfect tense signifies tests happened in the past but
lasts through present, hence BEFORE OVERLAP).
Even though it is a gold CONTAINS annotation,
the model may be confused by an event that hap-
pened in the past (screening) to contain another
event (test) that is longer than its temporal scope.
Due to these conflicts, we thus pick the more chal-
lenging CONTAINS task as our priority and set α
relatively low (0.01) in order to optimize the model
towards the CONTAINS task, ignoring some of the
dtr errors or conflicts. In the meantime, the MTL
setting does help prevent the model from over-
fitting to one specific task, thus achieving some
level of generalization. The significant 1.6% in-
crease in F1-score on the Brain test set in table 3
demonstrates the improved generalizability.

In conclusion, we built a ”green” model for a
challenging problem. Deployed on a single gpu
with 25 times better efficiency, it succeeded in
both temporal tasks, achieved better generalizabil-
ity, and suited to other pre-trained models (Liu
et al., 2019; Alsentzer et al., 2019; Beltagy et al.,
2019; Lan et al., 2019; Yang et al., 2019, etc.)
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#1: Subsequent
AFTER

staging will include
AFTER

MRI of the pelvis...

#2: His colon cancer
BEFORE

screening in the past has been fecal

occult blood
BEFORE/OVERLAP

tests yearly since the age of 55...

Figure 2: CONTAINS Relations with match-
ing(#1)/conflicting(#2) DocTimeRel values.
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