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Abstract
We have seen significant improvements in machine translation due to the usage of deep learn-
ing. While the improvements in translation quality are impressive, the encoder-decoder archi-
tecture enables many more possibilities. In this paper, we explore one of these, the generation
of constrained translation. We focus on length constraints, which are essential if the translation
should be displayed in a given format.

In this work, we propose an end-to-end approach for this task. Compared to a traditional
method that first translates and then performs sentence compression, the text compression is
learned completely unsupervised. We address the challenge of data availability as well as inves-
tigate several methods to integrate the constraints into the model. By combining the idea with
zero-shot multilingual machine translation, we are also able to perform unsupervised monolin-
gual sentence compression.

Using the proposed approach, we are able to improve the translation quality for translation with
length constraints as well as for monolingual length compression. In addition, the results are
confirmed by a human evaluation.

1 Introduction

Neural machine translation (NMT) (Sutskever et al., 2014; Bahdanau et al., 2014) exploits neu-
ral networks to directly learn to transform sentences in a source language to sentences in a target
language. This technique has significantly improved the quality of machine translation (Bojar
et al., 2016; Cettolo et al., 2015). The advances in quality also allow for the application of this
technology to new real-world applications.

While research systems tend to purely focus on a high translation quality, real-world ap-
plications often have additional requirements for the output of the system. One example is the
mapping of markup information from the source text to the target text (Zenkel et al., 2019). In
this work, we will focus on another use case, the generation of translations with given length
constraints. Thereby, we focus on compression. That means the target length is shorter than the
actual length of the translation. When translating from one language to another, the length of
the source text is usually different from the length of the target text. While for most applications
of machine translation this does not pose a problem, for some applications this significantly de-
teriorates the user experience. For example, if the translation should be displayed in the same
layout as the source text (e.g. in a website), it is advantageous if the length stays the same. An-
other use case are captions for videos. A human is only capable of reading text up to a certain
speed. For an optimal user experience, it is therefore not only important to present an accurate
translation, but also to present the translation with a maximum number of words.
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A first approach to address this challenge would be to use a cascade of a machine trans-
lation and sentence compression system. In this case, we would need training data to train
the machine translation system and additional training data to train the sentence compression
system. It is very difficult and sometimes even impossible to collect the training data for the sen-
tence compression task. Furthermore, we need a sentence compression model with a parametric
length reduction ratio. For a supervised model, we would therefore need examples with differ-
ent length reduction ratios. Therefore, this work focuses on unsupervised sentence compression.
Compared to related work, in this method we even do not assume to have any compressed sen-
tences. So we need to learn how to compress sentences without having seen any compressed
sentence in training.

While our work focuses on the end-to-end approach to translation combined with sen-
tence compression, monolingual sentence compression is another important task. For example,
human-generated captions are often not an accurate transcription of the audio, but in addition
the text is shortened. This is due to cognitive processing constraints. The user is able to listen to
more words in a given time than he or she can read in the same amount of time. When combin-
ing the length-constrained machine translation with the idea of zero-shot machine translation,
the proposed method is also able to perform monolingual sentence compression. In addition, by
adjusting the loss function we are able to use the same framework to perform text simplification.

The main contribution of this work is an end-to-end approach to length-constrained trans-
lation by jointly performing machine translation and sentence compression. We are able to
show that for this task an end-to-end approach outperforms the cascade of machine translation
and unsupervised sentence compression.

Therefore, two contributions are essential. First, by using pseudo-supervised training on
standard parallel data, we are able to learn to compress without ever showing the model a com-
press sentence. This is achieved by making the model aware of properties (here the maximum
length) that the output must fulfil. The second contribution is the adaptation of the architecture
that the model is able to fulfil the properties also there is a mismatch between its influence in
training and in testing. While it is straightforward to fulfil it during training, it can be difficult
during decoding.

A third contribution of this work is to extend the presented approach to unsupervised
monolingual sentence compression. By combining the presented approach with multilingual
machine translation, we are able to also generate paraphrases with a given length constraint.
The investigation shows that a system that is trained on several languages is able to successfully
generate monolingual paraphrases.

2 Constrained decoding

In the targeted scenario, there is no available training data with the constraints of interest. There-
fore, we need to teach the system something about the output that it cannot directly learn from
the data. We investigate different methods that enable the model to fulfil the constraints without
learning them from the data.

The main application is length-constrained translation. That means that we want to gen-
erate a translation with a given target length. Therefore we focus on the case of shortening
the translations. While the length can be measured in words, subword tokens or letters, in the
experiments we measured the length by subword tokens.

A straightforward approach is to disregard the constraints during training and search for the
most probable translation respecting the constraints during decoding. We do this by restricting
the search space to generate only translations with a given length. The length of the output is
modeled by the probability of the end-of-sentence (EOS) token. By modifying this probability,
we introduce a hard constraint that is always fulfilled.
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Afterwards, we propose the length-aware model. This uses two techniques that are able
to learn how to fulfil the constraints without ever seeing a sentence that was generated with the
constraints. This enables us to train the model on standard parallel data.

We use pseudo-supervised training and assign the matching constraints to existing parallel
data. Furthermore, by adapting the architecture, we address the train-test mismatch between the
constraints in training and in decoding.

It is worth noting that the length-aware model uses the constraints as soft constraints,
where translations fulfilling the constraints are preferred but other ones could also be gener-
ated. In contrast, they are modeled as hard constraints when adapting the search. In this case,
only translation that fulfill the constraints are generated. Therefore, both methods can also be
combined.

2.1 Restricted search space

A first strategy to incorporate the additional length constraints is to ignore them during training
and restrict the inference-time search space to hypotheses that fulfill the constraint. For length
constraints, this can be achieved by manipulating the end-of-sentence token probability. First,
we need to ensure that the EOS token is not generated before the desired length of output J . This
can be ensured by setting the probability for the end-of-sentence token to zero for all positions
before the desired length and re-normalizing the probability.

p′(yj |x1, . . . , xI , y1, . . . , yj−1) =

{
p(yj |x1,...,xI ,y1,...,yj−1)

1−p(EOS|x1,...,xI ,y1,...,yj−1)
yj 6= EOS

0 yj = EOS
(1)

Finally, we ensure to stop the search at the desired length by setting the probability of the
end-of-sentence token to one if the output sequence has reached this length.

p′(yj |x1, . . . , xI , y1, . . . , yj−1) =

{
0 yj 6= EOS
1 yj = EOS

(2)

While this approach will guarantee that the output of the translation systems always meets
the length condition (hard constraint), it also has one major drawback. Until the system reaches
the constrained length, the system is not aware of how many words it is still allowed to generate.
Therefore, it is not able to shorten the beginning of the sentence in order to fulfil the length
constraint.

Motivated by this observation, we investigate methods to integrate the length constraint
into the model and not only apply it during inference.

2.2 Length-aware model

The main idea of the length-aware model is that it should be aware of the output length through
the whole decoding process. Therefore, the model needs as input in addition to the source sen-
tence X = x1, . . . , xI the desired target length J . Then the model can decide what to generate
based on the source text as well as only the available space given by the length constraint. How-
ever, this poses the challenge that we also need to train the model using data with constraints.
These challenges are addressed by using pseudo-supervised training, where the constraints are
added to existing parallel data and by integrating the length into the model. We will investigate
methods to encode the length globally for the full sentence as well as methods to encode the
remaining length locally at each decoding step.
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2.2.1 Pseudo-supervised training
In contrast to only restricting the search space, for the length-aware model we also need the
target length during training. Therefore, the first challenge we need to address when including
the length constraints into the model itself is the question of training data. While there is large
amounts of parallel training data, it is hard to acquire training data with length constraints.
Therefore, we investigate methods to train the model with standard parallel training data. In
contrast to other unsupervised methods, we are missing not only parallel data between the input
and the output, but we have no data for the output. So we need to learn how to compress a
sentence without ever seeing a compressed sentence.

Motivated by the success of adding the length in the use case where the output length
should not be shortened but similar to the input length (Lakew et al., 2019), we perform the
training by a type of pseudo-supervision. For each source sentence, in training, we also know
the translation and therefore its length. The main idea is that we now assume this sentence
was generated with the constraint to generate a translation with exactly the length of the given
translation. Of course, this is mostly not the case. The human translator generated a translation
that appropriately expresses the meaning of the source sentence and not a sentence that fulfills
the length constraints.

Therefore, we have a mismatch between training and testing conditions and the learning is
more difficult. While during training the given length can relatively easily be predicted by the
expected length when expressing all source content in the target language, this is no longer true
for testing. Due to the condition in training the system might learn to simply ignore the length
information and instead generate a normal translation putting all the information of the source
sentence into the target sentence. In this case, we would not have the possibility to control the
target length by specifying our desired length.

2.2.2 Length representation
To address this problem, we investigate three different methods to represent the target length in
the model. The motivation is thereby to ensure that the model uses the additional length infor-
mation although it might not strictly necessary during training. Thereby, the training examples
consist of a source sentence X = x1, . . . , xI , a target sentence Y = y1, . . . , yJ and the target
length J .

Source embedding A first method is to model the target length globally for the whole sen-
tence. This can be achieved by including the target length into the source sentence as an addi-
tional token. This is motivated by successful approaches for multilingual machine translation
(Ha et al., 2016), domain adaptation (Kobus et al., 2017) and formality levels (Sennrich et al.,
2016a). We change the training procedure to not use X as the input to the encoder of the NMT
system, but instead J,X . In this way, the encoder will learn an embedding for each target length
seen during training.

There are two challenges using this approach. First, the dependency between the described
length J and the output Y is quite long within the model. Therefore, the model might ignore the
information and just learn to generate the best translation for a given source sentence. Secondly,
the representations for all possible target lengths are independent from each other. This poses a
special challenge for long sentences which occur less frequently, e.g. there will be less sentence
with length 63 than with length 9 and therefore the embedding of these lengths will not be
learned as well as the frequent ones.

Target embedding We address the first challenge by integrating the length constraint directly
into the decoder. In this case we model locally at each decoding step by encoding the number
of words remaining to be generated. This is motivated by similar approaches to supervised
sentence compression (Kikuchi et al., 2016) and zero-shot machine translation (Ha et al., 2017).
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We incorporate the information of the number of remaining target words at each target position.
For one, this should ensure that the length information is not lost during the decoding process.
Secondly, by embedding smaller numbers which occur more frequently in the corpus towards
the end of the sentence, the problem of rare sentence lengths does not matter that much.

Formally, at each decoder step j the baseline model starts with the word embedding of the
last target word yj−1. In the original transformer architecture (Vaswani et al., 2017), the posi-
tional encoding is applied on top of the embedding to generate the first hidden representation

h0 = pos(emb(yj−1), j). (3)

In our proposed architecture, we include the number of remaining target words to be generated
J − j. We concatenate h0 with the length embedding and then apply a linear translation and a
non-linearity to reduce the hidden size to the one of the original word embedding

h′0 = relu(lin(cat(h0, lenEmb(J − j))). (4)

The proposed architecture allows the model to consider the number of remaining target
words at each decoding step. While the baseline model will only cut the end of the sentences,
the model is able to shorten already at the beginning of the sentence.

Positional encoding Finally, we also address the challenge of representing sentence lengths
that are less frequent. The transformer architecture introduced the positional encoding. This
encodes the position within the sentence using a set of trigonometric functions. While their
method encodes the position relative to the start of the sentence, we follow Takase and
Okazaki (2019) to encode the position relative to the end of the sentence. Thereby, at each
position we encode the number of remaining words of the sentence. Formally, we replace
h0 = pos(emb(yj−1), j) by h∗0 = pos(emb(yj−1), J − j).

2.3 Additional constraints

Besides constraining the number of words, other constraints can be implemented as easily using
the same framework. In this work, we show this by limiting the number of complex and difficult
words. One use case is the generation of paraphrases in simplified language. A metric to
measure text difficulty, the Dale-Chall Readability metric (Chall and Dale, 1995), for example,
counts such difficult words. In an NMT system, longer words are typically split into subword
units by Byte Pair Encoding (BPE) (Sennrich et al., 2016b). A complex word like marshmallow
is split into several parts, for instance mar@@ shm@@ allow, where @@ indicates that the
word is not yet finished.

The idea to generate simpler text is now to limit the sub-word tokens that do not end a
word (the ones ending on @@). This can be implemented by only counting the words that end
on @@. If the target sentence would for example by I like mar@@ shm@@ allow, the target
count would be 2.

When encoding the remaining length in the decoder, we would now not reduce it by 1 at
each step, but only if the token is ending on @@. So the length sequence used in decoding
would be 2 2 2 1 0.

During inference, we would now always try to generate sequences without splitted words
by inputting the target length of 0. Since it is a soft constraint, the model can still generate
subwords, if the other model strongly suggests that.

As for the length constrained decoding, we also would perform pseudo-supervised training
and thereby be able to train our model on the default parallel data.
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Reference: It might sound like it’s a bad thing.
Baseline: But it might sound like
Constrained: It sounds really bad .

Table 1: Example of constrained translation

3 Evaluation

The lack of suitable data is not only a challenge for training but also for evaluation. The default
approach to evaluating a machine translation system is to compare the output of the system with
human translation using some automatic metric, e.g. BLEU (Papineni et al., 2002).

In our case, we would need to have a human-generated translation, which also fulfills the
additional constraints. For example, translation with a length that is shortened to 80% of the
input. Since this type of translation data is not available, we investigate methods to compare the
length-constrained output of the system with standard human translation that do not fulfill any
specific constraints.

3.1 Word matching metrics

While there is a significant amount of research in automatic metrics for machine translation (Ma
et al., 2018, 2019), BLEU is still the most commonly used metric. Therefore, a first approach
would be to use BLEU to compare the automatic translation with length constraints with the
human translation without constraints. If we were using length constraints, this would lead to
low BLEU scores due to the length penalty of the metric. But since all systems must fulfill
the length constraint, the penalty would be the same for all output and we could still compare
between the different outputs.

A problem of using BLEU scores as evaluation metrics in this task is illustrated by the
example translations in Table 1. The baseline system only uses the length constraint for re-
stricting the search space. In the constrained system, we are using the length constraint also
as additional embeddings in the decoder. Looking at this example sentence, a human would
rate the constrained translation better than the baseline translation. The problem of the latter
model is that it often generates a prefix of a full translation. While this does not lead to a good
constrained translation, it still leads to a relatively high BLEU score. In this case, we have one
matching 4-gram, 2 tri-gram, 3 bigrams and four unigrams.

In contrast, the length-constrained model only contains words matching the reference scat-
tered over the sentence. Therefore, in this case, we only have two unigram matches. Guided by
this observation, we used different metrics to evaluate the models.

3.2 Embedding-based metrics

In order to address the challenges mentioned in the last subsection, we used metrics that are
based on sentence embeddings instead of word or character-based representation of the sen-
tence. This way it is no longer important that the words occur in the same sequence in auto-
matic translation and reference. Based on the performance of the automatic metrics in the WMT
Evaluation campaign in 2018, we used RUSE (Shimanaka et al., 2019) metric. It uses sentence
embeddings from three different models: InferSent, Quick-Thought and Universal Sentence
Encoder. Then the quality is estimated by an MLP based on the representation of the hypoth-
esis and the reference translation. The hyper parameters (number of layers, hidden size, batch
size, dropout rate) were optimized on the development set of the WMT Evaluation campaign
and the MLP was not retrained for this task.
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4 Experiments

4.1 Data
We train our systems on the TED data from the IWSLT 2017 multilingual evaluation campaign
(Cettolo et al., 2017). The data contains parallel data between German, English, Italian, Dutch
and Romanian. We create three different systems. The first system is only trained on the
German-English data, the second one is trained on German-English and English-German data
and the last one is trained on {German, Dutch, Italian, Romanian} and English data in the both
directions.

The data is preprocessed using standard MT procedures including tokenization, truecasing
and BPE with 40K codes. For model selection, the checkpoints performing best on the vali-
dation data (dev2010 and tst2010 combined) are averaged, which is then used to translate the
tst2017 test set.

In the experiments, we address two different targeted lengths. Thereby the length of a
sentence is measured by the number of subword tokens. In order to not use any information
from the reference, we measure length limits relative to the source sentence length. We aim to
shorten the translation to produce output that is 80% and 50% of the source sentence length.
While in the first case, most information can still be conveyed, we wanted to see if the model is
able to concentrate really on the important parts when shorting by half the length.

4.2 System
We use the standard transformer architecture (Vaswani et al., 2017) and increase the number
of layers to eight. The layer size is 512 and the inner size is 2048. Furthermore, we apply
word dropout (Gal and Ghahramani, 2016) with p = 0.1. In addition, layer dropout is used
with p = 0.2 as in Pham et al. (2019). We use the same learning rate schedule as in the
original work. The implementation is available on github1. All systems were always trained
from scratch with random initialization.

4.3 Task difficulty
In an initial set of experiments, we assess the difficulty of having the additional length con-
straints. Therefore, we used the length of the human reference translation as a first target length.
One could even argue that should make the typical machine translation easier, since some in-
formation about the translation is known. The results of this experiment are shown in Table
2. Since we do not perform compression in this experiment, the aforementioned problem with
BLEU should not apply here.

Model BLEU RUSE
Baseline 30.80 −0.085
Only Search 28.32 −0.124
Source Emb 28.56 −0.126
Decoder Emb 27.88 −0.140
Decoder Pos 28.80 −0.138

Table 2: Using oracle length

However, the results indicate that the baseline system achieves the best BLEU score as
well as the best RUSE score. All other models generate translations that perfectly fit the desired
target length, but this leads to a drop in translation quality. Therefore, even if the target length

1https://github.com/jniehues-kit/NMTGMinor/tree/DbMajor
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is the same as the one of the reference translation, the restriction increases the difficulty of the
problem. One reason could be that the machine translation system rarely generates translations
which exactly match the reference. By forcing the translation to have an exact predefined length,
we are increasing the difficulty of the problem.

4.4 Length representation

In a first series of experiments for length constrained output, we analyzed the different tech-
niques to encode the length of the output. First, we are interested in whether the different
length representations are able to enforce an output that has the length we are aiming at (soft
constraints). For the German to English translation task, the length of the different encoding
versions are shown in Table 3. We define the length as the average difference between the
targeted output given in BPE units and the output of the translation system.

First, without adding any constraints, the models generate translations that differ by 3.9
and 10.29 words from the targeted length. By specifying the length in the source side, we can
reduce the length difference to half a word in the case of a targeted length of 80% and one and a
half words in the case of 50% of the source length. The models using the decoder embeddings
and the decoder positional encoding were able to nearly perfectly generate translation with the
correct number of words.

Encoding Avg. length difference
80% 50%

Baseline 3.90 10.29
Source Emb 0.55 1.40
Decoder Emb 0.07 0.16
Decoder Pos 0.09 0.19

Table 3: Avg. Length distance

Besides fulfilling the length constraints, the translations need to be accurate. Since we
wanted to have a fair comparison, we evaluated the output when using a restricted search space,
so that only translations with the correct number of words are generated (hard constraints). The
results are summarized in Table 4

Encoding RUSE
80% 50%

Baseline −0.272 −0.605
Source Emb −0.263 −0.587
Decoder Emb −0.2469 −0.555
Decoder Pos −0.2598 −0.577

Table 4: German-English translation quality

As shown in the results, we see improvements in translation quality when using the source
embedding within the encoder. We have further improvements if we represent the targeted
length within the decoder. In this case, we can improve the RUSE score by 2% and 5% absolute.
The decoder encodings perform similarly, with small advantage for using embeddings and not
positional encodings.Therefore, in the remaining of the experiments we use the embeddings.
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4.5 Multi-lingual
In a second series of experiments, we combine the constrained translation approach with multi-
lingual machine translation. The combination of both offers the unique opportunity to perform
unsupervised sentence compression. We can treat the translation of English to English as a zero-
shot direction (Johnson et al., 2017; Ha et al., 2016). This has not been addressed in traditional
multi-lingual machine translation, since in this case the model will often just copy the source
sentence to the target one. By adding the length constraints, we force the mode to reformulate
the sentence in order to fulfil the length constraint.

The results for these experiments are shown in Table 5. In this case, we compared three
scenarios. First, a model trained only on translations from German to English. Secondly, a
model trained to translate from German to English and English to German. Finally, a model
trained on four languages to and from English.

Target Length 0.8 Target Length 0.5
Baseline Dec. Emb Baseline Dec. Emb

Model DE-EN EN-EN DE-EN EN-EN DE-EN EN-EN DE-EN EN-EN
DE-EN −0.272 −0.247 −0.587 −0.554
DE+EN −0.264 −0.817 −0.223 −0.905 −0.598 −0.954 −0.523 −0.978
All −0.225 −0.102 −0.214 0.020 −0.560 −0.525 −0.548 −0.481

Table 5: Multi-lingual systems

First of all, since the models are trained on relatively small data, we always gain when using
more language pairs. Secondly, for all models training from German to English, the decoder
embedding is clearly better than the baseline. Finally, to perform paraphrasing, we need a
multilingual system with several language pairs. Both models trained only on the German to
English and English to German data fail to generate adequate translation. In contrast, if we
look at the translation from English to English for the multilingual model, the scores are clearly
better than the ones from German to English. Furthermore, again, the system with decoder
embeddings is clearly better than the baseline system.

In addition, we performed the same experiment with a target length of half the source
length (Table 5). Although the absolute scores are significant lower since the model has to
reduce the length further, the tendency is the same for this direction.

4.6 End2End vs. Cascaded

Length Model DE-EN EN-EN

0.8
End2End −0.247 0.020
Cascade −0.259 −0.118
Cascade Fix. Pivot −0.166

0.5
End2End −0.555 −0.481
Cascade −0.575 −0.521
Cascade Fix. Pivot −0.544

Table 6: Comparison of End-to-End and Cascaded approach

In this work, we are able to combine machine translation and sentence compression. In a
third series of experiments, we wanted to investigate the advantage of modelling it in an end-to-
end fashion compared to a cascade of different models. We performed this investigation again
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for two tasks: German to English and English to English.
The cascade system for German to English, first translates the German text to English

with a baseline machine translation system. In a second step, the output is compressed with
the multi-lingual MT system. For the English-to-English system, the cascade system removes
the zero-shot condition. Therefore, we first translate from English to German with the baseline
system and then translate with length contrasted from German to English. In cascade fix pivot
also the English to German system already fulfills the length constraint.

As shown in Table 6, in all conditions, the end-to-end approach outperforms the cascaded
version. This is especially the case for the English-to-English machine translation. Compared
to multi-lingual machine translation, for these tasks it seems to be beneficial to perform the
zero-shot tasks instead of using a pivot language.

4.7 Simplification

Metric DE-EN DE+EN All
Base Simp. Base Simp. Base Simp

BPE tokens 1961 1053 1978 1041 1899 991
DCR 7.63 7.47 7.69 7.5 7.66 7.45
FRE 83.86 86.18 84.31 85.49 82.98 85.59
BLEU 30.80 30.62 32.25 31.38 32.84 31.29
RUSE −0.085 −0.092 −0.082 −0.080 −0.042 −0.084

Table 7: Simplification

In the last series of experiments (Table 7), we investigate the ability of our method to
generate simpler sentences. As described in Section 2.3, we used the proposed framework to
reduce the number of rare and complex words. Again, we are using the decoder embedding
to represent the amount of BPE units in the sentences. We use a system for 1 language pair,
2 language pairs and the system using 8 language pairs. First, the system is able to reduce
the number of BPE tokens in the text significantly. The amount of tokens is reduced by up
to 48%. Since the number of tokens is nearly kept the same, this is also reflected in a better
readability. This highlights also the importance of having soft constraints. In this use case,
we cannot generate reasonable translations without using rare words that get split into separate
subword units. However, the proposed framework is able to reduce the amount of these words.

We measure the readability using the Dale-Chall readability formula (DCR) (Chall and
Dale, 1995) and the Flesch Reading Ease (FRE) (Flesch, 1948) .2 As shown in the table, both
scores indicate that the readability is increased by the proposed method. On the other hand, we
see that the translation quality is only affected slightly.

4.8 Human Evaluation

In addition to the automatic evaluation, a human evaluation of the output was performed. This
evaluation was performed using the multilingual machine translation system translating from
German to English. Thereby, a length constraint of 80% of the source sentence was used.

Two evaluators were asked to assign a score between 0 and 100 to the translations of 15
sentences each. In Table 8 we summarized the results. We calculate the average score of both
systems as well as how often the system from one model was evaluated better than the other.
First, the proposed methods were evaluated better by around 5%. Secondly, when comparing

2The scores were calculated by the tool https://github.com/mmautner/readability
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the scores for the individual sentences, the proposed method generated better translations nearly
three times as often as the baseline model did.

Evaluation Baseline Decoder Emb
Score 68% 73%
Wins 6 17

Table 8: Human Evaluation

4.9 Qualitative Results
For the length restricted system, we also present examples in Table 9. The translations were
generated with the multi-lingual system using restricted search space with 0.8 times and 0.5
times the length of the source length. The length is thereby measured using the number of
subword tokens.

Source: Und, obwohl es wirklich einfach scheint, ist es tatsächlich richtig schwer,
weil es Leute drängt sehr schnell zusammenzuarbeiten.

Reference: And, though it seems really simple, it’s actually pretty hard because it
forces people to collaborate very quickly.

Base 0.8: and even though it really seems simple , it is actually really hard , because
it really pushes

Dec. Emb. 0.8 : and although it really seems simple , it is really hard because it drives
people to work together .

Base 0.5 : and even though it really seems simple , it is really hard
Dec. Emb. 0. 5: it is really hard because it drives people to work together .
Source: Konstrukteure erkennen diese Art der Zusammenarbeit als Kern eines

iterativen Vorgangs.
Reference: Designers recognize this type of collaboration as the essence of the

iterative process.
Base 0.8: now , traditional constructors recognize this kind of collaboration as the core
Dec. Emb. 0.8 designers recognize this kind of collaboration as the core of iterative .
Base 0.5: now , traditional constructors recognize this kind
Dec. Emb: 0.5 developers recognize this kind of collaboration .

Table 9: Examples

In the examples we see clearly the problem of the baseline model when using a restricted
search space. The model mainly outputs the prefix of the long translation and does not try to put
the main content into the shorter segment. In contrast, the system using the decoder embeddings
is aware when generating a word how much space it still has to fill the content. Therefore, it
does not just cut part of the sentence, but compress the sentence and extract the most important
part of the sentence. While the first example is more concentrating on the second part of the
original sentence, the second one is focusing at the beginning. Although the model reducing
the length by 50% has to remove some content of the original sentence, the sentence is still
understandable.

5 Related Work

The most common approach to model the target length within NMT is the use of coverage
models (Tu et al., 2016). More recently, (Lakew et al., 2019) used similar techniques to generate
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translation with the same length as the source sentence. Compared to these works, we tried
to reduce the length of the sentence by a larger margin and thereby have the situation where
the training and testing conditions differ more. Furthermore, the use of multi-lingual machine
translation allows also the generation of compressed sentences in the same language. This work
on length-controlled machine translation is strongly related to sentence compression, where the
compression is performed in the monolingual case. First approach used rule-based approaches
(Dorr et al., 2003) for extractive sentence compression. In abstractive compression methods
using syntactic translation (Cohn and Lapata, 2008) and phrase-based machine translation were
investigated (Wubben et al., 2012). The success of encoder-decoder models in many areas
of natural language processing (Sutskever et al., 2014; Bahdanau et al., 2014) motivated their
successful application to sentence compression. (Kikuchi et al., 2016) and (Takase and Okazaki,
2019) investigated an approach to directly control the output length. Although their methods use
similar techniques to ours, the model is trained in a supervised way. Motivated by recent success
in unsupervised machine translation (Artetxe et al., 2018; Lample et al., 2018), a first approach
to learn text compression in an unsupervised fashion was presented in Fevry and Phang (2018).
Text compression in a supervised fashion for subtitles was investigated in Angerbauer et al.
(2019).

In contrast to text compression, the combination of readability and machine translation
has been researched recently. (Agrawal and Carpuat, 2019) presented an approach to model
the readability using source side annotation. In contrast to our work, they concentrated on the
scenario where manually created training data is available. In Marchisio et al. (2019) the authors
specified the desired readability difficulty either by a source token or through the architecture
by different encoders. While they concentrate on a single task and have only a limited number
of difficulty classes, the work presented here is able to handle a huge number of possible output
classes (e.g. in text compression the number of words) and can be applied for different tasks.

6 Conclusion

In this work, we investigated the challenge of generating translation with additional constraints.
The main difficulty we addressed is the availability of training data. It is not only hard to ac-
quire parallel data with target sides constraints, but even monolingual data which was generated
respecting additional constraints is rarely available.

We address this problem by using pseudo-supervised training on standard parallel data.
Instead of generating the translation with constraints, we set the constraints in a way that they
are fulfilled by the existing translation. Thereby, we are able to learn to generate compressed
sentences without ever seeing compressed sentences in training.

The approach results in a mismatch between training and test conditions. While in training
the translation can also be correctly generated by ignoring the constraints, this is no longer the
case in testing. We address this issue by adapting the architecture of the sequence-to-sequence
model. A detailed evaluation using automatic and human evaluation shows the success of the
presented approach.

Finally, we show the possibility to extend the presented approach to related tasks. In com-
bination with zero-shot multi-lingual machine translation, the method is also able to perform
monolingual sentence compression. Furthermore, by varying the cost function, we are able to
also address other tasks like text simplification.
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