
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4693–4714
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4693

CraftAssist Instruction Parsing: Semantic Parsing for a Voxel-World
Assistant

Kavya Srinet∗
Facebook AI Research
ksrinet@fb.com

Yacine Jernite∗†
HuggingFace
yacine@

huggingface.co

Jonathan Gray
Facebook AI Research
jsgray@fb.com

Arthur Szlam
Facebook AI Research
aszlam@fb.com

Abstract

We propose a semantic parsing dataset focused
on instruction-driven communication with an
agent in the game Minecraft1. The dataset con-
sists of 7K human utterances and their corre-
sponding parses. Given proper world state, the
parses can be interpreted and executed in game.
We report the performance of baseline models,
and analyze their successes and failures.

1 Introduction

Semantic parsing is used as a component for natural
language understanding in human-robot interaction
systems (Lauria et al., 2001; Bos and Oka, 2007;
Tellex et al., 2011; Matuszek et al., 2013; Thoma-
son et al., 2019), and for virtual assistants (Cam-
pagna et al., 2017; Kollar et al., 2018; Campagna
et al., 2019). We would like to be able to apply
deep learning methods in this space, as recently re-
searchers have shown success with these methods
for semantic parsing more generally, e.g. (Dong
and Lapata, 2016; Jia and Liang, 2016; Zhong
et al., 2017). However, to fully utilize powerful
neural network approaches, it is necessary to have
large numbers of training examples. In the space
of human-robot (or human-assistant) interaction,
the publicly available semantic parsing datasets are
small. Furthermore, it can be difficult to reproduce
the end-to-end results (from utterance to action in
the environment) because of the wide variety of
robot setups and proprietary nature of personal as-
sistants.

In this work, we introduce a new semantic pars-
ing dataset for human-bot interactions. Our “robot”
or “assistant” is embodied in the sandbox construc-

∗Equal contribution
†Work done while at Facebook AI Research

1Minecraft features: c©Mojang Synergies AB included
courtesy of Mojang AB

tion game Minecraft2, a popular multiplayer open-
world voxel-based crafting game. We also provide
the associated platform for executing the logical
forms in game.

Situating the assistant in Minecraft has several
benefits for studying task oriented natural lan-
guage understanding (NLU). Compared to physical
robots, Minecraft allows less technical overhead
irrelevant to NLU, such as difficulties with hard-
ware and large scale data collection. On the other
hand, our bot has all the basic in-game capabilities
of a player, including movement and placing or
removing voxels. Thus Minecraft preserves many
of the NLU elements of physical robots, such as
discussions of navigation and spatial object refer-
ence.

Working in Minecraft may enable large scale hu-
man interaction because of its large player base,
in the tens of millions. Furthermore, although
Minecraft’s simulation of physics is simplified,
the task space is complex. While there are many
atomic objects in the game, such as animals and
block-types, that require no perceptual modeling,
the player also interacts with complex structures
made up of collections of voxels such as a “house”
or a “hill”. The assistant cannot apprehend them
without a perceptual system, creating an ideal test
bed for researchers interested in the interactions
between perception and language.

Our contributions in the paper are as follows:
Grammar: We develop a grammar over a set of
primitives that comprise a mid-level interface to
Minecraft for machine learning agents.
Data: We collect 7K crowd-sourced annotations
of commands generated independent of our gram-
mar. In addition to the natural language com-
mands and the associated logical forms, we re-
lease the tools used to collect these, which allow

2https://minecraft.net/en-us/. We limit our-
selves to creative mode for this work

https://minecraft.net/en-us/

4694

Figure 1: The basic structure of the AC-
TION SEQUENCE branch of the assistant’s grammar.
The gold octagon is an internal node whose children
are ordered, blue rectangles are regular internal nodes,
and green rectangles are categorical leaf nodes. Not
all combinations of children of ACTION are possible,
see the full list of possible productions (and the
productions for PUT MEMORY and GET MEMORY) in
the Appendix C.

crowd-workers to efficiently and accurately anno-
tate parses.
Models: We show the results of several neural se-
mantic parsing models trained on our data.
Execution: Finally, we also make available the
code to execute logical forms in the game, allow-
ing the reproduction of end-to-end results. This
also opens the door to using the data for reinforce-
ment and imitation learning with language. We
also provide access to an interactive bot using these
models for parsing3.

2 The Assistant Grammar

In this section we summarize a grammar for gen-
erating logical forms that can be interpreted into
programs for the agent architecture described in
(Gray et al., 2019).

2.1 Agent Action Space

The assistant’s basic functions include moving, and
placing and destroying blocks. Supporting these
basic functions are methods for control flow and
memory manipulation.

Basic action commands: The assistant can
MOVE to a specified location; or DANCE with a
specified sequence of steps. It can BUILD an object
from a known schematic (or by making a copy of
a block-object in the world) at a given location, or
DESTROY an existing object. It can DIG a hole of a
given shape at a specified location, or FILL one up.
The agent can also be asked to complete a partially
built structure however it sees fit by FREEBUILD.

3Instructions can be found at http://craftassist.
io/acl2020demo, requires a Minecraft license and client.

Figure 2: The basic structure of internal nodes in the as-
sistant’s grammar. Blue rectangles are internal nodes,
green rectangles are categorical leaf nodes, and red
ovals are span nodes.

Finally, it can SPAWN a mob (an animate NPC in
Minecraft).

Control commands: Additionally, the agent can
STOP or RESUME an action, or UNDO the result of
a recent command. Furthermore, the assistant can
LOOP given a task and a stop-condition. Finally,
it needs to be able to understand when a sentence
does not correspond to any of the above mentioned
actions, and map it to a NOOP.

Memory interface: Finally, the assistant can in-
teract with its SQL based memory. It can place
or update rows or cells, for example for tagging
objects. This can be considered a basic version of
the self-improvement capabilities in (Kollar et al.,
2013; Thomason et al., 2015; Wang et al., 2016,
2017). It can retrieve information for question an-
swering similar to the VQA in (Yi et al., 2018).

2.2 Logical Forms

The focus of this paper is an intermediate represen-
tation that allows natural language to be interpreted
into programs over the basic actions from the pre-
vious section. The logical forms (represented as
trees) making up this representation consist of three
basic types of nodes: “internal nodes” that can have
children, “categorical” (leaf) nodes that belong to
a fixed set of possibilities, and “span” nodes that
point to a region of text in the natural language
utterance. The full grammar is shown in the Ap-
pendix C; and a partial schematic representation is
shown in Figures 1 and 2. In the paragraphs below,
we give more detail about some of the kinds of
nodes in the grammar.

http://craftassist.io/acl2020demo
http://craftassist.io/acl2020demo

4695

Figure 3: A representation of the annotation process using the web-based annotation tool described in Section
3.1.3. The colors of the boxes correspond to annotation tasks. The highlighting on the text in the header of the later
tasks is provided by a previous annotator. We show more detailed screenshots of how the tool works in Appendix
B.3

.

We emphasize that this is an intermediate rep-
resentation. The logical forms do not come with
any mechanism for generating language, and nodes
do not correspond in any simple way with words.
On the other hand, the logical forms do not encode
all of the information necessary for execution with-
out the use of an interpreter that can access the
assistant’s memory and the Minecraft world state.

Internal nodes: Internal nodes are nodes that
allow recursion; although most do not require it.
They can correspond to top-level actions, for ex-
ample BUILD; in which case they would just be
an “action” node with “action type” build; see Fig-
ure 1. They can also correspond to arguments to
top-level actions, for example a “reference object”,
which specifies an object that has a spatial loca-
tion. Internal nodes are not generally required to
have children; it is the job of the interpreter to deal
with under-specified programs like a BUILD with
no arguments.

In addition to the various LOCATION, REFER-
ENCE OBJECT, SCHEMATIC, and REPEAT nodes
which can be found at various levels, another no-
table sub-tree is the action’s STOP CONDITION,
which essentially allows the agent to understand
“while” loops (for example: “dig down until you hit
the bedrock” or “follow me”).

Leaf nodes: Eventually, arguments have to be
specified in terms of values which correspond to
(fixed) agent primitives. We call these nodes cat-
egorical leaves (green rectangles in Figures 1 and
2). As mentioned above, an “action” internal node

has a categorical leaf child which specifies the
action type. There are also repeat type nodes
similarly specifying a kind of loop for example in
the REPEAT sub-tree corresponding to ”make three
houses” the repeat type for specifies a “for” loop).
There are also location type nodes specifying if a
location is determined by a reference object, a set
of coordinates, etc.; relative direction nodes that
have values like “left” or “right”. The complete list
of categorical nodes is given in the Appendix C.

However, there are limits to what we can repre-
sent with a pre-specified set of hard-coded prim-
itives, especially if we want our agent to be able
to learn new concepts or new values. Additionally,
even when there is a pre-specified agent primitive,
mapping some parts of the command to a specific
value might be better left to an external module
(e.g. mapping a number string to an integer value).
For these reasons, we also have span leaves (red
ovals in Figure 2). For example, in the parse for
the command “Make three oak wood houses to
the left of the dark grey church.”, the SCHEMATIC

(an internal node) might be specified by the com-
mand sub-string corresponding to its name by the
span“houses” and the requested block type by the
span “oak wood”. The range of the for loop is spec-
ified by the REPEAT’s for value (“three”), and the
REFERENCE OBJECT for the location is denoted
in the command by its generic name and specific
color with spans “church” and “dark grey”.

The root: The root of the tree has three produc-
tions: PUT MEMORY, and GET MEMORY, corre-

4696

Figure 4: Frequency of each action type in the different
data collection schemes described in Section 3.1.

sponding to writing to memory and reading from
memory; and HUMAN GIVE COMMAND which
also produces an ACTION SEQUENCE, which is
a special internal node whose children are ordered;
multiple children correspond to an ordered se-
quence of commands (“build a house and then a
tower”). In Figures 1 and 2 we show a schematic
representation for an ACTION SEQUENCE.

3 The CAIP Dataset

This paper introduces the CraftAssist Instruction
Parsing (CAIP) dataset of English-language com-
mands and their associated logical forms (see Ap-
pendix D for examples and Appendix C for a full
grammar specification).

3.1 Collected Data

We collected natural language commands written
by crowd-sourced workers in a variety of settings.
The complete list of instructions given to crowd-
workers in different settings, as well as step-by-step
screen-shot of the annotation tool, are provided
in the Appendix B. The basic data cleanup is de-
scribed in Appendix A.

3.1.1 Image and Text Prompts
We presented crowd-sourced workers with a de-
scription of the capabilities of an assistant bot in

Figure 5: Histograms showing distribution over num-
ber of nodes in a logical form (top) and utterance length
in words (bottom) for each data type. Prompts averages
6.74 nodes per logical form, 7.32 words per utterance,
and interactive averages 4.89, 3.42 respectively

a creative virtual environment (which matches the
set of allowed actions in the grammar), and (option-
ally) some images of a bot in a game environment.
They were then asked to provide examples of com-
mands that they might issue to an in-game assistant.
We refer to these instructions as “prompts” in the
rest of this paper.

3.1.2 Interactive Gameplay
We asked crowd-workers to play creative-mode
Minecraft with our assistant bot, and they were
instructed to use the in-game chat to direct the bot
as they chose. The game sessions were capped at
10 minutes and players in this setting had no prior
knowledge of the bot’s capabilities or the grammar.
We refer to these instructions as “Interactive” in the
rest of this paper. The instructions of this setting
are included in Appendix B.2.

3.1.3 Annotation Tool
Both prompts and interactive instructions come
without a reference logical form and need to be
annotated. To facilitate this process, we designed
a multi-step web-based tool which asks users a se-
ries of multiple-choice questions to determine the
semantic content of a sentence. The responses to
some questions will prompt other more specific
questions, in a process that mirrors the hierarchical
structure of the grammar. The responses are then
processed to produce the complete logical form.
This allows crowd-workers to provide annotations
with no knowledge of the specifics of the gram-
mar described above. A pictorial representation of
the annotation process is shown in Figure 3 and

4697

a more detailed explanation of the process along
with screen-shots of the tool is given in Appendix
B.3.

We used a small set of tasks that were repre-
sentative of the actual annotations to select skilled
crowd-sourced workers by manually verifying the
accuracy of responses on these.

Each utterance in our collection of prompts and
interactive chats was shown to three different qual-
ified annotators and we included the utterance and
logical form in the dataset only if at least 2 out of
3 qualified annotators agreed on the logical form
output. The total number of utterances sent to turk-
ers was 6,775. Out of these, 6,693 had at least 2/3
agreements on the logical form and were kept. Of
these, 2,872 had 3/3 agreements.

The final dataset has 4,532 annotated instruc-
tions from the prompts setting (Section 3.1.1), and
2,161 from interactive play (Section 3.1.2). The
exact instructions shown to Turkers in the annota-
tion tools are reproduced in Figures 9 and 11 in
supplementary.

As in (Yih et al., 2016), we have found that care-
ful design of the annotation tool leads to significant
improvements in efficiency and accuracy. In partic-
ular, we re-affirm the conclusion from (Yih et al.,
2016) that having each worker do one task (e.g.
labeling a single node in the tree) makes annotation
easier for workers.

3.2 Dataset Statistics
3.2.1 Action Frequencies
Since the different data collection settings de-
scribed in Section 3.1 imposed different constraints
and biases on the crowd-sourced workers, the distri-
bution of actions in each subset of data is therefore
different. The action frequencies of each subset are
shown in Figure 4.

3.2.2 Grammar coverage
Some crowd-sourced commands describe an action
that is outside the scope of the grammar. To ac-
count for this, users of the annotation tool are able
to mark that a sentence is a command to perform
an action that is not covered by our grammar yet.
The resulting trees are labeled as OTHERACTION,
and their frequency in each dataset in shown in
Figure 4. Annotators still have the option to label
other nodes in the tree, such as the action’s LOCA-
TION or REFERENCE OBJECT. In both the prompts
and interactive data, OTHERACTION amounted to
approximately 14% of the data.

3.2.3 Quantitative analysis
For each of our data types, Figure 5 show a his-
togram of sentence length and number of nodes.
On an average interactive data has shorter sentences
and smaller trees.

3.2.4 Qualitative Linguistic Style
We show the linguistic styles and choice of words
of the data sources by displaying the surface forms
of a set of trees. We randomly picked trees of
size (number of nodes) 7 that appear in both data
sources, and then for the same tree structure, we
looked at the utterances corresponding to that tree.
We show some representative examples in table
1. We show more examples of the data in the Ap-
pendix D

4 Related Work

There have been a number of datasets of natural
language paired with logical forms to evaluate se-
mantic parsing approaches, e.g. (Price, 1990; Tang
and Mooney, 2001; Cai and Yates, 2013; Wang
et al., 2015; Zhong et al., 2017). The dataset pre-
sented in this work is an order of magnitude larger
than those in (Price, 1990; Tang and Mooney, 2001;
Cai and Yates, 2013) and is similar in scale to the
datasets in (Wang et al., 2015), but smaller than
(Zhong et al., 2017).

In addition to mapping natural language to log-
ical forms, our dataset connects both of these to
a dynamic environment. In (Lauria et al., 2001;
Bos and Oka, 2007; Tellex et al., 2011; Matuszek
et al., 2013; Thomason et al., 2019) semantic pars-
ing has been used for interpreting natural language
commands for robots. In our paper, the “robot” is
embodied in the Minecraft game instead of in the
physical world. In (Boye et al., 2006) semantic
parsing has been used for spoken dialogue with an
embodied character in a 3-D world with pattern
matching and rewriting phases. In our work, the
user along with the assistant is embodied in game
and instructs using language. We go from language
to logical forms end-to-end with no pattern match
necessary. Semantic parsing in a voxel-world re-
calls (Wang et al., 2017), where the authors de-
scribe a method for building up a programming
language from a small core via interactions with
players.

We demonstrate the results of several neural
parsing models on our dataset. In particular, we
show the results of a re-implementation of (Dong

4698

Prompts bot move to
where the tree is

dig a large size hole to put these
waste particles into the hole

please build a sphere on
that location

hey bot can you dig a 5
by 5 hole for me

Interactive find tree dig large hole build a sphere over here dig a 5 x 5 hole

Table 1: Choice of words across different data sources for the same logical form (per column).

and Lapata, 2016) adapted to our grammar, and
a straightforward fine-tuned BERT model (Devlin
et al., 2018). There have been several other pa-
pers proposing neural architectures for semantic
parsing, for example (Jia and Liang, 2016; Zhong
et al., 2017; Wang et al., 2018; Hwang et al., 2019);
in particular (Hwang et al., 2019) uses a BERT
based model. In those papers, as in this one, the
models are trained with full supervision of the map-
ping from natural language to logical forms, with-
out considering the results of executing the logical
form (in this case, the effect on the environment of
executing the actions denoted by the logical form).
There has been progress towards “weakly super-
vised” semantic parsing (Artzi and Zettlemoyer,
2013; Liang et al., 2016; Guu et al., 2017) where
the logical forms are hidden variables, and the only
supervision given is the result of executing the log-
ical form. There are now approaches that have
shown promise without even passing through (dis-
crete) logical forms at all (Riedel et al., 2016; Nee-
lakantan et al., 2016). We hope that the dataset
introduced here, which has supervision at the level
of the logical forms, but whose underlying gram-
mar and environment can be used to generate es-
sentially infinite weakly supervised or execution
rewards, will also be useful for studying these mod-
els.

Minecraft, especially via the MALMO project
(Johnson et al., 2016) has been used as a base en-
vironment for several machine learning papers. It
is often used as a testbed for reinforcement learn-
ing (RL) (Shu et al., 2017; Udagawa et al., 2016;
Alaniz, 2018; Oh et al., 2016; Tessler et al., 2017).
In these works, the agent is trained to complete
tasks by issuing low level actions (as opposed to our
higher level primitives) and receiving a reward on
success. Others have collected large-scale datasets
for RL and imitation learning (Guss et al., 2019a,b).
Some of these works (e.g. (Oh et al., 2017)) do con-
sider simplified, templated language as a method
for composably specifying tasks, but training an
RL agent to execute the scripted primitives in our
grammar is already nontrivial, and so the task space
and language in those works is more constrained

than what we use here. Nevertheless, our work
may be useful to researchers interested in RL (or
imitation): using our grammar and executing in
game can supply (hard) tasks and descriptions, and
demonstrations. Another set of works (Kitaev and
Klein, 2017; Yi et al., 2018) have used Minecraft
for visual question answering with logical forms.
Our work extends these to interactions with the en-
vironment. Finally, (Allison et al., 2018) is a more
focused study on how a human might interact with
a Minecraft agent; our collection of free genera-
tions (see 3.1.1) includes annotated examples from
similar studies of players interacting with a player
pretending to be a bot.

5 Baseline Models

In order to assess the challenges of the dataset,
we implement two models which learn to read a
sentence and output a logical form by formulating
the problem as a sequence-to-tree and a sequence-
to-sequence prediction task respectively.

5.1 Sequence to Tree Model

Our first model adapts the Seq2Tree approach of
(Dong and Lapata, 2016) to our grammar. In short,
a bidirectional RNN encodes the input sentence
into a sequence of vectors, and a decoder recur-
sively predicts the tree representation of the logical
form, starting at the root and predicting all of the
children of each node based on its parent and left
siblings and input representation.

Sentence Encoder and Attention: We use a
bidirectional GRU encoder (Cho et al., 2014) which
encodes a sentence of length T s = (w1, . . . wT)
into a sequence of T dimension d vectors:

fGRU (s) = (h1, . . . ,hT) ∈ Rd×T

Tree Decoder: The decoder starts at the root,
computes its node representation and predicts the
state of its children, then recursively computes the
representations of the predicted descendants. Simi-
larly to Seq2Tree, a node representation rn is com-
puted based on its ancestors and left siblings. We
also found it useful to condition each of the node

4699

representation on the encoder output explicitly for
each node. Thus, we compute the representation
rnt and recurrent hidden state gnt for node nt as:

rnt = attn(vnt + gnt−1 , (h1, . . . ,hT); Mσ) (1)

gnt = frec(gnt−1 , (v
′
nt + rnt)) (2)

Where attn is multi-head attention, Mσ ∈ Rd×d×K
is a tree-wise parameter, frec is the GRU recurrence
function, and v′nt is a node parameter (one per
category for categorical nodes), and nt−1 denotes
either the last predicted left sibling if there is one
or the parent node otherwise.

Prediction Heads: Finally, the decoder uses the
computed node representations to predict the state
of each of the internal, categorical, and span nodes
in the grammar. We denote each of these sets by I ,
C and S respectively, and the full set of nodes as
N = I ∪ C ∪ S.

First, each node in N is either active or inactive
in a specific logical form. We denote the state of
a node n by an ∈ {0, 1}. All the descendants of
an inactive internal node n ∈ I are considered to
be inactive. Additionally, each categorical node
n ∈ C has a set of possible values Cn; its value
in a specific logical form is denoted by the cate-
gory label cn ∈ {1, . . . , |Cn|}. Finally, active span
nodes n ∈ S for a sentence of length T have a start
and end index (sn, en) ∈ {1, . . . , T}2. We com-
pute, the representations rn of the nodes as outlined
above, then obtain the probabilities of each of the
labels by:

∀n ∈ N , p(an) = σ(〈rn,pn〉) (3)

∀n ∈ C, p(cn) = softmax(M c
nrn) (4)

∀n ∈ S, p(sn) = softmax(rT
nM

s
n(h1, . . . ,hT))

p(en) = softmax(rT
nM

e
n(h1, . . . ,hT))

(5)

where the following are model parameters:

∀n ∈ N , pn ∈ Rd

∀n ∈ C, M c
n ∈ Rd×d

∀n ∈ S, (M s
n,M

e
n)n ∈ Rd×d×2

Let us note the parent of a node n as π(n). Given
Equations 3 to 5, the log-likelihood of a tree with
states (a, c, s, e) given a sentence s is then:

L =
∑
n∈N

aπ(n) log(p(an)) +
∑
n∈C

an log(p(cn))

+
∑
n∈S

an

(
log(p(sn)) + log(p(en))

)
(6)

Overall, our implementation differs from the
original Seq2Tree in three ways, which we found
lead to better performance in our setting. First,
we replace single-head with multi-head attention.
Secondly, the cross-attention between the decoder
and attention is conditioned on both the node em-
bedding and previous recurrent state. Finally, we
replace the categorical prediction of the next node
by a binary prediction problem: since we know
which nodes are eligible as the children of a spe-
cific node (see Figures 1 and 2), we find that this
enforces a stronger prior. We refer to this modified
implementation as SentenceRec.

5.2 Sequence to Sequence Model

Our second approach treats the problem of pre-
dicting the logical form as a general sequence-to-
sequence (Seq2Seq) task; such approaches have
been used in semantic parsing in e.g. (Jia and Liang,
2016; Wang et al., 2018). We take the approach of
(Jia and Liang, 2016) and linearize the output trees:
the target sequence corresponds to a Depth First
Search walk through the tree representation of the
logical form. More specifically the model needs
to predict, in DFS order, a sequence of tokens cor-
responding to opening and closing internal nodes,
categorical leaves and their value, and span leaves
with start and end sequences. In practice, we let
the model predict span nodes in two steps: first pre-
dict the presence of the node, then predict the span
value, using the same prediction heads as for the
SentenceRec model (see Equation 5 above). With
this formalism, the logical form for e.g. “build a
large blue dome on top of the walls” will be:
(ACTION_TYPE:BUILD, OPEN:SCHEMATIC,

HAS_SIZE, SIZE_SPAN-(2,2),
HAS_COLOR, COLOR_SPAN-(3,3),
HAS_NAME, NAME_SPAN-(4,4),

CLOSE:SCHEMATIC, OPEN:LOCATION,
LOC_TYPE:REF_OBJECT, REL_DIR:UP,
OPEN:REF_OBJECT,

HAS_NAME, NAME_SPAN-(9,9),
CLOSE:REF_OBJECT,

CLOSE:LOCATION)

We train a BERT encoder-decoder architecture
on this sequence transduction task, where the train-
ing loss is a convex combination of the output se-
quence log-likelihood and the span cross-entropy
loss.

Pre-trained Sentence Encoder: Finally, recent
work has shown that using sentence encoder that
has been pre-trained on large-scale language mod-
eling tasks can lead to substantial performance

4700

Acc. (std) Inter. Prompts

SentRec 50.08 (2.97) 64.17 42.49
DistBERT+SentRec 59.58 (3.49) 76.0 50.74
DistBERT+Seq2Seq 60.74 (3.58) 76.06 52.49

Table 2: Average accuracy over a test set of 650
Prompts + 350 Interactive.

improvements (Song et al., 2019).We use the pre-
trained DistilBERT model of (Sanh et al., 2019) as
the encoder of our sequence-to-sequence model,
and also propose a version of the SentenceRec
which uses it to replace the bidirectional RNN.

6 Experiments

In this Section, we evaluate the performance of our
baseline models on the proposed dataset.

Training Data: The CAIP datasets consists in a
total of 6693 annotated instruction-parse pairs. In
order for our models to make the most of this data
while keeping the evaluation statistically signifi-
cant, we create 5 different train/test splits of the
data and report the average performance of models
trained and evaluated on each of them. In each case,
we hold out 650 examples from Prompts and 350
from Interactive for testing, and use the remaining
5693 as the training set.

Modeling Choices: For the end-to-end trained
SentenceRec model, we use a 2-layer GRU sen-
tence encoder and all hidden layers have dimension
d = 256. We use pre-trained word embeddings
computed with FastText with subword information
(Bojanowski et al., 2017). The decoder uses a GRU
recurrent cell and 4-headed attention. The Seq2Seq
model uses a variant of the bert-base-uncased pro-
vided in the Transformer library 4 with 6 encoding
and decoding layers. For the Seq2Seq model and
the SentenceRec with pre-trained encoder, we use
the distilbert-base-uncased encoder from the same
library. The Seq2Seq model uses beam search de-
coding with 15 beams. All models are trained with
the Adam optimizer with quadratic learning rate
decay. We provide our model and training code
along with the dataset for reproducibility purposes.

Overview of Results: Table 2 provides the aver-
age accuracy (computed as the proportion of logical
forms that are entirely accurately predicted) and
standard deviation across all five splits, as well as
the contributions of the Interactive and Prompts

4https://github.com/huggingface/transformers

N=2 N=5 N=15

Joint 67.7 72.76 75.7
Interactive 83.83 88.34 90.63
Prompts 59.02 64.37 67.66

Table 3: Recall at N for the Seq2Seq model beam
search.

Figure 6: We show nodes in the grammar which are
most often wrongly predicted, with false positive (+)
and false negative counts (-).

data. The first observation is that using a pre-
trained encoder leads to a significant improvement,
with a 10 point boost in accuracy. On the other
hand, while the Seq2Seq model is more general
and makes less use of our prior knowledge of the
structure of logical forms, it does marginally bet-
ter than the recursive prediction model (although
within one standard deviation).

Secondly, although the models are trained on
more data provided from the Prompts setting than
from Interactive play, they all do better on the latter.
This is consistent with previous observations on
the dataset statistics in Section 3.2.3 which find
that players tend to give shorter instructions with
simpler execution. Finally, we note that one of
the advantages of having the parser be part of an
interactive agent is that it can ask the player for
clarification and adapt its behavior when it is made
aware of a mistake (Yao et al., 2019). In that spirit,
Table 3 provides Recall at N numbers, which rep-
resent how often the true parse is within the N first
elements of the beam after beam search. Recall
at 2 does provide a consistent boost over the accu-
racy of a single prediction, but even the full size
15 beam does not always contain the right logical
form.

Error Analysis: We further investigate the errors
of the Seq2seq models on one of the data splits.
We find that the model still struggles with span
predictions: out of 363 errors, 125 only make mis-
takes on spans (and 199 get the tree structure right

4701

but make mistakes on leaves). Figure 6 shows the
nodes which are most commonly mistaken, with
the number of false positive and false negatives out
of these 363 mistakes. Unsurprisingly, the most
commonly confused span leaf is “has tag”, which
we use as a miscellaneous marker. Aside from that
“has tag” however, the span mistakes are evenly
spread over all other leaves. The next most com-
mon source of mistakes comes from the model
struggling between identifying whether a provided
location corresponds to the target of the action or
to the reference object, and to identify instructions
which imply a repetition. The former indicates
a lack of compositionality in the input representa-
tion: the model correctly identifies that a location is
mentioned, but fails to identify its context. Repeat
conditions on the other hand challenge the model
due to the wide variety of possible stop condition,
a problem we suggest future work pay special at-
tention to.

7 Conclusion

In this work, we have described a grammar over a
mid-level interface for a Minecraft assistant. We
then discussed the creation of a dataset of natural
language utterances with associated logical forms
over this grammar that can be executed in-game.
Finally, we showed the results of using this new
dataset to train several neural models for parsing
natural language instructions. Consistent with re-
cent works, we find that BERT pre-trained models
do better than models trained from scratch, but
there is much space for improvement. We believe
this data will be useful to researchers studying
semantic parsing, especially interactive semantic
parsing, human-robot interaction, and even imita-
tion and reinforcement learning. The code, dataset
and annotation tools described in the paper have
been open-sourced 5.

5https://github.com/facebookresearch/
craftassist/tree/master/acl2020_
submission

https://github.com/facebookresearch/craftassist/tree/master/acl2020_submission
https://github.com/facebookresearch/craftassist/tree/master/acl2020_submission
https://github.com/facebookresearch/craftassist/tree/master/acl2020_submission

4702

References
Stephan Alaniz. 2018. Deep reinforcement learning

with model learning and monte carlo tree search in
minecraft. arXiv preprint arXiv:1803.08456.

Fraser Allison, Ewa Luger, and Katja Hofmann. 2018.
How players speak to an intelligent game character
using natural language messages. Transactions of
the Digital Games Research Association, 4(2).

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL, 5:135–146.

Johan Bos and Tetsushi Oka. 2007. A spoken language
interface with a mobile robot. Artificial Life and
Robotics, 11(1):42–47.

Johan Boye, Joakim Gustafson, and Mats Wirén. 2006.
Robust spoken language understanding in a com-
puter game. Speech Commun., 48:335–353.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon
extension. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 423–433.

Giovanni Campagna, Rakesh Ramesh, Silei Xu,
Michael Fischer, and Monica S Lam. 2017. Al-
mond: The architecture of an open, crowdsourced,
privacy-preserving, programmable virtual assistant.
In Proceedings of the 26th International Conference
on World Wide Web, pages 341–350.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,
Richard Socher, and Monica S Lam. 2019. Genie:
A generator of natural language semantic parsers for
virtual assistant commands. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 394–
410.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724–
1734.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. arXiv preprint
arXiv:1601.01280.

Jonathan Gray, Kavya Srinet, Yacine Jernite, Hao-
nan Yu, Zhuoyuan Chen, Demi Guo, Siddharth
Goyal, C Lawrence Zitnick, and Arthur Szlam. 2019.
Craftassist: A framework for dialogue-enabled inter-
active agents. arXiv preprint arXiv:1907.08584.

William H Guss, Cayden Codel, Katja Hofmann, Bran-
don Houghton, Noboru Kuno, Stephanie Milani,
Sharada Mohanty, Diego Perez Liebana, Ruslan
Salakhutdinov, Nicholay Topin, et al. 2019a. The
minerl competition on sample efficient reinforce-
ment learning using human priors. arXiv preprint
arXiv:1904.10079.

William H Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and
Ruslan Salakhutdinov. 2019b. Minerl: a large-scale
dataset of minecraft demonstrations. arXiv preprint
arXiv:1907.13440.

Kelvin Guu, Panupong Pasupat, Evan Zheran Liu,
and Percy Liang. 2017. From language to
programs: Bridging reinforcement learning and
maximum marginal likelihood. arXiv preprint
arXiv:1704.07926.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622.

Matthew Johnson, Katja Hofmann, Tim Hutton, and
David Bignell. 2016. The malmo platform for arti-
ficial intelligence experimentation. In IJCAI, pages
4246–4247.

Nikita Kitaev and Dan Klein. 2017. Where is misty?
interpreting spatial descriptors by modeling regions
in space. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 157–166.

Thomas Kollar, Danielle Berry, Lauren Stuart,
Karolina Owczarzak, Tagyoung Chung, Lambert
Mathias, Michael Kayser, Bradford Snow, and Spy-
ros Matsoukas. 2018. The alexa meaning represen-
tation language. In Proceedings of the 2018 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 3 (Industry Papers),
volume 3, pages 177–184.

Thomas Kollar, Jayant Krishnamurthy, and Grant P
Strimel. 2013. Toward interactive grounded lan-
guage acqusition. In Robotics: Science and systems,
volume 1, pages 721–732.

https://doi.org/10.1016/j.specom.2005.06.015
https://doi.org/10.1016/j.specom.2005.06.015
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/p16-1002
https://doi.org/10.18653/v1/p16-1002
https://doi.org/10.18653/v1/d17-1015
https://doi.org/10.18653/v1/d17-1015
https://doi.org/10.18653/v1/d17-1015
https://doi.org/10.18653/v1/n18-3022
https://doi.org/10.18653/v1/n18-3022

4703

Stanislao Lauria, Guido Bugmann, Theocharis Kyri-
acou, Johan Bos, and A Klein. 2001. Training
personal robots using natural language instruction.
IEEE Intelligent systems, 16(5):38–45.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D For-
bus, and Ni Lao. 2016. Neural symbolic machines:
Learning semantic parsers on freebase with weak su-
pervision. arXiv preprint arXiv:1611.00020.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2013. Learning to parse natural lan-
guage commands to a robot control system. In Ex-
perimental Robotics, pages 403–415. Springer.

Arvind Neelakantan, Quoc V Le, Martin Abadi, An-
drew McCallum, and Dario Amodei. 2016. Learn-
ing a natural language interface with neural program-
mer. arXiv preprint arXiv:1611.08945.

Junhyuk Oh, Valliappa Chockalingam, Satinder Singh,
and Honglak Lee. 2016. Control of memory, active
perception, and action in minecraft. arXiv preprint
arXiv:1605.09128.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Push-
meet Kohli. 2017. Zero-shot task generalization
with multi-task deep reinforcement learning. arXiv
preprint arXiv:1706.05064.

Patti J Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Sebastian Riedel, Matko Bosnjak, and Tim
Rocktäschel. 2016. Programming with a differen-
tiable forth interpreter. CoRR, abs/1605.06640.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Tianmin Shu, Caiming Xiong, and Richard Socher.
2017. Hierarchical and interpretable skill acqui-
sition in multi-task reinforcement learning. arXiv
preprint arXiv:1712.07294.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: masked sequence to se-
quence pre-training for language generation. In Pro-
ceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, pages 5926–5936.

Lappoon R Tang and Raymond J Mooney. 2001. Us-
ing multiple clause constructors in inductive logic
programming for semantic parsing. In European
Conference on Machine Learning, pages 466–477.
Springer.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and

mobile manipulation. In Twenty-Fifth AAAI Confer-
ence on Artificial Intelligence.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J
Mankowitz, and Shie Mannor. 2017. A deep hierar-
chical approach to lifelong learning in minecraft. In
AAAI, volume 3, page 6.

Jesse Thomason, Aishwarya Padmakumar, Jivko
Sinapov, Nick Walker, Yuqian Jiang, Harel Yedid-
sion, Justin Hart, Peter Stone, and Raymond J
Mooney. 2019. Improving grounded natural lan-
guage understanding through human-robot dialog.
arXiv preprint arXiv:1903.00122.

Jesse Thomason, Shiqi Zhang, Raymond J Mooney,
and Peter Stone. 2015. Learning to interpret natu-
ral language commands through human-robot dialog.
In Twenty-Fourth International Joint Conference on
Artificial Intelligence.

Hiroto Udagawa, Tarun Narasimhan, and Shim-Young
Lee. 2016. Fighting zombies in minecraft with deep
reinforcement learning. Technical report, Technical
report, Stanford University.

Sida I Wang, Samuel Ginn, Percy Liang, and
Christoper D Manning. 2017. Naturalizing a pro-
gramming language via interactive learning. pages
929–938.

Sida I Wang, Percy Liang, and Christopher D Manning.
2016. Learning language games through interaction.
arXiv preprint arXiv:1606.02447.

Wenlu Wang, Yingtao Tian, Hongyu Xiong, Haixun
Wang, and Wei-Shinn Ku. 2018. A transfer-
learnable natural language interface for databases.
arXiv preprint arXiv:1809.02649.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), volume 1, pages
1332–1342.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019.
Model-based interactive semantic parsing: A uni-
fied framework and A text-to-sql case study. CoRR,
abs/1910.05389.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Tor-
ralba, Pushmeet Kohli, and Josh Tenenbaum. 2018.
Neural-symbolic vqa: Disentangling reasoning from
vision and language understanding. In Advances
in Neural Information Processing Systems, pages
1039–1050.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

https://doi.org/10.1109/5254.956080
https://doi.org/10.1109/5254.956080
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://proceedings.mlr.press/v97/song19d.html
http://proceedings.mlr.press/v97/song19d.html
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.18653/v1/p16-1224
https://doi.org/10.3115/v1/p15-1129
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547

4704

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

4705

A Basic Data Cleanup

We threw away all duplicate commands in the
dataset and only got annotations for unique com-
mands from each data source.

We performed post-processing on the text by
first inserting spaces between any special charac-
ter (brackets, “,”, “x”) followed by alphanumeric
character. For example “make a 5x5 hole” was
post-processed to “make a 5 x 5 hole” and “go to
(1,2,3)” to “go to (1 , 2 , 3)”. We then used the
tokenizer from spaCy 6 to tokenize every word in
the sentence.

When constructing logical forms: we threw away
any keys with values : ‘None’ , ‘Other’ or ‘Not
Specified’ . Our tool allows workers to select these
options when annotating. We skipped stopwords
and articles like ‘a’ , ‘an’ etc when constructing
spans of children. We reordered the indices of
words in spans to always be from left to right (re-
gardless of which order the words were selected in
the sentence when annotating).

For commands annotated as “composite” (mean-
ing a command that requires multiple actions), we
set up another tool where we asked crowd-sourced
workers to split the composite command into indi-
vidual commands. Each of these commands were
then sent to our web-based tool described in 3.1.3
and the results were combined together under the
key: “action sequence” by preserving the order.
So in the sentence: “jump twice and then come
to me”, we first have the sentence split into com-
mands: “jump twice” and “come to me” and then
combine their logical forms together under “ac-
tion sequence” so we first have the “Dance” action
followed by “Move” action. This tool is described
in Section B.4.

B Crowd-sourced task and tools
instructions

This section covers details of each crowd sourced
task we’ve described in the paper along with screen-
shots of the web-based annotation tool described
in 3.1.

B.1 Image and Text Prompts
In this task we showed a screenshot of the bot
and environment to the crowd-sourced workers and
asked them to give us free-form commands for the
assistant. The instructions shown to workers are
shown in 7.

6https://spacy.io/

Figure 7: The task instructions shown to crowd-
sourced workers for the Image and text prompts task

Figure 8: The task instructions shown to crowd-
sourced workers for the interactive game play

B.2 Interactive Gameplay

In this task we had crowd-sourced workers play
with our bot and interact with it using in-game chat.
The instructions shown to workers are shown in 8.

B.3 Annotation tool

The web based annotation tool has two subparts:
Tool a and Tool b.

B.3.1 Tool a

This tool is the first tool in the process of annotation
and asks crowd-sourced workers to help determine
the intent (dialogue type or action type) of the sen-
tence and highlight other pieces of the text based on
the choices they made for the intent. (For example:
if the intent was “Build” they are asked to select
words for the thing to be built and the location re-
spectively.) We also provided helpful tooltips with
examples at every step of the process.

The instructions shown to workers for Tool a
are shown in figure 9 and step by step annotation
process is shown in figure 10

https://spacy.io/

4706

Figure 9: The task instructions shown to crowd-
sourced workers for the annotation Tool a

B.3.2 Tool b
After we determine the intent from Tool a and get
highlighted span of words for respective children
of the intent, we use this tool. This is the sec-
ond tool in the annotation process and asks crowd-
sourced workers to help determine the fin-grained
properties of specific entities of the action or dia-
logue. Note that we already got the words repre-
senting these, highlighted in B.3.1. For example
: the words “ big bright house” are highlighted
in the sentence “destroy the big bright house by
the tree ” as an outcome of Tool a. The question-
naire changes dynamically based on the choices
the workers make at every step of the tool. We
provided helpful tooltips with examples at every
step of the annotation process. Using the output of
Tool a and Tool b, we can successfully construct
the entire logical form for a given sentence.

The instructions shown to workers for Tool b
are shown in Figure 11 and step by step annotation
process for annotating properties of “location” in a
“Move” action is shown in Figure 12 and annotating
“reference object” in “Destroy” action is shown in
Figure 13

B.4 Tool for composite commands
This tool is meant for “composite” commands
(commands that include multiple actions) and asks
the users to split a command into multiple individ-
ual commands. The instruction for this are shown
in figure 14. Once we get the split, we send out
each command to annotation tool described in Sec-
tion B.3

Figure 10: The step by step screenshot of annotations
process for the command: “build three sets of book-
shelves in front of me .” in Tool a

4707

Figure 11: The task instructions shown to crowd-
sourced workers for the annotation Tool b

Figure 12: The step by step screenshot of annotat-
ing properties of highlighted words for“location” in a
“Move” action.

Figure 13: The step by step screenshot of annotating
properties of highlighted words for“reference object”
in a “Destroy” action.

Figure 14: The task instructions shown to crowd-
sourced workers for splitting composite commands

4708

C Action Tree structure

This section describes the details of logical form of
each action. We support three dialogue types: HU-
MAN GIVE COMMAND, GET MEMORY and
PUT MEMORY. The logical form for actions has
been pictorially represented in Figures: 1 and 2

We support the following actions in our dataset
: Build, Copy, Dance, Spawn, Resume, Fill, De-
stroy, Move, Undo, Stop, Dig and FreeBuild.
A lot of the actions use “location” and “refer-
ence object” as children in their logical forms.
To make the logical forms more presentable, we
have shown the detailed representation of a “ref-
erence object” (reused in action trees using the
variable: “REF OBJECT”) in Figure 15 and the
representation of “location” (reused in action trees
using the variable: “LOCATION”) in figure 16.
The representations of actions refer to these vari-
able names in their trees.

REF_OBJECT :
The recursion depth of REF_OBJECT in LOCATION
was never greater than 1 in the data. So a
REF_OBJECT can have a LOCATION that
has a REF_OBJECT that has a LOCATION
(and the final location will be one of :
COORDINATES / AGENT_POS / SPEAKER_POS /
SPEAKER_LOOK).

"reference_object" : {
"repeat" : {
"repeat_key" : ’FOR’ / ’ALL’,
"repeat_count" : span,
"repeat_dir" : ’LEFT’ / ’RIGHT’ / ’UP’/

’DOWN’ / ’FRONT’ / ’BACK’ / ’AROUND’}
"has_name" : span,
"has_colour" : span,
"has_size" : span,
"has_tag": span,
"has_length": span,
"has_width": span,
"has_height": span,
"contains_coreference" : "yes",
LOCATION }

Figure 15: Logical form of a reference object child

LOCATION:

"location" : {
"location_type" : COORDINATES / REFERENCE_OBJECT /

AGENT_POS / SPEAKER_POS / SPEAKER_LOOK
"steps" : span,
"contains_coreference" : "yes",
"relative_direction" : ’LEFT’ / ’RIGHT’ / ’UP’/

’DOWN’ / ’FRONT’ / ’BACK’ / ’AWAY’ / ’INSIDE’
/ ’NEAR’ / ’OUTSIDE’ / ’BETWEEN’,

"coordinates" : span, (present if "location_type"
is ’COORDINATES),
REF_OBJECT (present if "location_type" is
’REFERENCE_OBJECT’)

}

Figure 16: Logical form of a location child

The detailed action tree for each action and di-
alogue type has been presented in the following
subsections. Figure 17 shows an example for a
BUILD action.

0 1 2 3 4 5 6
"Make three oak wood houses to the
7 8 9 10 11 12

left of the dark grey church."

{"dialogue_type" : "HUMAN_GIVE_COMMAND",
"action_sequence" : [
{
"action_type" : "BUILD",
"schematic": {

"has_block_type": [0, [2, 3]],
"has_name": [0, [4, 4]],
"repeat": {

"repeat_key": "FOR",
"repeat_count": [1, 1]

}},
"location": {
"relative_direction": "LEFT",
"location_type": "REFERENCE_OBJECT",
"reference_object": {

"has_colour_": [0, [10, 11]],
"has_name_": [0, [12, 12]] }

}}]}

Figure 17: An example logical form. The spans are
indexed as : [sentence number, [starting word index,
ending word index]]. sentence number is 0 for the
most recent sentence spoken in a dialogue and is 0 in
our dataset since we support one-turn dialogues as of
now.

C.1 Build Action
This is the action to Build a schematic at an optional
location. The Build logical form is shown in 18 .

C.2 Copy Action
This is the action to copy a block object to an op-
tional location. The copy action is represented as a
”Build” with an optional ”reference object” . The
logical form is shown in 19.

C.3 Spawn Action
This action indicates that the specified object
should be spawned in the environment. The logical
form is shown in: 20

C.4 Fill Action
This action states that a hole / negative shape at an
optional location needs to be filled up. The logical
form is explained in : 21

C.5 Destroy Action
This action indicates the intent to destroy a block
object at an optional location. The logical form is
shown in: 22

Destroy action can have one of the following as
the child:

• reference object

4709

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [

{"action_type" : ’BUILD’,
LOCATION,
"schematic" : {

"repeat" : {
"repeat_key" : ’FOR’ / ’ALL’,
"repeat_count" : span,
"repeat_dir" : ’LEFT’ / ’RIGHT’ /

’UP’/ ’DOWN’ / ’FRONT’ /
’BACK’ / ’AROUND’}

"has_name" : span,
"has_block_type" : span,
"has_size" : span,
"has_orientation" : span,
"has_thickness" : span,
"has_colour" : span,
"has_length": span,
"has_height" : span,
"has_radius" : span,
"has_slope" : span,
"has_width": span,
"has_base" : span,
"has_distance" : span,
},

"repeat" : {
"repeat_key" : ’FOR’ / ’ALL’,
"repeat_count" : span,
"repeat_dir" : ’LEFT’ / ’RIGHT’ /

’UP’/ ’DOWN’ / ’FRONT’ /
’BACK’ / ’AROUND’}

}]
}

Figure 18: Details of logical form for Build
{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [

{"action_type" : ’BUILD’,
LOCATION,
REF_OBJ,
"repeat" : {

"repeat_key" : ’FOR’ / ’ALL’,
"repeat_count" : span,
"repeat_dir" : ’LEFT’ / ’RIGHT’ /

’UP’/ ’DOWN’ / ’FRONT’ /
’BACK’ / ’AROUND’}

}]
}

Figure 19: Details of logical form for Copy

• nothing

C.6 Move Action

This action states that the agent should move to the
specified location, the corresponding logical form
is in: 23

Move action can have one of the following as its
child:

• location

• stop condition (stop moving when a condition
is met)

• location and stop condition

• neither

C.7 Dig Action

This action represents the intent to dig a hole / neg-
ative shape of optional dimensions at an optional
location. The logical form is in 24

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [
{"action_type" : ’SPAWN’,
LOCATION,
REF_OBJ }]

}

Figure 20: Details of logical form for Spawn action
{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,

"action_sequence" : [
{"action_type" : ’FILL’,
"has_block_type" : span,
REF_OBJ }]

}

Figure 21: Details of logical form for Fill

C.8 Dance Action

This action represents that the agent performs a
movement of a certain kind. Note that this action
is different than a Move action in that the path
or step-sequence here is more important than the
destination. The logical form is shown in 25

C.9 FreeBuild Action

This action represents that the agent should com-
plete an already existing half-finished block object,
using its mental model. The logical form is ex-
plained in: 26

FreeBuild action can have one of the following
as its child:

• reference object only

• reference object and location

C.10 Undo Action

This action states the intent to revert the specified
action, if any. The logical form is in 27. Undo
action can have on of the following as its child:

• target action type

• nothing (meaning : undo the last action)

C.11 Stop Action

This action indicates stop and the logical form is
shown in 28

C.12 Resume Action

This action indicates that the previous action should
be resumed, the logical form is shown in: 29

C.13 Get Memory Dialogue type

This dialogue type represents the agent answering
a question about the environment. This is similar
to the setup in Visual Question Answering. The
logical form is represented in: 30

4710

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [

{"action_type" : ’DESTROY’,
REF_OBJ }]

}

Figure 22: Details of logical form Destroy
{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [

{"action_type" : ’MOVE’,
LOCATION,
"stop_condition" : {
"condition_type":
’ADJACENT_TO_BLOCK_TYPE’ /
’NEVER’,

"block_type": span,
"condition_span" : span },

"repeat" : {
"repeat_key" : ’FOR’ / ’ALL’,
"repeat_count" : span,
"repeat_dir" : ’LEFT’ / ’RIGHT’ /

’UP’/ ’DOWN’ / ’FRONT’ /
’BACK’ / ’AROUND’}

}]
}

Figure 23: Details of logical form for Move action

Get Memory dialogue has the following as its
children: filters, answer type and tag name. This di-
alogue type represents the type of expected answer
: counting, querying a specific attribute or querying
everything (”what is the size of X” vs ”what is X”)

C.14 Put Memory Dialogue
This dialogue type represents that a reference ob-
ject should be tagged with the given tag and the
logical form is shown in: 31

C.15 Noop Dialogue
This dialogue type indicates no operation should
be performed, the logical form is shown in : 32

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [
{"action_type" : ’DIG’,
LOCATION,
"schematic" : {
"repeat" : {
"repeat_key" : ’FOR’ / ’ALL’,
"repeat_count" : span,
"repeat_dir" : ’LEFT’ / ’RIGHT’ /

’UP’/ ’DOWN’ / ’FRONT’ /
’BACK’ / ’AROUND’}

"has_size" : span,
"has_length": span,
"has_depth" : span,
"has_width" : span},

"stop_condition" : {
"condition_type" :
’ADJACENT_TO_BLOCK_TYPE’ /s
’NEVER’,

"block_type": span } }]
}

Figure 24: Details of logical form for Dig action

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [
{"action_type" : ’DANCE’,
LOCATION,
"stop_condition" : {
"condition_type" : ’NEVER’}

"repeat: {
"repeat_key" : FOR,
"repeat_count" : span } }]

}

Figure 25: Details of logical form for Dance action

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [
{"action_type" : ’FREEBUILD’,
REF_OBJECT,
LOCATION }]

}

Figure 26: Logical form for Freebuild action

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [
{"action_type" : ’UNDO’,
"target_action_type" : span }]

}

Figure 27: Details of logical form for Undo action

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [
{"action_type" : ’STOP’,
"target_action_type" : span }]

}

Figure 28: Details of logical form for Stop action

{ "dialogue_type" : ’HUMAN_GIVE_COMMAND’,
"action_sequence" : [
{"action_type" : ’RESUME’,
"target_action_type" : span }]

}

Figure 29: Details of logical form for Resume action

{ "dialogue_type": "GET_MEMORY",
"filters": {"temporal": CURRENT,
"type": "ACTION" / "AGENT" /

"REFERENCE_OBJECT",
"action_type": BUILD / DESTROY / DIG /

FILL / SPAWN / MOVE
"reference_object" : {
LOCATION,
"has_size" : span,
"has_colour" : span,
"has_name" : span,
"coref_resolve": span}},

"answer_type": "TAG" / "EXISTS" ,
"tag_name" : ’has_name’ / ’has_size’ /

’has_colour’ / ’action_name’ /
’action_reference_object_name’ /
’move_target’ / ’location’ ,

"replace": true
}

Figure 30: Logical form for Get Memory Dialogue

4711

{ "dialogue_type": "PUT_MEMORY",
"filters": { REF_OBJECT },
"upsert" : {

"memory_data": {
"memory_type": "REWARD" / "TRIPLE",
"reward_value": "POSITIVE" /

"NEGATIVE",
"has_tag" : span,
"has_colour": span,
"has_size": span

} }
}

Figure 31: Details of logical form for Put Memory Di-
alogue

{ "dialogue_type": "NOOP" }

Figure 32: Details of logical form for Noop Dialogue

4712

D Crowd-sourced task and tools
instructions

Some examples from prompts data:

bot move the tree to the left side of
the house

{’action_sequence’: [{
’action_type’: ’OTHERACTION’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {
’has_name’: [0, [10, 10]]},

’relative_direction’: ’LEFT’},
’reference_object’: {
’has_name’: [0, [3, 3]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

dig a hole next to that house
{’action_sequence’: [{
’action_type’: ’DIG’,
’location’: {

’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {

’contains_coreference’: ’yes’,
’has_name’: [0, [6, 6]]},

’relative_direction’: ’NEAR’},
’schematic’: {
’has_name’: [0, [2, 2]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

how about you copy the crops i planted
to fill this whole plain

{’action_sequence’: [{
’action_type’: ’BUILD’,
’reference_object’: {

’has_name’: [0, [5, 5]],
’has_tag’: [0, [6, 7]]},

’repeat’: {
’stop_condition’: {
’condition_span’: [0, [9, 12]]}}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

make sure i spawn on top of the pyramid
each time

{’action_sequence’: [{
’action_type’: ’OTHERACTION’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {
’has_name’: [0, [8, 8]]},

’relative_direction’: ’UP’},
’reference_object’: {
’has_name’: [0, [2, 2]]},

’repeat’: {’stop_condition’: {’
condition_type’: ’NEVER’}}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

complete the structure 10 meters west
from your position

{’action_sequence’: [{
’action_type’: ’FREEBUILD’,
’reference_object’: {
’has_name’: [0, [2, 2]],
’location’: {
’location_type’: ’AGENT_POS’,
’relative_direction’: ’LEFT’,
’steps’: [0, [3, 3]]}}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

destroy the structure that is blocking
the view of the landscape

{’action_sequence’: [{
’action_type’: ’DESTROY’,
’reference_object’: {
’has_name’: [0, [2, 2]],
’has_tag’: [0, [5, 10]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

complete the project that i am working
on by building more devices

{’action_sequence’: [{
’action_type’: ’FREEBUILD’,
’reference_object’: {
’has_name’: [0, [2, 2]],
’has_tag’: [0, [4, 7]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

show me how to dance
{’action_sequence’: [{
’action_type’: ’DANCE’}],
’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

please build a garden
{’action_sequence’: [{
’action_type’: ’BUILD’,
’schematic’: {

’has_name’: [0, [3, 3]]}}],
’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

fill the small pond with sand
{’action_sequence’: [{
’action_type’: ’FILL’,
’has_block_type’: [0, [5, 5]],
’reference_object’: {
’has_name’: [0, [3, 3]],
’has_size’: [0, [2, 2]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

move north for 5 minutes
{’action_sequence’: [{
’action_type’: ’MOVE’,
’location’: {
’location_type’: ’AGENT_POS’,
’relative_direction’: ’FRONT’},

’repeat’: {
’stop_condition’: {
’condition_span’: [0, [3, 4]]}}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

dig a hole next to the sidewalk of the
school

{’action_sequence’: [{
’action_type’: ’DIG’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {
’has_name’: [0, [6, 9]]},

’relative_direction’: ’NEAR’},
’schematic’: {’has_name’: [0, [2,

2]]}}],
’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

move to the right until you ca n’t
anymore

{’action_sequence’: [{
’action_type’: ’MOVE’,
’location’: {
’location_type’: ’SPEAKER_POS’,

4713

’relative_direction’: ’RIGHT’},
’repeat’: {
’stop_condition’: {
’condition_span’: [0, [4, 8]]}}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

move up the hill
{’action_sequence’: [{
’action_type’: ’MOVE’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {
’has_name’: [0, [3, 3]]},

’relative_direction’: ’UP’}}],
’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

build a bridge over the lava
{’action_sequence’: [{
’action_type’: ’BUILD’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {

’has_name’: [0, [5, 5]]},
’relative_direction’: ’UP’},

’schematic’: {’has_name’: [0, [2,
2]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

this pyramid is 5 platforms tall
{’dialogue_type’: ’NOOP’}

spawn 30 cows and build a 15 by 15 fence
{’action_sequence’: [
{
’action_type’: ’SPAWN’,
’reference_object’: {
’has_name’: [0, [2, 2]]},
’repeat’: {
’repeat_count’: [0, [1, 1]],
’repeat_key’: ’FOR’}},

{
’action_type’: ’BUILD’,
’schematic’: {
’has_height’: [0, [2, 2]],
’has_name’: [0, [5, 5]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

move three feet forward and stop
{’action_sequence’: [{
’action_type’: ’MOVE’,
’location’: {
’location_type’: ’AGENT_POS’,
’relative_direction’: ’FRONT’,
’steps’: [0, [1, 2]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

destroy the building that ’s in front of
you

{’action_sequence’: [{
’action_type’: ’DESTROY’,
’reference_object’: {
’has_name’: [0, [2, 2]],
’location’: {
’location_type’: ’AGENT_POS’,
’relative_direction’: ’FRONT’}}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

tag the horse armor
{’dialogue_type’: ’PUT_MEMORY’,
’filters’: {

’reference_object’: {
’has_name’: [0, [2, 3]]}}}

bot build it to fit into the open frame
{’action_sequence’: [{
’action_type’: ’BUILD’,
’schematic’: {
’has_name’: [0, [2, 2]],
’has_tag’: [0, [4, 8]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

destroy the hut near the big tree
{’action_sequence’: [{
’action_type’: ’DESTROY’,
’reference_object’: {

’has_name’: [0, [2, 2]]}}],
’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

move the rabbit into the box
{’action_sequence’: [{
’action_type’: ’OTHERACTION’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {

’has_name’: [0, [5, 5]]},
’relative_direction’: ’INSIDE’},

’reference_object’: {’has_name’: [0,
[2, 2]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

fill the entire tub with pepsi
{’action_sequence’: [{
’action_type’: ’FILL’,
’has_block_type’: [0, [5, 5]],
’reference_object’: {
’has_name’: [0, [3, 3]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

stop digging
{’action_sequence’: [{
’action_type’: ’STOP’,
’target_action_type’: [0, [1, 1]]}],
’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

destroy the box
{’action_sequence’: [{
’action_type’: ’DESTROY’,
’reference_object’: {
’has_name’: [0, [2, 2]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

let ’s resume our mission of traveling
over that treacherous mountain pass

{’action_sequence’: [{
’action_type’: ’RESUME’,
’target_action_type’: [0, [3, 11]]}],
’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

build a house with a porch next to the
pyramid

{’action_sequence’: [{
’action_type’: ’BUILD’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {
’has_name’: [0, [9, 9]]},

’relative_direction’: ’NEAR’},
’schematic’: {
’has_name’: [0, [2, 2]],
’has_tag’: [0, [3, 5]]}}],

4714

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

build stairs in the corner
{’action_sequence’: [{
’action_type’: ’BUILD’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {
’has_name’: [0, [4, 4]]}},

’schematic’: {
’has_name’: [0, [1, 1]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

spawn milk
{’action_sequence’: [{
’action_type’: ’SPAWN’,
’reference_object’: {
’has_name’: [0, [1, 1]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

build a wall to divide the largest room
in the house

{’action_sequence’: [{
’action_type’: ’BUILD’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {

’has_name’: [0, [6, 10]]},
’relative_direction’: ’INSIDE’},

’schematic’: {’has_name’: [0, [2,
2]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

build foundation
{’action_sequence’: [{
’action_type’: ’BUILD’,
’schematic’: {
’has_name’: [0, [1, 1]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

please change the barn to a shop
{’action_sequence’: [{
’action_type’: ’OTHERACTION’,
’reference_object’: {
’has_name’: [0, [3, 3]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

copy the loaf of bread 100 times for
distribution to the assembled army
in front of you

{’action_sequence’: [{
’action_type’: ’BUILD’,
’reference_object’: {
’has_name’: [0, [2, 4]]},

’repeat’: {
’repeat_count’: [0, [5, 5]],
’repeat_key’: ’FOR’}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

spawn fifteen horses
{’action_sequence’: [{
’action_type’: ’SPAWN’,
’reference_object’: {
’has_name’: [0, [2, 2]]},

’repeat’: {
’repeat_count’: [0, [1, 1]],
’repeat_key’: ’FOR’}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

dance

{’action_sequence’: [{
’action_type’: ’DANCE’}],
’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

dig a hole beneath the fence on the west
side of the prison yard big enough

for a person to crawl through
{’action_sequence’: [{
’action_type’: ’DIG’,
’location’: {
’location_type’: ’REFERENCE_OBJECT’,
’reference_object’: {

’has_name’: [0, [5, 13]]},
’relative_direction’: ’DOWN’},

’repeat’: {
’stop_condition’: {
’condition_span’: [0, [14, 21]]}},

’schematic’: {
’has_name’: [0, [2, 2]]}}],

’dialogue_type’: ’HUMAN_GIVE_COMMAND’}

