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Abstract

The principle of compositionality has deep
roots in linguistics: the meaning of an ex-
pression is determined by its structure and the
meanings of its constituents. However, mod-
ern neural network models such as long short-
term memory network process expressions in
a linear fashion and do not seem to incorpo-
rate more complex compositional patterns. In
this work, we show that we can explicitly in-
duce grammar by tracing the computational
process of a long short-term memory network.
We show: (i) the multiplicative nature of long
short-term memory network allows complex
interaction beyond sequential linear combina-
tion; (ii) we can generate compositional trees
from the network without external linguistic
knowledge; (iii) we evaluate the syntactic dif-
ference between the generated trees, randomly
generated trees and gold reference trees pro-
duced by constituency parsers; (iv) we evalu-
ate whether the generated trees contain the rich
semantic information. 1

1 Introduction

Recurrent neural networks have demonstrated sur-
prising performance on processing natural lan-
guage data, surpassing traditional n-gram or hand-
engineered features on a variety of tasks. Natu-
rally, curiosity about whether these models cap-
ture aspects of linguistic knowledge increases. Re-
cent works proposed different probing tests on
whether a model learns a set of linguistic prop-
erties (Conneau et al., 2018) such as subject-verb
agreement (Linzen et al., 2016), syntax-sensitive
dependencies (Kuncoro et al., 2018), whether a
neuron learns to recognize a group of words with
special properties (such as date) (Dalvi et al., 2019),
or by dropping the word in the context far away vs

1Codes are available at https://github.com/
windweller/LSTMTree/.

nearby and trace perplexity to see how neural net-
works leverage context (Khandelwal et al., 2018).

However, there are two major limitations of the
probing tests: i) probing tests are limited in the
scope of their claim; ii) probing tests often treat
model as a blackbox, reaching conclusions by di-
rectly altering the testing stimuli and observing the
change in the outcome. This type of research often
does not yield satisfactory conclusion about the
underlying complex mechanism of the blackbox
model (Jonas and Kording, 2017).

More holistic approach has been explored to
study whether modern neural networks understand
sentences by implicitly inducing recursive struc-
tures that match the semantics and syntactic theo-
ries in linguistics (Williams et al., 2018). However,
Williams et al. (2018) studied a specific type of
models that explicitly build tree representations of
each sentence, which are far from common text pro-
cessing models such as long short-term memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997). In the end, the question of whether common
text processing model assumes implicit linguistic
structures is left unanswered.

In this work, we draw inspirations from the field
of deep learning model interpretations to provide
a glimpse into how LSTM networks process a sen-
tence, and extract a tree structure that LSTM net-
works implicitly create. Using the techniques from
contextual decomposition (Murdoch et al., 2018),
we propose a tree building algorithm that mimics
construction grammar in that the grammar we in-
duce is conditionally dependent on the task and the
sentence. We extend Williams et al. (2018)’s analy-
sis on the trees generated from the LSTM networks.
We evaluate whether the induced tree structures
syntactically resemble constituency grammar, and
we evaluate whether training a recursive neural
network on the induced structure will provide per-
formance gain over recursive neural network on the

https://github.com/windweller/LSTMTree/
https://github.com/windweller/LSTMTree/
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constituency grammar.
Similar to Williams et al. (2018)’s conclusion on

models that explicitly build tree representation, we
conclude that induced trees from LSTM networks
also do not resemble semantic or syntactic formal-
ism created by human. We hope our work can
encourage future work about interpretation-based
methods and their connections with semantic and
syntactic theory in linguistics.

2 Method

2.1 Long Short-Term Memory Networks

Long Short-Term Memory Network is a recurrent
neural network composed of a cell, an input gate,
an output gate and a forget gate (Hochreiter and
Schmidhuber, 1997). The cell remembers values
over arbitrary time intervals and the three gates
regulate the flow of information into and out of the
cell. This type of network processes input from left
to right, with the same cell weights.

ot = σ(Woxt + Voht−1 + bo)

ft = σ(Wfxt + Vfht−1 + bf )

it = σ(Wixt + Viht−1 + bi)

gt = tanh(Wgxt + Vght−1 + bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(1)

2.2 Shapley Value

Given a function f and variables F = {z1, ..., zn},
and a subset S ⊆ F \ {zi}, we can define the
Shapley value φi of a given variable zi as:

φi(f) =
∑

S⊆F\{zi}

1

Z
(f(S ∪ zi)− f(S)) (2)

Intuitively, Shapley value computes the contri-
bution of a term for the final outcome by executing
the function with the term zi and without the term
zi in all possible permutations (enumerating over
the presence and absence of all other variables),
and then takes the average over the number of such
permutations Z. Shapley value has been shown as
the unifying framework that subsumes many other
deep learning interpretation methods (Lundberg
and Lee, 2017).

Shapley value has some desirable properties.
For example, Shapley values are locally accurate,

which means f(z1, ..., zn) =
∑n

i=1 φi(f). We ob-
tain an additive linear combination of Shapley val-
ues φi that will produce the same output as the
original model f . Murdoch et al. (2018) proposed
to use Shapley decomposition to linearize the non-
linear activation functions in the LSTM networks.

Let f(a, b) = tanh(a + b), we can linearize
tanh activation by calculating the Shapley values
of variable a and b (Eq 3).

φa(f) =
1

2
(tanh(a) + (tanh(a+ b)− tanh(b)))

φb(f) =
1

2
(tanh(b) + (tanh(b+ a)− tanh(a)))

(3)

Analogously, we can linearize σ activation as
well. We use Ltanh and Lσ to denote this lineariza-
tion process, and let Ltanh(a) = φa(tanh(a+ b+
...)) and Lσ(a) = φa(σ(a + b + ...)). It is worth
noting that Ltanh and Lσ are functions of a, as
Shapley value will change with respect to input.
Also, by decomposing LSTM into a summation of
Shapley values, we still retain the original output
value.

2.3 The Linearly Decomposed LSTM
Murdoch et al. (2018) proposed a method to lin-
earize the LSTM computation by computing the
Shaley value of each term. We can use this lin-
earized LSTM to understand how LSTM processes
through all time steps, and why it is very powerful
in terms of representing a sequence of input. By
linearizing the activation functions, we can rewrite
the LSTM computation in Eq 4.

ot = Lσ(Woxt) + Lσ(Voht−1) + Lσ(bo)

ft = Lσ(Wfxt) + Lσ(Vfht−1) + Lσ(bf )

it = Lσ(Wixt) + Lσ(Viht−1) + Lσ(bi)

gt = Ltanh(Wgxt) + Ltanh(Vght−1) + Ltanh(bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(4)

Since all nonlinear computations are now lin-
earized, we can apply the distributive law of mul-
tiplication for these additive terms and trace the
computation. We note that the Hadamard product
enables an efficient mixing of all additive terms.

If we trace the computation, assuming that h0
and c0 are initialized with 0 vector, and input
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(x1, x2, x3), we can collect the number of terms
that are associated with input by symbolic compu-
tation. We verify that each of these terms is in fact
different and can be understood as the output of a
function that can take a subset of {x1, x2, x3} as
input. These are interaction terms among different
time steps, creating features that are mixings of
these steps. We remove the bias term so that the
symbolic tracing is still tractable. We provide a few
examples of such mixing terms in Figure 1.

Lσ(Wox2) ∗ Ltanh((Lσ(Wfx2) ∗ (Lσ(Wix1) ∗
Ltanh(Wgx1))))
Lσ(Wox2) ∗ Ltanh((Lσ(Wix2) ∗ Ltanh(Wgx2)))

Figure 1: We show a few terms from the symbolic
tracer’s output when the LSTM has processed both x1
and x2.

We count the statistics of terms that are associ-
ated with each input at the first three time steps.
Each term is a unique feature computation of the
input from the sequence (guaranteed by the unique-
ness of Shapley value). We present the result of
tracing in Table 1. This shows that LSTM is im-
plicitly mixing inputs to allow interactions, and the
final hidden state hn, assuming the sequence is of
length n, can be decomposed to many terms that
contain combinations of x1, ..., xn.

Terms x1 Step x2 Step x3 Step

x1 1 2 16
x2 — 1 2
x1x2 — 9 2,574
x3 — — 1
x2x3 — — 9
x1x3 — — 28
x1x2x3 — — 581

Total 1 12 3,211

Table 1: Number of unique terms that are associated
with inputs when the LSTM progresses. We observe an
exponential increase of terms as LSTM progresses.

We show that the Hadamard product provides the
much needed mixing of time steps, and each time
step’s feature is processed using existing weight
matrices but through different ways — enabled by
nonlinearity. Previous work hypothesized that the
advantage of the LSTM comes from the addition
in the cell state computation: ft � ct−1 + it � gt,
which resembles skip-connections between time

steps, or improves the effectiveness on the gradient
flows (Chung et al., 2014). Our result shows an al-
ternative explanation on why LSTM is so effective
at creating representations of an entire sequence —
by creating interaction terms of time steps implic-
itly. Our analysis shows that the high expressivity
brought by the Hadamard product � might con-
tribute to the overall effectiveness of the LSTM
network as well.

2.4 Contextual Decomposition

Murdoch et al. (2018) proposed the contextual de-
composition algorithm to interpret which part of
the text sequence contributes most to the LSTM
prediction. Given a subsequence xi, ..., xj , 1 ≤
i < j ≤ T , contextual decomposition re-arranges
the terms at every time step t, such that each hidden
and cell state can be decomposed into a relevant
part associated with xi, ..., xj , denoted by β, and
an irrelevant part, denoted by γ (Eq 5).

ct = ctβ + ctγ

ht = htβ + htγ
(5)

Since the recurrent computation is fully linear
and additive, the rearrangements of Shapley values
will produce the same hidden and cell state as the
original computation. At the final step of LSTM
recurrence, hT is used as the feature representation
of the entire sentence. In a binary classification
setting, the probability for label y can be computed
by the dot product between the hidden state hT and
the output layer weight W . We can easily calculate
the contextual decomposition score (contribution
score) s for a given subsequence xi, ..., xj by cal-
culating dot product between the relevant hidden
state hTβ and the output layer weight W .

ŷ =WhT =WhTβ +WhTγ

s =WhTβ
(6)

2.5 Agglomerative Contextual
Decomposition

As we discussed in Section 2.3, tracing all inter-
active terms of all time steps is intractable. The
problem of how to find out which combinations
of input in a given sequence contributed the most
to the final label prediction remains. Singh et al.
(2019) proposed a hierarchical clustering method
to discover sub-sequences that contribute the most
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Figure 2: Overview of the tree generation algorithm. We train our model on SST-2 sentiment classification dataset.
We use the Agglomerative Contextual Decomposition algorithm (ACD) for hierarchical sentiment interpretation.
For each iteration, ACD selects one of the unselected words with the highest contextual score, and update scores of
other unselected words. Blocks with sentiment scores (blue for negative, orange for positive, and grey for neutral)
are formed through iterations. We build the tree with sentiment labels based on these blocks and binarize the tree
for further evaluation and analysis.

to the final prediction, where the contribution score
calculated by contextual decomposition algorithm
is used as the metric to determine which clusters to
join at each step.

We explain the procedure in Figure 2. We de-
scribe a simplified version of their algorithm:

• Initialize: Compute a contribution score for
each word using the contextual decomposition
algorithm and add these words to a priority
queue with their scores.

• Select: Dequeue and obtain the word with the
highest absolute contribution score.

• Update: Update contribution scores of other
unselected words by adjusting the range of
contextual decomposition algorithm to in-
clude the adjacent words.

• Finalize: Repeat Select and Update until the
queue is empty.

2.6 Tree Generation
As the agglomerative contextual decomposition al-
gorithm progresses, text blocks will be formed dur-
ing iterations. By tracing how the merge happens at
every step, we can create a tree-like structure that is
the phrase-structure grammar of the sentence. We
explain the procedure in Figure 2. The merging
will stop when all regions are merged together. We
binarize the trees by using left Chomsky normal
form for further evaluation and analysis.

Connection to Construction Grammar We
note that by selecting and merging text spans that
have the highest contribution scores, we are letting
the classifier that maps a sentence to a semantic at-
tribute (such as sentiment) to define the structure of

the sentence. We leave to future work to examine
possible connection between the structure induc-
tion through machine interpretation algorithm and
construction grammar (Goldberg, 1995).

3 Experiments

3.1 Generation

3.1.1 Model Training

We trained a simple 1-layer unidirectional LSTM
sentence classification model on Stanford Senti-
ment Treebank (SST) (Socher et al., 2013). SST
contains 8544 training sentences, 1101 validation
sentences and 2210 test sentences. We use pre-
trained 300d GloVe embedding (Pennington et al.,
2014). We use Adam optimizer (Kingma and Ba,
2014) with learning rate 0.001 to optimize the al-
gorithm. We obtain 82.2% and 85.3% accuracy
with hidden state dimension 50 and 500 on the
binary classification task of positive and negative
sentiment on the test dataset.

3.1.2 Tree Generation

We generate tree structures by tracing the selections
made by the agglomerative contextual decomposi-
tion (ACD) algorithm, and binarize the final tree.
The algorithm has O(n3) runtime, where n is the
length of sequence. We find that this algorithm
becomes very inefficient for any sequence longer
than 20 words, so we focus on generating struc-
tures from SST sequences that are shorter than 20
words. This leads to 4980 / 633 / 1280 generated
trees from training / validation / test set, respec-
tively. An example of generated trees and the gold
tree can be found in Figure 4.
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Figure 3: Syntactic and semantic evaluation of our results. For syntactic evaluation, we compare our trees with
left-leaning trees, right-leaning trees and gold reference trees. An example of syntactic similarity evaluation is
shown in the left part. The similarity (Jaccard index) of the two trees is 0.8. For semantic evaluation, we train
a tree recursive neural network on our generated trees with sentiment labels. Each node is embedded and can
represent the sentiment. We report the sentiment classification accuracy on all nodes or only the root node.

3.2 Evaluation

We are interested in two aspects: i) Syntactic: how
do our generated trees compare with gold trees
constructed by Stanford CoreNLP parser (Manning
et al., 2014)? ii) Semantic: do our generated trees
contain rich semantic information? We show an
overview of the syntactic and semantic evaluation
in Figure 3.

3.2.1 Syntactic Evaluation
We compare the generated tree structures with three
types of trees: always left-leaning trees (LS), al-
ways right-leaning trees (RS), and gold reference
trees (GS) produced by Stanford CoreNLP parser.
We also compute the result of randomly gener-
ated trees to compare with trees generated from
the ACD algorithm. Results are reported in Table 2.
We use the same script from Williams et al. (2018)
that computes the Jaccard similarity between set
representation of two trees.

Compared with randomly generated trees, here
we see that LSTM does capture structures that more
closely resembles the gold reference, but there are
still remarkable differences. LSTM with 500 di-
mension hidden states performed better on the orig-
inal sentiment classification task (85.3% vs 82.2%
accuracy), and generated trees are more balanced
than LSTM with 50 dimension hidden states. This
is also a phenomenon discovered by Williams et al.
(2018) that balanced trees are often implicitly pro-
duced by the machine learning algorithms.

3.2.2 Semantic Evaluation
We also train a recursive neural network on these
generated structures. We use the contribution score

Trees LS RS GS AD

Random 29.3 29.2 27.6 4.19
LSTM-50d 36.9 25.7 29.7 5.53
LSTM-500d 33.7 32.5 30.2 5.91

Table 2: The Jaccard similarity between generated trees
and gold trees. LS means left-leaning trees. RS means
right-leaning trees. GS means gold parse trees. AD
means average tree depth.

s for each phrase as the intermediate labels and we
allow the recursive computation step to be either a
normal RNN or an LSTM. We evaluate the label
accuracy on all nodes (All) or only on the root node
(Root). The generated structure under-performed
gold reference trees by a large margin, and is also
below the original LSTM’s performance, indicating
that structures recovered by ACD are not equivalent
to the true LSTM sequence computing process.

Trees
RNN LSTM

All Root All Root

LSTM-50d 72.7 60.4 74.8 63.3
LSTM-500d 75.1 53.6 75.9 58.0
Gold Trees 75.9 74.5 78.2 78.1

Table 3: The sentiment classification accuracy of recur-
sive neural networks on the generated trees and gold
trees. The gold tree set is also composed of trees that
correspond to sequences shorter than 20 words.
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Figure 4: Example of generated trees and the gold tree
with sentiment labels. Labels are discretized (-1 for
negative, 1 for positive, and 0 for neutral).

4 Discussion and Conclusion

In this work, we extract trees from LSTM by an in-
terpretation algorithm — agglomerative contextual
decomposition (ACD). We show empirically that
the generated trees are not similar to the trees pro-
duced from formal syntactic theory. The generated
trees also do not seem to provide more compu-
tational improvement when we train a recursive
neural network leveraging the structure to predict
the final label.

These negative observations can result from sev-
eral possible reasons. Firstly, as discussed in
Sec 2.6, the connection between the structure in-
duction through machine interpretation algorithm
and construction grammar remains a question —
whether what is semantically important for senti-
ment analysis is necessarily reflected in the syntax
and the way the syntactic constituents are formed
in the language? Besides, while sentiment analy-
sis requires the understandings of compositionality,
models trained on linguistic tasks may better cap-
ture syntactic information. For future work, we con-
sider conducting the same experiments on CoLA,
a dataset for judging the grammatical acceptability
of a sentence (Warstadt et al., 2019). Moreover, it
is unclear whether models truly learned composi-
tionality or just overfit to some spurious patterns
of the dataset, as recent works have demonstrated
that a well-performing natural language inference
model completely fails on challenging cases gen-
erated by syntactic transformations (McCoy et al.,
2019).

Nonetheless, we conclude with encourage-
ment for the community to look deeper into
interpretation-based methods and their connections
with semantic and syntactic theory in linguistics.
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