
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3278–3283
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

3278

An Empirical Comparison of Unsupervised Constituency Parsing
Methods∗

Jun Li�, Yifan Cao�, Jiong Cai�, Yong Jiang†, and Kewei Tu�
�School of Information Science and Technology, ShanghaiTech University, Shanghai, China
�Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China

†DAMO Academy, Alibaba Group
{lijun2, caoyf, caijiong, tukw}@shanghaitech.edu.cn

yongjiang.jy@alibaba-inc.com

Abstract

Unsupervised constituency parsing aims to
learn a constituency parser from a training
corpus without parse tree annotations. While
many methods have been proposed to tackle
the problem, including statistical and neural
methods, their experimental results are often
not directly comparable due to discrepancies
in datasets, data preprocessing, lexicalization,
and evaluation metrics. In this paper, we first
examine experimental settings used in previ-
ous work and propose to standardize the set-
tings for better comparability between meth-
ods. We then empirically compare several
existing methods, including decade-old and
newly proposed ones, under the standardized
settings on English and Japanese, two lan-
guages with different branching tendencies.
We find that recent models do not show a clear
advantage over decade-old models in our ex-
periments. We hope our work can provide new
insights into existing methods and facilitate fu-
ture empirical evaluation of unsupervised con-
stituency parsing.

1 Introduction

Unsupervised constituency parsing, a task in the
area of grammar induction, aims to learn a con-
stituency parser from a training corpus without
parse tree annotations. While research on unsuper-
vised constituency parsing has a long history (Car-
roll and Charniak, 1992; Pereira and Schabes, 1992;
Stolcke and Omohundro, 1994), recently there is
a resurgence of interest in this task and several ap-
proaches based on neural networks have been pro-
posed that achieve impressive performance (Shen
et al., 2018; Drozdov et al., 2019; Shen et al., 2019;
Kim et al., 2019b,a; Jin et al., 2019).

∗ This work was supported by the National Natural Sci-
ence Foundation of China (61976139). Kewei Tu is the corre-
sponding author.

With the recent development in research of unsu-
pervised constituency parsing, however, the prob-
lem of lacking a unified experimental setting be-
gins to emerge, which makes empirical compari-
son between different approaches difficult. First
of all, although almost all previous approaches
are evaluated on the Penn Treebank (Marcus and
Marcinkiewicz, 1993), they differ in how they pre-
process the training data, with respect to the sen-
tence length limit, punctuation removal, vocabu-
lary pruning, and so on. For example, non-neural
methods such as Constituent Context Model (CCM)
(Klein and Manning, 2002) are trained on short sen-
tences, while modern neural based methods such as
Parsing-Reading-Predict Network (PRPN) (Shen
et al., 2018; Htut et al., 2018) do not impose any
limit on sentence length.

Furthermore, existing approaches also differ in
their evaluation metrics, with respect to the meth-
ods of computing averages, counting trivial spans,
and so on. The evaluation results of the same ap-
proach using different metrics can differ signifi-
cantly in some cases. Unfortunately, we have seen
more than one paper that directly compares ap-
proaches evaluated with different metrics.

In this paper, we propose three standardized ex-
perimental settings with respect to data preprocess-
ing, post-processing, evaluation metrics, and tun-
ing. We then empirically compare five existing
methods under the standardized settings, including
two decade-old methods and three recently pro-
posed neural methods. We run our experiments on
English and Japanese, two languages with differ-
ent branching tendencies. Interestingly, the overall
experimental results show that the recent methods
do not show a clear advantage over the decade-old
methods.

We hope our empirical comparison could pro-
vide new insights into the relative strength and
weakness of existing methods and our standard-

3279

ized experimental settings could facilitate future
evaluation of unsupervised constituency parsing.
Our pre/post-processing and evaluation source code
can be found at https://github.com/i-lijun/
UnsupConstParseEval.

2 Experimental Setup

2.1 Models

We choose to evaluate five models under our experi-
mental setup: PRPN1 (Shen et al., 2018), URNNG2

(Kim et al., 2019b), CCM3 (Klein and Manning,
2002), CCL4 (Seginer, 2007), DIORA5 (Drozdov
et al., 2019). We use the open source implemen-
tation of each model, which we make sure can
reproduce the results in the original papers.

PRPN is a neural-based model designed for lan-
guage modeling by leveraging latent syntactic struc-
tures. It calculates syntactic distances between
words of a sentence which can be used to obtain an
unlabeled parse tree. Note that as a constituency
parser, PRPN is incomplete (Dyer et al., 2019).

URNNG is an unsupervised version of the super-
vised neural parser RNNG (Dyer et al., 2016). It
uses a chart parser to approximate the posterior of
the original RNNG.

DIORA is a recursive autoencoder using the
inside-outside algorithm to compute scores and
representations of spans in the input sentence. It is
the only model in our comparison that uses exter-
nal word embedding (in our experiments, we use
ELMo (Peters et al., 2018) for English and fastText
(Grave et al., 2018) for Japanese).

CCM is a generative distributive model, the pa-
rameters of which are updated with the EM algo-
rithm. It is the only model in our comparison that
uses the gold Part-of-Speech tags as input.

CCL is an incremental parser, which uses a rep-
resentation for syntactic structures similar to de-
pendency links.

In addition to these models, we note that there
are several other models that achieve good re-
sults on unsupervised constituency parsing, such as
UML-DOP (Bod, 2006), UPParse (Ponvert et al.,
2011), feature CCM (Golland et al., 2012), Depth-
Bounded PCFG (Jin et al., 2018), and Compound
PCFG (Kim et al., 2019a). However, because of

1https://github.com/yikangshen/PRPN
2https://github.com/harvardnlp/urnng
3https://github.com/davidswelt/dmvccm
4https://github.com/DrDub/cclparser
5https://github.com/iesl/diora

limited time and computational resource, as well
as a lack of open source implementations for some
of the models, we do not evaluate them in our ex-
periments.

2.2 Datasets and Preprocessing

We use two corpora in our evaluation: the English
Penn Treebank (PTB) (Marcus and Marcinkiewicz,
1993) and the Japanese Keyaki Treebank (KTB)
(Butler et al., 2012). We pick KTB in addition to
PTB for the purpose of checking the generalizabil-
ity of existing models on left-branching languages.
For PTB, we follow the standard split, using section
02-21 for training, 22 for validation and 23 for test-
ing. For KTB, we shuffle the corpus and use 80%
of the sentences for training, 10% for validation
and 10% for testing.

Many previous approaches learn from training
sentences of length ≤ 10, but recent models based
on language modeling often use a length limit of
40 or set no length limit at all. We experiment with
both length ≤ 10 and length ≤ 40. We do not
impose any length limit on test sentences.

Previous models also have different ways to
deal with punctuation. Although Jones (1994) and
Spitkovsky et al. (2011) point out that careful treat-
ment of punctuation may be helpful in unsuper-
vised parsing, many previous models choose to
remove punctuation and some recent models treat
punctuation as normal words. Only a few models
such as CCL (Seginer, 2007) make special treat-
ment of punctuation. We experiment with two set-
tings for length 40, one with punctuation and one
without.

To reduce the vocabulary size, we replace all
the numerals with a <num>token and words that
appear only once with <unk>.

2.3 Post-processing

The parses output by CCL do not contain punc-
tuation even when it is trained with punctuation,
so it cannot be evaluated properly using a test set
with punctuation. In addition, although the right
branching baseline is a very strong baseline when
punctuation is removed, its evaluation score be-
comes very low if punctuation is included because
of its treatment of trailing punctuation. So we ex-
tend the post-processing method used in (Drozdov
et al., 2019) to either add back punctuation marks
or modify their connections in a parse tree: for a
trailing punctuation mark, we manually attach it to

https://github.com/i-lijun/UnsupConstParseEval
https://github.com/i-lijun/UnsupConstParseEval
https://github.com/yikangshen/PRPN
https://github.com/harvardnlp/urnng
https://github.com/davidswelt/dmvccm
https://github.com/DrDub/cclparser
https://github.com/iesl/diora

3280

Train ptb len10 nopunct ptb len40 nopunct ptb len40 punct
Metric micro macro evalb micro macro evalb micro macro evalb

Evaluated on test sentences with length ≤ 10.

PRPN 31.29
± 4.49

37.29
± 5.04

44.72
± 3.59

56.98
± 3.66

58.79
± 2.85

65.23
± 2.92

38.07 (52.17)
± 3.94 (± 3.08)

33.75 (46.1)
± 3.33 (± 2.75)

51.56 (60.59)
± 3.08 (± 1.94)

URNNG 50.77
± 1.11

53.67
± 0.83

60.41
± 0.89

51.43
± 0.00

54.20
± 0.00

60.94
± 0.00

47.95 (49.07)
± 0.00 (± 0.00)

41.65 (44.61)
± 0.00 (± 0.00)

59.34 (59.78)
± 0.00 (± 0.00)

DIORA 31.55
± 2.50

37.90
± 2.13

44.93
± 2.00

50.26
± 0.72

52.92
± 0.68

59.86
± 0.58

42.66 (47.13)
± 0.98 (± 1.92)

37.77 (41.37)
± 0.84 (± 1.30)

55.15 (57.87)
± 0.77 (± 1.36)

CCL 28.31 36.61 33.55 53.67 57.45 53.67 n/a (62.39) n/a (52.33) n/a (62.00)
CCM 62.97 63.35 70.14 50.29 53.73 60.03 1.04 (54.30) 4.30 (54.68) 22.70 (58.02)

LBranch 13.32 22.39 30.37 13.32 22.39 30.37 11.73 (13.79) 14.08 (24.31) 30.98 (35.66)
RBranch 51.43 54.20 60.79 51.43 54.20 60.79 1.03 (56.80) 4.30 (56.19) 22.63 (67.74)
UBound 83.20 78.74 86.64 83.20 78.74 86.64 68.19 56.85 75.15

Evaluated on all test sentences.

PRPN 18.08
± 3.66

21.73
± 3.69

22.85
± 3.45

41.99
± 4.05

45.50
± 3.73

45.36
± 3.82

33.25 (42.17)
± 3.20 (± 1.82)

33.92 (43.55)
± 3.27 (± 1.95)

36.85 (44.43)
± 3.03 (± 1.60)

URNNG 34.62
± 2.19

38.58
± 1.65

38.43
± 2.07

35.88
± 0.00

39.58
± 0.00

39.62
± 0.00

36.7 (36.72)
± 0.00 (± 0.00)

38.44 (38.84)
± 0.00 (± 0.00)

40.11 (40.03)
± 0.00 (± 0.00)

DIORA 20.44
± 1.53

23.72
± 1.66

25.08
± 1.44

46.27
± 0.31

47.81
± 0.33

49.39
± 0.29

41.48 (46.94)
± 0.43 (± 1.59)

41.56 (46.73)
± 0.37 (± 1.50)

44.63 (49.38)
± 0.41 (± 1.44)

CCL 19.08 21.56 18.68 37.41 41.67 37.98 n/a (49.70) n/a (51.51) n/a (47.46)
CCM 49.54 52.60 52.48 40.90 43.62 44.34 0.09 (33.15) 0.54 (36.88) 5.48 (35.65)

LBranch 6.00 8.98 11.49 6.00 8.98 11.49 4.88 (5.55) 6.36 (8.30) 10.01 (11.07)
RBranch 35.88 39.58 39.61 35.88 39.58 39.61 0.07 (35.54) 0.52 (38.98) 5.45 (39.3)
UBound 84.41 83.32 85.34 84.41 83.32 85.34 77.76 75.06 78.96

Table 1: Experimental results on PTB. The column headings show the training setups and the evaluation metrics.
The presence or removal of punctuation in a test set is kept consistent with the corresponding training setup. Scores
in parentheses are obtained using the post-processing method of section 2.3. For models sensitive to random seeds
(PRPN, URNNG and DIORA), we report the means and standard deviations from five runs. LBranch and RBranch
represent the left and right branching baselines. UBound represents the score upper bound that a binary tree parser
can achieve.

the root of the constituency parse tree; for a punc-
tuation mark inside the sentence, we attach it to the
lowest common ancestor of its two adjacent words
in the parse tree. Note that the above procedure
will produce non-binary parse trees.

2.4 Evaluation Metrics

The performance of a constituency parser is often
evaluated with F1 scores. However, two ways of
averaging F1 scores over multiple test sentences
are available, i.e., micro average and macro aver-
age. In micro average, all the span predictions are
aggregated together and then compared with the
gold spans to get the precision and recall. In con-
trast, macro average is obtained by calculating the
F1 score for each individual sentence and then take
an average over all the sentences.

We use both metrics in our experiments. Note
that when computing F1 scores, we remove trivial
spans, i.e., single-word spans and whole-sentence
spans, and we calculate duplicate constituents only
once.

We additionally use the standard PARSEVAL

metric computed by the Evalb program6. Although
Evalb calculates the micro average F1 score, it
differs from our micro average metric in that it
will count the whole sentence spans and duplicated
spans are calculated and not removed.

2.5 Tuning and Model Selection

To maintain the unsupervised nature of our exper-
iments, we avoid the common practice of using
gold parses of the validation set for hyperparam-
eter tuning. CCM and CCL do not expose any
hyperparameter for tuning. We tune PRPN and
URNNG based on their perplexity on the valida-
tion set. DIORA does not provide a metric that can
be used for tuning, so we do not tune it.

We tune PRPN and URNNG with the same time
budget of 5 days on a GPU cluster with TITAN
V GPUs. We use Bayesian optimization7 to auto-
matically tune these models. We set the ranges of
hyperparameter values around the default values
provided in the original papers.

6https://nlp.cs.nyu.edu/evalb/
7https://github.com/fmfn/

BayesianOptimization

https://nlp.cs.nyu.edu/evalb/
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization

3281

Train ktb len10 nopunct ktb len40 nopunct ktb len40 punct
Metric micro macro evalb micro macro evalb micro macro evalb

Evaluated on test sentences with length ≤ 10.

PRPN 10.18
± 2.75

23.72
± 2.17

30.48
± 2.12

14.29
± 11.95

26.80
± 9.56

33.67
± 9.25

8.09 (9.27)
± 1.12 (± 1.32)

20.47 (23.95)
± 0.98 (± 1.15)

29.61 (29.95)
± 0.86 (± 0.89)

URNNG 1.37
± 0.00

16.60
± 0.00

23.43
± 0.00

1.93
± 0.00

17.13
± 0.00

23.86
± 0.00

2.71 (1.89)
± 0.00 (± 0.00)

16.25 (17.91)
± 0.00 (± 0.00)

25.39 (24.74)
± 0.00 (± 0.00)

DIORA 21.96
± 6.59

32.37
± 5.35

39.60
± 5.10

34.69
± 6.51

42.20
± 5.00

49.45
± 5.04

27.00 (27.34)
± 3.82 (± 4.51)

34.68 (35.86)
± 2.95 (± 3.69)

44.10 (43.24)
± 2.92 (± 3.15)

CCL 18.49 30.31 32.28 2.74 18.43 27.47 n/a (13.93) n/a (27.85) n/a (36.90)
CCM 24.69 36.32 41.72 32.67 41.97 47.89 3.44 (3.45) 16.47 (18.93) 26.05 (25.82)

LBranch 23.86 34.69 41.07 23.86 34.69 41.07 20.10 (25.46) 29.98 (36.37) 38.81 (45.61)
RBranch 1.37 16.60 23.67 1.37 16.60 23.67 2.12 (1.29) 15.68 (17.52) 25.05 (27.97)
UBound 57.68 60.82 67.25 57.68 60.82 67.25 49.62 52.86 61.41

Evaluated on all test sentences.

PRPN 8.01
± 1.19

13.92
± 1.28

15.61
± 1.09

11.11
± 8.06

17.25
± 8.82

18.45
± 7.39

5.83 (7.15)
± 0.71 (± 0.77)

10.16 (12.17)
± 0.78 (± 0.88)

13.1 (14.07)
± 0.65 (± 0.67)

URNNG 0.24
± 0.00

6.44
± 0.00

8.47
± 0.00

0.68
± 0.00

6.94
± 0.00

8.87
± 0.00

0.33 (0.26)
± 0.00 (± 0.00)

5.08 (5.6)
± 0.00 (± 0.00)

8.01 (7.95)
± 0.00 (± 0.00)

DIORA 14.95
± 3.22

21.90
± 4.19

21.97
± 2.95

29.94
± 3.16

35.06
± 4.04

35.72
± 2.90

24.22 (23.48)
± 4.32 (± 4.45)

28.09 (28.08)
± 3.88 (± 4.18)

30.06 (28.98)
± 3.98 (± 4.03)

CCL 12.62 19.43 18.03 1.20 7.69 12.60 n/a (8.63) n/a (14.18) n/a (18.44)
CCM 12.21 21.70 19.46 20.21 28.60 26.80 1.33 (1.42) 5.91 (6.78) 8.94 (8.98)

LBranch 11.15 20.62 18.49 11.15 20.62 18.49 9.63 (10.77) 16.77 (19.66) 16.60 (18.26)
RBranch 0.22 6.43 8.46 0.22 6.43 8.46 0.20 (0.17) 4.83 (5.45) 7.89 (8.54)
UBound 64.38 62.52 67.32 64.38 62.52 67.32 59.40 56.44 62.53

Table 2: Experimental results on KTB.

3 Experimental Results

We list the experimental results of all the models
and the left/right-branching baselines for PTB and
KTB in Table 1 and Table 2 respectively. Since
all the models except CCL produce binary parse
trees, we also show the score upper bound that a
binary tree parser can achieve, which is computed
by binarizing the gold trees and calculating their
scores against the original gold trees.

Note that our results can be very different from
those reported in the original papers of these mod-
els because of different experimental setups. For
example, the original CCM paper reports an F1
score of 71.9 on PTB, but we report 62.97. This
is because the original CCM experiment uses the
whole WSJ corpus (with length ≤ 10) for both
training and test, which is very different from our
setup.

Also note that for the left and right branching
baselines and the binary upper bound, the scores
for “length 10 no punct” and “length 40 no punct”
are the same, because these baselines do not require
training and are evaluated on the same test sets.

Overall Comparison There is no universal win-
ner for all the settings but there is clear winners
for specific settings. On PTB, it is surprising to
see that each model is the winner of at least one
setting. Right-branching is a very strong base-

line and with post-processing it outperforms all
the models in some settings of “ptb len40 punct”.
On KTB, DIORA is the winner in most of the set-
tings, while CCM has a strong performance on
“ktb len10 nopunct”. Left-branching is a strong
baseline especially when evaluated on sentences
with length ≤ 10.

Although CCM and DIORA achieve the best
overall performance, we note that they both utilize
additional resources. CCM uses gold POS tags
and DIORA uses pretrained word embedding. Our
preliminary experiments on PTB show a signifi-
cant drop in performance when we run CCM using
words without gold POS tags, with the Evalb F1
score dropping from 70.14 to 57.29 when evalu-
ated on length ≤ 10 under the “ptb len10 nopunct”
setting. DIORA also performs worse when pre-
trained word embedding is replaced by randomly
initialized embedding, with the average Evalb F1
score dropping from 49.39 to 42.63 when evalu-
ated on all sentences under the “ptb len40 nopunct”
setting.

Overall, we do not see a clear advantage of
more recent neural models over traditional mod-
els. There are two factors that should be taken into
account though. First, neural models are signif-
icantly slower and therefore may not have been
sufficiently tuned because of the fixed tuning time
budget. Second, the training data may still be too

3282

small from the perspective of neural models.
Finally, we also note that our post-processing

method for adding back punctuation almost always
improves the score in PTB, sometimes by a large
margin (e.g., for CCM and RBranch). On KTB,
however, it sometimes decreases the score. This
may be caused by different annotation standards
for punctuation in the two treebanks.

Impact of Experimental Settings Different ex-
perimental settings lead to remarkable difference
in the evaluation scores of the same model. Differ-
ent evaluation metrics also produce very different
scores. With the same output parses, they can some-
times differ more than 20 F1 points.

Running Time Traditional models such as CCM
and CCL are fast, taking only several minutes. On
the other hand, neural models take hours or even
days to train. Apart from training, the inference
stage is also very fast for traditional models but
slow for neural models. Considering their close F1
scores, we believe at least in the scenario of lim-
ited data and computational resources, traditional
models are preferred to neural models.

Comments on Individual Models We find that
CCM when trained with length ≤ 10 sentences is
very competitive. On PTB, it even outperforms all
the other models that are trained on length 40 data
with no punctuation. However, CCM cannot handle
punctuation very well without post-processing.

URNNG seems to degrade to mostly right-
branching in many settings (thus having very low
standard deviations). This is possibly due to two
reasons: 1) URNNG takes a lot of time to train and
is therefore only lightly tuned because of the tun-
ing time budget; 2) in the original paper, URNNG
is trained with punctuation but evaluated without
punctuation, which is quite different from our set-
tings.

PRPN has a strong performance on PTB when
trained with long sentences. However, we note that
PRPN has a right-branching bias during inference
(Dyer et al., 2019). If we switch its inference bias to
left-branching, the performance drops significantly
(for more than 10 points). Because of its right-
branching bias, PRPN does not perform well on
KTB.

4 Discussion

We make the following recommendations for future
experiments on unsupervised constituency parsing.

For the sentence length limit, we think one can
set any limit on the training data, but should re-
port evaluation results on both length ≤ 10 and all-
length test data. For the evaluation metrics, since
small details in implementing micro and macro
average will lead to nontrivial differences, we sug-
gest using PARSEVAL which has publicly avail-
able implementation. For models sensitive to ran-
dom seeds, we recommend reporting means and
standard deviations from multiple runs. We also
recommend evaluation on treebanks of both left-
branching and right-branching languages, such as
PTB and KTB.

References
Rens Bod. 2006. An all-subtrees approach to unsu-

pervised parsing. In Proceedings of the 21st In-
ternational Conference on Computational Linguis-
tics and the 44th Annual Meeting of the Association
for Computational Linguistics, ACL-44, pages 865–
872, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Alastair Butler, Zhu Hong, Tomoko Hotta, Ruriko
Otomo, Kei Yoshimoto, and Zhen Zhou. 2012.
Keyaki treebank: phrase structure with functional in-
formation for japanese. In Proceedings of Text Anno-
tation Workshop.

Glenn Carroll and Eugene Charniak. 1992. Two exper-
iments on learning probabilistic dependency gram-
mars from corpora. Technical report, Brown Univer-
sity, Providence, RI, USA.

Andrew Drozdov, Pat Verga, Mohit Yadav, Mohit Iyyer,
and Andrew McCallum. 2019. Unsupervised la-
tent tree induction with deep inside-outside recur-
sive autoencoders. In North American Association
for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL.

Chris Dyer, Gábor Melis, and Phil Blunsom. 2019. A
critical analysis of biased parsers in unsupervised
parsing. arXiv preprint arXiv:1909.09428.

Dave Golland, John DeNero, and Jakob Uszkoreit.
2012. A feature-rich constituent context model for
grammar induction. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Short Papers - Volume 2, ACL ’12,
pages 17–22, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

https://doi.org/10.3115/1220175.1220284
https://doi.org/10.3115/1220175.1220284
http://dl.acm.org/citation.cfm?id=2390665.2390670
http://dl.acm.org/citation.cfm?id=2390665.2390670

3283

Phu Mon Htut, Kyunghyun Cho, and Samuel Bowman.
2018. Grammar induction with neural language
models: An unusual replication. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4998–5003, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Lifeng Jin, Finale Doshi-Velez, Timothy Miller, Lane
Schwartz, and William Schuler. 2019. Unsuper-
vised learning of PCFGs with normalizing flow.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2442–2452, Florence, Italy. Association for Compu-
tational Linguistics.

Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller,
William Schuler, and Lane Schwartz. 2018. Un-
supervised grammar induction with depth-bounded
pcfg. Transactions of the Association for Computa-
tional Linguistics, 6:211–224.

Bernard E. M. Jones. 1994. Exploring the role of punc-
tuation in parsing natural text. In COLING 1994 Vol-
ume 1: The 15th International Conference on Com-
putational Linguistics.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019a.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yoon Kim, Alexander M. Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gábor Melis. 2019b. Unsuper-
vised recurrent neural network grammars. In Pro-
ceedings of NAACL.

Dan Klein and Christopher D Manning. 2002. A gener-
ative constituent-context model for improved gram-
mar induction. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguis-
tics, pages 128–135. Association for Computational
Linguistics.

Mitchell P Marcus and Mary Ann Marcinkiewicz. 1993.
Building a large annotated corpus of english: The
penn treebank. Computational Linguistics, 19(2).

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In Proceedings of the 30th Annual Meeting
on Association for Computational Linguistics, ACL
’92, pages 128–135, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011.
Simple unsupervised grammar induction from raw
text with cascaded finite state models. In Proceed-
ings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language
Technologies-Volume 1, pages 1077–1086. Associa-
tion for Computational Linguistics.

Yoav Seginer. 2007. Fast unsupervised incremental
parsing. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 384–391.

Yikang Shen, Zhouhan Lin, Chin wei Huang, and
Aaron Courville. 2018. Neural language modeling
by jointly learning syntax and lexicon. In Interna-
tional Conference on Learning Representations.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
International Conference on Learning Representa-
tions.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2011. Punctuation: Making a point in un-
supervised dependency parsing. In Proceedings of
the Fifteenth Conference on Computational Natu-
ral Language Learning, CoNLL ’11, pages 19–28,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Andreas Stolcke and Stephen Omohundro. 1994. In-
ducing probabilistic grammars by bayesian model
merging. In International Colloquium on Grammat-
ical Inference, pages 106–118. Springer.

https://doi.org/10.18653/v1/D18-1544
https://doi.org/10.18653/v1/D18-1544
https://doi.org/10.18653/v1/P19-1234
https://doi.org/10.18653/v1/P19-1234
https://www.aclweb.org/anthology/C94-1069
https://www.aclweb.org/anthology/C94-1069
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.3115/981967.981984
https://doi.org/10.3115/981967.981984
https://doi.org/10.3115/981967.981984
https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=B1l6qiR5F7
http://dl.acm.org/citation.cfm?id=2018936.2018939
http://dl.acm.org/citation.cfm?id=2018936.2018939

