
Integrating Encyclopedic Knowledge into Neural Language Models

Yang Zhang, Jan Niehues, Alexander Waibel

Institute for Anthropomatics
Karlsruhe Institute of Technology, Germany

firstname.lastname@kit.edu

Abstract
Neural models have recently shown big improvements in the
performance of phrase-based machine translation. Recur-
rent language models, in particular, have been a great suc-
cess due to their ability to model arbitrary long context. In
this work, we integrate global semantic information extracted
from large encyclopedic sources into neural network lan-
guage models. We integrate semantic word classes extracted
from Wikipedia and sentence level topic information into a
recurrent neural network-based language model. The new re-
sulting models exhibit great potential in alleviating data spar-
sity problems with the additional knowledge provided. This
approach of integrating global information is not restricted
to language modeling but can also be easily applied to any
model that profits from context or further data resources, e.g.
neural machine translation. Using this model has improved
rescoring quality of a state-of-the-art phrase-based transla-
tion system by 0.84 BLEU points. We performed experi-
ments on two language pairs.

1. Introduction
Recurrent neural network language models (RNNLMs) have
recently shown great improvements in statistical machine
translation (SMT), both during decoding and rescoring. The
use of continuous word representations has achieved bet-
ter generalization of the data which effectively lowered data
sparsity problems. Furthermore, the recurrent connections
are able to model long-range dependencies. Yet, most of
these models strictly depend on monolingual and parallel
data, which is sometimes not available in large amounts or
only for specific domains, especially with low-resource lan-
guages. This has motivated RNNLMs to take multiple paral-
lel streams of data as input instead of just the single stream of
surface words. These so-called factors can be used to add ad-
ditional information, e.g. part-of-speech (POS) or automatic
word clusters, which helps mainly with morphologically rich
languages (e.g. Romanian, German). However, so far the
additional factors were only limited to syntactic or local con-
text information preceding the current word. Especially for
languages without sufficient training data it is important to
take advantage of other knowledge sources, e.g. encyclope-
dia. For example, Wikipedia has become a growing source
for learning general concepts since the emergence of the In-

ternet has led to an explosion of textual data. In this paper,
we studied the integration of large encyclopedia sources into
RNNLMs by using two approaches. In the first approach we
use a factored model to integrate Wikipedia categories.

In order to understand large unstructured data sets great
achievements have been made in latent concept learning in
the area of information retrieval. Techniques that categorize
documents include latent semantic analysis and probabilistic
topic modeling. In the second approach, we use term fre-
quency–inverse document frequency (tf-idf), latent semantic
analysis (LSA) and latent Dirichlet allocation (LDA) to com-
pute a real-valued topic vector for each sentence that is fed
as an additional input into the network.

These approaches utilize external word categories and
topic information in addition to the local contexts implicitly
provided by recurrent neural models to improve lexical se-
lection.

2. Related work
Language models are a critical component of many appli-
cation systems, e.g. automatic speech recognition, machine
translation and optical character recognition. However, lan-
guage models have always faced the problem of data sparsity.
Factored language models [1] introduced the use of a bundle
of factors associated with a word which outperformed pre-
vious n-gram models without expanding the training data.
In the work of [1] morphs, stems, POS and clustered word
classes were used as factors. In [2], the single feature stream
of surface words was replaced with multiple factors and inte-
grated into a phrase-based SMT system by breaking down the
translation model into several steps that pertain to the trans-
lation of single factors, which again influence the prediction
of the next word. After recurrent neural network models be-
came a success in language modeling [3], a factored input
layer was employed in a model by [4] which uses a struc-
tured output layer based on word classes to handle vocabular-
ies of large size. Motivated by multi-task learning in natural
language processing, [5] proposed a multi-factor recurrent
neural network language model (FRNNLM) which jointly
predicts different output factors by mapping the output of
the LSTM-layer [6] to as many softmax layers as there are
output factors, thereby creating multiple distributions at the
output layer. In the rescoring of n-best lists, this model can

be included as either one or several additional features de-
pending on whether the output is treated as a joint probability
or individual probabilities. Compared to a fixed-length fac-
tored input, a dedicated continuous space vector offers more
flexibility and possibility to integrate additional side infor-
mation, e.g. topic information. In [7], an approach to use
an additional input vector in a neural language model was
proposed. In their work, a vector instead of a single factor
is associated with each word. However, this vector depends
only on a word’s earlier local context, thus neglecting the in-
fluence of the future context on a word’s meaning. Often,
the meaning of a word cannot be just derived from its pre-
ceding words but depends on the content words of the en-
tire sentence or surrounding sentences. Topic models play
a great role in information retrieval because they summarize
large amounts of documents into fewer concepts by captur-
ing word co-occurrence information. Essentially, topic mod-
els can be divided into vector space models (VSMs), e.g.
LSA [8], and probability models, e.g. LDA [9]. The suc-
cessful usage of Wikipedia to devise methods for computing
semantic relatedness of documents was reported in [10] and
[11]. Generative probabilistic models were employed in [12]
to link named entities in text documents by using informa-
tion extracted from Wikipedia. In [13] and [14] VSMs were
employed to resolve word disambiguations based on entities
derived from Wikipedia. Similar methods were applied to
other knowledge sources, such as WordNet [15]. However,
to our knowledge, it is the first time encyclopedic knowledge
is used to supplement neural language modeling.

3. Integration of encyclopedic information

We propose two approaches to integrate encyclopedic infor-
mation into neural language models of the target side of a
language pair. First, the target side words are labeled with
Wikipedia categories. The hierarchical page structure of
Wikipedia in the target language enables us to obtain a page’s
category which we use as factored input into the previously
described FRNNLM. Second, for every sentence in the data a
ranking of related encyclopedia articles is established by us-
ing a VSM or topic model. Based on the underlying model, a
feature vector, which comprises the information of the most
similar documents to the current sentence, is computed and
fed into a neural language model as additional input. The
second approach is not limited to Wikipedia, but can be ap-
plied to any encyclopedia. To test the performance of this
method independently of the underlying knowledge source
we have crawled a Chinese lexicon from zdic.net [16] with
38.285 articles, for which the results are presented later on.

3.1. Word-level information

The motivation behind using word categories from
Wikipedia in association with words is to strengthen
the relatedness of words in the same correct translation
hypothesis to prevent it from being discarded due to a low

translation score. Consider the following example of a
source sentence:

“A journalist writes articles for a column”

Both of the following hypotheses, as shown in Example 1,
are possible translation hypotheses:

Example 1: Two hypotheses whose nouns are labeled with
Wikipedia categories.

1. 一位
one︸︷︷︸
NR

记者
journalist︸ ︷︷ ︸
新闻 (=news)

给
for︸︷︷︸
P

柱子
column︸ ︷︷ ︸

建筑(=archit.)

写
write︸︷︷︸
VV

文章
article︸︷︷︸
作品

2. 一位
one︸︷︷︸
NR

记者
journalist︸ ︷︷ ︸
新闻 (=news)

给
for︸︷︷︸
P

专栏
column︸ ︷︷ ︸

新闻(=news)

写
write︸︷︷︸
VV

文章
article︸︷︷︸
作品

Although the second translation is more accurate, be-
cause “column” in the context of “journalist” and “article”
is translated with a newspaper section, the first translation
could be more likely according to the translation model,
since, generally, a column refers more often to a pillar than
a newspaper section. In both translations, the translation of
“column” is three words away from its next context word,
the translation of “article”. In a translation task where the
data does not originate from news-related domains or is lim-
ited in size such that the words “专栏 (=column)” and “记
者 (=journalist)” are never seen in the same context, the lan-
guage model will fail to choose the correct translation. Our
approach solves this problem by labeling the words with ac-
cording Wikipedia categories. By doing so, the bond be-
tween “专栏 (=column)” and “记者 (=journalist)” would be
reinforced by their common factor “新闻 (=news)”, which
contributes to a higher score of the correct translation.

3.1.1. Input representation

We are only interested in Wikipedia pages, that are either an
article or a category page. We define the search space as
the set of all Wikipedia pages of interest. Given a word, we
search for the page with the same word as title and retrieve its
category which is found at the bottom of the page. In case of
multiple categories we pick the first one. In the implementa-
tion, the offline Wikipedia dump is used to create a mapping
between pages and their categories. Using a lower bound for
the number of elements in a category, we pick recursively the
parent of a category if it does not meet this requirement. In
the later experiments we used a lower bound of five. This
reduces the total number of associated articles and leads to
better performances. In case no category is found at all, a
word’s part-of-speech is used instead. One characteristic of
Wikipedia is that most of its articles only refer to a small
group of lexical categories. For example, there are a lot more
articles about objects (nouns) than activities (verbs). Since
topic words are usually nouns, it suffices to label only nouns

in a sentence to improve model quality, which is shown in
Example 1.

3.1.2. Factored neural language model

To incorporate the Wikipedia factors, we trained FRNNLMs
as proposed in [5], which takes one or multiple factors at
the input layer and offers the option of a factorized output
layer. After concatenating the embeddings of the input fac-
tors into a single word embedding, this vector is sent through
one or multiple LSTM-based layers [6] before projected onto
the factored output probabilities. The instance of the model
used for this work takes two factors, the surface form and
the Wikipedia word category. These are mapped onto an em-
bedding vector of size 100, which is the same size as the first
LSTM-layer. For the second LSTM-layer 200 nodes are cho-
sen. We defined only one output factor, which is the word’s
surface form.

3.2. Sentence-level information

The idea to use a dedicated topic vector is motivated by a
more flexible representation of information and methods that
are capable of drawing correlations betweens words indepen-
dently of their distance. For example, the sentence

“Columns contain articles written by journalists”

exhibits several problems. First, when a corpus is trans-
lated into a low-resource language, e.g. Romanian, some
of the content words do not have their own Wikipedia en-
tries. This means we cannot take full advantage of the first
approach. Second, the main context word of “columns”,
which is “journalists”, appears later in the sentence; there-
fore a recurrent language model that only considers the pre-
vious context would fail. This motivated the idea to consider
words in the entire sentence, unlike [7], and create a topic
vector for each sentence by searching through Wikipedia to
find topic related articles. In the above example sentence,
these would probably be news-related articles. By compress-
ing the information of these articles into a vector which is
associated with each word, external topic information span-
ning neighboring words can be considered when translat-
ing a word. To create a ranking of similar documents and
their representation to a given sentence, VSMs can be em-
ployed, such as tf-idf [17] and LSA [18], but also probabilis-
tic models, such as LDA [9]. After representing the sentences
and cleaned encyclopedia documents D = {d1, d2, . . . , dM}
in vector form, where the vector entries index into a vo-
cabulary V = {v1, v2, . . . , vN}, we query for each sen-
tence w = {w1, w2, . . . , wl} the n most similar documents
Dn = { d | score(w, d) > c }, where c ∈ R is a threshold
such that |Dn| = n and score(w, d) is a similarity function
characterized by chosen model. These documents provide
topic-related information about the current sentence. Dn are
transformed into vector representations { h(d) | d ∈ Dn },
where the vector representation h(d) is defined by the model,

f

neural network

score(w, d ∈ D)

h(Dn)

Dn

Dw

sentence
documents

rank & filter

transform

average

Figure 1: Feature input creation process for the ERNNLM.
Given a sentence w, encyclopedia articles are scored based
on their topic relatedness and represented in vector form.
The average of vectors of the most similar articles consti-
tutes the feature input f.

which can differ from that used for scoring. The average of
the vectors forms an additional feature input f for a recurrent
neural network-based language model, which we will refer to
as an extended recurrent neural language model (ERNNLM).

f =

∑
d∈Dn

h(d)

|Dn|
(1)

This process is illustrated in Figure 1. For the topic models
we used the python library gensim [19].

3.2.1. Tf-idf

Tf-idf [17] is a co-occurrence measure and determines the
importance of a word to a set of documents D. Having the
capability of grading down terms that appear in multiple doc-
uments, tf-idf is computed by multiplying a local component
(term frequency or tf) with a global component (inverse doc-
ument frequency or idf). The cosine distance can be used
to determine a ranking of similar documents for a given sen-
tence query. Shortcomings of this model include the inability
to reduce the description length of the document, since words
are only replaced by values. Given a query sentence w and a
document d, we define the scoring function for this model as

scoretfidf (w, d) =∑N
i=1 tfidf(vi, w,D) · tfidf(vi, d,D)

‖
∑N

i=1 tfidf(vi, w,D)‖ · ‖
∑N

i=1 tfidf(vi, d,D)‖
(2)

The vector representation of a document is defined as

htfidf (d) = (tfidf(vi, d,D))vi∈V (3)

3.2.2. Latent semantic analysis

LSA [8] is a method that discovers hidden concepts in doc-
uments by using single value decomposition (SVD) on the
set of documents D. LSA uses a term-document matrix A,
where the entry Ai,j equates to the tf-idf value of the term i
for the document j. SVD decomposes A into U , Σ, and V ,
such thatA = UΣV T . LSA uses the decomposition to find a
low-rank approximation, that is, a matrix Ak = UkΣkV

T
k of

a predefined lower rank k closest in similarity to the original
matrix A. This is done by deleting all but the k biggest sin-
gle values in Σ. By doing so, LSA minimizes the Frobenius
norm ‖A − Ak‖F . In this work, k is the number of hidden
concepts to be learned. The approximation of the i-th docu-
ment vector in the low-dimensional space, denoted with d̂i,
is the i-th column of V T

k . The number of dimensions k is
determined empirically. Essentially, k is much smaller than
the original space dimension, which is usually the total num-
ber of documents. Previous papers show that for Wikipedia
dumps a good value for k should be chosen between 200 to
500 [18]. In this work k is 300. Given a sentence w and a
document d, we define the scoring function for this model as

scorelsa(w, d) =
Σ−1k UT

k w ∗ d̂
‖Σ−1k UT

k w‖ · ‖d̂‖
(4)

The vector representation of a document is defined as

hlsa(d) = d̂ (5)

3.2.3. Latent Dirichlet allocation

LDA [9] is a generative probabilistic model that discovers
automatically topics from a data collection. The basic idea
is that documents are represented as random mixtures over
latent topics, where each topic is characterized by a distri-
bution over words. The model is a three-level hierarchical
Bayesian model with the first level being the corpus-level,
the second being the document-level, and the third being the
word-level. Setting the number of topics to be learned to k,
learning is performed with variational Bayesian inference in
combination with the EM algorithm. As for k, [20] discusses
how to choose the number of topics. In this work k is 100,
which is also the size of the feature vector. Given a sentence
w and a document d, we defined the scoring function for this
model as

scorelda(w, d) = P (w|θd, α, β), (6)

where θ, α and β are parameters denoted and estimated as in
[20]. The vector representation of a document is defined as

hlda(d) = θd (7)

3.2.4. Extended language model

The basic RNNLM consists of an input layer, a hidden layer
with recurrent connections that maintains a representation of
the sentence history, and an output layer which produces the
probability distribution over words. The ERNNLM, illus-
trated in 2, extends the RNNLM with an additional sentence-
based feature layer that is connected to the output layer.
Since this real-valued feature vector stays the same for all
words in the current sentence, it is replicated for each word.
This way, the feature information is retained in the model
while the same sentence is being processed. The m hid-
den layers are based on LSTMs [6]. Given a sentence
w = {w1, w2, . . . , wl}, the sentence-level information f is
computed according to (1) and duplicated for each word. For
the i-th word we denote its 1-of-N representation with xi, the
hidden layers with s1, s2, . . . , sm and the output layer with
yi. The hidden and output layers are computed according to
(8).

s1i = f1(U1xi +W1s
1
i−1)

sji = fj(Ujs
j−1
i +Wjs

j
i−1),

j ∈ {2, . . . ,m}
yi = g(V smi + F f)

(8)

where fi represents activation functions, and g the softmax
function. To train the network, that is to find the weight ma-
trices U1,...,m, V,W1,...,m, F , stochastic gradient descent is
used according to the negative log-likelihood loss function.
We also tested the option of adding an additional connection
from the feature layer to the first hidden layer, which is illus-
trated in Figure 2.

4. Experiments
We evaluated both the FRNNLM and the ERNNLM on
English-Chinese (ZH) and English-Romanian (RO) language
pairs. For each language pair n-best lists are created with
our in-house phrase-based MT system; the models are used
as additional features in rescoring.

4.1. System description

The baseline system is an in-house implementation of a
phrase-based MT system and is used to generate n-best lists
on all of the available training data. The ZH-system is trained
on the TED and UN corpus, optimized and rescored on the
TED dev2010 and tested on the test2010 corpora. The Chi-
nese corpus contains 148.968 sentences, the development
set 887 sentences. The Chinese neural language models
are tested on a 3000-best list with a total of 455.965 sen-
tences. The RO-system is trained on the corpora of WMT
2015 Shared Translation Task, optimized on the first half of
news-dev 2016 and tested on the second half of news-dev
2016. In addition, a subset of 2000 sentences of the SETimes
corpus is used for further optimization in rescoring. The Ro-
manian corpus contains 604.588 sentences, the development

ys2s1

x

U2

U1

V

F

f

f

W2W1

Figure 2: ERNNLM with additional feature input f and two
LSTM-based hidden layers. The dashed line from the feature
input to the first hidden layer represents an optional connec-
tion.

set 1000 sentences. The Romanian neural language mod-
els are tested in three configurations on 300-best lists with
1.288.319, 167.567 and 162.928 sentences respectively.

The ZH-baseline system uses two word-based language
models, and 12 features in total to create a 3000-best list. The
RO-baseline system uses two word-based language models,
two cluster-based models using 50, 100 or 1000 clusters,
and a POS-based language model. In total 22-23 features
are used to generate a 300-best list. A full system descrip-
tion can be found in [5]. In decoding, both language pairs
are optimized with minimum error rate training (MERT)
[21]. The same is used for rescoring of the ZH-system,
whereas the RO-system uses ListNet to rerank the n-best
list. Both FRNNLMs and ERNNLMs for both language
pairs are trained on the target side of the parallel training
data. The Chinese neural language models use a vocabu-
lary of 10K, while the Romanian models use a vocabulary of
5K. Wikipedia is used to obtain word-level side information,
as described in Section 3.1. To gather sentence-level topic
information for the ZH-system, as described in 3.2, we ad-
ditionally web-crawled a Chinese lexicon from zdic.net [16]
to show the model’s performance independently of a specific
encyclopedia.

Table 1: ZH-FRNNLM

Model devdata testdata
Baseline 14.7 17.02
+FRNNLM POS 14.77 16.97
+FRNNLM WikiCat 14.89 (+0.12) 17.63 (+0.66)
+FRNNLM WikiCat + POS 14.75 (-0.02) 17.81 (+0.84)

Table 2: ZH-ERNNLM: overview of different feature vectors

score(w,d) h(d) devdata testdata
Baseline 14.70 17.02
TFIDF TFIDF 14.78 (+0.08) 17.68 (+0.66)
LSA TFIDF 14.78 (+0.08) 17.31 (+0.29)
LSA LSA 14.83 (+0.13) 17.80 (+0.78)
LDA TFIDF 14.79 (+0.09) 17.41 (+0.39)
LDA LDA 14.79 (+0.09) 17.27 (+0.25)

4.2. English-Chinese

The ZH-system before rescoring gives a BLEU score 17.02
in testing. For all of the following experiments, our base-
line system is rescored with a basic RNNLM. In the first
ZH-experiment we used the scores of the FRNNLM in ad-
dition to the baseline features, which is shown in Table 1.
Only nouns in the data are labeled with Wikipedia cate-
gories, which leads to 11.21 % coverage of the develop-
ment set and 10.61 % of the test set. The FRNNLM that
uses words and Wikipedia categories as factors causes an
increase of 0.66 BLEU in testing compared to the same
model without Wikipedia categories. The system that uses
words, Wikipedia categories, and POS as factors performs
0.84 BLEU points better than the same system without the
use of Wikipedia categories.

In a second experiment, the ERNNLM along with the
different methods to compute the feature input vector based
on Wikipedia are studied. Tf-idf, LSA and LDA are used
for similar document ranking as well as vector representa-
tion. It is worth mentioning that the method for ranking can
be paired with a different choice for representation. The per-
formance results of various combinations of pairings are pre-
sented in Table 2. Although all combinations result in a bet-
ter rescoring performance than the baseline system, choosing
the same method for both steps attains a higher gain for the
tf-idf and LSA model. For example, the tf-idf model creates
an increase of 0.66 BLEU on the baseline system, and LSA
an increase of 0.78 BLEU. The only exception to this rule
is LDA. One reason for this could be suboptimal parameter
picks for this generally more complex generative model. De-
spite the slightly better performance of the LSA model, the
tf-idf model is employed in the following experiments due to
its simplicity and, thus, faster training and evaluation.

We also tested the ERNNLM on a Chinese lexicon
crawled (zdict) from zdic.net [16]. It contrasts Wikipedia

Table 3: ZH-ERNNLM: comparison between different ency-
clopedia sources

Model devdata testdata
Baseline 14.7 17.02
+ERNNLM WIKI 14.78 (+0.08) 17.68 (+0.66)
+ERNNLM ZDICT 14.91 (+0.21) 17.58 (+0.56)

Table 4: ZH model perplexities

Model PPL
Baseline 128.17
FRNNLM POS 110.86
FRNNLM WikiCat 109.73
FRNNLM WikiCat+POS 110.38
ERNNLM WIKI 118.11
ERNNLM ZDICT 118.64
ERNNLM WIKI+ZDICT 119.02
ERNNLM WIKI 4-CONTEXT 118.46

in the variety and length of definitions. The lexicon pro-
vides short but precise Chinese explanations for all types of
words, particularly verbs. Despite the differences between
Wikipedia and zdict, the use of the lexicon achieves an in-
crease of 0.56 BLEU in testing, which is comparable to the
model improvement based on Wikipedia, as shown in Table
3.

An overview of all the models discussed so far along with
their perplexities is given in Table 4. All models exhibit an
evident reduction in perplexity compared to the baseline sys-
tem, which is consistent with the rescoring results. In ad-
dition, two ERNNLMs whose feature inputs are determined
differently are listed with their model perplexities. The first
model’s feature input depends on both Wikipedia and zdict;
the second model’s feature input takes a context of four past
and future sentences into account.

As indicated in Figure 2, an additional connection was es-
tablished between the feature layer and the first hidden layer
in another experiment. As a result, the ERNNLM with two
connections gained a small increase of 0.16 BLEU on the
ERNNLM with just one connection and a total of 0.79 BLEU
on the baseline system, as shown in Table 5.

Table 5: ZH-ERNNLM: connecting feature input with two
layers

Model devdata testdata
Baseline 14.70 17.02
+ERNNLM TFIDF 14.78 (+0.08) 17.68 (+0.63)
+ERNNLM 2Conn TFIDF 14.74 (+0.04) 17.81 (+0.79)

Table 6: RO-FRNNLM: word coverage of Wikipedia cate-
gories

Data Nouns All
Devdata 1.94% 9.06%
Testdata 2.62% 10.17%
Setimes 3.48% 11.14%

Table 7: RO-FRNNLM: single scores

Input Prediction Single
Word Word 27.88
4F 4F 28.54
+WikiCat (N) +WikiCat (N) 28.71 (+0.17)
+WikiCat (A) +WikiCat (A) 28.84 (+0.30)

4.3. English-Romanian

In the previous work [5], the FRNNLM for English-
Romanian integrated four factors: the word’s surface form,
POS, and word clusters with 100 and 1000 classes respec-
tively. Our Romanian neural language models build on top
that, using a vocabulary size of 5K for all systems and the
same notations to illustrate the following results. In the
first experiment, where the results are shown in Table 7, the
FRNNLMs are evaluated without the baseline features. The
system from the previous work that uses all four factors (4F)
for input and prediction has a BLEU score of 28.54. This
model will serve as reference for our models. For the RO-
system we chose to extract Wikipedia categories not only for
nouns (N) but also for all word types (A). The word cover-
ages of labeled words are displayed in Table 6, which shows
significant differences between the two options. After adding
the extracted Wikipedia word categories as additional fac-
tors, the FRNNLMs show an improvement of 0.17 BLEU
and 0.30 BLEU respectively depending on how the data was
labeled.

Table 8 shows the results of the model’s joint probabil-
ity used in addition to the baseline features in three config-
urations using different features [5]. Adding Wikipedia cat-
egories for all word types (A) achieves an improvement of
about 0.1 BLEU in two configurations (Conf2 and Conf3)
over the reference model.

Table 8: RO-FRNNLM: end scores

Model Conf1 Conf2 Conf3
Baseline 29.86 30.00 29.75
+FRNNLM 4F 29.94 30.01 30.01
+FRNNLM 4F+N 29.94 30.31 29.99

(+0.00) (+0.30) (-0.02)
+FRNNLM 4F+A 29.95 30.13 30.14

(+0.01) (+0.12) (+0.13)

Table 9: RO-ERNNLM + RO-FRNNLM: end scores

Model Conf1 Conf2 Conf3
FRNNLM 4F 29.99 30.19 29.99

(+0.05) (+0.18) (-0.02)
FRNNLM 4F+N 29.90 30.29 30.23

(+0.05) (+0.28) (+0.24)
FRNNLM 4F+A 30.00 30.20 30.21

(+0.05) (+0.19) (+0.20)

In another experiment, the ERNNLM is used together
with FRNNLM for rescoring. The results are illustrated
in Table 9. The improvement over the sole FRNNLM 4F
is indicated in parentheses. It turns out that the combined
use of Wikipedia categories and Wikipedia topic informa-
tion based on tf-idf performs about 0.2 BLEU better in two
different configurations (Conf2 and Conf3). The FRNNLM
using Wikipedia categories for all word types together with
the ERNNLM achieve an improvement of 0.07 BLEU over
the system without ERNNLM in these configurations. The
best system exhibits a score of 30.23 BLEU, which is 0.22
BLEU better than the best system of the previous work [5]
that has the same vocabulary size.

5. Conclusion
This work provides the novel idea to integrate higher-level
information from encyclopedic sources, such as Wikipedia,
into RNNLMs. Two approaches are proposed: the first uses
a FRNNLM, the second incorporates more complex infor-
mation by using a dedicated feature layer in the conventional
recurrent neural model. In addition, three methods are in-
troduced to prepare the additional data and represent it in the
correct form. By using topic information from large encyclo-
pedia, we have improved state-of-the-art translation systems
on two different language pairs. This work exhibits great po-
tential for low-resource translation tasks.

6. Acknowledgements
The project leading to this application has received funding
from the European Union’s Horizon 2020 research and in-
novation program under grant agreement n◦ 645452 and the
Continuous Learning in International Collaborative Studies
exchange program.

7. References
[1] J. A. Bilmes and K. Kirchhoff, “Factored language

models and generalized parallel backoff,” in Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguis-
tics on Human Language Technology. Association for
Computational Linguistics, 2003, pp. 4–6.

[2] P. Koehn and H. Hoang, “Factored translation models,”

in Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and
Computational Natural Language Learning. Associa-
tion for Computational Linguistics, 2007, pp. 868–876.

[3] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and
S. Khudanpur, “Recurrent neural network based lan-
guage model,” in Interspeech, vol. 2. ISCA, 2010,
p. 3.

[4] Y. Wu, X. Lu, H. Yamamoto, S. Matsuda, C. Hori, and
H. Kashioka, “Factored language model based on re-
current neural network,” in Proceedings of COLING.
Association for Computational Linguistics, 2012, pp.
2835–2850.

[5] J. Niehues, T.-L. Ha, E. Cho, and A. Waibel, “Us-
ing factored word representation in neural network lan-
guage models,” in Proceedings of the First Conference
on Machine Translation. Association for Computa-
tional Linguistics, 2016.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[7] T. Mikolov and G. Zweig, “Context dependent recur-
rent neural network language model,” in SLT. IEEE,
2012, pp. 234–239.

[8] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Lan-
dauer, and R. Harshman, “Indexing by latent semantic
analysis,” Journal of the American society for informa-
tion science, vol. 41, no. 6, p. 391, 1990.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirich-
let allocation,” Journal of machine Learning research,
vol. 3, pp. 993–1022, 2003.

[10] E. Gabrilovich and S. Markovitch, “Computing seman-
tic relatedness using wikipedia-based explicit semantic
analysis,” in International Joint Conferences on Artifi-
cial Intelligence Organization, vol. 7, 2007, pp. 1606–
1611.

[11] M. Strube and S. P. Ponzetto, “Wikirelate! computing
semantic relatedness using wikipedia,” in American As-
sociation for Artificial Intelligence, vol. 6, 2006, pp.
1419–1424.

[12] X. Han and L. Sun, “An entity-topic model for entity
linking,” in Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning.
Association for Computational Linguistics, 2012, pp.
105–115.

[13] S. Cucerzan, “Large-scale named entity disambigua-
tion based on wikipedia data,” in Proceedings of the

2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), vol. 7. Asso-
ciation for Computational Linguistics, 2007, pp. 708–
716.

[14] R. C. Bunescu and M. Pasca, “Using encyclopedic
knowledge for named entity disambiguation,” in Eu-
ropean Chapter of the Association for Computational
Linguistics, vol. 6, 2006, pp. 9–16.

[15] M. A. Hearst, “Automatic acquisition of hyponyms
from large text corpora,” in Proceedings of the 14th
conference on Computational linguistics, 1992, pp.
539–545.

[16] “汉典 zdic.net,” http://www.zdic.net/, (Accessed on
09/12/2016).

[17] G. Salton and M. J. McGill, “Introduction to modern
information retrieval,” 1986.

[18] R. B. Bradford, “An empirical study of required dimen-
sionality for large-scale latent semantic indexing appli-
cations,” in Proceedings of the 17th ACM conference
on Information and knowledge management. ACM,
2008, pp. 153–162.

[19] “gensim: Topic modelling for humans,”
https://radimrehurek.com/gensim/, (Accessed on
11/22/2016).

[20] M. Hoffman, F. R. Bach, and D. M. Blei, “Online learn-
ing for latent dirichlet allocation,” in Advances in Neu-
ral Information Processing Systems, 2010, pp. 856–
864.

[21] F. J. Och, “Minimum error rate training in statistical
machine translation,” in Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics,
vol. 1, 2003, pp. 160–167.

