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Abstract

We propose a new character-based text clas-
sification framework for non-alphabetic lan-
guages, such as Chinese and Japanese. Our
framework consists of a variational character
encoder (VCE) and character-level text classi-
fier. The VCE is composed of a β-variational
auto-encoder (β-VAE) that learns the proposed
glyph-aware disentangled character embed-
ding (GDCE). Since our GDCE provides zero-
mean unit-variance character embeddings that
are dimensionally independent, it is applica-
ble for our interpretable data augmentation,
namely, semantic sub-character augmentation
(SSA). In this paper, we evaluated our frame-
work using Japanese text classification tasks
at the document- and sentence-level. We con-
firmed that our GDCE and SSA not only pro-
vided embedding interpretability but also im-
proved the classification performance. Our
proposal achieved a competitive result to the
state-of-the-art model while also providing
model interpretability.

1 Introduction

Some Asian languages (e.g., Chinese and Japanese)
use glyphs to give visual meaning to characters. For
example, the following Japanese characters have
a common form of “辶,” which is a sub-character
meaning of the related word road: “迫” (approach:
come near the destination by road) and “追” (fol-
low: track the road). In consideration of these char-
acteristics of the language, several glyph-aware
natural language processing (NLP) models have
been proposed (Shimada et al., 2016; Liu et al.,
2017; Kitada et al., 2018; Sun et al., 2019). These
deep-learning-based models train input text as a
sequence of character images and learn character
embeddings from the images.

In general, the interpretability of the NLP model
is important in terms of its reliability, as well
as providing the required performance for the

task. If imaged-based models can learn these sub-
characters in a way that is interpretable, it helps
greatly in improving the overall interpretability of
the models.

In terms of improving the interpretability of mod-
els, disentangled representation learning method
has received a great deal of attention in recent
years, such as InfoGAN (Chen et al., 2016) and
β-variational auto-encoder (β-VAE) (Higgins et al.,
2017). This learning method transforms the input
data into low-dimensional representations that are
independent of each other while still retaining the
important content. Although it has been actively
discussed in the field of computer vision, there are
few applications in the field of NLP.

In terms of ensuring model robustness, data aug-
mentation is necessary and essential in machine
learning today. With regard to this desirable fea-
ture, glyph-aware embedding (i.e., image-based
character embedding) allows data augmentation
without contextual consideration, such as word
dropout (Iyyer et al., 2015) and wildcard train-
ing (Shimada et al., 2016). Simple data augmenta-
tion based on dropout does not consider the features
of the input space. If the NLP method based on
glyph-aware embedding is highly interpretive, such
as a disentangled representation, an effective data
augmentation method can be achieved. This im-
proves not only the robustness of the model but
also its interpretability.

In this paper, we propose a general-purpose text
classification framework that gives interpretability
to data augmentation for image-based glyph-aware
character embedding, which has the various advan-
tages mentioned above. The framework consists of
two novel methods: (1) glyph-aware disentangled
character embedding (GDCE) and (2) semantic sub-
character augmentation (SSA). Each method has
the following simple but effective features:
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• The GDCE is obtained from the variational
character encoder (VCE), which is the en-
coder part of the β-VAE. The VCE takes
advantage of the β-VAE to create a low-
dimensional representation of the characters,
where each dimension follows an independent
normal distribution. Therefore, the GDCE
provides a disentangled character embedding
in which each of the dimensions corresponds
to the structure of the sub-character.

• The SSA alters only one dimension of the
GDCE, which corresponds with altering some
part of the shape of the original character, and
can present how the character has changed. In
other words, these combinations are equiva-
lent to replacing the sub-character of a charac-
ter with another readable sub-character.

Our framework improves the interpretability of
character embedding by the GDCE, and the SSA
provides interpretable data augmentation suitable
for the GDCE. We verified the text classification
ability of our proposed framework using Japanese
text classification tasks. 1

2 Related work

2.1 Glyph-aware Natural Language
Processing

Embedding methods based on character images
have been proposed with some excellent suc-
cess (Chen et al., 2015; Sun et al., 2016; Yu et al.,
2017; Sun et al., 2019; Dai and Cai, 2017; Shi-
mada et al., 2016; Liu et al., 2017; Kitada et al.,
2018; Ke and Hagiwara, 2017; Aldón Mı́nguez
et al., 2016). These methods are also called glyph-
aware embedding as they generate embeddings that
take into account the shape of the characters or sub-
characters. These image-based methods mainly use
convolutional neural networks (CNNs) or convolu-
tional auto-encoders (CAEs) (Masci et al., 2011)
for character-embedding learning, and they per-
form well because of the following advantages: (1)
they operate without the cumbersome word seg-
mentation required by some Asian languages, and
(2) they can apply additional image-based data aug-
mentation.

1The code required to reproduce the experiments is avail-
able on GitHub. https://github.com/IyatomiLab/
GDCE-SSA

2.2 Data Augmentation for Natural
Language Processing

For NLP tasks, it is challenging to apply data aug-
mentation methods because of the need to consider
the context of the text (Sennrich et al., 2016; Jia and
Liang, 2016; Silfverberg et al., 2017; Edunov et al.,
2018). Several data augmentation methods that do
not require text analysis have been proposed for
word embedding (Iyyer et al., 2015; Zhang et al.,
2016) and character embedding (Shimada et al.,
2016). In particular, Shimada et al. (2016) achieved
significant performance improvements by applying
dropout (Hinton et al., 2012)-based data augmenta-
tion to a type of character embedding called wild-
card training (WT). However, these methods have
little interpretability of what the data augmentation
means in the input text, partly due to the lack of
interpretability of the embedding itself. Our pro-
posed SSA is improved WT, and it replaces the
sub-character of a character with another readable
sub-character.

2.3 Learning Interpretable Character
Embeddings

For learning a latent representation that can be
interpreted, InfoGAN (Chen et al., 2016) and β-
VAE (Higgins et al., 2017) are well known. Unlike
InfoGAN, β-VAE is stable while training, requires
less assumptions about the data, and relies on only
a single hyperparameter β. Because of these ad-
vantages, several improved models based on β-
VAE have been proposed (e.g., Factor-VAE (Kim
and Mnih, 2018), HFVAE (Esmaeili et al., 2019)).
Therefore, in this paper, we use β-VAE as a VCE
to learn interpretable character embeddings.

3 Methodology

In this paper, we propose a new character-based
text classification framework that includes a new
character embedding method, consisting of glyph-
aware disentangled character embedding (GDCE)
and semantic sub-character augmentation (SSA).
Figure 1 shows an overview of the proposed text
classification framework.

3.1 Glyph-aware Disentangled Character
Embedding (GDCE)

We obtain the GDCE using the VCE based on the
β-VAE. Since the GDCE provides dimensionally
independent features, we expect to solve the prob-

https://github.com/IyatomiLab/GDCE-SSA
https://github.com/IyatomiLab/GDCE-SSA
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Figure 1: Overview of our text classification framework.
Each character in the target text is transformed to an image and
forwarded as a glyph feature to the subsequent VCE. The VCE
is composed of a β-VAE, and it learns the proposed GDCE.
Owing to the attractive properties of the GDCE, character-
level text classifier can take advantage of the interpretable and
highly effective data augmentation method, SSA.

lem of the poorly interpretable character embed-
ding obtained by the CAE.
β-VAE is a generative model that estimates

the data distribution p(x), where x ∈ Rd is
a d-dimensional input. Let z ∈ Rd′ be a d′-
dimensional latent variable, which is derived from
the GDCE in this paper; p(z) is a normal distri-
bution, which is the prior distribution of the latent
variables, q(z|x) is the posterior distribution, and
p(x|z) is a generative model. We optimize the
following function:

Lβ-VAE = Eq(z|x)[log p(x|z)]
− βDKL[q(z|x)||p(z)],

(1)

where β is a balancing coefficient for the second
term. The first term represents the reconstruction
error of the character image. The second term rep-
resents the regularization of the latent variables that
are learned so as to follow the prior distribution by
the KL divergence DKL[·||·]. If the coefficient β
increases, it is possible to obtain a representation
of the features where each dimension is indepen-
dent (Higgins et al., 2017).

However, the latent variables themselves are a
probability distribution and cannot be backpropa-
gated to the encoder. Hence, the reparameterization
trick (Kingma and Welling, 2013) of the approx-
imation method is used. We let α be a sampled
random variable from N (0, Id′) and calculate the
latent variables as follows:

z = µ(x) +α� σ(x), α ∼ N (0, Id′), (2)

where � is an element-wise product, µ is the mean
of the distribution, and σ is the variance of the dis-
tribution. Here, µ(x) and σ(x) are d′-dimensional
vectors obtained from the β-VAE.

3.2 Character-level Text Classification with
Semantic Sub-character Augmentation
(SSA)

The sequence of c embedded characters C =
{z(1), z(2), · · · , z(c)} from the GDCE, where z(t)

is the t-th character embedding, in the VCE are pro-
vided to the following character-level text classifier.
The parameters of the classifier are optimized in
the back-propagation using the cross-entropy error.

In this paper, we propose SSA as a data augmen-
tation method. Taking advantage of the preferred
features of the embedding created by the GDCE,
we expect that the sub-character of a character will
be replaced by another readable sub-character, us-
ing the SSA.

Let γ be the perturbation range, and the formula
of the SSA for the i-th dimension z(t)i of the char-
acter embedding z(t) is defined as follows:

z
′(t)
i = z

(t)
i + u, u ∼ U(−γ, γ), (3)

where u ∼ U(a, b) indicates that the random vari-
able u has a uniform distribution with the minimum
a and the maximum b. Since each dimension of the
GDCE followsN (0, Id′), the character embedding
converted in Eq. 3 falls within the range of trained
character-embedding values.

4 Experiment Settings

4.1 Evaluation Datasets
We evaluated our framework with the following
datasets: newspaper and livedoor. These datasets
were split into two parts: 80% for training and 20%
for evaluation. Because these datasets contain new
words and/or meanings related to current affairs,
accurate word segmentation through morphologi-
cal analysis has been a challenge in conventional
word-level processing for Japanese. Therefore, we
can avoid such difficulties by using character-level
input instead of word-level input2.

Newspaper. The newspaper dataset used in Shi-
mada et al. (2016) contains 5,610 Japanese major
web newspaper articles (Asahi, Mainichi, Sankei,

2It is generally known that a character-level model
performs better than a word-level model in Chinese and
Japanese (Zhang and LeCun, 2017).
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Layer Encoder

1 Conv2d (k = (4, 4), o = 32, s = 2)→ ReLU
2 Conv2d (k = (4, 4), o = 32, s = 2)→ ReLU
3 Conv2d (k = (4, 4), o = 64, s = 2)→ ReLU
4 Conv2d (k = (4, 4), o = 64, s = 2)→ ReLU
5 Linear(o = 256)→ ReLU
6 Linear(o = 2× 10)

Layer Decoder

1 Linear (o = 256)→ ReLU
2 Linear (o = 1024)→ ReLU
3 Deconv2d (k = (4, 4), o = 64, s = 2)→ ReLU
4 Deconv2d (k = (4, 4), o = 32, s = 2)→ ReLU
5 Deconv2d (k = (4, 4), o = 32, s = 2)→ ReLU
6 Deconv2d (k = (4, 4), o = 1, s = 2)→ Sigmoid

Table 1: Architecture of β-VAE. Kernel size k, output size o,
and stride size s was set to the above table.

and Yomiuri) in the categories of politics, the econ-
omy, and international news, for a total of 22,440
articles.

Livedoor. The livedoor dataset is commonly
used to evaluate models for Japanese.3 The dataset
contains, for example, 870 and 900 Japanese sen-
tences in the categories of movie-enter and sports-
watch, respectively. In all the nine categories, it
contains a total of 7,367 articles.

4.2 Model Architectures

We trained the VCE based on β-VAE and character-
level CNN (CLCNN) (Zhang et al., 2015) as text
classifier independently. The hyperparameters of
these models were adjusted with a validation set
split from the training set, and the predicted results
of the evaluation set were reported.

β-variational auto-encoder (β-VAE). Table 1
shows the architecture of β-VAE. Generally, train-
ing of β-VAE is unstable, and requires adjustment
of hyperparameters. In this paper, we carefully
tuned hyperparameters based on Locatello et al.
(2019). Adam (Kingma and Ba, 2014) was used to
maximize Lβ-VAE, as shown in Eq. 1. We set train
batch size to 64 and the learning rate to 1e-4.

To obtain the GDCE, we trained the VCE
with 6,631 common Japanese characters, includ-
ing Japanese Hiragana, Katakana, and Kanji4, as
well as English alphabets and symbols. These char-
acters were converted to d = 64 × 64 grayscale

3https://www.rondhuit.com/download.
html#ldcc

4From the Japanese Industrial Standards; first and second
levels.

Layer CLCNN

1 Conv1d (k = 3, o = 512)→ ReLU
2 Maxpool1d (k = 3, s = 3)
3 Conv1d (k = 3, o = 512)→ ReLU
4 Maxpool1d (k = 3, s = 3)
5 Conv1d (k = 3, o = 512)→ ReLU
6 Conv1d (k = 3, o = 512)→ ReLU
7 Linear (o = #classes)

Table 2: Architecture of CLCNN. Kernel size k, output size
o, and stride size s was set to the above table.

character images and used as input x to the VCE.
We set β = 8 and d′ = 10 for all tasks, γ = 1.5
for the newspaper, and γ = 2.0 for the livedoor.

Character-level convolutional neural network
(CLCNN). Table 2　shows the architecture of
CLCNN. We trained CLCNN with the same param-
eters as in Shimada et al. (2016). Similar to training
the character embedding model, Adam was used
to minimize the cross-entropy error. We set the
learning rate of Adam to 1e-4 and weight decay to
1e-4, train batch size to 256 for the livedoor, and
512 for the newspaper.

In training the CLCNN, we used the GDCE re-
sults obtained by the VCE as the input. For train-
ing, c = 128 consecutive characters were extracted
from the text in the newspaper, and c = 80 consec-
utive characters were extracted from the title text
in the livedoor. For evaluation, in the newspaper,
c = 128 characters were slid one by one, the entire
text was used as input in the same manner as in
Shimada et al. (2016); in the livedoor, it was the
same as in the training.

5 Results and Discussion

First, as a comparison of embedding methods, we
compared the GDCE with the conventional CAE-
based embedding (Shimada et al., 2016). Second,
as a comparison of data augmentation methods for
image-based character embedding, we also com-
pared the proposed SSA with the conventional WT,
the latter of which has reported excellent results
but offers no way of interpreting the change on the
embedding space.

5.1 Effectiveness of the Proposal on Text
Classification

Table 3 presents a comparison of the proposed
GDCE and CAE-based embedding. The GDCE
showed better document- and sentence-level classi-
fication performance than the conventional CAE-

https://www.rondhuit.com/download.html#ldcc
https://www.rondhuit.com/download.html#ldcc
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Accuracy [%]

Newspaper Livedoor

+ CLCNN Vanilla + WT + SSA (Ours) Vanilla + WT + SSA (Ours)

VCE (Ours) 81.02 82.78 †84.00 67.16 68.59 †69.05
CAE ‡79.81 ‡81.62 81.35 ‡58.39 ‡60.87 60.53

Table 3: A comparison between the VCE (with proposed GDCE) and the CAE in the newspaper and the livedoor results. We
compared our proposed framework (presented as †; a disentangled representation) with the state-of-the-art framework of Shimada
et al. (2016) (presented as ‡; without the consideration of disentangled representation). Our proposed framework had the highest
performance. The model using the VCE performed better than the CAE.

based character embedding without data augmenta-
tion. This may be due to the fact that the characters
to be learned by the VCE are distributed in a lim-
ited embedded space centered on zeros, so the later
stage of the CLCNN training became more effec-
tive. The WT, which randomly set all representa-
tions of a particular character embedding to zero,
enhanced the discrimination of both models. The
effect on the CAE-based model was particularly
large, as reported in previous studies. We can con-
firm an effect of the WT as a dropout for preventing
overfitting, but it did not provide an interpretation
of what was changed in the character embeddings.

The proposed SSA provided us with an idea of
what the embedding changes would look like, while
also providing the same discriminatory capacity
as the WT. This may be due to the fact that the
GDCE had standardized metrics in the embedding
space (i.e., the embedding had a normal distribu-
tion), so that the distances between the character
embeddings were within the range of what could
be assumed. Hence, the size of the perturbations
applied could be designed, allowing for meaning-
ful data augmentation. However, the CAE with
SSA did not show an improved classification per-
formance. This may be due to the fact that the
CAE with SSA does not change to a meaningful
character representation.

5.2 Effectiveness of the Proposal on
Interpretation

Figure 2 shows a comparison of the reconstructed
character images when a ±2.0σ perturbation is
placed on the 2a (the GDCE) and 2b character em-
bedding obtained by the CAE. In Figure 2a, it is
confirmed that the shape of the character replaced a
different interpretable character or characters with
a similar different subcomponent in the input space.
In particular, by adding a perturbation to the fifth
dimension of the embedding of “迫” or “追” (con-

taining a sub-char. of “辶,” meaning road), it can
be interpreted that it changed to “氵” (sub-char.
of water) or “辶” (sub-char. of road, the same as
“辶”). In addition, by adding a perturbation to the
first dimension of the embedding of “綱” or “縄”
(containing a sub-char. of “糸,” meaning yarn), it
can be interpreted that it changed to “扌” (sub-char.
of hand) or “金” (sub-char. of gold). From these
results, we are convinced that such a replacement
in the embedding resulted in more effective data
augmentation for training the model.

As seen in Figure 2b, in contrast, we were unable
to identify these trends. We consider this is one of
the typical benefits of our framework in that each
dimension of the GDCE is independent and each of
them affects each character component (e.g., sub-
char. or radical of the character) with independence.
In other words, we can change only some part of
the character by changing certain dimensions of
the embedding.

Since the SSA is a local transformation for the
parts of the character shown above, even some char-
acters that do not actually exist are generated by
the combination of parts. These are not readable
as correct characters, but we can make certain in-
terpretations of them. In sum, the combination of
the proposed GDCE and SSA provides us with the
interpretability of the data augmentation as well
as embedding the character while providing a high
discriminative power.

5.3 The Effect of Hyperparameters

To understand the effect of hyperparameters, we
analyzed the coefficient β and perturbation size γ
using the livedoor, as shown in Figure 3.

The effect of coefficient β. Figure 3a shows the
effect of coefficient β on the evaluation perfor-
mance with γ = 0 (i.e., without SSA). In our exper-
iments, we confirmed that β = 8 is the best from
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Figure 2: The results of reconstructing character images from the character embedding trained by the VCE and CAE with
perturbation added between 2.0σ. The upper side is the reconstructed image of “迫” (approach) and “追” (follow). In the
reconstruction from the embedding by the VCE and by adding noise to the fifth dimension of the embedding of “迫” or “追”
(containing a sub-char. of “辶” meaning road), it can be interpreted that it changed to “氵” (sub-char. of water) or “辶” (sub-char.
of road, the same as “辶”). The lower side is the reconstructed image of “綱” (rope) and “縄” (cord). In the reconstruction from
the embedding by the VCE and by adding noise to the first dimension of the embedding of “綱” or “縄” (containing a sub-char.
of “糸” meaning yarn), it can be interpreted that it changed to “扌” (sub-char. of hand) or “金” (sub-char. of gold).
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(a) The effect of coefficient β (γ = 0 i.e., without SSA).
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(b) The effect of perturbation range γ (β = 8).

Figure 3: The effect of hyperparameters in our framework
using the livedoor dataset on the evaluation performance.

the viewpoint of disentanglement and accuracy.

The effect of perturbation size γ. Figure 3b
shows the effect of perturbation range γ in SSA
on the evaluation performance with β = 8. Based
on the notion that each dimension of the target
character embedding follows N (0, Id′), the pertur-
bation range γ was chosen to be from 1.0σ (cov-
ering 68% of the distribution) to 3.0σ (covering

almost the entire distribution). The best perfor-
mance was obtained when the perturbation range
was set to γ = 2.0. This suggests that the character
embedding trained by the VCE followed a normal
distribution with a mean of µ = 0 and a standard
deviation of σ = 1.0. To cover the distribution, it is
considered useful to add perturbation in the range
of γ = 2.0 corresponding to 2.0σ (covering 95%
of the distribution).

5.4 Limitations of the Current Study

At present, the role of each dimension in the char-
acter reconstruction of the GDCE cannot be clearly
defined because it depends on the training of the
model. Also, since the VCE was independently
trained from the classifier (i.e., not in an end-to-
end manner), trained embedding can only consider
visual features, not the semantic ones. We will be
working on these in the future.

6 Conclusion

We propose a new character-based text classifi-
cation framework for non-alphabetic languages.
As the name implies, the combination of our
GDCE and SSA not only provided embedding in-
terpretability but also improved the text classifi-
cation performance. Our GDCE provided better
text classification performance than conventional
CAE-based character embedding without data aug-
mentation. Finally, our framework achieved a com-
petitive result to the conventional state-of-the-art
CAE-based embedding with WT while also provid-
ing model interpretability.
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Schmidhuber. 2011. Stacked Convolutional Auto-
Encoders for Hierarchical Feature Extraction. In
Proc. of ICANN, pages 52–59.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving Neural Machine Translation Mod-
els with Monolingual Data. In Proc. of ACL, pages
86–96.

Daiki Shimada, Ryunosuke Kotani, and Hitoshi Iy-
atomi. 2016. Document classification through
image-based character embedding and wildcard
training. In Proc. of IEEE Big Data Workshop,
pages 3922–3927.

Miikka Silfverberg, Adam Wiemerslage, Ling Liu, and
Lingshuang Jack Mao. 2017. Data augmentation
for morphological reinflection. In Proc. of CoNLL-
SIGMORPHON, pages 90–99.

Chi Sun, Xipeng Qiu, and Xuan-Jing Huang. 2019.
VCWE: Visual Character-Enhanced Word Embed-
dings. In Proc. NAACL-HLT, pages 2710–2719.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi
Cheng. 2016. Inside out: Two jointly predictive
models for word representations and phrase repre-
sentations. In Proc. of AAAI.

Jinxing Yu, Xun Jian, Hao Xin, and Yangqiu Song.
2017. Joint Embeddings of Chinese Words, Char-
acters, and Fine-grained Subcharacter Components.
In Proc. of EMNLP, pages 286–291.

Dongxu Zhang, Tianyi Luo, and Dong Wang. 2016.
Learning from LDA Using Deep Neural Networks.
In Proc. of NLPCC-ICCPOL, pages 657–664.

Xiang Zhang and Yann LeCun. 2017. Which Encod-
ing is the Best for Text Classification in Chinese,
English, Japanese and Korean? CoRR preprint
arXiv:1708.02657.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proc. of NIPS, pages 649–657.

https://upcommons.upc.edu/handle/2117/102836
https://upcommons.upc.edu/handle/2117/102836
https://dl.acm.org/doi/10.5555/3157096.3157340
https://dl.acm.org/doi/10.5555/3157096.3157340
https://dl.acm.org/doi/10.5555/3157096.3157340
https://dl.acm.org/doi/10.5555/2832415.2832421
https://dl.acm.org/doi/10.5555/2832415.2832421
https://doi.org/http://dx.doi.org/10.18653/v1/W17-4109
https://doi.org/http://dx.doi.org/10.18653/v1/W17-4109
https://doi.org/http://dx.doi.org/10.18653/v1/D18-1045
https://doi.org/http://dx.doi.org/10.18653/v1/D18-1045
http://proceedings.mlr.press/v89/esmaeili19a.html
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://doi.org/http://dx.doi.org/10.3115/v1/P15-1162
https://doi.org/http://dx.doi.org/10.3115/v1/P15-1162
https://doi.org/http://dx.doi.org/10.3115/v1/P15-1162
https://doi.org/http://dx.doi.org/10.18653/v1/P16-1002
https://doi.org/http://dx.doi.org/10.18653/v1/P16-1002
http://proceedings.mlr.press/v77/ke17a.html
http://proceedings.mlr.press/v77/ke17a.html
http://proceedings.mlr.press/v77/ke17a.html
http://proceedings.mlr.press/v80/kim18b.html
http://proceedings.mlr.press/v80/kim18b.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/https://doi.org/10.1109/AIPR.2018.8707407
https://doi.org/https://doi.org/10.1109/AIPR.2018.8707407
https://doi.org/https://doi.org/10.1109/AIPR.2018.8707407
https://doi.org/http://dx.doi.org/10.18653/v1/P17-1188
https://doi.org/http://dx.doi.org/10.18653/v1/P17-1188
https://openreview.net/forum?id=Byg6VhUp8V
https://openreview.net/forum?id=Byg6VhUp8V
https://openreview.net/forum?id=Byg6VhUp8V
https://doi.org/https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/http://dx.doi.org/10.18653/v1/P16-1009
https://doi.org/http://dx.doi.org/10.18653/v1/P16-1009
https://doi.org/https://doi.org/10.1109/BigData.2016.7841067
https://doi.org/https://doi.org/10.1109/BigData.2016.7841067
https://doi.org/https://doi.org/10.1109/BigData.2016.7841067
https://doi.org/http://dx.doi.org/10.18653/v1/K17-2010
https://doi.org/http://dx.doi.org/10.18653/v1/K17-2010
https://doi.org/http://dx.doi.org/10.18653/v1/N19-1277
https://doi.org/http://dx.doi.org/10.18653/v1/N19-1277
https://dl.acm.org/doi/10.5555/3016100.3016296
https://dl.acm.org/doi/10.5555/3016100.3016296
https://dl.acm.org/doi/10.5555/3016100.3016296
https://doi.org/http://dx.doi.org/10.18653/v1/D17-1027
https://doi.org/http://dx.doi.org/10.18653/v1/D17-1027
https://doi.org/10.1007/978-3-319-50496-4_59
https://arxiv.org/abs/1708.02657
https://arxiv.org/abs/1708.02657
https://arxiv.org/abs/1708.02657
https://dl.acm.org/doi/10.5555/2969239.2969312
https://dl.acm.org/doi/10.5555/2969239.2969312

