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Introduction

We are excited to welcome you to this year’s SIGdial Conference, the 18th Annual Meeting of the Special
Interest Group on Discourse and Dialogue. We are pleased to hold the conference in Saarbriicken on
August 15-17th, co-located with SemDial 2017, and in close proximity to both INTERSPEECH 2017
and YRRSDS 2017, the Young Researchers’ Roundtable on Spoken Dialog Systems.

The SIGdial conference remains a premier publication venue for research in discourse and dialogue. This
year, the program includes oral presentations, poster sessions, and one demo session. SIGdial 2017 also
hosts three special sessions, two joint with SemDial 2017.

We received 113 submissions this year. In only one previous year has there been a greater number of
submissions to SIGdial. All long and short papers received at least 3 reviews. We carefully considered
both the numeric ratings and the tenor of the comments in making our selections for the program. Overall,
the members of the Program Committee did an excellent job in reviewing the submitted papers. We
thank them for their important role in selecting the accepted papers and for helping to come up with a
high quality program for the conference. We also thank Pierre Lison, Mentoring Chair for SIGdial 2017,
for his dedicated work on the mentoring process. The goal of mentoring is to assist authors of papers
that contain important ideas but lack clarity. In line with the SIGdial tradition, our aim has been to create
a balanced program that accommodates as many favorably rated papers as possible. We accepted 29
long papers, 11 short papers and 7 demo presentations. These numbers give an overall acceptance rate
of 41.6%. The rates separately for types of papers are 42% for long papers, 30% for short and 87% for
demo submissions. Of the long papers, 18 were presented as oral presentations. The remaining 11 long
papers and all the short papers were presented as posters, split into two poster sessions.

This year SIGdial has three special sessions on topics of growing interest. The chosen sessions were
(i) the Special Session on Negotiation Dialog organized by Amanda Stent, Aasish Pappu, Diane Litman
and Marilyn Walker; (ii) the Second WOCHAT Special Session on Chatbots and Conversational Agents
organized by Ryuichiro Higashinaka, Ron Artstein, Rafael E. Banchs, and Wolfgang Minker; and (iii)
Special Session on Natural Language Generation for Dialog Systems organized by Marilyn Walker,
Verena Rieser, Vera Demberg, Dietrich Klakow, Dilek Hakkani-Tur, David M. Howcroft and Shereen
Oraby. These specialized topics brought diverse paper submissions to our technical program. At
the conference, the special sessions also featured panel discussions and position talks, allowing for
active engagement of the conference participants. This year, two of these special sessions, the one on
negotiation and on conversational agents, are part of the joint SIGdial/SemDial program at the conference
bringing both communities to participate in them.

This year’s SIGdial conference runs 3 full days compared to previous years where it was 2.5 days.
We have designed our program to be balanced and inviting to SIGdial and SemDial participants alike.
One keynote and one special session is held each day with remaining time given to oral and poster
presentations. Two of the special sessions were run as joint sessions with SemDial and the poster/demo
sessions contained presentations from both venues. We hope that we achieved a tighter bond between
the two communities this year, and we hope the two communities will continue to foster their common
interests and research ideas.

A conference of this scale requires advice, help and enthusiastic participation of many parties and we
have a big ‘thank you’ to say to all of them.

We thank our three keynote speakers, Elisabeth André (Augsburg University, Germany), Andrew Kehler
(UC San Diego, USA) and Oliver Lemon (Heriot-Watt University, Edinburgh, UK) for their inspiring
talks and views on the many modern aspects of research in discourse and dialog.
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We are incredibly grateful to the Program co-Chairs of SemDial 2017, Volha Petukhova and Ye Tian who
tirelessly worked with us throughout all stages of planning for SIGdial, from deadlines to submissions
and acceptance decisions, conference scheduling, special session organization, and local arrangements.
We also thank the organizers of the three special sessions who handled reviewers for their papers,
designed the schedule for their accepted papers, and organized the session at the venue. We are grateful
for their smooth and efficient coordination with the main conference. We also extend special thanks
to our Local co-Chairs, Volha Petukhova and Ivana Kruijff-Korbayova, and their local organizing team
and student volunteers. SIGdial 2017 would not have been possible without their effort in arranging
the conference venue and accommodations, handling registration, making banquet arrangements, and
numerous preparations for the conference. The student volunteers for on-site assistance also deserve our
sincere appreciation.

Ethan Selfridge, our Sponsorships Chair, has conducted the massive task of recruiting and liaising with
our conference sponsors, many of whom continue to contribute year after year. Sponsorships support
valuable aspects of the program, such as the invited speakers and conference banquet. We thank him
for his dedicated work and coordination in conference planning. We gratefully acknowledge the support
of our sponsors: (Platinum level) Interactions, Microsoft, and Maluuba: A Microsoft Company, (Gold
level) Adobe Research, Amazon, DFKI, Facebook, Honda Research Institute and PARC, (Silver level)
ETS, (Bronze level) Charamel GmbH and SemVox. We also thank Universitit des Saarlandes and the
Spoken Languages Systems Group at the Universitét des Saarlandes for their generous sponsorship.

We also thank the SIGdial board, especially officers Amanda Stent, Jason Williams and Kristiina Jokinen
for their advice and support from beginning to end. We also thank Priscilla Rasmussen at the ACL for
tirelessly handling the financial aspects of sponsorship for SIGdial 2017, and for securing our ISBN.

We once again thank our program committee members for committing their time to help us select a
superb technical program. Finally, we thank all the authors who submitted to the conference and all the
conference participants for making SIGdial 2017 a grand success and for growing the research areas of
discourse and dialogue with their fine work.

Kristiina Jokinen and Manfred Stede
General Co-Chairs

David DeVault and Annie Louis
Program Co-Chairs
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Abstract

In this paper, we present an approach to
exploit phrase tables generated by statis-
tical machine translation in order to map
French discourse connectives to discourse
relations. Using this approach, we cre-
ated ConcoLeDisCo, a lexicon of French
discourse connectives and their PDTB re-
lations. When evaluated against LEX-
CONN, ConcoLeDisCo achieves a recall
of 0.81 and an Average Precision of 0.68
for the CONCESSION and CONDITION re-
lations.

1 Introduction

Discourse connectives (DCs) (e.g. because, al-
though) are terms that explicitly signal discourse
relations within a text. Building a lexicon of DCs,
where each connective is mapped to the discourse
relations it can signal, is not an easy task. To
build such lexicons, it is necessary to have lin-
guists manually analyse the usage of individual
DC:s through a corpus study, which is an expensive
endeavour both in terms of time and expertise. For
example, LEXCONN (Roze et al., 2012), a man-
ually built lexicon of French DCs, was initiated in
2010 and released its first edition in 2012. The
latest version, LEXCONN V2.1 (Danlos et al.,
2015), contains 343 DCs mapped to an average of
1.3 discourse relations. This project is still ongo-
ing as 37 DCs still have not been assigned to any
discourse relation. Because of this, only a lim-
ited number of languages currently possess such
lexicons (e.g. French (Roze et al., 2012), Span-
ish (Alonso Alemany et al., 2002), German (Stede
and Umbach, 1998)).

In this paper, we propose an approach to au-
tomatically map French DCs to their associated
PDTB discourse relations using parallel texts. Our
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approach can also automatically identify the us-
age of a DC where the DC signals a specific dis-
course relation. This can help linguists to study a
DC in parallel texts and/or to find evidence for an
association between discourse relations and DCs.
Our approach is based on phrase tables generated
by statistical machine translation and makes no
assumption about the target language except the
availability of a parallel corpus with another lan-
guage for which a discourse parser exists; hence
the approach is easy to expand to other languages.

We applied our approach to the Europarl
corpus (Koehn, 2005) and generated Con-
coLeDisCo!, a lexicon mapping French DCs to
their associated Penn Discourse Treebank (PDTB)
discourse relations (Prasad et al., 2008a). To
our knowledge, ConcoLeDisCo is the first lexi-
con of French discourse connectives mapped to
the PDTB relation set. When compared to LEX-
CONN, ConcoLeDisCo achieves a recall of 0.81
and an Average Precision of 0.68 for the CONCES-
SION and CONDITION discourse relations.

2 Related Work

Lexicons of DCs have been developed for sev-
eral languages: English (Knott, 1996), Span-
ish (Alonso Alemany et al., 2002), German (Stede
and Umbach, 1998), Czech (Polakova et al.,
2013), and French (Roze et al., 2012). However,
constructing such lexicons requires linguistic ex-
pertise and is a time-consuming task.

Discourse connectives and their translations
have been studied within parallel texts by many
(Meyer, 2011; Meyer et al., 2011; Taboada and
de los Angeles Gomez-Gonzalez, 2012; Cartoni
et al., 2013; Zufferey and Degand, 2014; Zufferey
and Cartoni, 2014; Zufferey and Gygax, 2015;

'ConcoLeDisCo is publicly available at https://
github.com/mjlaali/ConcoLeDisCo.
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Hoek and Zufferey, 2015). These works have ei-
ther focused on the effect of the translation of
discourse connectives on machine translation sys-
tems (Meyer, 2011; Meyer et al., 2011; Cartoni
et al., 2013) or on a small number of discourse
connectives due to the cost of manual annotations
(Taboada and de los Angeles Gémez-Gonzilez,
2012; Zufferey and Degand, 2014; Zufferey and
Cartoni, 2014; Zufferey and Gygax, 2015; Hoek
and Zufferey, 2015).

To our knowledge, very little research has ad-
dressed the automatic construction of lexicons of
DCs. Hidey and McKeown (2016) proposed an
automatic approach to identify English expres-
sions that signal the CAUSAL discourse relation.
On the other hand, Laali and Kosseim (2014) au-
tomatically extracted French DCs from parallel
texts; however, they did not associate discourse
relations to the extracted DCs. The proposed ap-
proach goes beyond this work by mapping DCs to
their associated discourse relations.

3 Methodology

3.1 Corpus Preparation

For our experiments, we used the English-French
part of Europarl (Koehn, 2005) which contains 2
million? parallel sentences. To prepare the dataset,
we parsed the English sentences with the CLaC
discourse parser (Laali et al., 2016) to identify En-
glish DCs and the discourse relation that they sig-
nal. The CLaC parser has been learned on Section
02-20 of the PDTB and can disambiguate the us-
age of the 100 English DCs listed in the PDTB
with an F1-score of 0.90 and label them with their
PDTB discourse relation with an F1-score of 0.76
when tested on the blind test set of the CoNLL
2016 shared task (Xue et al., 2016). This parser
was used because its performance is very close to
that of the state of the art (Oepen et al., 2016) (i.e.
0.91 and 0.77 respectively), but is more efficient at
running time than Oepen et al. (2016).

Note that since the CoNLL 2016 blind test set
was extracted from Wikipedia and its domain and
genre differ significantly from the PDTB, the 0.90
and 0.76 Fl-scores of the CLaC parser can be
considered as an estimation of its performance on
texts with a different domain/genre such as Eu-
roparl.

22,007,723 to be exact.

3.2 Mapping Discourse Relations

To label French DCs with a PDTB discourse re-
lation, we assumed that if a French DC is aligned
to an English DC tagged with a discourse relation
Rel, then it should signal the same discourse rela-
tion Rel. For our experiment, we used the inven-
tory of 100 English DCs from the PDTB (Prasad
et al., 2008a) and the 371 French DCs from LEX-
CONN V2.1 (Danlos et al., 2015). For the map-
ping, we used the subset of 14 PDTB discourse
relations that was used in the CoNLL shared
task (Xue et al., 2015). This list is based on the
second-level types and a selected number of third-
level subtypes of the PDTB discourse relations.

To have statistically reliable results, we ignored
French DCs that appeared less than 50 times in
Europarl. Out of the 371 French DCs listed in
LEXCONN, seven do not appear in Europarl and
55 have a frequency lower than 50. This means
that 89% (309/371) of the French DCs have a fre-
quency higher than 50 and were thus used in the
analysis. A manual inspection of the infrequent
DCs shows that they are either informal (e.g. des
fois que) or rare expression (e.g. en dépit que).
Table 1 shows the distribution of the LEXCONN
French DCs in Europarl.

<50 >50 Total
55 309 371

Freq.
# FR-DC

=0
7

Table 1: Distribution of LEXCONN French DCs
in the Europarl corpus.

We used the Moses statistical machine trans-
lation system (Koehn et al., 2007) to extract the
number of alignments between French DCs and
English DCs. As part of its translation model,
Moses generates a phrase table (see Table 2)
which aligns phrases between the language pairs.
The phrase table is constructed based on statisti-
cal word alignment models and contains the fre-
quency of the alignments between phrase pairs.
We used the Och and Ney (2003) heuristic and
combined IBM Model 4 word alignments (Brown
et al., 1993) to construct the phrase table.

Because an English DC can signal different dis-
course relations, to ensure that Moses’s phrase ta-
ble distinguishes the different usages of the same
English DC, we modified its English tokenizer so
that each English DC and its discourse relation
make up a single token. For example, the token



‘although-CONCESSION’ will be created for the
DC although when it signals the discourse rela-
tion CONCESSION. Table 2 shows a few entries of
the phrase table for the French DC méme si. As
the table shows, méme si was aligned to three En-
glish DCs: although, labeled by the CLaC parser
as a CONTRAST or as a CONCESSION and to even
if and even though which were not tagged .

FR-DC EN-DC Relation Freq

méme si even if - 2538

méme si even - 1895
though

méme si although  CONTRAST 1446

méme Si although  CONCESSION 858

Table 2: A few entries of the phrase table for the
connective méme si.

In total, 1,970 entries of the phrase table con-
tained a French DC, an English DC and a dis-
course relation’. From these, we computed the
number of times a French DC was aligned to each
discourse relation, then, created ConcolLeDisCo:
tuples of <FR-DC, Rel, Prob>, where FR-DC and
Rel indicate a French DC and a discourse relation
and Prob indicates the probability that FR-DC sig-
nals Rel. To calculate Prob, we divided the num-
ber of times FR-DC is associated to Rel by the fre-
quency of FR-DC in Europarl. In total, the ap-
proach generated a lexicon of 900 such tuples, a
few of which are shown in Table 3.

FR-DC Relation Prob
si CONDITION 0.27
méme si CONCESSION 0.08
lorsque CONDITION 0.05
néanmoins CONCESSION 0.07

Table 3: A few entries of ConcolLeDisCo.

4 Evaluation

To evaluate ConcoLeDisCo, because LEXCONN
uses a different inventory of discourse relations
than the PDTB, we only considered the discourse
relations that are common across these invento-
ries: CONCESSION and CONDITION. According
to LEXCONN, 61 French DCs can signal a CON-
CESSION or a CONDITION discourse relation. Out

3We only considered entries whose texts are an exact

match of an English DC listed in the PDTB and a French
DC listed in LEXCONN.

of these, 44 have a frequency higher than 50 in
Europarl.

4.1 Automatic Evaluation

To measure the quality of ConcolLeDisCo, we
ranked the <FR-DC, Rel, Prob> tuples based
on their probability and measured the quality of
the ranked list using 11-point interpolated aver-
age precision (Manning et al., 2008). This curve
shows the highest precision at the 11 recall levels
of 0.0, 0.1, 0.2, ..., 1.0. This method allows us
to evaluate the ranked list without considering any
arbitrary cut-off point. As Figure 1 shows, the ap-
proach retrieved 50% of the French DCs in LEX-
CONN with a precision of 0.81.

le ° o o
0.8 | .

0.6 | e

Precision

04+ o

0.2 {

0 - t t t \‘.- e
0 0.2 0.4 0.6 0.8 1

Recall

Figure 1: 11-Point Interpolated Average Precision
Curve.

In addition, we also computed Average Preci-
sion (AveP) (Manning et al., 2008); the average of
the precision obtained after seeing a correct LEX-
CONN entry in ConcoLeDisCo. More specifi-
cally, given a list of ranked tuples:

N
1 .y
AveP = N ;1 Precision(DC;) (1)

where NN is the number of LEXCONN French
DCs that signals the CONCESSION or CONDI-
TION discourse relations (i.e. 44), DC; is the
rank of the i LEXCONN DC in ConcoLeDisCo,
and Precision(DC;) is the precision at the rank
DC; of the ranked tuples. It can be shown that
AveP approximates the area under the interpo-
lated precision-recall curve (Manning et al., 2008).
The proposed approach identified 36 (81%) of
these 44 French DCs with an AveP of 0.68.



FR-DC Relation Jdg | FR-DC Relation Jdg
a défaut de/if CONDITION v tout de méme/nonetheless | CONCESSION | v/
cependant/nonetheless CONCESSION | v toutefois/nonetheless CONCESSION | Vv
faute de/if CONDITION v' || pour autant/if CONDITION X
malgré tout/nonetheless | CONCESSION | v || sinon/if CONDITION X
néanmoins/nonetheless CONCESSION | v/ certes/although CONCESSION | X
nonobstant/although CONCESSION | V' || lorsque/if CONDITION X
quand méme/nonetheless | CONCESSION | V' || pour que/if CONDITION X

Table 4: Error analysis of the potential false positive entries. v'indicates newly discoursed mappings

which are not included in LEXCONN.

4.2 Manual Evaluation

In addition to the quantitative evaluation, we also
performed a manual analysis of the false-positive
errors to see if they really constituted errors. To
do so, we looked at the tuples with a probability
higher than 0.01 but which did not appear in LEX-
CONN. 14 such cases, shown in Table 4, were
found.

For example, while the French connective a
défaut de (#1 in Table 4) signals a CONDITION
discourse relation in Sentence (1) below, only the
EXPLANATION and the CONCESSION discourse
relations were associated with this connective in
LEXCONN.

(1) FR: A défaut de se montrer trés ambitieux,

notre industrie, nos chercheurs et nos experts
ne disposeront purement et simplement pas
du brevet moderne dont ils ont besoin.
EN: If we are anything less than ambitious in
this field, we shall simply not provide our in-
dustry, our research and development experts
with the modern patent which they need.

To evaluate if these 14 cases were true mistakes,
we randomly selected five English-French parallel
sentences from Europarl that contained the French
DC and one of its English DC translations sig-
nalling the discourse relation. Then, we showed
the French DCs within their sentence to two na-
tive French speakers and asked them to confirm
if the discourse relation identified was indeed sig-
naled by the French DCs or not. The Kappa agree-
ment between the two annotators was 0.72. For
9 French connectives, both annotators agreed that
indicated that in at least one of the five sentences,
the discourse relation was signalled by the con-
nective. This indicates that 64% (9/14) are in fact
true-positives, i.e. correct mappings that are not
listed in LEXCONN. Table 4 shows the 14 pairs of

<FR-DC/English translation, Discourse relation>
used in the manual evaluation and indicates the
newly discovered mappings by v'.

We also observed that if multiple explicit con-
nectives occur in the same clause (e.g. certes and
mais), one of them can affect the discourse rela-
tion signaled by the other. This is an interesting
phenomenon as it seems to indicate that the con-
nectives are not independent. For example, in Sen-
tence (2), the combination of certes and mais sig-
nals a CONCESSION discourse relation.

(2) FR: Cela cofite certes un peu plus cher, mais
est sans conséquence pour I’environnement.
EN: Although it is a little more expensive, it
does not harm the environment.

Note that according to LEXCONN, neither
certes nor mais can signal a CONCESSION dis-
course relation. The same phenomenon was also
reported in the PDTB corpus (Prasad et al., 2008b,

p. 5).
5 Conclusion and Future Work

In this paper, we proposed a novel approach to
automatically map PDTB discourse relations to
French DCs. Using this approach, we gener-
ated ConcoLeDisCo: a lexicon of French DCs
and their PDTB discourse relations. When com-
pared with LEXCONN, our approach achieved a
recall of 0.81 and an Average Precision of 0.68
for the CONCESSION and CONDITION discourse
relations. A manual error analysis of the false-
positives showed that the approach identified new
discourse relations for 9 French DCs which are
not included in LEXCONN. As future work, we
plan to evaluate all the discourse relations in Con-
coLeDisCo and apply the approach to other lan-
guages.
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Abstract

Full text discourse parsing relies on texts
comprehensively annotated with discourse
relations. To this end, we address a signif-
icant gap in the inter-sentential discourse
relations annotated in the Penn Discourse
Treebank (PDTB), namely the class of
cross-paragraph implicit relations, which
account for 30% of inter-sentential rela-
tions in the corpus. We present our anno-
tation study to explore the incidence rate
of adjacent vs. non-adjacent implicit rela-
tions in cross-paragraph contexts, and the
relative degree of difficulty in annotating
them. Our experiments show a high in-
cidence of non-adjacent relations that are
difficult to annotate reliably, suggesting
the practicality of backing off from their
annotation to reduce noise for corpus-
based studies. Our resulting guidelines
follow the PDTB adjacency constraint for
implicits while employing an underspeci-
fied representation of non-adjacent implic-
its, and yield 62% inter-annotator agree-
ment on this task.

1 Introduction

Empirical approaches for modeling discourse re-
lations rely on corpora annotated with such re-
lations, such as the PDTB (Prasad et al., 2008),
the RST-DT (Carlson et al., 2003), and the ANN-
ODIS corpus (Afantenos et al., 2012). The PDTB
is currently the largest of these annotated corpora
and widely used for theoretical and empirical re-
search on discourse relations. However, it does
not provide exhaustive annotation of its source
texts (Prasad et al., 2014). A critical kind of gap
is found within the class of inter-sentential rela-
tions, i.e., relations with arguments in different
sentences. In particular, while the PDTB pro-
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vides annotations of explicit inter-sentential rela-
tions within and across paragraphs, and of implicit
relations between adjacent sentences within para-
graphs, it ignores cross-paragraph implicit rela-
tions. Ex. (1) illustrates the problem in a PDTB-
annotated text, showing 6 sentences (S1-S6) in the
first four paragraphs of a longer article. (Empty
lines indicate paragraph boundaries.) While all
annotation elements are not shown here, the key
issue to note is that the relations of sentences S2
and S3 with the prior text are left unannotated be-
cause they are paragraph-initial sentences lacking
any inter-sentential explicit connectives.

(1) S1: As competition heats up in Spain’s crowded bank
market, Banco Exterior de Espana is seeking to shed its
image of a state-owned bank and move into new activ-
ities.

(unannotated)

S2: Under the direction of its new chairman, Francisco
Luzon, Spain’s seventh largest bank is undergoing a
tough restructuring that analysts say may be the first
step toward the bank’s privatization.

(unannotated)

S3: The state-owned industrial holding company Insti-
tuto Nacional de Industria and the Bank of Spain jointly
hold a 13.94% stake in Banco Exterior.

(Conjunction)

S4: The government directly owns 51.4% and Fac-
torex, a financial services company, holds 8.42%.
(Conjunction)

S5: The rest is listed on Spanish stock exchanges.

(Contrast)

S6: Some analysts are concerned, however, that Banco
Exterior may have waited too long to diversify from its
traditional export-related activities.

There are more than 12K such unannotated to-
kens in the current version of PDTB (PDTB-2),
constituting 30% of all inter-sentential discourse
contexts and 87% of all cross-paragraph inter-
sentential contexts. Furthermore, research on dis-
course parsing shows that there is value in filling
these gaps. For example, Pitler et al. (2009) re-
port improvements in implicit relation sense clas-
sification with a sequence model. And more re-
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cent systems, including the best systems (Wang
and Lan, 2015; Oepen et al., 2016) at the re-
cent CONLL shared tasks on PDTB-style shal-
low discourse parsing (Xue et al., 2015, 2016),
while not using a sequence model, still incorpo-
rate features about neighboring relations. Such
systems have many applications, including sum-
marization (Louis et al., 2010), information ex-
traction (Huang and Riloff, 2012), question an-
swering (Blair-Goldensohn, 2007), opinion anal-
ysis (Somasundaran et al., 2008), and argumenta-
tion (Zhang et al., 2016).

This paper describes our experiments in an-
notating cross-paragraph implicit relations in the
PDTB (Section 2), with the goal of producing a
set of guidelines (Section 3) to annotate such rela-
tions reliably (Section 4) and produce a represen-
tative dataset annotated with complete sequences
of inter-sentential relations.

Our main findings from the experiments are as
follows:

e The ratio of cross-paragraph implicit rela-
tions between non-adjacent sentences and be-
tween adjacent sentences is almost 1 to 1
(47% vs 51% in our experiment). This is sim-
ilar to the distribution of cross-paragraph ex-
plicit relations (Prasad et al., 2010). Hence,
non-adjacency is a non-trivial factor to con-
sider when annotating cross-paragraph im-
plicit relations.

e Inter-annotator agreement for the non-
adjacent  cross-paragraph  implicits s
substantially lower compared to their ad-
jacent counterparts (47% versus 68%).
Furthermore, the disagreements, while
possible to resolve through discussion, are
time-consuming and therefore prohibitive to
large-scale annotation.

On the basis of these findings, we established
the following guidelines for our annotation of
cross-paragraph implicit relations:

e We fall back to the PDTB strategy of
fully annotating only adjacent implicit rela-
tions, while also employing an underspeci-
fied marking of non-adjacent ones.

e We introduce new guidelines to (a) better rep-
resent the inter-dependency of relations in a

text, (b) represent new senses we have en-
countered, and (c) better represent the rela-
tion of entity-based coherence. These new
guidelines are discussed at various points in
Section 3.

We achieve a final overall agreement of 62%
with our guidelines.

We discuss related work in Section 5 and con-
clude in Section 6, outlining our goals for this task
and future work beyond.

2 A Brief Review of PDTB

Our study is carried out within the annota-
tion framework of the PDTB, and incorporates
the most recent PDTB (PDTB-3) sense hierarchy
(Webber et al., 2016), shown in Fig. 1 (with two
modifications — see Section 3.2). Annotated over
the “1 million word WSJ corpus (Marcus et al.,
1993), the PDTB follows a lexically-grounded ap-
proach to the representation of discourse relations
(Webber et al., 2003) while remaining theory-
neutral in its annotation approach. Discourse rela-
tions are taken to hold between two abstract object
arguments, named Argl and Arg2 using syntac-
tic conventions, and are triggered either by explicit
connectives (Ex. 2) or, otherwise, by adjacency be-
tween clauses and sentences. (Throughout the pa-
per, the expression of a relation is underlined, its
Arg?2 is bolded, its Argl is italicized, and its type
and sense are in parentheses.)

(2) The Manhattan U.S. attorney’s office stressed crimi-
nal cases from 1980 to 1987, averaging 43 for every
100,000 adults.

(Explicit, Contrast)
But the New Jersey U.S. attorney averaged 16.

(3) So far, the mega-issues are a hit with investors.
(Implicit, Arg2-as-instance, For example)
Earlier this year, Tata Iron & Steel Co.’s offer of
$355 million of convertible debentures was oversub-
scribed.

(4) When the plant was destroyed, "I think everyone got
concerned that the same thing would happen at our
plant” a KerrMcGee spokeswoman said.

(AltLex, Reason)

That prompted Kerr-McGee to consider moving
the potentially volatile storage facilities and cross-
blending operations away from town.

(5) The proposed petrochemical plant would use naph-
tha to manufacture the petrochemicals propylene and
ethylene and their resin derivatives, polypropylene and
polyethylene.

(EntRel)
These are the raw materials used in making plastic
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Figure 1: PDTB-3 Sense Hierarchy (Webber et al., 2016) Modified to Include Argl/Arg2-as-instance

and Hypophora. Only asymmetric relations are specified further at Level-3, to differentiate directionality
of the arguments. Superscript symbols on Level-2 senses indicate features for implicit beliefs (+/-3) and
speech-acts (+/-¢) that may or may not be associated with one of the defined arguments of the relation.

(6) The executive producer of ”Saturday Night With Con-
nie Chung,” Andrew Lack, declines to discuss re-
creations as a practice or his show, in particular. "I
don’t talk about my work,” he says.

(NoRel)
The president of CBS News, David W. Burke, didn’t
return numerous telephone calls.

In adjacent contexts not related by a connective,
an inferred relation is annotated as either an im-
plicit relation (Ex. 3) when it can be expressed
by inserting a connective, or an AltLex (alterna-
tively lexicalized) relation (Ex. 4) if insertion of a
connective leads to a perception of relation redun-
dancy, indicating the presence of some alternative
lexico-syntactic marking of the relation. When a
discourse relation is not inferred, the context is an-
notated as EntRel (Ex. 5) if an entity-based rela-
tion is perceived, and as NoRel (Ex. 6) otherwise.
Section 3.2 discusses in further detail how the En-
tRel and NoRel relations are used in PDTB.

Where a relation’s arguments can be annotated
depends on the type of relation. The Arg2 of
explicit relations is always some part of the sen-
tence or clause containing the connective, but the
Argl can be anywhere in the prior text. For all
other relation types, Argl and Arg2 are only an-
notated when adjacent. Arguments can be ex-
tended to include additional clauses/sentences in
all cases except NoRel, but a minimality constraint
requires inclusion of only the minimally necessary
text needed to interpret the relation.

3 The Experiment

To identify challenges and explore the feasibility
of annotating cross-paragraph implicit relations on
a large scale, texts from the PDTB corpus were
selected to cover a range of sub-genres (Webber,
2009) and lengths. These texts contained 440 cur-
rent paragraph first sentence (CPES) tokens (ex-
cluding the first sentence in each text) not already
related to the prior text by an inter-sentential ex-
plicit connective. These tokens were annotated in
the PDTB Annotation Tool (Lee et al., 2016) over
the three phases described below.

3.1 Phase One

Phase One involved guidelines training and de-
veloping a preliminary understanding of the task.
Two expert annotators worked together to discuss
and annotate 10 texts (130 tokens) with the PDTB
guidelines, except we did not enforce the PDTB
adjacency constraint in order to explore the full
complexity of the task. Each token was anno-
tated for its type (Implicit, EntRel or Altlex), sense
(Fig. 1), and minimal argument spans. From this
exercise, two observations emerged. First, while
52% of the CPFES tokens took their prior (Argl) ar-
gument from a unit involving the prior paragraph’s
last sentence (PPLS), the remaining 48% of the
CPFSs took their Argl from somewhere else in
the prior discourse, i.e. formed a non-adjacent
relation. This suggested that the argument distri-



bution of cross-paragraph implicits was similar to
that of cross-paragraph explicits, which are also
non-adjacent roughly half (51%) the time (Prasad
et al., 2010). Thus, whether this would be shown
more generally became a hypothesis to explore in
Phase Two.

Second, it was found that working together, the
two annotators could isolate and agree upon the
arguments not only of the adjacent implicit rela-
tions, but also the non-adjacent ones. Therefore,
and also because of the observed high incidence of
non-adjacent relations, a second hypothesis to ex-
plore in Phase Two became whether both adjacent
and non-adjacent Argls could be reliably identi-
fied and annotated. Ex. (7) shows a CPFS (Arg2)
and its Argl in a non-adjacent Contrast relation.
In this case, the intervening material is excluded
because of the minimality constraint: it only pro-
vides further detail about the Argl eventuality and
can thus be excluded without loss of interpretation.

(7) Kidder, Peabody & Co. is trying to struggle back.

Only a few months ago, the 124-year-old securities firm
seemed to be on the verge of a meltdown, racked by
internal squabbles and defections. Its relationship with
parent General Electric Co. had been frayed since a
big Kidder insider-trading scandal two years ago. Chief
executives and presidents had come and gone.

(Contrast, But)

Now, the firm says it’s at a turning point. By the end
of this year, 63-year-old Chairman Silas Cathcart — the
former chairman of Illinois Tool Works who was de-
rided as a “’tool-and-die man” when GE brought him in
to clean up Kidder in 1987 — retires to his Lake Forest,
I1l., home, possibly to build a shopping mall on some
land he owns.

3.2 Phase Two

Based on Phase One observations, we decided in
Phase Two to fully explore the feasibility of reli-
ably annotating adjacent and non-adjacent cross-
paragraph implicits. To this end, a further 103 to-
kens (10 texts) were separately annotated by each
annotator for type, sense and minimal argument
spans, regardless of whether arguments were adja-
cent or non-adjacent.

Table 1 presents the results of the Phase Two
study. As shown, the adjacency distribution of
arguments in the 76% (45%+31%) tokens agreed
to be adjacent (46/103) or non-adjacent (32/103)
supports our hypothesis that non-adjacent cross-
paragraph implicit relations occur with high fre-
quency (32/78, 41%), approaching half of all
agreed tokens. For each of these agreed tokens, we
computed sense and argument agreement to obtain
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Argl1-Arg2 Tokens [ Count | Pct [ RelPct |

Agree Adjacent: 46 45% | 100%
Exact Match 11 11% 24%
Sent-level Match 3 3% 7%
Agree Sense, Args Overlap 14 14% 30%
Disagree Sense 18 17% 39%
Agree Non-Adjacent: 32 31% | 100%
Exact Match 7 7% 22%
Sent-level Match 5 5% 16%
Agree Sense, Args Overlap 3 3% 9%
Agree Sense, Args Disagree 3 3% 9%
Disagree Sense 14 14% 44%

[ Disagree Adjacent/Non [ 25 [ 24% [ 100% |

Table 1: Cross-Paragraph Implicit Relations,

Phase Two Agreement Counts, Percentages over
all Tokens (Pct) and Relative Percentages over
Subgroups (RelPct). 103 Tokens, 10 Texts.

(a) ‘Exact Match’, i.e., fully agreed for type, sense,
and argument spans, (b) ‘Sent-level match’, i.e.,
slightly relaxing the minimality constraint sub-
sententially to include tokens agreed for type and
sense whose argument boundaries only disagreed
inside a sentence boundary (e.g. because one an-
notator included an adjunct clause the other ex-
cluded), (c) ‘Agree Sense, Args Overlap’, i.e., re-
laxing the minimality constraint supra-sententially
to include tokens agreed for type and sense whose
Argl and Arg2 boundaries overlapped but did not
exactly match (e.g. because one annotator in-
cluded additional sentence(s) the other considered
non-minimal), (d) ‘Agree Sense, Args Disagree’,
i.e., agreed for type and sense but unmatched in all
of the aforementioned ways, which can only occur
for non-adjacent relations and not adjacent rela-
tions, and (e) ‘Disagree Sense’, i.e., disagreed as
to type or sense, although arguments may or may
not have matched in some way.

As the table shows, Exact Match agreement was
low at 18% (11%+7%) for both adjacent (11/103)
and non-adjacent (7/103) relations, illustrating the
difficulty of the task. Agreement is boosted
to 26% (26/103) when including Sentence-Level
matches on argument spans (3 adjacent and 5 non-
adjacent) and to 43% (43/103) when including to-
kens that matched for type and sense and had over-
lapping spans (14 adjacent and 3 non-adjacent),
which we also take as the overall agreement on
the task, with the most relaxed metric for argu-
ment span agreement. The table also shows that
with this metric, agreement was worse for non-
adjacent relations ((7+5+3)/32, 47%) than adja-
cent relations ((11+3+14)/46, 61%).



Discussion of the disagreements showed that
while it was almost always possible to reach con-
sensus, the time and effort required was often
much greater for non-adjacent relations — twice
the amount of time required for adjacent relations
— and therefore prohibitive to large-scale annota-
tion. Therefore a decision was made to maintain
the PDTB adjacency constraint and focus on full
annotation of only adjacent relations. Tokens per-
ceived as forming a non-adjacent implicit relation
would be annotated as NoSemRel, as described
below, providing an underspecified marking to in-
dicate its presence.

Also based on the Phase Two findings, two
further enhancements were made to the PDTB-2
guidelines. First, two new senses were introduced
(Fig. 1), as illustrated in Exs. (8-9). Our texts
provide evidence of both directionalities for the
asymmetric Instantiation sense, and so its Level-
3 labels, Argl-as-instance and Arg2-as-instance,
were introduced. Arg2-as-instance is the more
common case. In addition, a Hypophora la-
bel was introduced as a placeholder for question-
answer pairs, until further study can shed light on
the appropriate senses to capture their semantics.

(8) NBC'’s re-creations are produced by Cosgrove-Meurer
Productions, which also makes the successful prime-
time NBC Entertainment series Unsolved Mysteries.

(Argl-as-instance, More generally)
The marriage of news and theater, if not exactly in-
evitable, has been consummated nonetheless.

(9) How can we turn this situation around?

(Hypophora)
Reform starts in the Pentagon.

The second enhancement involves a refinement
of the EntRel and NoRel labels. In the absence
of a semantic discourse relation between adjacent
sentences, the PDTB-2 labels the relation between
them as follows: (a) as EntRel if an entity-based
coherence relation holds between Argl and Arg2
and the discourse is expanded around that entity
in Arg2, either by continuing the narrative around
it or supplying background about it; (b) as EntRel
if (a) doesn’t hold but some entity co-reference ex-
ists between Argl and Arg?2 (even if an implicit re-
lation also holds between Arg2 and a non-adjacent
sentence); (c¢) as NoRel if neither (a) nor (b) holds
(even if an implicit relation also holds between
Arg2 and a non-adjacent sentence); and (d) as
NoRel if none of (a)-(c) hold, which occurs when

Arg2 is not part of the discourse (e.g., bylines or
the start of a new article in a single WSJ file).

However, given our goal to encode the presence
of non-adjacent implicit relations, the manner in
which these labels are currently assigned is a prob-
lem because this information is spread across both
labels, by way of scenarios (b) and (c) above. Fur-
ther, (a) and (b) confound the presence of a seman-
tic coherence relation with the presence of corefer-
ence. Both of these considerations therefore led us
to create two new labels for our task: SemEntRel
(Semantic EntRel) for scenario (a), to unambigu-
ously identify cases of entity-based coherence re-
lations, and NoSemRel for scenarios (b) and (c),
to unambiguously identify cases of non-adjacent
implicit relations. To maintain consistency with
the PDTB-2 corpus, the EntRel label for (b) was
noted as a comment feature where relevant. Sce-
nario (d) continued to be labeled as NoRel.

A SemEntRel relation is shown in Ex. (10),
where Arg2 provides background about the “hu-
manitarian assistance” conceptual entity in Argl.
Though not yet applied to the rest of PDTB-2,
we find Semantic Entrels occur quite frequently in
cross-paragraph contexts (see Section 4). An ex-
ample of a NoSemRel relation is the underspec-
ified annotation of the non-adjacent relation of
Ex. (7), shown below as Ex. (11).

(10) And important U.S. lawmakers must decide at the end
of November if the Contras are to receive the rest of
the $49 million in so-called humanitarian assistance
under a bipartisan agreement reached with the Bush
administration in March.

(SemEntRel)

The humanitarian assistance, which pays for sup-
plies such as food and clothing for the rebels
amassed along the Nicaraguan border with Hon-
duras, replaced the military aid cut off by Congress
in February 1988.

(11) Only a few months ago, the 124-year-old securities
firm seemed to be on the verge of a meltdown, racked
by internal squabbles and defections. Its relationship
with parent General Electric Co. had been frayed since
a big Kidder insider-trading scandal two years ago.
Chief executives and presidents had come and gone.

(NoSemRel)

Now, the firm says it’s at a turning point. By the end
of this year, 63-year-old Chairman Silas Cathcart — the
former chairman of Illinois Tool Works who was de-
rided as a "tool-and-die man” when GE brought him in
to clean up Kidder in 1987 — retires to his Lake Forest,
[1l., home, possibly to build a shopping mall on some
land he owns.

3.3 Phase Three

Employing the enhancements to the PDTB-2
guidelines developed during Phase Two, 207



CPFS-PPLS implicit relation tokens from 34 texts
were separately annotated by the two annotators
in Phase Three for type, sense and minimal
argument spans. However, prior to initiating the
Phase Three annotation, all Phase One and Phase
Two texts were reannotated by the two annotators
according to the enhanced guidelines, and a close
analysis of the disagreements was performed.
This yielded three recurring patterns of disagree-
ments as well as procedures for resolving them
via careful application of the guidelines, detailed
below.

a) Multi-sentential or discontinuous argu-
ments may exclude supporting relations. Mini-
mality requires that all and only the semantic ma-
terial minimally needed to interpret a relation be
specified by its arguments. Therefore, relations
that support Argl and Arg2 but aren’t necessary
for their interpretation should be excluded from
those arguments’ boundaries. Common support-
ing relations typically excluded include Arg2-as-
Instance, Arg2-as-Detail, and Reason, as well as
Semantic Entrel or Temporal relations that sup-
ply background information. Ex. (12) shows sup-
porting sentences after the CPFS that are excluded
from Arg2 for minimality.

(12) Although bullish dollar sentiment has fizzled, many
currency analysts say a massive sell-off probably won’t
occur in the near future.

(Implicit, Reason, because)

While Wall Street’s tough times and lower U.S. in-
terest rates continue to undermine the dollar, weak-
ness in the pound and the yen is expected to offset
those factors. By default,” the dollar probably will
be able to hold up pretty well in coming days, says
Francoise Soares-Kemp, a foreign-exchange adviser at
Credit Suisse. "We’re close to the bottom” of the near-
term ranges, she contends.

b) A CPFS may appear to relate to both an
adjacent and a non-adjacent unit. Often, how-
ever, the adjacent unit will be providing support-
ing content to the non-adjacent unit, rather than
continuing the more global narrative flow. The
stronger relation in this case will be the non-
adjacent one. E.g., in Ex. (13), Arg2 creates an In-
stantiation relation regarding the names of specific
judges to be included. Some annotators may per-
ceive this relation as capable of being formed with
the prior adjacent sentence or the non-adjacent
italicized one. However, the prior adjacent sen-
tence itself provides supporting detail on the ital-
icized one, concerning the number of judges to
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be included. Thus, the adjacent sentence and the
bolded sentence are neither directly related them-
selves, nor advancing the more global narrative
flow. Therefore, this token is labeled NoSemRel.

(13) Several organizations, including the Industrial
Biotechnical Association and the Pharmaceutical
Manufacturers Association, have asked the White
House and Justice Department to name candidates
with both patent and scientific backgrounds. The
associations would like the court to include between
three and six judges with specialized training.

(NoSemRel)

Some of the associations have recommended Dr.
Alan D. Lourie, 54, a former patent agent with a
doctorate in organic chemistry who now is associate
general counsel with SmithKline Beckman Corp. in
Philadelphia.

¢) Multiple tokens can relate differently to
the same sentence. Often in the PDTB, texts
begin with a single complex sentence followed
by other sentences or paragraphs each discussing
some aspect of it. By minimality, tokens should
only be grouped into a single Arg2 if they share
the same relation to the same Argl unit. The text
in Ex. 7 provides an illustration of this. The itali-
cized and bolded CPFSs together form the Arg2
of an Arg2-as-detail relation with the first sen-
tence, providing detail on the eventuality of the
company trying to struggle back. In contrast, in
Ex. (14), the bolded Arg?2 in the first CPFS pro-
vides detail on the trade deficit worsening in the
first sentence. The bolded Arg2 in the second
CPFS, on the other hand, displays entity coref-
erence with the first bolded unit, but more gen-
erally and strongly, continues the global narrative
flow about the Treasury Department’s statement,
that is, it is in a SemEntRel relation with the non-
adjacent Argl (in italics). Given the new guide-
lines for Phase Three, the relation is thus labeled
NoSemRel.

(14) The Treasury Department said the U.S. trade deficit
may worsen next year, dafter two years of significant im-
provement.

(Implicit=Arg2-as-detail)

In its report to Congress on international economic
policies, the Treasury said that any improvement in
the broadest measure of trade, known as the cur-
rent account, ’is likely at best to be very modest,”
and ’the possibility of deterioration in the current
account next year cannot be excluded.”

(NoSemRel)
The statement was the U.S. government’s first ac-
knowledgement of what other groups, such as the
International Monetary Fund, have been predicting
for months.



Arg1-Arg?2 Pairs [ Count | Pct [ RelPct |

Agree Adjacent: 95 46% | 100%
Exact Match 40 19% 42%
Sent-level Match 13 7% 14%
Agree Sense, Args Overlap 12 6% 13%
Disagree Sense 30 14% 31%
Agreed Non-Adjacent: 63 30% | 100%
Disagreed Adjacent/Non 49 24% | 100%
Table 2: Cross-Paragraph Implicit Relations,

Phase Three Agreement, 207 Tokens, 34 Texts.

4 Results and Discussion

Table 2 presents the Phase Three inter-annotator
agreement results. As shown, agreement on
whether a relation was adjacent (95) or non-
adjacent (63) was approximately the same as in
Phase Two, at 76% (46%+30%), Furthermore,
over these 158 (95+63) tokens, the proportion of
non-adjacent tokens (63/158, 40%) was similar to
Phase Two, again supporting our hypothesis about
their high frequency. Because of the backoff to
annotating only adjacent cross-paragraph implicit
relations, overall agreement with the most relaxed
metric on argument spans! is higher in Phase
Three (62%) than in Phase Two (43%). However,
there is also substantial improvement in the sense
annotation of the adjacent discourse relations,
from 61% in Phase Two to 69% (42%+14%+13%)
in this phase,” which we attribute partly to our en-
hanced guidelines for annotating SemEntRel. The
increase in tokens agreed on sense also more ac-
curately represents the agreement on arguments.
Exactly matched arguments show an increase to
42% from 24% in Phase Two and there are fewer
disagreements due to supra-sentential overlapping
spans, which have reduced to 13% from 30% in
Phase Two. The number of sentence-level dis-
agreements increased to 14% from 7% in Phase
Two, but most of these reflect minor syntactic dif-
ferences (e.g., inclusion/exclusion of adjuncts or
attributions) rather than semantic ones.

Following Phase Three, gold standard annota-
tions were produced through consensus labeling
over all phases. Table 3 shows the counts and
percentages for each token type. Of the 440 to-
kens, 207 (47%) conveyed a non-adjacent relation
and thus the adjacent relation was labeled NoSem-

"Exact Match + Sent-Level Match + Agree Sense, Args
Overlap + Agreed Non-Adjacent

>The sense agreement for this task is on par with the
agreement for intra-paragraph implicit relations reported in
Miltsakaki et al. (2004).
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Implct AltLex SemEnt NoSmRel NoRel
Ct 152 8 62 207 11
Pct 35% 2% 14% 47% 3%

Table 3: Gold Cross-Paragraph Implicit Relation
Counts and Percentages Across All Phases, 440
Tokens, 54 Texts.

Rel, confirming our initial hypothesis of an almost
equal distribution of cross-paragraph adjacent and
non-adjacent implicit relations. Among the re-
maining 233 (53%) tokens, 153 (35%) were of the
Implicit type in that a connective could be inserted
to express the relation, while 8 (2%) conveyed the
relation through an AltLex. 62 (14%) tokens were
annotated as SemEntRels, and 11 (3%) were an-
notated as NoRels. Table 4 presents the counts
and percentages for the Implicit and AltLex gold-
labeled senses. As shown, Arg2-as-Detail occurs
most frequently but still accounts for only 40%
of the relations. Six other senses occurring with
5% or greater frequency account for 45% of the
tokens, and include Conjunction (12%), Arg2-as-
instance (9%), Reason (7%), Result (6%), Arg2-
as-denier (6%) and Contrast (5%). The remaining
15% of the tokens occurring with less than 5% fre-
quency are spread across nine different senses.

5 Related Work

Given that the end goal of this research is to pro-
duce full-text annotation of discourse relations,
in this section we compare our work with two
related approaches to full text discourse relation
annotation, focusing on how they handle non-
adjacent discourse relations, or in other words,
long-distance discourse relation dependencies.

In the RST-based (Mann and Thompson, 1988)
RST-DT corpus (Carlson et al., 2003), texts are
first segmented into elementary discourse units
(EDUs) and relations are then built recursively
(i.e., as trees) between increasingly complex adja-
cent structures. Long-distance dependencies come
about when the “nuclear” elements within a pair
of complex adjacent structures are not adjacent in
the text. In this approach, then, long-distance de-
pendencies fall out as a function of the theory and
its implementation in the annotation procedure. A
disadvantage of such an approach, however, is that
it tends to undervalue the evaluation and intuition
of annotators with regards to such dependencies
(Stede, 2012). As illustration, in the RST-DT tree
(Fig. 2) for Ex. (15), the Antithesis relation clearly



Types Senses (Count/Relative Percent of 160)
Detail2  Conjunction  Instance2 Reason Result Denier2  Contrast Precedence
Implicit 62/39% 18/11% 13/8% 11/7% 10/6% 9/6% 8/5% 7/4%
AltLex 2/1% 1/<1% 2/1% 0 0 0 0 0
Equivalence Reason+3 Detaill Instancel  Synchronous Hypophora Result+3  Succession
Implicit 312% 3/2% 2/1% 2/1% 1/<1% 1/<1% 1/<1% 1/<1%
AltLex 0 1/<1% 0 0 1/<1% 0 0 1/<1%

Table 4: Gold Cross-Paragraph Adjacent Implicit and AltLex Sense Counts and Relative Percentages
Across All Phases, 160 Tokens. Detail(1/2) = Arg(1/2)-as-detail; Instance(1/2) = Arg(1/2)-as-instance;

Denier2 = Arg2-as-denier.

Antithesis (n-s)

P

Explanation-
argumentative (n-s)

Background (n-s)

Conclusion (n-s) §5-s
56-n 57-5
Attribution (n-s) Evidence (n-s)
51-n 52-5 53-n 54-5
Figure 2: RST Structure for Ex. (15). Intra-

sentential relations are not shown. Nodes are la-
beled with RST mononuclear (n-s) or multinuclear
(n-n) relations and leaves are anchored by sen-
tences IDs marked with their nuclearity status.

seems to hold between S3 and S6, but this does not
fall out from the RST-DT annotation, where S1 is
promoted as the nucleus of the S1-S5 complex, not
S3.

(15) S1: FEDERAL PROSECUTORS are concluding
fewer criminal cases with trials.

S2: That’s a finding of a new study of the Justice De-
partment by researchers at Syracuse University.

S3: David Burnham, one of the authors, says fewer tri-
als probably means a growing number of plea bargains.
S4: In 1980, 18% of federal prosecutions concluded at
trial; in 1987, only 9% did.

S5: The study covered 11 major U.S. attorneys’ offices
— including those in Manhattan and Brooklyn, N.Y.,
and New Jersey — from 1980 to 1987.

S6: The Justice Department rejected the implication
that its prosecutors are currently more willing to plea
bargain.

S7: ”Our felony caseloads have been consistent for 20
years,” with about 15% of all prosecutions going to
trial, a department spokeswoman said.

Like the RST-DT corpus, The SDRT-based
(Asher and Lascarides, 2003) ANNODIS corpus
(Afantenos et al., 2012) also constructs hierarchi-
cal structures - termed complex discourse units
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(CDUs) - out of EDUs. A structure like Fig. 2
is thus possible in that corpus. However, CDUs
are explicitly distinguished from EDUs in ANN-
ODIS and there is at present no analogous con-
cept of nuclearity within the theory that would
promote some EDU(s) to become the prominent
nucleus of the complex. The problem of iden-
tifying minimal arguments in long-distance de-
pendencies is therefore sidestepped in the cor-
pus; instead, the whole CDU serves as the ar-
gument. Nevertheless, identifying minimal argu-
ments based on some principle, whether through
annotation guidelines such as PDTB’s “minimal-
ity constraint” or through theoretical mechanisms
such as RST-DT’s “nuclearity principle”, is im-
portant in eliminating noise from the arguments.
For example, a learning algorithm extracting fea-
tures from non-minimal argument spans for sense
labeling would wind up with a lot of extrane-
ous or conflicting data. It is also an open ques-
tion as to whether the speaker/hearer retains or re-
quires such hierarchically-structured non-minimal
complex units when establishing/interpreting dis-
course relations in speech/text. In many other re-
spects, however, the ANNODIS approach is on par
with the one addressed in this paper. Relations
are defined in semantic terms, and long-distance
relations are annotated regardless of whether or
not they may lead to crossing dependencies in the
emergent composite discourse structures.

6 Conclusion and Future Work

In sum, our study shows that adjacent implicit
discourse relations across paragraphs can be an-
notated reliably. Furthermore, the gold-standard
sense distributions found in our study, together
with the frequency of Semantic EntRels, suggest
that cross-paragraph implicit relations carry varied
semantic content in substantial proportions and are
therefore worth annotating. Given this, one goal



of our future work is to annotate 200 texts of the
PDTB corpus with adjacent cross-paragraph im-
plicit relations, following the enhanced guidelines
developed here, and publicly distribute the anno-
tations via github.? The subset of texts to be anno-
tated contain approximately 700 tokens of cross-
paragraph implicit relations, which we have esti-
mated (from our Phasel to Phase3 annotations) to
require 3 minutes per token on average, i.e., ap-
proximately 35 hours of annotation time per an-
notator. Once this corpus is completed, we can
then study the distribution of senses and patterns
of senses in the texts, along the lines of Pitler et al.
(2008), but now over full text relation sequences.
In addition, the high incidence of the underspec-
ified implicit non-adjacent relations found in this
study suggests the value of developing guidelines
for their more difficult annotation to ensure it can
be done reliably, and thus, this is a goal of our fu-
ture work as well.

More generally, our study is the first to quan-
titatively assess the difficulty of annotating long-
distance discourse relation dependencies. We find
that annotating non-adjacent cross-paragraph im-
plicit relations is difficult and time-consuming.
Another future goal is, therefore, to develop more
effective tools and methodologies to increase an-
notation ease, speed and reliability. These in-
clude enhancements to the PDTB annotation tool
to better allow simultaneous visualization of inter-
sentential relations and their arguments in a text.
In addition, a two-pass annotation methodology
would allow the more difficult cross-paragraph
non-adjacent implicit relations to be annotated in
a second pass. Sequences of inter-sentential rela-
tions from the first pass could then reveal system-
atic structures to inform the second pass.
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Abstract

We test state of the art dialogue systems
for their behaviour in response to user-
initiated sub-dialogues, i.e. interactions
where a system question is responded to
with a question or request from the user,
who thus initiates a sub-dialogue. We look
at sub-dialogues both within a single app
(where the sub-dialogue concerns another
topic in the original domain) and across
apps (where the sub-dialogue concerns a
different domain). The overall conclusion
of the tests is that none of the systems
can be said to deal appropriately with user-
initiated sub-dialogues.

Index Terms: dialogue, dialogue systems, dia-
logue management, human-machine interaction,
dialogue structure

1 Introduction

This paper follows Larsson (2015) in taking a look
at how dialogue systems from some of the major
players on the market actually deal with some con-
versational behaviours frequently encountered in
human-human dialogue. It should be noted that
the tests necessarily reflect the behaviour of the
systems tested at the time of the test. As any other
app in your mobile, conversational agents are fre-
quently updated and new behaviours are added.
The tests described here were carried out in March
2017.

The work presented here builds on the “Trindi
Tick-list” (Bos et al., 1999) which was constructed
in the TRINDI project' to examine whether certain
dialogue behaviours can be reliably manifested by
a dialogue system. The original tick-list is still be-
ing used (Hofmann et al., 2014), and there have

"http://www.ling.qgu.se/projekt/trindi/
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been later revisions and amendments (although
these remain to be published). With the advent
of widely available spoken dialogue systems in
smartphones, the kind of evaluation exemplified
by the Trindi Tick-list has again become relevant.

In this paper, we will choose a small sub-
set of the questions in the current tick-list, and
investigate how systems deal with dialogue be-
haviours related to user-initiated sub-dialogues,
i.e. cases where a system question is responded
to with a user question (or request). According to
Lupkowski and Ginzburg (2013), responding to a
query with a query is a common occurrence, rep-
resenting on a rough estimate more than 20% of
all responses to queries found in the British Na-
tional Corpus. Also, many of us are used to being
able to multi-task using our computers and smart-
phones, jumping back and forth at will between
several apps or programs, and there seems to be
no particular reason why we should not be able to
do so just because we are interacting using spoken
dialogue.

2 The systems in the test

We tested five systems: Siri>, API.AI®, Houndify*,
Cortana® and Alexa®. The choice of these sys-
tems was based on (1) availability, (2) being rea-
sonably well-known, and (3) allowing testing the
dialogue phenomena in question’. While previous
tests (Larsson, 2015) used complete off-the-shelf

http://www.apple.com/ios/siri/

*https://api.ai/

“https://www.houndify.com/

Shttps://www.microsoft.com/en-us/
mobile/experiences/cortana/

®https://developer.amazon.com/alexa

"For example, the Google Assistant and Google Home
systems rarely if ever ask questions to the user; instead, they
generally try to take whatever information they have and do
something with it. This means that there no natural place to
initiate a sub-dialogue when interacting with these systems.
For these reasons, they have not been included in this test.

Proceedings of the SIGDIAL 2017 Conference, pages 17-22,
Saarbriicken, Germany, 15-17 August 2017. (©2017 Association for Computational Linguistics



end-to-end dialogue applications (e.g. for calling
people up), the market has shifted towards offering
developers various degrees of freedom and support
in implementing dialogue applications on top of
a dialogue system (or dialogue system platform).
In this respect, the systems in the test differ to a
large extent — not only with respect to the extent to
which they support various dialogue behaviours,
but also as to whether they offer any dialogue man-
agement capabilities at all. Roughly speaking, the
systems fall into three broad classes:

e Closed systems: A fixed set of non-
configurable dialogue applications (e.g. Siri).

Configurable service platforms provide di-
alogue management and domain implemen-
tations®; developers select domains and con-
nect services to these ready-made domain im-
plementations (e.g. SiriKit, Houndify?).

Domain development platforms provide
generic dialogue management; developers
implement their own domains or select from
a set of predefined domains (e.g. APLAI,
(Houndify!?))

Dialogue shells offer ASR, NLU and TTS;
developers implement dialogue managers
(including domain implementations) (e.g.
Cortana, Alexa).

In Section 3, we discuss some complications
arising from applying a single test to systems of
all four classes. First, however, we provide a brief
description of each of the tested systems.

2.1 Siri

Siri runs on the iPhone and on a variety of Apple
devices. SiriKit!! offers some minimal opportu-
nities for developers to connect their own exter-
nal services to Siri, but only for a limited range of
service types (currently VoIP calling, messaging,
payments, photo and workouts) for which ready-
made language understanding and dialogue man-
agement knowledge is provided by Siri (and un-
available for developers). For each service type, a

8Roughly, we use (dialogue) app to refer to the entity with
which a user communicates about a certain domain, given
some domain implementation encoding the knowledge re-
quired to talk about that domain.

The openly available Houndify only allows accessing ex-
isting domains.

19Building custom domains for Houndify is currently by

invitation only. We have not been able to test this feature.
"https://developer.apple.com/sirikit/
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fixed set of "intents” (tasks) are defined, that the
developer use to connect their service. In the cur-
rent tests, we used ready-made Siri applications on
an iPhone,

2.2 APLAI

APLAI (which can be used in Google Assistant
and Google Home apps) offers an interactive GUI
tool for building a dialogue application by giving
sample user sentences and mapping these onto in-
terpretations in terms of intents and entities. The
user-defined app can be combined with a number
of pre-defined apps (not editable). For the current
test, we used a combination of one “home-made”
application and a selection of predefined domains,
since this gave us the opportunity to define a do-
main with several intents as well as intents with
multiple parameters (necessary for performing all
our tests). Specifically, a simple phone domain
was implemented by the author using the APL.AIL
developer GUI. The tests were conducted using
the text interface on the APL. Al developer website.

2.3 Houndify

Houndify is very similar to API.AI but we have
so far not been able to get access to the developer
tools. For this reason, we used only predefined
applications in the tests. The tests were conducted
using the text interface on the Houndify developer
website.

2.4 Cortana

Cortana runs on a variety of Windows devices, and
essentially allows developers to build apps that
use Cortana’s built-in ASR and TTS (as well as
the phone touch-screen for graphical output and
haptic input) with a Cortana look-and-feel. This
means that NLU, dialogue management and NLG
need to be implemented more or less from scratch
by the developer. In this test, we used existing
ready-made Cortana domains on a Nokia Lumia
phone.

2.5 Alexa

Amazon’s Alexa runs on the Amazon Echo, and is
similar to Cortana, except it also offers generic and
configurable NLU capabilities. For our tests, we
used ready-made Alexa domains. While broadly
classified as a “dialogue shell”, Alexa does of-
fer a general mechanism for switching between
domains (skills”) that is relevant for our current



concerns. The tests were conducted on an Ama-
zon Echo.

3 Complications

Our main interest is to evaluate general (do-
main independent) dialogue management features,
which may be problematic in some cases where
it is not clear if a certain behaviour is imple-
mented in a general dialogue manager, or if it is
produced by a domain-specific dialogue manage-
ment script. In many cases, the source of an ob-
served behaviour can be inferred from documen-
tation, but in other cases more indirect evidence
has to be used. For example, if a system displays
identical behaviours across several domains, this
may be evidence that it is produced by a general
dialogue manager.

Note that we are not mainly interested in what
is possible in a given system, but rather in what is
supported by the system. That is, the developer
should not have to implement all or most of the
code required to deal with the dialogue feature in
question. Ideally, the developer should not have
to do anything to enable it (other than possibly se-
lecting or deselecting the feature). In the case of
“dialogue shells”, very few dialogue features are
supported. Pretty much any behaviour can in prin-
ciple be implemented, but this is not necessarily
very helpful for the developer.

Another problem concerns the notion of a do-
main (or “app”’). Whereas in some cases it is clear
whether two tasks (or ”skills””) are implemented as
separate domains. We have assumed e.g. that ask-
ing about missed calls and calling people up both
belong to the ’phone” domain, while asking for
the time or setting an alarm probably instead be-
long to the “’clock™ domain.

Despite these complications, we believe the
tests in this paper can be of interest, and we have
tried to make clear the specific characteristics of
the systems to enable the reader to assess the reli-
ability of the tests.

4 Results

The overall results of the tests are shown in Ta-
ble 1. In this section, we present the details of
these results and provide concrete interactions as
evidence.
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4.1 User anytime jump to task within app

The first three tests consider the capabilities of the
systems to deal with user utterances that respond
to a system question related to a task T" with a re-
quest or question related to another task 7" (where
T and 7" are both in the same domain). We re-
fer to such a request or question as ’jump to task”.
The “anytime” refers to the fact the the jump to 7’
can occur at any point during the dialogue related
to task 7" (not only e.g. after 7" is done). The tests
are the following (indexed Fn for “feature n”):

e (F1) User anytime jump to task within
app. Does the system respond adequately to
jumps, i.e. does it shift the topic of conversa-
tion to 7”7

o (F2) System resume after within-app sub-
dialogue. After finishing 7”, does the sys-
tem return the dialogue to the previous (un-
finished) topic T'?

o (F3) Signal task resumption. If the system re-
sumes 7', does it also indicate this somehow?

Note that F2 and F3 are not applicable if F1 is
answered negatively, and that F3 is not applicable
if F2 is answered negatively. Here is an example of
a dialogue with a system that would yield “yes”-
answers to all three questions:

Make a call

Who do you want to call?

Do I have any missed calls?

No. Returning to making a call. Who do
you want to call?

waocwga

Here, the system’s last utterance (starting with
”No”) first shows that it can deal with the embed-
ded question by answering it (F1). It also shows
that it returns to the unfinished topic of making a
call, by repeating the question who do you want
to call.” (F2) Finally, it signals task resumption ex-
plicitly ("Returning to making a call”’) (F3).

Siri accepts the embedded question 7" and re-
sponds to it, but does not manage to return to the
previous unfinished topic 7T'.

U: Make a call

S:  Who do you want to call?
U: Do I have any missed calls?
S: No

U: Okay

S:



Siri | APLLAI | Houndify | Cortana | Alexa
F1. User anytime jump to task within app + + ? - +
F2. System resume after within-app sub-dialogue | - - ? - -
F3. Signal task resumption N/A | N/A ? - N/A
F4. User anytime jump across apps + - - - +)
F5. System resume after other-app subdialog - N/A N/A N/A -
F6. Signal app (and task) resumption N/A | N/A N/A N/A N/A

Table 1: Dialogue behaviours related to user-initiated sub-dialogues in five dialogue systems

APLAI produces the same behaviour as Siri,
failing to return to the unfinished topic.

Unfortunately, Houndify could not be tested for
this feature, since none of the available domains
featured (1) more than one task, whereof (2) at
least one task involved asking a question to the
user.

Since Alexa does not implement calling people
up, we instead used the clock domain for testing
F1-F3. The results were the same as for Siri and
APLAL

U: Set the alarm

S: Alarm for what time?
U: What time is it?

s: 10.15

U: OK

S:

Cortana did slightly worse than the other sys-
tems, failing to understand the embedded question
(again we used the clock domain)'2.

Set the alarm

Set you alarm for what time?
What time is it?

What time did you want the alarm?

w e v

4.2 User anytime jump across apps

The next three tests (F4-F6) consider the capabili-
ties of the systems to deal with user utterances that
respond to a system question related to a task 7" in
a domain D with a request or question related to
a task 7" in another domain D’ # D. We refer to
such a request or question as “jump across apps”.
Again, "anytime” refers to the fact the the jump to
T’ can occur at any point during the dialogue re-
lated to task 7" (not only e.g. after 7" is done). The
tests are the following:

2Cortana had no problem understanding ”What time is it”
when the question was not embedded.
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o (F4) User anytime implicit jump across apps.
After having asked a question related to a task
T in a domain D, does the system respond
adequately to a request or question related to
a task 7" belonging to a domain D’ (but not
mentioning D’), i.e. does it shift the topic of
conversation to 7" and D'?

(F5) System resume after other-app sub-
dialogue. After finishing 7”, does the sys-
tem return the dialogue to the previous (un-
finished) topic T'?

(F6) Signal app (and task) resumption. If the
system resumes 7', does it also indicate this
somehow?

Note that F5 and F6 are not applicable if F4 is
answered negatively, and that F6 is not applicable
if F5 is answered negatively. Here is an example of
a dialogue with a system that would yield “yes”-
answers to F4, F5 and F6:

Make a call

Who do you want to call?

What time is it?

8 pm. Returning to making a call. Who
do you want to call?

wawuca

Siri offers user anytime jump across apps'>.
The behaviour concerning F5 and F6 parallels that
of F2 and F3.

U: Call John

S:  Which number for John?
U: What time is it?

S: 8pm.

U: OK

S: -

APIL.AI does not provide F4:

3This assumes that calling people up and asking the time
belong to different domains



Make a call

Who do you want to call?
What time is it?

Who do you want to call?

w o v a

For Houndify, we used a different combination
of domains to test for F4-F6, with tip calculation
taking the place of calling someone up. The result
is similar to that for APL.AI, but instead of simply
ignoring the embedded request, the system indi-
cates that it does not understand it.

Calculate tip

What is the amount of the bill?

What time is it

Sorry, I did not understand that. The bill
amount is indicated on the check. What
is the amount of the bill?

“w» e v c

The results for Cortana were similar to those
for APL.AIL

In many cases, Alexa requires the user to ex-
plicitly address the app, thus requiring what we
may call "gated commands” as opposed to ’gate-
less commands” (wich can be issued without ex-
plicitly addressing the relevant app).
U: Alexa, play Abba on Spotify
Regardless of whether gated or gateless com-
mands were used, Alexa would switch topic as re-
quested, but did not manage to return to the origi-
nal topic.

U: Alexa, set the alarm

S: Alarm for what time?

U: Alexa, play Abba on Spotify

S:  (plays music)

5 Discussion and future work

An obvious extension of the work presented here
is to include more systems, i.e. Luis (from Mi-
crosoft) and Watson (from IBM). This also points
to the need for regularly testing both new and es-
tablished systems for a wide range of dialogue
phenomena, preferably in a standardised manner.
Another obvious extension of the work pre-
sented here would be to relate the various dia-
logue behaviours to measurements of the quality,
usefulness and attractiveness of dialogue systems
that have or lack the respective features. Here,
the PARADISE framework (Walker et al., 1997)
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could potentially be very useful. Such investiga-
tions, however, must take into account variability
in the usefulness of various dialogue features with
respect to the overall activity and other situational
factors. A feature which is very useful in one con-
text may be of little interest in another.

It seems likely that at least in some cases, the
user may not expect or want a conversational part-
ner to return to a previous topic. For example, the
user may switch to another topic as a way of steer-
ing the conversation away from the current topic.
How to distinguish cases where a user initiative is
intended an interruption of the ongoing topic, vs.
when it is intended as an embedded subdialogue,
is an interesting area for future research.

It is also possible that real-time factors may play
a role. If embedded sub-dialogues can be dealt
with in an efficient and highly interactive manner,
with minimal delay between turns, this reduces the
user’s perceived cost (in terms of time and effort)
of entering into a sub-dialogue, and may boost the
usefulness of such sub-dialogues.

It should be noted that although none of the
tested systems dealt adequately with user-initiated
sub-dialogues, there are systems that do handle
these phenomena. We know of at least two such
systems, Indigo'# from Artificial Solutions, and
the Talkamatic Dialogue Manager (TDM) from
Talkamatic'>+'®. These systems deal appropriately
with most of the phenomena listed in Table 1'7.

6 Conclusion

We have tested five different well-publicised di-
alogue systems for their behaviour in response
to user-initiated sub-dialogues within and across
apps. The overall conclusion of the tests is that
none of the systems tested deal appropriately with
user-initiated sub-dialogues. In light of how fre-
quent this behaviour is in human-human dialogue,
we regard this as a serious shortcoming.

We hope that the kind of evaluation presented
here can improve our understanding of the state of
the art in commercial dialogue systems, and sug-
gest ways in which to improve such systems with
respect to dialogue management.

“http://www.hello-indigo.com/

Btalkamatic.se

!%For transparency, it should be noted that the author is co-
founder and co-owner of Talkamatic AB.

TDM handles all of F1-F7. Indigo handles F1-F4 and
F6-F7. However, Indigo has trouble with the over- and other-
answering tests described in Larsson (2015).
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Abstract

We present a multimodal dialogue system
that allows doctors to interact with a medi-
cal decision support system in virtual real-
ity (VR). We integrate an interactive visu-
alization of patient records and radiology
image data, as well as therapy predictions.
Therapy predictions are computed in real-
time using a deep learning model.

1 Introduction

Modern hospitals and clinics rely on digital patient
data. Simply storing and retrieving patient records
is not enough; in order for computer systems to
provide interactive decision support, one must rep-
resent the semantics in a machine readable form
using medical ontologies (Sonntag et al., 2009b).
In this paper, we present a novel real-time decision
support dialogue for the medical domain, where
the physician can visualize and interact with pa-
tient data in an virtual reality environment by us-
ing natural speech and hand gestures.

Our multimodal dialogue system is an extension
of previous work by Luxenburger et al. (Luxen-
burger et al., 2016) where we used an Oculus Rift
with an integrated eye-tracker in a medical remote
collaboration setting. First, the radiologist fills out
a findings form using a mobile tablet with a stylus.
The data is then transcribed in real-time using au-
tomated handwriting recognition, parsed, and rep-
resented based on medical ontologies. Then, the
doctor, or any other health professional, enters vir-
tual reality and interacts with patient records us-
ing the multimodal dialogue system. Through the
temporal synchronization of visual and auditory
events in VR, we support multisensory integration
(Morein-Zamir et al., 2003). This way we profit
from superadditivity (Oviatt, 2013) to further en-
hance multisensory perception.
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2 Architecture

Modern hospitals and clinics are highly digital-
ized; in order to integrate our system seamlessly
into everyday processes, we designed a highly
flexible architecture, which can be connected to
existing hospital systems (e.g., PACS, a picture
archiving and communication system) and con-
nects novel interaction devices such as VR glasses
and head-mounted displays (HMDs). As depicted
in Figure 1, all devices in this scenario are ei-
ther connected directly or through adapters to the
Proxy Server using XML-RPC, a remote proce-
dure call protocol which uses XML to encode in-
formation that is sent via HTTP between clients
and server. The Proxy Server manages and re-
lays the cross-platform communication between
the different devices. The mobile device for in-
stance retrieves patient data and medical images
through the Proxy Server from the hospital’s PACS
and RIS (radiology information system). The doc-
tor then fills out the report, and the results are send
back. Some components, like the PACS and RIS,
are not connected directly through XML-RPC to
the rest of the system, but through the Patient Data
Provider, which provides an abstraction layer to
the other devices. This way we can ensure a flex-
ible integration of different proprietary software
solutions that are already being used in hospitals.

2.1 Mobile Device

Even though modern hospitals and clinics are
highly digitalized, there are many everyday pro-
cesses that are still performed using pen and paper.
Our approach in this scenario is based on the work
of Sonntag et al. (Sonntag et al., 2014) where
they use digital pens to improve reporting prac-
tices in the radiology domain. Instead of using
a digital pen on normal paper, we create a fully
digital version of the radiology findings form (in

Proceedings of the SIGDIAL 2017 Conference, pages 23-26,
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Figure 1: Architecture diagram

this case mammography), to be used on a mo-
bile device with integrated stylus. The radiolo-
gist writes the report directly onto the tablet us-
ing the stylus and through real-time handwriting,
gesture, and sketch recognition, the entire content
is transcribed, exported and written into the hos-
pital’s database. Our approach has several advan-
tages over the traditional form filling process: (1)
the contents are instantly transcribed and parsed
into concepts of medical ontologies, (2) real-time
feedback about the handwriting recognition pro-
cess allows for a direct validation of input data,
and (3) medical images are taken directly from the
hospital’s PACS, are then displayed on the screen
and can be annotated by the radiologist. We use
the Samsung Note series as mobile devices, be-
cause they feature a special Wacom digitiser tech-
nology for the stylus input; we built our software
on top of the MyScript! handwriting recognition
engine.

2.2 Virtual Reality

We created a Unity3D application® that resembles
a real world doctor’s office. The user can move
freely inside the room using positional tracking
and may also look around using head tracking.
To enable immersive and remote interaction with
medical multimedia data, we use a projection on
the wall, where the patient files, the previously
annotated digital form, and the therapy predic-
tions are shown (see Figure 2). Navigation in-
side the documents, like zooming or scrolling
through pages, can be achieved either through nat-
ural speech interaction or by using the Oculus
Touch controllers, which we render as hands in-
side VR.

'"http://myscript.com/
http://unity3d.com/
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Figure 2: Screenshot of therapy prediction results
inside virtual reality

2.3 Decision Support

Our medical dialogue system facilitates support
for deciding which therapy is most suitable for a
given patient. We integrated a prediction model
for clinical decision support based on deep learn-
ing (Esteban et al., 2016) as backend service run-
ning on a dedicated GPU server. They presented
a recurrent neural network (RNN) to include dy-
namic sequences of examinations which was mod-
ified to take dynamic patient data as additional
input. This model was trained on a set of struc-
tured data from 475 patients, containing a total of
19438 diagnoses, 15352 procedures, 59202 lab-
oratory results and 13190 medications. All per-
sonal data, such as names, date of birth, patient-
IDs were anonymized accordingly and all date and
time references were shifted. For our dialogue
system, fast response times are of particular inter-
est. We use TensorFlow (Abadi et al., 2016) to
enable GPU-accelerated predictions on a scalable
platform. Our service runs on a dedicated high-
performance computer and is accessible to the di-
alogue system through our Proxy Server.

3 Dialogue

In order to facilitate coordinated interactions on
the patient data within the virtual reality environ-
ment, we developed a multimodal dialogue in-
terface that allows us to operate and interact by
speech and gestures. The multimodal dialogue
system supports three different types of interac-
tions: (1) interactions with the patient data shown
on the virtual display (e.g., "Open the patient file
for Gerda Meier.”, ”Show the next page.”); (2) in-
teractive question answering (QA) about the con-
tents of a patient record (e.g., "When was the
last examination?”); and (3) control of the ther-
apy prediction component (e.g., "Which therapy



is recommended?”). Within the dialogue the fol-
lowing speech interactions and phenomena are re-
alized:

Navigation inside patient records
open/close file, scroll, zoom, turn page)
Anaphoric reference resolution (e.g., ”What
is her current medication?”)
Elliptic speech input (e.g.,
age?”)

Multimodal (deictic) dialog interactions (e.g.,
”Zoom in here” + [user points on a region on
the display])

Cross-modal reference resolution (e.g.,
”What is the second best therapy recommen-
dation?”)

(e.g.,

’

and the

3.1 Dialogue Implementation

The implementation of the dialogue follows
the rapid engineering principles (Sonntag et al.,
2009a) and is implemented with SIAM-dp (NeBel-
rath, 2015), an open development platform for
multimodal dialogue systems. All knowledge
representations and dialogue structures follow a
declarative specification with ontology structures.
First, the already existing patient data model of
the patient database was mapped onto the corre-
sponding domain ontology for SiAM-dp’s knowl-
edge manager, which is initialized with the spe-
cific patient instances at the beginning of each di-
alogue session. The speech recognition grammar
is loaded into Nuance’s speech recognizer>.

The dialogue model is based on finite-state ma-
chines; the mapping of user intentions to match-
ing multimodal system reactions is defined declar-
atively. The determination of the user intention
in SiAM-dp follows a fusion process: SIAM-dp’s
modality specific user input analysis components
(speech recognition, gesture analysis) and their
fusion in conjunction with reference resolution
within the discourse manager. The realization of
multimodal output (speech output, virtual display
content modifications, therapy prediction invoca-
tion) is coordinated by SiAM-dp’s presentation
planning component. The software itself runs on
the same machine that has the Oculus Rift and the
Touch controllers attached. Technically speaking,
SiAM-dp is operated with standard speech recog-
nition and synthesis (Nuance, SVOX), connected
to Oculus Rift’s microphone and speakers as audio

*http://www.nuance.com
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input and output devices. An example dialogue is
as follows:

U.1 ”Show the patient file for Gerda Meier.”

S.1 “Here is the patient file for Gerda Meier.”
[patient data is displayed on the display in-
side the VR room]

”What was the last examination?”

”Mrs. Meier recently received a mammogra-
phy.”

U.3 "When was it?”

S.3 ’The mammography was made on the 10th of
March.”

”Now show me the patient file for Paula Fis-
cher.”

”Here is the patient file for Paula Fischer.”
[new patient data is displayed]

”Zoom in here.” [user points on a region
on the display using the Oculus Touch con-
troller]

[virtual display is zoomed accordingly]
”Which therapy is recommended?”

”For Paula Fischer chemotherapy is recom-
mended.” [bar chart with therapy prediction
is displayed]

U.2
S.2

U4
S.4

U5

S.5
u.6
S.6

In (U.1) the user requests a patient file to be pre-
sented on the display inside the VR room. The
corresponding system output (S.1) is multimodal:
speech output is synchronized with the presenta-
tion of the patient file. The user then requests in-
formation about the patient data currently shown
on the display (U.2), e.g. anamneses and previous
therapies. This user input contains an ellipsis: the
name of the patient is not mentioned. SIAM-dp’s
discourse manager resolves it from the dialogue
context that was filled in (U.1). Further questions
about specifics may be asked (U.3). The context
infers that ”it” refers to the mammography just
mentioned (rule-based anaphora resolution).

The next utterance (U.4) shows that users may
shift the topic at any point, for instance by request-
ing other patient data. (U.5) is an example of a
multimodal input consisting of a speech input and
a corresponding pointing gesture. Processing this
user input is only possible if both modalities are in
a certain time frame and correctly fused.

The main dialogue move is (U.6), as it trig-
gers the real-time therapy prediction process on
the GPU Server. The system’s response in (S.6) is
again multimodal as the requested therapy is pre-
sented on the virtual display, together with synthe-
sized speech output.



Anaphora resolution is also handled in our sys-
tem. Since the patient file represented on the dis-
play is always synchronized with the current dis-
course model and within SiAM-dp depending on
the context modelled as discourse memory (Son-
ntag, 2010) the system can resolve utterances like
“when was her last examination?”

4 Conclusions and Future Work

In this paper, we presented our multimodal dia-
logue system implementation in virtual reality. It
provides a first example of an automated decision
support system that computes therapy predictions
in real-time using deep learning techniques. Our
multimodal dialogue system, in combination with
interactive data visualization in virtual reality, is
meant to provide an intuitive dialogue component
for helping the doctor in his or her therapy deci-
sion. Preliminary evaluations in the clinical data
intelligence project (Sonntag et al., 2016) are en-
couraging and we believe that such multimodal-
multisensor interfaces in VR can already be de-
signed and implemented to effectively advance hu-
man performance in medical decision support.

Currently we are investigating how displaying
complex 3D medical images (e.g., DICOM) in VR
can improve the diagnostic process. We are also
looking into possibilities to include additional in-
put modalities such as gaze information from eye-
tracking to further improve the multimodal inter-
action.

As an extension to the dialogue it is planned to
include ambiguity resolution by asking clarifica-
tion questions. If a patient name is ambiguous, the
system could ask for clarification (U: ”Open the
patient file of Mrs. Meier.” S: ”Gerda Mayer or
Anna Maier?”). In addition users should be able to
change or add patient data through natural speech.
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Abstract

Generative encoder-decoder models of-
fer great promise in developing domain-
general dialog systems. However, they
have mainly been applied to open-domain
conversations. This paper presents
a practical and novel framework for
building task-oriented dialog systems
based on encoder-decoder models. This
framework enables encoder-decoder mod-
els to accomplish slot-value independent
decision-making and interact with external
databases. Moreover, this paper shows the
flexibility of the proposed method by in-
terleaving chatting capability with a slot-
filling system for better out-of-domain re-
covery. The models were trained on both
real-user data from a bus information sys-
tem and human-human chat data. Re-
sults show that the proposed framework
achieves good performance in both offline
evaluation metrics and in task success rate
with human users.

1 Introduction

Task-oriented spoken dialog systems have trans-
formed human-computer interaction by enabling
people interact with computers via spoken lan-
guage (Raux et al., 2005; Young, 2006; Bohus
and Rudnicky, 2003). The task-oriented SDS is
usually domain-specific. The system creators first
map the user utterances into semantic frames that
contain domain-specific slots and intents using
spoken language understanding (SLU) (De Mori
et al., 2008). Then a set of domain-specific dialog
state variables is tracked to retain the context infor-
mation over turns (Williams et al., 2013). Lastly,
the dialog policy decides the next move from a
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list of dialog acts that covers the expected com-
municative functions from the system.

Although the above approach has been success-
fully applied to many practical systems, it has lim-
ited ability to generalize to out-of-domain (OOD)
requests and to scale up to new domains. For ex-
ample, even within in a simple domain, real users
often make requests that are not included in the
semantic specifications. Due to this, proper er-
ror handling strategies that guide users back to the
in-domain conversation are crucial to dialog suc-
cess (Bohus and Rudnicky, 2005). Past error han-
dling strategies were limited to a set of predefined
dialog acts, e.g. request repeat, clarification etc.,
which constrained the system’s capability in keep-
ing users engaged. Moreover, there has been an
increased interest in extending task-oriented sys-
tems to multiple topics (Lee et al., 2009; Gasi¢
et al., 2015b) and multiple skills, e.g. grouping
heterogeneous types of dialogs into a single sys-
tem (Zhao et al., 2016). Both cases require the
system to be flexible enough to extend to new slots
and actions.

Our goal is to move towards a domain-general
task-oriented SDS framework that is flexible
enough to expand to new domains and skills by
removing domain-specific assumptions on the di-
alog state and dialog acts (Bordes and Weston,
2016). To achieve this goal, the neural encoder-
decoder model(Cho et al., 2014; Sutskever et al.,
2014) is a suitable choice, since it has achieved
promising results in modeling open-domain con-
versations (Vinyals and Le, 2015; Sordoni et al.,
2015). It encodes the dialog history using deep
neural networks and then generates the next sys-
tem utterance word-by-word via recurrent neural
networks (RNNs). Therefore, unlike the tradi-
tional SDS pipeline, the encoder-decoder model is
theoretically only limited by its input/output vo-
cabulary.

Proceedings of the SIGDIAL 2017 Conference, pages 27-36,
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A na‘ive implementation of an encoder-
decoder-based task-oriented system would use
RNNSs to encode the raw dialog history and gen-
erate the next system utterance using a separate
RNN decoder. However, while this implementa-
tion might achieve good performance in an offline
evaluation of a closed dataset, it would certainly
fail when used by humans. There are several rea-
sons for this: 1) real users can mention new enti-
ties that do not appear in the training data, such as
a new restaurant name. These entities are, how-
ever, essential in delivering the information that
matches users’ needs in a task-oriented system.
2) a task-oriented SDS obtains information from
a knowledge base (KB) that is constantly updated
(“today’s” weather will be different every day), so
simply memorizing KB results that occurred in the
training data would produce false information. In-
stead, an effective model should learn to query the
KB constantly to get the most up-to-date informa-
tion. 3) users may give OOD requests (e.g. say,
“how is your day”, to a slot-filling system), which
must be handled gracefully in order to keep the
conversation moving in the intended direction.

This paper proposes an effective encoder-
decoder framework for building task-oriented
SDSs. We propose entity indexing to tackle the
challenges of out-of-vocabulary (OOV) entities
and to query the KB. Moreover, we show the ex-
tensibility of the proposed model by adding chat-
ting capability to a task-oriented encoder-decoder
SDS for better OOD recovery. This approach
was assessed on the Let’s Go Bus Information
data from the 1st Dialog State Tracking Chal-
lenge (Williams et al., 2013), and we report per-
formance on both offline metrics and real human
users. Results show that this model attains good
performance for both of these metrics.

2 Related Work

Past research in developing domain-general di-
alog systems can be broadly divided into three
branches. The first one focuses on learning
domain-independent dialog state representation
while still using hand-crafted dialog act system ac-
tions. Researchers proposed the idea of extract-
ing slot-value independent statistics as the dia-
log state (Wang et al., 2015; Gasi¢ et al., 2015a),
so that the dialog state representation can be
shared across systems serving different knowledge
sources. Another approach uses RNNs to auto-
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matically learn a distributed vector representation
of the dialog state by accumulating the observa-
tions at each turn (Williams and Zweig, 2016;
Zhao and Eskenazi, 2016; Dhingra et al., 2016;
Williams et al., 2017). The learned dialog state
is then used by the dialog policy to select the
next action. The second branch of research de-
velops a domain-general action space for dialog
policy. Prior work replaced the domain-specific
dialog acts with domain-independent natural lan-
guage semantic schema as the action space of dia-
log managers (Eshghi and Lemon, 2014), e.g. Dy-
namic Syntax (Kempson et al., 2000). More re-
cently, Wen, et al. (2016) have shown the feasibil-
ity of using an RNN as the decoder to generate the
system utterances word by word, and the dialog
policy of the proposed model can be fine tuned us-
ing reinforcement learning (Su et al., 2016). Fur-
thermore, to deal with the challenge of develop-
ing end-to-end task-oriented dialog models that
are able to interface with external KB, prior work
has unified the special KB query actions via deep
reinforcement learning (Zhao and Eskenazi, 2016)
and soft attention over the database (Dhingra et al.,
2016). The third branch strives to solve both prob-
lems at the same time by building an end-to-end
model that maps an observable dialog history di-
rectly to the word sequences of the system’s re-
sponse. By using an encoder-decoder model, it has
been successfully applied to open-domain conver-
sational models (Serban et al., 2015; Li et al.,
2015, 2016; Zhao et al., 2017), as well as to task
oriented systems (Bordes and Weston, 2016; Yang
et al., 2016; Eric and Manning, 2017). In order to
better predict the next correct system action, this
branch has focused on investigating various neu-
ral network architectures to improve the machine’s
ability to reason over user input and model long-
term dialog context.

This paper is closely related to the third branch,
but differs in the following ways: 1) these models
are slot-value independent by leveraging domain-
general entity recognizer, which is more extensi-
ble to OOV entities, 2) these models emphasize
the interactive nature of dialog and address out-of-
domain handling by interleaving chatting in task-
oriented conversations, 3) instead of testing on a
synthetic dataset, this approach focuses on real
world use by testing the system on human users
via spoken interface.



3 Proposed Method

Our proposed framework consists of three steps
as shown in Figure 2: a) entity indexing (EI), b)
slot-value independent encoder-decoder (SiED),
¢) system utterance lexicalization (UL). The in-
tuition is to leverage domain-general named en-
tity recognition (NER) (Tjong Kim Sang and
De Meulder, 2003) techniques to extract salient
entities in the raw dialog history and convert the
lexical values of the entities into entity indexes.
The encoder-decoder model is then trained to fo-
cus solely on reasoning over the entity indexes in
a dialog history and to make decisions about the
next utterance to produce (including KB query). In
this way, the model can be unaffected by the inclu-
sion of new entities and new KB, while maintain-
ing its domain-general input/output interface for
easy extension to new types of conversation skills.
Lastly, the output from the decoder networks are
lexicalized by replacing the entity indexes and spe-
cial KB tokens with natural language. The follow-
ing sections explain each step in detail.

3.1 Entity Indexing and Utterance
Lexicalization

Entity Indexing EI has two parts. First, the EI
utilizes an existing domain-general NER to ex-
tract entities from both the user and system utter-
ances. Note that the entity here is assumed to be
a super-set of the slots in the domain. For exam-
ple, for a flight-booking system, the system may
contain two slots: [from-LOCATION] and [to-
LOCATION] for the departure and arrival city, re-
spectively. However, EI only extracts every men-
tion of [LOCATION] in the utterances and leaves
the task of distinguishing between departure and
arrival to the encoder-decoder model. Further-
more, this step replaces each KB search result with
its search query (e.g. the weather is cloudy — [kb-
search]-[DATETIME-0]). The second step of EI
involves constructing a indexed entity table. Each
entity is indexed by its order of occurrence in the
conversation. Figure 1 shows an example in which
there are two [LOCATION] mentions.

Properties of Entity Indexing In this section,
several properties of EI and their assumptions are
addressed. First, each entity is indexed uniquely
by its entity type and index. Note that the in-
dex is not associated with the entity value, but
rather solely by the order of appearance in the
dialog. Despite the actual words being hidden,

Sys: Where are you leaving from?
Usr: Leave from CMU and go to
Airport

Sys: Are you leaving from CMU
and going to Airport?

Usr: Yes.

Sys: Hold on. The next 28X leaves
CMU at 6:30PM.

Entity Sys: Where are you leaving from?

> . Y
Tndexing »| Usr: Leave from <LOC-0> and go

to <LOC-1>

Sys: Are you leaving from <LOC-
0> and going to <LOC-1>?

Usr: Yes.

Utterance Sys: Hold on. [kb-query] [LOC-0]
[LOC-1]

<
" Lexicalization

Figure 1: An example of entity indexing and utter-
ance lexicalization.

a human can still easily predict which entity the
system should confirm or search for in the KB
based on logical reasoning. Therefore, that the EI
not only alleviates the OOV problem of deploying
the encoder-decoder model in the real world, but
also forces the encoder-decoder model’s focus on
learning the reasoning process of task-oriented di-
alogs instead of leveraging too much information
from the language modeling.

Moreover, most slot-filling SDSs, apart from in-
forming the concepts from KBs, usually do not in-
troduce novel entities to users. Instead, systems
mostly corroborate the entities introduced by the
users. With this assumption, every entity mention
in the system utterances can always be found in the
users’ utterances in the dialog history, and there-
fore can also be found in the indexed entity table.
This property reduces the grounding behavior of
the conventional task-oriented dialog manager into
selecting an entity from the indexed entity table
and confirming it with the user.

Utterance Lexicalization is the reverse of EI
Since EI is a deterministic process, its effect can
always be reversed by finding the corresponding
entity in the indexed entity table and replacing the
index with its word. For KB search, a simple string
matching algorithm can search for the special [kb-
search] token and take the following generated en-
tities as the argument to the KB. Then the actual
KB results can replace the original KB query. Fig-
ure 1 shows an example of utterance lexicaliza-
tion.

3.2 Encoder-Decoder Models

The encoder-decoder model can then read in the
El-processed dialog history and predict the sys-
tem’s next utterance in EI format. Specifically,
a dialog history of k turns is represented by
[(ag,uo, co), ...(@k—1,Uk—1,ck—1)], in which a;,
u; and ¢; are, respectively, the system, user utter-
ance and ASR confidence score at turn . Each ut-
terance in the dialog history is encoded into fixed-
size vectors using Convolutional Neural Networks
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Figure 2: The proposed pipeline for task-oriented dialog systems.

(CNNs) proposed in (Kim, 2014). Specifically,
each word in an utterance x is mapped to its word
embedding, so that an utterance is represented as a
matrix R € RMXD, in which D is the size of the
word embedding. Then L filters of size 1,2,3 con-
duct convolutions on R to obtain a feature map, c,
of n-gram features in window size 1,2,3. Then c
is passed through a nonlinear ReLu (Glorot et al.,
2011) layer, followed by a max-pooling layer to
obtain a compact summary of salient n-gram fea-
tures, i.e. €'(x) = maxpool(ReLu(c + b)). Us-
ing CNNs to capture word-order information is
crucial, because the encoder-decoder has to be
able to distinguish between fine-grained differ-
ences between entities. For example, a simple
bag-of-word embedding approach will fail to dis-
tinguish between the two location entities in “leave
from [LOCATION-0] and go to [LOCATION-1]”,
while a CNN encoder can capture the context in-
formation of these two entities.

After obtaining utterance embedding, a turn-
level dialog history encoder network similar to
the one proposed in (Zhao and Eskenazi, 2016)
is used. Turn embedding is a simple concatena-
tion of system, user utterance embedding and the
confidence score t = [e“(a;);e"(u;);¢;]. Then
an Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) network reads the se-
quence turn embeddings in the dialog history via
recursive state update s; 11 = LSTM(¢;41, h;), in
which h; is the output of the LSTM hidden state.

Decoding with/without Attention A vanilla
decoder takes in the last hidden state of the
encoder as its initial state and decodes the
next system utterance word by word as shown
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in (Sutskever et al., 2014). This assumes that
the fixed-size hidden state is expressive enough
to encode all important information about the
history of a dialog. However, this assump-
tion may often be violated for a task that has
long-dependency or complex reasoning of the en-
tire source sequence. An attention mechanism
proposed (Bahdanau et al., 2014) in the ma-
chine translation community has helped encoder-
decoder models improve state-of-art performance
in various tasks (Bahdanau et al., 2014; Xu et al.,
2015). Attention allows the decoder to look over
every hidden state in the encoder and dynamically
decide the importance of each hidden state at each
decoding step, which significantly improves the
model’s ability to handle long-term dependency.
We experiment decoders both with and without
attention. Attention is computed similarly mul-
tiplicative attention described in (Luong et al.,
2015). We denote the hidden state of the decoder
at time step j by s;, and the hidden state outputs
of the encoder at turn ¢ by h;. We then predict the
next word by

aji = softmax(h] Wys; +b,) (1)
5; = tanh(W [SJ]) 3)
Cj
p(wjls;, cj) = softmax(Wos;) @

The decoder next state is updated by s;j; 1 =

LSTM(s;, e(wj+1), 55)-



3.3 Leveraging Chat Data to Improve OOD
Recovery

Past work has shown that simple supervised learn-
ing is usually inadequate for learning robust se-
quential decision-making policy (Williams and
Young, 2003; Ross et al., 2011). This is because
the model is only exposed to the expert demonstra-
tion, but not to examples of how to recover from its
own mistakes or users’ OOD requests. We present
a simple yet effective technique that leverages the
extensibility of the encoder-decoder model in or-
der to obtain a more robust policy in the setting
of supervised learning. Specifically, we artificially
augment a task-oriented dialog dataset with chat
data from an open-domain conversation corpus.
This has been shown to be effective in improv-
ing the performance of task-oriented systems (Yu
et al., 2017). Let the original dialog dataset with
N dialogs be D = [dyg..., dp, ...dN], where d,, is a
multi-turn task-oriented dialog of |d,| turns. Fur-
thermore, we assume we have access to a chat
dataset D. = [(q0,70), ---(Gm>Tm), ---(qrrs ar)]s
where ¢,,, T, are common adjacency pairs that
appear in chats, (e.g. ¢ = hello, » = hi, how are
you). Then we can create a new dataset D* by re-
peating the following process a certain number of
times:

1. Randomly sample dialog d,, from D
2.

Randomly sample turn ¢; = [a;, u;] from d,,

. Randomly sample an

(gm, Tm) from D,

adjacency pair

Replace the user utterance of ¢; by g,,, so that
ti = |ai, qm]

. Insert a new turn after ¢;, i.e. tix1 = [rm +
€ig1, Ui

[Sys: Where are you leaving from?]

Usr: How is your day?

Sys: | am doing great. Where are
you leaving from?

uin] payswbny

Usr: | am leaving from CMU

[Sys: Ok, what's your destination? ]

Figure 3: Illustration of data augmentation. The
turn in the dashed line is inserted in the original
dialog.
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In Step 5, e; is an error handling system utterance
after the system answers the user’s OOD request,
Gm.- In this study, we experimented with a simple
case where e; 11 = a; so that the system should re-
peat its previous prompt after responding to ¢, via
rm. Figure 3 shows an example of an augmented
turn. Eventually, we train the model on the union
of the two datasets DT = D U D*

Discussion: There are several reasons that the
above data augmentation process is appealing.
First, the model effectively learns an OOD recov-
ery strategy from D*, i.e. it first gives chatting
answers to users’ OOD requests and then tries to
pull users back to the main-task conversation. Sec-
ond, chat data usually has a larger vocabulary and
more diverse natural language expressions, which
can reduce the chance of OOVs and enable the
model to learn more robust word embeddings and
language models.

4 Experiment Setup

4.1 Dataset and Domain

The CMU Let’s Go Bus Information Sys-
tem (Raux et al., 2005) is a task-oriented spoken
dialog system that contains bus information. We
combined the trainla and trainlb datasets from
DSTC 1 (Williams et al., 2013), which contain
2608 total dialogs. The average dialog length
is 9.07 turns. The dialogs were randomly split-
ted into 85/5/10 proportions for train/dev/test data.
The data was noisy since the dialogs were col-
lected from real users via telephone lines. Fur-
thermore, this version of Let’s Go used an in-
house database containing the Port Authority bus
schedule. In the current version, that database was
replaced with the Google Directions API, which
both reduces the human burden of maintaining a
database and opens the possibility of extending
Let’s Go to cities other than Pittsburgh. Connect-
ing to Google Directions API involves a POST call
to their URL, with our given access key as well
as the parameters needed: departure place, arrival
place and departure time, and the travel mode,
which we always set as TRANSIT to obtain rel-
evant bus routes. There are 14 distinct dialog acts
available to the system, and each system utterance
contains one or more dialog acts. Lastly, the sys-
tem vocabulary size is 1311 and the user vocabu-
lary size is 1232. After the EI process, the sizes
become 214 and 936, respectively.

For chat data, we use a publicly available chat



corpus used in (Yu et al., 2015)!. In total, there
are 3793 chatting adjacency pairs. We control the
number of data injections to 30% of the number of
turns in the original DTSC dataset, which leads to
a user vocabulary size of 3537 and system vocab-
ulary size of 4047.

4.2 Training Details

For all experiments, the word embedding size was
100. The sizes of the LSTM hidden states for both
the encoder and decoder were 500 with 1 layer.
The attention context size was also 500. We tied
the CNN weights for the encoding system and user
utterances. Each CNN has 3 filter windows, 1, 2,
and 3, with 100 feature maps each. We trained
the model end-to-end using Adam (Kingma and
Ba, 2014), with a learning rate of le-3 and a
batch size of 40. To combat overfitting, we apply
dropout (Zaremba et al., 2014) to the LSTM layer
outputs and the CNN outputs after the maxpooling
layer, with a dropout rate of 40%.

5 Experiments Results

This approach was assessed both offline and on-
line evaluations. The offline evaluation contains
standard metrics to test open-domain encoder-
decoder dialog models (Li et al., 2015; Serban
et al., 2015). System performance was assessed
from three perspectives that are essential for task-
oriented systems: dialog acts, slot-values, and KB
query. The online evaluation is composed of ob-
jective task success rate, the number of turns, and
subjective satisfaction with human users.

5.1 Offline Evaluation

Dialog Acts (DA): Each system utterance is made
up of one or more dialog acts, e.g. “leaving
at [TIME-O], where do you want to go?”
[implicit-confirm, request(arrival place)]. To eval-
uate whether a generated utterance has the same
dialog acts as the ground truth, we trained a multi-
label dialog tagger using one-vs-rest Support Vec-
tor Machines (SVM) (Tsoumakas and Katakis,
2006), with bag-of-bigram features for each dia-
log act label. Since the natural language genera-
tion module in Let’s Go is handcrafted, the dialog
act tagger achieved 99.4% average label accuracy
on a held-out dataset. We used this dialog act tag-
ger to tag both the ground truth and the generated

—

! github.com/echoyuzhou/ticktock _text_api
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responses. Then we computed the micro-average
precision, recall, and the F-score.

Slots: This metric measures the model’s perfor-
mance in generating the correct slot-values. The
slot-values mostly occur in grounding utterances
(e.g. explicit/implicit confirm) and KB queries.
We compute precision, recall, and F-score.

KB Queries: Although the slots metric already
covers the KB queries, here the precision/recall/F-
score of system utterances that contain KB queries
are also explicitly measured, due to their impor-
tance. Specifically, this action measures whether
the system is able to generate the special [kb-
query] symbol to initiate a KB query, as well as
how accurate the corresponding KB query argu-
ments are.

BLEU (Papineni et al., 2002): compares the n-
gram precision with length penalty, and has been
a popular score used to evaluate the performance
of natural language generation (Wen et al., 2015)
and open-domain dialog models (Li et al., 2016).
Corpus-level BLEU-4 is reported.

Metrics | Vanilla EI EI EI+Attn
+Attn  +Chat

DA 83.5 79.7 80.0 81.8
(p/t/f1) | 779 80.1 83.1 83.5
80.5 80.0 81.5 82.7
Slot 42.0 60.6 63.7 64.6
(p/r/f1) | 30.3 63.6 64.7 69.1
35.2 62.1 64.2 66.8
KB N/A 48.9 554 58.2
(p/r/f1) 55.3 70.8 71.9
51.9 62.2 64.4
BLEU | 36.9 54.6 59.3 60.5

Table 1: Performance of each model on automatic
measures.

Four systems were compared: the basic
encoder-decoder models without EI (vanilla), the
basic model with EI pre-processing (EI), the
model with attentional decoder (EI+Attn) and the
model trained on the dataset augmented with chat-
ting data (EI+Attn+Chat). The comparison was
carried out on exactly the same held-out test
dataset that contains 261 dialogs. Table 1 shows
the results. It can be seen that all four mod-
els achieve similar performance on the dialog act
metrics, even the vanilla model. This confirms
the capacity of encoder-decoders models to learn
the “shape” of a conversation, since they have



achieved impressive results in more challenging
settings, e.g. modeling open-domain conversa-
tions. Furthermore, since the DSTC1 data was
collected over several months, there were minor
updates made to the dialog manager. Therefore,
there are inherent ambiguities in the data (the dia-
log manager may take different actions in the same
situation). We conjecture that ~80% is near the
upper limit of our data in modeling the system’s
next dialog act given the dialog history.

On the other hand, these proposed methods sig-
nificantly improved the metrics related to slots
and KB queries. The inclusion of EI alone was
able to improve the F-score of slots by a relative
76%, which confirms that EI is crucial in develop-
ing slot-value independent encoder-decoder mod-
els for modeling task-oriented dialogs. Likewise,
the inclusion of attention further improved the pre-
diction of slots in system utterances. Adding at-
tention also improved the performance of predict-
ing KB queries, more so than the overall slot accu-
racy. This is expected, since KB queries are usu-
ally issued near the end of a conversation, which
requires global reasoning over the entire dialog
history. The use of attention allows the decoder
to look over the history and make better decisions
rather than simply depending on the context sum-
mary in the last hidden layer of the encoder. Be-
cause of the good performance achieved by the
models with the attentional decoder, the attention
weights in Equation 1 at every step of the decod-
ing process in two example dialogs from test data
are visualized. For both figures, the vertical axes
show the dialog history flowing from the top to the
bottom. Each row is a turn in the format of (sys-
tem utterance # user utterance). The top horizon-
tal axis shows the predicted next system utterance.
The darkness of a bar indicates the value of the
attention calculated in Equation 1.

The first example shows attention for ground-
ing the new entity [LOCATION-1] in the previ-
ous turn. The attention weights become focus on
the previous turn when predicting [LOCATION-
1] in the implicit confirm action. The second di-
alog example shows a more challenging situation,
in which the model is predicting a KB query. We
can see that the attention weights when generating
each input argument of the KB query clearly fo-
cus on the specific mention in the dialog history.
The visualization confirms the effectiveness of the
attention mechanism in dealing with long-term de-
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pendency at discourse level.

sy what con o o you # usr: <ouceo-[ TN~ [N R

Sys: The <route-0> . Where would you like to leave from ? # Usr: <location-0>,

Sys: Leaving from <location-0> . Is this correct ? # Usr: yes|

Sys: Okay Where do you want to go ? # Usr: <location-1> |
A

</s>

ooooo

Sys: What can | do for you # Usr: <route-0> franks

G 8V

Sys: The <route-0> . Did | get that right ? # Usr: no

Sys: What can | do for you ? # Usr: leaving from <location-0>
Sys: Leaving from <location-0> . Did | get that right ? # Usr: yes
Sys: Alright Where are you going ? # Usr: <location-1>

Sys: Going to <location-1> . Did | get that right ? # Usr: yes

Sys: Alright When do you want to travel ? # Usr: the next bus

L

<backend.call>
<location-0>
<location-1>
<backend.example>|

Okay
</s>

Figure 4: Visualization of attention weights when
generating implicit confirm (top) and KB query
(bottom).

Surprisingly, the model trained on the data aug-
mented with chat achieved slightly better slot ac-
curacy performance, even though the augmented
data is not directly related to task-oriented di-
alogs. Furthermore, the model trained on chat-
augmented data achieved better scores for the
KB query metrics. Several reasons may explain
this improvement: 1) since chat data exposes the
model to a significantly larger vocabulary, the re-
sulting model is more robust to words that it had
not seen in the original task-oriented-only training
data, and 2) the augmented dialog turn can be seen
as noise in the dialog history, which adds extra
regularization to the model and enables the model
to learn more robust long-term reasoning mecha-
nisms.

5.2 Human Evaluation

Although the model achieves good performance
in offline evaluation, this may not carray over
to real user dialogs, where the system must si-
multaneously deal with several challenges, such
as automatic speech recognition (ASR) errors,
OOD requests, etc. Therefore, a real user study
was conducted to evaluate the performance of
the proposed systems in the real world. Due to
the limited number of real users, only two best
performing system were compared, EI+Attn and
El+Attn+Chat. Users were able to talk to a web
interface to the dialog systems via speech. Google



Chrome Speech API ? served as the ASR and text-
to-speech (TTS) modules. Turn-taking was done
via the built-in Chrome voice activity detection
(VAD) plus a finite state machine-based end-of-
turn detector (Zhao et al., 2015). Lastly, a hybrid
named entity recognizer (NER) was trained using
Conditional Random Field (CRF) (McCallum and
Li, 2003) and rules to extract 4 types of entities
(location, hour, minute, pm/am) for the EI process.

The experiment setup is as follows: when a user
logs into the website, the system prompts the user
with a goal, which is a randomly chosen combina-
tion of departure place, arrival place and time (e.g.
leave from CMU and go to the airport at 10:30
AM). The system also instructs the user to say
goodbye if the he/she thinks the goal is achieved
or wants to give up. The user begins a conversa-
tion with one of the two evaluated systems, with a
50/50 chance of choosing either system (not vis-
ible to the user). After the user’s session is fin-
ished, the system asks the him/her to give two
scores between 1 and 5 for correctness and nat-
uralness of the system respectively. The subjects
in this study consist of undergraduate and grad-
uate students. However, many subjects did not
follow the prompted goal, but rather asked about
bus routes of their own. Therefore, the dialog
was manually labeled for dialog success. A dia-
log is successful if and only if the systems give at
least one bus schedule that matches with all three
slots expressed by the users. Table 2 shows the

Metrics EI+Attn El+Attn
+Chat

# of Dialog 75 74

Slot Precision 73.3% 71.8%

KB Precision 88.6% 93.7%

Success Rate 73.3% 77.0%

Avg Turns 4.88 491

Avg Correctness | 3.45 (1.32) 3.22 (1.40)

Avg Naturalness | 3.46 (1.41) 3.53(1.34)

Table 2: Performance of each model on automatic
measures. The standard deviations of subjective
scores are in parentheses.

results. Overall, our systems achieved reasonable
performance in terms of dialog success rate. The
EI+Attn+Chat model achieves slightly higher suc-
cess and subjective naturalness metrics (although
the difference between EI+Attn+Chat and EI+Attn

2www.google.com/intl/en/chrome/demos/speech.html
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was not statistically significant due to the limited
number of subjects). The precision of ground-
ing the correct slots and predicting the correct KB
query was also manually labelled. EI+Attn model
performs slightly better than the EIl+Attn+Chat
model in slot precision, while the latter model per-
forms significantly better in KB query precision.
In addition, EI+Attn+Chat leads to slightly longer
dialogs because sometimes it generates chatting
utterances with users when it cannot understand
users’ utterances.

At last, we investigated the log files and iden-
tified the following major types of sources of dia-
log failure: RNN Decoder Invalid Output: Oc-
casionally, the RNN decoder outputs system ut-
terances as “Okay going to [LOCATION-2]. Did
I get that right?”, in which [LOCATION-2] can-
not be found in the indexed entity table. Such in-
valid output confuses users. This occurred in 149
of the dialogs, where 4.1% of system utterances
contain invalid symbols. Imitation of Subopti-
mal Dialog Policy: Since our models are only
trained to imitate the suboptimal hand-crafted di-
alog policy, their limitations show when the orig-
inal dialog manager cannot handle the situation,
such as failing to understand slots that appeared in
compound utterances. Future plans involves im-
proving the models to perform better than the sub-
optimal teacher policy.

6 Conclusions

In conclusion, this paper discusses constructing
task-oriented dialog systems using generative en-
coder decoder models. EI is effective in solving
both the OOV entity and KB query challenges for
encoder-decoder-based task-oriented SDSs. Addi-
tionally, the novel data augmentation technique of
interleaving task-oriented dialog corpus with chat
data led to better model performance in both on-
line and offline evaluation. Future work includes
developing more advanced encoder-decoder mod-
els that to better deal with long-term dialog his-
tory and complex reasoning challenges than cur-
rent models do. Furthermore, inspired by the suc-
cess of mixing chatting with slot-filling dialogs,
we will take full advantage of the extensibility of
encoder-decoder models by investigating how to
make systems that are able to interleave various
conversational tasks, e.g. different domains, chat-
ting or task-oriented, which in turn can create a
more versatile conversational agent.
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Abstract

Neural task-oriented dialogue systems of-
ten struggle to smoothly interface with a
knowledge base. In this work, we seek to
address this problem by proposing a new
neural dialogue agent that is able to effec-
tively sustain grounded, multi-domain dis-
course through a novel key-value retrieval
mechanism. The model is end-to-end dif-
ferentiable and does not need to explicitly
model dialogue state or belief trackers. We
also release a new dataset of 3,031 dia-
logues that are grounded through underly-
ing knowledge bases and span three dis-
tinct tasks in the in-car personal assistant
space: calendar scheduling, weather infor-
mation retrieval, and point-of-interest nav-
igation. Our architecture is simultaneously
trained on data from all domains and sig-
nificantly outperforms a competitive rule-
based system and other existing neural di-
alogue architectures on the provided do-
mains according to both automatic and hu-
man evaluation metrics.

1 Introduction

With the success of new speech-based human-
computer interfaces, there is a great need for ef-
fective task-oriented dialogue agents that can han-
dle everyday tasks such as scheduling events and
booking hotels. Current commercial dialogue
agents are often brittle pattern-matching systems
which are unable to maintain the kind of flexible
conversations that people desire. Neural dialogue
agents present one of the most promising avenues
for leveraging dialogue corpora to build statisti-
cal models directly from data by using powerful
distributed representations (Bordes and Weston,
2016; Wen et al., 2016b; Dhingra et al., 2016).
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Event Time Date Party | Agenda
opt. appt. | 10am | Thursday | sister -
dinner 8pm the 13th Ana -
opt. appt. | 7pm the 20th Jeff -
opt. appt. | 4pm the 13th Alex -
DRIVER: Ineed to find out the time and parties
attending my optometrist appointment.
CAR: I have 3 appointments scheduled, with Alex,
your sister, and Jeff. Which are you
referring to?
DRIVER: I want to know about the one that Alex is
joining me at
CAR: That optometrist appointment is at 4 pm.
DRIVER: Thanks
CAR: no problem

Figure 1: Sample dialogue from our dataset. Note
some columns and rows from the knowledge base
are not included due to space constraints. A dash
indicates a missing value.

While this work has been somewhat successful,
these task-oriented neural dialogue models suffer
from a number of problems: 1) They struggle to
effectively reason over and incorporate knowledge
base information while still preserving their end-
to-end trainability and 2) They often require ex-
plicitly modelling user dialogues with belief track-
ers and dialogue state information, which neces-
sitates additional data annotation and also breaks
differentiability.

To address some of the modelling issues in
previous neural dialogue agents, we introduce a
new architecture called the Key-Value Retrieval
Network. This model augments existing recur-
rent network architectures with an attention-based
key-value retrieval mechanism over the entries
of a knowledge base, which is inspired by re-
cent work on key-value memory networks (Miller
etal., 2016). By doing so, it is able to learn how to
extract useful information from a knowledge base
directly from data in an end-to-end fashion, with-
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out the need for explicit training of belief or in-
tent trackers as is done in traditional task-oriented
dialogue systems. The architecture has no depen-
dence on the specifics of the data domain, learn-
ing how to appropriately incorporate world knowl-
edge into its dialogue utterances via attention over
the key-value entries of the underlying knowledge
base.

In addition, we introduce and make publicly
available a new corpus of 3,031 dialogues span-
ning three different domain types in the in-
car personal assistant space: calendar schedul-
ing, weather information retrieval, and point-of-
interest navigation. The dialogues are grounded
through knowledge bases. This makes them ideal
for building dialogue architectures that seamlessly
reason over world knowledge. The multi-domain
nature of the dialogues in the corpus also makes
this dataset an apt test bed for generalizability of
modelling architectures. '

The main contributions of our work are there-
fore two-fold: 1) We introduce the Key-Value Re-
trieval Network, a highly performant neural task-
oriented dialogue agent that is able to smoothly in-
corporate information from underlying knowledge
bases through a novel key-value retrieval mech-
anism. Unlike other dialogue agents which only
rely on prior dialogue history for generation (Kan-
nan et al., 2016; Eric and Manning, 2017), our ar-
chitecture is able to access and use database-style
information, while still retaining the text genera-
tion advantages of recent neural models. By do-
ing so, our model outperforms a competitive rule-
based system and other baseline neural models on
a number of automatic metrics as well as human
evaluation. 2) We release a new publicly-available
dialogue corpus across three distinct domains in
the in-car personal assistant space that we hope
will help further work on task-oriented dialogue
agents.

2 Key-Value Retrieval Networks

While recent neural dialogue models have explic-
itly modelled dialogue state through belief and
user intent trackers (Wen et al., 2016b; Dhingra
et al., 2016; Henderson et al., 2014b), we choose
instead to rely on learned neural representations

for implicit modelling of dialogue state, forming
'The data is available for download at

https://nlp.stanford.edu/blog/a-new-multi-turn-multi-

domain-task-oriented-dialogue-dataset/
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a truly end-to-end trainable system. Our model
starts with an encoder-decoder sequence architec-
ture and is further augmented with an attention-
based retrieval mechanism that effectively reasons
over a key-value representation of the underlying
knowledge base. We describe each component of
our model in the subsequent sections.

2.1 Encoder

Given a dialogue between a user (#) and a sys-
tem (s), we represent the dialogue utterances as
{(u1, s1), (u2,s2), ..., (uk, sx)} where k denotes
the number of turns in the dialogue. At the
i™ turn of the dialogue, we encode the aggre-
gated dialogue context composed of the tokens of
(u1,81,...,8-1,u;). Letting z1,...,x,, denote
these tokens, we first embed these tokens using a
trained embedding function $“™ that maps each
token to a fixed-dimensional vector. These map-
pings are fed into the encoder to produce context-

sensitive hidden representations hj,...,h,,, by
repeatedly applying the recurrence:
hi = LSTM(¢°™ (2;), hi—1) (1)

where the recurrence uses a long-short-term mem-
ory unit, as described by (Hochreiter and Schmid-
huber, 1997).

2.2 Decoder

The vanilla sequence-to-sequence decoder pre-
dicts the tokens of the i system response s; by
first computing decoder hidden states via the re-
current unit. We denote l~11, cee ﬁn as the hidden
states of the decoder and ¥, ..., ¥y, as the output
tokens. We extend this decoder with an attention-
based model (Bahdanau et al., 2015; Luong et al.,
2015a), where, at every time step ¢ of the decod-
ing, an attention score a! is computed for each
hidden state h; of the encoder, using the attention
mechanism of (Vinyals et al., 2015). Formally this
attention can be described by the following equa-
tions:

ut = w? tanh(Wy tanh (W [hs, be])))  (2)

al = Softmax (u!) 3)

hy = aihi &)
i=1

or = Ulhe, hy] )

y¢ = Softmax(oy) (6)



where U, W7, W5, and w are trainable parameters
of the model and o; represents the logits over the
tokens of the output vocabulary V. In (2) above,
the attention logit on h; is computed via a two-
layer MLP function with a tanh nonlinearity at
the intermediate layers. During training, the next
token y; is predicted so as to maximize the log-
likelihood of the correct output sequence given the
input sequence.

2.3 Key-Value Knowledge Base Retrieval

Recently, some neural task-oriented dialogue
agents that query underlying knowledge bases
(KBs) and extract relevant entities either do the
following: 1) create and execute well-formatted
API calls to the KB, operations which require in-
termediate supervision in the form of training slot
trackers and which break differentiability (Wen
et al., 2016b), or 2) softly attend to the KB and
combine this probability distribution with belief
trackers as state input for a reinforcement learn-
ing policy (Dhingra et al., 2016). We choose to
build off the latter approach as it fits nicely into
the end-to-end trainable framework of sequence-
to-sequence modelling, though we are in a super-
vised learning setting and we do away with ex-
plicit representations of belief trackers or dialogue
state.

For storing the KB of a given dialogue, we
take inspiration from the work of (Miller et al.,
2016) which found that a key-value structured
memory allowed for efficient machine reading of
documents. We store every entry of our KB us-
ing a (subject, relation, object) representation. In
our representation a KB entry from the dialogue
in Figure 1 such as (event=dinner, time=8pm,
date=the 13th, party=Ana, agenda="-") would be
normalized into four separate triples of the form
(dinner, time, 8pm). Every KB has at most 230
normalized triples. This formalism is similar to
a neo-Davidsonian or RDF-style representation of
events.

Recent literature has shown that incorporat-
ing a copying mechanism into neural architec-
tures improves performance on various sequence-
to-sequence tasks (Jia and Liang, 2016; Gu et al.,
2016; Ling et al., 2016; Gulcehre et al., 2016; Eric
and Manning, 2017). We build off this intuition
in the following way: at every timestep of decod-
ing, we take the decoder hidden state and compute
an attention score with the key of each normalized
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KB entry. For our purposes, the key of an entry
corresponds to the sum of the word embeddings
of the subject (meeting) and relation (time). The
attention logits then become the logits of the value
for that KB entry. For our KB attentions, we re-
place the embedding of the value with a canonical-
ized token representation. For example, the value
Spm is replaced with the canonicalized represen-
tation meeting_time. At runtime, if we decode this
canonicalized representation token, we convert it
into the actual value of the KB entry (5pm in our
running example) through a KB lookup. Note that
this means we are expanding our original output
vocabulary to |V| + n where n is the number of
separate canonical key representation KB entries.

In particular, let £; denote the word embedding
of the key of our ™ normalized KB entry. We can
now formalize the decoding for our KB attention-
based retrieval. Assume that we have m distinct
triples in our KB and that we are in the t timestep
of decoding:

uz = T tanh(W3 tanh(W/[k;, 24])))  (7)
o = Ulhy, 1] + 0 (8)
y¢ = Softmax (o) )

where r, W], and W} are trainable parameters.
In (8) above, ¥’ is a sparse vector with length
|V| + n. Within 9, the entry for the value em-
bedding v; corresponding to the key k; is equal
to the logit score u§ on k;. Hence, the m en-
tries of ' corresponding to the values in the KB
are non-zero, whereas the remaining entries cor-
responding to the original vocabulary tokens are
0. This sparse vector contains our aggregated KB
logit scores which we combine with the original
logits to get a modified o;. We then select the
argmax token as input to the next timestep. This
description seeks to capture the intuition that in
response to the query What time is my meeting,
we want the model to put a high attention weight
on the key representation for the (meeting, time,
5pm) KB triple, which should then lead the model
to favor outputting the value token at the given
timestep. We provide a visualization of the Key-
Value Retrieval Network in Figure 2.

3 A Multi-Turn, Multi-Domain Dialogue
Dataset

In an effort to further work in multi-domain
dialogue agents, we built a corpus of multi-turn
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Figure 2: Key-value retrieval network. For each time-step of decoding, the cell state is used to compute
an attention over the encoder states and a separate attention over the key of each entry in the KB. The
attentions over the encoder are used to generate a context vector which is combined with the cell state to
get a distribution over the normal vocabulary. The attentions over the keys of the KB become the logits
for their associated values and are separate entries in a now augmented vocabulary that we argmax over.

dialogues in three distinct domains: calendar
scheduling, weather information retrieval, and
point-of-interest navigation. While these domains
are different, they are all relevant to the overar-
ching theme of tasks that users would expect of a
sophisticated in-car personal assistant.

3.1 Data Collection

The data for the multi-turn dialogues was collected
using a Wizard-of-Oz scheme inspired by that of
(Wen et al., 2016b). In our scheme, users had two
potential modes they could play: Driver and Car
Assistant. In the Driver mode, users were pre-
sented with a task that listed certain information
they were trying to extract from the Car Assistant
as well as the dialogue history exchanged between
Driver and Car Assistant up to that point. An ex-
ample task presented could be: You want to find
what the temperature is like in San Mateo over
the next two days. The Driver was then only re-
sponsible for contributing a single line of dialogue
that appropriately continued the discourse given
the prior dialogue history and the task definition.
Tasks were randomly specified by selecting val-
ues (5pm, Saturday, San Francisco, etc.) for three
to five slots (time, date, location, etc.), de-
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pending on the domain type. Values specified for
the slots were chosen according to a uniform dis-
tribution from a per-domain candidate set.

In the Car Assistant mode, users were presented
with the dialogue history exchanged up to that
point in the running dialogue and a private knowl-
edge base known only to the Car Assistant with
information that could be useful for satisfying the
Driver query. Examples of knowledge bases could
include a calendar of event information, a collec-
tion of weekly forecasts for nearby cities, or a col-
lection of nearby points-of-interest with relevant
information. The Car Assistant was then respon-
sible for using this private information to provide
a single utterance that progressed the user-directed
dialogues. The Car Assistant was also asked to fill
in dialogue state information for mentioned slots
and values in the dialogue history up to that point.

Each private knowledge base had six to seven
distinct rows and five to seven attribute types. The
private knowledge bases used were generated by
uniformly selecting a value for a given attribute
type, where each attribute type had a variable
number of candidate values. Some knowledge
bases intentionally lacked attributes to encourage
diversity in discourse.

During data collection, some of the dialogues



Calendar Scheduling

Weather Information Retrieval

POI Navigation

event, time, date,

Slot Types party, room, agenda

location, weekly time,
temperature, weather attribute

POI name, traffic info,
POI category, address, distance

# Distinct Slot Values 79

65 140

Table 1: Slots types and number distinct slot values for different domains. POI denotes point-of-interest.

Training Dialogues 2,425
Validation Dialogues 302
Test Dialogues 304
Calendar Scheduling Dialogues 1034
Navigation Dialogues 1000
Weather Dialogues 997
Avg. # of Utterances Per Dialogue 5.25
Avg. # of Tokens Per Utterance 9
Vocabulary Size 1,601
# of Distinct Entities 284
# of Entity (or Slot) Types 15

Table 2: Statistics of Dataset.

in the calendar scheduling domain did not ex-
plicitly require the use of a KB. For example, in
a task such as Set a meeting reminder at 3pm,
we hoped to encourage dialogues that required
the Car Assistant to execute a task while asking
for Driver clarification on underspecified informa-
tion. Roughly half of the scheduling dialogues fell
into this category.

While specifying the attribute types and val-
ues in each task presented to the Driver allowed
us to ground the subject of each dialogue with
our desired entities, it would occasionally result
in more mechanical discourse exchanges. To en-
courage more naturalistic, unbiased utterances, we
had users record themselves saying commands in
response to underspecified visual depictions of an
action a car assistant could perform. These com-
mands were transcribed and then inserted as the
first exchange in a given dialogue on behalf of
the Driver. Roughly ~1,500 of the dialogues
employed this transcribed audio command first-
utterance technique.

241 unique workers from Amazon Mechanical
Turk were anonymously recruited to use the
interface we built over a period of about six days.
Data statistics are provided in Table 1 and slot
types and values are provided in Table 2. A
screenshot of the user-facing interfaces for the
data collection, as well as a visual used to prompt
user recorded commands, are provided in the
supplementary material.

41

4 Related Work

Task-oriented agents for spoken dialogue systems
have been the subject of extensive research ef-
fort. One line of work by (Young et al., 2013)
has tackled the problem using partially observ-
able Markov decision processes and reinforcement
learning with carefully designed action spaces,
though the number of distinct action states makes
this approach often brittle and computationally in-
tractable.

The recent successes of neural architectures on
a number of traditional natural language process-
ing subtasks (Bahdanau et al., 2015; Sutskever
et al., 2014; Vinyals et al., 2015) have moti-
vated investigation into dialogue agents that can
effectively make use of distributed neural repre-
sentations for dialogue state management, belief
tracking, and response generation. Recent work
by (Wen et al.,, 2016b) has built systems with
modularly-connected representation, belief state,
and generation components. These models learn
to explicitly represent user intent through interme-
diate supervision, which breaks end-to-end train-
ability. Other work by (Bordes and Weston, 2016;
Liu and Perez, 2016) stores dialogue context in a
memory module and repeatedly queries and rea-
sons about this context to select an adequate sys-
tem response from a set of all candidate responses.

Another line of recent work has developed task-
oriented models which are amenable to both su-
pervised learning and reinforcement learning and
are able to incorporate domain-specific knowledge
via explicitly-provided features and model-output
restrictions (Williams et al., 2017). Our model
contrasts with these works in that training is done
in a strictly supervised fashion via a per utterance
token generative process, and the model does not
need dialogue state trackers, relying instead on
latent neural embeddings for accurate system re-
sponse generation.

Research in task-oriented dialogue often strug-
gles with a lack of standard, publicly available
datasets. Several classical corpora have consisted
of moderately-sized collections of dialogues re-
lated to travel-booking (Hemphill et al., 1990;



Bennett and Rudnicky, 2002). Another well-
known corpus is derived from a series of com-
petitions on the task of dialogue-state tracking
(Williams et al., 2013). While the competitions
were designed to test systems for state tracking,
recent work has chosen to repurpose this data by
only using the transcripts of dialogues without
state annotation for developing systems (Bordes
and Weston, 2016; Williams et al., 2017). More re-
cently, Maluuba has released a dataset of hotel and
travel-booking dialogues collected in a Wizard-of-
Oz Scheme with elaborate semantic frames an-
notated (Asri et al., 2017). This dataset aims to
encourage research in non-linear decision-making
processes that are present in task-oriented dia-
logues.

5 Experiments

In this section we first introduce the details of the
experiments and then present results from both au-
tomatic and human evaluation.

5.1 Details

For our experiments, we divided the dialogues
into train/validation/test sets using a 0.8/0.1/0.1
data split and ensured that each domain type was
equally represented in each of the splits.

To reduce lexical variability, in a pre-processing
step, we map the variant surface expression of
entities to a canonical form using named entity
recognition and linking. For example, the surface
form 20 Main Street is mapped to Pizza My Heart
address. During inference, our model outputs the
canonical forms of the entities, and so we realize
their surface forms by running the system output
through an inverse lexicon. The inverse lexicon
converts the entities back to their surface forms by
sampling from a multinomial distribution with pa-
rameters of the distribution equal to the frequency
count of a given surface form for an entity as ob-
served in the training and validation data. Note
that for the purposes of computing our evaluation
metrics, we operate on the canonicalized forms,
so that any non-deterministic variability in surface
form realization does not affect the computed met-
rics.

5.2 Hyperparameters

We trained using a cross-entropy loss and
the Adam optimizer (Kingma and Ba, 2015)
with learning rates sampled from the interval
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[107%,1073]. We applied dropout (Hinton et al.,
2012) as aregularizer to the input and output of the
LSTM. We also added an /5 regularization penalty
on the weights of the model. We identified hyper-
parameters by random search, evaluating on the
held-out validation subset of the data. Dropout
keep rates were sampled from [0.8,0.9] and the
lo coefficient was sampled from [3 - 1076,107°].
We used word embeddings, hidden layer, and cell
sizes with size 200. We applied gradient clipping
with a clip-value of 10 to avoid gradient explo-
sions during training. The attention, output param-
eters, word embeddings, and LSTM weights were
randomly initialized from a uniform unit-scaled
distribution in the style of (Sussillo and Abbott,
2015). We also added a bias of 1 to the LSTM cell
forget gate in the style of (Pham et al., 2014).

5.3 Baseline Models

We provide several baseline models for comparing
performance of the Key-Value Retrieval Network:

e Rule-Based Model: This model is a tra-
ditional rule-based system with modular di-
alogue state trackers, KB query, and natu-
ral language generation components. It first
does an extensive domain-dependent key-
word search in the user utterances to detect
intent. The user utterances are also provided
to a lexicon to extract any entities mentioned.
Collectively, this information forms the dia-
logue state up to a given point in the dialogue.
This dialogue state is used to query the KB as
appropriate, and the returned KB values are
used to fill in predefined template system re-
sponses.

Copy-Augmented Sequence-to-Sequence
Network: This model is derived from the
work of (Eric and Manning, 2017). It aug-
ments a sequence-to-sequence architecture
with encoder attention, with an additional
attention-based hard-copy mechanism over
the KB entities mentioned in the encoder
context. This model does not explicitly
incorporate information from the underlying
KB and instead relies solely on dialogue
history for system response generation.
Unlike the best performing model of (Eric
and Manning, 2017), we do not enhance
the inputs to the encoder with additional
entity type features, as we found that the



Model BLEU Ent. F,;

Scheduling Ent. F,

Weather Ent. F;  Navigation Ent. F;

Rule-Based 6.6 43.8 61.3 39.5 40.4
Copy Net 11.0 37.0 28.1 50.1 28.4
Attn. Seq2Seq 10.2 30.0 30.0 424 17.9
KV Retrieval Net (no enc. attn.)  10.8 40.9 59.5 35.6 36.6
KV Retrieval Net 13.2 48.0 62.9 47.0 41.3
Human Performance 13.5 60.7 64.3 61.6 55.2

Table 3: Evaluation on our test data. Bold values indicate best model performance. We provide both
an aggregated F; score as well as domain-specific F; scores. Attn. Seq2Seq refers to a sequence-to-
sequence model with encoder attention. KV Retrieval Net (no enc. attn.) refers to our new model with
no encoder attention context vector computed during decoding.

model performed worse on our data with this
added mechanism. We choose this model for
comparison as it is also end-to-end trainable
and implicitly models dialogue state through
learned neural representations, putting it in
the same class of dialogue models as our
key-value retrieval net. This model has also
been shown to be a competitive task-oriented
dialogue baseline that can accurately inter-
pret user input and act on this input through
latent distributed representation. We refer to
this model as Copy Net in the results tables.

5.4 Automatic Evaluation

5.4.1 Metrics

Though prior work has shown that automatic eval-
uation metrics often correlate poorly with human
assessments of dialogue agents (Liu et al., 2016),
we report a number of automatic metrics in Table
3. These metrics are provided for coarse-grained
evaluation of dialogue response quality:

o BLEU: We use the BLEU metric, commonly
employed in evaluating machine translation
systems (Papineni et al., 2002), which has
also been used in past literature for evaluat-
ing dialogue systems both of the chatbot and
task-oriented variety (Ritter et al., 2011; Li
et al., 2016; Wen et al., 2016b). While work
by (Liu et al., 2016) has demonstrated that n-
gram based evaluation metrics such as BLEU
and METEOR do not correlate well with hu-
man performance on non-task-oriented dia-
logue datasets, recently (Sharma et al., 2017)
have shown that these metrics can show com-
paratively stronger correlation with human
assessment on task-oriented datasets. We,
therefore, calculate average BLEU score over
all responses generated by the system, and
primarily report these scores to gauge our
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model’s ability to accurately generate the lan-
guage patterns seen in our data.

Entity F;: Each human Turker’s Car Assis-
tant response in the test data defines a gold
set of entities. To compute an entity Fy,
we micro-average over the entire set of sys-
tem dialogue responses and use the entities
in their canonicalized forms. This metric
evaluates the model’s ability to generate rele-
vant entities from the underlying knowledge
base and to capture the semantics of the user-
initiated dialogue flow. Given that our test
set contains dialogues from all three domains,
we compute a per-domain entity F; as well
as an aggregated dataset entity F;. We note
that other work on task-oriented dialogue by
(Wen et al., 2016b; Henderson et al., 2014a)
have reported the slot-tracking accuracy of
their systems, which is a similar but perhaps
more informative and fine-grained notion of
a system’s ability to capture user semantics.
Because our model does not have provisions
for slot-tracking by design, we are unable to
report such a metric and hence report our en-
tity Fy.

5.4.2 Results

We see that of our baseline models, Copy Net
has the lowest aggregate entity F; performance.
Though it has the highest model entity F; for the
weather domain dialogues, it performs very poorly
in the other domains, indicating its inability to
generalize well to multiple dialogue domains and
to accurately integrate relevant entities into its re-
sponses. Copy Net does, however, have the sec-
ond highest BLEU score, which is not surprising
given that the model is a powerful extension to
the sequence-to-sequence modelling class, which
is known to have very robust language modelling
capabilities.



Our rule-based model has the lowest BLEU
score, which is a consequence of the fact that the
naturalness of the system output is very limited by
the number of diverse and distinct response tem-
plates we manually provided. This is a common
issue with heuristic dialogue agents and one that
could be partially alleviated through a larger col-
lection of lexically rich response templates. How-
ever, the rule-based system has a very competitive
aggregate entity F;. This is because it was de-
signed to accurately parse the semantics of user
utterances and query the underlying KB of the di-
alogue, through manually-provided heuristics.

As precursors to our key-value retrieval net, we
first report results of a model that does not com-
pute an attention over the KB (referred to as Attn.
Seq2Seq) and show that without computing atten-
tion over the KB, the model performs poorly in
entity F; as its output is agnostic to the world state
represented in the KB. Note that this model is ef-
fectively a sequence-to-sequence model with en-
coder attention. If we include an attention over
the KB but do not compute an encoder attention
(referred to as KV Retrieval Net no enc. attn.),
the entity F; increases drastically, showing that
the model is able to incorporate relevant entities
from the KB. Finally, we combine these two at-
tention mechanisms to get our final key-value re-
trieval net. Our proposed key-value retrieval net
has the highest modelling performance in BLEU,
aggregate entity Fy, and entity F; for the schedul-
ing and navigation domains. It outperforms the
rule-based aggregate entity F; by 4.2% and out-
performs the Copy Net BLEU score by 2.2 points
as well as its entity F; by 11%. These salient
gains are noteworthy because our model is able to
achieve them by learning its latent representationts
directly from data, without the need for heuristics
or manual labelling.

We also report human performance on the pro-
vided metrics. These scores were computed by
taking the dialogues of the test set and having a
second distinct batch of Amazon Mechanical Turk
workers provide system responses given prior di-
alogue context. This, in effect, functions as an
interannotator agreement score and sets a human
upper bound on model performance. We see that
there is a sizable gap between human performance
on entity F; and that of our key-value retrieval net
(~ 12.7%), though our model is on par with hu-
man performance in BLEU score.
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5.5 Human Evaluation

We randomly generated 120 distinct scenarios
across the three dialogue domains, where a sce-
nario is defined by an underlying KB as well as a
user goal for the dialogue (e.g. find the nearest gas
station, avoiding heavy traffic). We then paired
Amazon Mechanical Turkers with one of our sys-
tems in a real-time chat environment, where each
Turker played the role of the Driver. We evaluated
the rule-based model, Copy Net, and key-value
retrieval network on each of the 120 scenarios.
We also paired a Turker with another Turker for
each of the scenarios, in order to get evaluations
of human performance. At the end of the chat,
the Turker was asked to judge the quality of their
partner according to fluency, cooperativeness, and
humanlikeness on a scale from 1 to 5. The aver-
age scores per pairing are reported in Table 4. In
a separate experiment, we also had Turkers evalu-
ate the outputs of the systems on 80 randomly se-
lected dialogues from the test split of our dataset.
Those outputs were evaluated according to cor-
rectness, appropriateness, and humanlikeness of
the responses, and the scores are reported in Ta-
ble 5.

We see that on real-time dialogues the key-value
retrieval network outperforms the baseline mod-
els on all of the metrics, with especially sizeable
performance gains over the Copy Net which is
the only other recurrent neural model evaluated.
We also see that human performance on this as-
sessment sets the upper bound on scores, as ex-
pected. The results on human evaluation of test
outputs show that the rule-based model provides
the most correct system responses, the KV net-
work provides the most appropriate responses, and
the Copy Net gives the most humanlike responses
by small margins. We should note, however, that
the second regime for human evaluation is more
unrealistic because it involves providing a dia-
logue context that is directly sampled from our
dataset, whereas the first regime of real-time di-
alogues measures the models’ abilities to adapt to
new and noisier user input. This suggests that the
first set of results are more meaningful and repre-
sentative for assessing overall model efficacy.

Examples of dialogues conducted between our
model and Turkers are included in Figure 3.
Particularly noteworthy is our model’s ability to
seamlessly integrate world information from the
underlying KBs in the respective dialogues, while



Model Fluency Cooperative Humanlike Model Correct Appropriate Humanlike
Rule-based 3.20 3.39 2.87 Rule-based 3.96 3.57 3.28
Copy Net 2.33 242 2.02 Copy Net 3.52 3.63 3.56
KV Ret. Net 3.36 343 3.09 KV Ret. Net 3.70 3.64 3.50
Human 3.98 3.95 4.04

Table 4: Human evaluation results on realtime di-
alogues.

still producing very naturalistic utterances. The
model is able to do this effectively across multi-
ple domains.

POI Category Traffic Info
Civic Center parking garage | car collision
Valero gas station road block
Webster Garage | parking garage | car collision
Trader Joes grocery store heavy
Mandarin Rts. chinese rest. moderate
DRIVER: I am looking for a gas station near me with
the shortest route from me.
CAR: the closest gas station is valero but, but there
is a road block nearby.
DRIVER: What is the next nearest gas station?
CAR: valero is the only gas station that i can find
DRIVER: Thanks
CAR: here to serve.
Event Time Date Party | Agenda
swimming act. | 3pm | the 11th | sister -
dinner Tpm the 3rd | mother -
football 2pm | the 20th | mother -
lab appt. 10am | the 17th Jeff -
DRIVER: car when is gonna be my next swimming
activity?
CAR: your next swimming activity is on the 11th
at 3pm.
DRIVER: who is gonna attend with me?
CAR: your swimming activity is on the 11th, one at
3pm with sister
DRIVER: thank you!
CAR: you are welcome

Figure 3: Sample dialogues from our human eval-
uation, conducted between a Turker and the KV
Retrieval Net. In the dialogue, our model re-
sponses are italicized. Additional dialogues are
included in the supplementary material.

6 Conclusion and Future Work

In this work, we have presented a novel neural
task-oriented dialogue model that is able to sus-
tain grounded discourse across a variety of do-
mains by retrieving world knowledge represented
in knowledge bases. It smoothly incorporates
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Table 5: Human evaluation of system outputs on
test set.

this world knowledge into natural-sounding sys-
tem responses in an end-to-end trainable fash-
ion, without the need to explicitly model dialogue
state. Our model outperforms competitive heuris-
tic and neural baselines on both automatic and
human evaluation metrics. In addition, we have
introduced a publicly available dialogue dataset
across three domains in the in-car personal assis-
tant space that we hope will help the data scarcity
issue present in task-oriented dialogue research.
Future work will address closing the margin be-
tween the Key-Value Retrieval Network and hu-
man performance on the various metrics. This will
include developing new methods for robust han-
dling of joint KB attributes as well as usage of the
KB that requires more pragmatic understanding of
the world via notions such as temporal reasoning.
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POI Category Address Traffic Info Distance
Dish Parking parking garage 550 Alester Ave no traffic 3 miles
Cafe Venetia coffee or tea place | 329 El Camino Real | road block nearby 4 miles
Mandarin Roots | chinese restaurant 271 Springer St car collision nearby | 3 miles
Dominos pizza restaurant 776 Arastradero Rd moderate traffic 6 miles
Travelers Lodge rest stop 333 Arbol Dr moderate traffic 4 miles
DRIVER: What is the nearest parking garage within 4 miles
that has no traffic.
CAR: the nearest is dish parking at 550 alester ave, 3 miles away
DRIVER: Does it have any traffic?
CAR: there is no traffic on the route to dish parking
DRIVER: Thanks
CAR: you’re welcome!
Event Time Date Party Agenda Location
dinner Spm | the 4th brother - -
meeting Ipm | the 18th | vice president | discuss company picnic | room 100
conference | 1lam | the Ist HR go over budget room 50
meeting 4pm the 9th HR onboard new members | room 100
lab appt. 6pm | the 14th Jon - -
dinner 6pm the 1st Jon - -
DRIVER: When is my dinner going to be and who will be attending
CAR: your next dinner is on the 1st at 6 pm with your jon
DRIVER: Great, thanks.
CAR: you’re welcome!
POI Category Address Traffic Info Distance
Dominos pizza restaurant 776 Arastradero Rd moderate traffic 7 miles
Stanford Express Care hospital 214 El Camino Real | car collision nearby 1 miles
Travelers Lodge rest stop 333 Arbol Dr no traffic 4 miles
Coupa coffee or tea place | 394 Van Ness Ave moderate traffic 7 miles
The Clement Hotel rest stop 657 Ames Ave road block nearby 6 miles
5672 barringer st. certain address 5672 barringer st. car collision nearby | 4 miles
DRIVER: Hi, I’d like to find a coffee place near me

CAR: we’re 7 miles away from coupa but there is a moderate traffic
DRIVER: What’s the address?
CAR: the address is 394 van ness ave, i sent it on your screen
DRIVER: Great. Can you find me the fastest route there?
CAR: the fastest route is for coupa.
DRIVER: Ok, so coupa is the closest place and you have the fastest route there
CAR: the fastest route has moderate traffic and there is a moderate traffic on the route
do you want to go there?
DRIVER: yes
CAR: i sent the info on your screen, drive carefully!
DRIVER: Thanks
CAR: you're welcome, have a great day.
monday tuesday wednesday thursday friday
los angeles hail, 60-70f foggy, 30-40f | cloudy, 20-30f | stormy 30-40f drizzle, 30-50f
durham rain, 80-90f cloudy, 50-70f | misty, 40-60f dry, 80-100f rain, 50-70f
boston overcast, 30-50f misty, 40-60f | foggy, 40-50f | foggy, 40-50f | clear skies 20-30f
seattle warm, 60-70f foggy, 30-40f | cloudy, 20-30f | stormy, 30-40f drizzle, 30-50f
fresno clear skies, 40-60f | drizzle, 70-80f | humid, 70-90f | stormy, 60-70f cloudy, 90-100f
san francisco foggy, 40-60f hot, 90-100f humid, 50-70f | rain, 80-100f misty, 20-40f
alhambra dew, 30-40f dry, 30-50f dry, 50-60f humid, 80-90f snow, 60-80f
DRIVER: how is the weather
CAR: what city would you like the weather for?
DRIVER: is it foggy in seattle?
CAR: it will not be foggy in seattle today
DRIVER: thanks
CAR: you're welcome!

Figure 4: Sample dialogues from our model. Note in the weather dialogue, the current day is italicized.
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Figure 5: An image provided to users to elicit unbiased audio commands for prompting more naturalistic
dialogues

Figure 6: Driver mode in the wizard-of-oz collection scheme

DRIVER response:

Figure 7: Car Assistant mode in the wizard-of-oz collection scheme

DRIVER: need directions to the nearest hotel

Location Information

traffic info address type poi
5 miles no traffic 465 Arcadia PI rest stop Four Seasons
3 miles no traffic 550 Alester Ave |parking garage Dish Parking
6 miles imoderate traffic| 347 Alta Mesa Ave || friends house jills house
5 miles no traffic 5677 springer tain 5677 springer street
5 miles no traffic 638 Amherst St | grocery store Hgigona Farmers Market

Now, fill in what you as the CAR ASSISTANT would say to the DRIVER below
CAR ASSISTANT response:

End of dialogue? ONLY click this if the last DRIVER statement above suggests the task is

done ->
[ suorit |
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Abstract

We address the problem of acquiring
the ontological categories of unknown
terms through implicit confirmation in di-
alogues. We develop an approach that
makes implicit confirmation requests with
an unknown term’s predicted category.
Our approach does not degrade user ex-
perience with repetitive explicit confirma-
tions, but the system has difficulty deter-
mining if information in the confirmation
request can be correctly acquired. To over-
come this challenge, we propose a method
for determining whether or not the pre-
dicted category is correct, which is in-
cluded in an implicit confirmation request.
Our method exploits multiple user re-
sponses to implicit confirmation requests
containing the same ontological category.
Experimental results revealed that the pro-
posed method exhibited a higher preci-
sion rate for determining the correctly pre-
dicted categories than when only single
user responses were considered.

Introduction

bot Since an open-domain chatbot that always
generates appropriate utterances is still difficult
to build (Higashinaka et al.2015, we think it is
worth building a closed-domain chatbot, which
tries to continue dialogues in a specific domain.

One problem in building closed-domain chat-
bots is that, although they should preferably have
comprehensive lexical knowledge in their do-
mains, all the knowledge cannot realistically be
prepared in advance. Therefore, we must consider
the case where a user uses terms outside of the sys-
tem’s vocabulary, i.e. terms that have ontological
categories the system does not know. If the system
can acquire the term’s category during dialogues,
it will be able to interact with users more naturally
and the cost of expanding its knowledge base will
be reduced.

We call the problem of acquiring the category of
an unknown ternhexical acquisition If the system
can predict the category of an unknown term, it
can ask the user ifitis corredDf{suka et a].2013
Komatani et al. 201§. However, repeating such
explicit confirmation requests can degrade the user
experience in chat-oriented dialogée$Ve there-
fore need to find a way to enable chatbots to: (1)
interact with the user naturally and (2) acquire
lexical information. To solve this dilemma, we

Much attention has recently been paid toproposed an approach usimgplicit confirmation
non-task-orienteddialogue systems —ochat-

oriented dialogue systems— both in researchfirmation request about the predicted category and
(Higashinaka et al. 2014 Yuetal, 201§ and

in industry.

(Ono et al, 2016, where the system makes a con-

uses the user’s response to decide if the category

In addition to pure chat-oriented js correct or not. However, whether such an ap-

systems, some task-oriented dialogue systemgroach is really possible or not has not been well
can engage in chat-oriented dialoguked et al,

2009 Dingli and Scerrj
2016 Papaioannou and Lempr2017) because

2013 Koborietal,

such dialogues are expected to buildpport

(Bickmore and Picard2005 between users an
systems. For simplicity, we will call any system

that can engage in chat-oriented dialoguehat-
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studied.
This paper proposes a method that utilizes im-

'Here, we usdermto mean an expression denoting an

d entity that can be in the knowledge base. A term may consist

of multiple words.
2Some typical examples will be shown in SectianWe
will verify this intuition by conducting a user study.

Proceedings of the SIGDIAL 2017 Conference, pages 50-59,
Saarbriicken, Germany, 15-17 August 2017. (©2017 Association for Computational Linguistics



Stand-alone system Server-based system (a) explicit, correct

[ 7 U1: | will try to cook nasi goreng
[ 4 —
) <5 today. T
rQ ~ Il
. . . ) =
[ 7 Server II | S1: Is nasi goreng Indonesian? Eﬂ'

/i [ 71 (b) explicit, incorrect
L] < [ ] J U1: Mutton Biryani was good. ] [ﬁ”’
| S1: Is Mutton Biryani Italian? |
Figure 1: Server-based system can confirm the

same prediction with different users (c) explicit, correct but too obvious

[ ] U1: I love cheese and mushroom //;/
ravioli. L\j

plicit confirmation dialogues from multiple users

S1:1s cheese and mushroom r@
to increase the accuracy for determining if the pre-
dicted category is correct or fotThe system es-

ravioli Italian? -
timates the confidence score that the category pré‘:—'gure 2: Examples of explicit confirmation re-

diction is correct from the responses of multiplequeStS

users to the same implicit confirmation requests

(Figurellz righ_t). Our proposed method h_as the2 Problem Setting
goal of improving the confidence score estimation
by using implicit confirmation sub-dialogues with This section describes the problem we address in
multiple users. Then the system can determine if ithis paper in detail. We are building a closed-
should add the lexical information to the system’sdomain Japanese language chatbot targeting the
knowledge. For a sub-task, we consider the probfood and restaurant domain, so we use examplesin
lem of estimating how likely the predicted cate-this domain throughout this paper. In this domain,
gory is to be correct from implicit confirmation the problem is to acquire the categories of foods
sub-dialogues with one user (Figuteleft). that the system does not know. We assume that the

It is reasonable to assume that the system cafyStem can identify a food name in the user's in-
make confirmation requests about the same uri2ut even if itis not in the system’s vocabulary by
known term with different users because chatboté/Sing methods such as named entity recognition
typically run on servers so they can share inter{Mesnil etal, 2013. Note that in this paper we
action logs for different users. Furthermore, it is@|SO @ssume the category of an unknown term is
difficult to ask a single user to respond to confir-Predicted with an existing metho®{suka et al.

mation requests with the same predicted categorg013 Ono etal, 201§. We do not assume any

many times, so collecting responses from multiplePntological structure of foods.
users is desirable. This paper focuses on deciding if the pre-

This paper is oraanized as follows. The rob_dicted category of unknown terms is correct or
hap g ' Prob- ot in dialogues. To this end, methods for gen-

lem settings and related work are discussed in the . oy . .
. . ) €rating explicit confirmation have been proposed.
next two sections. Sectioh describes the pro- : o
. . .Otsuka et al (2013 proposed lexical acquisition
posed method to determine correct categories in s )
e . . . methods that explicitly ask the user questions on
implicit confirmation requests on the basis of mul-

tiple implicit confirmation sub-dialogues with dif- the basis of category prediction results. For ex-

ferent users. Sectiorsand6 show the data col- ample, if the system does not knavasi goreng

lection by crowdsourcing and several results ain the user input (denote asl) in Figure2 (a),
y ng . e system predicts its categoryladonesian food

preparation for the main experimental evaluatlonand asks the user “Is nasi gorend Indonesian?”

of the proposed method, which is detailed in Sec- g g '

. . . . Komatani l.(201 | r ility-
tion 7. Section8 concludes this paper and dis- omatani et al.(2016 aiso p oposegl a ut ty'

based method for selecting appropriate questions
cusses future work. T

“Note that Figure® through4 show artificial examples,
- rather than those excerpted from the experimental data de-
3We do not deal with multi-party dialogues but utilize the scribed in Sectiorb because the experimental data are in
interaction logs of two-party dialogues with different users. Japanese and their direct translations are not natural.
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(a) implicit, correct such cases, it is not simple to determine if the cat-
4 U1: Tempura soba is great! ] egory is incorrect. If the system’s determination
is wrong, it might add incorrect information to its
database. Thus, we need to find a way to accu-
rately determine the correctness of the predicted
categories through implicit confirmation.

isn’t it?

S1: Japanese food is healthy, i? / \/

T U2: Yes, | ate tempura soba ] &
for lunch today.

(b) implicit, incorrect; judgement is easy

2 U1: Philly cheesesteaks have a lot of 3 Related Work
[ ] calories, but | can’t give them up!

S1: | love rare steak. F L ] ]
- - - G So far, several studies have addressed lexical ac-
U2: No, a Philly cheesesteak is A L . ;
a sandwich. quisition in dialogues. Meng et al. (2004 and

Takahashi et al2002 proposed methods for pre-
dicting the categories of unknown terms. They ac-
quire coarse categories for unknown terms, which
roughly correspond to named entity categories.
Those categories can be acquired more easily than
Y 4{ U1: | baked Pandoro yesterday. ] f— the more specific categories that we are trying

S1: Sometimes | want to have F QL}J T to acquire. Holzapfel et al. (2009 proposed a
Japanese food. i gﬂ' method for a robot to acquire fine-grained cat-
egories for unknown terms by iteratively asking
guestions. We do not think this method is suit-
able for chatbots as it repeats explicit questions.
Whereas a previous study tried to acquire rela-
tionships among domain-dependent entities in di-
alogues Pappu and Rudnicky014, here we fo-
on the basis of the results of category prediction.cu‘.‘; on acquiring Iexmal_mformatlon, Wh'Ch IS re-
. . : guired before such relations are obtained.
However, such explicit confirmation requests can
degrade the user experience in chat-oriented dia- We address the problem of deciding if the con-
logues, especially when the predicted category iéent of an implicit confirmation request is correct
incorrect as in F|gure (b), or the category of the oOr not. Some studies related to this problem have
unknown term is obvious as in FiguPgc). tried to classify affirmative and negative sentences
We have proposed using implicit confirmation by using rules or statistical methods. For exam-
(Ono et al, 2016. For exampleS1in Figure3 (a) ple, de Marneffe et al(2009 built rules for judg-
does not explicitly ask the user if the category ofing if aresponse to a yes/no question is affirmative
tempura sobas Japanese, but frotd2, it is pos-  ©F negative when it is not a simple “yes” or “no.”
sible to determine the category is correct. As anokeen and de Marneff@2013 investigated fea-
other example, in Figurd (b), the system can de- tures for detecting disagreement in the corpus of
termine the predicted category is incorrect from@rguments on the Web. In contrast, in this paper,
u2. we do not try to classify user responses into af-

Determining if the predicted category is correct/I'mative and negative ones but try to determine
or not in implicit confirmation, however, is not al- Whether a category in an implicit confirmation re-
ways easy. Since user responses to implicit confifdU€st is correct or not.  Furthermore, we utilize
mation requests can come in various forms, lookMultiple sub-dialogues with different users.
ing at just the linguistic expressions of the user Our method can be considered as
responses is not enough. For example, in Figan instance of implicitty  supervised
ure4, the system incorrectly predicts the categorylearning Banerjee and Rudnicky 2007
Japanese foodor Pandoromentioned inUl al- Komatani and Rudnicky 2009 in that user
though it is Italian and generates an implicit con-responses to implicit confirmation requests are
firmation requestS1. The user then talks about used as indicators for acquisition, though the
Japanese food to continue the dialogu2)( In  target knowledge is different from those works.

Figure 3: Examples of implicit confirmation re-
quests

Figure 4: Example of implicit confirmation re-
guest for which judgement is difficult
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Figure 5:Overview of calculating confidence scof@nf (w, c)

4 Determining Correct Categories Using 1. Generate an implicit confirmation request
Responses from Multiple Users containing a predicted categoryfor users

) after an unknown termy appears.
The purpose of our method is to prevent the system

from learning incorrect categories for an unknown 2. Obtain the probability; (w, ¢) from the im-
term by using multiple implicit confirmation sub- plicit confirmation sub-dialogue with useér
dialogues with different users. This is possible The probability can be obtained by machine
because our system is designed as a server-based learning that has features based on expres-
dialogue system and can give implicit confirma- sions from the user response and its context.
tion requests with the same predicted category to
different users. The proposed method determines 3- EXtract features fromp; (w, ¢), ..., pi(w, ¢)
more accurately whether or not the predicted cate- ~ 2nd  calculate  the  confidence  score
gory in the implicit confirmation request is correct Conf(w, c) that represents how likely
by exploiting multiple responses to them. the category of the unknown termw is to

Let p;(w, ¢) be the probability that a predicted be correct.

categoryc of an unknown termy is correct after 4 |f Conf(w,c) exceeds a predetermined
a single implicit confirmation request. The cate- threshold,c is regarded as correct and is ac-
gory can be predicted using surface information  gujred as knowledge. Otherwise, increment
of the unknown term such as character n-gramand ;o to Step 1, and generate one more im-
character types in Japanesgituka et al.2013. plicit confirmation withc to another user af-
The index: denotes thé-th response to implicit ter the unknown ternw appears.
confirmation requests. Our goal here is to obtain
a confidence scor€onf(w, ¢) representing how 4.2 Obtaining Confidence Scores for Correct
likely categoryc of the unknown termw is to be Categories
correct on the basis of replies to implicit confirma-The problem of obtaining the confidence score
tion requests from different users. We can then Conf(w,c) can be formulated as a regres-
determine whether or not the system can add thgion using probabilities ofn user responses
pair of the unknown termw and category: into {p1(w,c),...,pn(w, c)} as its input. Intuitively,
the system knowledge by setting a threshold fothe category: can be regarded as more likely to be
Conf(w, c). correct wherp;(w, ¢) with higher values are ob-
tained more times.

Table 1 lists the features used in this regres-
Figure 5 gives an overview of the proposed sion for when probabilities; (w, c) are obtainead:
method. The steps below initially start with= 1.  times. To use the same regression function when

4.1 Procedure
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Table 1:Features fromm response$l < i < n) Table 2: Features forp;() with single user re-

f1 | Average ofp;(w, c) sponses
21 n gl U2includes an expression affirmative$d
f3 max; pi(w, ) g2 U2includes an expression negativeSh
fa mim; pi(w, ) g3 U2includes an expression correctisd
f5 | {ilpi(w,c) > 0.5}[/n g4 UlandU2 contain the same word
g5 U2includes the category name usedsih
| Specified term | Link to Wikipedia g6 U2 |nclydes a category name not usecbsih,
- - excluding cases that fall under g3
Please talk about “bagna cauda.” g7 iLrJ1ZSi2cIudes a word preventing change of topic
YOU: | ate bagna cauda for the first time. g8 Ulincludes the category name usedsih

g9 Ulincludes a category name not usedih
g1l0 Ulincludes any interrogative

gll Ulincludes an expression corresponding to the
You: | | [[send | category mentioned i81

SYSTEM: Italian is perfect for a date, isn’t it?

Figure 6: Schematic diagram of GUI used in the uppermost part in Figut@ The worker was
crowdsourcing able to check the Wikipedia page for the specified
term by following a link on the GUI. This was to
prevent them from talking without understanding
n increases, we design features that consist of the term.
constant number even whenvaries and that are  \We prepared 20 terms and their corresponding
derived fromn responses to implicit confirmation implicit confirmation requests used at Step (2): 10
requests with category had correct categories and the other 10 had incor-
rect categories. For example, for “shurasuko” (the
Japanese rendering of churrasco), an implicit con-

We conducted experiments to verify if our methodfirmation request with its correct category “meat
is effective. Although it would have been desir- disi” is “Eating meat is fun, isn't it?” On the

able to collect experimental data by incorporat-Cther hand, for “sangria,” an implicit confirma-

ing our method into the chatbot we are developlion request with an incorrect category “yogdshi
ing and having it used by many people without'S “Yogashi have a rich taste, don't they?” Fur-
giving any instructions, this would have requiredthermore, expressions of the implicit cqnflrmatlon
a huge amount of interactions to collect enougH€duest were altered to make the confirmation re-
data to verify our method. We therefore collecteddU€St more natural when a worker's input was in-

user responses to implicit confirmation request{€'Togative or negative.
from 100 workers via crowdsourcifig The data  WWe obtained 1,956 responses from 98 workers,

collection procedure consists of three steps: (1) 42lf of which were responses to implicit confirma-

worker inputs an utterance containing a term specion requests with correct categories, and the other
ified on the interface at the crowdsourcing site,half were responses to those with incorrect ones.

(2) the system generates an implicit confirmation/Veé removed data from two workers who just in-

request about the term, and (3) the worker fillsPut only specified words or repe.ated_th_e same sen-
in the response to the confirmation request. Thi{€nces. We also removed four invalid inputs con-
procedure was repeated for 20 specified terms p&fSting of only spaces.

worker.

Figure 6 shows a schematic diagram of the
graphical user interface (GUI) used in the crowd-
sourcing. Note that it was actually in Japanese6.1 Features for Obtaining Probabilities with
The lines starting with “YOU” and “SYSTEM"” Single User Responses
denote the worker's and the system’s utterancessype? |ists the features for estimating how likely

respectively. At Step (1), the worker was asked e categories in system confirmations are to be
input an utterance that contains a term specified i

5 Data Collection via Crowdsourcing

6 Preliminary Experiment with Single
User Responses

- SFood category hierarchies usually used in Japan are dif-
® We used a crowdsourcing platform provided by Crowd- ferent from those used in other countries.
works, Inc.https://crowdworks.co.jp/ "Yogashi means western sweets in Japanese.
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correct. Herel1, S1, andU2 respectively de- Table 3:Confusion matrices with single responses

note a user input, the implicit confirmation request
by the system aftet'1, and th t Reference

y he system aftelll, and In€ USer reSponse 10 roatured Output | Correct| Incorrect

the request. All feature values are binary; if the
N ; feature is t it valud ioth all Correct 742 313
sentence for a feature is true, its valud jother- incorrect 536 665

wise it is0. These features were designed to rep-
resent differences in expressions of user responses g1,92 || Correct 320 220
P P only Incorrect 658 758

to implicit confirmation requests with either a cor-
rect or incorrect category.

We briefly explain some important features byTable 4: Classification results with single re-
using the examples below. A user often uses affirsponses

mative expressions when responding to an implicit Features P R F

confirmation request with a correct category. This all Correct | 0.703| 0.759| 0.730

is represented by Feature g1, for which 15 affir- Incorrect| 0.738| 0.680| 0.708

mative expressions in Japanese were used such asgil, g2 || Correct | 0.593| 0.327| 0.422

“Yes” and “That'’s right.” only Incorrect| 0.535| 0.775| 0.633
When a category in an implicit confirmation re- P: precision, R: recall, F: F-measure

quest is correct, a user tends to continue with the

same topic inJ2 as inU1. In the example in Fig-

ure 3 (a), the user continues with the same topics 2 Classification Performance with Single
and uses the same tet@mpura soban Ul and User Responses

U2. This is represented by Feature g4. Wi q q imi . |
When the system makes an implicit confirma- € conducted a preliminary experiment to clas-

tion request on the basis of an incorrect category':"fy responses to implicit confirmation requests

users tend to feel the system has suddenly chang th _Cf[’”eﬁhanf E')EZOWGCI Categorlgst.h The dtata;
the topic. In this case, the user tries to return thgONSISS ofthe L, responses and their contexts

topic in U2 to the original one irJ1. An example qbtalned by crovydsourqn_g as descrlbed n Sec-
tion 5. We applied logistic regression to them

is as follows. with the features listed in Tabl2 We used the
U1 | like sangria with its fruity taste. module in Weka (version 3.8.1Hgll et al, 2009
S1: Yogashi have a rich taste, don't they? as its implementation. The parameters were the
U2: | am talking about the alcoholic bev- default values. The classification was performed
erage. by setting a threshold to the obtained probability

pi(w, c). The threshold wa8.5, which is also the
In this example, the system generates an imdefault value of Weka. Evaluation was conducted
plicit confirmation with the incorrect category With a 10-fold cross validation.
“yogashi” in S1 although the correct category of We compared two feature sets: one consists of
sangria is “alcoholic beverage.” Then the user sayall 11 features listed in Tab2and the other con-
that the topic is an alcoholic beverage and tries tsists of Features g1 and g2 only. The latter cor-
return to the original topic. Here, another categoryresponds to a baseline condition that only consid-
name not used 51 is included inU2. This is ers affirmative and negative expressions@fand

represented as Feature g6. does not consider any relationship wifl and
For Feature g2, 17 negative expressions werb 1.
used such as “is not [category hame use8& 1}’ The results are shown in Tabl8saand4. Table

and “No.” For Feature g3, six expressions such a8 shows confusion matrices of the raw outputs for
“It is [category name not used i81]" that tries  the two feature sets. Tablesummarizes the re-

to correct the system’s previous confirmation re-sults as precision and recall rates and F-measures
guest were used. Our system has 20 categoriesf the two categories (correct and incorrect) also
and five more names such as “cheese” and “pastdbr the two feature sets. The average-F scores,
were used as category names for Features g6 amné. the arithmetic means of F-measures for the
g9. Eighteen expressions including interrogativeswo categories, were 0.719 and 0.528 when all fea-
were used for Feature g10. tures and only g1 and g2 were used, respectively.
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Table 5:Top-10 feature sets after removing arbitrary features for classification with single responses

Removed Correct Incorrect
features P R F P R F avg-F
glo0 7041 759 | .730 [ .738| .681 | .709 | .719
None .703 | .759| .730 | .738 | .680 | .708 | .719

g7,910 .701 | .760 | .729 | .738 | .676 | .705 | .717
91,04,010 || .699 | .764 | .730 | .740 | .672 | .704 | .717

gl,04 .699 | .765| .730 | .740 | .671 | .704 | .717
g7 701 | .759 | .729 | .737 | .676 | .705| .717
04,010 691 | .784 | 735 | .751| .649 | .696 | .715
g4 .690 | .784 | .734 | .750 | .648 | .696 | .715

gl,94,97,910| .696 | .765 | .729 | .739 | .666 | .700 | .715
gl,g4,97 | .695| .766 | .729 | .739 | .665 | .700 | .715

P: precision, R: recall, F: F-measure

This indicates that using the features representing verified in the following section.

context improves the classification more than us- ) o

. with Multiple Users
We also performed feature selection to analyze P

which features were effective for the classification.7.1 Data Preparation
More specifically, we performed the same expery, s section, we explain how to prepare data for

iments with aﬂ combinations of the 11 features,»ining and evaluating the regression function to
l.e.,2047(= 2 —1) feature sets, and calculated gpain Conf (w, ¢). We performed the experiment
their average-F scores. Tatbelists top-10 fea- i, 5 perfectly open manner: no data were shared
ture sets sorted by the scores. “None” denotes the, ¢ aining and test phases from the viewpoint of
case when all the 11 features were used. First, thginer workers or questions. More specifically, we
“None” condition was ranked second in the table,, 54 9g (or 97) responses to implicit confirmation

which shows that almost all features were eﬁec'requests with 10 correct and 10 incorrect cate-

tive for the classification. Next, when Feature glogories for making implicit confirmation requests,

was removed, the F-value for the Incorrect cat- ¢ explained in SectioB Thus, we divided them

egory slightly improved and thus the average-Fn, four disjointed groups, i.e., one group consists

score also improved, as shown in the table. Beyy 49 (or 48) workers with five correct and five in-
cause Feature g10 also appears in the table seveq ot categories.

times, Feature g10 was implied to be less help- 14 gata were generated using responses col-
ful in this classification. On the other hand, thelected from multiple users. The responses are mu-
weight value for Feature g8 of the logistic regres-tu‘,i”y independent because they are obtained by a

sion function had the largest and ppsitive Valueserver-based dialogue system, so they can be com-
when Feature g10 was removed. This shows Fegsine q in an arbitrary order. Thus, when we have

ture g8 gave strong evidence and resulpfia, ¢) - agnonses to single implicit confirmation requests,

tended to be higher when Feature g8 wasThis 0 ¢a generat€)) patterns. In our experiment,

means that, when the common category name i§; \ya549 (or 48) in each group. Since the values
included both inJ1andS1, the category included

: YOS of (]Z) become very large, we set a cut-off value
in S1 tended to be correct because the topic is nofan generating the combination randomly. The
changed abruptly. value was set td, 000 when (V) exceeds, 000.

The results shown above indicate the classifica- From this data combination, we obtained fea-
tion performance was about 70% precision and reture values listed in Tablewith the reference val-
call rates on the basis of the user response and itges for every case. The reference value was set to
context. However, we need higher precision beeither1 or 0 depending on whether the category
cause pairs of an unknown term and its predictedised in the implicit confirmation request was cor-
category will be added to the system knowledgerect or not, respectively.
which must not contain errors. Thus, we have pro- We then trained the regression function with
posed a method using multiple user responses &ach set of divided data of the four groups. We
described in Sectio4, the effectiveness of which selected test data sets to be completely disjointed
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n < 48). The result revealed the best performance
from each of the four data sets from the view-in the case was obtained when we used only Fea-
point of both workers and questions. We also usedures f3 and f4. One reason for this result was that
the logistic regression, which was implemented inthe correlations among the features might be high.
Weka (version 3.8.1) (Hall et al., 2009), with its We still need to further investigate feature sets to
default parameters. The results by the regressiopbtain betteCon f (w, ¢), which is future work.
for the four test sets are used together and analyzed
hereafter. 7.3 Discussion on Reasonable Number of

Responses
7.2 Performance of Regression with Multiple

We discuss the relationship between the values of
Responses

n and the performance of the regression function
We first investigated if the performance was betin more detail. Figure7 shows that the perfor-
ter when the system used multiple responses froomance represented by the BEP improved when
users. The precision and recall rates were calctincreased. On the other hand, cost will need to be
lated by setting various thresholds @nf(w, ¢)  incurred for increasing, i.e., collecting responses
representing how likely a categoeyis to be cor-  from more human users. Thus, we investigate how
rect for an unknown term. much the performance of the regression function

Figure7 depicts the precision and recall curveschanged whem increased.
for n up to 8. It also shows a line indicating  We first investigated how the BEP values in-
the breakeven points (BEPs), meaning the valuereased in accordance with values. Figure8
where the two rates are equal. The BEP is usedepicts the increases in the BEP values when
as a single point representing a precision and rewas incremented by. It shows the increases were
call curve and to show how good the estimatedarge whilen < 5. This result indicates that it
confidence score is whem changes. Note that is worthwhile to ask more users implicit confir-
n = 1 corresponds to the case when only singlemation requests with predicted categerespe-
responses were used for the regression. cially while n is small, to more accurately deter-

The performance represented by the BEP valmine whether or not the category is correct. The
ues became better asbecame larger. In particu- figure also shows that the improvement mostly di-
lar, the BEP values af > 2 were larger than that minished, especially whem > 10. This indicates
of n = 1. This proves that the proposed methodthat the effect by asking implicit confirmation re-
using multiple user responses more accurately deguests to more human users shows diminishing re-
termines whether the predicted category is corredurns as: increases from the viewpoint of the per-
or not. formance represented by the BEP.

We also performed feature selection by remov- We furthermore investigated recall rates when
ing arbitrary features listed in Table The per- thresholds were set tGonf(w, ¢) so as to keep
formance of the regression function was measuregrecision rates high. In our problem setting, high
by the summation of BEP values for eael{l < precision rates rather than high recall rates are re-
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osl imental results revealed that the proposed method
04l | exhibited higher performance than when only sin-
gle user responses were used. We hope the perfor-

8 03/ mance will be improved with further feature engi-
@ o2} 1 neering.
011 ] The proposed method is expected to enable a
oL chatbot to acquire knowledge through dialogues
5 10 15 20n25 30 35 40 45 without annoying users with repetitive simple ex-

plicit confirmation requests, while it can avoid ac-
quiring wrong knowledge by achieving a high pre-
cision rate for determining the correctness of the
knowledge.
quired to avoid incorrect information being mis- We are planning to address several issues be-
takenly added to the system knowledge. Figtire fore deploying this method in a chatbot. Although
also shows the precision rate approachéatr » >  we intuitively think implicit confirmation requests
5 by setting very large thresholds t@onf(w, c).  do not degrade users’ impressions compared with
These cases indicate that the system can be akepetitive explicit confirmation requests, we need
most perfectly confident that the predicted cateto experimentally verify this by a user study. On
gory c is correct. The recall rates were low for the basis of its results, we will define a strategy of
such cases because the precision and recall rateien to make implicit confirmation requests and
are in a trade-off relationship. We investigated thewhen to make explicit confirmation requests. De-
recall rates for such cases wheincreased. spite these remaining issues, we believe that the
Figure 9 depicts the recall rates when we setexperimental results presented in this paper are
very high threshold values fatonf (w, ¢) so that valuable in that they show the possibility of lex-
the precision rates become almost one, i.es,e.  ical acquisition through implicit confirmation.
Here, we set = 0.0058. First, the graph shows
that the precision rate existed whenwas 5 or
more. For example, the recall rate far = 5 This work was parﬂy Supported by JSPS KAK-
was 0.175. This recall rate was rather low, but ENH| Grant Number JP16H02869.
we think high precision rates should be prioritized
over recall rates, even if some correct information
is discarded at the current Second, the graph References
also shows that the recall rates increased with Satanjeev Banerjee and Alexander I. Rudnicky. 2007.
This means that, if the system asks more implicit Segmenting meetings into agenda items by extract-
confirmation requests with category more un- ing implicit supervision from human note_—taking. In
known terms the categories of which arwill be m%%;g;rzﬁ;;) Bglggs? ggelrfgggon Intelligent User
acquired with a sufficiently high precision rate.

Figure 9:Recall rates with precision 8t995
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Abstract

Recursive autoencoders (RAEs) for com-
positionality of a vector space model were
applied to utterance intent classification
of a smartphone-based Japanese-language
spoken dialogue system. Though the
RAE:s express a nonlinear operation on the
vectors of child nodes, the operation is
considered to be different intrinsically de-
pending on types of child nodes. To re-
lax the difference, a data-driven untying
of autoencoders (AEs) is proposed. The
experimental result of the utterance intent
classification showed an improved accu-
racy with the proposed method compared
with the basic tied RAE and untied RAE
based on a manual rule.

1 Introduction

A spoken dialogue system needs to estimate the ut-
terance intent correctly despite of various oral ex-
pressions. It has been a basic approach to classify
the result of automatic speech recognition (ASR)
of an utterance into one of multiple predefined in-
tent classes, followed with slot filling specific to
the estimated intent class.

There have been active studies on word
embedding techniques (Mikolov etal., 2013),
(Pennington et al., 2014), where a continuous
real vector of a relatively low dimension is
estimated for every word from a distribu-
tion of word co-occurence in a large-scale
corpus, and on compositionality techniques
(Mitchell and Lapata, 2010), (Guevara, 2010),
which estimate real vectors of phrases and clauses
through arithmetic operations on the word em-
beddings. Among them, a series of composi-
tionality models by Socher, such as recursive
autoencoders (Socher et al., 2011), matrix-vector
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model which models the dependencies explicitly
(Socher et al., 2012), compositional vector gram-
mar which combines a probabilistic context free
grammar (PCFG) parser with compositional vec-
tors (Socher et al., 2013a) and the neural ten-
sor network (Socher et al., 2013b) are gaining at-
tention. The methods which showed effective-
ness in polarity estimation, sentiment distribution
and paraphrase detection are effective in utter-
ance intent classification task (Guo et al., 2014),
(Ravuri and Stolcke, 2015). The accuracy of in-
tent classification should improve if the composi-
tional vector gives richer relations between words
and phrases compared to thesaurus combined with
a conventional bag-of-words model.

Japanese, an agglutative language, has a rela-
tively flexible word order though it does have an
underlying subject-object-verb (SOV) order. In
colloquial expressions, the word order becomes
more flexible. In this paper, we applied the re-
cursive autoencoder (RAE) to the utterance intent
classification of a smartphone-based Japanese-
language spoken dialogue system. The original
RAE uses a single tied autoencoder (AE) for all
nodes in a tree. We applied multiple AEs that
were untied depending on node types, because the
operations must intrinsically differ depending on
the node types of word and phrases. In terms of
syntactic untying, the convolutional vector gram-
mar (Socher et al., 2013a) introduced syntactic un-
tying. However, a syntactic parser is not easy to
apply to colloquial Japanese expressions.

Hence, to obtain an efficient untying of AEs, we
propose a data-driven untying of AEs based on a
regression tree. The regression tree is formed to
reduce the total error of reconstructing child nodes
with AEs. We compare the accuracies of utterance
intent classification among the RAEs of a single
tied AE, AEs untied with a manually defined rule,
and AEs untied with a data-driven split method.
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Table 1: Relative frequency distribution of utter-
ance intent classes

intent class tag ~ freq  sample utterance (translation)
CheckWeather  20.4 How’s the weather in Tokyo now?
Greetings 16.5 Good morning.

AskTime 11.3  What time is it now?
CheckSchedule 7.2 Check today’s schedule.
SetAlarm 5.7 Wake me up at 6AM tomorrow.
Thanks 3.6  Thank you.

Yes 3.1 Yes.

Goodbye 2.4 Good night.

WebSearch 2.2 Search (keyword)

Praise 2.2 You are so cute.

Time 1.9 Tomorrow.

MakeFun 1.6  Stupid.

GoodFeeling 0.9 I'mfine.

BadFeeling 0.8 Iam tired

CheckTemp 0.8  What is the temperature today?
BackChannel 0.7  Sure.

AddSchedule 0.7  Schedule a party at 7 on Friday.
FortuneTeller 0.7  Tell my fortune today.

Call 0.6 Ho.

No 0.6 No way.

freq. : relative frequency distribution in percent.

2 Spoken Dialog System on Smartphone

The target system is a smartphone-based Japanese-
language spoken dialog application designed to
encourage users to constantly use its speech inter-
face. The application adopts gamification to pro-
mote the use of interface. Variations of responses
from an animated character are largely limited in
the beginning, but variations and functionality are
gradually released along with the use of the appli-
cation. Major functions include weather forecast,
schedule management, alarm setting, web search
and chatting.

Most of user utterances are short phrases and
words, with a few sentences of complex contents
and nuances. The authors reviewed ASR log data
of 139,000 utterances, redifined utterance intent
classes, and assigned a class tag to every utterance
of a part of the data. Specifically, three of the au-
thors annotated the most frequent 3,000 variations
of the ASR log, which correspond to 97,000 utter-
ances i.e. 70.0 % of the total, redefined 169 utter-
ance intent classes including an others class, and
assigned a class tag to each 3,000 variations.

Frequent utterance intent classes and their rela-
tive frequency distribution are listed in Table 1. A
small number of major classes occupy more than
half of the total number of utterances, while there
are a large number of minor classes having small
portions.
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Figure 1: Model parameters and error functions of
the recursive autoencoder

3 Intent Class Estimation based on
Untied RAE

3.1 Training of Basic RAE

Classification based on RAE takes word embed-
dings as leaves of a tree and applies an AE to
neighboring node pairs in a bottom-up manner re-
peatedly to form a tree. The RAE obtains vec-
tors of phrases and clauses at intermediate nodes,
and that of a whole utterance at the top node of
the tree. The classification is performed by an-
other softmax layer which takes the vectors of the
words, phrases, clauses and whole utterance as in-
puts and then outputs an estimation of classes.

An AE applies a neural network of model pa-
rameters: weighting matrix W, bias b and ac-
tivation function f to a vector pair of neighboring
nodes x; and x; as child nodes, and obtains a com-
position vector y(; ;) of the same dimension as a
parent node.

Yy = FOV Ve xj1 + b1) (1)
The AE applies another neural network of an in-
version which reproduces x; and x; as x; and x;.
from y(; ;) as accurately as possible. The inversion
is expressed as equation (2).

[} X1 = FOW Py +bP) )
The error function is reconstruction error E,,. in
3).

Erec = 3)

2

X X5 = Lxis g
The tree is formed in accordance with a syn-
tactic parse tree conceptually, but it is formed by
greedy search minimizing the reconstruction error
in reality. Among all pairs of neighboring nodes



at a time, a pair that produces the minimal recon-
struction error E,.. is selected to form a parent
node.

Here, the AE applied to every node is a single
common one, specifically, a set of model param-
eters W, p(D W and p@. The set of model
parameters of the tied RAE is trained to minimize
the total of E,.. for all the training data.

The softmax layer for intent classification takes
the vectors of nodes as inputs, and outputs pos-
terior probabilities of K units. It outputs dj ex-
pressed in equation (4).

dk — f(W(label)y + b(label)) (4)
The correct signal is one hot vector.
t=10,...,0,1,0,...,0] (5)

The error function is cross-entropy error E., ex-
pressed in (6).

K
Eeo(y,1) = = ) e logdi(y) (6)
k=1

Figure 1 lists the model parameters and error
functions of RAE. While AE aims to obtain a con-
densed vector representation best reproducing two
child nodes of neighboring words or phrases, the
whole RAE aims to classify the utterance intent
accurately. Accordingly, the total error function
is set as a weighted sum of two error functions in
equation (7).

E = aErec + (1 — @)E (7

The training of RAE optimizes the model pa-
rameters in accordance with a criterion of mini-
mizing the total error function for all training data.

3.2 Rule-based Syntactic Untying of RAE

To relax the difference of the nonlinear operation
depending on types of nodes, we designed a rule to
switch two AEs depending on types of two child
nodes manually. At the leaf level of a tree, most
of words are nouns, while a sentence or a phrase
is composed of a predicate with a subject or an
object or a complement. The operation of vec-
tors between words and noun phrases, and that
between phrases and clauses are assumed to dif-
fer considerably. Hence, the manual rule switches
two AEs, one for words and noun phrases, and the
other for phrases and clauses. Along a tree, the
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1) Preparation

Attach part-of-speech tags to all morphemes
of training data.

2) Training a tied RAE of a single AE
Train a tied RAE of a single AE for all nodes.
|

Y

3) Data collection for split
Apply the RAE to training data, and tally E,.
for each node type.

4) Selection of an AE to split
Select an AE of the maximum total E,..

'

5) Binary split for untying of the AE
Split the AE into two classes based on a
regression tree with a response of E.

v

6) Retraining of the untied RAE
Retrain the RAE. Softmax layer is kept single.

I
Figure 2: Procedure for training RAE of multiple
AEs with data-driven untying

Untied RAE

AE for words and noun phrases is applied at lower
nodes around leaves, and the AE for phrases and
clauses is applied at upper nodes close to the root
node.

The node type is determined as follows. At leaf
nodes, every word of a sentence is given a part-of-
speech tag as a node type by Japanese morpheme
analyzer (Kudo et al., 2004). The number of tags
is set at 10. At upper nodes, the node type is de-
termined by the combination of node types of two
child nodes. A look-up table of the node type is
defined on the basis of Japanese grammar. An-
other look-up table determining which AE to ap-
ply on the basis of the node type is defined as well.

3.3 Data-driven Untying of RAE

To obtain a more effective untied RAE, we de-
signed a training method including data-driven un-
tying of RAE. The method is based on sequentially
splitting an AE with regression trees to reduce the
total reconstruction error E,... Specifically, the
method splits an AE into two on the basis of a re-



Table 2: Precision, recall, and accuracy of utterance intent classification of 65 classes

method training set test set
prec. recall acc. prec. recall acc.

(1) Cosine similarity of bag-of-words (BoW) - - - 76.0% 742% 85.1%
(2) Tied RAE based on random word vectors 372% 332% 70.6% | 32.0% 65.6% 66.4%
(3) Tied RAE based on word2vec vectors 812% 788% 88.7% | 74.7% 70.5% 82.7%
(4) RAE of two AEs untied by manual rule 659% 683% 88.1% | 63.0% 625% 84.0%
(5) RAE of two AEs untied by data-driven split 803% 798% 91.3% | 724% T123% 85.6%
(6) RAE of three AEs untied by data-driven split | 73.9% 752% 90.3% | 70.8% 67.9% 84.8%

gression tree with the response of the reconstruc-
tion error E,.., and optimizes the model parame-
ters of split AEs alternatively.

Figure 2 shows the procedure. The procedure
starts with giving a part-of-speech tag to every
word of a sentence. While forming a tree, a unique
node type is given according to the node types
of child nodes. To be precise, a new node type
is given to an unseen combination of node types
of two child nodes, whereas the same node type
is given when the combination of node types has
been seen before.

Initially, a single tied AE for all node types
is trained. Applying the AE to all training data,
reconstruction error E,.. is tallied for each node
type. Then, a class of all node types is split into
two classes based on a regression tree of CART
(Breiman et al., 1984) with the response of E...
The predictor variables are the node types of the
left and right child nodes. Then, the AEs are re-
trained with L2 regularization after every binary
split. Note that the softmax layer is kept single in
order not to make the generated vector space com-
pletely different.

4 Experiments

4.1 Experimental Setup

An experiment of utterance intent classification
was conducted with the annotated data described
in Section 2. The number of classes was reduced
to 65 by merging classes with few pieces of data
with a similar class or into the others class. Con-
sidering the balance of frequent utterances and
less-frequent ones, the frequencies of utterances
were smoothed by applying a square root function.
The numbers of utterances in the training and test
sets were 7,833 and 870, respectively. The ratio of
unknown utterances in the test set was 15 percent.
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4.2 Conditions of Experiments

Two types of word vectors, ramdom word vec-
tors and word2vec vectors, were compared as the
minimal elements of a tree. A total of 1.08 mil-
lion word2vec vectors were trained with Japanese
wikipedia texts of 1.1 billion words. The dimen-
sion of the vectors was fixed at 100. The word2vec
vectors were trained by using skip-gram mode on
the basis of results of preliminary experiments.

Three types of RAE, that is, a single tied AE,
two AEs untied by the manual rule, and multiple
AEs untied by the data-driven split, and a baseline
method of cosine similarity of bag-of-words were
evaluated.

4.3 Experimental Results

Table 2 shows the precision, recall, and accu-
racy of the classification for the training and test
sets. The baseline method (1) showed relatively
high performance, because the test set randomly
chosen in consideration of the smoothed frequen-
cies contained many known utterances and words
seen in the training set. The tied RAE based on
word2vec vectors (3) showed significantly better
performance than the tied RAE based on random
word vectors (2). While the RAE of two AEs un-
tied by a manual rule (4) made a slight improve-
ment, the RAE of two AEs untied by data-driven
split (5) made more improvement. The resulting
split was not simple, but one of the two AEs was
to add a modifier, roughly speaking. However, the
RAE of three AEs untied by data-driven split (6)
showed a fall. We believe that the RAE was prob-
ably overlearned with thousands pieces of training
data.

5 Conclusions

RAE was applied to utterance intent classification
of a smartphone-based Japanese-language spoken
dialogue system. To improve the classification ac-
curacy, we examined the RAE of multiple AEs un-



tied by a manual rule and RAEs of multiple AEs
untied by data-driven split.

Comparing the untied RAEs of two AEs be-
tween the manual rule and data-driven split, the
AEs untied by the data-driven split showed better
accuracy. This means that splitting AEs based on
a regression tree with the response of the recon-
stuction error is effective to some extent.

Reducing the model parameters effectively to
circumvent overlearning, and utterance intent clas-
sification with more variations of utterances are
future work.
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Abstract

Reinforcement learning is widely used for
dialogue policy optimization where the re-
ward function often consists of more than
one component, e.g., the dialogue success
and the dialogue length. In this work, we
propose a structured method for finding a
good balance between these components
by searching for the optimal reward com-
ponent weighting. To render this search
feasible, we use multi-objective reinforce-
ment learning to significantly reduce the
number of training dialogues required. We
apply our proposed method to find opti-
mized component weights for six domains
and compare them to a default baseline.

1 Introduction

In a Spoken Dialogue System (SDS), one of the
main problems is to find appropriate system be-
haviour for any given situation. This problem is
often modelled using reinforcement learning (RL)
where the task is to find an optimal policy 7(b)
a which maps the current belief state b—an esti-
mate of the user goal— to the next system action
a. To do this, RL algorithms seek to optimize an
objective function, the reward r, using sample di-
alogues. In contrast to other RL tasks (like Al-
phaGo (Silver et al., 2016)), the reward used in
goal-oriented dialogue systems usually consists of
more than one objective (e.g., task success and di-
alogue length (Levin et al., 1998; Lemon et al.,
2006; Young et al., 2013)).

However, balancing these rewards is rarely con-
sidered and the goal of this paper is to propose a
structured method for finding the optimal weights
for a multiple objective reward function. Finding a
good balance between multiple objectives is usu-
ally domain-specific and not straight-forward. For

65

example, in the case of task success and dialogue
length, if the reward for success is too high, the
learning algorithm is insensitive to potentially ir-
ritating actions such as repeat provided that the
dialogue is ultimately successful. Conversely, if
the reward for success is too small, the resulting
policy may irritate users by offering inappropriate
solutions before fully illiciting the user’s require-
ments.

In this paper, we propose to find a suitable re-
ward balance by searching through the space of re-
ward component weights. Doing this with conven-
tional RL techniques is infeasible as a policy must
be trained for each candidate balance and this re-
quires an enormous number of training dialogues.
To alleviate this, we propose to use multi-objective
RL (MORL) which is specifically designed for this
task (among others (Roijers et al., 2013)). Then,
only one policy needs to be trained which may be
evaluated with several candidate balances. To the
best of our knowledge, this is the first time MORL
has been applied to dialogue policy optimization.

In contrast to previous work which explicitly
selects component weights to maximize user sat-
isfaction (Walker, 2000) explicitly, the proposed
method enables optimisation of an implicit goal
by allowing the interplay each reward component
to be explored at low computational cost.

Several different algorithms have previously
been used for MORL (Castelletti et al., 2013;
Van Moffaert et al., 2015; Pirotta et al., 2015;
Mossalam et al., 2016). In this work, we pro-
pose a novel MORL algorithm based on Gaussian
processes. This is described in Section 2 along
with a brief introduction to MORL. In Section 3,
the proposed method for finding a good reward
balance with MORL is presented. Section 4 de-
scribes the application and evaluation of the bal-
ancing method on six different domains. Finally
conclusions are drawn in Section 5.
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2 Multi-objective Reinforcement
Learning with Gaussian Processes

In this Section we present our proposed exten-
sion of the GPSARSA algorithm for MORL af-
ter giving a brief introduction to single- and multi-
objective RL and the GPSARSA algorithm itself.

Reinforcement Learning Reinforcement learn-
ing (RL) is used in a sequential decision-making
process where a decision-model (the policy ) is
trained based on sample data and a potentially de-
layed objective signal (the reward ) (Sutton and
Barto, 1998). Implementing the Markov assump-
tion, the policy selects the next action a € A based
on the current system belief state b to optimise the
accumulated future reward R; at time ¢:

oo
Ri=> +*reprsa - (D
k=0

Here, k& denotes the number of future steps, v a
discount factor and r, the reward at time 7.

The @Q-function models the expected accumu-
lated future reward R; when taking action a in be-
lief state b and then following policy 7:

Qﬂ-(b, a) = Eﬂ—[Rt’bt = b, ay = a] . (2)

GPSARSA For most real-world problems, find-
ing the exact optimal ()-values is not feasible. In-
stead, Engel et al. (2005) have proposed the GP-
SARSA algorithm which uses Gaussian processes
(GP) to approximate the @Q-function. Gasi¢ and
Young (2014) have shown that this works well
when applied to the problem of spoken dialogue
policy optimisation. GPSARSA is a Bayesian
on-line learning algorithm which models the Q-
function as a zero-mean GP which is fully defined
by a mean and a kernel function k:

Qw(bv a) ~ QP(O, k(b’ CL), (bv a’))) ) (3)

where the kernel models the correlation between
data points. Based on sample data, the GP is
trained to approximate () such that the variance
derived from the kernel represents the uncertainty
of the approximation.

In dialogue management, the following kernel
has been successfully used:

k((b,a), (t',a")) = d(a,d’) - kun(b, V') . (4)

It consists of a linear kernel for the continuous be-
lief representation b and the d-kernel for the dis-
crete system action a.
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Multi-objective Reinforcement Learning In
multi-objective reinforcement learning (MORL),
the objective function does not consist of only one
but of many dimensions. Thus, the reward r; be-
comes a vector r; = (r},rZ, ..., 7), where m is
the number of objectives.

To define the contribution of each objective, a
scalarization function f is introduced which uses
weights w for the different objectives to map the
vector representation to a scalar value. The solu-
tion to a MORL problem is a set of optimal poli-
cies containing an optimal policy for any given
weight configuration.

In MORL, the Q-function may either be mod-
elled as a vector of (-functions or directly
as the expectation of the scalarized vector of
(R}...R™):

Qw(b) )

In practice, the scalarization function is often
modelled as a linear function (the weighted sum):

Flro,w) =) wnrf" . (6)

E[f(Ry,w)|m,b,a] .

Multi-objective =~ GPSARSA The proposed
multi-objective (MO) GPSARSA is based on
Equation 5. By approximating the scalarized
Q-function directly using a GP, the GPSARSA
algorithm may be applied for MORL. The GP
(and thus the Q-function) is extended by one
parameter—the weight vector w: Q(b, a, w).

Approximating the QQ-function with a GP relies
on the fact that the accumulated future reward R;
(Eq. 1) may be decomposed as

(7

Accordingly, for using a GP to directly esti-
mate the scalarized reward in MO-GPSARSA, the
equation

f(Ry, w) = f(rip1 +YRig1, W)
L f(rig1, w) +vf(Regr, W) (8)

must hold. This is true in case of using a linear
scalarization function f (Eq. 6).

To alter the kernel accordingly, a linear kernel
for w is added to the state kernel' resulting in

k((b,a,w), (' d,w'))
=6(a,a’) - (kiin(b,0") + kiin(w,w')) . (9)

'A similar type of kernel extension has been proposed
previously in a different context, e.g., (Casanueva et al.,
2015).

Ry =711 +vRyr -



Algorithm 1: Training of the MO-GPSARSA.

Input: dialogue success reward r;, dialogue length

penalty r;
1 foreach training dialogue do
2 select ws, w; randomly
3 execute dialogue and record (b¢, at, w) in D for
each turn ¢
// dialogue length penalty
4 r«—w-|D|-m

// dialogue success reward
if dialogue successful then
| re—r+w -rs
update GP using D and r
reset D

® 9w

Since a linear scalarization function is applied,
the correlations with other data points are also as-
sumed to be linear.

To train a policy using multi-objective GP-
SARSA, a new weight configuration is sampled
randomly for each training dialogue. An example
of the training process being applied to dialogue
policy optimization with the two objectives task
success and dialogue length is depicted in Algo-
rithm 1.

3 Reward Balancing using MORL

The main contribution of this paper is to provide a
structured method for finding a good balance be-
tween multiple rewards for learning dialogue poli-
cies. For the two-objective problem of having a
task success reward r; and a dialogue length re-
ward r, r = (rs,77), the scalarized reward is

r=f(r,w) = lpg-wsrs+ T -wsr
=1lrs-re+T-r", (10)
where 1 is the number of turns and 1rg = 1 iff
the dialogue is successful, zero otherwise.
To find a good reward balance, we adopt the fol-
lowing procedure:

1. Set initial reward values r¢ and r;” along
with the initial weight configuration.

. Apply MORL to train a policy for a given
number of training dialogues and evaluate
with different weight configurations.

. Select an appropriate balance based on
success-weight and length-weight curves to
optimise the individual implicit goal.

The method may be refined by applying it re-
cursively with different grid sizes. After selecting
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a suitable weight configuration, a single-objective
policy may be trained.

4 Experiments and Results

The reward balancing method described in the pre-
vious section is applied to six domains: finding
TVs, laptops, restaurants or hotels (the latter two
in Cambridge and San Francisco). The following
table depicts the domain statistics with the number
of search constraints, the number of informational
items the user can request, and the number of data-
base entities:

Domain  # constr.  # requests  # entities
CamRestaurants 3 9 110
CamHotels 5 11 33
SFRestaurants 6 11 271
SFHotels 6 10 182
TV 6 14 94
Laptops 11 21 126

For consistency with previous work (Gasi¢ and
Young, 2014; Young et al., 2013; Su et al., 2016)
the rewards r’ = 20 and ;" = —1 are used repre-
senting the weight configuration w = (0.5,0.5).
This results in vy = 40 and r; = —2.

For the evaluation, simulated dialogues were
created using the statistical spoken dialogue
toolkit PyDial (Ultes et al., 2017). It contains
an agenda-based user simulator (Schatzmann and
Young, 2009) with an error model to simulate the
semantic error rate (SER) encountered in real sys-
tems due to the noisy speech channel.

A policy has been trained for each domain using
multi-objective GPSARSA with 3,000 dialogues
and an SER of 15%. Each policy was evaluated
with 300 dialogues for each weight configuration
in {(0.1,0.9),(0.2,0.8),...,(0.9,0.1)}. The re-
sults in Figure 1 are the averages of five trained
policies with different random seeds. All curves
follow a similar pattern: at some point, the success
curve reaches a plateau where the performance
does not increase any further with higher w;.

The following weights were selected: Cam-
Restaurants ws = 0.4; CamHotels wy, = 0.6;
SFRestaurants wgs = 0.6; SFHotels ws; = 0.7; TV
ws = 0.6; Laptops ws = 0.7. These weights were
selected by hand according to the success rate® as
well as the average dialogue length.

The selected weights were scaled to keep the

Taking into account the overall performance and the
proximity to the edge of the plateau. To compensate for pos-
sible inaccuracies of the MO-GPSARSA, the configuration
right at the edge has not been chosen.
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Figure 1: The MORL success-weight and length-weight curves (m, task success rate (TSR) on left,
number of turns T on right vertical axes; success weights ws on horizontal axes) after 3,000 training
dialogues. Each data point is the average over five policies with different seeds where each policy/weight
configuration is evaluated with 300 dialogues. As a comparison, the same curves using single-objective
RL (s, separate policies trained for each balance) have been created after selecting the weights.

o TSR # Turns

base. opt.  base. opt.
CamRestaurants 14 88.8% 862% 6.4 6.3
CamHotels 30 75.1% 79.8% 8.1 8.2
SFRestaurants 47 624% 65.7% 8.5 9.1
SFHotels 30 66.7% 694% 8.0 8.0
TV 30 757% 805% 7.4 7.4
Laptops 47 44.6% 54.6% 1.5 8.7

Table 1: Task success rates (TSRs) and number of
turns after 4,000 training dialogues using a success
reward of 20 (baseline) compared to the optimised
success reward ry’. All TSR differences are statis-
tically significant (¢-test, p < 0.05).

turn penalty w;” constant at —1. Using these re-
ward settings, each domain was evaluated with
4,000 dialogues in 10 batches. After each batch,
the policies were evaluated with 300 dialogues.
The final results shown in Table 1 (selection of
learning curves in Figure 2) are compared to the
baseline of w = (0.5,0.5) (i.e. standard unopti-
mised reward component weight balance). Evi-
dently, optimising the balance has a significant im-
pact on the performance of the trained polices.

To analyse the performance of multi-objective
GPSARSA, policies were trained and evaluated
for each reward balance with single-objective (SO)
GPSARSA (see Figure 1) after the weights had
been selected. Each SO policy was trained with
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1,000 dialogues and evaluated with 300 dialogues,
all averaged over five runs. The success-weight
curves for SORL clearly resemble the MORL
curves for almost all domains except for Cam-
Restaurants where it leads to an incorrect selection
of weights. This may be attributed to the kernel
used for multi-objective GPSARSA.

It is worth noting that for the presented full
MORL analysis, 3,000 training dialogues were
necessary for each domain to find a good balance.
This is significantly less than the 9,000 dialogues
needed for the SORL analysis and this difference
would increase further for a finer grain search grid.

5 Conclusion

In this work, we have addressed the problem of
finding a good balance between multiple rewards
for learning dialogue policies. We have shown
the relevance of the problem and demonstrated the
usefulness of multi-objective reinforcement learn-
ing to facilitate the search for a suitable balance.
Using the proposed procedure, only one policy
needs to be trained which can then be evaluated
for an arbitrary number of reward balances thus
drastically reducing the total amount of training
dialogues needed.

We have proposed and employed an extension
of the GPSARSA algorithm for multiple objec-
tives and applied it to six domains. The ex-
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Figure 2: The task success rates (TSR, left axes) and dialogue length in number of turns (T, right axes)
for all six domains comparing the baseline (r* = 20, w = (0.5,0.5)) with the optimised balance. The
horizontal axes show the number of training dialogues. Each data point is the average over five policies
with different seeds where each policy is evaluated with 300 dialogues.

periments show the successful application of our
method: the optimal balance improved task suc-
cess without unduly impacting on dialogue length
in all domains except CamRestaurants, where it is
clear that the weight selection criteria failed. In
practice, this could have been easily trapped by
applying a minimum weight to the success crite-
ria. Furthermore, the domain-dependence of the
reward balance has been confirmed.

For future work, the accuracy of the proposed
multi-objective GPSARSA will be further im-
proved with the ultimate goal of using the pro-
posed method to directly learn a multi-objective
policy through interaction with real users. To
achieve this, alternative weight kernels will be ex-
plored. The resulting multi-objective policy may
then directly be applied (without the need of re-
training a single-objective policy) and the weights
may even be adjusted according to a specific situ-
ation or user preferences.

Future work will also include an automatic
method to find the optimal balance as well as in-
vestigating the relationship between the optimal
success reward value and the domain characteris-
tics (similar to Papangelis et al. (2017)).
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Abstract

This work aims at characterising ver-
bal alignment processes for improving
virtual agent communicative capabilities.
We propose computationally inexpen-
sive measures of verbal alignment based
on expression repetition in dyadic tex-
tual dialogues. Using these measures,
we present a contrastive study between
Human-Human and Human-Agent dia-
logues on a negotiation task. We exhibit
quantitative differences in the strength and
orientation of verbal alignment showing
the ability of our approach to characterise
important aspects of verbal alignment.

1 Introduction

Convergence of behaviour is an important feature
of Human-Human (H-H) interaction that occurs
both at low-level (e.g., body postures, accent and
speech rate, word choice, repetitions) and at high-
level (e.g., mental, emotional, cognitive) (Gal-
lois et al., 2005). In particular, dialogue partici-
pants (DPs) automatically align their communica-
tive behaviour at different linguistic levels includ-
ing the lexical, syntactic and semantic ones (Pick-
ering and Garrod, 2004). A key ability in dialogue
is to be able to align (or not) to show a conver-
gent, engaged behaviour or at the opposite a diver-
gent one. Such convergent behaviour may facil-
itate successful task-oriented dialogues (Nenkova
et al., 2008; Friedberg et al., 2012). Our goal is
to provide a virtual agent with the ability to detect
the alignment behaviour of its human interlocutor,
as well as the ability to align with the user to en-
hance its believability, to increase interaction nat-
uralness and to maintain user’s engagement (Yu
et al., 2016). In this paper, we aim at provid-
ing measures characterising verbal alignment pro-
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cesses based on repetitions between DPs. We pro-
pose a framework based on repetition at the lexical
level which deals with textual dialogues (e.g., tran-
scripts), along with automatic and generic mea-
sures indicating verbal alignment between inter-
locutors. We offer a study that contrasts H-H and
Human-Agent (H-A) dialogues on a negotiation
task and show how our proposed measures can
be used to quantify verbal alignment. We con-
firm quantitatively some predictions from previ-
ous literature regarding the strength and orienta-
tion of verbal alignment in Human-Machine Inter-
action (Branigan et al., 2010).

Section 2 presents and discusses the related
work. Section 3 describes the proposed model
and outlines its main features. Next, Section 4
presents the corpus-based experimentation proto-
col and states the main investigated hypotheses.
Then, Section 5 presents the quantitative analysis
and discusses the main results. Finally, Section 6
concludes this paper.

2 Related Work

When people are engaged in a dialogue there is ev-
idence that their behaviours tend to converge (Gal-
lois et al., 2005) and automatically align at sev-
eral levels (Pickering and Garrod, 2004). This in-
cludes non-linguistic levels such as facial expres-
sions and body postures as well as linguistic lev-
els such as lexical, syntactic and semantic ones.
In particular, alignment theory predicts the exis-
tence of patterns of repetition via a priming mech-
anism stating that “encountering an utterance that
activates a particular representation makes it more
likely that the person will subsequently produce
an utterance that uses that representation” (Picker-
ing and Garrod, 2004). Thus, DPs tend to reuse
lexical as well as syntactic structure (Reitter et al.,
2006; Ward and Litman, 2007). One consequence

Proceedings of the SIGDIAL 2017 Conference, pages 71-81,
Saarbriicken, Germany, 15-17 August 2017. (©2017 Association for Computational Linguistics



of successful alignment at several levels between
DPs is a certain repetitiveness in dialogue and the
development of a lexicon of fixed expressions es-
tablished during dialogue (Pickering and Garrod,
2004). DPs tend to automatically establish and
use fixed expressions that become dialogue rou-
tines via a process called “routinization”. Recent
work argues that these patterns of repetition may
be specific to task-oriented dialogues and do not
generalise to ordinary conversation in H-H inter-
actions (Healey et al., 2014). Here, we are specif-
ically interested in verbal alignment in H-H and
H-A task-oriented interactions. We use the term
alignment to say that DPs converge at the lex-
ical level by using the same words and expres-
sions (e.g., by employing the expression “that’s
not gonna work for me” to reject a proposition).

Studies point out evidence that lexical items and
syntactic structures used by a system are subse-
quently adopted by users (Brennan, 1996; Stoy-
anchev and Stent, 2009; Parent and Eskenazi,
2010; Branigan et al., 2010). (Branigan et al.,
2010) argue that linguistic alignment should occur
in Human-Machine interaction. In particular, they
outline the fact that the strength of alignment may
be dependent on the human’s belief about the com-
municative capability of the machine. As such,
alignment might be stronger from a human par-
ticipant who believes that it might improve com-
munication and understanding. In this work, we
bring quantitative evidence supporting the fact that
human align more with a virtual agent than with
another human based on a study contrasting H-H
and H-A interactions at the level of repetition of
expressions. While previous studies have mainly
focused on H-H dialogues, we offer in this work
an analysis of verbal alignment in H-A dialogues
based on a corpus.

Several studies aim at providing virtual agents
with the ability to verbally align with the user in
order to improve credibility, naturalness, and also
to foster user engagement (Clavel et al., 2016). It
involves high-level alignment such as politeness
(De Jong et al., 2008) or aligning on apprecia-
tions (Campano et al., 2015). Work on conver-
gence in the spoken dialogue system community
has mainly focused on lexical entrainment, i.e. the
tendency to use the same terms when DPs refer re-
peatedly to the same objects (Brennan and Clark,
1996). Several entrainment models have been pro-
posed to let the system entrains to user utterances
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(e.g., (Brockmann et al., 2005; Buschmeier et al.,
2010; Hu et al., 2014; Lopes et al., 2015)). These
models are completely or partially rule-based and
focus on specific aspects of entrainment. Recent
work aims at introducing entrainment in a fully
trainable natural language system by exploiting
the preceding user utterance (Dusek and Jurcicek,
2016).

Several metrics have been employed to auto-
matically measure linguistic alignment in written
corpora. At the word or token levels, (Nenkova
et al.,, 2008) quantify verbal alignment based
on high-frequency words while (Campano et al.,
2014) quantify verbal alignment based on vocab-
ulary overlap between DPs. (Healey et al., 2014)
compute similarity at the syntax and lexical levels
on windows of a fixed number of turns. (Fusaroli
and Tyln, 2016) employ (cross-)recurrence quan-
tification analysis to quantify interactive align-
ment and interpersonal synergy at the lexical,
prosodic and speech/pause levels. (Reitter et al.,
2006; Ward and Litman, 2007) focus on re-
gression models to study priming effects within
a small window of time in single dialogues.
(Stenchikova and Stent, 2007) use a frequency-
based approach (Church, 2000) to measure adapta-
tion between dialogues. In this paper, we propose
global and speaker-specific measures based on the
automatic construction of the expression lexicon
built by the DPs. An originality of our approach is
to consider lexical patterns predicted by the rou-
tinization process of the interactive alignment the-
ory. These measures rely on efficient algorithms
making an online usage in a dialogue system re-
alistic. They indicate both verbal alignment at the
level of repetitions and the orientation of verbal
alignment between DPs in single dialogues.

3 Model: Expression-based Measures of
Verbal Alignment

To address the problem of detecting (possibly
overlapping) repetitions between DPs, we propose
a framework defining key features of repeated ex-
pressions, along with an efficient computational
mean of building an expression lexicon.

In this work, we define an expression as a sur-
face text pattern at the utterance level that has been
produced by both speakers in a dialogue. In other
words, it is a contiguous sequence of tokens that
appears in at least two utterances produced by two
different speakers. An expression may be a single



token (e.g., “you”, “I”’). However, an expression
should contain at least one non-punctuation token.
Thus, sequences like “7”, “!”, “” are not expres-
sions. An instance of an expression can either be
free or constrained in a given utterance!. A free in-
stance is an instance of an expression that appears
in an utterance without being a subexpression of
a larger expression. A constrained instance is an
expression that appears in a turn as a subexpres-
sion of a larger expression. The initiator of the
expression is the interlocutor that first produced
an instance of the expression either in a free or
constrained form. Lastly, an expression is estab-
lished as soon as the two following criteria are
met: (i) the expression has been produced by both
interlocutors (either in a free or constrained form),
and (ii) the expression has been produced at least
once in a free form. The first turn in which these
criteria are all met is the establishment turn of the
expression. Eventually, the expression lexicon of a
dialogue is the set of established expressions that
appear in this dialogue. Importantly, the expres-
sion lexicon contains all expressions that appear
in a dialogue at least once in a free form. Ex-
pressions that are always constrained (i.e. which
instances are always a subpart of a larger expres-
sion) are discarded.

Table 1 presents an excerpt of dialogue ex-
tracted from the corpus used in this work. In this
example, “that’s not gonna work for me” is an ex-
pression initiated by A in turn 1 and established
in turn 4. This expression is free in this excerpt,
and it belongs to the expression lexicon. Simi-
larly, “work for” is an expression initiated by A
in turn 1 and established in turn 2. It appears in
a constrained form in the expression “that’s not
gonna work for me” in turns 1 and 4, and in a
free form in turn 2. It belongs to the expression
lexicon. The expression “that’s not gonna” occurs
in a constrained form in turns 1 and 4, and never
occurs in a free form. This expression is never es-
tablished (contrary to its parent expression “that’s
not gonna work for me”’) and thus is not included
in the expression lexicon.

The automatic extraction of expressions from a
dialogue is an instance of sequential pattern min-
ing (Mooney and Roddick, 2013) applied to tex-
tual dialogues. In this work, we follow a similar
approach than (Dubuisson Duplessis et al., 2017)

"This terminology is borrowed and adapted from the tex-

tual data analysis field and the notion of “repeated seg-
ment” (Lebart et al., 1997)
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’ Loc. ‘ Utterance

Aq , that’s an interesting idea. but no,
that’s not gonna work for me.

Bo what will work for you?

As what do you think about me getting two
chairs and one plate and you getting one
chair, one plate, and the clock?

By that’s not gonna work for me

As which of these items would be your
first choice?

Bg i don’t want the clock

Ay oh really?

Table 1: Excerpt of dialogue extracted from the H-
A corpus (described in Section 4.1). Expressions
are coloured. Established expressions are in italic.

by employing a generalised suffix tree in order to
solve the multiple common subsequence problem
(MCSP) (Gusfield, 1997) to extract frequent sur-
face text patterns between utterances, and then fil-
tering patterns used by both DPs. Notably, the
MCSP is solved in linear time with respect to the
number of tokens in a dialogue (Gusfield, 1997).

3.1 Properties of Expressions

An expression has a frequency which corresponds
to the number of utterances in which the expres-
sion appears. For example, the expression “work
for” has a frequency of 3 because it appears in ut-
terance 1, 2 and 4. Next, the size of an expres-
sion is its number of tokens (e.g., expression “the
clock” has size 2). Then, the span of an expres-
sion is the number of utterances between the first
production and the last production of this expres-
sion in the dialogue (including the first and last
utterances). The minimum span is 2, meaning the
expression has been established in two adjacent ut-
terances. For instance, the expression “the clock”
has a span of 4 because it appears first in utterance
3 and last in utterance 6. We derive the density of
an expression which is given by the ratio between
its frequency and its span. For instance, the den-
sity of the expression “well” is 0.5. Eventually, the
priming of an expression is the number of repeti-
tions of the expression by the initiator before be-
ing used by the other interlocutor (either in a free
or constrained form). For example, the expression
“well” has a priming of 2 because it is repeated by
speaker A in utterance 1 and 5 before being estab-
lished in utterance 6.



3.2 Measures

Globally, we derive the following measures from

the model:

Expression lexicon size (ELS) the number of
items in the expression lexicon, i.e. the num-
ber of established expressions in the dialogue

Expression variety (EV) the expression lexicon
size normalised by the total number of to-
kens in the dialogue. It is given by: EV =
%. This ratio indicates the variety of
the expression lexicon relatively to the length
of the dialogue. The higher it is, the more
there are different expressions established be-
tween DPs.

Expression repetition (ER) the ratio of pro-
duced tokens belonging to an instance
of an established expression, i.e. the
ratio of tokens belonging to a repeti-

tion of an expression. It is given by:
ER # Tokens in an established expr.

# Tokens ’
ER € [0, 1]. The higher the ER is, the more

DPs dedicate tokens to the repetition of es-
tablished expressions.
We also derive the following measures for each
speaker S:
Initiated expressions (IEg) number of expres-
sions initiated by S (and further established)

normalised by the expression lexicon size. It

is given by: IEg — # Expr. 1122111'[llsated by S,

vV S,1IEg € [0,1]. Note that in a dyadic di-
alogue involving speaker Sy and S, IEg LT
IEg, = 1.

Expression repetition (ERg) ratio of pro-
duced tokens belonging to an instance
of an established expression, i.e. ratio
of tokens belonging to a repetition of

an expression. It is given by: ERg
# Tokens from S in an established expr.

# Tokens from S >
V'S, ERg € [0,1]

Eventually, we also consider a measure inde-
pendent of the model: the Token Overlap (TO)
which is the ratio of shared tokens between locu-
tor S; and locutor S, in a dialogue. It is given by:

#(Tokensqg nTokensg )
S S2_ The higher is TO,

- #(Tokenss1 U TokensSQ)
the more vocabulary is shared between S; and Ss.

4 Experimentation

Our methodology aims at comparing quantita-
tively both H-H and H-A task-oriented corpora at
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the level of the repetition of expressions.

4.1 Negotiation Corpora

The corpus of this study focuses on a negotiation
task between two DPs and is detailed in (Gratch
et al., 2016). It focuses on a common abstrac-
tion of negotiation known as the multi-issue bar-
gaining task (Kelley and Schenitzki, 1972). Here,
it requires two interlocutors to find an agreement
over the amount of a product each player wishes
to buy. Each player receives some payoff for each
possible agreement, usually unknown to the other
party. Negotiation can take two structures in this
scenario. The integrative structure represents a
negotiation that can turn out to be a win-win for
both players (if they realise through conversation
that this is a cooperative negotiation). On the
other hand, the distributive negotiation represents
a competitive (zero-sum) negotiation where play-
ers share the same interests in objects. However,
players do not know in advance and often assume a
distributive negotiation (i.e. their opponent wants
the same thing as them) rather than an integrative
negotiation. This corpus can be broken down into
two parts: a H-H corpus and a H-A corpus. In both
parts, people were given similar instructions, i.e.
humans are told that they must negotiate with an-
other player how to divide the contents of a storage
locker filled with three classes of valuable items
(such as records, lamps or painting).

In the H-H corpus, pairs of people performed
one negotiation which was either distributive or
integrative in structure. Independently, they were
given information in the instructions that sug-
gested the negotiation was integrative or distribu-
tive. Note that this condition does not affect the
results presented below.

In the H-A corpus, the human participant en-
gaged in two negotiations with two different vir-
tual agents (a male called Brad and a female
called Ellie). The first negotiation was a cooper-
ative/integrative negotiation while the second was
a competitive/distributive negotiation. The order
of interaction with the agents (Brad-Ellie or Ellie-
Brad) was randomly chosen. The interaction was
framed. Half of the human participants was told
they were interacting with an autonomous agent
while the other half was told they were interact-
ing with a human wizard (though the agent was
always controlled by a wizard). The Woz system
controlling virtual agents has been designed to be



Table 2: Figures about the H-H corpus and the H-
A corpus. U = Unique, T/Utt.=Tokens per Utter-
ance, med. = median

| | HH [ HA |
Dialogue 84 154
Utterance (U) || 10319 (7840) | 17125 (6109)
...avg (std) 122.8 (84.1) | 111.2(57.5)
Token (U) 79396 (2516) | 90479 (1335)
T/Utt.
avg/med. (std) | 7.7/6.0 (7.4) | 5.3/4.0 (5.7)
avg (std) 7.7(1.4) 5.3(5.7)
min/max 1/66 1/154

as natural as possible (DeVault et al., 2015). It
involves low-level functions carried out automati-
cally (such as the selection of gestures and expres-
sions related to speech) and high-level decisions
about verbal and non-verbal behaviour carried out
by two wizards. Notably, it includes a large
number of possible utterances (more than 11,000)
along with a specific interface enabling the hu-
man operator to rapidly select among those (De-
Vault et al., 2015). For both virtual human agents,
wizards were rather free but followed some guide-
lines. First, the goal in both negotiations is for
the agent to win. Next, in the distributive con-
dition, wizards were requested to be soft, polite
and vague trying hard to get the human partici-
pant to make the first offer and avoiding revealing
what they wanted (unless the human directly asks).
In the integrative condition, wizards could share
preferences and were not requested to be vague.
However, they were requested to try getting the
human share first and make the first offer. Table 1
presents an excerpt from a competitive negotiation
from the H-A corpus.

Figures about both corpora can be found in Ta-
ble 2. Globally, dialogues in both corpora contains
more than 100 utterances. It shows that H-A di-
alogues are a bit shorter than H-H dialogues but
still comparable. Besides, utterances are shorter
in terms of tokens in the H-A dialogues than in the
H-H dialogues.

4.2 Randomised Corpora

To investigate hypotheses stated in Section 4.3,
we constituted two randomised corpora HHi and
HAR respectively for the randomised version of
the H-H corpus and the H-A corpus. This ran-
domisation process is similar to the ones adopted
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by various work investigating verbal alignment
(e.g., (Ward and Litman, 2007), (Healey et al.,
2014), (Fusaroli and Tyln, 2016)). To constitute
the HHR corpus, the following process is per-
formed for each dialogue of the initial corpus:
each interlocutor’s real turns in sequence are in-
terleaved with turns randomly chosen from the H-
H corpus. A similar process is followed for the
HAR corpus with the exception that each human
turn is substituted by a random human turns from
the H-A corpus when keeping the sequence of wiz-
ard turns; while each wizard turn is substituted
by a random wizard turns from the H-A corpus
when keeping the sequence of human turns. In all,
two dialogues are generated by these processes for
each original H-H/A dialogue (one for each locu-
tor). These surrogate corpora lack the coherence
of dialogues in the H-H and H-A corpora. Indeed,
utterances are no longer in their original relation-
ship with their response utterances. We thus ex-
pect to find reduced verbal alignment at the level
of expressions in these corpora.

4.3 Hypotheses

4.3.1

Our first hypothesis is that DPs should verbally
align at the level of expressions in both the H-H
corpus and the H-A corpus more than would be
expected by chance. This hypothesis can be ex-
pressed in the following way:
routinization DPs should constitute a richer ex-
pression lexicon than they would by chance
(this should be indicated by the EV measure)
repetition DPs should repeat expressions more
often than chance (this should be indicated by
the ER and the TO measures)

“Above Chance” Hypotheses

4.3.2 H-H VS H-A Hypotheses

Following Branigan et al’s hypothesis (Branigan
et al., 2010), we should expect more verbal align-
ment at the level of expressions in the H-A corpus
than in the H-H corpus. Besides, we should expect
more verbal alignment from the human participant
than from the agent. Indeed, the human participant
both has the ability to verbally align (contrary to
the agent) and may be influenced by beliefs about
the communicative limitations of the agent. This
hypothesis can be expressed in the following way:
routinization DPs should constitute a richer ex-
pression lexicon in the H-A corpus than in
the H-H corpus (this should be indicated by
the EV measure)



repetition DPs should dedicate more tokens to
the repetition of established expressions in
the H-A corpus than in the H-H corpus (this
should be indicated by the ER and the TO
measures)

orientation the human participant should repeat
more expressions initiated by the agent than
the other way around (this should be indi-
cated by the IEg and the ER g measures)

4.3.3 H-A-specific Hypotheses

In this study, we also consider conditions that af-
fects only the H-A corpus. First, interactions with
the virtual agent were randomly “framed” mean-
ing that, prior interactions, the human participant
was either told that the agent was controlled by a
human operator (72 dialogues) or that it was au-
tonomous (82 dialogues). This condition affects
the mediated component of verbal alignment i.e.
the beliefs of the human participant about the com-
municative capabilities of the agent (e.g., in terms
of understanding). This leads us to the following
hypothesis:
framing framing should impact verbal alignment
in the routinization, repetition and orientation
aspects.
More specifically, “human” framing should lead
to a more “human-like verbal alignment” while
“agent” framing should lead to a “HMI-like ver-
bal alignment” (Branigan et al., 2010).

Moreover, the human participants interacted
with two versions of the virtual agent. One was
Ellie, a female agent, while the other was Brad, a
male agent. Interaction order was random (Brad-
Ellie or Ellie-Brad). This condition leads us to the
following hypothesis:
gender gender matching (Male-Male or Female-

Female) or unmatching (Male-Female,
Female-Male) should not impact verbal
alignment

Lastly, interactions involved two types of nego-
tiations (integrative and distributive). We study the
impact of the negotiation type on the verbal align-
ment at the level of expressions.

5 Quantitative Analysis and Results

5.1 Comparisons to the Surrogate Corpora

We compare the H-H and H-A corpora of real in-
teractions to the surrogate HHg and HAR corpora
to ensure that established expressions in the dia-
logues are actually due to the coherent sequence
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of utterances and are not incidental.

We investigated whether DPs in the H-H cor-
pus verbally align at the level of expressions more
than would be expected by chance by compar-
ing it to the HHR corpus (following hypotheses
stated in Section 4.3.1). First, the expression va-
riety is significantly higher for the H-H corpus
(mean=0.118, std=0.023) than for the HHR corpus
(mean=0.110, std=0.015). Statistical difference is
checked by a Wilcoxon rank sum test (U = 8951,
p = 0.00051 < 0.001, r = 0.22)>. This in-
dicates that H-H interactions lead to a richer ex-
pression lexicon. However, the expression repe-
tition is not significantly different (p = 0.3446)
between the H-H corpus (mean=0.436, std=0.107)
and the HHR corpus (mean=0.420, std=0.108).
This means that the amount of tokens dedicated
to the repetition of expressions is similar between
the H-H corpus and the HHR corpus. An explana-
tion of this may be that the dialogues happen in a
closed domain on a specific task (negotiations of
a set of objects) and thus in a constrained vocab-
ulary. This inevitably leads random dialogues to
include repetitions though in a lesser variety. This
is confirmed by the token overlap that is signif-
icantly higher for the H-H corpus (mean=0.316,
std=0.073) than for the HHR corpus (mean=0.276,
std=0.058) (U = 9468.5, p = 9.781 x 1076 <
0.001, » = 0.28). DPs share a richer vocabulary
than what would happen by chance.

We performed a similar analysis by comparing
the H-A corpus and the HAR corpus. It turns
out that both the expression lexicon variety and
the expression repetition are significantly higher
in the H-A corpus than in the HAR corpus. In-
deed, the expression variety is significantly higher
o 30126, p 2.155 x 107 < 0.001,
r 0.22) for the H-A corpus (mean=0.134,
std=0.022) than for the HAR corpus (mean=0.124,
std=0.020). Besides, the expression repetition is
significantly higher (U = 28124, p = 0.0011 <
0.01, r = 0.15) for the H-A corpus (mean=0.416,
std=0.086) than for the HAR corpus (mean=0.386,
std=0.088). This is comforted by the fact that the
token overlap is significantly higher (U = 30164,
p=1.875x10"% < 0.001, » = 0.22) for the H-A
corpus (mean=0.322, std=0.06) than for the HAg
corpus (mean=0.293, std=0.06).

All in all, it turns out that both H-H and H-A di-

2For each test, we report the test statistics (U/W), the p-
value (p) and the effect size (7).



alogues constitute a richer expression lexicon than
they would by chance (routinization hypothesis).
As for the repetition hypothesis, DPs clearly re-
peat expressions more often than chance in the H-
A corpus. However, repetition in the H-H corpus
is comparable to what would happen by chance in
closed domain task-oriented dialogues. All things
considered, our indicators show that both corpora
tends to verbally align at the level of shared ex-
pressions more than they would by chance.

5.2 Differences between H-H/A Interactions

We compare verbal alignment at the expression
level between the H-H corpus and the H-A corpus
globally, per speaker and at the lexicon level.

5.2.1 Global Interaction Analysis

It turns out that the expression variety is signif-
icantly lower for the H-H corpus (mean=0.118,
std=0.023) than for the H-A corpus (mean=0.134,
std=0.022). This is checked via a Wilcoxon rank
sum test (U = 4056.5, p = 2.035x 1075 < 0.001,
r = 0.31). This indicates that DPs constitute a
richer expression lexicon in the H-A corpus than
in the H-H corpus. However, we noticed that there
is no significant difference between the H-H cor-
pus and the H-A corpus in terms of expression rep-
etition and token overlap. Indeed, the expression
repetition is not significantly different between the
H-H corpus (mean=0.436, std=0.107) and the H-
A corpus (mean=0.416, std=0.086) by a Wilcoxon
rank sum test (p = 0.1261). Besides, the token
overlap is not significantly different between the
H-H corpus (mean=0.316, std=0.073) and the H-
A corpus (mean=0.322, std=0.06) by a similar test
(p = 0.6618).

H-A interactions lead to a richer expression lex-
icon than the H-H interactions (routinization hy-
pothesis). This indicates more verbal alignment at
the level of shared expressions in H-A dialogues.
However, DPs do not dedicate more tokens to the
repetition of established expressions in the H-A
corpus than in the H-H corpus (repetition hyp.).

5.2.2 Speaker Perspective Analysis

We investigated verbal alignment at the level
of expressions by having a closer look at each
speaker in a dialogue in terms of initiated expres-
sions (IE) and expression repetition (ER). In the
H-H corpus, both speakers play a symmetrical role
at the level of expressions. First, they initiate a
similar amount of expressions. Indeed, IES L and
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the IEg , are not significantly different (Wilcoxon
signed rank test, p = 0.5978). Next, they dedi-
cate the same amount of tokens to the repetition of
expressions (see Figure 1). In fact, ERg L and the
ERg, are not significantly different (p = 0.9875).

On the contrary, the H-A corpus shows an
asymmetrical role at the level of expressions be-
tween the Woz and the human participant. First,
the Woz initiates more expressions than the hu-
man participant. Indeed, IEyy,, (mean=0.596,
std=0.116) is significantly higher than IEg
(mean=0.404, std=0.116) (Wilcoxon signed rank
test, W = 10161, p < 2.2 x 10716 < 0.001, r =
0.87). Then, the human participant dedicates more
tokens to the repetition of an established expres-
sion than the Woz (see Figure 1). As a matter of
fact, ERyy,, (mean=0.347, std=0.104) is signifi-
cantly lower than ERyy (mean=0.492, std=0.086)
(Wilcoxon signed rank test, W 545, p <
2.2 x 10716 < 0.001, » = 0.87). Notably, this
asymmetry does not appear when considering the
number of tokens produced by each speaker, i.e.
the Woz and the human tend to produce the same
amount of tokens. Indeed, there is not a significant
difference in the proportion of tokens produced
by the Woz (mean=0.483, std=0.134) and by
the human participant (mean=0.517, std=0.134)
(Wilcoxon signed rank test, p = 0.08067). Be-
sides, a closer look at the shared vocabulary
shows that there is not a significant difference
in the proportion of vocabulary shared by the
Woz (mean=0.4853, std=0.116) and by the human
participant (mean=0.515, std=0.093)* (Wilcoxon
signed rank test, p = 0.08029). That is, globally,
the Woz does not share more of its vocabulary than
the human participants, and conversely.

It turns out that verbal alignment at the level of
shared expressions is symmetrical in the H-H cor-
pus. On the contrary, it is asymmetrical in the H-A
corpus (orientation hypothesis) where it indicates
that the human participant verbally align more by
(i) adopting more Woz-initiated expressions (than
the Woz adopting Human-initiated expressions),
and (ii) dedicating more tokens to the repetition
of established expressions.

5.2.3 Expression Lexicon Analysis
Eventually, we took a closer look at the expres-
sion lexicon produced in the H-H corpus and the

3Relative shared vocabulary for S1is computed as follow:
;«;s(TokensS n TokensS )
SV L 2

S17 #(Tokenssl)
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Figure 1: Comparison of the H-H/A corpora for
ERg. Difference is significant for H-A (p <
0.001), not for H-H (cf. Section 5.2.2).

H-A corpus. Regarding the size in tokens of the
expressions, there is no significant difference be-
tween the two corpora (Wilcoxon rank sum test,
p = 0.9897). The majority of expressions con-
tains less than 3 tokens. Around 70% of expres-
sions are 1-token expressions, 20% are 2-token
expressions, 5% are 3-token expressions, and the
other 5% are 4-token and more expressions.

Considering the priming of an expression (i.e.
the number of repetitions of the expression by
the initiator before being used by the other inter-
locutor), most expressions have a priming of less
than 3 repetitions in both corpora. However, there
is a significant difference between the two cor-
pora (Wilcoxon rank sum test, U = 57185000,
p < 2.2 x 10716 < 0.001). The most striking
one is about the proportion of 1-repetition prim-
ing expressions. 63% of expressions have a 1-
repetition priming in the H-H corpus while it is
higher in the H-A corpus at 72%. 20% of expres-
sions have a 2-repetition priming in the H-H cor-
pus while it is 17% in the H-A corpus. Lastly, 8%
of the H-H expressions have a 3-repetition prim-
ing while it reaches 6% for the H-A corpus. The
main reason of the difference at the priming level
may be found in the functions that serve expres-
sion repetition in the corpora. This is supported by
the study of the density of expressions (i.e. their
ratio frequency/span) in both corpora. Expres-
sions in the H-A corpus are denser (mean=0.174,
std=0.238) than expressions in the H-H corpus
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(mean=0.146, std=0.206). This difference is sig-
nificant (Wilcoxon rank sum test, U = 45419000,
p < 2.2 x 10716 < 0.001). Expressions in the H-
A corpus tend to occur more frequently between
their first and last appearance in the dialogue than
in the H-H corpus.

5.3 Other Conditions in Human-Agent
Interactions

We studied the impact of the “human operator”
framing against the “AI” framing on the ver-
bal alignment at the level of expressions. It
turns out there is no difference in the variety
of the expression lexicon between the two fram-
ing modes. Indeed, the expression variety is not
significantly different between “human operator”
framing (mean=0.131, std=0.023) and the “AI”
framing (mean=0.136, std=0.021) (Wilcoxon rank
sum test, p = 0.1338). Study about repetition does
not reveal any effect from the framing condition.
As a matter of fact, the expression repetition is
not significantly different between “human oper-
ator” framing (mean=0.423, std=0.087) and “AI”
framing (mean=0.409, std=0.085) (p = 0.2915).
Similarly, no effect is found at the token overlap.
Besides, analyses on the expression initiation (EI)
and the expression repetition at the speaker level
(ERg) yield the same results than the entire H-A
corpus i.e. the verbal alignment is asymmetrical
between the agent and the human. Contrary to our
hypothesis, framing does not quantitatively impact
verbal alignment at the level of expressions.

A similar analysis at the gender mismatch or
match between the human participant and the
agent (Brad or Ellie) does not reveal any differ-
ence at the expression variety, expression repeti-
tion (globally or by speaker), token overlap, and
expression initiation. These analyses confirm our
hypothesis that gender does not quantitatively im-
pact verbal alignment at the level of expressions in
our H-A corpus.

It turns out that some significant differ-
ences exist between the two types of nego-
tiation (integrative and distributive) in the H-
A corpus. First, distributive negotiation leads
to longer dialogues in number of utterances
(mean=144.3, std=58.757) than integrative nego-
tiation (mean=82.5, std=41.09). Despite this dif-
ference in dialogue length, the expression vari-
ety is similar between the integrative negotiations
(mean=0.133, std=0.022) and the distributive ones



(mean=0.133, std=0.020) (Wilcoxon signed rank
test, p 0.9847). However, a major differ-
ence can be observed at the expression repetition
which is significantly higher for the distributive
negotiations (mean=0.456, std=0.073) than for the
integrative negotiations (mean=0.375, std=0.084)
(W = 142, p = 7.665 x 10719 < 0.001,
0.87). All in all, this indicates that participants
align more at the level of expressions in compet-
itive negotiations than in cooperative ones. This
may be due to the fact that they need to verbally
align more on (counter-)propositions in competi-
tive negotiations.

5.4 Discussion

We have presented automatic and generic mea-
sures of verbal alignment based on an expression
framework focusing on repetition between DPs at
the level of surface of text utterances. This frame-
work mainly takes into account lexical cues by
building a lexicon of shared expressions emerging
during dialogue, but also syntactic cues to the ex-
tent of expressions (other work on conversations
report a strong correlation between lexical and
syntactic cues regarding alignment (Healey et al.,
2014)). The proposed measures make it possible
to quantify the routinization process (via EV), the
degree of repetition between DPs (via ER), and the
orientation of the verbal alignment (via IEg and
ERg) at the level of expressions. Besides, these
measures are based on efficient algorithms (Gus-
field, 1997) that make it realistic to envision an on-
line usage in a dialogue system. They have made it
possible to check quantitatively that verbal align-
ment was real in both H-H and H-A task-oriented
interactions (i.e. it is not likely to happen ran-
domly). Next, they have helped contrasting quan-
titatively H-H interactions from H-A interactions,
showing that verbal alignment was symmetrical in
H-H interactions while being asymmetrical in H-A
(comforting previous hypotheses (Branigan et al.,
2010)). Finally, we have observed that H-A ver-
bal alignment was independent of the gender of
the agent (male or female) and of the framing of
the experiment (human operator VS Al). However,
the proposed measures indicate more verbal align-
ment in competitive negotiations than in coopera-
tive ones that may be due to the need to reach more
agreements during competitive negotiations.
Nevertheless, this work is limited to automat-
ically quantifying repetitions at the lexical level.
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Hence, it does not take into account other aspects
of alignment such as linguistic style (Niederhof-
fer and Pennebaker, 2002) or higher level such
as concepts (Brennan and Clark, 1996). How-
ever, the alignment theory proposes that align-
ment “percolates” between levels. As such, align-
ment at the level of repetition of expressions in-
dicate alignment at other levels to some extent.
Besides, this work does not consider the func-
tions behind repetition such as conveying the re-
ception of a message, appraising a proposal, in-
troducing a disagreement, complaining (Tannen,
2007; Schenkein, 1980). A functional analysis
could explain more in depth the differences be-
tween the H-H and the H-A corpora. Lastly, an
interesting perspective would be to confirm these
results on another corpora involving comparable
H-H and H-A dialogues.

6 Conclusion and Future Work

This paper has presented a framework based on
expression repetition at the surface text of dia-
logue utterances involving automatic and compu-
tationally inexpensive measures. These measures
make it possible to quantitatively characterise the
strength and orientation of verbal alignment be-
tween DPs in a task-oriented dialogue. A promis-
ing perspective of this work lies in the exploita-
tion of these measures to adapt and align the ver-
bal communicative behaviour of a virtual agent.
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Abstract

This is a demonstration of interactive
teaching for practical end-to-end dialog
systems driven by a recurrent neural net-
work. In this approach, a developer
teaches the network by interacting with the
system and providing on-the-spot correc-
tions. Once a system is deployed, a devel-
oper can also correct mistakes in logged
dialogs. This demonstration shows both of
these teaching methods applied to dialog
systems in three domains: pizza ordering,
restaurant information, and weather fore-
casts.

1 Introduction

Whereas traditional dialog systems consist of a
pipeline of components such as intent detection,
state tracking, and action selection, an end-to-end
dialog system is driven by a machine learning
model which takes observable dialog history as in-
put, and directly outputs a distribution over dialog
actions. The benefit of this approach is that in-
termediate quantities such as intent or dialog state
do not need to be labeled — rather, learning can be
done directly on example dialogs.

In practice, purely end-to-end methods can re-
quire large amounts of data to learn seemingly
simple behaviors, such as sorting database results.
This is problematic because when building a new
dialog system, typically no in-domain dialog data
exists, so data efficiency is crucial. Moreover,
machine-learned models alone cannot guarantee
practical constraints are followed — for example a
bank would require that a user must be logged in
before they are allowed to transfer funds. For these
reasons, in past work we introduced Hybrid Code
Networks (HCN) (Williams et al., 2017). HCNs
make end-to-end learning of task-oriented dialog
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systems practical by combining a recurrent neu-
ral network (RNN) with domain-specific software
provided by the developer; domain-specific action
templates; and a conventional entity extraction
module for identifying entity mentions in text. Ex-
periments on a public corpus show that HCNs can
substantially reduce the number of training dialogs
required compared to purely end-to-end learning
methods, and also outperform purely rule-based
systems.

This demonstration shows a practical imple-
mentation of HCNs, as a web service for building
task-oriented dialog systems. Once the developer
has provided their domain-specific software, they
can add training dialogs in several ways. First, the
developer can simply upload dialogs to the train-
ing set. Second, the developer can interactively
teach the HCN, and make on-the-spot corrections.
Finally, as the HCN interacts with end-users, the
developer can inspect logged dialogs, make cor-
rections if needed, and add the dialogs to the train-
ing set.

2 Dialog learning platform

The practical operation of the HCN is shown in
Figure 1, where the left-hand block in white shows
an end-user messaging client, the center block in
blue shows a web service implemented by the sys-
tem developer that hosts domain-specific logic,
and the right-hand block in green is the HCN web
service. A software development kit (SDK) facili-
tates using the HCN web service.

When interacting with end users, the process
begins when the end user provides input text, such
as “What’s the 5 day forecast for Seattle?”, shown
as item 1 in Figure 1. This text can be typed or
output by a standard speech recognizer. This text
is passed to the developer’s web service, which in
turn calls the HCN service to perform entity ex-
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Figure 1: Development platform for interactive dialog learning. Entity extraction is done with Condi-
tional Random Fields (CRFs). See text for full details.

traction (item 2). The HCN service then returns
entity mentions detected in text, such as “loca-
tion=Seattle” (3). Domain-specific code on the de-
veloper’s service then resolves entity mentions to
a canonical form, such as a latitude/longitude pair,
and to store entities for use in later turns in the di-
alog (4). The developer’s code then calls the HCN
service again, optionally passing in context which
can include which entities have been recognized
so far in the dialog, as well as an action mask that
limits which action templates are available at the
current step (5).

The HCN service returns a distribution over
all un-masked action templates, and the developer
code executes the highest-ranked action (6). If this
action template is an API call — such as displaying
rich content to the user, executing a transaction in
a database, or raising a robot’s arm — that API is
invoked (7), and the HCN service is called again
to choose the next action. If the API call returns
context features, those can be passed to the HCN
service (8). If the action template is text, the de-
veloper’s code can substitute in entity values such
as a weather forecast, and the text is rendered to
the end user (9). The cycle then repeats.

Dialogs conducted with users are logged by the
HCN service, and can later be reviewed and cor-
rected by the system developer through a web user
interface (10). Also, the cycle can be augmented
to support interactive teaching. These aspects are
described in the next section.
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3 Illustrative interactions

When creating a new dialog system, typically no
in-domain data exists. To address this, the dialog
learning platform supports interactive teaching. In
interactive teaching, the developer alternates be-
tween the role of the end user, and the role of the
teacher. The operational loop shown in Figure 1 is
modified so that results of entity extraction and ac-
tion selection can be corrected before continuing.

Figure 4 shows an example of interactive teach-
ing for pizza ordering. The developer — playing
the part of the user — enters “medium pizza with
olives”. The current entity extraction model finds
entity mentions for the $pizza and $size entities,
but not the “olive” $topping. So, the developer
corrects this by adding a corrected entity label, and
this corrected label is used going forward. The in-
terface then displays the contents of the developer-
defined state, and provides a list of actions, each
with their score under the current RNN model. In
this example, all but one of the actions are shown
as “disqualified”, meaning that the action mask
prohibits them. For example, the action “Would
you like a Small, Medium, or Large $crust pizza

” is masked because the pizza size is already
known. The developer enters the index of the ac-
tion to take (““1”’) and the dialog continues. At this
point, the developer could have alternatively en-
tered a new action — for example, by typing “So
you want $toppings, is that right?”. As each cor-
rection is made, the CRF and RNN models are re-
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Figure 2: Example interaction with an end user.
Note the system mistake after the user enters
“search for sushi restaurants”.

trained.

Once a rudimentary model is in place, end-
users can start using the system. An example dia-
log with an end-user is shown in Figure 2, which
shows an error at the last system turn. Figure 3
shows how this dialog appears to the developer,
and how a correction can be made. Each system
utterance is shown in a drop-down box. If the
developer identifies a turn where the system out-
put the wrong action, the developer can select the
correct action from the drop-down. When an ac-
tion which differs from the action in the log is se-
lected, the remainder of the dialog is discarded,
since it is no longer known how the user would
have responded. If none of the actions is appro-
priate, the developer can choose “new action...”,
and enter a new action into a provided text box.
When the dialog has been corrected, the devel-
oper clicks on “submit”, which saves the labeled
dialog to the training set, re-trains the model, and
re-deploys the new model. In the example in Fig-
ure 3, the user’s fourth input was “search for sushi
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Figure 3: Example of off-line dialog correction,
showing the dialog collected in Figure 2. After the
user says “search for sushi restaurants”, the devel-
oper changed the action “$forecast” to “new ac-
tion...” and typed in “Sorry, I can’t help with that”.

restaurants”, and the system had answered with a
weather forecast. The developer changed this re-
sponse to ‘“new action...” and typed in the new
action “Sorry, I can’t help with that”.

In the demonstration, we have three working di-
alog systems available, for pizza ordering, restau-
rant information, and weather forecasts. The
demonstration shows applying the two interactive
methods described above to each of these three do-
mains.
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Abstract

Human conversation is inherently com-
plex, often spanning many different top-
ics/domains. This makes policy learn-
ing for dialogue systems very challeng-
ing. Standard flat reinforcement learning
methods do not provide an efficient frame-
work for modelling such dialogues. In
this paper, we focus on the under-explored
problem of multi-domain dialogue man-
agement. First, we propose a new method
for hierarchical reinforcement learning us-
ing the option framework. Next, we show
that the proposed architecture learns faster
and arrives at a better policy than the exist-
ing flat ones do. Moreover, we show how
pretrained policies can be adapted to more
complex systems with an additional set of
new actions. In doing that, we show that
our approach has the potential to facilitate
policy optimisation for more sophisticated
multi-domain dialogue systems.

1 Introduction

The statistical approach to dialogue modelling has
proven to be an effective way of building conver-
sational agents capable of providing required in-
formation to the user (Williams and Young, 2007;
Young et al., 2013). Spoken dialogue systems
(SDS) usually consist of various statistical com-
ponents, dialogue management being the central
one. Optimising dialogue management can be
seen as a planning problem and is normally tack-
led using reinforcement learning (RL). Many ap-
proaches to policy management over single do-
mains have been proposed over the last years with
ability to learn from scratch (Fatemi et al., 2016;
Gasi¢ and Young, 2014; Su et al., 2016; Williams
and Zweig, 2016).

The goal of this work is to propose a coherent
framework for a system capable of managing con-
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versations over multiple dialogue domains. Re-
cently, a number of frameworks were proposed
for handling multi-domain dialogue as multiple
independent single-domain sub-dialogues (Lison,
2011; Wang et al., 2014; Mrksi¢ et al., 2015; Gasic¢
et al., 2015). Cuayéhuitl et al. (2016) proposed a
network of deep Q-networks with an SVM classi-
fier for domain selection. However, such frame-
works do not scale to modelling complex con-
versations over large state/action spaces, as they
do not facilitate conditional training over multi-
ple domains. This inhibits their performance, as
domains often share sub-tasks where decisions in
one domain influence learning in the other ones.

In this paper, we apply hierarchical reinforce-
ment learning (HRL) (Barto and Mahadevan,
2003) to dialogue management over complex di-
alogue domains. Our system learns how to han-
dle complex dialogues by learning a multi-domain
policy over different domains that operate on inde-
pendent time-scales with temporally-extended ac-
tions.

HRL gives a principled way for learning poli-
cies over complex problems. It overcomes the
curse of dimensionality which plagues the major-
ity of complex tasks by reducing them to a se-
quence of sub-tasks. It also provides a learning
framework for managing those sub-tasks at the
same time (Dietterich, 2000; Sutton et al., 1999b;
Bacon et al., 2017).

Even though the first work on HRL dates back
to the 1970s, its usefulness for dialogue manage-
ment is relatively under-explored. A notable ex-
ception is the work of Cuaydhuitl (2009; 2010),
whose method is based on the MAXQ algorithm
(Dietterich, 2000) making use of hierarchical ab-
stract machines (Parr and Russell, 1998). The
main limitation of this work comes from the tab-
ular approach which prevents the efficient approx-
imation of the state space and the objective func-
tion. This is crucial for scalability of spoken dia-

Proceedings of the SIGDIAL 2017 Conference, pages 86-92,
Saarbriicken, Germany, 15-17 August 2017. (©2017 Association for Computational Linguistics



logue systems to more complex scenarios. Parallel
to our work, Peng et al. (2017) proposed another
HRL approach, using deep Q-networks as an ap-
proximator. In separate work, we found deep Q-
networks to be unstable (Su et al., 2017); in this
work, we focus on more robust estimators.

The contributions of this paper are threefold.
First, we adapt and validate the option framework
(Sutton et al., 1999b) for a multi-domain dialogue
system. Second, we demonstrate that hierarchi-
cal learning for dialogue systems works well with
function approximation using the GPSARSA al-
gorithm. We chose the Gaussian process as the
function approximator as it provides uncertainty
estimates which can be used to speed up learning
and achieve more robust performance. Third, we
show that independently pre-trained domains can
be easily integrated into the system and adapted to
handle more complex conversations.

2 Hierarchical Reinforcement Learning

Dialogue management can be seen as a control
problem: it estimates a distribution over possible
user requests — belief states, and chooses what to
say back to the user, i.e. which actions to take to
maximise positive user feedback — the reward.

Reinforcement Learning The framework de-
scribed above can be analyzed from the per-
spective of the Markov Decision Process (MDP).
We can apply RL to our problem where we
parametrize an optimal policy 7 : B x A — [0, 1].
The learning procedure can either directly look for
the optimal policy (Sutton et al., 1999a) or model
the (-value function (Sutton and Barto, 1999):

T—t

Q"(b,a) = EW{Z Yoreprlby = b, a0 = a},
k=0

where r; is the reward at time £t and 0 < v < 1
is the discount factor. Both approaches proved to
be an effective and robust way of training dialogue
systems online in interaction with real users (Gasi¢
etal., 2011; Williams and Zweig, 2016).

Gaussian Processes in RL  Gaussian Process
RL (GPRL) is one of the state-of-the-art RL algo-
rithms for dialogue modelling (Gasi¢ and Young,
2014) where the (J-value function is approximated
using Gaussian processes with a zero mean and
chosen kernel function &(-, ), i.e.

Q(b7 a) ~GP (03 k((b> a)’ (b> a))) :

87

MASTER DOMAINS

Restaurants Hotels
- book() \></ pay()
3
x SUB DOMAINS
Booking Payment
'<T: Restaurants @ Booking @ Payment
—
w

Hotels

@ Booking @ Payment

Figure 1: Comparison of two analysed architec-
tures.

Gaussian processes follow a pure Bayesian frame-

work, which allows one to obtain the posterior
given a new collected pair (b, a). The trade-off be-
tween exploration and exploitation is handled nat-
urally as given belief state b at the time ¢ we can
sample from posterior (b, a) over set of avail-
able actions A to choose the action with the high-
est sampled Q-value.

Hierarchical Policy Standard flar models where
a single Markov Decision Process is responsible
for solving multi-task problems have proven to be
inefficient. These models have trouble overcom-
ing the cold start problem and/or suffer from the
curse of dimensionality (Barto and Mahadevan,
2003). This pattern was also observed with state-
of-the-art models proposed recently (Mnih et al.,
2013; Duan et al., 2016).

To overcome this issue, many frameworks have
been proposed in the literature (Fikes et al., 1972;
Laird et al., 1986; Parr and Russell, 1998). They
make use of hierarchical control architectures and
learning algorithms whereby specifying a hierar-
chy of tasks and reusing parts of the state space
across many sub-tasks can greatly improve both
learning speed and agent performance.

The key idea is the notion of temporal abstrac-
tion (Sutton et al., 1999b) where decisions at the
given level are not required at each step but can
call temporally-extended sub-tasks with their own
policies.

The Option Framework One of the most nat-
ural generalisations of flat RL methods to com-



plex tasks and easily interchangeable with prim-
itive actions is the option model (Sutton et al.,
1999b). The option is a generalisation of a single-
step action that might span across more than
one time-step and can be used as a standard ac-
tion.From mathematical perspective option is a tu-
ple (m, 3,Z) that consists of policy 7 : S x A —
[0, 1] which conducts the option, stochastic termi-
nation condition 8 : S — [0, 1] and an input set
Z C S which specifies when the option is avail-
able.

As we consider hierarchical architectures with
temporally extended activities, we have to gener-
alise the MDP to the semi-Markov Decision Pro-
cess (SMDP) (Parr and Russell, 1998) where ac-
tions can take a variable amount of time to com-
plete. This creates a division between primitive
actions that span over only one action (and can be
seen as a classic reinforcement learning approach)
and composite actions (options) that involve an ex-
ecution of a sequence of primitive actions. This
introduces a policy p over options that selects op-
tion o in state s with probability u(s,0), o’s pol-
icy might in turn select other options until o ter-
minates and so on. The value function for op-
tion policies can be defined in terms of the value
functions of the semi-Markov flat policies (Sutton
et al., 1999b). Define the value function under a
semi-Markov flat policy as:

V7T(s) = E{rip1 +yrig2 + .| E(m,5,t)},

where E(7, s,t) is the event of 7 being initiated
at time ¢ in s. The value function for the policy
over options p can be defined as the value func-
tion for corresponding flat policy. This means we
can apply off-the-shelf RL methods in HRL using
different time-scales.

3 Hierarchical Policy Management

We propose a multi-domain dialogue system with
a pre-imposed hierarchy that uses the option
framework for learning an optimal policy. The
user starts a conversation in one of the master do-
mains and switches to the other domains (having
satisfied his/her goal) that are seen by the model
as sub-domains. To model individual policies, we
can use any RL algorithm. In separate work, we
found deep RL models performing worse in noisy
environment (Su et al., 2017). Thus, we employ
the GPSARSA model from section 2 which proves
to handle efficiently noise in the environment. The
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Algorithm 1 Hierarchical GPRL

1: Initialize dictionary sets Daq, Ds and policies maq, Ts
for master and sub-domains accordingly

2: for episode=1:N do

3 Start dialogue and obtain initial state b

4 while b is not terminal do

5: Choose action a according to 7,

6: if a is primitive then

7: Execute a and obtain next state b’
8: Obtain extrinsic reward 7.

9: else
10: Switch to chosen sub-domain
11: while b is not terminal or a terminates do
12: Choose action a according to 7
13: Obtain next state b’
14: Obtain intrinsic reward r;
15: Store transition in D,
16: b «— b’
17: Store transition in D,,,
18: b — b’
19: Update parameters with D,,,, Ds

system is trained from scratch where the system
has to learn appropriate policy using both primi-
tive and temporally extended actions.

We consider two task-oriented master domains
providing restaurant and hotel information for the
Cambridge (UK) area. Having found the desired
entity, the user can then book it for a specified
amount of time or pay for it. The two domains
have a set of primitive actions (such as request,
confirm or inform (Ultes et al., 2017)) and a set
of composite actions (e.g., book, pay) which call
sub-domains shared between them.

The Booking and Payment domains were
created in a similar fashion: the user wants to re-
serve a table in a restaurant or a room in a hotel
for a specific amount of money or duration of time.
The system’s role is to determine whether it is pos-
sible to make the requested booking. The sub-
domains operates only on primitive actions and it’s
learnt following standard RL framework.

Figure 1 shows the analysed architecture: the
Booking and Payment tasks/sub-domains are
shared between two master domains. This means
we can train general policies for those sub-tasks
that adapt to the current dialogue given the infor-
mation passed to them by the master domains.

Learning proceeds on two different time-scales.
Following (Dietterich, 2000; Kulkarni et al.,
2016), we use pseudo-rewards to train sub-
domains using an internal critic which assesses
whether the sub-goal has been reached.

The master domains are trained using the re-
ward signal from the environment. If a one-step
option (i.e., a primitive action) is chosen, we ob-
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Figure 2: Learning curves for flat and the hierar-
chical reinforcement learning models.

tain immediate extrinsic reward while for the com-
posite actions the master domain waits until the
sub-domain terminates and the cumulative reward
information is passed back to the master domain.
The pseudo-code for the learning algorithm is
given in Algorithm 1.

4 Experiments

The PyDial dialogue modelling tool-kit (Ultes
et al., 2017) was used to evaluate the proposed ar-
chitecture. The restaurant domain consists of ap-
proximately 100 venues with 3 search constraint
slots while the hotel domain has 33 entities with
5 properties. There are 5 slots in the booking do-
main that the system can ask for while the payment
domain has 3 search constraints slots.

In the case of the flat approach, each master do-
main was combined with the sub-domains, result-
ing in 11 and 13 requestable slots for the restau-
rants and hotel domains, respectively.

The input for all models was the full belief state
b, which expresses the distribution over the user
intents and the requestable slots. The belief state
has size 311, 156, 431 and 174 for the restaurants,
hotels, booking and payment domains in the hi-
erarchical approach. The flat models have input
spaces of sizes 490 and 333 for the restaurant and
hotel domains accordingly.

The proposed models were evaluated with an
agenda-based simulated user (Schatzmann et al.,
2006) where the user intent was perfectly captured
in the dialogue belief state. For both intrinsic and
extrinsic evaluation, the total return of each dia-
logue was set to 1(D) * 20 — T, where T is the
dialogue length and 1(D) is the success indicator
for dialogue D. Maximum dialogue length was set
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Figure 3: Comparison of policies learnt from
scratch and those pre-trained on master domains.

to 30 in both hierarchical and flat model scenarios
with v = 0.99.

At the beginning of each dialogue, the master
domain is chosen randomly and the user is given a
goal which consists of finding an entity and either
booking it (for a specific date) or paying for it. The
user was allowed to change the goal with a small
probability and could not proceed with the sub-
domains before achieving the master domain goal.

4.1 Hierarchical versus the Flat Approach

Following (Dietterich, 2000; Kulkarni et al.,
2016), we apply a more exploratory policy in the
case of master domains, allowing greater flexibil-
ity in managing primitive and composite actions
during the initial learning stages. Figure 2 presents
the results with 4000 training dialogues, where the
policy was evaluated after each 200 dialogues.

The results validate the option framework: it
learns faster and leads to a better final policy than
the flat approach. The flat model did overcome
the cold start problem but it could not match the
performance of the hierarchical model. The poli-
cies learnt for sub-tasks with the flat approach per-
form only 10% worse (on average) than in the hi-
erarchical case. However, providing the entity in
both master domains has around 20% lower suc-
cess rate compared to HRL.

Moreover, the flat model was not able to match
the performance of the HRL approach even with
more training dialogues. We let it run for another
6000 dialogues and did not observe any improve-
ments in success rate (not reported here). This
confirms the findings from other RL tasks - the
flat approach is not able to remember successful
strategies across different tasks (Peng et al., 2017;



Duan et al., 2016). An example of two success-
ful dialogues for both models is presented in the
Figure 4.

4.2 Adaptation of Pretrained Policies

Following the idea of curriculum learning (Ben-
gio et al., 2009), we test the adaptation capabilities
of pre-trained policies to more complex situations.
Adaptation has proven to be an effective way of
reusing existing dialogue policies in new domains
(Gasic¢ et al., 2014). Since the kernel function is
factored into the kernel for the belief state space
and the action space, we can consider them sep-
arately. Following (Gasi¢ et al., 2014) the action
kernel function is defined only on actions that ap-
pear both in original and extended sets and defined
0 otherwise. The kernel for the belief state space
is not changed as we operate on the same belief
space.

We first train both master domains (without sub-
goals) until robust policies are learned. Subse-
quently, both master domains are re-trained in a
hierarchical manner for 4000 dialogues (testing af-
ter each 200). Figure 3 shows the results com-
pared to the policy learnt from scratch. Both poli-
cies trained on independent domains were able to
adapt to more complicated tasks very quickly us-
ing the hierarchical framework with new options.
This confirms that our approach can substantially
speed up learning time by training a policy in a
supervised way with the available data and then
adapting it to more complex multi-task conversa-
tions.

5 Conclusion and Future Work

This paper introduced a hierarchical policy man-
agement model for learning dialogue policies
which operate over composite tasks. The proposed
model uses hierarchical reinforcement learning
with the Gaussian Process as the function approx-
imator. Our evaluation showed that our model
learns substantially faster and achieves better per-
formance than standard (flat) RL models. The nat-
ural next step towards the generalisation of this
approach is to deepen the hierarchy and apply to
more complex tasks.
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constraint slot
pricerange moderate
kind guesthouse
stars don’t care
hasparking no
hour 4 pm
peopleNo 4
durationDays 4

day don’t care

requestable slots
name of hotel
price of hotel

“»

Hello, welcome to the Cambridge Multi-Domain dia-
logue system. How may I help you? [master domain]
Hello.

Do you want a hotel or a guesthouse?

I’m looking for a guesthouse in a moderate pricerange. I
don’t care about stars and don’t need a parking access.
A and B guest house is in a moderate pricerange and has
4 stars.

How much does it cost?

Cheapest single room is 50 pounds and a cheapest double
room is 70 pounds .

Ok. Can you book it for 4 people?

book() [option action]

What time are you planning to check in? [sub-domain]
4 pm.

How long do you want to stay?

4 days anytime soon.

You want to book it for 4 people, is that right?

Yes.

I confirm a reservation for 4 days on Saturday for 4 peo-
ple. Reservation number is 8.

Bye.

Goodbye. [master domain]

cwa

v

“c

wocwrcurcwunng

“l|l»ec

Hello, welcome to the Cambridge Multi-Domain dia-
logue system. How may I help you?

I am looking for a guesthouse.

How many stars should the place have? From 0 to 4.

I don’t need a parking access.

How many stars should the place have? From O to 4.

I don’t care but the price should be moderate.

A and B guest house is in a moderate pricerange and has
4 stars.

How much does it cost?

Cheapest single room is 50 pounds and a cheapest double
room is 70 pounds.

Ok. Can you book it for 4 people anytime soon?

It doesn’t have to have a parking, right? [wrong do-
main]

Yes.

For what day should I make a reservation?

I don’t care.

You are looking for a 4 stars hotel right? [wrong do-
main]

Yes.

Would you like the place to have a parking? [wrong
domain]

No.

How many days do you want to stay there?

4.

I confirm a reservation for 4 days on Saturday. Reserva-
tion number is 10.

Bye.

Goodbye.

Locwrcwrc

©Y

wcocwc Lo Laowc »ua

-

Figure 4: An example dialogue with the same user
goal (top) handled by HRL (middle) and flat (bot-
tom) models.
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MACA: A Modular Architecture for Conversational Agents

Hoai Phuoc Truong; Prasanna Parthasarathi] and Joelle Pineau®
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Abstract

We propose a software architecture de-
signed to ease the implementation of di-
alogue systems. The Modular Architec-
ture for Conversational Agents (MACA)
uses a plug-n-play style that allows quick
prototyping, thereby facilitating the devel-
opment of new techniques and the repro-
duction of previous work. The architec-
ture separates the domain of the conver-
sation from the agent’s dialogue strategy,
and as such can be easily extended to mul-
tiple domains. MACA provides tools to
host dialogue agents on Amazon Mechan-
ical Turk (mTurk) for data collection and
allows processing of other sources of train-
ing data. The current version of the frame-
work already incorporates several domains
and existing dialogue strategies from the
recent literature.

1 Introduction

Recent research in building sophisticated Al-
based dialogue management systems has led to
many new models supporting goal oriented or
chit-chat style dialogue agents. These models have
been applied to a variety of consumer domains,
such as restaurant booking (Kim and Banchs,
2014), flight booking (Young, 2006), etc. How-
ever, the lack of tools for easy prototyping of
newer models remains an impediment to devel-
oping new models and properly benchmarking
against previous models. Furthermore, the differ-
ent types of conversational agents—e.g., generative
(Hochreiter and Schmidhuber, 1997; Serban et al.,
2015, 2016), retrieval-based (Schatzmann et al.,
mruongZ @mail.mcgill.ca

fprasanna.p@cs.mcgill.ca
i jpineau@cs.mcgill.ca
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2005a; Lowe et al., 2015a), slot-based (Young,
2006) or POMDP agents (Png and Pineau, 2011)—
have different working mechanisms, which pose
challenges to the development of a unified plat-
form for conversational agents with multi-domain
support.

To address this gap, we propose a new, ready-
to-use, cross-platform framework for text-based
conversational agents — MACA'(Modularized
Architecture for Conversational Agents)— that
supports plug-n-play use of several existing dia-
logue agents, as well as facilitates easy prototyp-
ing of new dialogue agents. The architecture sim-
plifies the specification of different types of di-
alogue agents and plugs in an already-built dia-
logue agent. The framework also maintains a clear
separation between domain knowledge and the di-
alogue agent, which improves agent and domain
knowledge reusability. MACA separates task def-
inition from task selection and thereby supports
multi-task agents that can extend to multiple turns.

The key characteristics of the MACA frame-
work include:

strong separation between domain knowl-
edge and a dialogue agent

a unified architecture to support goal-
oriented, POMDP, generative, and retrieval-
based dialogue agents

easy plug-n-play of custom-built agents
multi-task support for domain specification
reusability of slots across different tasks

tool to collect data from mTurk with ease
template to construct dialogue agents within
the framework

independence from dialogue agents’ imple-
mentation libraries

open source code ready for public sharing

"https://github.com/ppartha03/MACA

Proceedings of the SIGDIAL 2017 Conference, pages 93—102,
Saarbriicken, Germany, 15-17 August 2017. (©2017 Association for Computational Linguistics



INPUT PRE-PROCESSING DIALOGUE AGENT MODEL POST-PROCESSING OUTPUT

4[ Domain Knowledge ]

!

—

Model-specific
preprocessing

Input

Pre[n]

Posi[1
— 1]
—/
Model-specific Post{2]
processing . Quiput
L_/ :
S
Post[n] Output
—/

PUBLISH
MANAGER|

LISTENERS

Database
Listener

Input
Output Logging
Listener

Figure 1: Overview of MACA: A Modular Architecture for Conversational Agents.

2 Related Work

There are a few proposed frameworks in recent
years that provide easy prototyping of dialogue
agents.

Ravenclaw (Bohus and Rudnicky, 2003), pro-
posed as a successor to Agenda (Allen et al.,
2001), is a two-tiered dialogue architecture sup-
porting rapid development of dialogue agents.
This flexible architecture provides a clear separa-
tion between the domain knowledge and dialogue
agent, and maintains a hierarchical task structure.
Systems can be built on the architecture with the
hierarchical task layout but adding a new task re-
quires the hierarchy to be rebuilt, which impedes
application to new domains.

A hierarchical architecture similar to Raven-
claw, called Task Completion Platform (TCP)
(Crook et al., 2016), addresses domain knowledge
extensibility with minimal changes to a configura-
tion file. In addition, it allows the goal oriented
tasks to be defined easily using a TaskForm lan-
guage to maintain slot information. Although TCP
facilitates extension of slot-based agents to multi-
ple domains, it cannot be extended for other dia-
logue agent types viz., generative models and re-
trieval models.

Another notable architecture is ClippyScript
(Seide and McDirmid, 2012), but its task defini-
tion is tied to a task condition by rule. Rules are
therefore constrained to be explicitly defined on a
per task basis. This is significantly more restrictive
than our proposed architecture.

As much research focuses on proposing dif-

ferent architectures for dialogue models, there
have also been some progress made in propos-
ing efficient protocols for agent-agent interaction
such as DialPort (Zhao et al., 2016), which pro-
vides tools for enabling multi-modal interaction
between agents. Our proposed work is different
from this line of research, focusing on a unifying
architecture for dialogue agents and little on the
inter-agent communication.

3 Architecture Description

An overview of the Modular Architecture for Con-
versational Agents (MACA) is presented in Fig-
ure 1. The system is setup as a pipeline with six
major components: Input, Pre-processing, Dia-
logue Model, Post-processing, Output, and Listen-
ers. Each component contains independent sub-
components that interact across it. All compo-
nents within the architecture abstract away their
underlying implementations and therefore allow
their extensions to be straightforward. This helps
in block-wise designing of newer systems by pre-
serving the original functionality, yet also provid-
ing a free hand in customizing of each component.

3.1 Component Details
3.1.1 Domain Knowledge

Domain knowledge contains static background in-
formation about the conversation topic. This can
take the form of training data (e.g. transcribed
conversations), constants, dictionaries, or restric-
tions on produced responses (e.g. sentence length,
banned phrases). Data stored in domain knowl-

94



edge must be independent of the model implemen-
tation, and can be shared between different models
and components.

3.1.2 Input

The Input module provides or generates input ut-
terances (i.e. statements, sentences) to the conver-
sation pipeline. This component represents an ab-
stract input device whose source of context varies
depending on the use case. This could include
a database of previous collected conversations, a
terminal interface (i.e. stdin) to acquire data in
real-time, or a web interface to a data source (e.g.
mTurk).

3.1.3 Preprocessing

The Pre-processing module serves as a bridge
between raw data acquired via the Input com-
ponent and the input format required of compo-
nents of the Dialogue model module. The sys-
tem architect may choose to include one or sev-
eral pre-processing operations within this mod-
ule. These pre-processing operations by default
are performed in parallel and their results are fed
into the next component as an array. This allows
the dialogue model to have multiple input repre-
sentations. Alternatively, the framework also al-
lows these operations to be sequentially processed
in a specified order (e.g. spelling correction, fol-
lowed by stemming).

Pre-processing operations currently imple-
mented in MACA include: getting POS tags, re-
moving stop-words, sentence tokenizing (Loper
and Bird, 2002), Byte-Pair encoding (BPE) (Gage,
1994) and can be extended to accommodate
trained sentence2vec model (Le and Mikolov,
2014), trained word2vec model (Mikolov et al.,
2013), etc. These nodes can also interact with the
Domain Knowledge component to acquire domain
specific information required for the operations.

3.1.4 Dialogue Model

This module is the core of the architecture, and
contains implementations of agents capable of
producing dialogue acts in response to the pre-
processed Input information. This module can
have up to three sub-components: Model Specific
Pre-processing, Model Internals and Model Spe-
cific Post-processing, to accommodate dialogue
agent models with various interface requirements.

The Model internals sub-module contains the
central dialogue model, which may be an exist-
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ing model, such as a POMDP (Png and Pineau,
2011), Dual Encoder (Lowe et al., 2015a), HRED
agent (Serban et al., 2015), or a newly designed
model. This sub-module receives inputs from the
Model Specific Pre-processing sub-module. The
space of possible responses, vocabulary or dia-
logue acts are stored in the Domain Knowledge
module. The Model internals and Model spe-
cific Pre/Post-processing sub-modules share the
model information. Similar to the Pre-processing
component, they can access any information re-
quired for their operations by querying the Do-
main Knowledge component. A specific illustra-
tion of this interaction is in goal-oriented dialogue
agents, where the slot information — askQueries
and other attributes of the slot and these slot ob-
jects — are maintained in the domain knowledge,
which enables the framework to support multiple
agents. In such settings, the Dialogue Model is ini-
tialized with a generic agent that tries to gauge the
user intent, and then queries the domain knowl-
edge for the appropriate slots.

Model specific Pre-processing and Post-
processing sub-components are provided to give
the luxury of designing fine-tuned pre-processing
for a model. Model Specific Pre-processing
sub-component transforms pre-processed input(s)
into appropriate representations compatible with
the model internals (e.g. array of word indices
into vector, matrix or lookup table, etc). On the
other hand, Model Specific Post-processing sub-
component transforms model outputs into more
comprehensible forms for the next independent
component in the system (e.g. matrix/vector
representation to array of words/sentences).

Although certain interpretations suggest analo-
gies between the above sub-modules and conven-
tional units of a goal-oriented dialogue system
such as Dialogue Manager (DM) as Model inter-
nals, Natural Language Understanding (NLU) as
Model specific Pre-processing, and Natural Lan-
guage Generation (NLG) as Model specific Post-
processing, MACA does not impose any restric-
tion on how the framework’s sub-modules should
correspond with these conventional parts of a di-
alogue system. For example, the architect may
choose to have the Model internals sub-module
act as a NLU unit, while Model specific Post-
processing act as both NLG Unit and DM unit.

In addition, as the model may also be an ensem-
ble of dialogue models, the model specific pre-



and post-processing sub-components can also be
used to keep processing units specific to each of
the model in the architecture. For clarification, in a
typical implementation of an ensemble of models,
the Model specific Pre-processing sub-component
can be used to provide separate inputs parsed from
the Pre-processing component to the correspond-
ing models, while Model specific Post-processing
sub-component can be used to perform a majority
voting or other ensemble techniques to select the
response pool.

3.1.5 Postprocessing

The Posprocessing component connects the Dia-
logue Model and the Output components. It al-
lows the architect to choose the response in the
case of multi-response retrieval, to alter responses
based on linguistic characteristics, or to modify a
response in accordance with the conversation do-
main. It may also serve as a translation of text
to system calls, which is useful in the case where
a dialogue agent placed as the front-end interface
to another software system. Similar to the Pre-
processing module, this component includes one
or multiple post-processing operations, which pro-
cess the output in parallel or in sequence, depend-
ing on the specification of the designer. In addi-
tion, these post-processing operations within the
Post-processing component can also query the Do-
main Knowledge component for relevant data re-
quired for the generation of text response.

3.1.6 Output

Through the output component, the architecture
provides a generic way to output the response to
appropriate audience(s) depending on the use case.
Currently, implemented options are command line,
file based, web based, and database. Similar to the
Input component, the output component provides
flexibility for the architect to change the destina-
tion of produced outputs and to separate the output
programming logic from that of other components.

3.1.7 Pubsub system/Listeners

In addition to the main pipeline presented above,
the proposed system also includes a passive pub-
sub layer to facilitate monitoring, conversation
recording, and independent evaluation of the
model. This pubsub system allows the architect
to choose or plug in a wide range of peripheral
components (called Listeners) to passively moni-
tor the main system for execution behaviors and
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performance. On top of several default channels
(see Operation modes section below) that the sys-
tem writes to and reads from, users can freely add
their own channels to communicate between the
main system and the pubsub layer hosting the pe-
ripherals.

Listeners, as previously mentioned, are optional
modules that can be plugged in to passively moni-
tor the system over different channels. These mod-
ules are useful when the architect is interested in
observing the system inputs and/or outputs, or vi-
sualizing internal parameters or states of the dia-
logue model at execution time. Passive monitor-
ing logic can be independently introduced into the
system without modifying the other components’
implementations.

3.2 Operation modes

MACA can be operated in three different modes:
Data Collection, Training and Execution. This
section describes the data flow in the architec-
ture along with abstract setups of the framework’s
components in these different operation modes for
several dialogue models from the recent literature.

3.2.1 Data Collection Mode

Alice (Input) Preproc655ingH (MB:dbel)

H PostprocessingJ—ﬁ Output J

Output
L“ Database |
{_Listener

Figure 2: Data flow in data collection mode.

Input

The goal of the data collection mode is to col-
lect conversations as training datasets for dialogue
models. In this mode, the two agents Alice and
Bob involved in the conversation are considered
the Input component and the Dialogue Model
component respectively. Figure 2 describes a typ-
ical setup for the data collection process with said
configuration. The conversation is recorded using
a database listener that receives both input (con-
text) and output (response) for each speaking turn,
similar to the scheme presented in section 3.2.3
above.

This setup realizes the infrastructure required
for two common dialogue data collection scenar-
ios. The first scenario is collection of both con-
texts and responses. In this case, both agents are
humans. In the second scenario, the goal is to col-
lect human responses for a given set of contexts.
In this case, agent Alice can be an implementation



of the Input component fetching contexts from a
database, while Bob is a human agent responding
to the fetched contexts.

3.2.2 Training Mode

Domain Knowledge J

T
Batched training data Validation data

Null (

Innput H_PreprocessingH_

Null

}W'{_Postprocessing}"'{

Null
Output

Dialogue
Model

)

Trainin ‘ Training |
g | Monitor Listener

Figure 3: Data flow in training mode.

The goal of the training and validation mode
is to use the data obtained in the data collec-
tion stage to train one or multiple dialogue mod-
els, as illustrated in figure 3. Assuming a dataset
is available from the Domain Knowledge compo-
nent, training data can be fetched as batches by
the Input component and fed into the VoidPrepro-
cessing component. This component simply for-
wards the data as is to the Dialogue Model com-
ponent, which performs model training, and oc-
casionally queries the domain knowledge for val-
idation data to verify its training progress. Since
system output is irrelevant within the training sce-
nario, Post-processing and Output components are
implemented with null operations, which simply
discard their received contents. Once certain val-
idation accuracy is achieved, the model can save
its internals on to the disk and terminate the sys-
tem. In addition to the core training process, the
architect may opt to emit training information to
a listener through the training channel to monitor
the training progress.

3.2.3 Execution Mode

Input

PreprocessingH Model HPostprocessingH Qutput

)

Cutput

Input
Figure 4: Data flow in execution mode.

Data flow in execution mode is illustrated in fig-
ure 4. In this mode, all core components in the
system are enabled and active. Given that the di-
alogue model has been successfully trained and
fine-tuned, its internal states (e.g. weights, hyper-
parameters) are loaded into the Dialogue Model

L‘ Listener
\,
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component at system initialization time. Input
data is retrieved in real time (through local user
interface (e.g. terminal, GUI) or via an interface
with the Internet (e.g. web page, chat client)). This
input then enters the pipeline and goes through
Preprocessing, Dialogue model, Postprocessing
and finally Output component. At the end of the
pipeline, the output component is responsible for
sending the generated responses to relevant audi-
ences (e.g. print to stdout, HTTP response, ...).

From the peripheral components perspective,
conversation logging and system monitoring can
be done through two default channels: input and
output. Specifically, as shown in figure 4, the pas-
sive listener receives a notification for every in-
put received from the Input component on the in-
put channel, and a notification for every output
received by the Output component on the output
channel.

4 Feature Highlights

As discussed in the previous sections, MACA can
be used to plug in different types of existing di-
alogue agents. The architecture abstracts the im-
plementation details, similar to popular machine
learning libraries such as Theano (Theano Devel-
opment Team, 2016), Tensorflow (Abadi et al.,
2016), or PyTorch. The modular design enables
rapid prototyping and should facilitate reproduc-
ing previous results. The support for experimenta-
tion, extension, and development of slot-based di-
alogue agents for goal-oriented tasks has also been
provided. In addition, the current implementation
has rule-based approach for slot disambiguation
and has provisions for the easy extension of slot
disambiguation to machine learning (ML) based
modules. The clear separation of domain knowl-
edge from the agent aids in multi-agent systems
with little dependence on the domain — the in-
tent identification is provided at a higher level to
identify and trigger the task, defined as a set of
slots and ask queries. Intent identification sup-
ports hosting of multiple tasks.

The framework provides tools for easy host-
ing of dialogue tasks as HIT (Human Intelligence
Task) on Amazon mTurk to collect human re-
sponses; the framework also supports modelling
dialogue tasks as an agent-agent interaction that
can be used to test a dialogue agent against sim-
ulated users (Schatzmann et al., 2005b). A sum-
mary of MACA’s features is provided in Table 1.



l l

Multi Domain Support
Plug-and-Play
Adaptation for FCA
Agent Abstraction
Integration with mTurk

MACA | TCP | Ravenclaw |

NNNNS

v
v
X
X
X

| 3| 3| x|«

Table 1: Feature Comparison of MACA with ex-
isting similar frameworks. Note: FCA: Frequently
used Conversational Agents.

5 Implementation Highlights>

MACA’s current implementation is in Python and
includes standard libraries to ensure the frame-
work’s portability, as well as to facilitate rapid
prototyping of different dialogue model strategies.
Each component of the framework (e.g. Input
component) is described with an abstract Python
class, whose concrete implementation instances
(i.e. Python objects) are manifestations of that
component (e.g. Command line input, Database
input). This corresponds to the abstraction layer of
the architecture’s module to foster independence
of the pipeline implementation from that of the
underlying dialogue model(s). The assembly of
these components are then specified in a central
configuration file representing an instantiation of
the architecture. With this design, changes in the
instantiation specifications can be done within the
central configuration file by modifying the names
of invoked modules. On the other hand, this setup
allows system specifications to be completely con-
tained within the central configuration file, which
reduces maintenance effort and simplifies config-
uration modification during development. In ad-
dition, the open source nature of the framework
encourages sharing and reusing of components,
which allows researchers to easily develop from
existing models and save time by reusing common
components written by others.

6 Case Studies

MACA was deployed for several studies within
our research group. All conducted studies have the
same template for the central configuration file,
whose content is then modified corresponding to
the purpose of each study. Listing 1 shows the
configuration template representing a system with
a simple dialogue agent, which repeats its input

2Some of the configuration file samples provided in the
listings in this section are slightly modified to fit the page
limit constraint.
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(echo agent). The configuration file requires sev-
eral attributes to be mentioned and provides a gen-
eral outlook of the experiment being run. The tem-
plate contains the following attributes: input, out-
put, preprocessing, postprocessing, agent, domain
knowledge and listeners. The class sub-attribute
of the attributes refers to the Python class imple-
mentation of the component being invoked.

6.1 Building a simple agent

The Echo agent is designed to simply listen and
store the input to file; this is a good first test case
for new users of MACA. In this setup, the in-
put attribute is instantiated with StdinInputDevice,
which is the commandline inputs, and the out-
put attribute is instantiated with FileOutputDevice,
which writes the results to a file. Likewise, the
instantiations of the other attributes, like postpro-
cessing, preprocessing and domain_knowledge,
point to VoidPostprocessor, VoidPreprocessor,
and EmptyDomainKnowledge respectively, since
Echo agent does not require them. The agent at-
tribute is instantiated with the appropriate dialogue
agent, which in this case is Echo agent. Along
with these components, LoggingListener, which
logs the input and output of the system on to an
output file, is included as a listener component.

1 ’input’ : { "class’ : StdinInputDevice },

2 output’ : {

3 “class’ : FileOutputDevice,

4 “args’ : ["out.gods’]

5

6 ’preprocessing’ : {

7 "modules’ : [{ “class’ : VoidPreprocessor, }],

8 “parallel’ : False, # Optional

9 h
10 ’postprocessing’ : {
11 “output_index’ : 0, # Index of the pipe to output
12 “parallel’ : False, # Optional
13 "modules’ : [ { "class’ : VoidPostprocessor, } ]
14 1,
15 ’agent’ : { ’class’ : EchoAgent },
16 ’domain_knowledge’ : { ’class’ : EmptyDomainKnowledge },
17 listeners’ : { "unnamed’: [{ *class’ : LoggingListener }] }

Listing 1: Configuration Template.

6.2 Building a goal oriented system

Next, we consider using MACA to build goal ori-
ented agents for the restaurant, flight booking, and
other toy domains. These slot-based agents were
developed using the tools provided in the frame-
work that aids in hierarchical task decomposition
and slot sharing across tasks (as in the example
reusing the same Python variables). With regard to
hosting a multi-task agent, the invocation of Goal



oriented policies/sub-agents for each task happens
with the description of slots — askQuery, disam-
biguation strategy etc. As with providing multi-
agent support, the architecture can handle multi-
ple intents with intent triggers defined for each of
them. For example, I would like to book a flight”
will trigger the flight booking policy which will fill
in slots specific to this task based on the informa-
tion provided in the domain knowledge, whereas
”What’s a good restaurant nearby?” will trigger
the restaurant booking policy. The configuration
file modification in the agent and domain knowl-
edge attributes is provided in Listing 2.

1 first_-name_slot = Slot(’first_name”)
2 last_name_slot = Slot(’last_name’)
3 agent’: {
4 “class’ : PersonallnformationAskingModel,
5 “kwargs” : {
6 intents’ : [
7 AddressAskingAgent(’address’),
8 NameAskingAgent(’name’)
9 ]
10 }
11},
12 ’domain_knowledge’ : {
13 "class’ : GoalOrientedDomainKnowledge,
14 “args’ @ [{
15 address’ : [
16 first_name _slot, last_name_slot,
17 Slot(’street’, [*apt’, *street_name’]),
18 Slot(’city’),
19 Slot(’country’),
20 Slot(’zip_code’, enabling_condition =\
21 lambda slots: slots[’country’].value() == "US”)
22 1,
23 *flight_booking’ : [
24 first_name _slot, last_name_slot,
25 Slot(’origin’),
26 Slot(’destination’),
27 Slot(’return_date’)
28 ]
29 ]
30 3,

Listing 2: Sample Agent attribute in Goal Ori-
ented Dialogue models’ Configuration.

An overview of the architecture components in
the goal oriented setting is provided in Table 2.

6.3 Building a neural response generation
agent

We also used MACA to prototype neural re-
sponse generation agents based on the Hierarchi-
cal Encoder-Decoder framework (Serban et al.,
2019).

6.3.1 HRED in training mode

MACA’s training mode was tested with the train-
ing process of an HRED agent. The modifica-
tions for the central configuration files for this
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Component Description Note
. GoalOriented Do- Specify ir?g slots
Domain Knowledge K information for
mainKnowledge .
known domains.
Input StdInputDevice Inputs from stdin.
Preprocessing VoidPreprocessor None.
Preprocessing VoidProcessing None.
Model | Postprocessing Model specific None.
Intent
Internal Personallnformation|  disambiguation
AskingModel and execution
policies.
Postprocessing VoidProcessing None.
Output FileOutputDevice Output to a file.
- ) L Log all pubsub
Listeners LoggingListener notifications to file.

Table 2: Setup for goal oriented system in execu-
tion mode.

setup are presented in Listing 3. HREDTraining-
InputDevice simply invokes the training process
by sending an initiate message to the model while
the dialogue model HREDAgent, configured to be
in training mode, starts its regular training pro-
cess and writes the trained weights to disk. The
training dataset is specified using the prototype
sub-attribute (in compliance with the HRED code
base) within the train_args attribute of agent. All
other components of the pipeline are unchanged as
it is unnecessary to postprocess or to output data.
The HRED agent was trained using both the Twit-
ter Corpus (Ritter et al., 2011) and Ubuntu Dia-
logue Corpus (Lowe et al., 2015b).

1 input’: {

2 “class’ : HREDTrainingInputDevice

3 3.

4 Cagent’ : {

5 “class” : HREDAgent,

6 “kwargs’ : {

7 “train_args’ : { “prototype’ : "ubuntu_ HRED’ },
8 ’mode’ : system_modes. TRAINING,

9o 1}
10 1},

Listing 3: Modified attributes for HRED training.

6.3.2 HRED in execution mode

We also tested using a trained HRED agent in ex-
ecution and data collection modes. In the execu-
tion mode, MACA used the command-line as the
input and the output units to fetch user responses
and show model responses from HRED. In the
data collection mode, MACA was hosted on a lo-
cal psiTurk (Gureckis et al., 2016) server emulat-
ing mTurk. A layout that lets the users chat and
score the model responses was provided, and user
inputs were logged by a database listener through
the pubsub architecture. In this scenario, the pre-



trained HRED model can be seen as a case of cus-
tom built dialogue agent adapted to MACA.

1 ’agent’ :{

2 “class’ : HREDAgent,

3 “kwargs” : {

4 ’ignore_unknown_words’ : True,

5 ’normalize’ : False,

6 ’prototype’ : “prototype_twitter HRED”’,

7 ’train_dialogues’ : "Training.dialogues.pkl’,
8 “test_dialogues’ : "Test.dialogues.pkl’,

9 ’valid_dialogues’ : *Validation.dialogues.pkl’,
10 ’dictionary_path’ : *Dataset.dict.pkl’,

11 ’model_prefix’ : *./334.74_Model’

12

13},

Listing 4: Agent attribute in HRED Configuration.

The central configuration file from Listing 1 is
updated for HRED in execution mode, as shown
in Listing 4. The model specific arguments, pro-
vided between lines 3 and 14, in Listing 4 demon-
strate MACA’s support for plugging in customized
or pre-trained dialogue agents. Furthermore, an
overview of the architecture, with the instantiated
components, and their roles is provided in Table 3.

Component Description Role
Domain Knowledge EmptyDomainKnowledge | An empty domain.
Input StdInputDevice Inputs from stdin.

Tokenize input
sentence.

Add model specific
tokens.
Remove speaker
tokens.
HredAgent HRED internals.

VoidProcessing None.

FileOutputDevice Output to a file.
Log all pubsub

notifications to file.

Preprocessing HredPreprocessing

Preprocessing | Model specific

Model

Postprocessing | Model specific

Internal
Postprocessing
Output

Listeners LoggingListener

Table 3: Setup of HRED system: Execution mode.

6.4 Building a neural response retrieval agent

Finally, we built an architecture that incorporates a
neural response retrieval agent operating using the
Dual Encoder method (Lowe et al., 2015a).

6.4.1 Dual Encoder in training mode

Listing 5 presents changes to the template con-
figuration to incorporate a Dual Encoder dialogue
agent in training mode. Similar to the HRED
model training case, we replace the Input and
Model modules in the template configuration. In
the case of Dual Encoder, the specified data set
will be loaded into DomainKnowledge and will
become accessible after initialization. During the
training process, RetrievalModelTrainingInputDe-
vice retrieves the data from the specified train-

ing data set via DomainKnowledge and feeds it
to the Dialogue Model while the RetrievalMode-
[Agent contains the relevant training parameters.
Once training finishes, RetrievalModelTrainingIn-
putDevice issues a message to the agent to write
out trained weights to disk.
’input” @ {
“class’ : RetrievalModel TrainingInputDevice,
“kwargs’ : { “n_epochs’ : 500, *shuffle_batch’ : False }

"class’ : RetrievalModel Agent,

1

2

3

4 1, ..

5 Cagent’ :{
6

7 “args’ : [ “twitter_dataset/W _twitter_bpe.pkl’ ],
8

9

“kwargs’ @ {
’model_fname’ : “model.pkl’,

10 ’mode’ : system_modes. TRAINING,
11 "model_params’ : {
12 ’encoder’ : ’Istm’,
13 ’batch_size’ : 512, *hidden_size’ : 200,
14 ’optimizer’ : adam’, ’1r’ : 0.001,
15 }
16 }
17 } ..
18 ’dataset’ : {
19 ’class’ : Retrieval TwitterDataset,
20 “args’ : [ “twitter_dataset’, *dataset_twitter_bpe.pkl’ ]
21},

Listing 5: Modified attributes for Dual Encoder
training.

6.4.2 Dual Encoder in execution mode

We also tested the Dual Encoder agent in execu-
tion mode, which is an instance of adapting a re-
trieval based model to the proposed framework.
The execution mode in this case obtained inputs
from a database of previously collected context-
response pairs. The configuration file for the Dual
Encoder model looks mostly similar to the generic
template, with modification on the agent attribute,
described in Listing 6.

1 ’preprocessing’ : {

2 "modules’: [{

3 "class’ : RetrievalModelPreprocessor,

4 “args’ : [./retrieval/BPE/Twitter_Codes_5000.txt’]
5 1

6 ...

7 Cagent’ : {

8 "class’ : RetrievalModelAgent,

9 ‘args’ 1 [ ../../twitter_dataset/W _twitter_bpe.pkl’ ],
10 kwargs” @ {
11 "model_params’ : {
12 ’encoder’ : ’Istm’,
13 ’batch_size’ : 512, *hidden_size’ : 100,
14 “input_dir’ : ’../../twitter_dataset’,
15 *W_fname’ : "W _twitter_bpe.pkl’
16 }
17 }
18},

Listing 6: Agent attribute in Dual Encoder (Re-
trieval Model) Configuration.
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The configuration file’s flexibility allows cus-
tomized agents to be plugged in with ease, while
providing the parameters for the model to run
in the model_params sub-attribute. Further, an
overview of MACA with its instantiated com-
ponents and their roles is provided in Table 4;
specification of these attributes within MACA is
achieved through the configuration file.

Role
An empty domain.
Inputs from stdin.
Compute BPE on
all utterances.

Component
Domain Knowledge
Input

Description
EmptyDomainKnowledge
StdInputDevice

Preprocessing RetrievalModelPreprocessing

Preprocessing | Model specific None.
Model | Postprocessing | Model specific None.
Internal RetrievalModel Agent leal Encoder
internals.
Postprocessing VoidProcessing None.
Output FileOutputDevice Output to a file.

Log all pubsub

Listeners . R N
notifications to file.

LoggingListener

Table 4: Setup for Dual Encoder system in execu-
tion mode.

7 Discussion

MACA offers a unified architecture for dialogue
agents that supports the plug-n-play of different
types of dialogue agents and different domains.
We hope that this will facilitate the fast develop-
ment of new models, but also foster reproducibil-
ity in dialogue system research.

A few possible limitations in the current imple-
mentation of MACA include simplicity of the pub-
sub system, lack of support for distributed hosting
of different components of the architecture, and
lack of support for parallel conversations. As fu-
ture work, the pubsub system could be improved
by capturing a wider range of system information
with more monitoring pubsub channels. In ad-
dition, we plan to incorporate new domains and
agents as they become available, along with com-
prehensive ML based slot-disambiguation mod-
ules.
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Abstract

Spoken Language Understanding (SLU)
is a key component of goal oriented di-
alogue systems that would parse user ut-
terances into semantic frame representa-
tions. Traditionally SLU does not uti-
lize the dialogue history beyond the pre-
vious system turn and contextual ambigu-
ities are resolved by the downstream com-
ponents. In this paper, we explore novel
approaches for modeling dialogue con-
text in a recurrent neural network (RNN)
based language understanding system. We
propose the Sequential Dialogue Encoder
Network, that allows encoding context
from the dialogue history in chronologi-
cal order. We compare the performance of
our proposed architecture with two context
models, one that uses just the previous turn
context and another that encodes dialogue
context in a memory network, but loses
the order of utterances in the dialogue his-
tory. Experiments with a multi-domain di-
alogue dataset demonstrate that the pro-
posed architecture results in reduced se-
mantic frame error rates.

1 Introduction

Goal oriented dialogue systems help users with ac-
complishing tasks, like making restaurant reserva-
tions or booking flights, by interacting with them
in natural language. The capability to understand
user utterances and break them down into task spe-
cific semantics is a key requirement for these sys-
tems. This is accomplished in the spoken language
understanding module, which typically parses user
utterances into semantic frames, composed of do-
mains, intents and slots (Tur and De Mori, 2011),
that can then be processed by downstream dia-
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ul Can you get me a restaurant reservation ?

s Sure, where do you want to go ?

u2 table for 2 at  Pho Nam
L ! !

S 0O O B-# O B-Rest I-Rest

D restaurants

I reserve_restaurant

Figure 1: An example semantic parse of an utter-
ance (u2) with slot (5), domain (D), intent (1) an-
notations, following the IOB (in-out-begin) repre-
sentation for slot values.

logue system components. An example semantic
frame is shown for a restaurant reservation related
query in Figure 1.

As the complexity of the task supported by a di-
alogue system increases, there is a need for an
increased back and forth interaction between the
user and the agent. For example, a restaurant
reservation task might require the user to spec-
ify a restaurant name, date, time and number of
people required for the reservation. Additionally,
based on reservation availability, the user might
need to negotiate on date, time, or any other at-
tribute with the agent. This puts the burden of
parsing in-dialogue contextual user utterances on
the language understanding module. The com-
plexity increases further when the system supports
more than one task and the user is allowed to have
goals spanning multiple domains within the same
dialogue. Natural language utterances are often
ambiguous, and the context from previous user
and system turns could help resolve the errors aris-
ing from these ambiguities.

In this paper, we explore approaches to im-
prove dialogue context modeling within a Recur-
rent Neural Network (RNN) based spoken lan-
guage understanding system. We propose a novel
model architecture to improve dialogue context
modeling for spoken language understanding on a

Proceedings of the SIGDIAL 2017 Conference, pages 103-114,
Saarbriicken, Germany, 15-17 August 2017. (©2017 Association for Computational Linguistics
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Figure 2: Architecture of the Memory and current utterance context encoder.

multi-domain dialogue dataset. The proposed ar-
chitecture is an extension of Hierarchical Recur-
rent Encoder Decoders (HRED) (Sordoni et al.,
2015), where we combine the query level encod-
ings with a representation of the current utterance,
before feeding it into the session level encoder. We
compare the performance of this model to a RNN
tagger injected with just the previous turn context
and a single hop memory network that uses an at-
tention weighted combination of the dialogue con-
text (Chen et al., 2016; Weston et al., 2014).
Furthermore, we describe a dialogue recombi-
nation technique to enhance the complexity of
the training dataset by injecting synthetic domain
switches, to create a better match with the mixed
domain dialogues in the test dataset. This is,
in principle, a multi-turn extension of (Jia and
Liang, 2016). Instead of inducing and compos-
ing grammars to synthetically enhance single turn
text, we combine single domain dialogue sessions
into multi-domain dialogues to provide richer con-
text during training.

2 Related Work

The task of understanding a user utterance is typ-
ically broken down into 3 tasks: domain classi-
fication, intent classification and slot-filling (Tur
and De Mori, 2011). Most modern approaches
to Spoken language understanding involve train-
ing machine learning models on labeled train-
ing data (Young, 2002; Hahn et al., 2011; Wang
et al., 2005, among others). More recently, re-
current neural network (RNN) based approaches
have been shown to perform exceedingly well
on spoken language understanding tasks (Mesnil
etal., 2015; Hakkani-Tiir et al., 2016; Kurata et al.,
2016, among others). RNN based approaches have
also been applied successfully to other tasks for di-
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alogue systems, like dialogue state tracking (Hen-
derson, 2015; Henderson et al., 2014; Perez and
Liu, 2016, among others), policy learning (Su
etal., 2015) and system response generation (Wen
et al., 2015, 2016, among others).

In parallel, joint modeling of tasks and addition of
contextual signals has been shown to result in per-
formance gains for several applications. Modeling
domain, intent and slots in a joint RNN model was
shown to result in reduction of overall frame er-
ror rates (Hakkani-Tiir et al., 2016). Joint model-
ing of intent classification and language modeling
showed promising improvements in intent recog-
nition, especially in the presence of noisy speech
recognition (Liu and Lane, 2016).

Similarly, models incorporating more context
from dialogue history (Chen et al., 2016) or se-
mantic context from the frame (Dauphin et al.,
2014; Bapna et al., 2017) tend to outperform mod-
els without context and have shown potential for
greater generalization on spoken language under-
standing and related tasks. (Dhingra et al., 2016)
show improved performance on an informational
dialogue agent by incorporating knowledge base
context into their dialogue system. Using dialogue
context was shown to boost performance for end to
end dialogue (Bordes and Weston, 2016) and next
utterance prediction (Serban et al., 2015).

In the next few sections, we describe the proposed
model architecture, the dataset and our dialogue
recombination approach. This is followed by ex-
perimental results and analysis.

3 Model Architecture

We compare the performance of 3 model archi-
tectures for encoding dialogue context on a multi-
domain dialogue dataset. Let the dialogue be a
sequence of system and user utterances D; =
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Figure 3: Architecture of the dialogue context encoder for the cosine similarity based memory network.

{u1,uz...u; } and at time step ¢ we are trying to
output the parse of a user utterance u;, given D;.
Let any utterance uj, be a sequence of tokens given
by {z¥, xéxﬁk}

We divide the model into 2 components, the con-
text encoder that acts on D; to produce a vector
representation of the dialogue context denoted by
ht = H(Dy), and the tagger, which takes the di-
alogue context encoding h;, and the current utter-
ance u; as input and produces the domain, intent
and slot annotations as output.

3.1 Context Encoder Architectures

In this section we describe the architectures of the
context encoders used for our experiments. We
compare the performance of 3 different architec-
tures that encode varying levels of dialogue con-
text.

3.1.1 Previous Utterance Encoder

This is the baseline context encoder architecture.
We feed the embeddings corresponding to to-
kens in the previous system utterance, u;—; =
{xi_l,xg_l...xf;,ll , into a single Bidirectional
RNN (BiRNN) layer with Gated Recurrent Unit
(GRU) (Chung et al., 2014) cells and 128 dimen-
sions (64 in each direction). The embeddings are
shared with the tagger. The final state of the con-
text encoder GRU is used as the dialogue context.

ht = B’iGRUC(Ut_1> (1)
3.1.2 Memory Network

This architecture is identical to the approach de-
scribed in (Chen et al., 2016). We encode all
dialogue context utterances, {uy, ug...us—1 }, into
memory vectors denoted by {mi,mo,...mi_1}
using a Bidirectional GRU (BiGRU) encoder with
128 dimensions (64 in each direction). To add
temporal context to the dialogue history utter-

ances, we append special positional tokens to each
utterance.

my = BiGRUp,(ug) for 0<k<t—1 (2)

We also encode the current utterance with another
BiGRU encoder with 128 dimensions (64 in each
direction), into a context vector denoted by c, as
in equation 3. This is conceptually depicted in
Figure 2

¢ = BiGRU, (ut) 3)

Let M be a matrix with the i¢th row given by
m;. We obtain the cosine similarity between each
memory vector, m;, and the context vector c. The
softmax of this similarity is used as an attention
distribution over the memory M, and an attention
weighted sum of M is used to produce the dia-
logue context vector h; (Equation 4). This is con-
ceptually depicted in Figure 3.

a = softmax(Mc)

4
ht:aTM ( )

3.1.3 Sequential Dialogue Encoder Network

We enhance the memory network architecture de-
scribed above by adding a session encoder (Sor-
doni et al.,, 2015) that temporally combines a
joint representation of the current utterance en-
coding, ¢, (Eq. 3) and the memory vectors,
{ml, m2...mt71}, (Eq 2)

We combine the context vector ¢ with each mem-
ory vector my, for 1 < k < ny, by concatenat-
ing and passing them through a feed forward layer
(FF) to produce 128 dimensional context encod-

ings, denoted by {g1, g2...9:—1} (Eq. 5).

for 0<k<t-1
(5)

These context encodings are fed as token level in-
puts into the session encoder, which is a 128 di-

gx = sigmoid(FF(my,c))

105



Figure 4: Architecture of the Sequential Dialogue
Encoder Network. The feed-forward networks
share weights across all memories.

mensional BiGRU layer. The final state of the ses-
sion encoder represents the dialogue context en-
coding h; (Eq. 6).

ht = BiGRUs({g1, 92, ---gt—1})

The architecture is depicted in Figure 4.

(6)

3.2 Tagger Architecture

For all our experiments we use a stacked BIRNN
tagger to jointly model domain classification, in-
tent classification and slot-filling, similar to the
approach described in (Hakkani-Tiir et al., 2016).
We feed learned 256 dimensional embeddings cor-
responding to the current utterance tokens into the
tagger.

The first RNN layer uses GRU cells with 256 di-
mensions (128 in each direction) as in equation 7.
The token embeddings are fed into the token level
inputs of the first RNN layer to produce the token

level outputs o' = {o},0}...0} }.

o' = BiGRU, (us) (7)

The second layer uses Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
cells with 256 dimensions (128 in both dimen-
sions). We use a LSTM based second layer since
that improved slot-filling performance on the val-
idation set for all architectures. We apply dropout
to the outputs of both layers. The initial states of
both forward and backward LSTMs of the second
tagger layer are initialized with the dialogue en-
coding h; as in equation 8. The token level out-
puts of the first RNN layer, o', are fed as input
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into the second RNN layer to produce token level
outputs 02 = {07, 03...02 } and the final state s%.

®)

The final state of the second layer, s-, is used as
input to classification layers for domain and intent
classification.

plomain — go ftmax(Us?)

p™Met = sigmoid(Vs?)

0%, s? = BiLST My(o", hy)

2

(&)

The token level outputs of the second layer, o2,

are used as input to a softmax layer that outputs
the IOB slot labels. This results in a softmax layer
with 2N +1 dimensions for a domain with N slots.

pflOt = softmaz(So?) for 0<i<n!
(10)

The architecture is depicted in Figure 5.

4 Dataset

We crowd sourced multi-turn dialogue sessions
for 3 tasks: buying movie tickets, searching for a
restaurant and reserving tables at a restaurant. Our
data collection process comprises of two steps: (1)
Generating user-agent interactions comprising of
dialog acts and slots based on the interplay of a
simulated user and a rule based dialogue policy.
(i) Using a crowd sourcing platform to elicit nat-
ural language utterances that align with the seman-
tics of the generated interactions.

The goal of the spoken language understanding
module of our dialogue system is to map each user
utterance into frame based semantics that can be
processed by the downstream components. Ta-
bles describing the intents and slots present in the
dataset can be found in the appendix.

We use a stochastic agenda-based user simula-
tor (Schatzmann et al., 2007; Shah et al., 2016)
for interplay with our rule based system policy.
The user goal is specified in terms of a tuple of
slots, which denote the user constraints. Some
constraints might be unspecified, in which case the
user is indifferent to the value of those slots. At
any given turn, the simulator samples a user dia-
logue act from a set of acceptable actions based
on (i) the user goal and agenda that includes slots
that still need to be specified, (ii) a randomly
chosen user profile (co-operative/aggressive, ver-
bose/succinct etc.) and (iii) the previous user and
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Figure 5: Architecture of the stacked BiRNN tagger. The dialogue context obtained from the context
encoder is fed into the initial states of the second RNN layer.

Domain Attributes

movies

date, movie, num_tickets, theatre_name, time

find-restaurants

category, location, meal, price_range, rating, restaurant_name

reserve-restaurant

date, num_people, restaurant_name, time

Table 1: List of attributes supported for each domain.

system actions. Based on the chosen user dialogue
act, the rule based policy might make a backend
call to inquire for restaurant or movie availabil-
ity. Based on the user act and the backend re-
sponse the system responds back with a dialogue
act or a combination of dialogue acts, based on
a hand designed rule based policy. These gener-
ated interactions were then translated to their nat-
ural language counterparts and sent out to crowd-
workers for paraphrasing into natural language
human-machine dialogues.

The simulator and policy were also extended to
handle multiple goals spanning different domains.
In this set-up, the user goal for the simulator would
include multiple tasks and slot values could be
conditioned on the previous task, for example, the
simulator would ask for booking a table “after the
movie”, or search for a restaurant near the the-
ater”. The set of slots supported by the simulator
is enumerated in Table 1. We collected 1319 di-
alogues for restaurant reservation, 976 dialogues
for finding restaurants and 1048 dialogues for buy-
ing movie tickets. All single domain datasets were
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used for training. The multi-domain simulator
was used to collect 467 dialogues for training, 50
for validation and 273 for the test set. Since the
natural language dialogues were paraphrased ver-
sions of known dialogue- act and slot combina-
tions, they were automatically labeled. These la-
bels were verified by an expert annotator, and turns
with missing annotations were manually annotated
by the expert.

5 Dialogue Recombination

As described in the previous section, we train our
models on a large set of single domain dialogue
datasets and a small set of multi-domain dia-
logues. These models are then evaluated on a test
set composed of multi-domain dialogues, where
the user attempts to fulfill multiple goals spanning
several domains. This results in a distribution
drift that might result in performance degradation.
To counter this drift in the training-test data
distributions we device a dialogue recombination
scheme to generate multi-domain dialogues from
single domain training datasets.



Dialogue x Dialogue y Dialogue d,.

U: Get me 5 tickets to see In- U: Get me 5 tickets to see In-
ferno. ferno.

S: Sure, when is this booking S: Sure, when is this booking
for ? for ?

U: Around 5 pm tomorrow U: Around 5 pm tomorrow
night. night.

S: Do you have a theatre in S: Do you have a theatre in
mind? mind?

U: AMC newpark 12.

U: Find italian restaurants in
Mountain View

U: Find italian restaurants in
Mountain View

S: Does 4:45 pm work for

you ? looking for ?

S: What price range are you

S: What price range are you
looking for ?

U: Yes. U: cheap

U: cheap

S: Your booking is complete.

S: Ristorante Giovanni
a nice Italian restaurant in
Mountain View.

S: Ristorante Giovanni is
a nice Italian restaurant in
Mountain View.

is

U: That works. thanks.

U: That works. thanks.

Table 2: A sample dialogue obtained from recombining a dialogue from the movies and find-restaurant

datasets.

The key idea behind the recombination approach
is the conditional independence of sub-dialogues
aimed at performing distinct tasks (Grosz and
Sidner, 1986). We exploit the presence of task
intents, or intents that denote a switch in the
primary task the user is trying to perform, since
they are a strong indicator of a switch in the focus
of the dialogue. We exploit the independence of
the sub-dialogue following these intents from the
previous dialogue context, to generate synthetic
dialogues with multi-domain context. The recom-
bination process is described as follows:

Let a dialogue d be defined as a sequence
of turns and corresponding semantic la-
bels (domain, intent and slot annotations)
{(tdly fdl)y (tdg, fdg), '--(tdnda fdnd}- To obtain a
re-combined dataset composed of dialogues from
dataset dataset; and dataseto, we repeat the fol-
lowing steps 10000 times, for each combination
of (datasety,datasets) from the three single
domain datasets.

e Sample dialogues x and y from dataset; and
datasety respectively.

e Find the first user utterance labeled with a
task intent in y. Let this be turn [.

e Randomly sample an insertion point in dia-
logue z. Let this be turn £.
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e The new recombined dialogue is

{(txla le)v '-'(twk:a fa:k)a (tyla fyl)a
o (tyny fyn,)}-

A sample dialogue generated using the above pro-
cedure is described in table 2. We drop the ut-
terances from dialogue x following the insertion
point (turn k) in the recombined dialogue since
these turns become ambiguous or confusing in the
absence of preceding context. In a sense our ap-
proach is one of partial dialogue recombination.

6 Experiments

We compare the domain classification, intent clas-
sification and slot-filling performances, and the
overall frame error rates of the encoder-decoder,
memory network and sequential dialogue encoder
network on the dataset described above. The
frame error rate of a SLU system is the percentage
of utterances where it makes a wrong prediction
i.e. any of domain, intent or slot is predicted in-
correctly.

We trained all 3 models with RMSProp for 100000
training steps with a batch size of 100. We started
with a learning rate of 0.0003 which was decayed
by a factor of 0.95 every 3000 steps. Gradient
norms were clipped if they exceed a magnitude of
2.5. All model and optimization hyper-parameters
were chosen based on a grid search, to minimize
validation set frame error rates.



Model Domain F1 | Intent F1 Slot Token F1 Frame Error Rate
ED 0.937 0.865 0.891 31.87%
MN 0.964 0.890 0.896 26.72%
SDEN 0.960 0.870 0.896 31.31%
ED + DR 0.936 0.885 0.911 30.72%
MN + DR 0.968 0.902 0.904 27.48%
SDEN + DR | 0.975 0.898 0.926 25.85%

Table 3: Test set performances for the encoder decoder (ED) model, Memory Network (MN) and the

Sequential Dialogue Encoder Network (SDEN) with and without recombined data (DR).

utterance MN+DR SDEN+DR
hi! 0.00 0.13
hello ! i want to buy movie tickets for § pm at cinelux plaza 0.05 0.34
which movie , how many , and what day ? 0.13 0.24
Trolls , 6 tickets for today

True ED+DR MN+DR SDEN+DR
Domain buy-movie-tickets | movies movies movies
Intent contextual contextual contextual contextual
date today today today today
num tickets | 6 6 6 6
movie Trolls Trolls - Trolls

Table 4: Dialogue from the test set with predictions from Encoder Decoder with recombined data
(ED+DR), Memory Network with recombined data (MN+DR) and Sequential Dialogue Encoder Net-
work with dialogue recombination (SDEN+DR).Tokens that have been italicized in the dialogue were
out of vocabulary or replaced with special tokens. The columns to the right of the dialogue history detail
the attention distributions. For SDEN+DR, we use the magnitude of the change in the session GRU state
as a proxy for the attention distribution. Attention weights might not sum up to 1 if there is non-zero

attention on history padding.

We restrict the model vocabularies to contain only
tokens occurring more than 10 times in the train-
ing set, to prevent over-fitting to training set enti-
ties. Digits were replaced with a special ”#” token
to allow better generalization to unseen numbers.
The dialogue history was padded to 40 utterances
for batch processing. We report results with and
without the recombined dataset in Table 3.

7 Results

The encoder decoder model trained on just the
previous turn context performs worst on almost
all metrics, irrespective of the presence of recom-
bined data. This can be explained by worse per-
formance on in-dialogue utterances, where just the
previous turn context isn’t sufficient to accurately
identify the domain, and in several cases, the in-
tents and slots of the utterance.

The memory network is the best performing model
in the absence of recombined data, indicating that
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the model is able to encode additional context
effectively to improve performance on all tasks,
even when only a small amount of multi-domain
data is available.

The Sequential dialogue encoder network per-
forms slightly worse than the memory network in
the absence of recombined data. This could be ex-
plained by the model over-fitting to the single do-
main context seen during training and failure to
utilize context effectively in a multi-domain set-
ting. In the presence of recombined dialogues it
outperforms all other implementations.

Apart from increasing the noise in the dialogue
context, adding recombined dialogues to the train-
ing set increases the average turn length of the
training data, bringing it closer to that of the test
dialogues. Our augmentation approach is, in spirit,
an extension of the data recombination described
in (Jia and Liang, 2016) to conversations. We
hypothesize that the presence of synthetic con-



utterance MN+DR SDEN+DR
hello 0.01 0.10
hello . i need to buy tickets at cinemark redwood downtown 20 for xd at | 0.00 0.06
6 : 00 pm
which movie do you want to see at what time and date . 0.00 0.04
I didn’t understand that. 0.00 0.03
please tell which movie , the time and date of the movie 0.01 0.02
the movie is queen of katwe today and the number of tickets is 4 0.00 0.00
So 4 tickets for the 6 : 00 pm showing 0.02 0.01
yes 0.01 0.01
I bought you 4 tickets for the 6 : 00 pm showing of queen of katwe at | 0.06 0.04
cinemark redwood downtown 20
thank you 0.03 0.03
i want a Brazilian restaurant 0.61 0.29
which one of Fogo de Cho Brazilian steakhouse , Espetus Churrascaria | 0.02 0.26
san mateo or Fogo de Cho would you prefer
Fogo de Cho Brazilian steakhouse
True ED+DR MN+DR SDEN+DR
Domain find-restaurants movies find-restaurants find-restaurants
Intent affirm(restaurant) - - -
restaurant Fogo de Cho | - - Fogo de Cho
name Brazilian  steak- Brazilian  steak-
house house

Table 5: Dialogue from the test set with predictions from Encoder Decoder with recombined data
(ED+DR), Memory Network with recombined data (MN+DR) and Sequential Dialogue Encoder Net-
work with dialogue recombination (SDEN+DR). Tokens that have been italicized in the dialogue were
out of vocabulary or replaced with special tokens. The columns to the right of the dialogue history detail
the attention distributions. For SDEN+DR, we use the magnitude of the change in the session GRU state
as a proxy for the attention distribution. Attention weights might not sum up to 1 if there is non-zero

attention on history padding.

text has a regularization-like effect on the models.
Similar effects were observed by (Jia and Liang,
2016), where training with longer, synthetically-
augmented utterances resulted in improved se-
mantic parsing performance on a simpler test set.
This is also supported by the observation that per-
formance improvements obtained by addition of
recombined data increase as the complexity of the
model increases.

8 Discussion and Conclusions

Table 4 demonstrates an example dialogue from
the test set, along with the gold and model annota-
tions from all 3 models. We observe that Encoder
Decoder (ED) and Sequential Dialogue Encoder
Network (SDEN) are able to successfully identify
the domain, intent and slots, while the Memory
Network (MN) fails to identify the movie name.
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Looking at the attention distributions, we notice
that the MN attention is very diffused, whereas
SDEN is focusing on the most recent last 2 utter-
ances, which directly identify the domain and the
presence of the movie slot in the final user utter-
ance. ED is also able to identify the presence of a
movie in the final user utterance from the previous
utterance context.

Table 5 displays another example where the
SDEN model outperforms both MN and ED. Con-
strained to just the previous utterance ED is un-
able to correctly identify the domain of the user
utterance. The MN model correctly identifies the
domain, using its strong focus on the task-intent
bearing utterance, but it is unable to identify the
presence of a restaurant in the user utterance. This
highlights its failure to combine context from mul-
tiple history utterances. On the other hand, as
indicated by its attention distribution on the final



two utterances, SDEN is able to successfully com-
bine context from the dialogue to correctly iden-
tify the domain and the restaurant name from the
user utterance, despite the presence of several out-
of-vocabulary tokens.

The above two examples hint that SDEN performs
better in scenarios where multiple history ut-
terances encode complementary information that
could be useful to interpret user utterances. This
is usually the case in more natural goal oriented
dialogues, where several tasks and sub tasks go in
and out of the focus of the conversation (Grosz,
1979).

On the other hand, we also observed that SDEN
performs significantly worse in the absence of re-
combined data. Due to its complex architecture
and a much larger set of parameters SDEN is
prone to over-fitting in low data scenarios.

In this paper, we collect a multi-domain dataset of
goal oriented human-machine conversations and
analyze and compare the SLU performance of
multiple neural network based model architectures
that can encode varying amounts of context. Our
experiments suggest that encoding more context
from the dialogue, and enabling the model to com-
bine contextual information in a sequential order
results in a reduction in overall frame error rate.
We also introduce a data augmentation scheme to
generate longer dialogues with richer context, and
empirically demonstrate that it results in perfor-
mance improvement for multiple model architec-
tures.
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Table 6: Supported Intents: List of intents and dialogue acts supported by the user simulator, with de-
scriptions and representative examples. Acts parametrized with slot can be instantiated for any attribute
supported within the domain.

Intent

Intent descriptions

Sample utterance

affirm

generic affirmation

U: sounds good.

cant_understand

expressing failure to understand
system utterance

U: What do you mean ?

deny generic negation U: That doesn’t work.
good_bye expressing end of dialogue U: bye

thank_you expressing gratitude U: thanks a lot!
greeting greeting U: Hi

request_alts

request alternatives to a system
offer

S: Doppio Zero is a nice italian
restaurant near you.

U: Are there any other options
available ?

affirm(slot) affirming values corresponding | U: 5 pm sounds good to me.
to a particular attribute
deny(slot) negating a particular attribute. U: None of those times would

work for me.

dont_care(slot)

expressing that any value is ac-
ceptable for a given attribute

U: Any time should be ok.

movies

explicit intent to buy movie tick-
ets

U: Get me 3 tickets to Inferno

reserve-restaurants

explicit intent to reserve a table
at a restaurant

U: make a reservation at Max
Brenner’s

find-restaurants

explicit intent to search for
restaurants

U: find cheap italian restaurants
near me

contextual implicit intent continuing from | S: What time works for you ?
context, also used in place of in- | U: 5 pm tomorrow.
form

unknown_intent intents not supported by the dia- | U: What’s the weather like in

logue system

San Francisco ?
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Table 7: Sample dialogue: Sample dialogue generated using a crowd working platform. The LHS
consists of the instructions shown to the crowd workers based on the dialog act interactions between the
user simulator and the rule based policy. The RHS describes the natural language dialog generated by

the crowd workers.

Instructions

Natural language paraphrase

S: greetings

hi

U:buy movie tickets AND date is DontCare

buy some movie tickets for any date

S: provide preference for: theatre name

Which theatre would you like to make the reserva-
tion at ?

U: theatre name is GB

the GB theatre

S: provide preference for: time

When is the reservation for?

U: number of tickets is 6 and time is DontCare

get 6 tickets for any time

S: provide preference for: movie

Which movie would you like to go for ?

U: movie is Power Rangers

The power rangers movie

S: found the following: date is March 25 and
time is 8:00 am

I found 6 tickets available for 8 am on March 25.

U: disagree

That doesn’t work for me

S: found the following: date is March 25 and
time is 6:00 pm

Does 6 pm on March 25 work for you ?

U: accept

Sounds good, make the booking

S: purchase confirmed with given details the-
atre name is GB and date is March 25 and
time is 6:00 pm and number of tickets is 6 and
movie is Power Rangers

Ok, I've reserved 6 tickets for the 6 pm showing of
Power Rangers at the GB theatre on March 25.

U: thank you

Thanks.
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Abstract

Conversational agents offer users a natural-
language interface to accomplish tasks, en-
tertain themselves, or access information.
Informational dialogue is particularly chal-
lenging in that the agent has to hold a con-
versation on an open topic, and to achieve
a reasonable coverage it generally needs to
digest and present unstructured information
from textual sources. Making responses
based on such sources sound natural and
fit appropriately into the conversation con-
text is a topic of ongoing research, one of
the key issues of which is preventing the
agent’s responses from sounding repetitive.
Targeting this issue, we propose a new task,
known as redundancy localization, which
aims to pinpoint semantic overlap between
text passages. To help address it systemati-
cally, we formalize the task, prepare a pub-
lic dataset with fine-grained redundancy la-
bels, and propose a model utilizing a weak
training signal defined over the results of a
passage-retrieval system on web texts. The
proposed model demonstrates superior per-
formance compared to a state-of-the-art en-
tailment model and yields encouraging re-
sults when applied to a real-world dialogue.

1 Introduction

Recent years have seen a growing interest in re-
search on conversational agents. Several strands
of dialogue systems have emerged which differ in
underlying goals and methods. Some systems fo-
cus on data-driven learning of models which can
autonomously hold conversations with humans or
one another, potentially even on open domains
(Vinyals and Le, 2015; Sordoni et al., 2015; Li

*Work performed during an internship at Google.
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User: What is Malaria?

Agent: A disease caused by a plasmodium parasite, transmit-
ted by the bite of infected mosquitoes.

User: Is it a virus?

Agent: Malaria is a parasitic infection spread by Anopheles
mosquitoes. The Plasmodium parasite that causes
Malaria is neither a virus nor a bacterium — it is a
single-celled parasite that multiplies in red blood cells
of humans as well as in the mosquito intestine.

Figure 1: Informational-dialogue example between
a human and a conversational agent. The second
agent utterance is partially redundant (the under-
lined text).

et al., 2016). Other works deal with task-oriented
dialogues, which offer natural-language interfaces
to real-world services like restaurant booking (Bor-
des and Weston, 2016; Dhingra et al., 2016; Crook
et al., 2016). We focus in this paper on a third di-
alogue setting where the goal is to have a natural
conversation with a user, during which the user’s in-
formation needs are satisfied in an iterative manner.
Such a setting is common in question-answering
experiences implemented in personal digital assis-
tants (Sarikaya et al., 2016).

We call this setting informational dialogues.
They start with the user posing a fact-seeking ques-
tion, e.g., to learn about current events or to explore
unknown terms and concepts. Consider the exam-
ple dialogue in Fig. 1, which is initiated by the
user requesting a definition of a specific disease
and which also features a subsequent question on
the same topic. Many approaches have been pro-
posed which can produce suitable replies to such
questions. Examples include techniques which find
pertinent passages or short text chunks in collec-
tions of documents (Hermann et al., 2015; Miller
et al., 2016; Trischler et al., 2016) or find rele-

Proceedings of the SIGDIAL 2017 Conference, pages 115-126,
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vant entries in structured knowledge bases (Bordes
et al., 2014, 2015; Yin et al., 2016a,b). Genera-
tion techniques can then be employed to generate
well-formed natural-language utterances from the
candidate replies (Wen et al., 2015, 2016a,b; Zhou
et al., 2016; DusSek and Jurcicek, 2016). In the di-
alogue in Fig. 1, both agent replies are coherent
wrt. the questions. However, they sound strange
when occurring together in a single dialogue con-
text because information is partially reiterated (see
the underlined part in the second agent reply). It
is this very problem that we focus on in this work,
i.e., the localization of redundancy in conversation.
Information on the location of non-novel portions
of a passage could either be fed back to the re-
trieval model, so that only text passages with new
information would be selected, or alternatively this
localized redundancy might be used as input to a
summarization model (Rush et al., 2015).

The specific contributions of this work are as
follows:

e We propose a new task, motivated by practical
issues that dialogue applications face (Sec. 3).

e We release a new dataset with manual annota-
tions for this task, which allows to evaluate and
compare competing approaches (Sec. 4).

e Due to the insufficient amount of annotated data
for training purposes, we report on a weak super-
vision signal over a large collection of passages
with partially redundant content (Sec. 5).

e We augment a recently introduced entailment
model (Parikh et al., 2016) with means for rep-
resenting local similarities in passages in a uni-
directional way (Sec. 6) and find that this exten-
sion outperforms the original model (Sec. 8).

e Furthermore, we briefly discuss an experiment
on real-world dialogue data (Sec. 9), which gives
insights on the application-relevance of the pro-
posed task and model.

2 Related Work

A lot of work has been presented on reasoning with
short texts for tasks on similarity and entailment.
Knowledge-rich approaches define lexical and syn-
tactic inference rules over phrase pairs and employ
decision algorithms that rely on matches of these
rules in input texts (Magnini et al., 2014). Other
approaches generate structured representations of

the input to enable sophisticated alignment of the
texts with now available rich lexical, syntactic, and
semantic information (Liang et al., 2016). The use
of kernel methods for similarity tasks has also been
reported (Filice et al., 2015). In contrast to these
approaches, neither do we use external knowledge
nor do we build explicit syntactic representations
of input texts.

Sentence fusion (Barzilay and McKeown, 2005;
Filippova and Strube, 2008) is a technique that is
related to the overall problem setting of this paper.
This technique is used in the context of abstractive
multi-document summarization, where a particular
challenge is to identify shared content in a cluster
of sentences and to subsequently produce a single
sentence that covers all information fragments. In
our work, we focus on a similar but different prob-
lem formulation, in which we fix one text fragment
and want to find reiterations of its content in other
texts. Furthermore, we focus on identifying and
localizing redundancy and leave the generation of
low-redundancy text mostly as future work.

Neural approaches are common for bi-sequence
classification problems (Laha and Raykar, 2016).
Yin and Schiitze (2015), He et al. (2015), and He
and Lin (2016) use convolutional networks to rep-
resent input texts on multiple granularity levels and
model the interactions of these. We also aim to find
fine-granular interactions in texts, but in addition
to their models, we aim to make these interactions
explicit rather than latent intermediate results. An-
other line of research has proposed recurrent net-
works for modeling phrases/sentences, including
various forms of neural attention (Bowman et al.,
2015; Rocktischel et al., 2015; Zhao et al., 2016).
These approaches come with high computational
cost during training and inference, in contrast we
rely on cheaper feed-forward connections.

3 Problem Definition

We focus in this work on the problem of redun-
dancy localization in a passage with respect to
another text, i.e., we aim to understand when a
sub-passage is redundant with what is mentioned
in the context.! Consider the following example
with a context passage c and a follow-up passage p
with sub-sequences sp—s3, which need to be ranked
according to the extent to which their semantics are
covered by c. In this case, one may expect the

"Note that the problem definition is not limited to the
dialogue scenario used as motivation in the introduction.
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order to be (s1,s2,83,8p):

c: The Allianz Arena is a football stadium in Munich,
Bavaria, Germany, with a seating capacity of more than
70,000.

So : Bayern to increase stadium capacity.

s1 : Bayern Munich have revealed plans to increase the ca-
pacity of Allianz Arena to 75,000,

so @ which would make it the second largest stadium in Ger-
many.

ss : The Allianz Arena is currently the third largest stadium
in Germany.

More formally, let p be a sequence of n tokens.
LetS = {sk};”:_ol be a set of m sub-sequences of
p such that for integers sg, S1, ..., Sy, With sg =
0 <51 < ... < 8n_1 < Sn = n, each sub-
sequence s € S is ranging from tokens si to
(sk+1 — 1), inclusive. Given a context sequence c,
the task of redundancy localization is to produce
a ranking function rank(s;) € {1,...,m} that
induces an ordering of the subsequences s, € S of
p which corresponds to the degree of information
in s, that is semantically covered by c. Here, a low
rank corresponds to a high semantic overlap of a
subsequence with c, where segments are allowed
to have equal ranks.

We formulate this task as a ranking problem
instead of a more expressive yet also more complex
regression setting in order to pose less restrictions
on the collection of data for training and evaluation.
The design decision to rank sub-sequences rather
than individual tokens is intended to keep manual
annotation feasible and cost-effective.

Relation to Other Tasks The problem we pose
here is related to bi-sequence problems like seman-
tic textual similarity (STS) (Agirre et al., 2016a)
and recognizing textual entailment (RTE) (Bow-
man et al., 2015). In contrast to these tasks, we are
not interested in determining the overall relation
between sequences, but aim to generate more fine-
grained sub-passage-level information. The task
of interpretable semantic textual similarity (Agirre
et al., 2016b) requires systems to provide human-
understandable explanations for STS ratings of sen-
tence pairs. Chunks from both sentences need to
be paired and for each such pairing, similarity and
relation type need to be assessed. While this type
of annotation is richer than what we propose, it is
also harder to produce, likely requiring specially-
trained raters, and would likely be impossible to
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predict accurately using a surrogate supervision
signal like we rely on. Besides, it does not scale
well beyond single sentences, since the number of
ratings per sequence pair grows proportionally to
the multiple of their lengths, while the model we
present can handle longer, multi-sentence passages.
The setting proposed in the next section is more re-
stricted, but easier to learn and directly applicable
in downstream applications.

4 A Testbed for Redundancy
Localization

The evaluation dataset (EVAL) is constructed
from pairs of potentially redundant passages
from Wikipedia, which were segmented into sub-
passages and presented to human raters for man-
ual redundancy assessment. The collection of pas-
sages was guided by a need for text pairs with
various degrees of semantic overlap; we employed
a passage-retrieval system for the purpose of text
selection. Passage retrieval (Khalid and Verberne,
2008; Aktolga et al., 2011; Xu et al., 2011) is a
common intermediate step in information-retrieval
and question-answering settings, the goal of which
is to return a passage containing the answer to a
given query. Most systems generate a list of candi-
date passages, rank them by relevance and return
the top one.

We picked a random set of 1200 fact-seeking
questions and retrieved corresponding passages
from Wikipedia. The questions were then dis-
carded, as they are not relevant to our task. We se-
lected the top-scoring passage as the context ¢ and
paired it with a low-scoring one from further down
the result list (p). p was then heuristically split
into chunks s, corresponding to verb-governed
phrases. The example shown in the last section is
an instance of such a pair (c, p).

We asked three raters per item to select for
each segment s; of p one out of three labels:
NOTREDUNDANT, PARTIALLYREDUNDANT, and
FULLYREDUNDANT, depending on the degree of
which the content of a sub-passage is covered
by the context c. The annotators fully/partially
agreed” on 64%/96% of examples, their annota-
tion has an intra-class correlation of .55. We ag-
gregated the rating by mapping the categorical la-
bels to a numeric scale (0, 1, 2) and averaging the
scores. We used 200 examples as a development

Full: 3/3 annotators agreed on a label. Partial: At least
2/3 annotators agreed on a label.



Brewer’s yeast is named so because it comes from the same fungus that’s used to ferment and make beer -
Saccharomyces cerevisiae.
P Because brewer’s yeast is a rich source of chromium, scientists think it may help treat high blood sugar.

Outdoor volleyball, played on grass, will use the standard net heights of 7 feet, 4 1/8 inches for women, with men
and co-ed teams using the height of 7 feet, 11 5/8 inches.

P The first volleyball net was borrowed from a tennis court and was set at 6 feet 6 inches high.

c The world’s tallest artificial structure is the 829.8 m tall Burj Khalifa in Dubai, United Arab Emirates.

Table 1: Three weakly-labeled examples (Sec. 5). Underlining used to indicate overlapping/distinct

information between items.

DEV TEST
Label 4 % # %
REDUNDANT 95 15.83 495 16.50
PARTIALLYREDUNDANT 81 13.50 541 18.03
NOTREDUNDANT 424 70.67 1964 65.47

Table 2: Distribution of sub-passage labels in
EvAL.

dataset for the experiments in this paper (DEV),
and the remaining 1000 items as a test dataset
(TEST). Tab. 2 reports the label distribution in
both parts of the dataset. We make the dataset
publicly available at https://github.com/
kraseb/redundancy-localization.

5 Training with a Proxy Signal

While the annotation required for our task is
comparatively simple and can be performed by
raters without special training, a workable fully-
supervised model would require a very consider-
able amount of data and is likely to prove costly.’
Suppose, however, we were supplied with a large
number of short texts with varying degrees of simi-
larity and relatedness to one another and we had a
means of assessing at the coarse level of text pairs
whether or not they were similar. Our hypothesis
is that given appropriate model capacity and struc-
ture, a model trained to predict the passage-level
similarity would learn to compare smaller units of
text to make an appropriate high-level decision.
We derive a proxy signal from passage-level
retrieval scores which allows to bootstrap the
redundancy-localization model described in Sec. 6.

3 Among other things, to accurately identify redundancy
the model needs to have at least some notion of paraphrasing.
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The model is presented with passage triples, where
two passages are very closely related and the third
one is on the same general topic, but less similar to
the other two and hence likely contains less redun-
dancy. The model is then trained to rank the more
closely related passage pairs above the less closely
related ones.

We retrieve lists of relevant passages from the
web using the same passage-retrieval system that
we utilized to collect data for manual annotation.
Through manual inspection of a small subset of
candidate passage lists, we identified a range of
passage scores, where candidate passages are topi-
cally close to the top-scoring one, but sufficiently
different in factual content. To ensure that the top-
scoring passage and the lower-scoring one are on
the same topic, we further require that they be ex-
tracted from the same webpage.

From each of the queries’ passage lists we ex-
tract three passages, the top-scoring passage c,
the second-highest ranking passage p*, and a
lower-scoring passage p~ from the score corridor
described above. The stream of passage triples
(c,p™,p~) generated in this way allows to train a
model with a margin-based ranking objective. This
objective enforces that the similarity score of the
two high-scoring passages ¢, p™ is greater than
the similarity of the low-scoring passage p~— and
the top-scoring one, plus a margin; see Sec. 6.3.
This pushes a model to find what differentiates two
given text sequences, so that it can assign a higher
similarity to the near-paraphrases.

Tab. 1 shows three example passage triples con-
structed with this signal. Here, underlining is a
means of visualizing the overlapping/disjoint con-
tent between triple elements. Note that we do not
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Figure 2: Overview of the model architecture.

make this information available to a model during
training. In the interest of brevity, we selected short,
single-sentence passages for this example.

6 Model Design

This section first gives a brief overview of the pro-
posed model, before going into details of its ar-
chitecture and use during training and inference
time.

Architecture Overview Existing models for bi-
sequence tasks (Bahdanau et al., 2014; Rush et al.,
2015; He and Lin, 2016) often learn to align texts
as an intermediate step, i.e., reasoning is done with
pairs of short text units, which allows to build a
task-specific output for whole sequences on top of
local decisions. A particular example for RTE is the
three-layer model of Parikh et al. (2016). The first
layer produces a bi-directional alignment between
input sentences, which is utilized in the second
component to perform local comparisons, which
in turn are fed to the top layer to make the final
entailment decision. We follow the same pattern in
the design of our model.

We implement a multi-component neural-
network that takes two passages as input. It first
(a) learns a uni-directional alignment between the
passages, which is utilized to produce a customized
representation of the context passage, specific to
each token of the potentially redundant passage.
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Next, (b) token-level redundancy scores are pro-
duced via local comparison operations. During
training, (c) an additional layer aggregates the lo-
cal scores and produces a passage-level similarity
score on top of which a ranking objective is ap-
plied. At inference time, (d) the local scores from
(b) serve as the basis for the ranking of the sub-
passage elements as described in Sec. 3. Fig. 2
outlines steps (a) — (d).

6.1 Step (a): Alignment

Input to the model are two sequences of n tokens
each, p = (po,...,pn—1) and c = (cg, ..., Cn-1),
with shorter sequences being padded to this length.
The goal of this step is to generate foreach p; € pa
fixed-length representation c?hgned of ¢, which cap-
tures the meaning aspects of c specifically relevant
for p;.

The tokens p;, ¢; are represented via word em-
beddings of size d,,, which are updated during
model training and are stored in a matrix W,, €
R&*IVI with V being the vocabulary. For ease
of notation, we use p, p;, C, ¢; to refer to both the
original tokens and their embedding representation.

We create a soft alignment of c to the tokens
of p via the decomposed attention mechanism de-
scribed by Parikh et al. (2016). At its core is the
application of the attention function f1 to each to-
ken of the input sequences, which is implemented
as a feed-forward neural network with Ay layers of



dg rectified linear units (Glorot et al., 2011, ReLu)
each. Using this function, unnormalized attention
weights are produced:

Qi = ﬂ(pi) . fl(Cj), (1)

then normalized per token in p via

o = exp (o) / Z exp (). (2)

k

The customized (aligned) representation of c is
then calculated as

n—1

aligned !

c; = E Q¢ 3
j=0

6.2 Step (b): Learning Local Redundancy

Each token p; from p is compared to the corre-
. . aligned

sponding representation c; of the context se-

quence via a single-layer feed-forward network {2

with a ReLu:

sim (pi ) = £2 ([pis ™))
b (p,) = [sim i 0. )

with [] being the concatenation operator and
Isim(p, c) € R™. This local similarity score mea-
sures for each token the degree with which its mean-
ing is covered by c.

6.3 Step (c): Learning to Aggregate Local
Redundancy Scores

As described in Sec. 5, supervised training with
local redundancy labels is costly, which is why we
add another layer on top which learns to calculate a
coarse passage-level similarity score csim(p,c)
from the local redundancy information. Given
a passage triple (c,p™,p~) (Sec. 5), two such
coarse scores are calculated and used to determine
a loss which allows to train steps (a—c) of the net-
work in Fig. 2 in a weakly supervised way.

The passage-level score is computed by another
feed-forward network 3 with hgz layers of dg3 Re-
Lus, followed by another hidden layer with a logis-
tic activation function that projects to a scalar value
in (0,1):

csim (p, c) := {3 (Isim (p, c)) . (6)

Then, for a given passage triple (¢,pt,p™), the
loss is defined as:

L = maz{0,0.5 — csim(p™,c) + csim(p~,c)} (7)

This ranking criterion is similar to what has been
used by Collobert et al. (2011) and Bordes et al.
(2013). It is intended to push the model to assign a
higher coarse similarity score to the more similar
sequences from the triple, and in doing so, ideally
forces the model to learn to detect local redundan-
cies.

6.4 Step (d): Generation of Sub-sequence
Redundancy Scores

During inference time, the goal of this model is
to rank a set of given sub-sequences S of p with
respect to their redundancy with c; note that during
inference time the model is presented with pairs
of passages in contrast to the triples it sees in the
training phase.

We calculate a redundancy score for a subse-
quence si € S as follows:

sk+171
1

ssim(sg, c) 1= T >
=Sk

(Isim(py,c)), (8)

where sj, is the subsequence running from posi-
tions si to sy4+1 — 1 (see Sec. 3). A ranking of the
subsequences is then given by:

rank(sy) = [s; | ssim(s;,c) > ssim(sg,c)} (9)

In other words, sub-passages are ranked by compar-
ing the mean of their local redundancy scores. In
the evaluation of Sec. 8, we refer to the model that
uses this way of ranking sub-passages as UA (short
for uni-directional alignment). We compare this
against a number of other variants of processing
internal activations of the model to extract informa-
tion about local redundancy, see Sec. 8.

6.5 Baseline Ranking Method

The bi-directional alignment model (BA) of Parikh
et al. (2016) can be trained in a similar fashion as
our proposed model, i.e., with triples of passages
and the loss from Eq. (7). Although it has not been
developed with the localization of redundancy in
mind, its native problem formulation (RTE) is struc-
turally related to the problem at hand by requiring
models to assess to what degree the semantic con-
tent of one passage is embedded in a second one.
We believe BA constitutes a strong baseline be-
cause it has been shown to achieve state-of-the-art
performance on RTE and because it has the means
to decompose coarse inference decisions on two
text sequences into local comparison operations,
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du 100 7 0.01
dn 200 |V 10k
dr3 100 pn 0.21
ht1 1 pe 0.46
i3 1 pgs 0.05

batch size 256  epochs ~ 200

Table 3: Hyperparameter settings for UA.

a key requisite to successfully utilize the training
signal from Sec. 5.

However, in contrast to our model, the results of
comparing the aligned sequences c?hgned with indi-
vidual tokens from p are not directly interpretable
as redundancy scores, also the architecture is de-
signed for a bi-directional alignment of the input
sequences. In order to produce lsim values for the
tokens of p, we use the alignment matrices as a
basis for a max-based aggregation, i.e., we take
the row-wise maximum value and use this as the
localized redundancy value for the corresponding
token. Sub-sequence similarity is then determined
either via Eq. (8) or alternatively via summation.

7 Experimental Setting, Model Training

We implemented both UA and BA in the Tensor-
Flow framework (Abadi et al., 2015) and trained
them with the signal from Sec. 5. As input to the
passage-retrieval system we used a set of 1.5 mil-
lion queries, resulting in the same amount of pas-
sage triples; 80% were used for training, 10% were
used as a separate validation set for hyperparame-
ter optimization, and the final 10% were held out
and served as the basis for the smaller dataset with
manually annotated labels (EVAL, Sec. 4)%.

The hyperparameters of UA (hg1, dpy, hes, dg3)
and BA (like our model, plus a few additional ones)
were optimized separately. We also experimented
with Dropout (Srivastava et al., 2014) for the feed-
forward networks in step (a—c) (ps1, pr2, Pr3), With
different initial learning rates () for Adagrad
(Duchi et al., 2011), with different batch sizes, and
with different vocabulary sizes (]V]). The final set-
tings for UA used in the reported experiments are
shown in Tab. 3. Word embeddings were initial-
ized with pre-trained embeddings (Mikolov et al.,
2013), the other model parameters were randomly
initialized; out-of-vocabulary words were hashed

“We only annotated a subset of the passages in this part of
the data.
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Dataset Model p Model p
UA 5298 BA’ .1384
/
DEV UAs .4169 BAy .2232
UA’ .3862 BA” .2817
UAL 4071 BAY .2923
TEST UA 5544 BAY .2688

Table 4: Comparison of alternative strategies for
step (d) (Sec. 6.4) on DEV and results of optimal
strategies on TEST.

into 100 buckets. The models were trained for 1
million steps.

8 Evaluation on EVAL

We first compare the performance of different vari-
ants of generating the redundancy scores for sub-
passage ranking, for both UA and BA, on DEV.
We then pick the respective best-performing model
variant and compare the systems on TEST. The
model variants we test are the following:

e UA: The uni-directional alignment model de-
scribed in Sec. 6.

UAy: Summation instead of averaging in
Eq. (8), which gives higher weight to long sub-
sequences with redundancy.

UA’: Calculation of Isim in analogous fashion
as BA (see below).

UAS;: Combination of two variants above.

BA'/BA”: Models with bi-directional alignment
of input texts. lsim values for tokens of p are
produced by using the first/second one of the two
alignment matrices as a basis for the max-based
aggregation of the normalized attention weights
described in Sec. 6.5.

BAY, / BAY.: Like above, but sub-sequence sim-
ilarity is determined via summation rather than
calculating the mean in Eq. (8).

We measure performance by calculating the Spear-
man correlation of the raw passage scores with the
gold redundancy for all segments in the respective
partition of the dataset. The top of Tab. 4 reports
results of the different model variants. For UA,
making direct use of the local redundancy scores
calculated in step (b) of the model yields slightly
better results than post-processing the alignments
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Figure 3: Plot of predictions of UA on TEST
against annotated redundancy.

from step (a) of the model. The best overall re-
sults for UA are achieved when this is combined
with the strategy that represents sub-sequence re-
dundancy as the arithmetic mean of the contained
tokens’ local scores, meaning sub-sequence length
needs to be taken into account.

For the baseline BA, exploiting the reverse align-
ment matrix and summing over the alignment
scores without correction for sub-sequence length
gives the best results. The bottom of the table re-
ports the results of applying both models with the
respective best strategy on the test partition of the
dataset. The proposed uni-directional model clearly
outperforms the bi-directional baseline. This in-
dicates that the direct modeling of uni-directional
redundancy during both training and inference time
allows a model to better learn to compare a sub-
sequence to another full passage, in comparison
to the case where both passages are analyzed in a
fine-granular way.

Fig. 3 depicts a scatter plot of the segments in
TEST, with the x-axis corresponding to the gold
redundancy scores (Sec. 4) and the y-axis showing
the redundancy assessment by UA. While actually
redundant segments tend to be handled correctly
by the model, a certain amount of non-redundant
segments get assigned a relatively high absolute
redundancy value, which is not problematic as long
as the actually redundant segments of the same pas-
sage are rated even higher. The next section elabo-
rates on an experiment that looks into the quality
of this internal ranking of segments for given pas-
sages, and how this ranking could potentially be
utilized in an application.

9 Redundancy Localization for Passage
Compression

This section briefly discusses an experiment in a
dialogue setting, in which redundancy information
is used for the compression of passages. Consider
again the example from Fig. 1, where a conversa-
tional agent engages a human user in an informa-
tional dialogue whose quality suffers from repeti-
tion of information on the agent side. In this ex-
periment, we asked human raters to assess whether
the removal of redundancy improves the dialogue
flow. Note, however, that given the small scale of
the experiment, results are only indicative and not
conclusive.

We selected 50 passage pairs from the held-out
portion of the training data where the second pas-
sage consisted of at least three sentences. We then
fed the passages to UA and removed the sentence
from the second passage which had the largest se-
mantic overlap with the context (the first passage).
We asked three human raters, (a) whether the two
original passages are coherent at all (as the follow-
ing questions assume this), (b) whether the com-
pressed passage sounds more or less natural (due to
the dropped redundant sentence), and (c) whether
the modified passage is equally informative as the
original passage.

For comparison, we implemented a baseline
which always dropped the first sentence of a pas-
sage, as well as one that removed the sentence with
the highest term overlap. For the following ex-
ample, dropping the underlined sentence from the
passage would result in a more natural and equally
informative text:

c: The 1966 FIFA World Cup was won by the England na-
tional football team.

P : The day England won the World Cup. Long-suffering
fans of the England football team can always look back
with nostalgia on one year: 1966. This was the year
Bobby Moore’s team defeated West Germany 4-2 in
the World Cup final on 30 July, after a nail-biting and
controversial match.

Among the 50 uncompressed passage pairs, only
one third was rated as being coherent (question
a; independent of the model). For these pairs,
UA tended to produce more natural compressions
(question b) compared to the baselines. This might
be explained by the term-overlap baseline’s restric-
tion to only look at the level of individual words,
which results in erroneously removing sentences
that are essential for discourse coherence but do not
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repeat facts. Similarly, always dropping the first
sentence can leave a passage with dangling back-
ward references, e.g., in the case of anaphors. In
terms of the informativeness dimension (question
c), all approaches resulted in slightly less informa-
tive compressed passages, which is expected. How-
ever, UA’s score on this metric is slightly worse
than the one of the baselines.

10 Contributions and Outlook

In this paper, we described the problem of localiz-
ing redundancy in pairs of passages. We proposed
a model based on a uni-directional alignment from
one passage to the context passage, which can be
efficiently trained using a novel weak supervision
signal defined over the output of common passage-
retrieval systems. We applied this signal in a one-
off process to train our model and a reasonable
baseline; from a held-out part of the retrieved pas-
sages we created a publicly available dataset which
allows to compare and evaluate models on this task
and enables other researchers to reproduce the eval-
uation setting of this work. The conducted eval-
uation showed that the proposed uni-directional
alignment model is indeed capable of finding the
redundant sub-segments in texts.

In future work, we would like to represent and
model more facets of the naturalness and coherence
of dialogues. For instance in dialogue settings, a
certain amount of redundancy between the utter-
ances of participants may actually tie the dialogue
turns together, i.e., may be beneficial in terms of
discourse coherence and naturalness. Incorporating
this consideration into the structure of a model can
potentially improve the results of passage compres-
sion techniques in settings similar to Sec. 9.
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Abstract

Attentive listening systems are designed to
let people, especially senior people, keep
talking to maintain communication ability
and mental health. This paper addresses
key components of an attentive listening
system which encourages users to talk
smoothly. First, we introduce continuous
prediction of end-of-utterances and gen-
eration of backchannels, rather than gen-
erating backchannels after end-point de-
tection of utterances. This improves sub-
jective evaluations of backchannels. Sec-
ond, we propose an effective statement
response mechanism which detects focus
words and responds in the form of a ques-
tion or partial repeat. This can be applied
to any statement. Moreover, a flexible
turn-taking mechanism is designed which
uses backchannels or fillers when the turn-
switch is ambiguous. These techniques are
integrated into a humanoid robot to con-
duct attentive listening. We test the feasi-
bility of the system in a pilot experiment
and show that it can produce coherent dia-
logues during conversation.

1 Introduction

One major application of embodied spoken dia-
logue systems is to improve life for elderly peo-
ple by providing companionship and social inter-
action. Several conversational robots have been
designed for this specific purpose (Heerink et al.,
2008; Sabelli et al., 2011; Iwamura et al., 2011).
A necessary feature of such a system is that it be
an attentive listener. This means providing feed-
back to the user as they are talking so that they feel
some sort of rapport and engagement with the sys-
tem. Humans can interact with attentive listeners
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at any time, making them a useful tool for people
such as the elderly.

Our motivation is to create a robot which can
function as an attentive listener. Towards this goal,
we use the autonomous android named Erica. Our
long-term goal is for Erica to be able to participate
in a conversation with a human user while display-
ing human-like speech and gesture. In this work
we focus on integrating an attentive listener func-
tion into Erica and describe a new approach for
this application.

The approaches to these kind of dialogue sys-
tems have focused mainly on backchanneling be-
havior and have been implemented in large-scale
projects such as SimSensei (DeVault et al., 2014),
Sensitive Artificial Listeners (Bevacqua et al.,
2012) and active listening robots (Johansson et al.,
2016). These systems are multimodal in nature,
using human-like non-verbal behaviors to give
feedback to the user. However, the backchannels
are usually generated after the end of utterance
and they do not necessarily create synchrony in
the conversation (Kawahara et al., 2015). More-
over, the dialogue systems are still based on hand-
crafted keyword matching. This means that new
lines of dialogue or extensions to new topics must
be handcrafted, which becomes impractical.

In this paper we present an approach to attentive
listening which integrates continuous backchan-
nels with responsive dialogue to user statements
to maintain the flow of conversation. We create
a continuous prediction model which is perceived
as being better than a model which predicts only
after an IPU (inter-pausal unit) has been received
from the automatic speech recognition (ASR) sys-
tem. Meanwhile, the statement response system
detects focus words of the user’s utterance and
uses them to generate responses as a wh-question
or by repeating it back to the user. We also intro-
duce a novel approach to turn-taking which uses
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backchannels and fillers to indicate confidence in
taking the speaking turn.

Our approach is not limited by the topic of con-
versation and no prior parameters about the con-
versation are required so it can be applied to open
domain conversation. We also do not require per-
fect speech recognition accuracy, which has been
identified as a limitation in other attentive listen-
ing systems (Bevacqua et al., 2012). Our system
runs efficiently in real-time and can be flexibly in-
tegrated into a larger architecture, which we will
also demonstrate through a conversational robot.

The next section outlines the architecture of our
attentive listener. In Section 3 we describe in de-
tail the major components of the attentive listener
including results of evaluation experiments. We
then implement this system into Erica as a proof-
of-concept in Section 4, before the conclusion of
the paper. Our system is in Japanese, but English
translations are used in the paper for clarity.

2 System architecture

Figure 1 summarizes the components of attentive
listening and the general system architecture. In-
puts to the system are prosodic features, which is
calculated continuously, and ASR results from the
Japanese speech recognition system Julius (Lee
et al., 2001).

We implement a dialogue act tagger which clas-
sifies an utterance into questions, statements or
others such as greetings. This is currently based
on a support vector machine and is moving to a
recurrent neural network. Questions and others
are handled by a separate module which will not
be explained in this paper. Statements are han-
dled by a statement response component. The
other two components in the attentive listener are
a backchannel generator and a turn-taking model.

Backchannels are generated by one component,
while the statement response component can gen-
erate different types of dialogue depending on the
utterance of the user. As part of our NLP func-
tionalities we have a focus word extractor trained
by a conditional random field (Yoshino and Kawa-
hara, 2015) which identifies the focus of an utter-
ance. For example, the statement “Yesterday I ate
curry.”” would produce a focus word of “curry”.
We then send this information to the statement re-
sponse component which generates a question re-
sponse “What kind of curry?”. Further details of
the technical implementation are described in the
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next section.

The process flow of the system is as follows.
The system performs continuous backchanneling
behavior while listening to the speaker. At the
same time, ASR results of the user are received.
When the utterance unit is detected and its dia-
logue act is tagged as a statement, then a response
is generated and then stored. However, a response
is only actually output when the system predicts
an appropriate time to take the turn. This is be-
cause the user may wish to keep talking and the
system should not interrupt. Thus, we can manage
turn-taking more flexibly.

In summary, the three major components re-
quired for attentive listening are backchanneling,
statement response and turn-taking.

3 Attentive listening components

In this section we describe the three major com-
ponents of attentive listening. We evaluate each of
these components individually.

3.1 Continuous backchannel generation

Our goal is to increase rapport (Huang et al., 2011)
with the user by showing that the system is inter-
ested in the content of the user’s speech. There
have been many works on automatic backchan-
nel generation, with most using prosodic features
for either rule-based models (Ward and Tsukahara,
2000; Truong et al., 2010) or machine learning
methods (Morency et al., 2008; Ozkan et al., 2010;
Kawahara et al., 2015).

In this work we use a model in which backchan-
neling behavior occurs continuously during the
speaker’s turn, not only at the end of an utterance.
We take a machine learning approach by imple-
menting a logistic regression model to predict if
a backchannel would occur 500ms into the future.
We predict into the future rather than at the current
time point, because in the real-time system Erica
requires processing time to generate nodding and
mouth movements that synchronize with her ut-
terance. We trained the model using a counseling
corpus. This corpus consisted of eight one-to-one
counseling sessions between a counselor and a stu-
dent and were transcribed according to the guide-
lines of the Corpus of Spontaneous Japanese (CSJ)
(Maekawa, 2003).

The model makes a prediction every 100ms by
using windows of prosodic features of sizes 100,
200, 500, 1000 and 2000 milliseconds. For a win-
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Figure 1: System architecture of attentive listener.

dow size s, feature extraction is conducted within
windows every s milliseconds before the current
time point, up to a maximum of 4s millisec-
onds. For example, for a time window of 100ms,
prosodic features are calculated inside windows
starting at 400, 300, 200 and 100 milliseconds
before the current time point. The prosodic fea-
tures are the mean, maximum, minimum, range
and slope of the pitch and intensity. Finally, we
add the durations of silence, voice activity, and
overlap of the speaker and listener.

We conducted two evaluations of the backchan-
nel timing model. The first is an objective evalu-
ation of the precision and recall. We used 8-fold
cross validation and tested on individual sessions.
We compared against a baseline model which gen-
erated a backchannel after every IPU (Fixed) and
an [PU-based model based on logistic regression
which also predicted after every IPU using addi-
tional linguistic features (IPU-based). Our model
showed that the most influential prosodic fea-
ture was the range and maximum intensity of the
speech, with larger windows located just before
the prediction point generally being more influ-
ential than other windows. Although we have no
quantitative evidence, we propose that a reduction
in the intensity of the speech provides an opportu-
nity for the listener to produce a backchannel. The
results are displayed in Table 1.

Model AUC Prec. Rec. F1
Time-based 0.851 0.344 0.889 0.496
IPU-based 0.809 0.659 0.512 0.576
Fixed 0.500 0.146 1.000 0.255

Table 1: Prediction results for backchannel tim-
ing.
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We see that the time-based model performs bet-
ter than the baseline and the IPU-based model with
a high AUC and recall. The precision is fairly
low, due to predicting a large number backchan-
nels even though none in the corpus are found.

We also conducted a subjective evaluation of
this model by comparing against the same mod-
els as the objective evaluation. We also in-
cluded an additional counselor condition, in which
backchannels in the real corpus were substituted
with the same recorded pattern.

Participants in the experiment listened to
recorded segments from the counseling corpus,
lasting around 30-40 seconds each. We chose seg-
ments where the counselor acted as an attentive
listener by only responding through the backchan-
nels used in our model. The counselor’s voice for
backchannels was generated using a recorded pat-
tern by a female voice actress. We created the
different conditions for each recording by apply-
ing our model directly to the audio signal of the
speaker. The audio channel of the counselor’s
voice was separated and so could be removed.
When the model determined that a backchannel
should be generated at a timepoint, we manually
inserted the backchannel pattern into the speaker’s
channel using audio editing software, effectively
replacing the counselor’s voice.

Each condition was listened to twice by each
participant through different recordings selected at
random. Subjects rated each recording over five
measures - naturalness and tempo of backchannels
(Q1 and Q2), empathy and understanding (Q3 and
Q4) and if the participant would like to talk with
the counselor in the recording (Q5). Each measure
was rated using a 7-point Likert scale.

For analysis we conducted a repeated measures
ANOVA with Bonferroni corrections. Results are



shown in Table 2. Our proposed model outper-
formed the baseline models and was comparable
to the counselor condition.

Fixed IPU Couns. Time-based
Q1 2.74* 3.92% 4.55 4.48
Q2 3.06* 4.05 4.86 4.61
Q3 2.44* 3.75* 4.25 4.58
Q4 255 3.95 4.38 4.39
Q5 2.35* 3.64* 4.23 4.21

Table 2: Average ratings of backchannel models.
Asterisks indicate the difference is statistically sig-
nificant from the proposed model.

The results of both evaluations show the need
for backchannel timing to be done continuously
and not just at the end of utterances.

3.2 Statement response

The statement response component is triggered for
statements and outputs when the system takes a
turn. The purpose is to encourage the user to ex-
pand on what they have just said and extend the
thread of the conversation. The statement response
tries to use a question phrase which repeats a word
that the user has previously said. For example, if
the user says “I will go to the beach.”, the state-
ment response should generate a question such as
“Which beach?”. It may also repeat the focus of
the utterance back to the user to encourage elabo-
ration, such as “The beach?”.

Our approach uses wh-questions as a means
to continue the conversation. From a linguistic
perspective, they are described in question tax-
onomies by Graesser et al. (1994) and Nielsen
et al. (2008) as concept completions (who, what,
when, where) or feature specifications (what prop-
erties does X have?). We observe that listeners in
everyday conversations use such phrases to get the
speaker to provide more information.

From a technical perspective, there are two pro-
cesses for the system. The first process is to de-
tect the focus word of the utterance. The second
is to correctly pair this with an appropriate wh-
question word to form a meaningful question. The
basic wh-question words are similar for both En-
glish and Japanese.

To detect the focus word we use a conditional
random field classifier in previous work which
uses part-of-speech tags and a phrase-level depen-
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dency tree (Yoshino and Kawahara, 2015). The
model was trained with utterances from users
interacting with two different dialogue systems.
This corpus was then annotated to identify the fo-
cus phrases of sentences.

We use a decision tree in Figure 2 to decide
from one of four response types. If a focus phrase
can be detected, we take each noun in the phrase,
match them to a wh-question and select the pair
with the maximum likelihood. We used an n-
gram language model to compute the joint prob-
ability of the focus noun being associated with
each question word. The corpus used is the Bal-
anced Corpus of Contemporary Written Japanese,
which contains 100 million words from written
documents. We then consider the maximum joint
probability of this noun and a question word. If
this is over a threshold 7' f, then a question on the
focus word is generated. If no question is gener-
ated, the focus noun is repeated with a rising tone.

YES Question on focus
word
YES max(P(focus noun,
question word)) > Tf Partial repeat of focus
Can extract o word with rising tone
focus phrase of J
[o]

N
L utterance?

YES.| Question on predicate

N

NO max(P(predicate,
question word)) > Tp

Formulaic expression

Figure 2: Decision tree of statement response sys-
tem showing the four different response types.

If no focus phrase is found we match the predi-
cate of the utterance to a question word using the
same method as above. If this is above a threshold
T'p, then the response is a question on the pred-
icate, otherwise a formulaic expression is gener-
ated as a fallback response. We provide examples
of each of the response types in Table 3.

We evaluated this component in two different
ways. Firstly, we extracted dialogue from an ex-
isting chatting corpus created for Project Next’s
NLP task'. We selected 200 user statements from
this corpus as a test set and applied the statement
response system to them. Two annotators then
checked if the generated responses were appropri-
ate. The results are shown in Table 4.

The results showed that the algorithm could
classify the statements reasonably well. However,
in the case of a focus word being unable to be

'nttps://sites.google.com/

site/dialoguebreakdowndetection/
chat-dialogue-corpus



Response type

Example

Question on focus

U: Yesterday I ate curry.

S: What kind of curry?

Partial repeat

U: I'll go and run a marathon.

S: A marathon?

Question on predicate

U: Then I went out.

S: Where did you go?

Formulaic expression
S: Yeah.

U: That’s beautiful.

Table 3: Examples of response types for user statements. Bold words indicate the detected focus noun
or predicate of the utterance, while underlined words indicate matched question words.

Response type Precision Recall
Question on focus 0.63 0.46
Partial repeat 0.72 0.86
Question on predicate 0.14 0.30
Formulaic expression 0.94 0.78

Table 4: Classification accuracy of statement re-
sponse system for chatting corpus.

found correctly identifying a question word for a
predicate is a challenge.

Next, we evaluated our statement response Sys-
tem by testing if it could reduce the number of fall-
back responses used by the system. We conducted
this experiment with 22 participants, and gathered
data on their utterances during a first-time meeting
with Erica. In most cases the participants asked
questions that could be answered by the system,
but sometimes the users said statements for which
the question-answering system could not formu-
late a response. In these cases a generic fallback
response was generated.

From the data we found that 39 out of 226
(17.2%) user utterances produced fallback re-
sponses. We processed all these utterances of-
fline through the statement response component.
From these 39 statements, 19 (47.7%) result in a
statement which could be categorized into either a
question on focus, partial repeat, or a question on
predicate. Furthermore, the generated responses
were deemed to be coherent with the correct fo-
cus and question words being applied. This would
have continued the flow of conversation.
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3.3 Flexible turn-taking

The goal of turn-taking is to manage the floor
of the conversation. The system decides when
it should take the turn using a decision model.
One simple approach is to wait for a fixed dura-
tion of silence from the user before starting the
speaking turn. However, we have found this is
highly user-dependent and very challenging when
the user continues talking. The major problem
is that if the user has not finished their turn and
the system begins speaking, they must then wait
for the system’s utterance to finish. This disrupts
the flow of the conversation and makes the user
frustrated. Solving this problem is not trivial so
several works have attempted to develop a robust
model for turn-taking (Raux and Eskenazi, 2009;
Selfridge and Heeman, 2010; Ward et al., 2010).
Figure 3 displays our approach towards turn-
taking behavior, rather than having to make a bi-
nary decision about whether or not to take the turn.
When the user has the floor and the system re-
ceives an ASR result, our model outputs a likeli-
hood score between 0 and 1 that the system should
take the turn. The actual likelihood score deter-
mines the system’s response. The system has four
possible responses - silence, generate a backchan-
nel, generate a filler or take the turn by speaking.
The novelty of our approach is that we do not
have to immediately take a turn based on a hard
threshold. Backchannels encourage the user to
continue speaking and signal that the system will
not take the turn. Fillers are known to indicate a
willingness to take the turn (Clark and Tree, 2002;
Ishi et al., 2006) and so are used to grab the turn
from the user. However, the user may still wish to
continue speaking and if they do the system won’t
grab the turn and so doesn’t interrupt the flow of
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Take a turn and
o do a response
e
it
S Generate filler and
g try to take a turn
T 054
3 Generate backchannel to
c
9 indicate not to take a turn
Sor
o Be silent and don’t
take a turn
0.0

Figure 3: Conceptual diagram of Erica’s turn-
taking behavior. The decision of the system is de-
pendent on the model’s likelihood of the speaker
has finished their turn. Decision thresholds are ap-
plied manually.

conversation. To guarantee that Erica will eventu-
ally take the turn, we set a threshold for the user’s
silence time and automatically take the turn once
it elapses.

To implement this system, we used a logistic
regression model with the same features as our
backchanneling model. We train using the same
counseling corpus and features that were used for
the backchanneling model. We found 25% of the
outputs within the corpus to be turn changes.

Our proposed model requires two likelihood
score thresholds (77 and T5) to decide whether or
not to be silent (< T7) or take the turn (> T5). We
set a threshold for deciding between backchannels
and fillers to 0.5. We determined 77 to be 0.45
and 75 to be 0.85 based on Figure 4, which dis-
plays the distributions of likelihood score for the
two classes.

The performance of this model is shown in Ta-
ble 5. We compared the proposed model to a lo-
gistic regression model with a single threshold at
0.5. Results are shown in Table 5.

These two thresholds degrade the recall of turn-
taking ground-truth actions because the cases in
between them are discarded. However we improve
the precision of taking the turn, which is critical
in spoken dialogue systems, from 0.428 to 0.624.
The cases discarded in this stage will be recovered
by uttering fillers or backchannels.
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Likelihood score

Figure 4: Distribution of likelihood scores for
turn-taking.

Model Precision Recall F1
3-tier
Don’t take turn 0.856 0.683 0.760
Take turn 0.624 0.231 0.337
Binary
Don’t take turn 0.848 0.731 0.785
Take turn 0.428 0.605 0.501

Table 5: Performance of turn-taking model com-
pared to single-threshold logistic regression.

Moreover, the ground-truth labels are based on
actual turn-taking actions made by the human lis-
tener, and there should be more Transition Rel-
evance Places (Sacks et al., 1974), where turn-
taking would be allowed. This should be ad-
dressed in future work.

4 System

In this section we describe the overall system with
the attentive listener being integrated into the con-
versational android Erica.

4.1 ERICA

Erica is an android robot that takes the appearance
of a young woman. Her purpose is to use conver-
sation to play a variety of social roles. The phys-
ical realism of Erica necessitates that her conver-



sational behaviors are also human-like. Therefore
our objective is not only to undertake natural lan-
guage processing, but to also address a variety of
conversational phenomena.

The environment we create for Erica reduces the
need to use a physical interface such as a hand-
held microphone or headset to have a conversa-
tion. Instead we use a spherical microphone array
placed on a table between Erica and the user. A
photo of this environment is shown in Figure 5.

Figure 5: Photo of user interacting with Erica.

Based on the microphone array and the Kinect
sensor, we are able to reliably determine the
source of speech. FErica only considers speech
from a particular user and ignores unrelated noises
such as ambient sounds and her own voice.

4.2 Pilot study

We conducted an initial evaluation of our system
as a pilot study to demonstrate its appropriateness
for attentive listening. We have observed from pre-
vious demonstrations that users often do not speak
with Erica as if she is an attentive listener. Rather,
they simply ask Erica questions and wait for her
answers. To overcome this issue in order to eval-
uate the statement response system, we first pro-
vided the subjects with dialogue prompts in the
form of scripts. This allowed users familiarize
themselves with Erica for free conversation. Two
male graduate students were subjects in the exper-
iment and interacted with Erica in these two dif-
ferent tasks.

The first task was to read from four conversa-
tional scripts of 3 to 5 turns each. These scripts
were not hand-crafted, but taken from a corpus
of real attentive listening conversations with a
Wizard-of-Oz controlled robot. Subjects were in-
structed to pause after each sentence in the script
to wait for a statement response. If Erica replied
with a question they could answer it before con-
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tinuing the scripted conversation.

The second task was to speak with Erica freely
while she did attentive listening. In this scenario
the subjects talked freely on the subject of their
favorite travel memories. They could end the con-
versation whenever they wished. Statistics of the
subjects’ turns are shown in Table 6.

Script Free talk

Turns 77 13
Avg. length per turn (sec.) 3.94 2.90
Avg. characters per turn 20.9 16.4

Table 6: Statistics for the speaking turns of the
subjects.

We find that the subjects reading from the script
had longer turns but the speaking rate was lower
than for free talk. In other words, script reading
was slower and longer. We also analyzed the dis-
tribution of response types generated from the sys-
tem as shown in Table 7.

Script Free talk Total
Backchannel 77 13 90
Q. on focus 14 10 24
Partial repeat 10 1 11
Q. on predicate 2 1 3
Formulaic 29 35
Total 132 31 163

Table 7:  Distribution of response types from

statement response component.

Backchannels were generated most frequently,
while both questions on focus and formulaic ex-
pressions were the most common response types,
with questions on focus words having the highest
frequency in free conversation. Partial repeats had
a much higher frequency in the scripts than in free
conversation. This is because the script readings
were taken from conversations which used more
complex sentences than the free talk, and focus
nouns for which a suitable question word could
not be reliably matched.

4.3 Subjective ratings

We evaluated the system by asking 8 evaluators
to listen to the recording of both the scripts and
free conversation. Each evaluator was assigned



Speaker Japanese utterance English translation Component
User Kono mae, tomodachi to Awa- I once took a trip with friends

jishima ni ryokou ni ikimashita.  to Awajishima island
Erica unun mhm Backchannel
Erica Doko e itta no desuka? Where did you go? Question on predicate
User Awajishima ni itte, sono ato Awajishima, then-

bokujo nado wo-
Erica un mm Backchannel
User mi ni ikimashita. went to visit a farm.
Erica Doko no bokujo desu ka? Where was the farm? Question on focus
User Etto, namae ha chotto oboete- Um, I don’t remember the

nain desukeredomo- name of it, but-
Erica un mm Backchannel
User -ee, hitsuji toka wo mimashita. -we saw sheep and other ani-

mals.

Table 8: Example dialogue of user free talk conversation with attentive listening Erica.

one random script and both free conversations to
evaluate. The evaluators rated each of Erica’s
backchannels and statement responses in terms of
coherence (coherent, somewhat coherent, or inco-
herent) and timing (fast, appropriate, or slow). We
used a majority vote to determine the overall rating
of each speech act. The ratings on the coherence
of each statement are shown in Figure 6.

35

30

N N
o 4]

[

Frequencuy
wv

=
o

w

I H .—|l_| [l M=

Partial repeat Q. on predicate

0

Q. on focus Form. expr.

W Coherent OSomewhat coherent OlIncoherent

Figure 6: Rating on coherence for each response
type.

We see that the results are similar to the previ-
ous evaluation of the statement response system.
More than half of questions on focus words were
coherent, although most of these were in response
to the scripts. Formulaic expressions were mostly
coherent even though they were selected at ran-
dom.
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Similarly, we categorized system utterances
into backchannels or statements and analyzed tim-
ing. The results are shown in Figure 7.

60
50

Statement

—

Backchannel

M Appropriate [ Fast Slow

Figure 7: User rating of timing for backchannels
and statements.

We can see that while most backchannels have
suitable timing, statement responses are slow due
to the processing of the utterance that is required.

4.4 Generated dialogue

Table 8 shows dialogue from a free talk con-
versation. User utterances were punctuated by
backchannels and the system is able to extract a
focus noun or predicate and produce a coherent
response.

We also found that the system could produce a
coherent response even in the case of ASR errors.



In one case the subject said “sakana tsuri wo shi-
mashita (I went fishing.).”. The ASR system gen-
erated “sakana wo sore wo sumashita”, which is
nonsensical. In this case, the word “fish” was suc-
cessfully detected as the focus noun and a coherent
response could be generated.

4.5 Analysis of incoherent statements

We also examined 17 utterances determined to be
incoherent (excluding backchannels and formulaic
expressions) and analyzed the reasons for these.
Table 9 shows the sources of errors in the state-
ment response with their associated frequencies.

Error source Frequency

Incorrect question word match
Incoherent focus noun/predicate
Repeated statement

ASR errors

Focus word undetected

—_— W A~ B~ W

Table 9: Errors found in the generated statement
responses.

Incorrect question word matching was found
several times. For example, the user said “Tokyo
ni ryokou ni ittekimashita (I went on a trip to
Tokyo)”, generating the reply “Donna Tokyo desu
ka? (What kind of Tokyo?)” which does not make
sense. Another source of error was the system de-
tecting a focus noun or predicate which did not
make sense. Repeated statements were also found.
The subject had already explained something dur-
ing the conversation but the system asked a ques-
tion on it. This can be addressed by keeping a his-
tory of the dialogue. The ASR word error rate
was approximately 10% for both script reading
and free talk, so was not a major issue. In most
cases, incorrect ASR results cannot be parsed and
so a formulaic expression is produced.

4.6 Lessons from pilot study

Our pilot study showed that our system is feasi-
ble with no technical failures. Backchannels can
be generated at appropriate times. Coherent re-
sponses could be generated by the system and er-
rors in Erica’s dialog can be addressed. We chose
third-party evaluations for this experiment due to
the small sample size and also because the sub-
jects could not evaluate specific utterances while
they were using the system.
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However we intend to conduct a more com-
prehensive study where the subjects evaluate their
own interaction with Erica. Subjects should en-
gage in free talk, but we have found that moti-
vating them to do so is not trivial. A reasonable
metric for a full experiment is the subject’s will-
ingness to continue the interaction with with Erica
which indicates engagement with the system. We
can also use more objective metrics such as the
number and length of turns taken by the user. Our
strategy of using fillers and backchannels to regu-
late turn-taking should also be evaluated.

5 Conclusion and future work

In this paper we described our approach towards
creating an attentive listening system which is in-
tegrated inside the android Erica. The major com-
ponents are backchannel generation, statement re-
sponse system, and a turn-taking model. We
presented individual evaluations of each of these
components and how they work together to form
the attentive listening system. We also conducted a
pilot study to demonstrate the feasibility of the at-
tentive listener. We intend to conduct a full exper-
iment with the system to discover if it is compa-
rable to human conversational behavior. Our aim
is for this system to be used in a practical setting,
particularly with elderly people.
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Abstract

Recent spoken dialog systems are moving
away from command and control towards
a more intuitive and natural style of inter-
action. In order to choose an appropri-
ate system design which allows the sys-
tem to deal with naturally spoken user in-
put, a definition of what exactly constitutes
naturalness in user input is important. In
this paper, we examine how different user
groups naturally speak to an automotive
spoken dialog system (SDS). We conduct
a user study in which we collect freely
spoken user utterances for a wide range
of use cases in German. By means of a
comparative study of the utterances from
the study with interpersonal utterances, we
provide criteria what constitutes natural-
ness in the user input of an state-of-the-art
automotive SDS.

1 Introduction

In the automotive area, speech interfaces have con-
tinously gained importance in recent years. Cur-
rent spoken dialog systems (SDS) are expected not
to be restricted to a command-and-control-style
interaction, in which functions are invoked by the
user by speaking fixed key phrases. Instead, they
are expected to accept natural input from the user,
i.e., to understand the user without imposing re-
strictions on how he has to formulate queries.'

A definition of what exactly constitutes natural-
ness in user input is important, not only in order to
precisely understand user expectations, but also,
and especially, in order to choose an appropriate
system design which allows the system to deal
with flexible user input and spontaneous speech

! Also, it is expected, that systems answer naturally to the
user. However, a discussion of system output is beyond the
scope of this paper.
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phenomena (as described by Skantze (2007)), and
to facilitate the design of meaningful system eval-
uation.

Since interpersonal interaction is the most natu-
ral form of interaction, it is often taken as a base-
line for the development of an intuitive and natural
human-machine interaction (Bonin et al., 2015).
However, earlier work shows that human speech
is strongly influenced by the assumptions that a
speaker has about his interlocutor, e.g. (Brani-
gan and Pearson, 2006), and also by individual
properties such as age, e.g. (Moller et al., 2008;
Bell, 2003). In conclusion, naturalness in user in-
put cannot simply be equated with interpersonal
speech and different user groups may have a dif-
ferent understanding of what is natural and intu-
itive. To the best of our knowledge, there are no
studies investigating what exactly constitutes nat-
uralness in user input.

In this paper, our aim is to answer the question
of which kind of utterances the natural language
understanding component of an SDS must be able
to understand from a user perspective. Thereby,
characterizing the capabilities of a dialog manage-
ment, as done by Bohlin et al. (1999) (cf. TRINDI
tick-list), is not enough — a thorough characteriza-
tion of the characteristics of natural language user
input is needed. In order to achieve this, we con-
duct a study in which we collect free user utter-
ances for an in-car SDS in German. By means
of a comparative analysis with interpersonal ut-
terances, we first show to which extent utterances
used for system interaction share properties with
interpersonal utterances. Second, we examine to
which extent different user groups speak differ-
ently in terms of naturalness.

The remainder of the paper is structured as fol-
lows. In section 2, we review previous literature
which has aimed at defining naturalness of user in-
put and describing natural language utterances re-
spectively. The following section 3 we introduce
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our study design. Section 4 presents the evaluation
of the study, in section 5 the results are discussed
and section 6 concludes the article.

2 Towards a Definition of Naturalness

In general, natural language is human language
and therefore different from artificial languages
which are especially created for specific purposes,
e.g., computer languages. In this sense, spoken
dialog systems always make use of natural lan-
guage. This also applies to command-and-control
systems. However, the term natural is often used
as a qualifier of the abilities of the natural language
understanding (NLU) and natural language gener-
ation (NLG) modules of an SDS.

A general definition of naturalness in this sense
is given by Berg (2013), who calls SDS natural if
their language behavior is as human-like as possi-
ble. Many authors refer to this definition of nat-
ural language when they demand a more natu-
ral human-machine interaction, see, e.g., (Edlund
et al., 2008).

The literature that investigates the naturalness
of spoken user input, which is the focus of our
work, can be split into three groups.

Literature in the first group describes the users’
speaking style by means of labels like natural and
command. Hofmann et al. (2012), e.g., conduct a
web-based study to find out how users would in-
teract with internet services using speech. They
classify the observed speaking styles into natural,
command and keyword style. They state that natu-
ral reflects the way humans communicate among
each other and that the command and keyword
style is related to state-of-the-art human-machine
interaction. Berg et al. (2010) use similar la-
bels with a different meaning. They classify ut-
terances collected from a human-machine inter-
action study into commands, phrased commands
and natural language, whereas commands is used
similar to keyword style of Hofmann et al. (2012)
and natural language utterances consist of full
sentences including phrases of civility and filler
words. Similarly, in the study of Berg (2012),
speaking styles are classified into full sentences,
medium-length commands and short commands.
White et al. (2014) and Pang et al. (2011) inves-
tigate written web search queries. They classify
information seeking queries into keyword queries
and natural language questions. Natural language
questions are defined as utterances beginning with
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a question indicator, such as what and do, and end-
ing with a question mark.

The second group consists of literature which
(linguistically) analyzes spoken user input style.
Braunger et al. (2016), e.g., compare crowd-
sourced natural language user input in terms of
sentence constructions. They conclude that if peo-
ple speak freely to an SDS, they mostly use an
imperative style. Winter et al. (2010) collect nat-
urally spoken utterances and quantify their com-
plexity and variety. They use context information
as a qualitative measurement for classification,
classifying the utterance content into three cate-
gories: information data, context relevant words
and non-context relevant words. They find that
users tend to repeat similar utterance patterns com-
posed from a limited set of different words.

Thirdly, we find work which concenctrates
on the differences between human-human and
human-machine communication. Guy (2016)
shows that voice queries are closer to natural lan-
guage than written queries. He builds two natu-
ral language models, one based on a corpus repre-
senting classic formal language and one based on
a corpus representing a more colloquial web lan-
guage. For measuring the similarity to a natural
language model he used perplexity. He concludes
that voice queries are still far from natural lan-
guage questions. The authors of (Hayakawa et al.,
2016) compared direct human-human dialogs to
dialogs that are mediated by a speech-to-speech
machine translation system. They found that in
machine mediated conversation speakers use less
words than in direct human-to-human communi-
cation. In (Pang and Kumar, 2011) written natural
language questions posed as web search queries
are compared to a natural language sample of
questions posted by web users on a community-
based question-answering site. Since written text
tends to be structurally complete Pang et al. (2011)
measure naturalness by means of the probability
mass of function words.

A more intuitive and natural interaction with
SDSs presupposes understanding naturally spo-
ken user utterances. In order to choose an ap-
propriate system design which allows the system
to deal with naturally spoken utterances, a defi-
nition of what exactly constitutes naturalness in
user input is necessary. Recent research in this
area only focuses on the question whether users
speak naturally or in a command-/keyword-based



way to a speech system, whereby naturalness is
equated with human-directed speech, e.g. (Hof-
mann et al., 2012; Pang and Kumar, 2011; Berg,
2012). The criteria mentioned for natural, human-
directed speech are full sentences, civility, filler
words and a higher number of words. Since nat-
ural is what people intuitively use, natural lan-
guage input cannot simply be equated with in-
terpersonal speaking style. Even though differ-
ent studies found that a speaker's language be-
havior is influenced by beliefs about an interlocu-
tor, cf. (Branigan and Pearson, 2006; Branigan
etal., 2010; Bell, 2003) and researchers have many
intuitions about the differences between human-
machine and human-human communication, inter-
personal speaking style is often taken as a baseline
for naturalness as can be seen from the discussed
literature and it has not been examined to which
extent the criteria mentioned for naturalness char-
acterize naturally spoken utterances towards state-
of-the-art SDS. There exist only a few empirical
studies which investigate the differences. These
research works focus either on dialog issues such
as turn-taking, e.g. (Doran et al., 2001), or on lex-
ical alignment, e.g. (Branigan et al., 2011), but not
on natural language input towards SDS in a car en-
vironment.

The way people address the system is not only
influenced by their beliefs about the system but
also by individual properties such as age or gen-
der. Work in this area of research has been done
by Bell (2003) who found that individual differ-
ences in speaker behavior are significant and by
Moller (2008) who found that younger users dif-
fer from older users in the way they speak with a
smart-home system. The observations show that
different user groups may have a different under-
standing of what is natural and intuitive. There-
fore, user profiles must be considered when defin-
ing natural language input.

3 Study Design

To the best of our knowledge, there are no data
answering the question to which extent natu-
rally spoken user input towards SDS differ from
human-directed speech and what exactly consti-
tutes naturalness in user input. We therefore con-
duct a study to examine how different user groups
would naturally speak to an actual in-car SDS and
how they would speak to their passenger.

In the following, we explain the experimental

139

setup and procedure of the study.

3.1 Participants

The study is targeted at younger and elder Ger-
man adults with different SDS experience and a
valid driver's license. In total, 45 subjects partici-
pated in the study. 46% of them were female and
54% were male. The average age was 39.5 years
(standard deviation SD: 13.5). 55.6% of the par-
ticipants were aged between 20-39 years, 26.6%
were 40-59 years old and 17.8% were older than
60 years. 27% were experienced in the use of spo-
ken dialog systems; 74% had little to no experi-
ence with speech-controlled devices.

3.2 Experimental Design

The study was split into two sessions and each
participant encountered both conditions (within-
subject design). In the one session the participants
had to talk to their front passenger who performed
the requested action. In the other session the par-
ticipants were asked to interact with an in-car spo-
ken dialog system. According to Moller (2008;
2005) we decided to conduct a Wizard of Oz
(WOZ) experiment. This method is less time con-
suming and less costly. In a WOZ experiment a
human operator (wizard) simulates the behavior
of an intelligent computer application whereby the
human believes to be interacting with a fully auto-
mated prototype (Dahlbaeck et al., 1993). Within
each session the participants were asked to solve
twelve tasks typically performed in a car:

Listen to radio station SWR3

Play Michael Jackson Greatest Hits
Navigate to Stieglitzweg 23 in Berlin
Call Barack Obama on his mobile phone
Set temperature to 23 degrees

Send a text message to brother

Weather in Berlin today

© NNk w D

Date of the European Football championship
final game

Population of Berlin
10.
11.
12.

Score V{B Stuttgart against FC Bayern
Cinema program in Berlin today

Next Shell gas station

The tasks consist of six non-information seeking

tasks (1-6) and six information seeking tasks (7-
12).



Stuttgart FC Bayern

g | F6
R

Task 1 Task 10

Figure 1: Task description

3.2.1 System Simulation

The system behavior was simulated with the help
of the SUEDE tool (Klemmer et al., 2000). The
system behavior was designed such as in an actual
Mercedes-Benz E-class. The system directly pro-
vided the information requested or activated the
appropriate function whereby the user input re-
sulted in a visual and acoustic system feedback.
With user input for Task 1), for example, the radio
program started playing and the screen provided
information on the current radio station.

3.2.2 Task Description

The tasks were presented by pictures in paper
form. Different studies, e.g., (Bernsen et al., 1998;
Tateishi et al., 2005), report from priming effects
when using text-based task descriptions. As pic-
tures do not bias the subjects by putting words into
their mouths, the participants were shown pictures
that describe the tasks. The tasks were pre-tested
with friendly users to find out if the desired situa-
tion was put in the user’s mind. Examples for the
task descriptions are given in Fig. 1.

3.2.3 Driving Simulation Setup

Since we want to find out how users naturally in-
teract with a spoken dialog system while driving,
we put the participants in a simulated driving situ-
ation. The participants were sitting on the driver’s
seat in a car which was placed in front of a canvas
onto which the driving simulation was projected,
such as done by Hofmann et al. (2014). They were
shown a driving simulation where they were driv-
ing behind a car. Their task was to brake if and
only if the preceding vehicle brakes. The driving
simulation setup is illustrated in Fig. 2.

3.3 Procedure

The overall procedure of the experiment was as
follows. First, the participants were informed
about the procedure. The participants were told
that they have to orally solve tasks while driv-
ing and they were shown the graphically depicted
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Figure 2: Driving simulation setup

tasks. The participants had to verbally interpret
the tasks. In order to prevent wrong interpreta-
tions we gave assistance, where necessary. As for
the session with the passenger, they were told that
the passenger provided the information requested
or activated the appropriate function. As for the
system session, they were told to speak freely to
the system. They had to activate the speech recog-
nition via speaking the phrase “Hallo Auto” (eng.
“Hello Car”). Afterwards, the participants got to
know the driving simulation in a test drive last-
ing about three minutes. The instructor was sitting
on the passenger seat. The instructor showed the
task presentation pictures randomly while the par-
ticipant was driving. The tasks were permuted to
avoid order effects.

4 Evaluation and Results

In total, we collected 1.080 utterances; 540
system-directed utterances and 540 human-
directed utterances. The utterances were manually
transcribed and automatically analyzed. The
transcription exactly matched the spoken utter-
ances. The analysis included Part-of-Speech
(POS) Tagging and Parsing with SpaCy.>2 The
part-of-speech-tagger uses the Google Universal
POS tag set of Petrov et al. (2011).

First, we analyze to which extent system-
directed utterances share properties with human-
directed utterances. Second, we aim at identify-
ing salient features of intuitively spoken user in-
put. Third, we analyze the impact of the users’
age and gender on their speaking style to gain
additional insights into the variability of user in-

*https://github.com/explosion/spaCy.



put. Therefore, system-directed utterances are
compared with human-directed utterances broken
down by the users’ age and gender. The col-
lected data are examined in terms of different lin-
guistic criteria commonly used in the literature,
e.g. (Summa et al., 2016; Johansson, 2008; Pinter
et al., 2016; Pak and Paroubek, 2010), including
those mentioned by the literature for naturalness:

Lexical diversity

Lexical density

Big words

POS tag frequencies
Politeness

Filler words

Syntactic complexity

Sentence types

Utterance length

Only those features which occur significantly
often in system-directed speech are considered as
characteristic features of intuitively spoken user
input. In order to determine the linguistic features
that are associated with the respective criterion,
e.g., what is polite, we rely on the findings from
literature (see below).

One of the most common measures of lexical
diversity is the type-token ratio which is defined
as the ratio of the total number of individual word
types (lemmas) to the total number of occuring
word tokens, cf. (Johansson, 2008). We use the
standardized type-token tatio (STTR), firstly men-
tioned by Johnson (1944), to normalize the impact
of the size of the different corpora. Fig. 3 displays
the STTR broken down by different age, gender
and interlocutor.

The type-token ratio significantly differs be-
tween human-directed speech and system-directed
speech (p<0.01). In addition, Fig. 3 shows that
the older the users the higher the lexical diversity.
That is, older participants tend to use more indi-
vidual words than younger both in system-directed
speech and in human-directed speech. The dif-
ferences between the age groups are significant at
p<0.01. The users’ gender does not seem to have
an impact on the lexical diversity.

One of the measures of lexical density is the
content-function word ratio which is calculated
by dividing the number of content words (open
class words) by the number of function words
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Figure 3: Type-token ratio broken down by user
profiles and interlocutor

(closed class words), cf. (Johansson, 2008).
This means, the higher the proportion of content
words the more information is given. In human-
directed speech people tend to use more content
words (44.68%) than in system-directed speech
(41.68%). The user profiles do not seem to have
an impact.

The big word ratio is calculated by dividing the
number of words longer than six characters (big
words) by the total number of words. We found
that people do not tend to adapt the use of big
words significantly to their interlocutor. 17.11%
of the system-directed words are big words and
16.50% of the human-directed. The user profiles
do not seem to have an impact on the use of big
words.

Next, we are interested in a difference of tag
distributions between the speech sets. Table
1 shows the seven most frequent POS tags of
both speech sets. Nouns (NOUN) and proper
nouns (PROPN) occur much more frequently in
the system-directed speech set, whereas adverbs
(ADV) and verbs (VERB) occur much more fre-
quently in the human-directed speech set. Pro-
nouns (PRON) are less frequently used in system-
directed speech (5.50%) than in human-directed
speech (10.42%). The proportion of preposi-
tions (ADP) is ranked at position seven in human-
directed speech but at position four in system-
directed speech. The proportions of determin-
ers (DET) are more or less balanced. As for
the user groups in both sets, we found differ-
ences in the occurrence of verbs between men and
women. Women tend to use more verbs than men
(in system-directed speech significant at the 0.05
level). Additionally, we found that older users
tend to use more verbs and pronouns and fewer



Table 1: POS tag frequencies

System-directed Human-directed
NOUN | 18.93% ADV | 16.73%
PROPN | 17.40% NOUN | 14.16%
DET | 13.28% VERB | 13.05%
ADP | 12.65% PROPN | 12.47%
ADV | 12.38% DET | 11.02%
VERB | 9.50% PRON | 10.42%
PRON | 5.50% ADP | 10.06%

proper nouns than younger people. These ten-
dencies hold for both system-directed speech and
human-directed speech.

Our evaluation of how polite users speak to
an SDS is based on the empirical findings of
(Danescu-Niculescu-Mizil et al., 2013). They
characterized politeness marking in requests. Out
of the 14 strategies which are perceived as being
polite the following strategies appear in our data:

* Sentence-medial please: Could you please
* Counterfactual modal: Could/Would you...
* Indicative modal: Can/Will you...

* Ist person start: I search...

* 1st person pl.: Could we find...

The distribution of utterances with politeness
indicators are shown in Fig. 4.> The results in
Fig. 4 confirm that politeness strategies are salient
features of human-directed utterances but not of
system-directed utterances. Overall, only 19.63%
of the system-directed utterances contain polite-
ness markers, whereas 53.33% of the human-
directed utterances are polite (p<0.01). Fig. 4
shows that politeness strategies have been used
more often by women in both corpora (p<0.01).
Furthermore, younger people (20-39 years) are
far more likely to avoid politeness strategies
when speaking to the system than older people
(p<0.01).

As for the categorie filler words, we investi-
gate the number of utterances that contain dis-
fluencies such as d@h and dhm (eng. “uh”) and
modal particles. We use the definition of modal

3Direct questions such as What is your native language?,
direct variants such as imperatives and sentence-initial please
are perceived as being impolite, cf. (Danescu-Niculescu-
Mizil et al., 2013). In our data, 8% of all utterances contain
an imperative with sentence-medial please. Since impera-
tives with please are perceived as not being polite we did not
count please in this morphosyntactic context.
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Figure 4: Distribution of polite utterances broken
down by user profiles and interlocutor
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Figure 5: Distribution of utterances containing
filler words broken down by user profiles and in-
terlocutor

particles according to Bross (2012), namely that
modal particles do not contribute to the sentence
meaning. The following modal particles occur
in our data: doch, einmal, nochmal, mal, denn,
eigentlich, vielleicht. Fig. 5 shows the percent-
age of utterances with disfluencies and modal par-
ticles. The results show that all user groups avoid
filler words when speaking to the system. Only
12.40% of the system-directed utterances contain
filler words. In contrast, 55.92% of the human-
directed utterances contain filler words. Signifi-
cant differences (p<<0.01) also appear in the use of
filler words between the different age groups. 40-
59 years old people tend to use less filler words
than the younger (20-39) and older (60+) when
speaking to their passenger.

Besides lexical and pragmatic aspects we ana-
lyze our data in terms of syntactic features. One
of the measures of syntactic complexity is tree
depth. Tree depth is defined as the number of
edges in the longest path from the root node to a
leaf, cf. (Pinter et al., 2016). We have calculated
the median and mean depth of the dependency
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Figure 6: Distribution of sentence structures bro-
ken down by interlocutor

trees. However, the differences are not significant
at p<0.05. Overall, the median tree depth of the
system-directed utterances is 3 with an interquar-
tile range of 2. The same holds for the human-
directed utterances.

Another syntactic criterion mentioned by the
literature for naturalness is the use of full sen-
tences. The criterion full sentence comprises sen-
tences containing a finite verb form. We further
subdivided the category full sentence into four cat-
egories based on sentence types. In addition, we
identified patterns without verb or just with an in-
finitive. We also found utterances composed of
two or three sentences that are categorized as sev-
eral sentences. An overview and examples of the
sentence structures we identified are given in Table
2. The frequency of the occurrence of the sentence
structures is shown in Fig. 6. Across all tasks, an
interrogative structure predominates. This is due
to the fact that the twelve tasks consist of six infor-
mation seeking tasks. As Fig. 6 implies, 95,93%
of the human-directed utterances are full sentences
but only 80,56% of the system-directed. The fre-
quency of an imperative, infinitive and verbless
construction increases significantly (p<0.05) in
system-directed speech. In human-directed speech
people tend to use more interrogative construc-
tions and several sentences to verbalize their re-
quest.

Fig. 7 displays the distribution of sentence
structures broken down by user profiles for the
system-directed utterances. Only those sentence
structures are displayed which show significantly
different distributions at the 0.05 level. Younger
people (20-39 years) and males tend to use a
lot more imperative constructions than older peo-
ple and females but less declarative constructions.
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The group of people older than 60 years used more
often an infinitive construction than the younger
but fewer interrogative constructions. The older
participants used fewer interrogative constructions
also when speaking to the passenger. As for the
distribution of the other sentence structures oc-
cured in the human-directed set, the user groups
are more or less balanced.

In order to conclude the syntactic analysis we
compare the utterance length. Fig. 8 shows the
distribution of the number of words per utterance.
The utterances towards the system were shorter, @
7.01 words per utterance (SD 1.95), than the utter-
ances towards the passenger, @ 10.22 (SD 3.64).

5 Discussion

Our comparative study shows that certain features,
e.g., full sentences or filler words, are character-
istic features of interpersonal speaking but not of
system-directed speech. We found that although
people are told to utter freely they still use syn-
tactic incomplete sentences and they are likely to
avoid politeness strategies and filler words, cf. ex-
amples given in a) and b).



Table 2: Sentence structures

Sentence Structure Example
Interrogative Wo ist die ndchste Shell-Tankstelle?
“Where is the nearest Shell gas station?”
Imperative Spiele SWR3!
“Play SWR3!”
Declarative Ich mochte SWR3 horen.
“I would like to listen to SWR3.”
Infinitive SWR3 spielen.
No corresponding syntax existing in English
Verbless Radio SWR3
“Radio SWR3”
Several sentences Wir konnten ja heute Abend ins Kino. Was kommt denn heute in Berlin?
“We could go to the cinema this evening. What's the program in Berlin?”

a) Bitte Radiosender SWR3 einstellen.
“Please radio station SWR3 infinite verb”

b) Temperatur auf 23 Grad.
“Temperature to 23 degrees.”

Our analysis results confirm that people adapt
their speaking style depending on whom they are
talking to. According to the findings of (Levin
et al., 2013; Pearson et al., 2006; Branigan et al.,
2011) we assume that speakers are strongly influ-
enced by the assumptions that a speaker has about
his interlocutor, not only in human-machine com-
munication but also in human-human communi-
cation. Thus, people always utter in a way they
believe the system is able to understand, also if
the system behaves more human-like. We there-
fore argue that freely spoken user input should not
be considered synonymous with human-directed
speech, namely with full sentences, civility, with
the occurrence of filler words etc. The use of short
and concise phrases (such as a verbless construc-
tion) just seems to be an effect of the user adapting
to the system as conversational partner in the sense
of (Pearson et al., 2006; Branigan et al., 2011)
and is as natural (in the sense of intuitive) as us-
ing full sentences including politeness markers or
filler words. If system developers follow the as-
sumption that the linguistics of freely spoken user
input is equated with interpersonal speaking style
they hardly meet the user expectations of an intu-
itive and natural speaking. Instead, we suggest to
add incomplete syntactic structures such as verb-
less and infinite sentences to the criteria for natu-
rally spoken user input. Since 71% of the system-
directed utterances do not contain filler words or
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politeness markers we also suggest not to equate
natural language input with the occurrence of filler
words and politeness indicators.

6 Conclusion

In this paper, we have contributed to the question
of how we can define naturalness in user input to-
wards a state-of-the-art SDS.

We have presented a user study in which we
have collected freely spoken user utterances for
a wide range of automotive use cases in Ger-
man. By means of a comparative study of human-
directed and system-directed utterances, we have
shown that naturalness cannot simply be equated
with human-human communication: users will
use shorter and concise phrases in order to inter-
act with the machine. We have argued that this
is an effect of the user adapting to the machine
as conversational partner in the sense of (Pearson
et al., 2006; Branigan et al., 2011). In addition,
we found that the users’ age and gender have an
impact on the way they speak to an SDS. We have
shown that women did more often make use of po-
liteness strategies and of a declarative construction
and that older users tended to use more individual
words.

Our further goal is to define evaluation criteria
which consider freely spoken user input to com-
pare different SDS. This will be subject of future
work.
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Abstract

Deep reinforcement learning (RL) meth-
ods have significant potential for dia-
logue policy optimisation. However, they
suffer from a poor performance in the
early stages of learning. This is es-
pecially problematic for on-line learning
with real users. Two approaches are in-
troduced to tackle this problem. Firstly, to
speed up the learning process, two sample-
efficient neural networks algorithms: trust
region actor-critic with experience replay
(TRACER) and episodic natural actor-
critic with experience replay (eNACER)
are presented. For TRACER, the trust re-
gion helps to control the learning step size
and avoid catastrophic model changes.
For eNACER, the natural gradient iden-
tifies the steepest ascent direction in pol-
icy space to speed up the convergence.
Both models employ off-policy learning
with experience replay to improve sample-
efficiency. Secondly, to mitigate the cold
start issue, a corpus of demonstration data
is utilised to pre-train the models prior to
on-line reinforcement learning. Combin-
ing these two approaches, we demonstrate
a practical approach to learning deep RL-
based dialogue policies and demonstrate
their effectiveness in a task-oriented infor-
mation seeking domain.

1 Introduction

Task-oriented Spoken Dialogue Systems (SDS)
aim to assist users to achieve specific goals via
speech, such as hotel booking, restaurant informa-
tion and accessing bus-schedules. These systems
are typically designed according to a structured
ontology (or a database schema), which defines the
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domain that the system can talk about. The de-
velopment of a robust SDS traditionally requires
a substantial amount of hand-crafted rules com-
bined with various statistical components. This
includes a spoken language understanding mod-
ule (Chen et al., 2016; Yang et al., 2017), a dia-
logue belief state tracker (Henderson et al., 2014;
Perez and Liu, 2016; Mrksi¢ et al., 2017) to predict
user intent and track the dialogue history, a dia-
logue policy (Young et al., 2013; Gasi¢ and Young,
2014; Budzianowski et al., 2017) to determine the
dialogue flow, and a natural language generator
(Rieser and Lemon, 2009; Wen et al., 2015; Hu
et al., 2017) to convert conceptual representations
into system responses.

In a task-oriented SDS, teaching a system how
to respond appropriately in all situations is non-
trivial. Traditionally, this dialogue management
component has been designed manually using flow
charts. More recently, it has been formulated as
a planning problem and solved using reinforce-
ment learning (RL) to optimise a dialogue policy
through interaction with users (Levin and Pierac-
cini, 1997; Roy et al., 2000; Williams and Young,
2007; Jurcicek et al., 2011). In this framework,
the system learns by a trial and error process gov-
erned by a potentially delayed learning objective
called the reward. This reward is designed to en-
capsulate the desired behavioural features of the
dialogue. Typically it provides a positive reward
for success plus a per turn penalty to encourage
short dialogues (El Asri et al., 2014; Su et al.,
2015a; Vandyke et al., 2015; Su et al., 2016b).

To allow the system to be trained on-line,
Bayesian sample-efficient learning algorithms
have been proposed (Gasi¢ and Young, 2014;
Daubigney et al., 2014) which can learn policies
from a minimal number of dialogues. However,
even with such methods, the initial performance is
still relatively poor, and this can impact negatively
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on the user experience.

Supervised learning (SL) can also be used for
dialogue action selection. In this case, the policy is
trained to produce an appropriate response for any
given dialogue state. Wizard-of-Oz (WoZ) meth-
ods (Kelley, 1984; Dahlbick et al., 1993) have
been widely used for collecting domain-specific
training corpora. Recently an emerging line of
research has focused on training neural network-
based dialogue models, mostly in text-based sys-
tems (Vinyals and Le, 2015; Shang et al., 2015;
Serban et al., 2015; Wen et al., 2017; Bordes et al.,
2017). These systems are directly trained on past
dialogues without detailed specification of the in-
ternal dialogue state. However, there are two key
limitations of using SL in SDS. Firstly, the effect
of selecting an action on the future course of the
dialogue is not considered and this may result in
sub-optimal behaviour. Secondly, there will of-
ten be a large number of dialogue states which are
not covered by the training data (Henderson et al.,
2008; Li et al., 2014). Moreover, there is no rea-
son to suppose that the recorded dialogue partici-
pants are acting optimally, especially in high noise
levels. These problems are exacerbated in larger
domains where multi-step planning is needed.

In this paper, we propose a network-based ap-
proach to policy learning which combines the best
of both SL- and RL-based dialogue management,
and which capitalises on recent advances in deep
RL (Mnih et al., 2015), especially off-policy algo-
rithms (Wang et al., 2017).

The main contribution of this paper is two-fold:

1. improving the sample-efficiency of actor-
critic RL: trust region actor-critic with ex-
perience replay (TRACER) and episodic
natural actor-critic with experience replay
(eNACER).

2. efficient utilisation of demonstration data for
improved early stage policy learning.

The first part focusses primarily on increasing
the RL learning speed. For TRACER, trust regions
are introduced to standard actor-critic to control
the step size and thereby avoid catastrophic model
changes. For eNACER, the natural gradient iden-
tifies steepest ascent direction in policy space to
ensure fast convergence. Both models exploit the
off-policy learning with experience replay (ER) to
improve sample-efficiency. These are compared
with various state-of-the-art RL methods.
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The second part aims to mitigate the cold start
issue by using demonstration data to pre-train an
RL model. This resembles the training procedure
adopted in recent game playing applications (Sil-
ver et al., 2016; Hester et al., 2017). A key feature
of this framework is that a single model is trained
using both SL and RL with different training ob-
jectives but without modifying the architecture.

By combining the above, we demonstrate a
practical approach to learning deep RL-based dia-
logue policies for new domains which can achieve
competitive performance without significant detri-
mental impact on users.

2 Related Work

RL-based approaches to dialogue management
have been actively studied for some time (Levin
et al., 1998; Lemon et al., 2006; Gasi¢ and Young,
2014). Initially, systems suffered from slow train-
ing, but recent advances in data efficient meth-
ods such as Gaussian Processes (GP) have enabled
systems to be trained from scratch in on-line inter-
action with real users (Gasic et al., 2011). GP pro-
vides an estimate of the uncertainty in the underly-
ing function and a built-in noise model. This helps
to achieve highly sample-efficient exploration and
robustness to recognition/understanding errors.

However, since the computation in GP scales
with the number of points memorised, sparse ap-
proximation methods such as the kernel span al-
gorithm (Engel, 2005) must be used and this limits
the ability to scale to very large training sets. It is
therefore questionable as to whether GP can scale
to support commercial wide-domain SDS. Never-
theless, GP provides a good benchmark and hence
it is included in the evaluation below.

In addition to increasing the sample-efficiency
of the learning algorithms, the use of reward shap-
ing has also been investigated in (El Asri et al.,
2014; Su et al., 2015b) to enrich the reward func-
tion in order to speed up dialogue policy learning.

Combining SL with RL for dialogue modelling
is not new. Henderson et al. (2008) proposed a hy-
brid SL/RL model that, in order to ensure tractabil-
ity in policy optimisation, performed exploration
only on the states in a dialogue corpus. The policy
was then defined manually on parts of the space
which were not found in the corpus. A method
of initialising RL. models using logistic regression
was also described (Rieser and Lemon, 2006). For
GPRL in dialogue, rather than using a linear kernel



that imposes heuristic data pair correlation, a pre-
optimised Gaussian kernel learned using SL from
a dialogue corpus has been proposed (Chen et al.,
2015). The resulting kernel was more accurate on
data correlation and achieved better performance,
however, the SL corpus did not help to initialise
a better policy. Better initialisation of GPRL has
been studied in the context of domain adaptation
by specifying a GP prior or re-using an existing
model which is then pre-trained for the new do-
main (Gasi¢ et al., 2013).

A number of authors have proposed training
a standard neural-network policy in two stages
(Fatemi et al., 2016; Su et al., 2016a; Williams
et al., 2017). Asadi and Williams (2016) also ex-
plored off-policy RL methods for dialogue policy
learning. All these studies were conducted in sim-
ulation, using error-free text-based input. A sim-
ilar approach was also used in a conversational
model (Li et al., 2016). In contrast, our work intro-
duces two new sample-efficient actor-critic meth-
ods, combines both two-stage policy learning and
off-policy RL, and testing at differing noise levels.

3 Neural Dialogue Management

The proposed framework addresses the dialogue
management component in a modular SDS. The
input to the model is the belief state b that encodes
a distribution over the possible user intents along
with the dialogue history. The model’s role is to
select the system action a at every turn that will
lead to the maximum possible cumulative reward
and a successful dialogue outcome. The system
action is mapped into a system reply at the seman-
tic level, and this is subsequently passed to the nat-
ural language generator for output to the user.

The semantic reply consists of three parts: the
intent of the response, (e.g. inform), which slots
to talk about (e.g. area), and a value for each slot
(e.g. east). To ensure tractability, the policy selects
a from a restricted action set which identifies the
intent and sometimes a slot, any remaining infor-
mation required to complete the reply is extracted
using heuristics from the tracked belief state.

3.1 Training with Reinforcement Learning

Dialogue policy optimisation can be seen as the
task of learning to select the sequence of responses
(actions) at each turn which maximises the long-
term objective defined by the reward function.
This can be solved by applying either value-based
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Figure 1: A2C, TRACER and eNACER architec-
tures using feed-forward neural networks.

or policy-based methods. In both cases, the goal is
to find an optimal policy 7* that maximises the
discounted total return R = Zz:ol yire(by, ar)
over a dialogue with T turns where 7;(by, az) is
the reward when taking action a; in dialogue be-
lief state b, at turn ¢ and ~y is the discount factor.

The main difference between the two categories
is that policy-based methods have stronger con-
vergence characteristics than value-based meth-
ods. The latter often diverge when using function
approximation since they optimise in value space
and a slight change in value estimate can lead to a
large change in policy space (Sutton et al., 2000).

Policy-based methods suffer from low sample-
efficiency, high variance and often converge to lo-
cal optima since they typically learn via Monte
Carlo estimation (Williams, 1992; Schulman et al.,
2016). However, they are preferred due to their su-
perior convergence properties. Hence in this paper
we focus on policy-based methods but also include
a value-based method as a baseline.

3.1.1 Advantage Actor-Critic (A2C)

In a policy-based method, the training objective
is to find a parametrised policy my(a|b) that max-
imises the expected reward J(6) over all possible
dialogue trajectories given a starting state.

Following the Policy Gradient Theorem (Sutton
et al., 2000), the gradient of the parameters given
the objective function has the form:

VpJ(0) = E [Vglog mo(alb)Q™ (b, a)]. (1)

Since this form of gradient has a potentially high
variance, a baseline function is typically intro-
duced to reduce the variance whilst not chang-
ing the estimated gradient (Williams, 1992; Sut-
ton and Barto, 1999). A natural candidate for this



baseline is the value function V' (b). Equation 2
then becomes:

VoJ(0) = E[Vglogmg(alb)Ay(b,a)], (2)

where A, (b, a) Q(b,a) — V(b) is the ad-
vantage function. This can be viewed as a spe-
cial case of the actor-critic, where my is the ac-
tor and A, (b, a) is the critic, defined by two pa-
rameter sets 6 and w. To reduce the number of
required parameters, temporal difference (TD) er-
rors 0y, = 1t + YV (bey1) — Viw(by) can be used
to approximate the advantage function (Schulman
et al., 2016). The left part in Figure 1 shows the
architecture and parameters of the resulting A2C
policy.

3.1.2 The TRACER Algorithm

To boost the performance of A2C policy learning,
two methods are introduced:

I. Experience replay with off-policy learning
for speed-up

On-policy RL methods update the model with
the samples collected via the current policy.
Sample-efficiency can be improved by utilising
experience replay (ER) (Lin, 1992), where mini-
batches of dialogue experiences are randomly
sampled from a replay pool P to train the model.
This increases learning efficiency by re-using past
samples in multiple updates whilst ensuring sta-
bility by reducing the data correlation. Since
these past experiences were collected from differ-
ent policies compared to the current policy, the use
of ER leads to off-policy updates.

When training models with RL, e-greedy ac-
tion selection is often used to trade-off between
exploration and exploitation, whereby a random
action is chosen with probability € otherwise the
top-ranking action is selected. A policy used to
generate a training dialogues (episodes) is referred
to as a behaviour policy i, in contrast to the policy
to be optimised which is called the target policy .

The basic A2C training algorithm described in
§3.1.1 is on-policy since it is assumed that actions
are drawn from the same policy as the target to be
optimised (u = ). In off-policy learning, since
the current policy 7 is updated with the samples
generated from old behaviour policies p, an im-
portance sampling (IS) ratio is used to rescale each
sampled reward to correct for the sampling bias
at time-step t: p; = w(a¢|bt)/p(at[bty) (Meuleau
et al., 2000).
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For A2C, the off-policy gradient for the
parametrised value function V,, thus has the form:

— ~ ~ t
Aw°t = ?:_01 (Rt -V (bt))vwvw(bt)igopia 3)

where R; is the off-policy Monte-Carlo return
(Precup et al., 2001):

_ 1 T—1
Ry =ri + ’Yrt+1i131pt+i 4oy T il;fl pryi- (4)

Likewise, the updated gradient for policy my is:

T-1

Ap°f — Z ptVelog my (at|bt)5w7
t=0

(&)

where 8, = 7, + 'wa(bt+1) — f/w(bt) is the TD
error using the estimated value of Vip.

Also, as the gradient correlates strongly with the
sampled reward, reward r; and total return R are
normalised to lie in [-1,1] to stabilise training.

II. Trust region constraint for stabilisation

To ensure stability in RL, each per-step policy
change is often limited by setting a small learn-
ing rate. However, setting the rate low enough to
avoid occasional large destabilising updates is not
conducive to fast learning.

Here, we adopt a modified Trust Region Policy
Optimisation method introduced by Wang et al.
(2017). In addition to maximising the cumula-
tive reward .J(6), the optimisation is also subject
to a Kullback-Leibler (KL) divergence limit be-
tween the updated policy € and an average policy
6, to ensure safety. This average policy represents
a running average of past policies and constrains
the updated policy to not deviate far from the av-
erage 0, — af, + (1 — )0 with a weight a.

Thus, given the off-policy policy gradient A
in Equation 5, the modified policy gradient with
trust region g is calculated as follows:

00ff

1
minimize = || AG°T — g3,
g 2
subjectto VyDgy, [Wea(bt)HW@(bt)]Tg <¢,

where 7 is the policy parametrised by 6 or 6,
and £ controls the magnitude of the KL constraint.
Since the constraint is linear, a closed form solu-
tion to this quadratic programming problem can



be derived using the KKT conditions. Setting
k=V¢Dgr [W@a(bt)HT{'g(bt)L we get:
TA off
g5 = AG°T — max {I{:Hirﬂzg’ O} k. (6)
2

When this constraint is satisfied, there is no change
to the gradient with respect to #. Otherwise, the
update is scaled down along the direction of k£ and
the policy change rate is lowered. This direction is
also shown to be closely related to the natural gra-
dient (Amari, 1998; Schulman et al., 2015), which
is presented in the next section.

The above enhancements speed up and stabilise
A2C. We call it the Trust Region Actor-Critic with
Experience Replay (TRACER) algorithm.

3.1.3 The eNACER Algorithm

Vanilla gradient descent algorithms are not
guaranteed to update the model parameters in
the steepest direction due to re-parametrisation
(Amari, 1998; Martens, 2014). A widely used so-
lution to this problem is to use a compatible func-
tion approximation for the advantage function in
Equation 2: V,, A, (b, a) = Vg logmy(alb), where
the update of w is then in the same update direc-
tion as ¢ (Sutton et al., 2000). Equation 2 can then
be rewritten as:

VoJ(0) = E [Vglog mg(ab)Vglog m(alb) w]

where F'(0) is the Fisher information matrix. This
implies Ay = w = F(0)71VyJ(0) and it is
called the natural gradient. The Fisher Matrix can
be viewed as a correction term which makes the
natural gradient independent of the parametrisa-
tion of the policy and corresponds to steepest as-
cent towards the objective (Martens, 2014). Em-
pirically, the natural gradient has been found to
significantly speed up convergence.

Based on these ideas, the Natural Actor-Critic
(NACQC) algorithm was developed by Peters and
Schaal (2006). In its episodic version (eNAC), the
Fisher matrix does not need to be explicitly com-
puted. Instead, the gradient is estimated by a least
squares method given the n-th episode consisting
of a set of transition tuples {(b}, a7, r)} it
R" = [ZtT;gl Vo log mg(ai|bl; G)T] ANy +C, (7)

which can be solved analytically. C' is a constant
which is an estimate of the baseline V' (b).
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As in TRACER, eNAC can be enhanced by
using ER and off-policy learning, thus called
eNACER, whereby R"™ in Equation 7 is replaced
by the off-policy Monte-Carlo return ]:26‘ at time-
step ¢ = 0 as in Equation 4. For very large models,
the inversion of the Fisher matrix can become pro-
hibitively expensive to compute. Instead, a trun-
cated variant can be used to calculate the natural
gradient (Schulman et al., 2015).

eNACER is structured as a feed forward net-
work with the output 7 as in the right of Figure 1,
updated with natural gradient Afy¢. Note that by
using the compatible function approximation, the
value function does not need to be explicitly cal-
culated. This makes eNACER in practice a policy-
gradient method.

3.2 Learning from Demonstration Data

From the user’s perspective, performing RL from
scratch will invariably result in unacceptable per-
formance in the early learning stages. This prob-
lem can be mitigated by an off-line corpus of
demonstration data to bootstrap a policy. This
data may come from a WoZ collection or from in-
teractions between users and an existing policy. It
can be used in three ways: A: Pre-t