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Abstract

This paper presents LinggleWrite, a writing
coach that provides writing suggestions, as-
sesses writing proficiency levels, detects gram-
matical errors, and offers corrective feedback
in response to user’s essay. The method in-
volves extracting grammar patterns, training
models for automated essay scoring (AES) and
grammatical error detection (GED), and finally
retrieving plausible corrections from a n-gram
search engine. Experiments on public test
sets indicate that both AES and GED models
achieve state-of-the-art performance. These re-
sults show that LinggleWrite is potentially use-
ful in helping learners improve their writing
skills.

1 Introduction

Essay writing has been an essential part of language
assessments (e.g., TOEFL, IELTS) but a challeng-
ing task for most students. To write a good essay
not only requires sustained practice, but also de-
mands instructional feedback from teachers. How-
ever, pressed with teaching load, teachers can only
provide limited corrective feedback on students’
essays. This has encouraged the development of
computer-assisted writing systems to meet grow-
ing needs of automated feedback as a means of
writing coaching. Computer Assisted Language
Learning (CALL) has been an active field of com-
putational linguistics and pedagogy. Some exist-
ing computer aided writing systems detect and cor-
rect grammatical errors, and give an overall score
(e.g., Grammarly (www.grammarly.com) and Pigai
(www.pigai.org)).

Instead of directly correcting users’ es-
says, Write&Improve (writeandimprove.com)
only marks highly-likely incorrect words on the
grounds that automated grammatical error correc-
tion is still very imprecise. Recently, researchers
have begun to apply neural network models to both

automated essay scoring (AES) and grammatical
error detection (GED), gaining significant improve-
ment (e.g., Dong et al. (2017); Rei and Søgaard
(2018)). However, these Web services fall short of
providing sufficient “coaching” information (e.g.,
grammar patterns, collocations, examples) to learn-
ers to improve their writing skills.

Provide writing suggestions as a user types away
or during editing is another emerging approach
to coaching the learner. For example, WriteA-
head (writeahead.nlpweb.org) provides context-
sensitive suggestions, right in the process of writ-
ing or self-editing. Google recently released Smart
Compose that offers users word or phrase comple-
tion suggestions while writing an email (Chen et al.,
2019).

In line with these systems, we also suggest that
feedback on learners’ writings could be more effec-
tive if a system not only acts as an editor provid-
ing direct corrections, but also a coach performing
grammatical error detection and offering interactive
suggestions (Hearst, 2015). Moreover, illustrating
word usage with bilingual examples can better help
non-native English learners. This would enhance
learners’ skills of self-editing and pave the way to
lifelong language learning.

With that in mind, we developed a web-based
system LinggleWrite (f.linggle.com) with many
assistive writing functions. With LinggleWrite
users can write or paste their essays and get in-
formative feedback including just-in-time writing
suggestions, essay scoring, error detection, and
related word usage information retrieved from
Linggle(linggle.com).

2 The LinggleWrite System

The system consists of 4 components: (1) Inter-
active Writing Suggestion, (2) Essay Scoring, (3)
Grammatical Error Detection, and (4) Corrective
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Figure 1: The screenshot of the system LinggleWrite

Feedback. The first component, Writing sugges-
tion, will help users with word usage information
while writing. The other three components are
aimed at providing evaluation and constructive
feedback after a user finishes writing. The sys-
tem is available at f.linggle.com. We’ll describe
each component as follows.

2.1 Interactive Writing Suggestion
When a user begins to write an essay, the system
responds with prompts of related grammar patterns,
collocations, and bilingual examples. These contin-
uous writing suggestions are based on the last word
or phrase the user has entered. Additionally, the
user can get information of a certain word by mous-
ing over it. For example, suggestions for “finish”
are shown in Section A of Figure 1 (bottom left).
Once finishing the writings, the user can click the
Check button triggering the following components.

2.2 Essay Scoring
After accepting an essay longer than 30 words,
LinggleWrite assesses user’s writing proficiency.
The assessment is provided in the form of CEFR
Levels1 (A1-C2) as shown in Section B of Figure 1
(top right).

1https://www.coe.int/en/web/common-european-
framework-reference-languages/level-descriptions

2.3 Grammatical Error Detection

LinggleWrite tries to detect potential grammatical
errors in each sentence. Sentences with potential
errors are marked with yellow (1 possible error)
or orange (2 or more possible errors) background,
as shown in Section C of Figure 1 (center right).
The user can click on an erroneous sentence to de-
mand GED results. LinggleWrite marks suspicious
words with orange, red or green, suggesting to in-
sert a word, delete the word, or replace the word
respectively, as shown in Section C of Figure 1
(center right). Subsequently, the user can click on
an error to display plausible corrective suggestions
returned by a n-gram search engine.

2.4 Corrective Feedback

We present corrective suggestions according to the
context and the edit type (i.e., insertion, deletion,
replacement), using an existing linguistic search
engine, Linggle (Boisson et al., 2013). An exam-
ple of corrective suggestions for the sentence “I
finished school on June” is shown in Section E in
Figure 1 (bottom right). LinggleWrite detects “on”
probably requiring a replacement edit. We convert
the detected error into a Linggle query to search
for more appropriate expressions, and provide the
user with the search result “school in June’ for

f.linggle.com
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considerations.

3 Method

To develop LinggleWrite, we extract the most com-
mon grammar patterns from a corpus in order to
provide writing suggestions. Additionally, we de-
velop models for AES and GED based on annotated
learner corpora. We retrieve corrective feedback
by querying a linguistic search engine according to
the predicted edit type of an error. We describe the
process in detail in the following subsections.

3.1 Extracting Grammar Patterns

We extract grammatical patterns, collocations and
bilingual examples for keywords from a given cor-
pus to provide writing suggestions in the interactive
writing session. Our extraction process includes
four steps.

In Step (1), we build a dictionary of grammar
patterns of verbs, nouns and adjectives based on
Francis et al. (1996). For example, the grammar
patterns of the word play are V n, V n in n, etc.

In Step (2), we parse sentences from Corpus
of Contemporary American English (COCA) and
Cambridge online dictionary (CAM) using a de-
pendency parser to extract grammar patterns and
collocations based on the templates in Step (1). For
example, the extracted grammar pattern and collo-
cation from the sentence “Schools play an impor-
tant role in society” are “V n in n” and “society”.

In Step (3), for each keyword, we count and
filter out patterns and collocations based on mean
and standard deviation. Finally, we use GDEX
method (Kilgarriff et al., 2008) to select the best
monolingual and bilingual examples from COCA
and CAM for each pattern.

3.2 Scoring an Essay

We formulate AES as a regression problem and
train a neural model for this task. We investigate
two neural network architectures with different
input formats: word-based models and sentence-
based models, which learn essay representation
based on word sequences and sentence sequences
respectively. We build our word-based models
upon CNN, LSTM and Bi-LSTM (Taghipour and
Ng, 2016), while sentence-level models upon the
LSTM-LSTM and LSTM-CNN framework (Dong
et al., 2017). Moreover, we further extend both
sentence-based models and word-based models by
adding the attention mechanism after the neural

layer, attempting to select the sentences or words
to focus on for effective scoring. Our models are
similar to other sentence-based and word-based
neural AES model (e.g., Taghipour and Ng (2016);
Dong et al. (2017)), but we use a different training
set, EFCAMDAT (Geertzen et al., 2013) and output
format, CEFR levels, to train our model.

3.3 Detecting Grammatical Errors

We formulate GED as a sequence labeling problem
and develop a neural sequence labeling model to
deal with the problem.

An existing GED method proposed by Rei and
Yannakoudakis (2016) takes tokens as input and
predicts whether each token is correct in the sen-
tence as output. We extend their model by changing
the binary error tag schema (Incorrect and Correct)
into a more informative DIRC tag schema (Delete,
Insert, Replace, and Correct), with the goal of pro-
viding learners more specific suggestions (i.e., the
edit type of an error) to revise their essay. We train
a GED model based on Bi-LSTM with a Condi-
tional Random Field layer (CRF). To improve the
GED model, we add Bidirectional Encoder Repre-
sentations from Transformers (BERT), which sig-
nificantly outperforms other embedding schemes
in many tasks (Devlin et al., 2018). In addition, we
also add a character-based word embedding, Flair,
which captures more contextual information (Ak-
bik et al., 2018). Our training process is divided
into two steps.

In Step (1), we convert sentences with error anno-
tations into unedited sentences and DIRC tags (i.e.,
<[-,-]> for Delete, tokens preceded by <{+,+}>
for Insert, <[-,-]{+,+}> for Replace and tokens
with no edit tag for Correct). For example, the
sentence “I believe there are {+a+} lot of [-why-
]{+ways+} enjoy [-the-] shopping.” is converted to
“I believe there are lot of why enjoy the shopping
.” and “<C C C C I C R C D C C>”. These two
sequences are treated as the input and output of
a neural GED model respectively. Note that the
token to be inserted ({+a+}) is not in the unedited
sentence, and the right token lot is labeled I instead.

In Step (2), we train a neural GED model for a
grammatical error detector using a BiLSTM-CRF
architecture. We first combine BERT embeddings
(Devlin et al., 2018) with Flair embeddings (Akbik
et al., 2018) to form word embeddings and then
encode each token in a given sentence into a fixed-
length vector. Finally, these embeddings are fed



130

Operators Corresponding edit types Description Example

* Insertion Edit match zero or any words good * this
Replacement Edit match one word not me to

? Deletion Edit search for TERM optionally discuss ?about this issue

Table 1: Query operator instruction

into BiLSTM-CRF network to compute and output
a DIRC label sequence.

3.4 Retrieving Suggestions for Detected
Errors

To retrieve writing suggestions for detected errors,
we design queries for each edit type to search for
more plausible corrections using Linggle, a linguis-
tic search engine on a web-based dataset of one
trillion words (Boisson et al., 2013).

Linggle has different query functions and oper-
ators to search word usage in context as shown in
Figure 1. These query functions enable the sys-
tem to query zero, one or multiple words. For
example, “play * role” is intended to search for a
maximum span of three intervening words. We use
three operators (“?”, “*”, “ ”) to retrieve corrective
suggestions for the three edit types, as described
below.

Deletion edit: We use the “?” operator before a
word tagged with “D” to search for n-grams with
or without the word in question. For example, re-
ceiving the sentence “We discuss about this issue.”
as input, our GED model outputs the sequence “C
C D C C C”. Then, we generate the query “discuss
?about this issue” to search Linggle for corrective
suggestions.

Insertion edit: We use the “*” operator before
a word tagged with “I” to search for ngrams with
additional words around this word. For example, an
insertion edit on “this” is detected in the sentence

“I am good this sport.” (the GED model output “C
C C I C”), and thus a Linggle query are formulated
as “good * this”.

Replacement edit: A word tagged with “R” in-
dicates replacement required. We first check if the
word is misspelled using enchant2 library. If mis-
spelled, we replace the word with candidates by
enchant (e.g., ‘moey’ → ‘money/mopey/mosey’).
If not, we use the “ ” operator to search for alterna-
tive n-grams. For example, the GED output of the
sentence “The driver did not accept me to get on

2https://github.com/AbiWord/enchant

the bus.” would be “C C C C R C C C C C C C C”.
Thus, we use the query “not me to” to search for
replacement.

4 Experiments

4.1 Datasets

We used the EF-Cambridge Open Language
Database (EFCAMDAT) (Geertzen et al., 2013)
to train our AES model. This dataset contains
about 1.2 million essays with over 83 million words
written by approximately 174,000 learners with a
wide range of CEFR levels (A1-C2) (language pro-
ficiency level). We used the student essays as input
and the CEFR level assigned by a grader as output
to train the AES model. Due to the imbalanced
distribution of levels as shown in Table 2, we ran-
domly selected 1,903 essays from each level and
then used 5-fold cross validation for training and
evaluation.

CEFR Level #Essays #Training
A1 460,614 1,903
A2 300,188 1,903
B1 166,453 1,903
B2 60,844 1,903
C1 14,551 1,903
C2 1,903 1,903

Table 2: Description of the EFCAMDAT dataset

To train the GED model, we use the First Certifi-
cate in English dataset (FCE). This dataset contains
1,224 essays written by English learners who took
the First Certificate in English (FCE) exam. These
essays have been manually tagged based on 77 er-
ror types (Yannakoudakis et al., 2011). We used
30,953 sentences from FCE for training, 2,720 for
testing, and 2,222 for development. We followed
the approach of Rei and Yannakoudakis (2016)
in our experiment, but converted the dataset into
DIRC format as described in Section 3.3.
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Model
Binary Task DIRC Task
Incorrect tag Insertion tag Replacement tag Deletion tag

Prec. Rec. F0.5 Prec. Rec. F0.5 Prec. Rec. F0.5 Prec. Rec. F0.5

Rei and Søgaard (2018) 65.5 28.6 52
BiLSTM-CRF + word2vec 89 13.8 42.6 57.2 12.1 32.9 82.9 22.4 53.9 67.6 3.1 13.2
BiLSTM-CRF + Flair 68.9 24.6 50.7 53.8 20.2 40.4 72.8 28.3 55.4 59.6 10.1 30.17
BiLSTM-CRF + BERT 71.1 35.7 59.4 53.2 23.8 42.7 73.1 36.1 60.7 53.9 24.1 43.2
BiLSTM-CRF + BERT +Flair 72.3 36.7 60.6 54.6 25.3 44.3 73.5 40.6 63.3 59 24.9 46.3

Table 3: Evaluation on FCE-public test set in DIRC task and binary task

4.2 Hyperparameters

For the AES model, we optimized the trained
model using RMSProp (Dauphin et al., 2015) opti-
mizer with learning rate 0.001 and the maximum
gradient norm was set to 0.9. We used pre-trained
100-dimensional GloVe vectors (Pennington et al.,
2014) as input. The hidden layer size of LSTM
and Bi-LSTM was set to 100. For CNN models,
we used a window size of 5 and hidden layer size
of 100. We applied dropout on the neural network
layer to avoid overfitting, with dropout probabil-
ities set to 0.2. The batch size was 32 and each
model was trained for 50 epochs.

For the GED model, we set parameters differ-
ent from previous work (Rei and Yannakoudakis,
2016). We use the publicly available pre-
trained word embeddings GoogleNews word vec-
tors (word2vec) (Mikolov et al., 2013), Flair (Ak-
bik et al., 2018), and BERT3 (Devlin et al., 2018)
to represent words. Flair embeddings were trained
on the 1-billion word corpus used in Chelba et al.
(2013) and the embedding size (both forward and
backward) was 2048. As for BERT, we utilized
bert-base-uncased model which is trained on the
English Wikipedia (2.5G words) and BooksCor-
pus (0.8G words). We employed 2-layer Bi-LSTM
with CRF to develop for GED model and set the
hidden layer size of Bi-LSTM to 256. We used
SGD optimizer with learning rate 0.01, with maxi-
mum gradient norm set to 1. We applied dropout on
both embedding and Bi-LSTM layers with dropout
probabilities 0.5. We trained the network for 150
epochs and selected the best model with the highest
F1 score on the development set.

5 Evaluation

For the AES task, we adopted quadratic weighted
Kappa (QWK) as our evaluation metric, which

3https://github.com/google-research/bert#pre-trained-
models

was used in Automated Student Assessment Prize
(ASAP) competition and several AES researches
(Taghipour and Ng, 2016; Vaswani et al., 2017;
Dong et al., 2017). For the GED task, we follow
the previous research by Rei and Yannakoudakis
(2016) and use precision, recall and F0.5 to evaluate
our GED model.

Table 3 presents the results of different GED
models on the FCE testset with binary and DIRC
format to compare our results with the state-of-the-
art method proposed by Rei and Søgaard (2018)
using the binary schema. Table 3 shows that
BiLSTM-CRF+BERT+Flair performs substan-
tially better than the other GED models and achieve
state-of-the-art performance on the FCE test set. In-
terestingly, we note that the model with word2vec
pre-trained word embeddings achieves the highest
precision but the lowest recall. As for the DIRC
schema, BiLSTM-CRF+BERT+Flair performs
the best among all models. Importantly, the DIRC
model performs comparably to the binary model
while providing more informative feedback (i.e.,
the edit type) for learners to self-edit their essays.
It is also worth noting that for GED and GEC tasks
multiple answers are acceptable and there is low
inter-annotator agreement (Rozovskaya and Roth,
2010). Bryant and Ng (2015) pointed out even hu-
man annotators can only achieve 72.8 F0.5 score
at the best against the gold standard annotations of
multiple annotators in GEC tasks. Thus, it is fair to
say that the performance of our model against one
gold standard annotation are underestimated and
not far from human annotators, thus acceptable for
an application.

Table 4 shows results of different network archi-
tectures on the AES task. As we can see in Ta-
ble 4, LSTN-LSTM-ATT achieves the best perfor-
mance among all models. In addition, we find that
sentence-level models perform better than word-
level ones in general. Furthermore, we also ob-
serve that the model with attention mechanism per-
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Model Model Type Avg. QWK score
CNN Word-level 0.902
LSTM Word-level 0.927
Bi-LSTM Word-level 0.921
LSTM + attention Word-level 0.931
CNN-CNN Sentence-level 0.934
LSTM-LSTM Sentence-level 0.937
CNN-LSTM-ATT Sentence-level 0.952
LSTM-LSTM-ATT Sentence-level 0.957

Table 4: Average QWK scores on EFCAMDAT

forms slightly better than the other without atten-
tion mechanism. Besides, the result (i.e., QWK
score 0.957) shows our neural models are effi-
cient to predict scores in EFCAMDAT, compar-
ing with other datasets as Automated Student As-
sessment Prize4 (ASAP). Trained on ASAP, the
character-based model with CNN-LSTM proposed
by Taghipour and Ng (2016) scores QWK 0.761,
and the sentence-based model with LSTM-CNN-
att proposed by Taghipour and Ng (2016) achieves
QWK score 0.764.

6 Conclusion and Future Work

In summary, we have presented an writing environ-
ment that supports interactive writing suggestions,
scoring, error detection and corrective feedback.
For the interactive writing task, we provide gram-
matical suggestions, collocations, and bilingual ex-
amples, to guide the user towards writing fluently.
For the GED task, we proposed a new label schema,
DIRC. Experiments show that the proposed label
schema achieves comparable performance (on bi-
nary task) while providing more informative feed-
back. In addition, we leverage an existing linguistic
search engine to provide corrective suggestions for
each error type.

Many avenues exist for future research and im-
provement of our system. For example, the method
for introducing additional training data or generat-
ing artificial training data could be implemented
to improve the performance. An interesting direc-
tion to explore is re-ranking corrective suggestions,
so that the suggestion more relevant to the origi-
nal sentence goes to the top. Yet another direction
of research would be to detect fine-grained error
types. Finally, our system currently providing ad-
ditional Chinese translations for English examples.
Obviously we could easily provide languages trans-

4https://www.kaggle.com/c/asap-aes

lations by changing a bilingual dictionary.
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