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Abstract
The Transformer translation model (Vaswani
et al., 2017) based on a multi-head attention
mechanism can be computed effectively in
parallel and has significantly pushed forward
the performance of Neural Machine Trans-
lation (NMT). Though intuitively the atten-
tional network can connect distant words via
shorter network paths than RNNs, empirical
analysis demonstrates that it still has difficulty
in fully capturing long-distance dependencies
(Tang et al., 2018). Considering that model-
ing phrases instead of words has significantly
improved the Statistical Machine Translation
(SMT) approach through the use of larger
translation blocks (“phrases”) and its reorder-
ing ability, modeling NMT at phrase level is
an intuitive proposal to help the model capture
long-distance relationships. In this paper, we
first propose an attentive phrase representation
generation mechanism which is able to gener-
ate phrase representations from corresponding
token representations. In addition, we incorpo-
rate the generated phrase representations into
the Transformer translation model to enhance
its ability to capture long-distance relation-
ships. In our experiments, we obtain signifi-
cant improvements on the WMT 14 English-
German and English-French tasks on top of
the strong Transformer baseline, which shows
the effectiveness of our approach. Our ap-
proach helps Transformer Base models per-
form at the level of Transformer Big mod-
els, and even significantly better for long sen-
tences, but with substantially fewer parameters
and training steps. The fact that phrase repre-
sentations help even in the big setting further
supports our conjecture that they make a valu-
able contribution to long-distance relations.

1 Introduction

NMT is a new approach to machine translation
that has achieved great success in the last a few

∗ Corresponding author.

years (Sutskever et al., 2014; Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017). Com-
pared to plain SMT (Brown et al., 1993; Koehn
et al., 2003; Chiang, 2005), a neural language
model decoder (Sutskever et al., 2014) is better
at long-distance re-ordering, and attention mech-
anisms (Bahdanau et al., 2015; Vaswani et al.,
2017) have been proven effective in modeling long-
distance dependencies, while these two issues were
both challenging for SMT.

The Transformer (Vaswani et al., 2017), which
has outperformed previous RNN/CNN based trans-
lation models (Bahdanau et al., 2015; Gehring et al.,
2017), is based on multi-layer multi-head attention
networks and can be trained in parallel very effi-
ciently. Though attentional networks can connect
distant words via shorter network paths than RNNs,
empirical results show that its ability in capturing
long-range dependencies does not significantly out-
perform RNNs, and it is still a problem for the
Transformer to fully model long-distance depen-
dencies (Tang et al., 2018).

Using phrases instead of words enables con-
ventional SMT to condition on a wider range of
context, and results in better performance in re-
ordering and modeling long-distance dependencies.
It is intuitive to let the NMT model additionally
condition on phrase level representations to capture
long-distance dependencies better, but there are
two main issues which prevent NMT from directly
using phrases:

• There are more phrases than tokens, and the
phrase table is much larger than the word vo-
cabulary, which is not affordable for NMT;

• Distribution over phrases is much sparser than
that over words, which may lead to data spar-
sity and hurt the performance of NMT.

Instead of using phrases directly in NMT, in
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this work, we address the issues above with the
following contributions:

• To address the large phrase table issue, we
propose an attentive feature extraction model
and generate phrase representation based on
token representations. Our model first sum-
marizes the representation of a given token
sequence with mean or max-over-time pool-
ing, then computes the attention weight of
each token based on the token representation
and the summarized representation, and gen-
erates the phrase representation by a weighted
combination of token representations;

• To help the Transformer translation model bet-
ter model long-distance dependencies, we let
both encoder layers and decoder layers of the
Transformer attend the phrase representation
sequence which is shorter than the token se-
quence, in addition to the original token repre-
sentation. Since the phrase representations are
produced and attended at each encoder layer,
the encoding of each layer is also enhanced
with phrase-level attention computation;

• To the best of our knowledge, our work is
the first to model phrase representations and
incorporating them into the Transformer.

Our approach empirically brings about sig-
nificant and consistent improvements over the
strong Transformer model (both base and big set-
tings). We conducted experiments on the WMT 14
English-German and English-French news trans-
lation task, and obtained +1.29 and +1.37 BLEU
improvements respectively on top of the strong
Transformer Base baseline, which demonstrates
the effectiveness of our approach. Our approach
helps Transformer Base models perform at the level
of Transformer Big models, and even significantly
better for long sentences, but with substantially
fewer parameters and training steps. It also shows
effectiveness with the Transformer Big setting. We
also conducted length analysis with our approach,
and the results show how our approach improves
long-distance dependency capturing, which sup-
ports our conjecture that phrase representation se-
quences can help the model capture long-distance
relations better.

2 Background and Related Work

In this section, we first review previous work
which utilizes phrases in recurrent sequence-to-

sequence models, then give a brief introduction
to the stronger Transformer translation model that
our work is based on.

2.1 Utilizing Phrases in RNN-based NMT

Most previous work focuses on utilizing phrases
from SMT in NMT to address its coverage (Tu
et al., 2016) problem.

Dahlmann et al. (2017) suggested that SMT usu-
ally performs better in translating rare words and
profits from using phrasal translations, even though
NMT achieves better overall translation quality.
They introduced a hybrid search algorithm for
attention-based NMT which extended the beam
search of NMT with phrase translations from SMT.
Wang et al. (2017a) proposed that while NMT gen-
erally produces fluent but often inadequate transla-
tions, SMT yields adequate translations though less
fluent. They incorporate SMT into NMT through
utilizing recommendations from SMT in each de-
coding step of NMT to address the coverage issue
and the unknown word issue of NMT. Wang et al.
(2017b) suggested that phrases play a vital role
in machine translation, and proposed to translate
phrases in NMT by integrating target phrases from
an SMT system with a phrase memory given that it
is hard to integrate phrases into NMT which reads
and generates sentences in a token-by-token way.
The phrase memory is provided by the SMT model
which dynamically picks relevant phrases with the
partial translation from the NMT decoder in each
decoding step.

2.2 The Transformer Translation Model

Our research is based on the Transformer transla-
tion model (Vaswani et al., 2017) shown in Figure
1, which significantly outperforms the previous re-
current sequence-to-sequence approach and can be
efficiently computed in parallel.

The Transformer includes an encoder and a de-
coder. Both encoder and decoder are a stack of
6 layers. Besides the embedding matrix and posi-
tional embedding matrix in both encoder and de-
coder, the decoder also has a softmax classifier
layer to produce translated tokens. The weights of
the softmax classifier are normally tied to the target
embedding matrix.

Both encoder layers and decoder layers make
use of the multi-head attention mechanism. The
multi-head attention mechanism calculates atten-
tion results of given queries on corresponding keys
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Figure 1: The Transformer Translation Model. Resid-
ual connection and Layer normalization are omitted for
simplicity.

and values. It first projects queries, keys and val-
ues with 3 independent linear transformations, then
splits the transformed key, query and value em-
beddings into several chunks of dk dimension vec-
tors, each chunk is called a head,1 and scaled dot-
product attention is independently applied in each
head:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q, K and V stand for the query vectors, key
vectors and value vectors. Finally, the network con-
catenates the outputs of all heads and transforms it
into the target space with another linear layer. The
self-attention network uses the query sequence also
as the key sequence and the value sequence in com-
putation, while the cross-attention feeds another
vector sequence to attend as queries and values.

Comparing the computation of the attentional
network with RNNs, it is obvious that the attention
computation connects distant words with a shorter
network path, and intuitively it should perform bet-
ter in capturing long-distance dependencies. How-
ever, empirical results show that its ability in model-
ing long-range dependencies does not significantly
outperform RNNs.

1dk is 64 for both the Transformer Base and the Trans-
former Big, and the numbers of heads for them are 8 and 16
respectively.

2.3 Comparison with Previous Works
Compared to previous works using RNN-based
NMT (He et al., 2016; Wang et al., 2017a,b;
Dahlmann et al., 2017), our proposed approach
is based on the Transformer model, with the fol-
lowing further important differences:

• Our approach aims to improve the long-
distance dependency modeling ability of NMT
instead of coverage (Tu et al., 2016);

• Our approach does not require to train an SMT
system or to extract aligned phrase transla-
tion from the training corpus, which makes
it efficient and avoids suffering from poten-
tial error propagation from the SMT system.
The phrase representation learning model is a
neural model, and is deeply integrated in the
translation model, and the whole neural model
is end-to-end trainable;

• We iteratively and dynamically generate
phrase representations with token vectors. Pre-
vious work does not use SMT phrases in this
way.

In more recent work, Wang et al. (2019) augment
self attention with structural position representa-
tions to model the latent structure of the input sen-
tence; Hao et al. (2019) propose multi-granularity
self-attention which performs phrase-level atten-
tion with several attention heads.

3 Transformer with Phrase
Representation

For the segmentation of phrases, given that N-gram
phrases are effective for tensor libraries, we first
try to cut a token sequence into a phrase sequence
with a fixed phrase length which varies with the
sequence length.2 We pad the last phrase in case it
does not have sufficient tokens, thus we can trans-
form the whole sequence into a tensor.

The N-gram phrase segmentation is efficient and
simple, and we suggest the drawbacks of such “ca-
sual” segmentation boundaries can be alleviated
with self-attention computation across the whole
sequence and the attention mechanism applied in
the generation of phrase representation which val-
ues tokens differently to a large extent, given that

2We implement this as: ntok =
max(min(8, seql/6), 3), where ntok and seql stand
for the number of tokens in each phrase and the length of a
sentence respectively.
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Algorithm 1 Extracting Phrases from a Parse Tree.
Input: A parse tree T , maximum tokens allowed in
a phrase n; Output: Extracted phrase sequence S.

1: while T is not empty do
2: Initialize a phrase sequence p = [], maxi-

mum tokens allowed in this phrase mt = n;

3: Find the largest sub-tree ST with nst tokens
(nst < n) and depth dst from the right side
of T ;

4: Add the token sequence in ST into p;
5: Remove ST from T ;
6: while mt > 0 do
7: Find the adjacent sub-tree STA of depth

dst with nsta tokens from the right side
of T ;

8: if STA exists and nsta ≤ mt then
9: Insert the token sequence of STA to

the beginning of p;
10: Remove STA from T ;
11: mt = mt− nsta;
12: else
13: Break;
14: end if
15: end while
16: Append p to S;
17: end while
18: Reverse S;
19: return S

neural models have been proven good at learning
competitively effective representations with gate
or attention mechanism even without modeling lin-
guistic structures (Cho et al., 2014; Hochreiter and
Schmidhuber, 1997; Vaswani et al., 2017; Devlin
et al., 2019).

In our experiments we also explore phrases ex-
tracted from the Stanford Parser (Socher et al.,
2013) as as an alternative to our simple segmen-
tation strategy. The maximum number of tokens
allowed is consistent with the simple segmentation
approach, and we try to use the tokens from the
largest sub-tree that complies with the maximum
token limitation or from several adjacent sub-trees
of the same depth as a phrase for efficiency. Our
algorithm to extract phrases from parse trees is
shown in Algorithm 1.

To efficiently parallelize parser-based phrases
of various length in a batch of data, we pad short
phrases to the same length of the longest phrases in
the batch of sentences, thus a batch of sequences of

phrases can be saved into a tensor. But significantly
more “<pad>” tokens will be introduced, and the
model is slightly slower than the simple approach.

3.1 Attentive Phrase Representation
Generation

Merging several token vectors into one is very
likely to incur information loss, and introducing
an importance evaluation mechanism is better than
treating tokens equally. To highlight the most im-
portant features in a segmented phrase chunk, we
introduce an attentive phrase representation gener-
ation model to value tokens differently according
to their importance in the phrase. The model first
roughly extracts features from all tokens into a vec-
tor, then assigns a score to each token by comparing
each token vector with the extracted feature vec-
tor, and produces the weighted accumulation of all
token vectors according to their scores.

Phrase representations are generated in every en-
coder layer, for the kth encoder layer, we generate
phrase representation Rk

ephrase
from its input rep-

resentation. Assume the phrase contains m tokens
{t1, ..., tm}, and {Rk

et1
, Rk

et2
, ..., Rk

etm
} are the cor-

responding input vectors to the encoder layer, we
first generate a summary representation by:

Rk
eall

= Fglance(R
k
et1
, ..., Rk

etm
) (2)

where Fglance is a function to extract features of
the vector sequence into a fixed-dimension vector;
We explore both element-wise mean operation and
max-over-time pooling operation in our work.

After the summarized representation is produced,
we calculate a score for each token in the phrase,
the score of the ith token ski is calculated as:

ski = W k
2 σ(W k

1 [Rk
eti
|Rk

eall
] + bk1) + bk2 (3)

where σ is the sigmoid activation function, and “|”
means concatenation of vectors. The rationale for
designing this approach is further explained below.

Then we normalize the score vector to weights
with the softmax function, and the probability of
the ith token pki is:

pk
i =

es
k
i

m∑
i=1

es
k
i

(4)

Finally, the representation of the phrase in
the kth encoder layer Rk

ephrase
is generated by a

weighted combination of all vectors:



390

Self-
Attention

Feed-
Forward

Attentive Phrase 
Representation

Attentive 
Combining

query

key/value

Input

Output

Self-
Attention

Feed-Forward

Cross-
Attention

Attentive 
Combining

Input

Output

Transparent Attentive
Phrase Representation

Encoder 
Representation

key/value

query

Encoder Layer Decoder Layer

Figure 2: The Encoder/Decoder Layer of the Transformer Model with Phrase Representation. Residual connection
and Layer normalization are omitted for simplicity.

Rk
ephrase

=
m∑
i=1

pkiR
k
eti

(5)

The representation of the phrase sequence can
be computed efficiently in parallel. Each encoder
layer will produce a vector sequence as the phrase
representation. We do not use the multi-head atten-
tion in the computation of the phrase-representation
attention because of two reasons:

• The multi-head attention calculates weights
through dot-product, we suggest that a 2-layer
neural network might be more powerful at
semantic level feature extraction, and it is less
likely to be affected by positional embeddings
which are likely to vote up adjacent vectors;

• Though we employ a 2-layer neural network,
it only has one linear transformation and a
vector to calculate attention weights, which
contains fewer parameters than the multi-head
attention model that has 4 linear transforma-
tions.

Recent studies show that different encoder lay-
ers capture linguistic properties of different levels
(Peters et al., 2018), and aggregating layers is of
profound value to better fuse semantic informa-
tion (Shen et al., 2018; Dou et al., 2018; Wang
et al., 2018; Dou et al., 2019). We assume that
different decoder layers may value different levels
of information i.e. the representation of different
encoder layers differently, thus we weighted com-
bined phrase representations from every encoder
layer for each decoder layer with the Transparent
Attention (TA) mechanism (Bapna et al., 2018).

For the decoder layer j, the phrase representation
Rj

dphrase
fed into that layer is calculated by:

Rj
dphrase

=
d∑

i=0

wj
iR

i
ephrase

(6)

where wj
i are softmax normalized parameters

trained jointly with the full model to learn the im-
portance of encoder layers for the jth decoder layer.
d is the number of encoder layers, and 0 corre-
sponds to the embedding layer.

3.2 Incorporating Phrase Representation
into NMT

After the phrase representation sequence for each
encoder layer and decoder layer is calculated with
the approach described above, we propose an atten-
tive combination network to incorporate the phrase
representation for each layer into the Transformer
translation model to aid it modeling long-distance
dependencies. The attentive combination network
is inserted in each encoder layer and each decoder
layer to bring in information from the phrase repre-
sentation. The structures of the encoder layer and
the decoder layer of the Transformer model with
phrase representation are shown in Figure 2.

For an encoder layer, the new computation or-
der is: cross-attention to phrases→ self-attention
over tokens→ feed-forward neural network to pro-
cess collected features, while for a decoder layer
it is: self-attention over decoded tokens→ cross-
attention to source phrases → cross-attention to
source tokens→ feed-forward neural network to
process collected features. Compared to the com-
putation order of the standard Transformer, the new
computation order performs additional attending at
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phrase level before attending source token represen-
tations at token level. We conjecture that attending
at phrase level should be easier than at token level,
and attention results at phrase level may aid the
attention computation at the token-level.

For a given input sequence x and a phrase
vector sequence Rphrase, the attentive combina-
tion network first attends the phrase representa-
tion sequence and computes the attention output
outphrase as follows:

outphrase = AttnMH(x,Rphrase) (7)

where AttnMH is a multi-head cross-attention net-
work with x as keys and Rphrase as corresponding
queries and values.

The attention result is then combined again with
the original input sequence x with a 2-layer neural
network which aims to make up for potential infor-
mation loss in the phrase representation with the
original token representation:

out = W4σ(W3[x|outphrase] + b3) + b4 (8)

We also employ a residual connection around
the attentive combination layer, followed by layer
normalization to stabilize the training.

Since the phrase representation is produced in-
side the Transformer model and utilized as the input
of layers, and all related computations are differen-
tiable, the attentive phrase representation model is
simply trained as part of the whole model through
backpropagation effectively.

4 Experiments

To compare with Vaswani et al. (2017), we con-
ducted our experiments on the WMT 14 English
to German and English to French news translation
tasks.

4.1 Settings

We implemented our approaches based on the Neu-
tron implementation (Xu and Liu, 2019) of the
Transformer translation model. We applied joint
Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
with 32k merge operations on both data sets to ad-
dress the unknown word problem. We only kept
sentences with a maximum of 256 subword tokens
for training. Training sets were randomly shuf-
fled in every training epoch. The concatenation
of newstest 2012 and newstest 2013 was used for

Models En-De En-Fr

Transformer Base 27.38 39.34
+PR 28.67† 40.71†

Transformer Big 28.49 41.36
+PR 29.60† 42.45†

Table 1: Results on WMT 14 En-De and En-Fr.

validation and newstest 2014 as test sets for both
tasks.

The number of warm-up steps was set to 8k, and
each training batch contained at least 25k target
tokens. Our experiments run on 2 GTX 1080 Ti
GPUs, and a large batch size was achieved through
gradient accumulation. We used a dropout of 0.1
for all experiments except for the Transformer
Big on the En-De task which was 0.3. The train-
ing steps for Transformer Base and Transformer
Big were 100k and 300k respectively following
Vaswani et al. (2017). The other settings were the
same as (Vaswani et al., 2017) except that we did
not bind the embedding between the encoder and
the decoder for efficiency.

We used a beam size of 4 for decoding, and
evaluated tokenized case-sensitive BLEU 3 with
the averaged model of the last 5 checkpoints for
Transformer Base and 20 checkpoints for Trans-
former Big saved with an interval of 1, 500 training
steps (Vaswani et al., 2017). We also conducted
significance tests (Koehn, 2004).

4.2 Main Results

We applied our approach to both the Transformer
Base setting and the Transformer Big setting, and
conducted experiments on both tasks to validate
the effectiveness of our approach. Since parsing a
large training set (specifically, the En-Fr dataset) is
slow, we did not use phrases from parse results in
this experiment (reported in Table 1). Results are
shown in Table 1. † indicates p < 0.01 compared
to the baseline for the significance test.

Table 1 shows that modeling phrase represen-
tation can bring consistent and significant im-
provements on both tasks, and benefit both the
Transformer Base model and the stronger Trans-
former Big model. “+PR” is the Transformer
with Phrase Representation, corresponding to the

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Models BLEU ∆ Para. (M)
Time

Train Decode

Transformer Base 27.38 88.1 1.00x 1.00x

+Mean 27.99 0.61
129.0

1.64x 1.45x
+Max 28.13 0.75 1.60x 1.40x

+Max+Attn 28.52 1.14

173.0

1.74x 1.52x
+Max+Attn+TA 28.67 1.29 1.75x 1.53x
+Max+Attn+TA+Parsing Phrase 28.76 1.38 1.83x 1.60x

Transformer Big 28.49 1.11 264.1 7.73x 2.68x

Table 2: Ablation Study. ∆ indicates the BLEU improvements compared to the Transformer Base. Time repre-
sents the time consumption compared to the Transformer Base (in training and decoding). The Transformer Big
consumes 3 times training steps of the Transformer Base.

“+Max+Attn+TA” setting in Table 2.
The En-Fr task used a larger dataset (∼ 36M

sentence pairs) and achieved a higher baseline
BLEU than the En-De task, we suggest signifi-
cant improvements obtained by our approach on
the En-Fr task with the Transformer Big supports
the effectiveness of our approach in challenging
settings.

4.3 Ablation Study
We also conducted a Transformer Base based abla-
tion study on the WMT 14 En-De task to assess the
influence of phrase representation, attention mech-
anism in phrase representation generation, trans-
parent attention and phrases from parser output on
performance. Results are shown in Table 2.

“+Mean” and “+Max” are only using element-
wise mean operation and max-over-time pooling
to generate an initial rough phrase representation
of a given token sequence. “+Attn” indicates gen-
erating phrase representations with our attentive
approach, on top of the max-over-time pooling as
Fglance in Equation 2. “+TA” indicates use of the
Transparent Attention mechanism to fuse informa-
tion generated from every encoder layer for differ-
ent decoder layers,4 otherwise only outputs of the
last encoder layer are fed into all decoder layers.
“+Parse” means using phrases extracted from parse
results with Algorithm 1.

Table 2 shows that introducing phrase represen-
tation can significantly improve the strong Trans-
former Base baseline, even only with a simple
element-wise mean operation over token repre-

4This only introduces an additional 7 ∗ 6 parameter ma-
trix, which does not show significant influence in view of the
amount of parameters.

sentations brings about a +0.61 BLEU improve-
ment (p < 0.01). Summarizing representations
with max-over-time pooling performs slightly bet-
ter than with the element-wise mean operation. Our
attentive phrase representation generation approach
can bring further improvements over the max-over-
time pooling approach. Though utilizing phrases
from the parser can make use of linguistic knowl-
edge and obtains most improvements, our simple
and effective segmenting approach performs com-
petitively, and we interpret these comparisons to
show the positive effects of collapsing token se-
quences into shorter phrase sequences on the mod-
eling of long-distance dependencies.

Though a significant amount of parameters are
introduced for incorporating phrase representa-
tion into the Transformer model, our approach
(“+Max+Attn+TA”) improved the performance of
the Transformer Base model by +1.29 BLEU on
the WMT 14 En-De news task, and the proposed
Transformer model with phrase representation still
performs competitively compared to the Trans-
former Big model with only about half the number
of parameters and 1/3 of the training steps. Thus,
we suggest our improvements are not only because
of introducing parameters, but also due to the mod-
eling and utilization of phrase representation.

4.4 Length Analysis
To analyze the effects of our phrase representation
approach on performance with increasing input
length, we conducted a length analysis on the news
test set of the WMT 14 En-De task. Following Bah-
danau et al. (2015) and Tu et al. (2016), we grouped
sentences of similar lengths together and computed
BLEU scores of Transformers and Transformers
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Figure 3: BLEU scores with respect to various input
sentence lengths.

with phrase representations for each group. Results
are shown in Figure 3.

Figure 3 shows that our approach incorporat-
ing phrase representation into the Transformer sig-
nificantly improves its performance in all length
groups, and longer sentences show significantly
more improvements than shorter sentences. In the
Transformer Base setting, our approach improved
the group with sentences of more than 45 tokens by
+1.72 BLEU, almost twice of the improvements
for sentences with less than 15 tokens which was
+0.93 BLEU.

The effects of incorporating phrase representa-
tions into the Transformer is more significant es-
pecially when compared to the Transformer Big
which has about twice the number of parameters
than our approach and consumes 3 times the train-
ing steps. According to Tang et al. (2018), the
number of attention heads in Transformers impacts
their ability to capture long-distance dependencies,
and specifically, many-headed multi-head attention
is essential for modeling long-distance phenom-
ena with only self-attention. The Transformer Big
model with twice the number of heads in the multi-
head attention network compared to those in the
Transformer Base model, should be better at captur-
ing long-distance dependencies. However, compar-
ing with the Transformer Base, the improvement
of the Transformer Big on long sentences (+1.20
BLEU for sentences with more than 45 tokens) was
similar to that on short sentences (+1.14 BLEU
for sentences with no more than 15 tokens), while
our approach to model phrases in the Transformer
model even brings significantly (p < 0.01) more
improvements (+1.72 BLEU) on the performance
of longer sentences with the Transformer Base set-
ting (8 heads) than the Transformer Big with 16
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Figure 4: Subject-Verb Agreement Analysis. X-axis
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heads (+1.20 BLEU).
The length analysis result is consistent with

our conjecture to some extent given that there are
likely to be more long-distance dependencies in
longer source sentences. We suggest that phrase
sequences which are shorter than corresponding
token sequences can help the model capture long-
distance dependencies better, and modeling phrase
representations for the Transformer can enhance its
performance on long sequences.

4.5 Subject-Verb Agreement Analysis

Intuitively, in translating longer sentences we
should encounter more long-distance dependen-
cies than in short sentences. To verify whether
our method can improve the capability of the
NMT model to capture long-distance dependen-
cies, we also conducted a linguistically-informed
verb-subject agreement analysis on the Lingeval97
dataset (Sennrich, 2017) following Tang et al.
(2018).

In German, subjects and verbs must agree with
one another in grammatical number and person. In
Lingeval97, each contrastive translation pair con-
sists of a correct reference translation, and a con-
trastive example that has been minimally modified
to introduce one translation error. The accuracy
of a model is the number of times it assigns a
higher score to the reference translation than to
the contrastive one, relative to the total number of
predictions. Results are shown in Figure 4.

Figure 4 shows that our approach can improve
the accuracy of long-distance subject-verb depen-
dencies, especially for cases where there are more
than 10 tokens between the verb and the corre-
sponding subject when comparing the “Base+PR”
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with the “Transformer Big”.

5 Conclusion

Considering that the strong Transformer transla-
tion model still has difficulty in fully capturing
long-distance dependencies (Tang et al., 2018), and
that using a shorter phrase sequence (in addition
to the original token sequence) is an intuitive ap-
proach to help the model capture long-distance
features, in this paper, we first propose an attention
mechanism to generate phrase representations by
merging corresponding token representations. In
addition, we incorporate the generated phrase rep-
resentations into the Transformer translation model
to help it capture long-distance relationships. We
obtained statistically significant improvements on
the WMT 14 English-German and English-French
tasks over the strong Transformer baseline, which
demonstrates the effectiveness of our approach.
Our further analysis shows that the Transformer
with phrase representation empirically improves
its performance especially in long-distance depen-
dency learning.
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