
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6452–6459
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6452

Instance-Based Learning of Span Representations:
A Case Study through Named Entity Recognition

Hiroki Ouchi1,2 Jun Suzuki2,1 Sosuke Kobayashi2,3
Sho Yokoi2,1 Tatsuki Kuribayashi2,4 Ryuto Konno2 Kentaro Inui2,1

1 RIKEN 2 Tohoku University 3 Preferred Networks, Inc. 4 Langsmith, Inc.
hiroki.ouchi@riken.jp

{jun.suzuki,sosk,yokoi,kuribayashi,ryuto,inui}@ecei.tohoku.ac.jp

Abstract

Interpretable rationales for model predictions
play a critical role in practical applications. In
this study, we develop models possessing inter-
pretable inference process for structured pre-
diction. Specifically, we present a method of
instance-based learning that learns similarities
between spans. At inference time, each span
is assigned a class label based on its similar
spans in the training set, where it is easy to
understand how much each training instance
contributes to the predictions. Through empir-
ical analysis on named entity recognition, we
demonstrate that our method enables to build
models that have high interpretability without
sacrificing performance.

1 Introduction

Neural networks have contributed to performance
improvements in structured prediction. Instead, the
rationales underlying the model predictions are dif-
ficult for humans to understand (Lei et al., 2016). In
practical applications, interpretable rationales play
a critical role for driving human’s decisions and
promoting human-machine cooperation (Ribeiro
et al., 2016). With this motivation, we aim to build
models that have high interpretability without sac-
rificing performance. As an approach to this chal-
lenge, we focus on instance-based learning.

Instance-based learning (Aha et al., 1991) is a
machine learning method that learns similarities be-
tween instances. At inference time, the class labels
of the most similar training instances are assigned
to the new instances. This transparent inference
process provides an answer to the following ques-
tion: Which points in the training set most closely
resemble a test point or influenced the prediction?
This is categorized into example-based explana-
tions (Plumb et al., 2018; Baehrens et al., 2010).
Recently, despite its preferable property, it has re-
ceived little attention and been underexplored.

This study presents and investigates an instance-
based learning method for span representations. A
span is a unit that consists of one or more linguis-
tically linked words. Why do we focus on spans
instead of tokens? One reason is relevant to perfor-
mance. Recent neural networks can induce good
span feature representations and achieve high per-
formance in structured prediction tasks, such as
named entity recognition (NER) (Sohrab and Miwa,
2018; Xia et al., 2019), constituency parsing (Stern
et al., 2017; Kitaev et al., 2019), semantic role label-
ing (SRL) (He et al., 2018; Ouchi et al., 2018) and
coreference resolution (Lee et al., 2017). Another
reason is relevant to interpretability. The tasks
above require recognition of linguistic structure
that consists of spans. Thus, directly classifying
each span based on its representation is more inter-
pretable than token-wise classification such as BIO
tagging, which reconstructs each span label from
the predicted token-wise BIO tags.

Our method builds a feature space where spans
with the same class label are close to each other.
At inference time, each span is assigned a class
label based on its neighbor spans in the feature
space. We can easily understand why the model
assigned the label to the span by looking at its
neighbors. Through quantitative and qualitative
analysis on NER, we demonstrate that our instance-
based method enables to build models that have
high interpretability and performance. To sum up,
our main contributions are as follows.

• This is the first work to investigate instance-
based learning of span representations.1

• Through empirical analysis on NER, we
demonstrate our instance-based method en-
ables to build models that have high inter-
pretability without sacrificing performance.

1Our code is publicly available at https://github.
com/hiroki13/instance-based-ner.git.

https://github.com/hiroki13/instance-based-ner.git
https://github.com/hiroki13/instance-based-ner.git

6453

2 Related Work

Neural models generally have a common technical
challenge: the black-box property. The rationales
underlying the model predictions are opaque for
humans to understand. Many recent studies have
tried to look into classifier-based neural models
(Ribeiro et al., 2016; Lundberg and Lee, 2017; Koh
and Liang, 2017). In this paper, instead of looking
into the black-box, we build interpretable models
based on instance-based learning.

Before the current neural era, instance-based
learning, sometimes called memory-based learning
(Daelemans and Van den Bosch, 2005), was widely
used for various NLP tasks, such as part-of-speech
tagging (Daelemans et al., 1996), dependency pars-
ing (Nivre et al., 2004) and machine translation (Na-
gao, 1984). For NER, some instance-based mod-
els have been proposed (Tjong Kim Sang, 2002;
De Meulder and Daelemans, 2003; Hendrickx and
van den Bosch, 2003). Recently, despite its high in-
terpretability, this direction has not been explored.

One exception is Wiseman and Stratos (2019),
which used instance-based learning of token repre-
sentations. Due to BIO tagging, it faces one tech-
nical challenge: inconsistent label prediction. For
example, an entity candidate “World Health Orga-
nization” can be assigned inconsistent labels such
as “B-LOC I-ORG I-ORG,” whereas the ground-
truth labels are “B-ORG I-ORG I-ORG.” To rem-
edy this issue, they presented a heuristic technique
for encouraging contiguous token alignment. In
contrast to such token-wise prediction, we adopt
span-wise prediction, which can naturally avoid
this issue because each span is assigned one label.

NER is generally solved as (i) sequence labeling
or (ii) span classification.2 In the first approach, to-
ken features are induced by using neural networks
and fed into a classifier, such as conditional random
fields (Lample et al., 2016; Ma and Hovy, 2016;
Chiu and Nichols, 2016). One drawback of this
approach is the difficulty dealing with nested enti-
ties.3 By contrast, the span classification approach,
adopted in this study, can straightforwardly solve
nested NER (Finkel and Manning, 2009; Sohrab
and Miwa, 2018; Xia et al., 2019).4

2Very recently, a hybrid model of these two approaches
has been proposed by Liu et al. (2019).

3Some studies have sophisticated sequence labeling mod-
els for nested NER (Ju et al., 2018; Zheng et al., 2019).

4There is an approach specialized for nested NER using
hypergraphs (Lu and Roth, 2015; Muis and Lu, 2017; Katiyar
and Cardie, 2018; Wang and Lu, 2018).

3 Instance-Based Span Classification

3.1 NER as span classification
NER can be solved as multi-class classification,
where each of possible spans in a sentence is as-
signed a class label. As we mentioned in Section 2,
this approach can naturally avoid inconsistent label
prediction and straightforwardly deal with nested
entities. Because of these advantages over token-
wise classification, span classification has been
gaining a considerable attention (Sohrab and Miwa,
2018; Xia et al., 2019).

Formally, given an input sentence of T words
X = (w1, w2, . . . , wT), we first enumerate
possible spans S(X), and then assign a class label
y ∈ Y to each span s ∈ S(X). We will write each
span as s = (a, b), where a and b are word indices
in the sentence: 1 ≤ a ≤ b ≤ T . Consider the
following sentence.

Franz1 Kafka2 is3 a4 novelist5
[PER]

Here, the possible spans in this sentence are
S(X) = {(1, 1), (1, 2), (1, 3), . . . , (4, 5), (5, 5)}.
“Franz Kafka,” denoted as s = (1, 2), is assigned
the person type entity label (y = PER). Note
that the other non-entity spans are assigned the
null label (y = NULL). For example, “a novelist,”
denoted as s = (4, 5), is assigned NULL. In this
way, the NULL label is assigned to non-entity spans,
which is the same as the O tag in the BIO tag set.

The probability that each span s is assigned a
class label y is modeled by using softmax function:

P(y|s) = exp(score(s, y))∑
y′∈Y

exp(score(s, y′))
.

Typically, as the scoring function, the inner prod-
uct between each label weight vector wy and span
feature vector hs is used:

score(s, y) = wy · hs .

The score for the NULL label is set to a constant,
score(s, y = NULL) = 0, similar to logistic regres-
sion (He et al., 2018). For training, the loss function
we minimize is the negative log-likelihood:

L = −
∑

(X,Y)∈D

∑
(s,y)∈S(X,Y)

log P(y|s) ,

where S(X,Y) is a set of pairs of a span s and
its ground-truth label y. We call this kind of mod-
els that use label weight vectors for classification
classifier-based span model.

6454

[Haruki Murakami] [wrote] [Kafka on the Shore] [in] [Hawaii]
PER NULL MISC NULL LOC

[Born in] [Moscow] , [Dostoevsky] [was introduced to] …
NULL LOC PER NULL

[Franz Kafka] is a novelist

Training Set

Encoder

NULL PER LOC

?

MISC

argmax
Vectorize

Compute
similarity

Figure 1: Illustration of our instance-based span model. An entity candidate “Franz Kafka” is used as a query and
vectorized by an encoder. In the vector space, similarities between all pairs of the candidate (s) and the training
instances (s1, s2, . . . , s9) are computed, respectively. Based on the similarities, the label probability (distribution)
is computed, and the label with the highest probability PER is assigned to “Franz Kafka.”

3.2 Instance-based span model
Our instance-based span model classifies each span
based on similarities between spans. In Figure 1,
an entity candidate “Franz Kafka” and the spans in
the training set are mapped onto the feature vector
space, and the label distribution is computed from
the similarities between them. In this inference pro-
cess, it is easy to understand how much each train-
ing instance contributes to the predictions. This
property allows us to explain the predictions by spe-
cific training instances, which is categorized into
example-based explanations (Plumb et al., 2018).

Formally, within the neighbourhood component
analysis framework (Goldberger et al., 2005), we
define the neighbor span probability that each span
si ∈ S(X) will select another span sj as its neigh-
bor from candidate spans in the training set:

P(sj |si,D′) =
exp(score(si, sj))∑

sk∈S(D′)

exp(score(si, sk))
. (1)

Here, we exclude the input sentence X and its
ground-truth labels Y from the training set D:
D′ = D \ {(X,Y)}, and regard all other spans as
candidates: S(D′) = {s ∈ S(X ′)|(X ′, Y ′) ∈ D′}.
The scoring function returns a similarity between
the spans si and sj . Then we compute the prob-
ability that a span si will be assigned a label yi:

P(yi|si) =
∑

sj∈S(D′,yi)

P(sj |si,D′) . (2)

Here, S(D′, yi) = {sj ∈ D′| yi = yj}, so the
equation indicates that we sum up the probabilities
of the neighbor spans that have the same label as
the span si. The loss function we minimize is the
negative log-likelihood:

L = −
∑

(X,Y)∈D

∑
(si,yi)∈S(X,Y)

log P(yi|si) ,

where S(X,Y) is a set of pairs of a span si and its
ground-truth label yi. At inference time, we pre-
dict ŷi to be the class label with maximal marginal
probability:

ŷi = argmax
y∈Y

P(y|si) ,

where the probability P(y|si) is computed for each
of the label set y ∈ Y .

Efficient neighbor probability computation
The neighbor span probability P(sj |si,D′) in Equa-
tion 1 depends on the entire training set D′, which
leads to heavy computational cost. As a remedy,
we use random sampling to retrieve K sentences
D′′ = {(X ′k, Y ′k)}Kk=0 from the training set D′. At
training time, we randomly sampleK sentences for
each mini-batch at each epoch. This simple tech-
nique realizes time and memory efficient training.
In our experiments, it takes less than one day to
train a model on a single GPU5.

5NVIDIA DGX-1 with Tesla V100.

6455

4 Experiments

4.1 Experimental setup
Data We evaluate the span models through two
types of NER: (i) flat NER on the CoNLL-2003
dataset (Tjong Kim Sang and De Meulder, 2003)
and (ii) nested NER on the GENIA dataset6 (Kim
et al., 2003). We follow the standard training-
development-test splits.

Baseline We use a classifier-based span model
(Section 3.1) as a baseline. Only the difference be-
tween the instance-based and classifier-based span
models is whether to use softmax classifier or not.

Encoder and span representation We adopt
the encoder architecture proposed by Ma and Hovy
(2016), which encodes each token of the input sen-
tence wt ∈ X with word embedding and character-
level CNN. The encoded token representations
w1:T = (w1,w2, . . . ,wT) are fed to bidirectional
LSTM for computing contextual ones

−→
h 1:T and←−

h 1:T . From them, we create hlstm
s for each span

s = (a, b) based on LSTM-minus (Wang and
Chang, 2016). For flat NER, we use the repre-
sentation hlstm

s = [
−→
h b−

−→
h a−1,

←−
h a−

←−
h b+1]. For

nested NER, we use hlstm
s = [

−→
h b −

−→
h a−1,

←−
h a −←−

h b+1,
−→
h a +

−→
h b,
←−
h a +

←−
h b].7 We then multiply

hlstm
s with a weight matrix W and obtain the span

representation: hs = W hlstm
s . For the scoring

function in Equation 1 in the instance-based span
model, we use the inner product between a pair of
span representations: score(si, sj) = hsi · hsj .

Model configuration We train instance-based
models by using K = 50 training sentences ran-
domly retrieved for each mini-batch. At test time,
we use K = 50 nearest training sentences for
each sentence based on the cosine similarities be-
tween their sentence vectors8. For the word em-
beddings, we use the GloVe 100-dimensional em-
beddings (Pennington et al., 2014) and the BERT
embeddings (Devlin et al., 2019).9

6We use the same one pre-processed by Zheng
et al. (2019) at https://github.com/thecharm/
boundary-aware-nested-ner

7We use the different span representation from the one
used for flat NER because concatenating the addition features,
−→
h a+

−→
h b and

←−
h a+

←−
h b, to the subtraction features improves

performance in our preliminary experiments.
8For each sentence X = (w1, w2, . . . , wT), its sentence

vector is defined as the vector averaged over the word embed-
dings (GloVe) within the sentence: 1

T

∑
t wemb

t .
9Details on the experimental setup are described in Appen-

dices A.1.

Classifier-based Instance-based

GloVe

Flat NER 90.68 ±0.25 90.73 ±0.07
Nested NER 73.76 ±0.35 74.20 ±0.16

BERT

Flat NER 90.48 ±0.18 90.48 ±0.07
Nested NER 73.27 ±0.19 73.92 ±0.20

Table 1: Comparison between classifier-based and
instance-based span models. Cells show the F1 scores
and standard deviations on each test set.

F 1
sc

or
e

80.0
82.0
84.0
86.0
88.0
90.0
92.0
94.0
96.0
98.0
100.0

1/8 1/4 1/2 1

Classifier-based

Instance-based

Data Size

Figure 2: Performance on the CoNLL-2003 develop-
ment set for different amounts of the training set.

4.2 Quantitative analysis

We report averaged F1 scores across five different
runs of the model training with random seeds.

Overall F1 scores We investigate whether or not
our instance-based span model can achieve compet-
itive performance with the classifier-based span
model. Table 1 shows F1 scores on each test
set.10 Consistently, the instance-based span model
yielded comparable results to the classifier-based
span model. This indicates that our instance-based
learning method enables to build NER models with-
out sacrificing performance.

Effects of training data size Figure 2 shows F1

scores on the CoNLL-2003 development set by the
models trained on full-size, 1/2, 1/4 and 1/8 of
the training set. We found that (i) performance of
both models gradually degrades when the size of
the training set is smaller and (ii) both models yield
very competitive performance curves.

10The models using GloVe yielded slightly better results
than those using BERT. One possible explanation is that sub-
word segmentation is not so good for NER. In particular, to-
kens in upper case are segmented into too small elements,
e.g., “LEICESTERSHIRE”→ “L,” “##EI,” “##CE,” “##ST,”
“##ER,” “##S,” “##H,” “##IR,” “##E.”

https://github.com/thecharm/boundary-aware-nested-ner
https://github.com/thecharm/boundary-aware-nested-ner

6456

QUERY ... [Tom Moody] took six for 82 but ...

Classifier-based

1 PER ... [Billy Mayfair] and Paul Goydos and ...
2 NULL ... [Billy Mayfair and Paul Goydos] and ...
3 NULL ... [Billy Mayfair and Paul Goydos and] ...
4 NULL ... [Billy] Mayfair and Paul Goydos and ...
5 NULL ... [Ducati rider Troy Corser] , last year ...

Instance-based

1 PER [Ian Botham] began his test career ...
2 PER ... [Billy Mayfair] and Paul Goydos and ...
3 PER ... [Mark Hutton] scattered four hits ...
4 PER ... [Steve Stricker] , who had a 68 , and ...
3 PER ... [Darren Gough] polishing off ...

Table 2: Example of span retrieval. An entity candi-
date “Tom Moody” in the CoNLL-2003 development
set used as a query for retrieving five nearest neighbors
from the training set.

QUERY ... spokesman for [Air France] ’s ...
Pred: LOC
Gold: ORG

1 LOC ... [Colombia] turned down American ’s ...
2 LOC ... involving [Scotland] , Wales , ...
3 LOC ... signed in [Nigeria] ’s capital Abuja ...
4 LOC ... in the West Bank and [Gaza] .
5 LOC ... on its way to [Romania] ...

Table 3: Example of an error by the instance-based
span model. Although the gold label is ORG (Organi-
zation), the wrong label LOC (Location) is assigned.

4.3 Qualitative analysis
To better understand model behavior, we analyze
the instance-based model using GloVe in detail.

Examples of retrieved spans The span feature
space learned by our method can be applied to
various downstream tasks. In particular, it can be
used as a span retrieval system. Table 2 shows five
nearest neighbor spans of an entity candidate “Tom
Moody.” In the classifier-based span model, person-
related but non-entity spans were retrieved. By
contrast, in the instance-based span model, person
(PER) entities were consistently retrieved.11 This
tendency was observed in many other cases, and
we confirmed that our method can build preferable
feature spaces for applications.

Errors analysis The instance-based span model
tends to wrongly label spans that includes location
or organization names. For example, in Table 3,
the wrong label LOC (Location) is assigned to “Air
France” whose gold label is ORG (Organization).

11The query span “Tom moody” was a cricketer at that time,
and some neighbors, “Ian Botham” and “Darren Gough,” were
also cricketers.

Classifier-based Instance-based

GloVe 94.91 ±0.11 94.96 ±0.06
BERT 96.20 ±0.03 96.24 ±0.04

Table 4: Comparison in syntactic chunking. Cells show
F1 and standard deviations on the CoNLL-2000 test set.

Note that by looking at the neighbors, we can un-
derstand that country or district entities confused
the model. This implies that prediction errors are
easier to analyze because the neighbors are the ra-
tionales of the predictions.

4.4 Discussion
Generalizability Are our findings in NER gener-
alizable to other tasks? To investigate it, we per-
form an additional experiment on the CoNLL-2000
dataset (Tjong Kim Sang and Buchholz, 2000) for
syntactic chunking.12 While this task is similar to
NER in terms of short-span classification, the class
labels are based on syntax, not (entity) semantics.
In Table 4, the instance-based span model achieved
competitive F1 scores with the classifier-based one,
which is consistent with the NER results. This
suggests that our findings in NER are likely to gen-
eralizable to other short-span classification tasks.

Future work One interesting line of future work
is an extension of our method to span-to-span re-
lation classification, such as SRL and coreference
resolution. Another potential direction is to apply
and evaluate learned span features to downstream
tasks requiring entity knowledge, such as entity
linking and question answering.

5 Conclusion

We presented and investigated an instance-based
learning method that learns similarity between
spans. Through NER experiments, we demon-
strated that the models build by our method have
(i) competitive performance with a classifier-based
span model and (ii) interpretable inference process
where it is easy to understand how much each train-
ing instance contributes to the predictions.

Acknowledgments

This work was partially supported by JSPS
KAKENHI Grant Number JP19H04162 and
JP19K20351. We would like to thank the members
of Tohoku NLP Laboratory and the anonymous
reviewers for their insightful comments.

12The models are trained in the same way as in nested NER.

6457

References
David W Aha, Dennis Kibler, and Marc K Albert. 1991.

Instance-based learning algorithms. Machine learn-
ing, 6(1):37–66.

David Baehrens, Timon Schroeter, Stefan Harmel-
ing, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert MÃžller. 2010. How to explain individual
classification decisions. Journal of Machine Learn-
ing Research, 11(Jun):1803–1831.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Lin-
guistics, 4:357–370.

Walter Daelemans and Antal Van den Bosch. 2005.
Memory-based language processing. Cambridge
University Press.

Walter Daelemans, Jakub Zavrel, Peter Berck, and
Steven Gillis. 1996. MBT: A memory-based part of
speech tagger-generator. In Proceedings of Fourth
Workshop on Very Large Corpora.

Fien De Meulder and Walter Daelemans. 2003.
Memory-based named entity recognition using unan-
notated data. In Proceedings of HLT-NAACL, pages
208–211.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested named entity recognition. In Proceedings of
EMNLP, pages 141–150.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of AISTATS, pages 249–
256.

Jacob Goldberger, Geoffrey E Hinton, Sam T Roweis,
and Ruslan R Salakhutdinov. 2005. Neighbour-
hood components analysis. In Proceedings of NIPS,
pages 513–520.

Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional LSTM. In Proceedings of Automatic
Speech Recognition and Understanding (ASRU),
2013 IEEE Workshop.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Proceed-
ings of ACL, pages 364–369.

Iris Hendrickx and Antal van den Bosch. 2003.
Memory-based one-step named-entity recognition:
Effects of seed list features, classifier stacking, and
unannotated data. In Proceedings of CoNLL, pages
176–179.

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou.
2018. A neural layered model for nested named
entity recognition. In Proceedings of NAACL-HLT,
pages 1446–1459.

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In Proceedings of
NAACL-HLT, pages 861–871.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Junichi
Tsujii. 2003. Genia corpusa semantically anno-
tated corpus for bio-textmining. Bioinformatics,
19(suppl 1):i180–i182.

D.P. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint arXiv:
1412.6980.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of ACL, pages 3499–
3505.

Pang Wei Koh and Percy Liang. 2017. Understand-
ing black-box predictions via influence functions. In
Proceedings of ICML, pages 1885–1894.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL-HLT, pages 260–270.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. In Proceedings of EMNLP, pages 188–197.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
EMNLP, pages 107–117.

Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. 2019. To-
wards improving neural named entity recognition
with gazetteers. In Proceedings of ACL, pages 5301–
5307.

Wei Lu and Dan Roth. 2015. Joint mention extraction
and classification with mention hypergraphs. In Pro-
ceedings of EMNLP, pages 857–867.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Pro-
ceedings of NIPS, pages 4765–4774.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of ACL, pages 1064–1074.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Aldrian Obaja Muis and Wei Lu. 2017. Labeling gaps
between words: Recognizing overlapping mentions
with mention separators. In Proceedings of EMNLP,
pages 2608–2618.

https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://www.aclweb.org/anthology/W96-0102
https://www.aclweb.org/anthology/W96-0102
https://www.aclweb.org/anthology/W03-0435
https://www.aclweb.org/anthology/W03-0435
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/D09-1015
https://www.cs.toronto.edu/~hinton/absps/nca.pdf
https://www.cs.toronto.edu/~hinton/absps/nca.pdf
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P18-2058
https://www.aclweb.org/anthology/W03-0427
https://www.aclweb.org/anthology/W03-0427
https://www.aclweb.org/anthology/W03-0427
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/N18-1079
https://www.aclweb.org/anthology/P19-1340
https://www.aclweb.org/anthology/P19-1340
https://www.aclweb.org/anthology/P19-1340
https://www.aclweb.org/anthology/N16-1030
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D16-1011
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/D17-1276
https://doi.org/10.18653/v1/D17-1276
https://doi.org/10.18653/v1/D17-1276

6458

Makoto Nagao. 1984. A framework of a mechanical
translation between Japanese and English by anal-
ogy principle. Elsevier Science Publishers.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proceedings
of CoNLL, pages 49–56, Boston, Massachusetts,
USA.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto.
2018. A span selection model for semantic role
labeling. In Proceedings of EMNLP, pages 1630–
1642.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neu-
ral networks. In Proceedings of ICML, pages 1310–
1318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP), pages
1532–1543.

Gregory Plumb, Denali Molitor, and Ameet S Tal-
walkar. 2018. Model agnostic supervised local ex-
planations. In Proceedings of NIPS, pages 2515–
2524.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceedings
of KDD, pages 1135–1144.

Andrew M Saxe, James L McClelland, and Surya Gan-
guli. 2013. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120.

Mohammad Golam Sohrab and Makoto Miwa. 2018.
Deep exhaustive model for nested named entity
recognition. In Proceedings of EMNLP, pages
2843–2849.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of ACL, pages 818–827.

Erik F. Tjong Kim Sang. 2002. Memory-based named
entity recognition. In Proceedings of CoNLL).

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 shared task chunk-
ing. In Proceedings of CoNLL.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of CoNLL, pages 142–147.

Bailin Wang and Wei Lu. 2018. Neural segmental hy-
pergraphs for overlapping mention recognition. In
Proceedings of EMNLP, pages 204–214.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional LSTM. In
Proceedings of ACL, pages 2306–2315.

Sam Wiseman and Karl Stratos. 2019. Label-agnostic
sequence labeling by copying nearest neighbors. In
Proceedings of ACL, pages 5363–5369.

Congying Xia, Chenwei Zhang, Tao Yang, Yaliang Li,
Nan Du, Xian Wu, Wei Fan, Fenglong Ma, and
Philip Yu. 2019. Multi-grained named entity recog-
nition. In Proceedings of ACL, pages 1430–1440.

Changmeng Zheng, Yi Cai, Jingyun Xu, Ho-fung Le-
ung, and Guandong Xu. 2019. A boundary-aware
neural model for nested named entity recognition. In
Proceedings of EMNLP-IJCNLP, pages 357–366.

http://www.mt-archive.info/Nagao-1984.pdf
http://www.mt-archive.info/Nagao-1984.pdf
http://www.mt-archive.info/Nagao-1984.pdf
https://www.aclweb.org/anthology/W04-2407
https://www.aclweb.org/anthology/D18-1191
https://www.aclweb.org/anthology/D18-1191
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D18-1309
https://doi.org/10.18653/v1/D18-1309
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://www.aclweb.org/anthology/W02-2025
https://www.aclweb.org/anthology/W02-2025
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/P16-1218
https://doi.org/10.18653/v1/P16-1218
https://www.aclweb.org/anthology/P19-1533
https://www.aclweb.org/anthology/P19-1533
https://doi.org/10.18653/v1/P19-1138
https://doi.org/10.18653/v1/P19-1138
https://doi.org/10.18653/v1/D19-1034
https://doi.org/10.18653/v1/D19-1034

6459

A Appendices

A.1 Experimental setup

Name Value

CNN window size 3
CNN filters 30
BiLSTM layers 2
BiLSTM hidden units 100 dimensions
Mini-batch size 8
Optimization Adam
Learning rate 0.001
Dropout ratio {0.1, 0.3, 0.5}

Table 5: Hyperparameters used in the experiments.

Network setup Basically, we follow the encoder
architecture proposed by Ma and Hovy (2016).
First, the token-encoding layer encodes each to-
ken of the input sentence wt ∈ (w1, w2, . . . , wT)
to a sequence of the vector representations w1:T =
(w1,w2, . . . ,wT). For the models using GloVe,
we use the GloVe 100-dimensional embeddings13

(Pennington et al., 2014) and character-level CNN.
For the models using BERT, we use the BERT-Base,
Cased14 (Devlin et al., 2019), where we use the first
subword embeddings within each token in the last
layer of BERT. During training, we fix the word
embeddings (except the CNN). Then, the encoded
token representations w1:T = (w1,w2, . . . ,wT)
are fed to bidirectional LSTM (BiLSTM) (Graves
et al., 2013) for computing contextual ones

−→
h 1:T

and
←−
h 1:T . We use 2 layers of the stacked BiL-

STMs (2 forward and 2 backward LSTMs) with
100-dimensional hidden units. From

−→
h 1:T and←−

h 1:T , we create hlstm
s for each span s = (a, b)

based on LSTM-minus (Wang and Chang, 2016).
For flat NER, we use the representation hlstm

s =

[
−→
h b −

−→
h a−1,

←−
h a −

←−
h b+1]. For nested NER, we

use hlstm
s = [

−→
h b −

−→
h a−1,

←−
h a −

←−
h b+1,

−→
h a +

−→
h b,
←−
h a +

←−
h b]. We then multiply hlstm

s with a
weight matrix W and obtain the span representa-
tion: hs = W hlstm

s . Finally, we use the span
representation hs for computing the label distri-
bution in each model. For efficient computation,
following Sohrab and Miwa (2018), we enumerate
all possible spans in a sentence with the sizes less
than or equal to the maximum span size L, i.e.,
each span s = (a, b) is satisfied with the condition
b− a < L. We set L as 6.

13https://nlp.stanford.edu/projects/
glove/

14https://github.com/google-research/
bert

Hyperparameters Table 5 lists the hyperparam-
eters used in the experiments. We initialize all
the parameter matrices in BiLSTMs with random
orthonormal matrices (Saxe et al., 2013). Other
parameters are initialized following Glorot and
Bengio (2010). We apply dropout (Srivastava
et al., 2014) to the token-encoding layer and the
input vectors of each LSTM with dropout ratio of
{0.1, 0.3, 0.5}.

Optimization To optimize the parameters, we
use Adam (Kingma and Ba, 2014) with β1 = 0.9
and β2 = 0.999. The initial learning rate is set to
η0 = 0.001. The learning rate is updated on each
epoch as ηt = η0/(1 + ρt), where the decay rate is
ρ = 0.05 and t is the number of epoch completed.
A gradient clipping value is set to 5.0 (Pascanu
et al., 2013). Parameter updates are performed in
mini-batches of 8. The number of training epochs
is set to 100. We save the parameters that achieve
the best F1 score on each development set and eval-
uated them on each test set. Training the models
takes less than one day on a single GPU, NVIDIA
DGX-1 with Tesla V100.

A.2 Feature space visualization

75 50 25 0 25 50 75 100

80

60

40

20

0

20

40

60

80
LOC
MISC
ORG
PER

(a) Classifier-based
75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

80 LOC
MISC
ORG
PER

(b) Instance-based

Figure 3: Visualization of entity span features com-
puted by classifier-based and instance-based models.

To better understand span representations
learned by our method, we observe the feature
space. Specifically, we visualize the span repre-
sentations hs on the CoNLL-2003 development
set. Figure 3 visualizes two-dimensional entity
span representations by t-distributed Stochastic
Neighbor Embedding (t-SNE) (Maaten and Hin-
ton, 2008). Both models successfully learned fea-
ture spaces where the instances with the same label
come close each other.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/google-research/bert
https://github.com/google-research/bert

