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Preface

Welcome to the Eleventh International Conference on Parsing Technologies, IWPT 09, in the splendid
city of Paris.

IWPT’09 continues the tradition of biennial conferences on parsing technology organized by SIGPARSE,
the Special Interest Group on Parsing of the Association for Computational Linguistics (ACL). The first
conference, in 1989, took place in Pittsburgh and Hidden Valley, Pennsylvania. Subsequently, IWPT
conferences were held in Cancun (Mexico) in 1991; Tilburg (Netherlands) and Durbuy (Belgium) in
1993; Prague and Karlovy Vary (Czech Republic) in 1995; Boston/Cambridge (Massachusetts) in 1997;
Trento (Italy) in 2000; Beijing (China) in 2001; Nancy (France) in 2003; Vancouver (Canada) in 2005;
and Prague (Czech Republic) in 2007.

Over the years the IWPT Workshops have become the major forum for researchers in natural language
parsing. They have lead to the publication of four books on parsing technologies; a fifth one about to be
published.

Where the IWPT conferences from 1989 through 2003 were standalone conferences, the last two IWPTs
were organised as co-satellite event of large conferences: IWPT 2005 was co-loated with the HLT-
EMNLP conference in Vancouver, and IWPT 2007 with the main ACL conference in Prague. This
worked well from a logistic point of view, thanks to the support from ACL, but it was felt to lead to
somewhat less interesting events than in the past, sitting in the shadow of the larger conference and
competing with other satellite events. It was therefore decided to return to the standalone format in 2009,
with INRIA Rocquencourt and the University of Paris 7 volunteering to take charge of the organisation.
We would like to thank Eric de la Clergerie, Laurence Danlos, Benoit Sagot and the support staff at
INRIA and University of Paris 7 for their efforts to realize IWPT (9.

IWPT’009 is fortunate to have three very distinguished invited speakers: John Carroll from the university
of Sussex, Mark Johnson from Brown University, and Joakim Nivre from the University of Uppsala.

I would like to thank all the programme committee members for their careful and timely work, especially
those that took up extra rewiewing obligations at very short notice and those who participated in
discussions on diverging reviews. Special thanks go to Eric de la Clergerie, the programme chair,
for organising the reviewing, designing the workshop programme and producing the proceedings. The
scientific programme includes 14 accepted full papers and 27 accepted short papers (the latter being an
all-time high for IWPT), covering virtually all currently hot topics in parsing technology. Together with
the three invited talks by top experts in parsing, these papers provide a fascinating picture of the state of
the art in parsing natural language, that I hope you will enjoy and will find inspiring.

Harry Bunt
IWPT’09 General Chair

il






Organizers

General Chair:

Harry Bunt (Tilburg University, Netherlands)

Programme Chair:

Eric Villemonte de la Clergerie (INRIA, France)

Logistic Arrangements Chair:

Laurence Danlos (University Paris Diderot, France)

Programme Committee:

Philippe Blache (CNRS/Provence University, Aix-en-Provence, France)
Harry Bunt (TiCC, Tilburg University, Netherlands)

David Chiang(USC/ISI, Marina del Rey, USA)

John Carroll (University of Sussex, Brighton, UK)

Stephen Clark (University of Cambridge, UK)

Eric Villemonte de la Clergerie (INRIA, Rocquencourt, France) (chair)
Jason Eisner (Johns Hopkins University, Baltimore, USA)

James Henderson (University of Edinburgh,UK)

Julia Hockenmaier (University of Pennsylvania, Philadelphia, USA)
Aravind Joshi (University of Pennsylvania, Philadelphia, USA)
Ronald Kaplan (Xerox Palo Alto Research Center, USA)

Martin Kay (Xerox Palo Alto Research Center, USA)

Sadao Kurohashi (University of Kyoto, Japan)

Alon Lavie (Carnegie-Mellon University, Pittsburgh, USA)

Rob Malouf (San Diego State University, USA)

Yuji Matsumoto (Nara Institute of Science and Technology, Japan)
Paola Merlo (University of Geneva, Switzerland)

Bob Moore (Microsoft, Redmond, USA)

Mark-Jan Nederhof (University of St. Andrews, Scotland)

Joakim Nivre (University of Uppsala, Sweden)

Gertjan van Noord (University of Groningen, Netherlands)

Stephan Oepen (University of Oslo, Norway)

Stefan Riezler (Xerox Palo Alto Research Center, USA)

Giorgio Satta (University of Padua, Italy)

Kenji Sagae (Institute for Creative Technologies, Marina del Rey, USA)
Khalil Sima’an (University of Amsterdam, Netherlands)

Hozumi Tanaka (Chukyo University, Japan)

K. Vijay-Shanker (University of Delaware, USA)

Eric Wehrli (LATL, University of Geneva, Switzerland)

David Weir (University of Sussex, Brighton, UK)

Shuly Wintner (University of Haifa, Israel)

Dekai Wu (Hong Kong University of Science and Technology, China)



Additional Reviewers:

Tejaswini Deoskar (ILLC, University of Amsterdam, Netherlands)
Sylvain Schmitz (ENS Cachan, France)

Invited Speakers:

John Carroll (University of Sussex, Brighton, UK)
Mark Johnson (Brown University, USA)
Joakim Nivre (University of Uppsala, Sweden)

Panel Chair:
Josef van Genabith (DCU, Dublin, Ireland)

vi



Table of Contents

Parsing Algorithms based on Tree Automata
Andreas Maletti and GIOrgio Satta. . ...ttt e 1

Weighted parsing of trees
Mark-Jan Nederhof . . .. ... e 13

Automatic Adaptation of Annotation Standards for Dependency Parsing ? Using Projected Treebank as
Source Corpus
Wenbin Jiang and Qun Liu. ... ... .o 25

Learning Stochastic Bracketing Inversion Transduction Grammars with a Cubic Time Biparsing Algo-
rithm
Markus Saers, Joakim Nivre and Dekai Wu. ... .. i i 29

Empirical lower bounds on translation unit error rate for the full class of inversion transduction gram-
mars

Anders Sggaard and Dekai Wu . .. ... 33

Predictive Text Entry using Syntax and Semantics
Sebastian Ganslandt, Jakob Jorwall and Pierre Nugues.................coooiiiiii ... 37

Parsing Formal Languages using Natural Language Parsing Techniques
Jens Nilsson, Welf Lowe, Johan Hall and Joakim Nivre............. ... ... ... 49

An Incremental Earley Parser for Simple Range Concatenation Grammar
Laura Kallmeyer and Wolfgang Maier ............ouuniir i, 61

Deductive Parsing in Interaction Grammars
JOseph e ROUX . ..o e e e 65

Synchronous Rewriting in Treebanks
Laura Kallmeyer, Wolfgang Maier and Giorgio Satta...............oiiiiiieiniiieennnnn. 69

An Improved Oracle for Dependency Parsing with Online Reordering
Joakim Nivre, Marco Kuhlmann and Johan Hall ............ ... . ... ... ... .. ... ... . ... 73

Two stage constraint based hybrid approach to free word order language dependency parsing
Akshar Bharati, Samar Husain, Dipti Misra and Rajeev Sangal ...................... ... ..., 77

Analysis of Discourse Structure with Syntactic Dependencies and Data-Driven Shift-Reduce Parsing
Kenji Sagae . .. ... 81

Evaluating Contribution of Deep Syntactic Information to Shallow Semantic Analysis
Sumire Uematsu and Jun’ichi TSUjii .. ...ttt e 85

Weight Pushing and Binarization for Fixed-Grammar Parsing
Matt Post and Daniel Gildea ... ... e &9

Co-Parsing with Competitive Models
Lidia Khmylko, Kilian A. Foth and Wolfgang Menzel ............... ... ... ..o it 99

vii



Capturing Consistency between Intra-clause and Inter-clause Relations in Knowledge-rich Dependency
and Case Structure Analysis
Daisuke Kawahara and Sadao Kurohashi.......... ... . . i i 108

Constructing parse forests that include exactly the n-best PCFG trees
Pierre Boullier, Alexis Nasr and Benolt Sagot .......... ... i, 117

Hebrew Dependency Parsing: Initial Results
Yoav Goldberg and Michael Elhadad ......... ... ... . i 129

Scalable Discriminative Parsing for German
Yannick Versley and Ines Rehbein...... ... .o 134

Improving generative statistical parsing with semi-supervised word clustering
Marie Candito and Benoft Crabb€ . ....... ... ... i e n 138

Application of feature propagation to dependency parsing
Kepa Bengoetxea and Koldo Gojenola . .........c.ouiieinniiiii i 142

Guessing the Grammatical Function of a Non-Root F-Structure in LFG
Anton Bryl, Josef Van Genabith and Yvette Graham ............... ..., 146

Cross parser evaluation : a French Treebanks study
Djamé Seddah, Marie Candito and Benoit Crabbé.......... ... ... ... ..., 150

Transition-Based Parsing of the Chinese Treebank using a Global Discriminative Model
Yue Zhang and Stephen Clark. . ... . 162

Grammar Error Detection with Best Approximated Parse
Jean-Philippe Prost . . ..o e 172

The effect of correcting grammatical errors on parse probabilities
Joachim Wagner and Jennifer Foster. ...... ... .. i 176

Effective Analysis of Causes and Inter-dependencies of Parsing Errors
Tadayoshi Hara, Yusuke Miyao and Jun’ichi TSujii............coieiiiiiiiienniin.... 180

Clustering Words by Syntactic Similarity improves Dependency Parsing of Predicate-argument Struc-
tures
Kenji Sagae and Andrew S. GOrdon .. ...t e 192

The chunk as the period of the functions length and frequency of words on the syntagmatic axis
JacqUes VEIENE . . . ... 202

Using a maximum entropy-based tagger to improve a very fast vine parser
Anders Sggaard and Jonas Kuhn .. ... .. e 206

HPSG Supertagging: A Sequence Labeling View
Yao-zhong Zhang, Takuya Matsuzaki and Jun’ichi Tsujii ............. ...t 210

Smoothing fine-grained PCFG lexicons
Tejaswini Deoskar, Mats Rooth and Khalil Sima’an................. ... ..o ot 214

Wide-coverage parsing of speech transcripts
LS (0TS (BT 7<) 218

viii



Interactive Predictive Parsing

Ricardo Sdnchez-Sé4ez, Joan-Andreu Sdnchez and José-Miguel Benedi

Using Treebanking Discriminants as Parse Disambiguation Features

Md. Faisal Mahbub Chowdhury, Yi Zhang and Valia Kordoni .................

Heuristic search in a cognitive model of human parsing

John Hale . ... .o

Dependency Parsing with Energy-based Reinforcement Learning

Lidan Zhang and Kwok Ping Chan........... ... .. ... ..o it

A generative re-ranking model for dependency parsing

Federico Sangati, Willem Zuidemaand Rens Bod............................

Dependency Constraints for Lexical Disambiguation

Guillaume Bonfante, Bruno Guillaume and Mathieu Morey ...................

Parsing Directed Acyclic Graphs with Range Concatenation Grammars

Pierre Boullier and Benoit Sagot ....... ... ..o

iX






Conference Program

Wednesday, October 7, 2009

9:00-9:15

9:15-10:15

Opening Remarks

Invited Talk by John Carroll

Coffee Break and Poster Display

10:45-11:15

11:15-11:45

11:45-12:20

Lunch

14:00-14:30

14:30-15:00

15:00-16:00

Parsing Algorithms based on Tree Automata
Andreas Maletti and Giorgio Satta

Weighted parsing of trees
Mark-Jan Nederhof

Short Paper Session I

Automatic Adaptation of Annotation Standards for Dependency Parsing ? Using
Projected Treebank as Source Corpus

Wenbin Jiang and Qun Liu

Learning Stochastic Bracketing Inversion Transduction Grammars with a Cubic
Time Biparsing Algorithm

Markus Saers, Joakim Nivre and Dekai Wu

Empirical lower bounds on translation unit error rate for the full class of inversion

transduction grammars
Anders Sggaard and Dekai Wu

Predictive Text Entry using Syntax and Semantics
Sebastian Ganslandt, Jakob Jorwall and Pierre Nugues

Parsing Formal Languages using Natural Language Parsing Techniques
Jens Nilsson, Welf Lowe, Johan Hall and Joakim Nivre

Short Paper Session 11

An Incremental Earley Parser for Simple Range Concatenation Grammar
Laura Kallmeyer and Wolfgang Maier

Deductive Parsing in Interaction Grammars
Joseph Le Roux

Synchronous Rewriting in Treebanks
Laura Kallmeyer, Wolfgang Maier and Giorgio Satta

X1



Wednesday, October 7, 2009 (continued)

An Improved Oracle for Dependency Parsing with Online Reordering
Joakim Nivre, Marco Kuhlmann and Johan Hall

Two stage constraint based hybrid approach to free word order language
dependency parsing
Akshar Bharati, Samar Husain, Dipti Misra and Rajeev Sangal

Coffee Break and Poster Display

16:35-17:00

17:00-17:30

17:30-18:00

Short Paper Session 111

Analysis of Discourse Structure with Syntactic Dependencies and Data-Driven Shift-
Reduce Parsing
Kenji Sagae

Evaluating Contribution of Deep Syntactic Information to Shallow Semantic Analysis
Sumire Uematsu and Jun’ichi Tsujii

Weight Pushing and Binarization for Fixed-Grammar Parsing
Matt Post and Daniel Gildea

Co-Parsing with Competitive Models
Lidia Khmylko, Kilian A. Foth and Wolfgang Menzel

Thursday, October 8, 2009

9:00-10:00

Invited Talk by Mark Johnson

Coffee Break and Poster Display

10:30-11:00

11:00-11:30

11:30-12:30

Capturing Consistency between Intra-clause and Inter-clause Relations in Knowledge-
rich Dependency and Case Structure Analysis
Daisuke Kawahara and Sadao Kurohashi

Constructing parse forests that include exactly the n-best PCFG trees
Pierre Boullier, Alexis Nasr and Benoit Sagot

Short Paper Session IV

Hebrew Dependency Parsing: Initial Results
Yoav Goldberg and Michael Elhadad

Scalable Discriminative Parsing for German
Yannick Versley and Ines Rehbein

Improving generative statistical parsing with semi-supervised word clustering
Marie Candito and Benoit Crabbé

Xii



Thursday, October 8, 2009 (continued)

Lunch

14:00-14:30

14:30-15:00

15:00-15:25

Application of feature propagation to dependency parsing
Kepa Bengoetxea and Koldo Gojenola

Guessing the Grammatical Function of a Non-Root F-Structure in LFG
Anton Bryl, Josef Van Genabith and Yvette Graham

Cross parser evaluation : a French Treebanks study
Djamé Seddah, Marie Candito and Benoit Crabbé

Transition-Based Parsing of the Chinese Treebank using a Global Discriminative Model
Yue Zhang and Stephen Clark

Short Paper Session V

Grammar Error Detection with Best Approximated Parse
Jean-Philippe Prost

The effect of correcting grammatical errors on parse probabilities
Joachim Wagner and Jennifer Foster

Coffee Break and Poster Display

16:00-18:15 Panel: Statistical Parsing for Morphologically-rich Languages
Friday, October 9, 2009
9:00-10:00 Invited Talk by Joakim Nivre
10:00-10:30  Effective Analysis of Causes and Inter-dependencies of Parsing Errors
Tadayoshi Hara, Yusuke Miyao and Jun’ichi Tsujii
10:30-11:00  Clustering Words by Syntactic Similarity improves Dependency Parsing of Predicate-

argument Structures
Kenji Sagae and Andrew S. Gordon

Coffee Break and Poster Display

11:30-12:30

Short Paper Session VI
The chunk as the period of the functions length and frequency of words on the syntagmatic
axis

Jacques Vergne

Using a maximum entropy-based tagger to improve a very fast vine parser
Anders Sggaard and Jonas Kuhn

xiii



Friday, October 9, 2009 (continued)

Lunch

13:45-14:15

14:15-15:15

HPSG Supertagging: A Sequence Labeling View
Yao-zhong Zhang, Takuya Matsuzaki and Jun’ichi Tsujii

Smoothing fine-grained PCFG lexicons
Tejaswini Deoskar, Mats Rooth and Khalil Sima’an

Wide-coverage parsing of speech transcripts
Jeroen Geertzen

ACL/SIGParse Business Meeting
Short Paper Session VII

Interactive Predictive Parsing
Ricardo Sdnchez-Sé4ez, Joan-Andreu Sdnchez and José-Miguel Bened{

Using Treebanking Discriminants as Parse Disambiguation Features
Md. Faisal Mahbub Chowdhury, Yi Zhang and Valia Kordoni

Heuristic search in a cognitive model of human parsing
John Hale

Dependency Parsing with Energy-based Reinforcement Learning
Lidan Zhang and Kwok Ping Chan

A generative re-ranking model for dependency parsing
Federico Sangati, Willem Zuidema and Rens Bod

Coffee Break and Poster Display

15:45-16:15

16:15-16:45

16:45-17:00

Dependency Constraints for Lexical Disambiguation
Guillaume Bonfante, Bruno Guillaume and Mathieu Morey

Parsing Directed Acyclic Graphs with Range Concatenation Grammars
Pierre Boullier and Benoit Sagot

Closing Remarks

X1V



Invited Talks

Moving Parsing into the Real World: Noisy Text, Grammatical
Representations and Applications

John Carroll
University of Sussex, Brighton, UK

J.A.Carroll@sussex.ac.uk

Much recent research in natural language parsing
takes as input carefully crafted, edited text, of-
ten from newspapers. However, many real-world
applications involve processing text which is not
written carefully by a native speaker, is produced
for an eventual audience of only one, and is in
essence ephemeral. In this talk I will present a
number of research and commercial applications

of this type which I and collaborators are develop-
ing, in which we parse text as diverse as mobile
phone text messages, non-native language learner
essays, internet chat, and primary care medical
notes. I will discuss the problems these types of
text pose for a parser, and outline how we integrate
information from parsing into applications.

Learning Rules with Adaptor Grammars

Mark Johnson
Brown University, USA

Mark_Johnson@Brown.edu

Nonparametric Bayesian methods are interesting
because they may provide a way of learning the
appropriate units of generalization (i.e., the "rules”
of a grammar) as well as the generalization’s
probability or weight (i.e., the rule’s probability).
Adaptor Grammars are a framework for stating
a variety of hierarchical nonparametric Bayesian
models, where the units of generalization can be
viewed as kinds of PCFG rules. This talk de-

XV

scribes the mathematical and computational prop-
erties of Adaptor Grammars and linguistic appli-
cations such as word segmentation, syllabification
and named entity recognition. The later part of
the talk reviews MCMC inference and describes
the MCMC algorithms we use to sample adaptor
grammars.

Joint work with Sharon Goldwater and Tom Grif-
fiths.



Discontinuous Dependency Parsing

Joakim Nivre
University of Uppsala, Sweden

joakim.nivre@lingfil.uu.se

There is a strong tendency in natural language syn-
tax such that elements that have a direct syntac-
tic relation are also adjacent in the surface real-
ization of a sentence. Nevertheless, notable ex-
ceptions to this generalization exist in practically
all languages and are especially common in lan-
guages with free or flexible word order. Syntactic
theorists, on the one hand, have developed a va-
riety of representational devices for dealing with
these exceptions, including phonetically null ele-
ments, gap threading, and non-projective depen-

XVi

dency trees. Syntactic parsers, on the other hand,
use these devices very restrictively since they add
to the complexity of an already daunting task. This
is especially true of data-driven parsers, where dis-
continuity is often simply ignored. In this talk, I
will review techniques for dealing with discontin-
uous structures in the framework of dependency
parsing, focusing on parsing algorithms that build
structures from non-adjacent elements and in par-
ticular transition-based algorithms that use online
reordering.



Parsing Algorithms based on Tree Automata

Andreas Maletti
Departament de Filologies Romaniques

Universitat Rovira i Virgili, Tarragona, Spain

andreas.maletti@urv.cat

Abstract

We investigate several algorithms related
to the parsing problem for weighted au-
tomata, under the assumption that the in-
put is a string rather than a tree. This
assumption is motivated by several natu-
ral language processing applications. We
provide algorithms for the computation of
parse-forests, best tree probability, inside
probability (called partition function), and
prefix probability. Our algorithms are ob-
tained by extending to weighted tree au-
tomata the Bar-Hillel technique, as defined
for context-free grammars.

1 Introduction

Tree automata are finite-state devices that recog-
nize tree languages, that is, sets of trees. There
is a growing interest nowadays in the natural
language parsing community, and especially in
the area of syntax-based machine translation, for
probabilistic tree automata (PTA) viewed as suit-
able representations of grammar models. In fact,
probabilistic tree automata are generatively more
powerful than probabilistic context-free gram-
mars (PCFGs), when we consider the latter as de-
vices that generate tree languages. This difference
can be intuitively understood if we consider that a
computation by a PTA uses hidden states, drawn
from a finite set, that can be used to transfer infor-
mation within the tree structure being recognized.

As an example, in written English we can em-
pirically observe different distributions in the ex-
pansion of so-called noun phrase (NP) nodes, in
the contexts of subject and direct-object positions,
respectively. This can be easily captured using
some states of a PTA that keep a record of the dif-
ferent contexts. In contrast, PCFGs are unable to
model these effects, because NP node expansion
should be independent of the context in the deriva-
tion. This problem for PCFGs is usually solved by

1

Giorgio Satta
Department of Information Engineering
University of Padua, Italy
satta@dei.unipd. it

resorting to so-called parental annotations (John-
son, 1998), but this, of course, results in a different
tree language, since these annotations will appear
in the derived tree.

Most of the theoretical work on parsing and es-
timation based on PTA has assumed that the in-
put is a tree (Graehl et al., 2008), in accordance
with the very definition of these devices. How-
ever, both in parsing as well as in machine transla-
tion, the input is most often represented as a string
rather than a tree. When the input is a string, some
trick is applied to map the problem back to the
case of an input tree. As an example in the con-
text of machine translation, assume a probabilistic
tree transducer 7" as a translation model, and an
input string w to be translated. One can then inter-
mediately construct a tree automaton M,, that rec-
ognizes the set of all possible trees that have w as
yield, with internal nodes from the input alphabet
of T'. This automaton M, is further transformed
into a tree transducer implementing a partial iden-
tity translation, and such a transducer is composed
with T' (relation composition). This is usually
called the ‘cascaded’ approach. Such an approach
can be easily applied also to parsing problems.

In contrast with the cascaded approach above,
which may be rather inefficient, in this paper we
investigate a more direct technique for parsing
strings based on weighted and probabilistic tree
automata. We do this by extending to weighted
tree automata the well-known Bar-Hillel construc-
tion defined for context-free grammars (Bar-Hillel
et al., 1964) and for weighted context-free gram-
mars (Nederhof and Satta, 2003). This provides
an abstract framework under which several pars-
ing algorithms can be directly derived, based on
weighted tree automata. We discuss several appli-
cations of our results, including algorithms for the
computation of parse-forests, best tree probability,
inside probability (called partition function), and
prefix probability.

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 1-12,
Paris, October 2009. (©)2009 Association for Computational Linguistics



2 Preliminary definitions

Let .S be a nonempty set and - be an associative
binary operation on S. If S contains an element 1
suchthat 1 - s = s = s- 1 forevery s € S, then
(S,-,1) is a monoid. A monoid (.5, -,1) is com-
mutative if the equation s; - s = s - s1 holds
for every s1,s9 € S. A commutative semiring
(S,+,-,0,1) is a nonempty set S on which a bi-
nary addition 4+ and a binary multiplication - have
been defined such that the following conditions are
satisfied:

o (S,+,0)

monoids,

e - distributes over + from both sides, and

e s-0=0=0-sforeverys € 5.

A weighted string automaton, abbreviated WSA,
(Schiitzenberger, 1961; Eilenberg, 1974) is a sys-
tem M = (Q,%,S,1,v, F) where

e () is a finite alphabet of states,

e Y is a finite alphabet of input symbols,

o §=(S5,+,-,0,1) is a semiring,

e [: () — S assigns initial weights,

e : () XX X — S assigns a weight to each

transition, and

o [': () — S assigns final weights.

We now proceed with the semantics of M. Let
w € ¥* be an input string of length n. For each
integer ¢ with 1 < i < n, we write w(i) to denote
the i-th character of w. The set Pos(w) of posi-
tions of wis {i | 0 <i < n}. Arunof M onw
is a mapping 7: Pos(w) — Q. We denote the set
of all such runs by Runys(w). The weight of a
run 7 € Runyy (w) is

and (S,-,1) are commutative

n

wty (r) = [[v(r(i — 1), w(i),r(i) .

=1

We assume the right-hand side of the above equa-
tion evaluates to 1 in case n = 0. The WSA M
recognizes the mapping M : ¥* — S, which is
defined for every w € ¥* of length n by!

Mw)= )

réRunjs (w)

1(r(0)) - wtar(r) - F(r(n)) -

In order to define weighted tree automata (Bers-
tel and Reutenauer, 1982; Esik and Kuich, 2003;
Borchardt, 2005), we need to introduce some addi-
tional notation. Let X be a ranked alphabet, that

"'We overload the symbol M to denote both an automaton

and its recognized mapping. However, the intended meaning
will always be clear from the context.

is, an alphabet whose symbols have an associated
arity. We write 3 to denote the set of all k-ary
symbols in . We use a special symbol e € 3,
to syntactically represent the empty string €. The
set of Y-trees, denoted by T¥;, is the smallest set
satisfying both of the following conditions

e for every o € Yy, the single node labeled «,
written «(), is a tree of T,

e for every o € ¥ with £ > 1 and for every
t1,...,t; € Tx, the tree with a root node la-
beled o and trees t1,...,t; as its k children,
written o (1, . . ., t), belongs to Tx.

As a convention, throughout this paper we assume
that o(¢1,...,t;) denotes o() if & = 0. The size
of the tree ¢ € T¥, written ||, is defined as the
number of occurrences of symbols from X in ¢.

Lett = o(t1,...,t;). The yield of ¢ is recur-
sively defined by
o ifo e\ {e}
yd(t) =< ¢ ifo=e
yd(t1)---yd(ty) otherwise.

The set of positions of ¢, denoted by Pos(¢), is
recursively defined by

POS(U(tl, ‘e ,tk)) =
{e}U{iw |1 <i<k,wePos(t;)} .

Note that |t| = |Pos(t)| and, according to our con-
vention, when k£ = 0 the above definition provides
Pos(c()) = {e}. We denote the symbol of ¢ at
position w by t(w) and its rank by rk;(w).

A weighted tree automaton (WTA) is a system
M= (Q,%,S, u, F) where

e () is a finite alphabet of states,

e ) is a finite ranked alphabet of input symbols,

e S=(S,+,-,0,1) is a semiring,

e i is an indexed family (ux)gen of mappings

[ 2 X — SQXQk, and

e F': () — S assigns final weights.
In the above definition, Q* is the set of all strings
over @ having length k, with Q¥ = {e}. Fur-
ther note that S@*@" is the set of all matrices
with elements in .S, row index set (), and column
index set Q*. Correspondingly, we will use the
common matrix notation and write instances of u
in the form fx(0)g9,q1--q,- Finally, we assume
q--qr=cifk=0.

We define the semantics also in terms of runs.
Lett € Tx. A run of M on ¢ is a mapping
r: Pos(t) — Q. We denote the set of all such runs



by Runy,(t). The weight of a run » € Runp, ()
is

whar(r) = H Mk(t(w))r(w),r(wl)---r(wk) .
wePos(t)
rke¢ (w)=k

Note that, according to our convention, the string
r(wl)---r(wk) denotes ¢ when k& = 0. The
WTA M recognizes the mapping M : Ty, — S,
which is defined by

Mit)= Y

TERUHIW (t)

wiar(r) - F(r(e))

for every t € Ty. We say that ¢ is recognized
by M if M(t) # 0.

In our complexity analyses, we use the follow-
ing measures. The size of a transition (p, «, ¢) in
(the domain of v in) a WSA is |pag| = 3. The size
of a transition in a WTA, viewed as an instance
(0,90,q1 - - - q) of some mapping iy, is defined
as |oqo - - - qx|, that is, the rank of the input symbol
occurring in the transition plus two. Finally, the
size |M| of an automaton M (WSA or WTA) is
defined as the sum of the sizes of its nonzero tran-
sitions. Note that this does not take into account
the size of the representation of the weights.

3 Binarization

We introduce in this section a specific transfor-
mation of WTA, called binarization, that reduces
the transitions of the automaton to some normal
form in which no more than three states are in-
volved. This transformation maps the set of rec-
ognized trees into a special binary form, in such a
way that the yields of corresponding trees and their
weights are both preserved. We use this transfor-
mation in the next section in order to guarantee
the computational efficiency of the parsing algo-
rithm we develop. The standard ‘first-child, next-
sibling’ binary encoding for trees (Knuth, 1997)
would eventually result in a transformed WTA of
quadratic size. To obtain instead a linear size
transformation, we introduce a slightly modified
encoding (Hogberg et al., 2009, Section 4), which
is inspired by (Carme et al., 2004) and the classical
currying operation.

Let ¥ be a ranked alphabet and assume a
fresh symbol @ ¢ ¥ (corresponding to the ba-
sic list concatenation operator). Moreover, let
A = Ay UAj U Ap be the ranked alphabet such
that Ay = {@}, A= Uk>1 Yk, and Ag = Y. In

@

/\

o )
VRN |
Y ) a @
/N /\
aﬁ/o\a /\
3 a d
/@

B\a

Figure 1: Input tree ¢ and encoded tree enc(t).

words, all the original non-nullary symbols from
3. are now unary, @ is binary, and the original
nullary symbols from X have their rank preserved.
We encode each tree of T as a tree of T'a as fol-
lows:

e enc(a) = a() forevery a € Xy,

e enc(y(t)) = y(enc(t)) for every v € ¥; and

t € Ts,, and

o fork>2,0¢€ X, andty,...,tp €Ty
enc(o(t1,...,tg)) =
o(@Q(enc(t1),...Q(enc(tg—1),enc(tx)) -+ )).

An example of the above encoding is illustrated
in Figure 1. Note that |enc(t)| € O(]t|) for every
t € Tx,. Furthermore, ¢ can be easily reconstructed
from enc(¢) in linear time.

Definition 1 Let M = (Q, X, S, i1, F') be a WTA.
The encoded WTA enc(M) is (P, A,S, 1/, F')
where

P={lgllqeQ}U
U {[w] ’:U’k(o')q,uw 7é O,u € Q*a w e Q+}7

F'([q]) = F(q) for every ¢ € Q, and the transi-
tions are constructed as follows:
() po(a)ig,e = po(a)qe forevery a € ¥,

(i) 11(0)g ) = Hk(0)guw for every o € Xy,
k>1,ge Q,andw € Qk,and

(i) 15(Q)[qu],[g]w] = 1 for every [qw] € P with
|lw| > 1and q € Q.

All remaining entries in F” and y' are 0. 0

Notice that each transition of enc(M ) involves no
more than three states from P. Furthermore, we
have |enc(M)| € O(|M]). The following result is
rather intuitive (Hogberg et al., 2009, Lemma 4.2);
its proof is therefore omitted.



Theorem 1 Let M = (Q, %, S, u, F) be a WTA,
and let M' = enc(M). Then M (t) = M'(enc(t))
foreveryt € Tx. O

4 Bar-Hillel construction

The so-called Bar-Hillel construction was pro-
posed in (Bar-Hillel et al., 1964) to show that
the intersection of a context-free language and
a regular language is still a context-free lan-
guage. The proof of the result consisted in an
effective construction of a context-free grammar
Prod(G, N) from a context-free grammar G and
a finite automaton N, such that Prod(G, N) gen-
erates the intersection of the languages generated
by G and N.

It was later recognized that the Bar-Hillel con-
struction constitutes one of the foundations of the
theory of tabular parsing based on context-free
grammars. More precisely, by taking the finite
automaton N to be of some special kind, accept-
ing only a single string, the Bar-Hillel construction
provides a framework under which several well-
known tabular parsing algorithms can easily be de-
rived, that were proposed much later in the litera-
ture.

In this section we extend the Bar-Hillel con-
struction to WTA, with a similar purpose of es-
tablishing an abstract framework under which one
could easily derive parsing algorithms based on
these devices. In order to guarantee computational
efficiency, we avoid here stating the Bar-Hillel
construction for WTA with alphabets of arbitrary
rank. The next result therefore refers to WTA with
alphabet symbols of rank at most 2. These may,
but need not, be automata obtained through the bi-
nary encoding discussed in Section 3.

Definition 2 Let M = (Q, %, S, u, F') be a WTA
such that the maximum rank of a symbol in > is 2,
and let N = (P, %o\ {e},S,I,v,G) be a WSA
over the same semiring. We construct the WTA

Prod(M,N) = (P x Q x P,X, S, i, F")

as follows:
(i) For every o € X9, states pg, p1, p2 € P, and
states qo, q1, g2 € Q let
/ J—
1459 ) (po,q0,p2),(po,a1.p1) (p1,a2.02) = H2(0)q0.q142 -
(i1) For every symbol v € 31, states pg,p1 € P,
and states qg, q1 € @ let

'ull(7)(1007110,171)7(10071117171) =11 (Vgo.qr -

Y
Po P1
Po/\P1
l/(pol?lvpl) =
// \i // \1
Po—a—p1 Po—e—DPo

Figure 2: Information transport in the first and
third components of the states in our Bar-Hillel
construction.

(iii) For every symbol a € Y, states pg,p1 € P,
and q € Q let

“6(0‘)(170,%)1),6 = po()ge - s

where

. v(po,a,p1) ifa#e
1 ifa =eandpy =p .

(iv) F'(po,q,p1) = I(po)-F(q) - G(p1) for every
po,p1 € Pand g € Q.
All remaining entries in ' are 0. O

Theorem 2 Let M and N be as in Definition 2,
and let M' = Prod(M, N). If S is commutative,
then M'(t) = M(t)- N(yd(t)) foreveryt € Tx.o

PROOF For a state ¢ € P x Q X P, we write ¢;
to denote its i-th component with i € {1,2,3}.
Lett € Ty and r € Runyy(¢) be a run of M’
on t. We call the run r well-formed if for every
w € Pos(t):
(i) if t(w) = e, then r(w); = r(w)s,

(i) if t(w) ¢ Xo, then:

(@) r(w)r =r(wl),

(b) r(wrki(w))s = r(w)s, and

(¢) if rky(w) = 2, then r(wl)3 = r(w2);.
Note that no conditions are placed on the second
components of the states in . We try to illustrate
the conditions in Figure 2.

A standard proof shows that wty(r) = 0 for
all runs » € Runyy(t) that are not well-formed.
We now need to map runs of M’ back into ‘cor-
responding’ runs for M and N. Let us fix some
t € Tx, and some well-formed run » € Run/ ().



We define the run 7y, (r) € Runy,(t) by letting
T (r)(w) = r(w)2,

for every w € Pos(t). Let {wi,...,w,} =
{w'] w € Pos(t), t(w') € o\ {e}}, with
wy < < wy according to the lexico-
graphic order on Pos(t). We also define the run
7y (r) € Runy(yd(t)) by letting

N (r)(i —1) = r(w;)1,
for every 1 < i < n, and
wn(r)(n) =r(w,)s .

Note that conversely every run of M on ¢ and ev-
ery run of N on yd(¢) yield a unique run of M’
ont.

Now, we claim that

WtM/(T') = WtM(TrM(T)) . WtN(TrN(T))

for every well-formed run 7 € Runpy(t). To
prove the claim, let t = o(¢1,...,t;) for some
o€ X,k <2,and ty,...,t; € Tx. Moreover,
for every 1 < i < klet r;(w) = r(iw) for every
w € Pos(t;). Note that r; € Runpy(¢;) and that
r; is well-formed for every 1 <1 < k.

For the induction base, let o € Yy; we can write

wtag (1)

= No( )r(z—:
{ H0(0)r o) - V(r(E)1,0,7(e)s) o e
O(O')r (©)2,e ifo=ce

= wtar(mar(r)) - win (T (r)) -

In the induction step (i.e., £ > 0) we have

WtM/ (r)
H M;L(t(w (w),r(wl)---r(wn)
wePos(t)
rk¢ (w)=n
= :U'k( ) (k) " HWtM’ rz

Using the fact that r is well-formed, commutativ-
ity, and the induction hypothesis, we obtain

= 111 (0) 1 (), (1)2-r (K)o

f[(th (ma0(r5)) - th(wN(ri)))

= wtar(ma(r)) - wty (7 (r))

where in the last step we have again used the fact
that r is well-formed. Using the auxiliary state-
ment wtps (1) = wta(mar(r)) - wtn (wa(r)), the
main proof now is easy.

M'(t)

re€Run ./ (t)
re€Run ./ (t)
r well-formed

A(r(e)1) - F(r(e)2) - G(r(e)s)
= (X wtu() - Fe) -

reRun s (t)

(> 160

w=yd(t)
reRuny (w)

= M(t) - N(yd(t)) n

wta (r) - F'(r(€))

WtM(WM(T')) : WtN(WN(r)) :

Wt (r) - G(r(Jw))))

Let us analyze now the computational complex-
ity of a possible implementation of the construc-
tion in Definition 2. In step (i), we could restrict
the computation by considering only those transi-
tions in M satisfying p2(0)g0.q14o 7 0, Which pro-
vides a number of choices in O(|M|). Combined
with the choices for the states pg,pi,p2 of N,
this provides O(|M| - |P|*) non-zero transitions
in Prod(M, N). This is also a bound on the over-
all running time of step (i). Since we additionally
assume that weights can be multiplied in constant
time, it is not difficult to see that all of the remain-
ing steps can be accommodated within such a time
bound. We thus conclude that the construction in
Definition 2 can be implemented to run in time and
space O(|M]| - |P|).

5 Parsing applications

In this section we discuss several applications of
the construction presented in Definition 2 that are
relevant for parsing based on WTA models.

5.1 Parse forest

Parsing is usually defined as the problem of con-
structing a suitable representation for the set of all
possible parse trees that are assigned to a given in-
put string w by some grammar model. The set of
all such parse trees is called parse forest. The ex-
tension of the Bar-Hillel construction that we have



presented in Section 4 can be easily adapted to ob-
tain a parsing algorithm for WTA models. This is
described in what follows.

First, we should represent the input string w in
a WSA that recognizes the language {w}. Such
an automaton has a state set P = {py, . ..
and transition weights v(p;—1,w(i),p;) = 1 for
each i with 1 < ¢ < |w|. We also set I(pg) = 1
and F'(p,|) = 1. Setting all the weights to 1 for
a WSA N amounts to ignoring the weights, i.e.,
those weights will not contribute in any way when
applying the Bar-Hillel construction.

Assume now that M is our grammar model,
represented as a WTA. The WTA Prod(M, N)
constructed as in Definition 2 is not necessarily
trim, meaning that it might contain transitions
with non-zero weight that are never used in the
recognition. Techniques for eliminating such use-
less transitions are well-known, see for instance
(Gécseg and Steinby, 1984, Section I1.6), and can
be easily implemented to run in linear time. Once
Prod(M, N) is trim, we have a device that rec-
ognizes all and only those trees that are assigned
by M to the input string w, and the weights of
those trees are preserved, as seen in Theorem 2.
The WTA Prod (M, N) can then be seen as a rep-
resentation of a parse forest for the input string w,
and we conclude that the construction in Defini-
tion 2, combined with some WTA reduction al-
gorithm, represents a parsing algorithm for WTA
models working in cubic time on the length of the
input string and in linear time on the size of the
grammar model.

More interestingly, from the framework devel-
oped in Section 4, one can also design more effi-
cient parsing algorithms based on WTA. Borrow-
ing from standard ideas developed in the litera-
ture for parsing based on context-free grammars,
one can specialize the construction in Definition 2
in such a way that the number of useless transi-
tions generated for Prod(M, N) is considerably
reduced, resulting in a more efficient construction.
This can be done by adopting some search strat-
egy that guides the construction of Prod(M, N)
using knowledge of the input string w as well as
knowledge about the source model M.

As an example, we can apply step (i) only on de-
mand, that is, we process a transition £15(0)go.q140
in Prod(M, N) only if we have already computed
non-zero transitions of the form /1. (01)g, w, and
iy (02) o 05> fOr some o1 € gy, wy € Q" and

02 € Y, wa € Q" where @ is the state set
of Prod(M, N). The above amounts to a bottom-
up strategy that is also used in the Cocke-Kasami-
Younger recognition algorithm for context-free
grammars (Younger, 1967).

More sophisticated strategies are also possible.
For instance, one could adopt the Earley strategy
developed for context-free grammar parsing (Ear-
ley, 1970). In this case, parsing is carried out in
a top-down left-to-right fashion, and the binariza-
tion construction of Section 3 is carried out on the
flight. This has the additional advantage that it
would be possible to use WTA models that are not
restricted to the special normal form of Section 3,
still maintaining the cubic time complexity in the
length of the input string. We do not pursue this
idea any further in this paper, since our main goal
here is to outline an abstract framework for pars-
ing based on WTA models.

5.2 Probabilistic tree automata

Let us now look into specific semirings that are
relevant for statistical natural language process-
ing. The semiring of non-negative real numbers
is R>o = (R>0,+,-,0,1). For the remainder of
the section, let M = (Q, X, R>o, i, F') be a WTA
over R>¢. M is convergent if

> M) < oo

teTs

We say that M is a probabilistic tree automa-
ton (Ellis, 1971; Magidor and Moran, 1970),
or PTA for short, if pp(0)gq.q. € [0,1]
and F(q) € [0,1], for every 0 € Xj and
q,q1,---,qr € Q. In other words, in a PTA all
weights are in the range [0, 1] and can be inter-
preted as probabilities. For a PTA M we therefore
write pas(r) = wt(r) and pp(t) = M(t), for
eacht € Ty, and r € Runy, ().
A PTAis proper if > ., F'(q) = 1 and

Z pe(0)gw =1

o€X,k>0,weQk

for every ¢ € (). Since the set of symbols is finite,
we could have only required that the sum over all
weights as shown with w € Q¥ equals 1 for every
q € Qand o € . A simple rescaling would then
be sufficient to arrive at our notion. Furthermore, a
PTA is consistent if >, . pr(t) = 1. If a PTA
is consistent, then p,; is a probability distribution
over the set Tx.



The WTA M is unambiguous if for every input
tree t € T, there exists at most one r € Runj; ()
such that r(¢) € F and wty;(r) # 0. In other
words, in an unambiguous WTA, there exists at
most one successful run for each input tree. Fi-
nally, M is in final-state normal form if there ex-
ists a state gg € () such that

e F(gs) =1,

e F(q) =0forevery g € Q\ {gs}, and

o 1(0)gw = 0 if w(i) = gg for some

1< <E.
We commonly denote the unique final state by ¢g.
For the following result we refer the reader
to (Droste et al., 2005, Lemma 4.8) and (Bozapa-
lidis, 1999, Lemma 22). The additional properties
mentioned in the items of it are easily seen.

Theorem 3 For every WTA M there exists an
equivalent WTA M’ in final-state normal form.
e [f M is convergent (respectively, proper, con-
sistent), then M' is such, too.
o If M is wunambiguous, then M’ s
also  unambiguous and  for  every
t € Tx and r € Runpy(t) we have
wtar (') = wtpy(r) - F(r(e)) where
r'(e) = qs and v'(w) = r(w) for every
w € Pos(t) \ {e}. o

It is not difficult to see that a proper PTA in
final-state normal form is always convergent.

In statistical parsing applications we use gram-
mar models that induce a probability distribution
on the set of parse trees. In these applications,
there is often the need to visit a parse tree with
highest probability, among those in the parse for-
est obtained from the input sentence. This imple-
ments a form of disambiguation, where the most
likely tree under the given model is selected, pre-
tending that it provides the most likely syntactic
analysis of the input string. In our setting, the
above approach reduces to the problem of ‘unfold-
ing’ a tree from a PTA Prod(M, N), that is as-
signed the highest probability.

In order to find efficient solutions for the above
problem, we make the following two assumptions.

e M is in final-state normal form. By Theo-
rem 3 this can be achieved without loss of
generality.

e M is unambiguous. This restrictive assump-
tion avoids the so-called ‘spurious’ ambigu-
ity, that would result in several computations
in the model for an individual parse tree.

It is not difficult to see that PTA satisfying these

1: Function BESTPARSE(M)
2: £ — (Z)
3: repeat
4 A—{q|lu(0)gq q >0, ¢ & ¢,
q1,---,4g Gg}
5. forallq € Ado
k
6: 1) NP o(q;
() —  max k()10 Zgl (¢:)
q1,.-,qK €E
7. & «— E&U{argmax §(q)}
geA

8: until g5 € £
9: return d(qg)

Figure 3: Search algorithm for the most probable
parse in an unambiguous PTA M in final-state nor-
mal form.

two properties are still more powerful than the
probabilistic context-free grammar models that are
commonly used in statistical natural language pro-
cessing.

Once more, we borrow from the literature on
parsing for context-free grammars, and adapt a
search algorithm developed by Knuth (1977); see
also (Nederhof, 2003). The basic idea here is
to generalize Dijkstra’s algorithm to compute the
shortest path in a weighted graph. The search al-
gorithm is presented in Figure 3.

The algorithm takes as input a trim PTA M that
recognizes at least one parse tree. We do not im-
pose any bound on the rank of the alphabet sym-
bols for M. Furthermore, M needs not be a proper
PTA. In order to simplify the presentation, we pro-
vide the algorithm in a form that returns the largest
probability assigned to some tree by M.

The algorithm records into the §(q) variables
the largest probability found so far for a run that
brings M into state ¢, and stores these states into
an agenda A. States for which §(q) becomes opti-
mal are popped from A and stored into a set £.
Choices are made on a greedy base. Note that
when a run has been found leading to an optimal
probability §(g), from our assumption we know
that the associated tree has only one run that ends
up in state q.

Since £ is initially empty (line 2), only weights
satisfying ji9(0)q,c > 0 are considered when line 4
is executed for the first time. Later on (line 7)
the largest probability is selected among all those
that can be computed at this time, and the set &£ is
populated. As a consequence, more states become



available in the agenda in the next iteration, and
new transitions can now be considered. The algo-
rithm ends when the largest probability has been
calculated for the unique final state ¢g.

We now analyze the computational complexity
of the algorithm in Figure 3. The ‘repeat-until’
loop runs at most |@| times. Entirely reprocess-
ing set A at each iteration would be too expensive.
We instead implement A as a priority heap and
maintain a clock for each weight 11(0)q.q;qx>
initially set to k. Whenever a new optimal proba-
bility d(¢) becomes available through £, we decre-
ment the clock associated with each 11 (0)g,q1.q,
by d, in case d > 0 occurrences of ¢ are found
in the string q; ---qi. In this way, at each it-
eration of the ‘repeat-until’ loop, we can con-
sider only those weights 11;(0)g.q;...q, With asso-
ciated clock of zero, compute new values d(q),
and update the heap. For each 114(0)g.q:--q, > O,
all clock updates and the computation of quan-
tity 11x(0)g.qrqr - [17—; 0(¢i) (When the associ-
ated clock becomes zero) both take an amount of
time proportional to the length of the transition
itself. The overall time to execute these opera-
tions is therefore linear in |M|. Accounting for
the heap, the algorithm has overall running time
in O(|M| + Q| log|Q]).

The algorithm can be easily adapted to return a
tree having probability d(gs), if we keep a record
of all transitions selected in the computation along
with links from a selected transition and all of the
previously selected transitions that have caused its
selection. If we drop the unambiguity assump-
tion for the PTA, then the problem of comput-
ing the best parse tree becomes NP-hard, through
a reduction from similar problems for finite au-
tomata (Casacuberta and de la Higuera, 2000). In
contrast, the problem of computing the probability
of all parse trees of a string, also called the inside
probability, can be solved in polynomial time in
most practical cases and will be addressed in Sub-
section 5.4.

5.3 Normalization

Consider the WTA Prod(M, N) obtained as in
Definition 2. If N is a WSA encoding an in-
put string w as in Subsection 5.1 and if M is a
proper and consistent PTA, then Prod(M, N) is
a PTA as well. However, in general Prod(M, N)
will not be proper, nor consistent. Properness and
consistency of Prod(M, N) are convenient in all

those applications where a statistical parsing mod-
ule needs to be coupled with other statistical mod-
ules, in such a way that the composition of the
probability spaces still induces a probability dis-
tribution. In this subsection we deal with the more
general problem of how to transform a WTA that
is convergent into a PTA that is proper and con-
sistent. This process is called normalization. The
normalization technique we propose here has been
previously explored, in the context of probabilis-
tic context-free grammars, in (Abney et al., 1999;
Chi, 1999; Nederhof and Satta, 2003).

We start by introducing some new notions. Let
us assume that M is a convergent WTA. For every
q € Q, we define

wtar(q) = Z wtas(r) .

teTs,reRuny (t)
r(e)=q

Note that quantity wtps(g) equals the sum of the
weights of all trees in T%; that would be recognized
by M if we set F'(¢) = 1 and F(p) = 0 for each
p € Q\ {¢}, that is, if ¢ is the unique final state
of M. It is not difficult to show that, since M is
convergent, the sum in the definition of wty;(q)
converges for each ¢ € (). We will show in Sub-
section 5.4 that the quantities wts(¢) can be ap-
proximated to any desired precision.

To simplify the presentation, and without any
loss of generality, throughout this subsection we
assume that our WTA are in final-state normal
form. We can now introduce the normalization
technique.

Definition 3 Let M = (Q,%,R>o,p, F) be a
convergent WTA in final-state normal form. We
construct the WTA

Norm(M) =(Q, %, R, 1/, F)

€ X, k > 0, and

where for every o
4,491, --,4k € Q

M%(U)qvqr“qk = Nk(a)q,qr"qxc )

. wtar(qr) ... - wtar(qr)
wtar(q)

-0

We now show the claimed property for our
transformation.

Theorem 4 Let M be as in Definition 3, and let
M’ = Norm(M). Then M’ is a proper and
consistent PTA, and for every t € Ty, we have
M (t) = MW

wtar(gs)”

O



PROOF Clearly, M’ is again in final-state normal
form. An easy derivation shows that

k
winr(g) = D p(0)qquge - | [ Whar (@)

ocEY =1
q1,--,9k€Q

for every ¢ € Q. Using the previous remark, we
obtain

Z N%(U)q,ql---qk

UEEk7q17-~-7Qk€Q

- ¥

0EXL,q1,--»qkEQ

/’Lk(a)qﬂl"ﬂk )

) WtM(ql) e WtM(Qky’)
wtar(q)
k
Z 14(0) g,q1-qi * HWtM(Qi)
oEY, =1
q1,-qkEQ
- k
Z 14:(0) g,p1 -y, * HWtM(Pi)
oEY L, =1
P1y-PEEQ
=1 ,

which proves that M’ is a proper PTA.
Next, we prove an auxiliary statement. Let

t = o(t,...,t) for some o € ¥, k > 0, and
t1,...,t; € Tx. We claim that
wtas(r)
WtM/ r)—= ————m
") = St )

for every r € Runj/(t) = Runpp(t). For ev-
ery 1 < i <k, letr; € Runy,(¢;) be such that
ri(w) = r(iw) for every w € Pos(t;). Then

WtM’(r) - H :UJ;z(t(w))r(w),r(wl)mr(wn)

wePos(t)
k¢ (w)=n
k
_ Mk(a)r(s)’r(l) r(k) . HWtM’ (TZ)
i=1
it T2
k\T)r(e),r1(e)-ri(e) = whar(ri(e))
WtM(’rl) ..... WtM(rk)
= 115 (0)r(e) (1) r (k) * wtar(r(e))
_ _wha(r)
wtar(r(e))
Consequently,
M@= 3 whn(r)
TGRUDM/(t)

r(e)=gs

M(t)
wtar(gs)

_ Z wtas(r) _

TGRunNI(t) WtM(qS)

r(e)=qs

and

> M=
teTs, tGTZ,T‘ERun]M/(t)
r(e)=gs

teTs,reRuny, (t)
r(e)=aqs

_ wtar(gs)
wtar(gs)

WtM/ (7”)

WtM(T)
wtar(gs)

:17

which prove the main statement and the consis-
tency of M’, respectively. m

5.4 Probability mass of a state

Assume M is a convergent WTA. We have defined
quantities wt s (¢) for each ¢ € Q. Note that when
M is a proper PTA in final-state normal form, then
wtas(g) can be seen as the probability mass that
‘rests’ on state g. When dealing with such PTA,
we use the notation Zy/(q) in place of wtps(q),
and call Z,; the partition function of M. This
terminology is borrowed from the literature on ex-
ponential or Gibbs probabilistic models.

In the context of probabilistic context-free
grammars, the computation of the partition func-
tion has several applications, including the elim-
ination of epsilon rules (Abney et al., 1999) and
the computation of probabilistic distances between
probability distributions realized by these for-
malisms (Nederhof and Satta, 2008). Besides
what we have seen in Subsection 5.3, we will pro-
vide one more application of partition functions
for the computations of so-called prefix probabil-
ities in Subsection 5.5 We also add that, when
computed on the Bar-Hillel automata of Section 4,
the partition function provides the so-called inside
probabilities of (Graehl et al., 2008) for the given
states and substrings.

Let |Q| = n and let us assume an arbitrary or-
dering q1, ..., g, for the states in ). We can then
rewrite the definition of wts(q) as

k

wtar(g) = Z 1(0) g, a5, 'HWtM(qzj)

oESH k>0 j=1
Qiy 541y, €Q

(see proof of Theorem 4). We rename wtps(q;)
with the unknown X, 1 < i < n, and derive a



system of n nonlinear polynomial equations of the
form

Xg = Z Hk(o-)qaqil"'qik 'qu'l ) "qu‘k
0EY,k>0
Qiq»>-slif, €Q
= Jos(Xgi -, X)) (1)

foreach ¢ with 1 < 7 < n.

Throughout this subsection, we will consider
solutions of the above system in the extended non-
negative real number semiring

R?O = (RZO U {OO}, +5 0; ]-)

with the usual operations extended to co. We
can write the system in (1) in the compact form
X = F(X), where we represent the unknowns
as a vector X = (X,,...,X,,) and F is a map-
ping of type (RZ,)" — (RZ)™ consisting of the
polynomials f,, (X). -

We denote the vector (0,...,0) € (RZ)" as
X0 Let X, X' € (RE)™. We write X < X'
if X, < X/ forevery 1 < i < n. Since
each polynomial f,, (X) has coefficients repre-
sented by positive real numbers, it is not difficult
to see that, for each X, X' € (R,)", we have
F(X) < F(X') whenever X < X < X'. This
means that F' is an order preserving, or monotone,
mapping.

We observe that ((R)", <) is a complete
lattice with least element X° and greatest el-
ement (0o,...,00). Since F' is monotone on
a complete lattice, by the Knaster-Tarski theo-
rem (Knaster, 1928; Tarski, 1955) there exists a
least and a greatest fixed-point of F’ that are solu-
tions of X = F(X).

The Kleene theorem states that the least fixed-
point solution of X F(X) can be obtained
by iterating F starting with the least element X°.
In other words, the sequence X k — F(X "“_1),
k =1,2,... converges to the least fixed-point so-
lution. Notice that each X* provides an approxi-
mation for the partition function of M where only
trees of depth not larger than k are considered.
This means that limy,_,. X* converges to the par-
tition function of M, and the least fixed-point so-
lution is also the sought solution. Thus, we can
approximate wts(q) with ¢ € @ to any degree by
iterating F' a sufficiently large number of times.

The fixed-point iteration method discussed
above is also well-known in the numerical calcu-
lus literature, and is frequently applied to systems
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of nonlinear equations in general, because it can
be easily implemented. When a number of stan-
dard conditions are met, each iteration of the algo-
rithm (corresponding to the value of k above) adds
a fixed number of bits to the precision of the ap-
proximated solution; see (Kelley, 1995) for further
discussion.

Systems of the form X F(X) where all
f4: (X)) are polynomials with nonnegative real co-
efficients are called monotone system of poly-
nomials. Monotone systems of polynomials as-
sociated with proper PTA have been specifically
investigated in (Etessami and Yannakakis, 2005)
and (Kiefer et al., 2007), where worst case results
on exponential rate of convergence are reported
for the fixed-point method.

5.5 Prefix probability

In this subsection we deal with one more applica-
tion of the Bar-Hillel technique presented in Sec-
tion 4. We show how to compute the so-called
prefix probabilities, that is, the probability that a
tree recognized by a PTA generates a string start-
ing with a given prefix. Such probabilities have
several applications in language modeling. As an
example, prefix probabilities can be used to com-
pute the probability distribution on the terminal
symbol that follows a given prefix (under the given
model).

For probabilistic context-free grammars, the
problem of the computation of prefix probabili-
ties has been solved in (Jelinek et al., 1992); see
also (Persoon and Fu, 1975). The approach we
propose here, originally formulated for probabilis-
tic context-free grammars in (Nederhof and Satta,
2003; Nederhof and Satta, 2009), is more abstract
than the previous ones, since it entirely rests on
properties of the Bar-Hillel construction that we
have already proved in Section 4.

Let M (Q,%,R>0, 1, F') be a proper
and consistent PTA in final-state normal form,
A = %o\ {e}, and let u € A" be some string.
We assume here that M is in the binary form
discussed in Section 3. In addition, we assume
that M has been preprocessed in order to remove
from its recognized trees all of the unary branches
as well as those branches that generate the null
string €. Although we do not discuss this con-
struction at length in this paper, the result follows
from a transformation casting weighted context-
free grammars into Chomsky Normal Form (Fu



and Huang, 1972; Abney et al., 1999).
We define

Pref(M,u) = {t|t € Tx, M(t) >0,
yd(t) = wv, v e A*} .

The prefix probability of « under M is defined as

> pu)
tePref (M,u)
Let |u| = n. We define a WSA N,, with state
set P = {po,...,pn} and transition weights

v(pi—1,u(i),p;) = 1 foreach i with 1 < i < n,
and v(pp,o,p,) = 1 for each 0 € A. We also
set I(po) = 1 and F(p,) = 1. It is easy to see
that V,, recognizes the language {uv |v € A*}.
Furthermore, the PTA M,, = Prod(M, N,,) spec-
ified as in Definition 2 recognizes the desired tree
set Pref(M,u), and it preserves the weights of
those trees with respect to M. We therefore con-
clude that Zy,(qs) is the prefix probability of u
under M. Prefix probabilities can then be approx-
imated using the fixed-point iteration method of
Subsection 5.4. Rather than using an approxima-
tion method, we discuss in what follows how the
prefix probabilities can be exactly computed.

Let us consider more closely the product au-
tomaton M, assuming that it is trim. Each state
of M, has the form 7 = (p;, ¢, p;), pi,p; € P and
q € Q, with ¢ < j. We distinguish three, mutually
exclusive cases.

(i) j < m: From our assumption that M (and

thus M) does not have unary or € branches,
itis not difficult to see that all Zy, () can be
exactly computed in time O((j — 7)3).
i =7 n: We have 7 = (pn,q,pn).
Then the equations for Zj (m) exactly
mirror the equations for Zp;(q), and
Zm,(m) = Zn,(q). Because M is proper
and consistent, this means that Z, () = 1.
1 < j = n: A close inspection of Definition 2
reveals that in this case the equations (1) are
all linear, assuming that we have already re-
placed the solutions from (i) and (ii) above
into the system. This is because any weight
12(0)mg,mm > 0in My with 7 = (p;, ¢, pn)
and ¢ < n must have (71)3 < n. Quanti-
ties Zyz, () can then be exactly computed as
the solution of a linear system of equations in
time O(n?).

Putting together all of the observations above,
we obtain that for a proper and consistent PTA that

(i)

(iii)
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has been preprocessed, the prefix probability of u
can be computed in cubic time in the length of the
prefix itself.

6 Concluding remarks

In this paper we have extended the Bar-Hillel con-
struction to WTA, closely following the method-
ology proposed in (Nederhof and Satta, 2003) for
weighted context-free grammars. Based on the ob-
tained framework, we have derived several parsing
algorithms for WTA, under the assumption that the
input is a string rather than a tree.

As already remarked in the introduction, WTA
are richer models than weighted context-free
grammar, since the formers use hidden states in
the recognition of trees. This feature makes it
possible to define a product automaton in Defini-
tion 2 that generates exactly those trees of interest
for the input string. In contrast, in the context-
free grammar case the Bar-Hillel technique pro-
vides trees that must be mapped to the tree of in-
terest using some homomorphism. For the same
reason, one cannot directly convert WTA into
weighted context-free grammars and then apply
existing parsing algorithms for the latter formal-
ism, unless the alphabet of nonterminal symbols
is changed. Finally, our main motivation in de-
veloping a framework specifically based on WTA
is that this can be extended to classes of weighted
tree transducers, in order to deal with computa-
tional problems that arise in machine translation
applications. We leave this for future work.
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Weighted parsing of trees

Mark-Jan Nederhof
School of Computer Science, University of St Andrews
North Haugh, St Andrews, KY 16 9SX, Scotland

Abstract

We show how parsing of trees can be for-
malized in terms of the intersection of two
tree languages. The focus is on weighted
regular tree grammars and weighted tree
adjoining grammars. Potential applica-
tions are discussed, such as parameter es-
timation across formalisms.

1 Introduction

In parsing theory, strings and trees traditionally
have had a very different status. Whereas strings
in general receive the central focus, the trees in-
volved in derivations of strings are often seen as
auxiliary concepts at best. Theorems tend to be
about the power of grammatical formalisms to
produce strings (weak generative power) rather
than trees (strong generative power).

This can be explained by looking at typical
applications of parsing. In compiler construc-
tion for example, one distinguishes between parse
trees and (abstract) syntax trees, the former being
shaped according to a grammar that is massaged
to make it satisfy relatively artificial constraints,
e.g. that of LALR(1), which is required by many
compiler generators (Aho et al., 2007). The form
of syntax trees is often chosen to simplify phases
of semantic processing that follow parsing. As
the machinery used in such processing is generally
powerful, this offers much flexibility in the choice
of the exact shape and labelling of syntax trees, as
intermediate form between parsing and semantic
analysis.

In the study of natural languages, parse trees
have played a more important role. Whereas lin-
guistic utterances are directly observable and trees
deriving them are not, there are nevertheless tradi-
tions within linguistics that would see one struc-
tural analysis of a sentence as strongly preferred
over another. Furthermore, within computational

13

linguistics there are empirical arguments to claim
certain parses are correct and others are incorrect.
For example, a question answering systems may
verifiably give the wrong answer if the question
is parsed incorrectly. See (Jurafsky and Martin,
2000) for general discussion on the role of parsing
in NLP.

Despite the relative importance of strong gen-
erative power in computational linguistics, there
is still much freedom in how exactly parse trees
are shaped and how vertices are labelled, due to
the power of semantic analysis that typically fol-
lows parsing. This has affected much of the the-
oretical investigations into the power of linguistic
formalisms, and where strong equivalence is con-
sidered at all, it is often “modulo relabelling” or
allowing minor structural changes.

With the advent of syntax-based machine trans-
lation, trees have however gained much impor-
tance, and are even considered as the main ob-
jects of study. This is because many MT mod-
ules have trees both as input and output, which
means the computational strength of such mod-
ules can be measured only in terms of the tree lan-
guages they accept and the transductions between
tree languages that they implement. See for exam-
ple (Knight, 2007).

In contrast, trees have always been the central
issue in an important and well-established subfield
of formal language theory that studies tree lan-
guages, tree automata and tree transducers (Gc-
seg and Steinby, 1997). The string languages gen-
erated by the relevant formalisms in this context
are mostly taken to be of secondary importance, if
they are considered at all.

This paper focuses on tree languages, but in-
volves a technique that was devised for string lan-
guages, and shows how the technique carries over
to tree languages. The original technique can be
seen as the most fundamental idea in the field of
context-free parsing, as it captures the essence of

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 13-24,
Paris, October 2009. (©)2009 Association for Computational Linguistics



finding hierarchical structure in a linear sequence.
The generalization also finds structure in a lin-
ear sequence, but now the sequence corresponds
to paths in trees each leading down from a vertex
to a leaf. This means that the proposed type of
parsing is orthogonal to the conventional parsing
of strings.

The insights this offers have the potential to cre-
ate new avenues of research into the relation be-
tween formalisms that were until now considered
only in isolation. We seek credence to this claim
by investigating how probability distributions can
be carried over from tree adjoining grammars to
regular tree grammars, and vice versa.

The implication that the class of tree languages
of tree adjoining grammars (TAGs) is closed under
intersection with regular tree languages is not sur-
prising, as the linear context-free tree languages
(LCFTLs) are closed under intersection with reg-
ular tree languages (Kepser and Monnich, 2006).
The tree languages of TAGs form a subclass of the
LCFTLs, and the main construction in the proof
of the closure result for the latter can be suitably
restricted to the former.

The structure of this paper is as follows. The
main grammatical formalisms considered in this
paper are summarized in Section 2 and Sec-
tion 3 discusses a number of analyses of these for-
malisms that will be used in later sections. Sec-
tion 4 starts by explaining how parsing of a string
can be seen as the construction of a grammar that
generates the intersection of two languages, and
then moves on to a type of parsing involving in-
tersection of tree languages in place of string lan-
guages.

In order to illustrate the implications of the the-
ory, we consider how it can be used to solve a prac-
tical problem, in Section 5. A number of possible
extensions are outlined in Section 6.

2 Formalisms

In this section, we recall the formalisms of
weighted regular tree grammars and weighted tree
adjoining grammars. We use similar notation and
terminology for both, in order to prepare for Sec-
tion 4, where we investigate the combination of
these formalisms through intersection. As a conse-
quence of the required unified notation, we deviate
to some degree from standard definitions, without
affecting generative power however.

For common definitions of weighted regular

14

tree grammars, the reader is referred to (Graehl
and Knight, 2004). Weighted tree adjoining gram-
mars are a straightforward generalization of prob-
abilistic (or stochastic) tree adjoining grammars,
as introduced by (Resnik, 1992) and (Schabes,
1992).

For both regular tree grammars (RTGs) and tree
adjoining grammars (TAGs), we will write a la-
beled and ordered tree as A(«a). where A is the la-
bel of the root node, and « is a sequence of expres-
sions of the same form that each represent an im-
mediate subtree. In our presentation, labels do not
have explicit ranks, that is, the number of children
of a node is not determined by its label. This al-
lows an interesting generalization, to be discussed
in Section 6.2.

Where we are interested in the string language
generated by a tree-generating grammar, we may
distinguish between two kinds of labels, the fer-
minal labels, which may occur only at leaves, and
the nonterminal labels, which may occur at any
node. It is customary to write terminal leaves as
a instead of a(). The yield of a tree is the string
of occurrences of terminal labels in it, from left to
right. Note that also nonterminal labels may occur
at the leaves, but they will not be included in the
yield; cf. epsilon rules in context-free grammars.

2.1 Weighted regular tree grammars

A weighted regular tree grammar (WRTG) is a 4-
tuple G = (S, L, R,s"), where S and L are two
finite sets of states and labels, respectively, s~ € S
is the initial state, and R is a finite set of rules.
Each rule has the form:

so — A(sy -+ sm) (w),

where sg, s1,..., 8y, are states (0 < m), Ais a
label and w is a weight.

Rewriting starts with a string containing only
the initial state s". This string is repeatedly rewrit-
ten by replacing the left-hand side state of a rule by
the right-hand side of the same rule, until no state
remains. It may be convenient to assume a canoni-
cal order of rewriting, for example in terms of left-
most derivations (Hopcroft and Ullman, 1979).

Although alternative semirings can be consid-
ered, here we always assume that the weights
of rules are non-negative real numbers, and the
weight of a derivation of a tree is the product of
the weights of the rule occurrences. If several
(left-most) derivations result in the same tree, then



the weight of that tree is given by the sum of the
weights of those derivations. Where we are inter-
ested in the string language, the weights of trees
with the same yield are added to obtain the weight
of that yield.

A (weighted) context-free grammar can be seen
as a special case of a (weighted) regular tree gram-
mar, where the set of states equals the set of labels,
and rules have the form:

A— A(By - Bp).

Also the class of (weighted) tree substitution
grammars (Sima’an, 1997) can be seen as a spe-
cial case of (weighted) regular tree grammars, by
letting the set of labels overlap with the set of
states, and imposing two constraints on the allow-
able rules. The first constraint is that for each la-
bel that is also a state, all defining rules are of the
form:

A— A(s1- Sm)-

The second constraint is that for each state that is
not a label, there is exactly one rule with that state
in the left-hand side. This means that exactly one
subtree (or elementary tree) can be built top-down
out of such states, down to a level where we again
encounter states that are also labels. If desired, we
can exclude infinite elementary trees by imposing
an additional constraint on allowed sets of rules
(no cycles composed of states that are not labels);
alternatively, we can demand that the grammar
does not contain any useless rules, which automat-
ically excludes such infinite elementary trees.

2.2 Weighted linear indexed grammars

Although we are mainly interested in the tree lan-
guages of tree adjoining grammars, we will use
an equivalent representation in terms of linear in-
dexed grammars, in order to obtain a uniform no-
tation with regard to regular tree grammars.

Thus, a weighted linear indexed grammar
(WLIG) is a 5-tuple G = (S, 1, L, R, s"), where
S, I and L are three finite sets of states, indices
and labels, respectively, s e Sis the initial state,
and R is a finite set of rules. Each rule has one of
the following four forms:

1. sp[oo] — A( s1[] -+

sj—1[] sjloo] sjal] -
sm[]) (w),
where sg, S1, ..., Sy are states (1 < j < m),
Ais alabel and w is a weight;
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2. s[] = AQ) (w);
3. sf[oo] — §'[too] (w), where ¢ is an index;
4. s[too] — §'[oo] (w).

The expression oo may be thought of as a vari-
able denoting a string of indices on a stack, and
this variable is to be consistently substituted in
the left-hand and the right-hand sides of rules
upon application during rewriting. In other words,
stacks are copied from the left-hand side of a rule
to at most one member in the right-hand side,
which we will call the head of that rule. The ex-
pression [ ] stands for the empty stack and [coo] de-
notes a stack with top element ¢. Thereby, rules of
the third type implement a stack push and rules of
the fourth type implement a pop. Rewriting starts
from s []. The four subsets of R containing rules
of the respective four forms above will be referred
to as R, Ro, R3 and Ry4.

In terms of tree adjoining grammars, which as-
sume a finite number of elementary trees, the in-
tuition behind the four types of rules is as fol-
lows. Rules of the first type correspond to con-
tinued construction of the same elementary tree.
Rules of the third type correspond to the initiation
of a newly adjoined auxiliary tree and rules of the
fourth type correspond to its completion at a foot
node, returning to an embedding elementary tree
that is encoded in the index that is popped. Rules
of the second type correspond to construction of
leaves, as in the case of regular tree grammars.
See further (Vijay-Shanker and Weir, 1994) for the
equivalence of linear indexed grammars and tree
adjoining grammars.

Note that regular tree grammars can be seen as
special cases of linear indexed grammars, by ex-
cluding rules of the third and fourth types, which
means that stacks of indices always remain empty
(Joshi and Schabes, 1997).

2.3 Probabilistic grammars

A weighted regular tree grammar, or weighted lin-
ear indexed grammar, respectively, is called prob-
abilistic if the weights are probabilities, that is,
values between 0 and 1. A probabilistic regular
tree grammar (PRTG) is proper if for each state
s, the probabilities of all rules that have left-hand
side s sum to one.

Properness for a probabilistic linear indexed
grammar (PLIG) is more difficult to define, due
to the possible overlap of applicability between



the four types of rules, listed in the section above.
However, if we encode a given TAG as a LIG in a
reasonable way, then a state s may occur both in
left-hand sides of rules from R; and in left-hand
sides of rules from Rz, but all other such overlap
between the four types is precluded.

Intuitively, a state may represent an internal
node of an elementary tree, in which case rules
from both R; and R3 may apply, or it may rep-
resent a non-foot leaf node, in which case a rule
from Ry may apply, or it may be a foot node, in
which case a rule from R4 may apply.

With this assumption that the only overlap in ap-
plicability is between R; and I3, properness can
be defined as follows.

e For each state s, either there are no rules in
R, or R3 with s in the left-hand side, or the
sum of probabilities of all such rules equals
one.

For each state s, either there are no rules in
Ry with s in the left-hand side, or the sum of
probabilities of all such rules equals one.

e For each state s and index ¢, either there
are no rules in R4 with left-hand side s[to0],
or the sum of probabilities of all such rules
equals one.

We say a weighted regular tree grammar, or
weighted linear indexed grammar, respectively, is
consistent if the sum of weights of all (left-most)
derivations is one. This is equivalent to saying that
the sum of weights of all trees is one, and to saying
that the sum of weights of all strings is one.

For each consistent WRTG (WLIG, respec-
tively), there is an equivalent proper and consistent
PRTG (PLIG, respectively). The proof lies in nor-
malization. For WRTGs this is a trivial extension
of normalization of weighted context-free gram-
mars, as described for example by (Nederhof and
Satta, 2003). For WLIGs (and weighted TAGs),
the problem of normalization also becomes very
similar once we consider that the set of derivation
trees of tree adjoining grammars can be described
with context-free grammars, and that this carries
over to weighted derivation trees. See also (Sarkar,
1998).

WLIGs seemingly incur an extra complication,
if a state may occur in combination with an index
on top of the associated stack such that no rules are
applicable. However, for LIGs that encode TAGs,
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the problem does not arise as, informally, one may
always resume construction of the embedding el-
ementary tree below the foot node of an adjoined
auxiliary tree.

We say a LIG is in TAG-normal form if (a) at
least one rule is applicable for each combination
of state s and index ¢ such that s[too] is deriv-
able from s"[], and (b) the only overlap in ap-
plicability of the four types of rules is between
Ry and R3. Statements in what follows involv-
ing WLIGs (or PLIGs) in TAG-normal form also
hold for weighted (or probabilistic) TAGs.

3 Analysis of grammars

We call a grammar rule useless if it cannot be part
of any derivation of a tree (or of a string, in the
case of grammars with an emphasis on string lan-
guages). We say a grammar is reduced if it does
not contain useless rules.

Whereas most grammars written by hand or in-
duced by a corpus or treebank are reduced, there
are practical operations that turn reduced gram-
mars into grammars with useless rules; we will
see an example in the next section, where gram-
mars are constructed that generate the intersection
of two given languages. In order to determine
whether the intersection is non-empty, it suffices to
identify useless rules in the intersection grammar.
If and only if all rules are useless, the generated
language is empty.

In the case of context-free grammars (see for ex-
ample (Sippu and Soisalon-Soininen, 1988)), the
analysis to identify useless rules can be split into
two phases:

1. a bottom-up phase to identify the grammar
symbols that generate substrings, which may
include the start symbol if the generated lan-
guage is non-empty; and

. a top-down phase to identify the grammar
symbols that are reachable from the start
symbol.

The intersection of the generating symbols and the
reachable symbols gives the set of useful symbols.
One can then identify useless rules as those that
contain one or more symbols that are not useful.
The procedure for linear indexed grammars is
similarly split into two phases, of which the first
is given in Figure 1 in the form of a deduction
system. The inference rules simultaneously derive



s1 -+ 8j-1(84,8) Sj41 -+ S
1 1 (50, 5) - {SO[OO] — A(si[] - sjloo] -+ sm[]) - (c)
S1 --- 8 {So[oo] — A(s1[] 54[00] sml]) ()
50
(317 32)
(s3,54) {So[oo] — s1[t00] )
(s0,84) | 82[too] — s3[o0]
(317 32)
83 Jsp[oo] — s1[to0]
S0 {52 [LOO] — 33[00] (f)

Figure 1: Simultaneous analysis of two kinds of subderivations in a LIG. Items (s, s’) represent existence
of one or more subderivations s[] —* a(s'[]), where « is a tree with a gap in the form of an unresolved
state s’ associated with an empty stack. Furthermore, s and s’ are connected through propagation of a
stack of indices, or in other words, the occurrence of s’ is the head of a rule, of which the left-hand side
state is the head of another rule, etc., up to s. In the inference rules, items s represent existence of one or
more subderivations s[] —* «, where « is a complete tree (without any unresolved states).

two types of item. The generated language is non-
empty if the item s" can be derived.

We will explain inference rule (f), which is the
most involved of the six rules. The two items
in the antecedent indicate the existence of deriva-
tions si[] —* a(se2[]) and s3[] —* B. Note
that s1[] —* a(sz2[]) implies s1[t] —* a(s2[t]),
because an additional element in the bottom of
a stack would not block an existing derivation.
Hence sp[| — si[t] =" a(s2[t]) — a(ss][]) —*
a(/3), which justifies the item s¢ in the consequent
of the rule.

After determining which items can be derived
through the deduction system, it is straightforward
to identify those rules that are useful, by applying
the inference rules in reverse, from consequent to
antecedents, starting with s".

The running time of the analysis is determined
by how often each of the inference rules can be
applied, which is bounded by the number of ways
each can be instantiated with states and rules from
the grammar. The six inference rules together give
us O(|S| + [Ra| + | R - | S| + [Ra| + | Rs| - [Ra|-
S| + |Rs| - [Ra]) = O(S] + [Ra| - S| + [Rel
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+ |Rs| - |R4| - |S]) = |G|?, where we assume a
reasonable measure for the size |G| of a LIG G, for
example, the total number of occurrences of states,
labels and indices in the rules.

It is not difficult to see that there is exactly one
deduction of s" in the deduction system for each
complete derivation in the grammar. We leave the
full proof to the interested reader, but provide the
hint that items (s,s’) can only play a role in a
complete deduction provided s’ is rewritten by a
rule that pops an index from the stack. Because
of this, derivations in the grammar of the form
s[] =* a(s'[]) or of the form s[] —* « can be
divided in a unique way into subderivations repre-
sentable by our items.

The above deduction system is conceptually
very close to a system of equations that expresses
the sum of weights of all derivations in the gram-
mar, or in(s"), in terms of similar values of the
form in(s), which is the sum of weights of all
subderivations s[] —* «, and in(s, s’), which is
the sum of weights of all subderivations s[] —*
a(s'[]). The equations are given in Figure 2.

Although the expressions look unwieldy, they



in(sg) = Z w +

so[] = A() (w)
Z w-in(sy) ... in(sm) +

soloo] = A(s1[] --- sjfo0] --- sml]) (w)

Z w - v - in(sy, s2) - in(ss)
so[o0] — s1[eoo] (w)
sa[t00] — s3[00] (v)
in(so,s) = d0(sop=35) +

Z w-in(si) - ... in(ss,s) ... in(sm) +

soloo] — A(s1[] -+

>

so[00] — s1[t00] (w)
s2[100] — s3[o0] (v)

syloc] -

sml[]) (w)

w - v -in(sy, s2) - in(ss,s)

Figure 2: The sum of weights of all derivations in a WLIG, or in(s"), is defined by the smallest non-
negative solution to a system of equations. The function § with a boolean argument evaluates to 1 if the

condition is true and to 0 otherwise.

express exactly the ‘inside’ value of the weighted
context-free grammar that we can extract out of
the deduction system from Figure 1, by instanti-
ating the inference rules in all possible ways, and
then taking the consequent as the left-hand side of
a rule, and the antecedent as the right-hand side.
The weight is the product of weights of rules that
appear in the side conditions. It is possible to ef-
fectively solve the system of equations, as shown
by (Wojtczak and Etessami, 2007).

In the same vein we can compute ‘outside’
values for weighted linear indexed grammars, as
straightforward analogues of the outside values of
weighted and probabilistic context-free grammars.
The outside value is the sum of weights of partial
derivations that may lie ‘outside’ a subderivation
s[] =* ain the case of out(s), or a subderivation
s[] =* a(s'[]) in the case of out(s, s"). The equa-
tions in Figure 3 again follow trivially from the
view of Figure 1 as weighted context-free gram-
mar and the usual definition of outside values.

The functions in and out are particularly useful
for PLIGs in TAG-normal form, as they allow the
expected number of occurrences of state s to be
expressed as:

E(s) = in(s)- out(s)

Similarly, the expected number of subderivations
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of the form s[| —* a(s'[]) is:

E(s,s)

in(s,s') - out(s,s)

We will return to this issue in Section 5.

4 Weighted intersection

Before we discuss intersection on the level of
trees, we first show how a well-established type of
intersection on the level of strings, with weighted
context-free grammars and weighted finite au-
tomata (WFAs), can be trivially extended to re-
place CFGs with RTGs or LIGs. The intersec-
tion paradigm is originally due to (Bar-Hillel et
al., 1964). Extension to tree adjoining grammars
and linear indexed grammars was proposed before
by (Lang, 1994) and (Vijay-Shanker and Weir,
1993b).

4.1 Intersection of string languages

Let us assume a WLIG G with terminal and nonter-
minal labels. Furthermore, we assume a weighted
finite automaton A, with an input alphabet equal
to the set of terminal labels of G. The transitions
of A are of the form:

where ¢ and ¢ are states, a is a terminal symbol,
and w is a weight. To simplify the presentation,



out(s) = 8(s' =s") +

Z w - out(so, s) - in(sj,s) - H in(sp) +
so[oo] — A(s1[] -+ sj[o0] -+ sm[]) (w) p ¢ {4k}
ke {1, ce ey 8i—1, 8541, - - .,Sm} s.t. s = Sk

Z w - out(sop) - H in(sp) +
so[oo] = A(s1[] -+ sj[o0] - -+ sm[]) (w) p#k

ke{l,... sm}st s =sg
Z w - v - out(sg) - in(sy, $2)
so[0o] — s1[t00] (w)
s2[100] — s'[0o] (v)
out(s',s) = Z w - out(s, S) - H in(sp) +
soloo] = Asu[] -+ sjlo0] -+ sm[]) (w) p#J
s =85

>

sofoo] = s'[100] {uw)
sfuoo] — safoo] (v)

>

so[00] — s1[t00] (w)
s2[100] — s'[oo] (v)

>

sofoo] = s'[100] {uw)
sfuoo] — saloo] (v)

w - v - out(sg, S4) - in(ss, s4) +

w - v - out(sg, s) - in(s1,s2) +

w - v - out(sg) - in(s3)

Figure 3: The outside values in a WLIG.

we ignore epsilon transitions, and assume there is
a unique initial state ¢~ and a unique final state ¢ .

We can construct a new WLIG G’ whose gen-
erated language is the intersection of the language
generated by G and the language accepted by A.
The rules of G’ are:

1. (qo, S0, gm)[e0] —

A( (QO,S1,Q1)H
(%—2783‘—1,(1]‘—1)[]
(¢j-1, 85, 4;)[0°]
(45> Sj+15q5+1)[] -

(@m—1,8m, qm)[] ) (w),
for each rule soloo] — A(si[] -+ sj-1]]

sjloo] sj1[] -+ sm]]) (w) from G and se-
quence qq, - - - , ¢, Of states from A;

2. (g,8,9)]] — A() (w), for each rule s[] —
A() (w) from G and state ¢ from A4;

3. (¢,8,4)[] — a (w - v), for each rule s[| —
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a (w) from G and transition ¢ +~ ¢’ (v) from

A,

. (g,8,q')[o0] = (q,5',q")[to0] (w), for each
rule s[oo] — §'[to0] (w) from G and states
q,q from A;

. (g,8,¢")[too] — (g,5,¢")[o0] (w), for each
rule s[too] — s'[oo] (w) from G and states
q,q from A.

The new states (g, s, ¢’) give (left-most) deriva-
tions in G’ that each simultaneously represent one
(left-most) derivation in G of a certain substring,
starting from state s, and one sequence of transi-
tions taking the automaton .4 from state g to state
¢ while scanning the same substring. The initial
state of G’ is naturally (¢, s™, ¢™"), which derives
strings in the intersection of the original two lan-
guages.

Further note that each derivation in G’ has a
weight that is the product of the weight of the cor-



responding derivation in G and the weight of the
corresponding sequence of transitions in .A. This
allows a range of useful applications. For exam-
ple, if A is deterministic (the minimum require-
ment is in fact absence of ambiguity) and if it as-
signs the weight one to all transitions, then G’ gen-
erates a set of trees that is exactly the subset of
trees generated by G whose yields are accepted by
A. Furthermore, the weights of those derivations
are preserved. If G is a consistent PLIG in TAG-
normal form, and if A4 accepts the language of all
strings containing a fixed substring z, then the sum
of probabilities of all derivations in G’ gives the
substring probability of x. The effective computa-
tion of this probability was addressed in Section 3.

An even more restricted, but perhaps more fa-
miliar case is if A is a linear structure that accepts
a single input string y of length n. Then G’ gen-
erates exactly the set of trees generated by G that
have y as yield. In other words, the string y is
thereby parsed.

If G is binary, i.e. all rules have at most two
states in the right-hand side, then G’ has a size
that is cubic in n. This may seem surprising, in
the light of the awareness that practical parsing al-
gorithms for tree adjoining grammars have a time
complexity of no less than O(n%). However, in or-
der to solve the recognition problem, an analysis
is needed to determine whether G’ allows at least
one derivation.

The analysis from Figure 1 requires O(|S’| +
|Ry|-[S'] + | Ro| + [Ry| - [Ry| - |S7]) steps, where
|S'| = O(n?) is the number of states of G’, and
Ryl = O(n?), [Ry| = |R| = |R)| = O(n?) are
the numbers of rules of G’, divided into the four
main types. This leads to an overall time com-
plexity of O(n®), as expected.

The observation that recognition can be harder
than parsing was made before by (Lang, 1994).
The central new insight this provided was that the
notion of ‘parsing’ is ill-defined in the literature.
One may choose a form in which to capture all
parses of an input allowed by a grammar, but dif-
ferent such forms may incur different costs of ex-
tracting individual parse trees.

In Section 6.2 we will consider the complexity
of parsing and recognition if G is not binary.
4.2 Intersection of tree languages

We now shift our attention from strings to trees,
and consider the intersection of the tree language
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generated by a weighted linear indexed grammar
G1 and the tree language generated by a weighted
regular tree grammar Go. This intersection is gen-
erated by another weighted linear indexed gram-
mar G, which has the following rules:

1. (80, qo)[o0] — A( (s1,q1)[] -~
(8j-1,5- 1)[]
(841 95)[00]
(8541, qj+1)[] -+
(8myam)[]) (w - v),
for each rule so[oo A(si[] -+ sj-1]]

| —
sm[]) (w) from G and each
- @) (v) from Go;

sjloo] sjral] -
rule g9 — A(qs -

2. (s,9)[] — A() (w - v), for each rule s[] —
A() (w) from G; and each rule ¢ — A() (v)
from Go;

3. (s,q)[oo] — (8,q)[to0] (w), for each rule
s[oo] — §'[too] (w) from Gy and state g from
Go;

4. (s,q)[too] — (', q)[oo] (w), for each rule

s[too] — 3’[00

Go.

| (w) from G; and state ¢ from

Much as in the previous section, each (left-
most) derivation in G corresponds to one (left-
most) derivation in G; and one in Go. Further-
more, these three derivations derive the same la-
belled tree, and a derivation in G has a weight that
is the product of the weights of the corresponding
derivations in G; and Gs.

It can be instructive to look at special cases.
Suppose that G is an unambiguous regular tree
grammar of size O(n) generating a single tree ¢
with n vertices, assigning weight one to all its
rules. Then the above construction can be seen
as parsing of that tree . The sum of weights of
derivations in G then gives the weight of the tree
in G1. See Section 3 once more for a general way
to compute this weight, as the inside value of the
initial state of G, which is naturally (s™, ¢").

In order to do recognition of ¢, or in other words,
to determine whether G allows at least one deriva-
tion, the analysis from Figure 1 can be used, which
has time complexity O(|S| + |R1| - |S| + |R2]
+ |Rs| - |R4| - |S|), where |S| = O(n) is the
number of states of G, and the numbers of rules
are |[R1| = O(n), [Ro| = [Rs| = [R4| = O(n).
Note that |R;| = O(n) because we have assumed
that G, allows only one derivation of one tree ¢,



hence q¢ uniquely determines q1, ..., qy,. Over-
all, we obtain O(n?) steps, which concurs with a
known result about the complexity of TAG parsing
of trees, as opposed to strings (Poller and Becker,
1998).

Another special case is if WLIG G; simplifies
to a WRTG (i.e. the stacks of indices remain al-
ways empty), which means we compute the inter-
section of two weighted regular tree grammars G;
and Go. For recognition, or in other words to de-
cide non-emptiness of the intersection, we can still
use Figure 1, although now only inference rules
(b) and (d) are applicable (with a small refinement
to the algorithm we can block spurious application
of (a) where no rules exist that pop indices.) The
complexity is determined by (d), which requires
O(1G1] - Ga) steps.

5 Parameter estimation

PLIGs allow finer description of probability distri-
butions than PRTG, both over string languages and
over tree languages. However, the (string) pars-
ing complexity of regular tree grammars is O(n?)
and that of LIGs is O(n%). It may therefore be
preferable for reasons of performance to do pars-
ing with a PRTG even when a PTAGs or PLIG is
available with accurately trained probabilities. Al-
ternatively, one may do both, with a PRTG used
in a first phase to heuristically reduce the search
space.

This section outlines how a suitable PRTG G,
can be extracted out of a PLIG G, assuming the
underlying RTG G without weights is already
given. The tree language generated by G} may be
an approximation of that generated by G;. The ob-
jective is to make G as close as possible to G in
terms of probability distributions over trees. We
assume that gg is unambiguous, that is, for each
tree it generates, there is at most one derivation.

The procedure is a variant of the one described
by (Nederhof, 2005). The idea is that derivations
in G are mapped to those in G, via the trees in the
intersection of the two tree languages. The proba-
bility distribution of states and rules in G is esti-
mated based on the expected frequencies of states
and rules from G in the intersection.

Concretely, we turn the RTG gg into a PRTG
G4 that is obtained simply be assigning weight
one to all rules. We then compute the intersec-
tion grammar G as in Section 4.2. Subsequently,
the inside and outside values are computed for G,
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as explained in Section 3. The expected number of
occurrences of a rule in G of the form:

(80, qQ) [Oo] — A(

is given by multiplying the outside and inside
probabilities and the rule probability, as usual.
We get two terms however that we need to sum.
The intuition is that we must count both rule oc-
currences used for building initial TAG trees and
those used for building auxiliary TAG trees. This
gives:

w - v - out((s0,q0)) - H in((sk,qr)) +
k

w- - Z out((s0,90), (5,4)) -
in((sj,q;), (s,q)) - H in((sk, qr))
k#j

By summing these expected numbers for different
rules soloo] — A(si[] -+ sj—1]] sjloo] sjt1[]
-+~ 8ml]), we obtain the expected number of oc-
currences of g9 — A(q1---qm), Let us denote
this sum by E(qo — A(q1 - Gm)). By summing
these for fixed ¢, we obtain the expected number
of occurrences of g, which we denote by E(q).
The probability of g9 — A(q1 - - - @) in Go is then
set to be the ratio of E(q0 — A(q1---¢m)) and
E(qo)-

By this procedure, the Kullback-Leibler dis-
tance between G and G- is minimized. Although
the present paper deals with very different for-
malisms, the proof of correctness is identical to
that in (Nederhof, 2005). The reason is that in both
cases the mathematical analysis must focus on the
objects in the intersection (strings or trees) which
may correspond to multiple derivations in the orig-
inal model (here G;) but to a single derivation in
the unambiguous model to be trained (here Go),
and each derivation is composed of rules, whose
probabilities are to be multiplied.

6 Extensions

6.1 Transduction

For various formalisms describing (string or tree)
languages, there are straightforward generaliza-
tions that describe a relation between two or more



languages, which is known as a transduction. The
idea is that the underlying control mechanism,
such as the states in regular tree grammars or lin-
ear indexed grammars, is now coupled to two or
more surface forms that are synchronously pro-
duced. For example, a rule in a weighted syn-
chronous regular tree grammar (WSRTG) has the
form:

S0 — A(Sl T Sm)a B(Sﬂ'(l) T Sw(m)) <w>a

where 7 is a permutation of 1, .. ., m. We can gen-
eralize this to having a third label C' and a second
permutation 7/, in order to describe simultaneous
relations between three tree languages, etc. In this
section we will restrict ourselves to binary rela-
tions however, and call the first surface form the
input and the second surface form the output. For
synchronous tree adjoining grammars, see for ex-
ample (Shieber, 1994).

If we apply intersection on the input or on the
output of a synchronous grammar formalism, then
this is best seen as composition. This is well-
known in the case of finite-state transducers and
some forms of context-free transduction (Berstel,
1979), and application to a wider range of for-
malisms is gaining interest in the area of machine
translation (Knight, 2007).

With the intersection from Section 4.2 trivially
extended to composition, we can now implement
composition of the form:

71 9...0Tk,

where the different 7; are transducers, of which
k — 1 are (W)SRTGs and at most one is a
(weighted) synchronous LIG ((W)SLIG). The re-
sult of the composition is another (W)SLIG. It
should be noted that a (W)RTS (or (W)LIG) can
be seen as a (W)SRTG (or (W)SLIG, respectively)
that represents the identity relation on its tree lan-
guage.

6.2 Binarization

In the discussion of complexity in Section 4.1, we
assumed that rules are binary, that is, that they
have at most two states in each right-hand side.
However, whereas any context-free grammar can
be transformed into a binary form (e.g. Chomsky
normal form), the grammars as we have defined
them cannot be. We will show that this is to a large
extent a consequence of our definitions, which
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were motivated by presentational ease, rather than
by generality.

The main problem is formed by rules of the
form so — A(s1 ---Sm), Where m > 2. Such
long rules cannot be broken up into shorter rules
of the same form, as this would require an addi-
tional labelled vertex, changing the tree language.
An apparent solution lies in allowing branching
rules without any label, for example s; — s2 s3.
Regrettably this could create substantial computa-
tional problems for intersection of the described
tree languages. As labels provide the mechanism
through which to intersect tree languages, rules
of the above form are somewhat similar to unit
rules or epsilon rules in context-free grammars, in
that they are not bound to observable elements.
Branching rules furthermore have the potential
to generate context-free languages, and therefore
they are more pernicious to intersection, consider-
ing that emptiness of intersection of context-free
languages is undecidable.

It therefore seems better to restrict branching
rules s; — s2 s3 to finite-state power, for exam-
ple by making these rules exclusively left-linear
or right-linear. A more elegant but equivalent way
of looking at this may be to have rules of the form:

S0 — A(R),

where R is a regular language over states. In the
case of linear indexed grammars, we would have
rules of the form:

s[oo] — A(L s'[oc] R)

where £ and R are regular languages over expres-
sions of the form s[|. Appropriate weighted fi-
nite automata can be used to assign weights to se-
quences of such expressions in £ and R. With
these extended types of rules, our construction
from Section 4.2 still works. The key observation
here is that regular languages are closed under in-
tersection.

One of the implications of the above extended
definitions is that labels appear not only with-
out fixed ranks, as we have assumed from the
start in Section 2, but even without a bound on
the rank. Concretely, a vertex may appear with
any number of children in a tree. Whereas this
may be unconventional in certain areas of formal
language theory, it is a well-accepted practice in
the parsing of natural language to make the num-
ber of constituents of syntactic categories flexi-
ble and conceptually unbounded; see for example



(Collins, 1997). Also the literature on unranked
tree automata is very relevant; see for example
(Schwentick, 2007). Binarization for LIGs was
considered before by (Vijay-Shanker and Weir,
1993a).

6.3 Beyond TAGs

In the light of results by (Kepser and Monnich,
2006) it is relatively straightforward to consider
larger classes of linear context-free tree grammars
in place of tree-adjoining grammars, in order to
generalize the construction in Section 4.2.

The generalization described in what follows
seems less straightforward. Context-free lan-
guages can be characterized in terms of parse trees
in which path sets (sets of strings of labels on
paths from the root to a leaf) are regular. In the
case of tree adjoining languages, the path sets are
context-free. There is a hierarchy of classes of lan-
guages in which the third step is to consider path
sets that are tree adjoining languages (Weir, 1992).
In this paper, we have considered the parsing-as-
intersection paradigm for the first two members of
the hierarchy. It may be possible that the paradigm
is also applicable to the third and following mem-
bers. This avenue is yet to be pursued.

7 Conclusions

This paper has extended the parsing-as-
intersection paradigm from string languages
to tree languages. Probabilities, or weights in
general, were incorporated in this framework in a
natural way. We have discussed one particular ap-
plication involving a special case of the extended
paradigm.
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Abstract

We describe for dependency parsing an an-
notation adaptation strategy, which can au-
tomatically transfer the knowledge from
a source corpus with a different annota-
tion standard to the desiradrget parser,
with the supervision by target corpus an-
notated in the desired standard. Further-
more, instead of a hand-annotated one, a
projected treebank derived from a bilin-
gual corpus is used as the source cor-
pus. This benefits the resource-scarce
languages which haven't different hand-
annotated treebanks. Experiments show
that the target parser gains significant im-
provement over the baseline parser trained
on the target corpus only, when the target
corpus is smaller.

l'iuqun}@ct. ac.cn

to their translations, and the projected trees can be
leveraged to boost parsing. Many efforts are de-
voted to the research on projected treebanks, such
as (LU et al.,, 2002), (Hwa et al.,, 2005) and
(Ganchev et al., 2009), etc. Considering the fact
that a projected treebank partially inherits the En-
glish annotation standard, some hand-written rules
are designed to deal with the divergence between
languages such as in (Hwa et al., 2002). How-
ever, it will be more valuable and interesting to
adapt this divergence automatically and boost the
existing parsers with this projected treebank.

In this paper, we investigate the automatic anno-
tation adaptation strategy for Chinese dependency
parsing, where the source corpus for adaptation is
a projected treebank derived from a bilingual cor-
pus aligned to English with word alignment and
English trees. We also propose a novel, error-
tolerant tree-projecting algorithm, which dynam-

1 Introduction ically searches the project Chinese tree that has

Automatic annotation adaptation for sequence lathe largest consistency with the corresponding En-
beling (Jiang et al., 2009) aims to enhance lish tree, according to an alignment matrix rather
tagger with one annotation standard by transferthan a single alignment. Experiments show that
ring knowledge from a source corpus annotated ifvhen the target corpus is smaller, the projected
another standard. It would be valuable to adapphinese treebank, although with inevitable noise
this strategy to parsing, since for some Ianguage%aused by non-literal translation and word align-
there are also several treebanks with different an?ent error, can be successfully utilized and re-
notation standards, such as Chomskian-style perfyllt in significant improvement over the baseline
Treebank (Marcus et al., 1993) and HPSG LinGgnodel trained on the target corpus only.
Redwoods Treebank (Oepen et al., 2002) for En- In the rest of the paper, we first present the tree-
glish. However, we are not content with conduct-Projecting algorithm (section 2), and then the an-
ing annotation adaptation between existing differnotation adaptation strategy (section 3). After dis-
ent treebanks, because it would be more valuablgussing the related work (section 4) we show the
to boost the parsers also for the resource-scarc@Periments (section 5).
languages, rather than only for the resource-rictb Error-
ones that already have several treebanks.
Although hand-annotated treebanks are costly
and scarce, it is not difficult for many languages toPrevious works making use of projected cor-
collect large numbers of bilingual sentence-pairgus usually adopt the direct-mapping method for
aligned to English. According to the word align- structure projection (Yarowsky and Ngai, 2001;
ment, the English parses can be projected acrosdwa et al., 2005; Ganchev et al., 2009), where

Tolerant Tree-Projecting
Algorithm
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some filtering is needed to eliminate the inaccurate Similar to that in sequence labeling, the train-
or conflicting labels or dependency edges. Heréng corpus with the desired annotation standard is
we propose a more robust algorithm for depen<called thetarget corpus while the assistant cor-
dency tree projection. According to the align- pus annotated in a different standard is called
ment matrix, this algorithm dynamically searchesthe source corpus. For training, an intermediate
the projected Chinese dependency tree which hgsarser, called theource parser, is trained directly
the largest consistency with the corresponding Enen the source corpus and then used to parse the tar-
glish tree. get corpus. After that a second parser, called the
We briefly introduce the alignment matrix be- target parser, is trained on the target corpus with
fore describing our projecting algorithm. Given guide features extracted from the source parser’s
a Chinese sentendé;.,; and its English transla- parsing results. For testing, a token sequence is
tion 4.y, the alignment matrixd is anM x N first parsed by the source parser to obtain an inter-
matrix with each elemem,; ; denoting the proba- mediate parsing result with the source annotation
bility of Chinese wordC; aligned to English word standard, and then parsed by the target parser with
E;. Such structure potentially encodes many moréghe guide features extracted from the intermediate
possible alignments. parsing result to obtain the final result.
UsingC(T¢|Tk, A) to denote the degree of Chi-  The design of the guide features is the most im-
nese tred ¢ being consistent with English trég;  portant, and is specific to the parsing algorithm of
according to alignment matrit, the projecting al-  the target parser. In this work we adopt the max-
gorithm aims to find imum spanning tree (MST) algorithm (McDon-
5 ald et al., 2005; McDonald and Pereira, 2006) for
To = argTrgaXC(TC’TE ,4) (D) poth the source and the target parser, so the guide
features should be defined on dependency edges
C(Tc|Tg, A) can be factorized into each depen-in accordance with the edge-factored property of
dency edger — y in Tc, that is to say MST models. In the decoding procedure of the
target parser, the degree of a dependency edge be-
C(Te|Tp, A) = [ Celw—ylTe,4) inggsugported can bg adjusted bpy the rel);ltior?ship
rovele between this edge’s head and modifier in the in-
We can obtairC, by simple accumulation across termediate parsing result of the source parser. The
all possible alignments most intuitionistic relationship is whether the de-
pendency between head and modifier exists in this
Ce(w = y|Ts, 4) intermediate result. Such a bi-valued relationship
= Z Ay X Ay x 8(2' Y |Tk) (3) s similar to that in the stacking method for com-
1<a’ y'<|B| bining dependency parsers (Martins et al., 2008;
Nivre and McDonald, 2008). The guide features
are then defined as this relationship itself as well as

o ;L
only it * — y .eX'StS T .. its combinations with the lexical features of MST
The searching procedure, argmax operation N odels

equation 1, can be effectively solved by a simple .
9 ' y y pie, Furthermore, in order to explore more de-

bottom-up dynamic algorithm with cube-pruning tailed knowledge from the source parser, we re-
speed-up (Huang and Chiang, 2005). We omit the 9 P '

. . . define the relationship as a four-valued variable
detailed algorithm here due to space restrictions. . . ) o
which covers the following situationsparent-

3 Annotation Adaptation for child, child-parent, siblings and else. With the
Dependency Parsing guide features, the parameter tuning procedure of

. _ _ the target parser will automatically learn the regu-
The automatic annotation adaptation strategy fO[yity of using the source parser's intermediate re-

sequence labeling (Jiang et al., 2009) aims tQ i to guide its decision making.
strengthen a tagger trained on a corpus annotated

in one annotation standard with a larger assistany Related Works

corpus annotated in another standard. We can de-

fine the purpose of the automatic annotation adapMany works have been devoted to obtain pars-
tation for dependency parsing in the same way. ing knowledge from word aligned bilingual cor-

whered(z’,y/|Tg) is a 0-1 function that equals 1
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pora. (LU et al., 2002) learns Chinese bracket- 2"0?]‘:?6 __ P% on ggB 1] P% on 3;55
ing knowledge via ITG alignment; (Hwa et al., target pgrser 8356 8734
2005) and (Ganchev et al., 2009) induces depen- [baseline parsef 3203 | 37.15 |

dency grammar via projection from aligned En- . _

noise and some hand-designed rules to handle la#th CTB 1.0 and CTB 5.0 as the target corpus re-
guage heterogeneity. spectively, as well as of the baseline parsers (2nd-

Just recently, Smith and Eisner (2009) gaVeorder MST parsers trained on the target corpora).

an idea similar to ours. They perform depen-
dency projection and annotation adaptation with

Quasi-Synchronous Grammar (QG) Features. Al- § 085

though both related to projection and annotation, § 08

there are still important differences between these g '

two works. First, we design an error-tolerant & o075

alignment-matrix-based tree-projecting algorithm % baseline —
to perform whole-tree projection, while they re- § 0.7 |~ targetparser ——x-— _

sort to QG features to score local configurations 100 1000 10000
of aligned source and target trees. Second, their
adaptation emphasizes to transform a tree from
one annotation standard to another, while oufFigure 1: Performance of the target parsers with
adaptation emphasizes to strengthen the parser ugrget corpora of different scales.

ing a treebank annotated in a different standard.

sentence count of target corpus

rithm (Collins, 2002). The development set of
CTB is also used to determine the best model for

The source corpus for annotation adaptation, thahe source parser, conditioned on the hypothesis
is, the projected Chinese treebank, is derived fron®f larger isomorphisme between Chinese and En-
5.6 millions LDC Chinese-English sentence pairsglish.
The Chinese side of the bilingual corpus is word- Table 1 shows that the experimental results of
segmented and POS-tagged by an implementatiomnnotation adaptation, with CTB 1.0 and CTB 5.0
of (Jiang et al., 2008), and the English sentenceas the target corpus respectively. We can see that
are parsed by an implementation of (McDonaldthe source parsers, directly trained on the source
and Pereira, 2006) which is instead trained on WSg@orpora of projected trees, performs poorly on
section of Penn English Treebank (Marcus et al.poth CTB test sets (which are in fact the same).
1993). The alignment matrixes for sentence pairg his is partly due to the noise in the projected tree-
are obtained according to (Liu et al., 2009). Thebank, and partly due to the heterogeneous between
English trees are then projected across to Chinedbe CTB trees and the projected trees. On the
using the algorithm in section 2. Out of these pro-contrary, automatic annotation adaptation effec-
jected trees, we only select 500 thousands witlively transfers the knowledge to the target parsers,
word count/ s.t. 6< [ < 100 and with project- achieving improvement on both target corpora.
ing confidence: = C(T¢|Tk, A)'/! s.t.c > 0.35. Especially on CTB 1.0, an accuracy increment of
While for the target corpus, we take Penn Chinesd..3 points is obtained over the baseline parser.
Treebank (CTB) 1.0 and CTB 5.0 (Xue et al., We observe that for the much larger CTB 5.0,
2005) respectively, and follow the traditional cor- the performance of annotation adaptation is much
pus splitting: chapters 271-300 for testing, chapiower. To further investigate the adaptation perfor-
ters 301-325 for development, and else for trainmances with target corpora of different scales, we
ing. conduct annotation adaptation on a series of tar-
We adopt the 2nd-order MST model (McDon- get corpora which consist of different amount of
ald et al.,, 2005) as the target parser for bettedependency trees from CTB 5.0. Curves in Fig-
performance, and the 1st-order MST model asire 1 shows the experimental results. We see that
the source parser for fast training. Both the twothe smaller the training corpus is, the more signif-
parsers are trained with averaged perceptron algdeant improvement can be obtained. For example,

5 Experiments
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with a target corpus composed of 2K trees, nearl\Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
2 points of accuracy increment is achieved. This Cabezas, and Okan Kolak. 2005. Bootstrapping

is a good news to the resource-scarce languages parsers via syntactic pr_oject_ion across parallel texts.
" In Natural Language Engineering, volume 11, pages

. 311-325.
6 Conclusion and Future Works

_ _ _ Wenbin Jiang, Liang Huang, Yajuan L, and Qun Liu.
This paper describes for dependency parsing an 2008. A cascaded linear model for joint chinese
automatic annotation adaptation strategy. What Wword segmentation and part-of-speech tagging. In
is more important, we use a projected treebank, Froceedingsof the ACL.
rather than a hand-annotated one, as the sourtgenbin Jiang, Liang Huang, and Qun Liu. 2009. Au-
corpus for adaptation. This is quite different from tomatic adaptation of annotation standards: Chinese

; ; word segmentation and pos tagging—a case study. In
previous works on projected trefas (Hwa et al., Proceedings of the 47th ACL.
2005; Ganchev et al., 2009), and is also more valu-
able than previous works of annotation adaptation’ a\f)\? !—'Ei Eanl_XIa, let]yantXIaO,fandtQt_Wt]_ LllIJ- 20%9-

. . . eignted alignment matrices 1or statistical macnine
(Jiang et aI.., 2.009)' Experiments Sho‘f" that this translation. IrProceedings of the EMNLP.
strategy gains improvement over baseline parsers o
with target corpora of different scales, especiallyYajuan Li, Sheng Li, Tiejun Zhao, and Muyun Yang.

: : 02. Learning chinese bracketing knowledge
the smaller ones. This provides a new strategy for based on a bilingual language model. Rroceed-

resource-scarce languages to train high-precision jngs of the COLING.

dependency parsers. In the future, we will adapt chell P. M Beatrice Santorini. and Mary A
- - . o itchell P. Marcus, Beatrice Santorini, and Mary Ann
this strategy to constituent parsing, which is moré" Marcinkiewicz. 1993. Building a large annotated

challenging and interesting due to the complexity ¢orpus of english: The penn treebank.Gamputa-
of projection between constituent trees, and due tional Linguistics.

to the obscurity of annotation adaptation for CON-7 dre E. T, Martins, Dipanjan Das, Noah A. Smith, and

stituent parsing. Eric P. Xing. 2008. Stacking dependency parsers.
In Proceedings of EMNLP.
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Abstract

We present a biparsing algorithm for
Stochastic Bracketing Inversion Transduc-
tion Grammars that runs in O(bn?) time
instead of O(n%). Transduction gram-
mars learned via an EM estimation proce-
dure based on this biparsing algorithm are
evaluated directly on the translation task,
by building a phrase-based statistical MT
system on top of the alignments dictated
by Viterbi parses under the induced bi-
grammars. Translation quality at different
levels of pruning are compared, showing
improvements over a conventional word
aligner even at heavy pruning levels.

1 Introduction

As demonstrated by Saers & Wu (2009) there
is something to be gained by applying structural
models such as Inversion Transduction Grammars
(ITG) to the problem of word alignment. One is-
sue is that naive methods for inducing ITGs from
parallel data can be very time consuming. We in-
troduce a parsing algorithm for inducing Stochas-
tic Bracketing ITGs from parallel data in O(bn?)
time instead of O(n%), where b is a pruning param-
eter (lower = tighter pruning). We try out different
values for b, and evaluate the results on a transla-
tion tasks.

In section 2 we summarize the ITG framework;
in section 3 we present our algorithm, whose time
complexity is analyzed in section 4. In section 5
we describe how the algorithm is evaluated, and in
section 6, the empirical results are given.

2 Inversion Transduction Grammars

Inversion transductions are a theoretically inter-
esting and empirically useful equivalence class of
transductions, with expressiveness and computa-
tional complexity characteristics lying intermedi-
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ate between finite-state transductions and syntax-
directed transductions. An Inversion Transduc-
tion Grammar (ITG) can be used to synchronously
generate sentence pairs, synchronously parse sen-
tence pairs, or transduce from a sentence in one
language to a sentence in another.!

The equivalence class of inversion transduc-
tions can be described by restricting Syntax-
Directed Transduction Grammars (SDTG)? in var-
ious equivalent ways to the special cases of (a) bi-
nary SDTGs, (b) ternary SDTGs, or (¢c) SDTGs
whose transduction rules are restricted to straight
and inverted permutations only.

Thus on one hand, any binary or ternary SDTG
is an ITG. Conversely, any ITG can be stated in
binary two-normal form (Wu, 1997). Only three
kinds of rules are present in the normal form:

A — [BC]
A — (BC)
A eff

On the other hand, under characterization (c),
what distinguishes I'TGs is that the permutation of
constituents is restricted in such a way that all chil-
dren of a node must be read either left-to-right, or
right-to-left. The movement only applies to one of
the languages, the other is fixed. Formally, an ITG
isatuple (N, V, A, S), where N is a set of nonter-
minal symbols, A is a set of rewrite rules, S € N
is the start symbol and V' C Vg x VF is a set of
biterminal symbols, where Vg is the vocabulary of
F and VF is the vocabulary of F'. We will write a
biterminal as e/ f, where e € Vg and f € V. A
sentence pair will be written as e/f, and a bispan
as es..t/fu..v-

Each rule 6 € A is a tuple (X,~,0) where
X € N is the right hand side of the rule, v €

'All transduction grammars (a.k.a. synchronous gram-
mars, or simply bigrammars) can be interpreted as models
for generation, recognition, or transduction.

2SDTGs (Lewis & Stearns (1968); Aho & Ullman (1969),
(1972)) are also recently called synchronous CFGs.
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{N U V}* is a series of nonterminal and biter-
minal symbols representing the production of the
rule and 6 € {0, [], ()} denotes the orientation (ax-
iomatic, straight or inverted) of the rule. Straight
rules are read left-to-right in both languages, while
inverted rules are read left-to-right in £ and right-
to-left in F'. The direction of the axiomatic rules is
undefined, as they must be completely made up of
terminals. For notational convenience, the orien-
tation of the rule is written as surrounding the pro-
duction, like so: X — v, X — [y] and X — (v).
The vocabularies of the languages may both in-
clude the empty token e, allowing for deletions
and insertions. The empty biterminal, €/e is not
allowed.

2.1 Stochastic ITGs

In a Stochastic ITG (SITG), each rule is also asso-
ciated with a probability, such that

d Pr(X —qy) =1

v

for all X € N. The probability of a deriva-
tion S = e/f is defined as the production of
the probabilities of all rules used. As shown by
Wu (1995), it is possible to fit the parameters of
a SITG to a parallel corpus via EM (expectation-
maximization) estimation.

2.2 Bracketing ITGs

An ITG where there is only one nonterminal (other
than the start symbol) is called a bracketing ITG
(BITG). Since the one nonterminal is devoid of
information, it can only be used to group its chil-
dren together, imposing a bracketing on the sen-
tence pairs.

3 Parsing SBITGs

In this section we present a biparsing algorithm
for Stochastic Bracketing Inversion Transduction
Grammars (SBITGs) in normal form which incor-
porates a pruning parameter b. The algorithm is
basically an agenda-based bottom-up chart parser,
where the pruning parameter controls the number
of active items of a given length.

To parse a sentence pair e/f, the parser needs
a chart C and a series of T" + V agendas
Ay, Ao, ..., Apiy, where T = |e| and V = [f].
An item is defined as a nonterminal symbol (we
use X to denote the anonymous nonterminal sym-
bol of the bracketing ITG) and one span in each
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language, written as Xgz, Where 0 < s <t < T
corresponds to the spane; ;and 0 < u < v <V
corresponds to the span f, ,. The length of an
item is defined as | X s¢u0| = (t—s)+(v—u). Since
items are grouped by their length, highly skewed
links (eg. 6:1) will be competing with very even
links (eg. 4:3). Skewed links are generally bad
(and should be pruned), or have a high probability
(which means they are likely to survive pruning).
An item may be active or passive, the active items
are present in the agendas and the chart, whereas
the passive items are only present in the chart.

The parser starts by asserting items from all lex-
ical rules (X — e/ f), and placing them on their
respective agendas. After the initial seeding, the
agendas are processed in order. When an agenda
is processed, it is first pruned, so that only the b
best items are kept active. After pruning, the re-
maining active items are allowed to be extended.
When extended, the item combines with an adja-
cent item in the chart to form a larger item. The
newly created item is considered active, and added
to both the chart and the appropriate agenda. Once
an item has been processed it goes from being ac-
tive to being passive. The process is halted when
the goal item Syroy is reached, or when no active
items remain. To build the forest corresponding to
the parse process, back-pointers are used.

3.1 Initialization

In the initial step, the set of lexical items L is built.
All lexical items ¢ € L are then activated by plac-
ing them on their corresponding agenda Aj;).

0<s<t<T,
0<u<ov<V,
X — es..t/fu‘.v €A

By limiting the length of phrasal terminals to some
threshold g, the variables ¢ and v can be limited to
s+ and u+p respectively, limiting the complexity
of the initialization step from O(n?) to O(n?).

L= Xstuv

3.2 Recursion

In the recursive step we build a set of extensions
E(i) for all active items ¢. All items in F(7)
are then activated by placing them on their cor-
responding agenda (2 € Aj;)).

E(Xstuv) —
{XSth‘OSSS&OSUSU;XSSUu EC} U
{XsSuU|t§S§T7U§US‘/aXtSvUec} U
{XSSUv’tSSSTaOSUSUaXtSUuGC} U
{XStUU|O§S§SuUSU§‘/vXSSUU € C}



Since we are processing the agendas in order, any
item in the chart will be as long as or shorter than
the item being extended. This fact can be exploited
to limit the number of possible siblings explored,
but has no impact on time complexity.

3.3 Viterbi parsing

When doing Viterbi parsing, all derivations but
the most probable are discarded. This gives an
unambiguous parse, which dictates exactly one
alignment between e and f. The alignment of
the Viterbi parse can be used to substitute that of
other word aligners (Saers and Wu, 2009) such as
GIZA++ (Och and Ney, 2003).

4 Analysis

Looking at the algorithm, it is clear that there will
be a total of 7'+ V' = O(n) agendas, each con-
taining items of a certain length. The items in an
agenda can start anywhere in the alignment space:
O(n?) possible starting points, but once the end
point in one language is set, the end point in the
other follows from that, adding a factor O(n).
This means that each agenda contains O(n?) ac-
tive items. Each active item has to go through all
possible siblings in the recursive step. Since the
start point of the sibling is determined by the item
itself (it has to be adjacent), only the O(n?) pos-
sible end points have to be explored. This means
that each active item takes O(n?) time to process.

The total time is thus O(n®): O(n) agendas,
containing O(n3) active items, requiring O(n?)
time to process. This is also the time complex-
ity reported for ITGs in previous work (Wu, 1995;
Wu, 1997).

The pruning works by limiting the number of
active items in an agenda to a constant b, meaning
that there are O(n) agendas, containing O(b) ac-
tive items, requiring O(n?) time to process. This
gives a total time complexity of O(bn?).

5 Evaluation

We evaluate the parser on a translation task
(WMT’08 shared task®). In order to evaluate on
a translation task, a translation system has to be
built. We use the alignments from the Viterbi
parses of the training corpus to substitute the
alignments of GIZA++. This is the same approach
as taken in Saers & Wu (2009). We will evalu-
ate the resulting translations with two automatic

*http://www.statmt.org/wmt08/
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metrics: BLEU (Papineni et al., 2002) and NIST
(Doddington, 2002).

6 Empirical results

In this section we describe the experimental setup
as well as the outcomes.

6.1 Setup

We use the Moses Toolkit (Koehn et al., 2007) to
train our phrase-based SMT models. The toolkit
also includes scripts for applying GIZA++ (Och
and Ney, 2003) as a word aligner. We have
trained several systems, one using GIZA++ (our
baseline system), one with no pruning at all, and
6 different values of b (1, 10, 25, 50, 75 and
100). We used the grow—diag—-final-and
method to extract phrases from the word align-
ment, and MERT (Och, 2003) to optimize the re-
sulting model. We trained a 5-gram SRI language
model (Stolcke, 2002) using the corpus supplied
for this purpose by the shared task organizers. All
of the above is consistent with the guidelines for
building a baseline system for the WMT’ 08 shared
task.

The translation tasks we applied the above
procedure to are all taken from the Europarl
corpus (Koehn, 2005). We selected the tasks
German-English, French-English and Spanish-
English. Furthermore, we restricted the training
sentence pairs so that none of the sentences ex-
ceeded length 10. This was necessary to be able to
carry out exhaustive search. The total amount of
training data was roughly 100,000 sentence pairs
in each language pair, which is a relatively small
corpus, but by no means a toy example.

6.2 Grammar induction

It is possible to set the parameters of a SBITG
by applying EM to an initial guess (Wu, 1995).
As our initial guess, we used word co-occurrence
counts, assuming that there was one empty token
in each sentence. This gave an estimate of the lex-
ical rules. The probability mass was divided so
that the lexical rules could share half of it, while
the other half was shared equally by the two struc-
tural rules (X — [X X]and X — (X X)).

Several training runs were made with different
pruning parameters. The EM process was halted
when a relative improvement in log-likelihood of
103 was no longer achieved over the previous it-
eration.



Baseline Different values of b for SBITGs

Metric | (GIZA++) oo | 100 | 75 ] 50 ] 25 ] 10 | 1
Spanish-English

BLEU 0.2597 0.2663 0.2671 0.2661 0.2653 0.2655 0.2608 0.1234

NIST 6.6352 6.7407 6.7445 6.7329 6.7101 6.7312 6.6439 3.9705

time 03:20:00 | 02:40:00 | 02:00:00 | 01:20:00 | 00:38:00 | 00:17:00 | 00:03:10
German-English

BLEU 0.2059 0.2113 0.2094 0.2091 0.2090 0.2091 0.2050 0.0926

NIST 5.8668 5.9380 5.9086 5.8955 5.8947 5.9292 5.8743 3.4297

time 03:40:00 | 02:45:00 | 02:10:00 | 01:25:00 | 00:41:00 | 00:17:00 | 00:03:20
French-English

BLEU 0.2603 0.2663 0.2655 0.2668 0.2669 0.2654 0.2632 0.1268

NIST 6.6907 6.8151 6.8068 6.8068 6.8065 6.7013 6.7136 4.0849

time 03:10:00 | 02:45:00 | 02:10:00 | 01:25:00 | 00:42:00 | 00:17:00 | 00:03:25

Table 1: Results. Time measures are approximate time per iteration.

Once the EM process terminated, Viterbi parses
were calculated for the training corpus, and the
alignments from them outputted in the same for-
mat produced by GIZA++.

6.3 Results

The results are presented in Table 1. GIZA++
generally terminates within minutes (6—7) on the
training corpora used, making it faster than any
of the SBITGs (they generally required 4-6 iter-
ations to terminate, making even the fastest ones
slower than GIZA++). To put the times in per-
spective, about 6 iterations were needed to get
the ITGs to converge, making the longest training
time about 16—17 hours. The time it takes to ex-
tract the phrases and tune the model using MERT
is about 14 hours for these data sets.

Looking at translation quality, we see a sharp
initial rise as b grows to 10. At this point the
SBITG system is on par with GIZA++. It con-
tinues to rise up to b = 25, but after that is more or
less levels out. From this we conclude that the pos-
itive results reported in Saers & Wu (2009) hold
under harsh pruning.

7 Conclusions

We have presented a SBITG biparsing algorithm
that uses a novel form of pruning to cut the com-
plexity of EM-estimation from O(n®) to O(bn?).
Translation quality using the resulting learned
SBITG models is improved over using conven-
tional word alignments, even under harsh levels of
pruning.

Acknowledgments

The authors are grateful for the comments made by the two anonymous review-
ers. This work was funded by the Swedish National Graduate School of Lan-
guage Technology, the Defense Advanced Research Projects Agency (DARPA)

32

under GALE Contract No. HR0011-06-C-0023, and the Hong Kong Research
Grants Council (RGC) under research grants GRF621008, DAG03/04.EG09,
RGC6256/00E, and RGC6083/99E. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the Defense Advanced Research Projects
Agency.

References

Alfred V. Aho and Jeffrey D. Ullman. 1969. Syntax-directed translations
and the pushdown assembler. Journal of Computer and System Sciences,
3(1):37-56.

Alfred V. Aho and Jeffrey D. Ullman. 1972. The Theory of Parsing, Transla-
tion, and Compiling (Volumes 1 and 2). Prentice-Halll, Englewood Cliffs,
NJ.

George Doddington. 2002. Automatic evaluation of machine translation qual-
ity using n-gram co-occurrence statistics. In Human Language Technology
conference (HLT-2002), San Diego, CA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open source toolkit for statistical machine trans-
lation. In ACL-2007 Demo and Poster Sessions, pages 177-180, Prague,
Jun.

Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine trans-
lation. In Machine Translation Summit X, Phuket, Thailand, September.

Philip M. Lewis and Richard E. Stearns. 1968. Syntax-directed transduction.
Journal of the Association for Computing Machinery, 15(3):465-488.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various
statistical alignment models. Computational Linguistics, 29(1):19-52.

Franz Josef Och. 2003. Minimum error rate training in statistical machine
translation. In 41st Annual Meeting of the Association for Computational
Linguistics, pages 160—167, Sapporo, Japan, Jul.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A method for automatic evaluation of machine translations. In 40th Annual
Meeting of the Association for Computational Linguistics (ACL-2002),
pages 311-318, Philadelphia, Jul.

Markus Saers and Dekai Wu. 2009. Improving phrase-based translation via
word alignments from Stochastic Inversion Transduction Grammars. In
Proceedings of SSST-3, Third Workshop on Syntax and Structure in Statis-
tical Translation (at NAACL HLT 2009), pages 28-36, Boulder, CO, Jun.

Andreas Stolcke. 2002. SRILM - an extensible language modeling toolkit.
In International Conference on Spoken Language Processing, Denver, CO,
Sep.

Dekai Wu. 1995. Trainable coarse bilingual grammars for parallel text brack-
eting. In Third Annual Workshop on Very Large Corpora (WVLC-3), pages
69-81, Cambridge, MA, Jun.

Dekai Wu. 1997. Stochastic Inversion Transduction Grammars and bilingual
parsing of parallel corpora. Computational Linguistics, 23(3):377-404,
Sep.



Empirical lower bounds on translation unit error rate for th e full class of
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Abstract

Empirical lower bounds studies in which
the frequency of alignment configurations
that cannot be induced by a particular for-
malism is estimated, have been important
for the development of syntax-based ma-
chine translation formalisms. The for-
malism that has received most attention
has been inversion transduction grammars
(ITGs) (Wu, 1997). All previous work
on the coverage of ITGs, however, con-
cerns parse failure rates (PFRs) or sen-
tence level coverage, which is not di-
rectly related to any of the evaluation mea-
sures used in machine translation. Sggaard
and Kuhn (2009) induce lower bounds on
translation unit error rates (TUERS) for a
number of formalisms, incl. normal form
ITGs, but not for the full class of ITGs.
Many of the alignment configurations that
cannot be induced by normal form ITGs
can be induced by unrestricted ITGs, how-
ever. This paper estimates the difference
and shows that the average reduction in
lower bounds on TUER is 2.48 in absolute
difference (16.01 in average parse failure
rate).

Introduction

Dekai Wu
Human Language Technology Center

Hong Kong Univ. of Science and Technology

dekai@cs.ust.hk

While it is easy to estimate the consequences of
restrictions ton-grams of limited size, it is less
trivial to estimate the consequences of the struc-
tural constraints imposed by syntax-based ma-
chine translation formalisms. Consequently, much
work has been devoted to this task (Wu, 1997,
Zens and Ney, 2003; Wellington et al., 2006;
Macken, 2007; Sggaard and Kuhn, 2009).

The task of estimating the consequences of
the structural constraints imposed by a particular
syntax-based formalism consists in finding what is
often called “empirical lower bounds” on the cov-
erage of the formalism (Wellington et al., 2006;
Sggaard and Kuhn, 2009). Gold standard align-
ments are constructed and queried in some way
as to identify complex alignment configurations,
or they are parsed by an all-accepting grammar
such that a parse failure indicates that no align-
ment could be induced by the formalism.

The assumption in this and related work that en-
ables us to introduce a meaningful notion of align-
ment capacity is that simultaneously recognized
words are aligned (Wu, 1997; Zhang and Gildea,
2004; Wellington et al., 2006; Sggaard and Kuhn,
2009). As noted by Sggaard (2009), this defi-
nition of alignment has the advantageous conse-
guence that candidate alignments can be singled
out by mere inspection of the grammar rules. It
also has the consequence that alignments are tran-
sitive (Goutte et al., 2004), since simultaneity is

The first stage in training a machine translationtransitive.

system is typically that of aligning bilingual text.

While previous work (Sggaard and Kuhn, 2009)

The quality of alignments is in that case of vi- has estimated empirical lower bounds for normal
tal importance to the quality of the induced trans-form ITGs at the level of translation units (TUER),
lation rules used by the system in subsequenor cepts (Goutte et al., 2004), defined as maxi-
stages. In string-based statistical machine trangnally connected subgraphs in alignments, nobody
lation, the alignment space is typically restrictedhas done this for the full class of ITGs. What
by then-grams considered in the underlying lan-is important to understand is that while normal
guage model, but in syntax-based machine trandgorm ITGs can induce the same class of transla-
lation the alignment space is restricted by ventions as the full class of ITGs, they dwotinduce
different and less transparent structural contraintshe same class of alignments. They do not, for ex-
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ample, induce discontinuous translation units (se@ Experiments
Sect. 3). Sect. 2 briefly presents some related re-

sults in the literature. Some knowledge about for-AS already mentioned empirical lower bounds

. . . L studies differ in four important respects, namely
malisms used in machine translation is assumed. ) h
wrt.: (i) whether they use hand-aligned or auto-

2 Related work matically aligned gold standards, (ii) the level at

which they count failures, e.g. sentence, align-
Aho and Ullman (1972) showed that 4-ary syn-ment or translation unit level, (i) whether they
chronous context-free grammars (SCFGs) coulghterpret translation units disjunctively or conjunc-
not be binarized, and Satta and Peserico (2005}vely, and (iv) whether they induce the lower
showed that the hiearchy of SCFGs beyond ternaryqonds (a) by running an all-accepting grammar
ones does not collapse; they also showed that thg, the gold standard data, (b) by logical charac-
complexity of the universal recognition problem terization of the structures that can be induced by
for SCFGs is NP-complete. [TGs on the otherg formalism, or (c) by counting the frequency of
hand has a0(|G|n°) solvable universal recog- complex alignment configurations. The advantage
nition problem, which coincides with the unre- of (3) and (b) is that they are guaranteed to find the
stricted alignment problem (Sggaard, 2009). Th&jghest possible lower bound on the gold standard
result extends to decoding in conjunction with agata  whereas (c) is more modular (formalism-
bigram language model (Huang et al., 2005).  jngependent) and actually tells us what configu-

Wu (1997) introduced ITGs and normal form (ations cause trouble.

ITGs. ITGs are a notationa! variant of the s_ub— (i) In this study we use hand-aligned gold stan-
class of SCFGs such that all indexed nonterminalgjgyq data. It should be obvious why this is prefer-
in the source side of the RHS occur in the sam@pje to automatically aligned data. The only rea-
order or exactly in the inverse order in the targeison that some previous studies used automatically

SCFGs defines the same set of translations that c@yme py. This study uses the data also used by

be defined by binary SCFGs. The different formss;agaard and Kuhn (2009), which to the best of
of production rules are listed below with the more g, knowledge uses the largest collection of hand-
restricted normal form production rules in the right aligned parallel corpora used in any of these stud-
column, with¢ € (NU{e/f |e € T*,f € T"})"  jes. (ii) Failures are counted at the level of trans-
(N nonterminals and” terminals, as usual). The |ation units as argued for in the above, but sup-
RHS operator | preserves source language con-plemented by parse failure rates for completeness.
stituent order in the target language, whilere- (i) Since we count failures at the level of transla-

verses It. tion units, it is natural to interpret them conjunc-
ﬁ - E‘Q ;‘1 - Eg% tively. Otherwise we would in reality count fail-
A = eff ures at the level of alignments. (iv) We use (c).

Several studies have adressed the alignment ca--_rhe conjunctive interpretation of transl_a tion
pacity of ITGs and normal form ITGs. Zens and units was also adopted by Fox (2002) and is mo-

Ney (2003) induce lower bounds on PRFs for;tjl\_/ated _by the |mporFance pf tlranslatlonhl_mlts and
normal form ITGs. Wellington et al. (2006) in- iscontinuous ones in particular to machine trans-

duce lower bounds on PRFs for ITGs. S;agaaré:t'on n dgelzjneral z(ggg-ar& ar|1(d cog%%%gegh _2305;

and Kuhn (2009) induce lower bounds on TUERZégg aln b _ofrr, ; Macken, ' Ieber,

for normal form ITGs and more expressive for- )- In brief,

malisms for syntax-based machine translation. No TUER= 1 _ 2lSuNGu]

one has, however, to the best our knowledge in- |Sul+|Gul

duced lower bounds on TUER for ITGs. _ o

mer argues that our definition of full ITGs is whereGy are the tranSIatl(.)n umts.‘ in the QOId stan-

not equivalent to the definition in Wu (1997), which, in the dard, andSy the translation units produced by

reviewer’s words, allows “at most one lexical item from eachthe system. This evaluation measure is related to

language”. Sect. 6 of Wu (1997), however, explicitly eneour (Fonsistent phrase error rate (CPER) introduced in

ages lexical elements in rules to have more than one lexical .

item in many cases. Ayan and Dorr (2006), except that it does not only
consider contiguous phrases.
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3.1 Data different sides, i.eD has a gap in the source side

The characteristics of the hand-aligned gold stanthat contains at least one token in and £ has
dard parallel corpora used are presented in Figd 9apP In the target side that contains at least one
ure 1. The Danish-Spanish text is part oftoken inD. Here's an example of a bonbon con-
the Copenhagen Dependency Treebank (Paroljguration frpm Simard et al. (2005):
English-German is from Pado and Lapata (2006 Plerre  ne  mange pas

g pata ( ) ——

(Europarl), and the six combinations of English, Pierre does not eat

French, Portuguese and Spanish are documentgytigap DTUs with mixed transfer are, as al-
in Graca et al. (2008) (Europarl). ready mentioned multigap DTUs with crossing

3.2 Alignment configurations alignments from material in two distinct gaps.

The full class of ITGs induces many alignment3.3 Results

configurations that normal form ITGs do not in- The |ower bounds on TUER for the full class of
duce, incl. discontinuous translation units (DTUS),|ITGs are obtained by summing the ratios of inside-
I.e. translation units with at least one gap, doubleq;t alignments, cross-serial DTUs, bonbons and
sided DTUs, i.e. DTUs with both a gap in the mixed order multigap DTUs, subtracting any over-
source side and a gap in the target side, and multjzp petween these classes of configurations. The
gap DTUs with arbitrarily many gaps (as long asjower bounds on TUER for normal form ITGs
the contents in the gap are either respect the lineaym ratios of inside-out aligments and DTUs sub-
order of the source side or the inverted order). tracting any overlap. Figure 1 presents the ratio
ITGs donot induce (i) inside-out alignments, (x100), and Figure 2 presents the induced lower
(ii) cross-serial DTUs, (iii) whatis called the "bon- pounds on the full class of ITGs and normal form
bon” configuration below, and (iv) multigap DTUs |TGs. Any two configurations diffeon all trans-
with mixed order in the target side. The reader iSation unitsin order to count as two distinct con-
referred to Wu (1997) for discussion of inside-outfigurations in these statistics. Otherwise a single
alignments. (i) and (jii) are explained below. translation unit could be removed to simplify two

3.2.1 Induced configurations or more configurations.

DTUs are easily induced by unrestricted ITG pro-4 Djscussion

ductions, while they cannot be induced by pro- .
ductions in normal form. The combination of the The usefulness of alignment error rate (AER) (Och

production rulesd — [¢/ne B nothing/pas and and Ney, 2000) has been questioned lately (Fraser
B — [change/modifie for example, induces a and Marcu, 2007); most |mpo_rtantly, AE_R does
DTU with a gap in the French side for the pair of pot alwayg seem to correlate with tran§lat|on qual-
substrings/change nothing, ne modifie pas ity. TUER is I|I_<ely to correlgtg _better with transl_a—
Multigap DTUs with up to three gaps are fre- tion quality, since it by definition correlates with
quent (Sggaard and Kuhn, 2009) and have showfrPER (Ayan and Dorr, 2006). No large-scale
to be important for translation quality (Simard and€XPeriment has been done yet to estimate the
colleagues, 2005). While normal form ITGs do Strength of this correlation. _
not induce multigap DTUs, ITGs induce a partic- Our study also relies on the assumption that

ular subclass of multigap DTUs, namely those thafiMmulatenously recognized words are aligned in
are constructed by linear or inverse interpolation. Pilingual parsing. The relationship between pars-
ing and alignment can of course be complicated in

3.2.2 Non-induced configurations ways that will alter the alignment capacity of ITG
Inside-out alignments were first described by and its normal form; on some definitions the two
Wu (1997), and their frequency has been a matformalisms may even become equally expressive.
ter of some debate (Lepage and Denoual, 2005; _
Wellington et al., 2006; Segaard and Kuhn, 2009)> Conclusion

Cross-serial DTUsare made of two DTUs non- |t was shown that the absolute reduction in average

contiguous to the same side such that both havgwer bound on TUER is 2.48 for the full class of

material in the gap of each otheBonbonsare |TGs over its canonical normal form. For PRF, it
similar, except the DTUs are non-contiguous tojs 16.01.
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Snts TUs| IOAs DTUs CDTUs Bonbons MIX-DTUs
Da-Sp | 926 6441 0.56 9.16 0.81 0.16 0.23
En-Fr | 100 869| 0.23 2.99 0.12 0.23 0.23
En-Ge | 987 17354| 1.75 5.55 0.45 0.05 0.79
En-Po | 100 783| 0.26 2.17 0.00 0.00 0.38
En-Sp | 100 831| 0.48 1.32 0.00 0.00 0.36
Po-Fr | 100 862| 0.23 3.13 0.58 0.00 0.46
Po-Sp | 100 882| 0.11 0.90 0.00 0.00 0.00
Sp-Fr | 100 914| 0.11 2.95 0.55 0.00 0.22

Figure 1:Characteristics of the parallel corpora and frequency ofigarations (I%_s x 100).

ITGs NF-ITGs

LB-TUER LB-PFR Ovip(TUs) Ovlp(Snts) LB-TUER PFR Ovlp(TUs) Ovlp(Snts)
Da-Sp | 1.58 10.37 11 10 8.54 40.50 76 32
En-Fr | 0.69 6.00 1 1| 2.88 22.00 3 2
En-Ge | 2.75 47.32 49 421 5.24 69.30 357 236
En-Po | 0.64 5.00 0 0| 2.43 19.00 0 0
En-Sp | 0.84 7.00 0 0| 1.80 15.00 0 0
Po-Fr | 1.04 9.00 2 2| 3.36 24.00 0 0
Po-Sp | 0.11 1.00 1 1| 0.90 8.00 1 1
Sp-Fr | 0.77 7.00 1 1| 3.06 23.00 0 0
AV 1.05 11.59 3.53 27.60

Figure 2: Induced lower bounds for ITGs and normal form ITGs (NF-ITGsB-TUER lists the lower bounds on TUER.
LB-PFR lists the lower bounds on parse failure rates. Rn#ile third and fourth columns list configuration overlapshe
level of translation units, resp. sentences.
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Abstract

Most cellular telephones use numeric key-
pads, where texting is supported by dic-
tionaries and frequency models. Given a
key sequence, the entry system recognizes
the matching words and proposes a rank-
ordered list of candidates. The ranking
quality is instrumental to an effective en-
try.

This paper describes a new method to en-
hance entry that combines syntax and lan-
guage models. We first investigate com-
ponents to improve the ranking step: lan-
guage models and semantic relatedness.
We then introduce a novel syntactic model
to capture the word context, optimize
ranking, and then reduce the number of
keystrokes per character (KSPC) needed
to write a text. We finally combine this
model with the other components and we
discuss the results.

We show that our syntax-based model
reaches an error reduction in KSPC of
12.4% on a Swedish corpus over a base-
line using word frequencies. We also show
that bigrams are superior to all the other
models. However, bigrams have a mem-
ory footprint that is unfit for most devices.
Nonetheless, bigrams can be further im-
proved by the addition of syntactic mod-
els with an error reduction that reaches
29.4%.

1 Introduction

The 12-key input is the most common keypad lay-
out on cellular telephones. It divides the alpha-
bet into eight lists of characters and each list is
mapped onto one key as shown in Figure 1. Since
three or four characters are assigned to a key, a
single key press is ambiguous.
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112 | 3
2! ABC || DEF
4 | 51 6
GHI || JKL || MNO
71819
PQRS || TUV [|wWXYZ
* O #

Figure 1: Standard 12-button keypad layout (ISO
9995-8).

1.1 Multi-tap

Multi-tap is an elementary method to disam-
biguate input for a 12-button keypad. Each charac-
ter on a key is assigned an index that corresponds
to its visual position, e.g. ‘A’, 1, ‘B’, 2, and ‘C’,
3 and each consecutive stroke — tap — on the same
key increments the index. When the user wants
to type a letter, s/he presses the corresponding key
until the desired index is reached. The user then
presses another key or waits a predefined time to
verify that the correct letter is selected. The key
sequence 8-4-4-3-3, for example, leads to the word
the.

Multi-tap is easy to implement and no dictio-
nary is needed. At the same time, it is slow and
tedious for the user, notably when two consecutive
characters are placed on the same key.

1.2 Single Tap with Predictive Text

Single tap with predictive text requires only one
key press to enter a character. Given a keystroke
sequence, the system proposes words using a dic-
tionary or language modeling techniques.
Dictionary-based techniques search the words
matching the key sequence in a list that is stored
by the system (Haestrup, 2001). While some
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keystroke sequences produce a unique word, oth-
ers are ambiguous and the system returns a list
with all the candidates. The key sequence 8-4-3,
for example, corresponds to at least three possi-
ble words: the, tie, and vie. The list of candidates
is then sorted according to certain criteria, such
as the word or character frequencies. If the word
does not exist in the dictionary, the user has to fall
back to multi-tap to enter it. The T9' commercial
product is an example of a dictionary-based sys-
tem (Grover et al., 1998).

LetterWise (MacKenzie et al., 2001) is a tech-
nique that uses letter trigrams and their frequen-
cies to predict the next character. For example,
pressing the key 3 after the letter bigram ‘th’ will
select ‘e’, because the trigram ‘the’ is far more fre-
quent than ‘thd’ or ‘thf’ in English. When the sys-
tem proposes a wrong letter, the user can access
the next most likely one by pressing a next-key.
LetterWise does not need a dictionary and has a
KSPC of 1.1500 (MacKenzie, 2002).

1.3 Modeling the Context

Language modeling can extend the context from
letter sequences to word n-grams. In this case, the
system is not restricted to the disambiguation or
the prediction of the typed characters. It can com-
plete words and even predict phrases. HMS (Has-
selgren et al., 2003) is an example of this that uses
word bigrams in Swedish. It reports a KSPC
ranging from 0.8807 to 1.0108, depending on the
type of text. eZiText? is a commercial example of
a word and phrase completion system. However,
having a large lexicon of bigrams still exceeds the
memory capacity of many mobile devices.

Some systems use a combination of syntac-
tic and semantic information to model the con-
text. Gong et al. (2008) is a recent example that
uses word frequencies, a part-of-speech language
model, and a semantic relatedness metric. The
part-of-speech language model acts as a lexical
n-gram language model, but occupies much less
memory since the vocabulary is restricted to the
part-of-speech tagset. The semantic relatedness,
modified from Li and Hirst (2005), is defined as
the conditional probability of two stems appearing
in the same context (the same sentence):

'www.t9.com
2www.zicorp.com/ezitext.htm
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C(stem(wy), stem(ws))
C(w2)

SemR(wi|ws) =

The three components are combined linearly
and their coefficients are adjusted using a devel-
opment set. Setting 1 as the limit of the K.SPC
figure, Gong et al. (2008) reported an error reduc-
tion over the word frequency baseline of 4.6% for
the semantic model, 12.6% for the part-of-speech
language model, and 15.8% for the combination
of both.

1.4 Syntax in Predictive Text

Beyond part-of-speech language modeling, there
are few examples of systems using syntax in pre-
dictive text entry. Matiasek et al. (2002) describes
a predictive text environment aimed at disabled
persons, which originally relied on language mod-
els. Gustavii and Pettersson (2003) added a syn-
tactic component to it based on grammar rules.
The rules corresponded to common grammatical
errors and were used to rerank the list of candidate
words. The evaluation results were disappointing
and the syntactic component was not added be-
cause of the large overhead it introduced (Mati-
asek, 2006).

In the same vein, Sundarkantham and Shalinie
(2007) used grammar rules to discard infeasible
grammatical constructions. The authors evaluated
their system by giving it an incomplete sentence
and seeing how often the system correctly guessed
the next word (Shannon, 1951). They achieved
better results than previously reported, although
their system has not been used in the context of
predictive text entry for mobile devices.

2 Predictive Text Entry Using Syntax

We propose a new technique that makes use of
a syntactic component to model the word context
and improve the K .SPC figure. It builds on Gong
et al. (2008)’s system and combines a dependency
grammar model with word frequencies, a part-of-
speech language model, and the semantic related-
ness defined in Sect. 1.3. As far as we are aware,
no predictive text entry system has yet used a data-
driven syntactic model of the context.

We used Swedish as our target language all
over our experiments, but the results we obtained
should be replicable in any other language.



2.1 Reranking Candidate Words

The system consists of two components. The first
one disambiguates the typed characters using a
dictionary and produces a list of candidate words.
The second component reranks the candidate list.
Although the techniques we describe could be ap-
plied to word completion, we set aside this aspect
in this paper.

More formally, we frame text input as a se-
quence of keystrokes, ks’ = kst ...ksi, to en-
ter a desired word, w;. The words matching
the key sequence in the system dictionary form
an ordered set of alternatives, match(ks")
{cwo, ..., cwy}, where it takes k extra keystrokes
to reach candidate cwg. Using our example
in Sect. 1.2, a lexical ordering would yield
match(8 — 4 — 3) = {the, tie, vie}, where two
extra keystrokes are needed to reach vie.

We assign each candidate word w member of
match(ks') a score

Score(w|Context) = Z As - s(w|Context),
ses

to rerank (sort) the prediction list, where s is a
scoring function from a set .S, A, the weight of
s, and Score(w|Context), the total score of w in
the current context.

In this framework, optimizing predictive text
entry is the task of finding the scoring functions,
s, and the weights, A, so that they minimize k£ on
average.

As scoring functions, we considered lexical lan-
guage models in the form of unigrams and bi-
grams, srpr1 and sppr2, a part-of-speech model
using sequences of part-of-speech tags of a length
of up to five tags, spps, and a semantic affin-
ity, Ssema, derived from the semantic relatedness.
In addition, we introduce a syntactic component
in the form of a data-driven dependency syntax,
SpepSyn SO that the complete scoring set consists
of

S = {sLm1, SLM2; 5SemA; SPOS, SDepSyn }-
2.2 Language and Part-of-Speech Models

The language model score is the probability of a
candidate word w, knowing the sequence entered
so far, wy, ..., w;:

P(w|wy,wa, ..., w;).

We approximate it using unigrams, sz (w)
P(w), or bigrams, spy2(w) = P(w|w;) that we
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derive from a corpus using the maximum like-
lihood estimate. To cope with sparse data, we
used a deleted interpolation so that sz pzo(w)
1 P(w|w;) + B2 P(w), where we adjusted the val-
ues of 31 and 32 on a development corpus.

In practice, it is impossible to maintain a large
list of bigrams on cellular telephones as it would
exceed the available memory of most devices. In
our experiments, the sy jso score serves as an indi-
cator of an upper-limit performance, while sy, 1
serves as a baseline, as it is used in commercial
dictionary-based products.

Part-of-speech models offer an interesting alter-
native to lexical models as the number of parts
of speech does not exceed 100 tags in most lan-
guages. The possible number of bigrams is then at
most 10,000 and much less in practice. We defined
the part-of-speech model score, sppg as

P(t|t1,ta, ..., t;),
where t; is the part of speech of w; and ¢, the part
of speech of the candidate word w. We used a
5-gram approximation of this probability with a
simple back-off model:

P(t‘ti_g,...,ti) ifC(ti_g,,...,ti) 750

P(t‘ti_g,...,ti) ifC(ti_Q,...,ti) #0
5POS =

P(t), otherwise

We used the Granska tagger (Carlberger and
Kann, 1999) to carry out the part-of-speech anno-
tation of the word sequence.

3 Semantic Affinity

Because of their arbitrary length, language mod-
els miss possible relations between words that are
semantically connected in a sentence but within
a distance greater than one, two, or three words
apart, the practical length of most n-grams mod-
els. Li and Hirst (2005) introduced the semantic
relatedness between two words to measure such
relations within a sentence. They defined it as

C’(wi, wj)
C(wi)C(w;)’

SemR(w;, w;) =

where C(w;, w;) is the number of times the words
w; and w; co-occur in a sentence in the corpus,



and C(wj;) is the count of word w; in the corpus.
The relation is symmetrical, i.e.

C(wi, wj) = C’(wj, wz)

The estimated semantic affinity of a word w is
defined as:

SemA(w|H) = Z SemR(w,w;),
’u}jGH

where H is the context of the word w. In our case,
H consists of words to the left of the current word.

Gong et al. (2008) used a similar model in a pre-
dictive text application with a slight modification
to the Sem R function:

C(stem(w;), stem(w;))
C(stem(w;)) ’

SemR(wi, w]‘) =

where the stem(w) function removes suffixes
from words. We refined this model further and we
replaced the stemming function with a real lemma-
tization.

4 Dependency Parsing

Dependency syntax (Tesniere, 1966) has attracted
a considerable interest in the recent years, spurred
by the availability of data-driven parsers as well
as annotated data in multiple languages includ-
ing Arabic, Chinese, Czech, English, German,
Japanese, Portuguese, or Spanish (Buchholz and
Marsi, 2006; Nivre et al., 2007). We used this
syntactic formalism because of its availability in
many languages.

4.1 Parser Implementation

There are two main classes of data-driven de-
pendency parsers: graph-based (McDonald and
Pereira, 2006) and transition-based (Nivre, 2003).
We selected Nivre’s parser because of its imple-
mentation simplicity, small memory footprint, and
linear time complexity. Parsing is always achieved
in at most 2n — 1 actions, where n is the length of
the sentence. Both types of parser can be com-
bined, see Zhang and Clark (2008) for a discus-
sion.

Nivre’s parser is an extension to the shift—
reduce algorithm that creates a projective and
acyclic graph. It uses a stack, a list of input words,
and builds a set of arcs representing the graph of
dependencies. The parser uses two operations in
addition to shift and reduce, left-arc and right-arc:
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e Shift pushes the next input word onto the

stack.

Reduce pops the top of the stack with the
condition that the corresponding word has a
head.

LeftArc adds an arc from the next input
word to the top of the stack and pops it.

RightArc adds an arc from the top of the
stack to the next input word and pushes the
input word on the stack.

Table 1 shows the start and final parser states as
well as the four transitions and their conditions
and Algorithm 1 describes the parsing algorithm.

4.2 Features

At each step of the parsing procedure, the parser
turns to a guide to decide on which transition
to apply among the set {LeftArc, RightArc,
Shift, Reduce}. We implemented this guide
as a four-class classifier that uses features it ex-
tracts from the parser state. The features consist
of words and their parts of speech in the stack, in
the queue, and in the partial graph resulting from
what has been parsed so far. The classifier is based
on a linear logistic regression function that evalu-
ates the transition probabilities from the features
and predicts the next one.

In the learning phase, we extracted a data set
of feature vectors using the gold-standard parsing
procedure (Algorithm 2) that we applied to Tal-
banken corpus of Swedish text (Einarsson, 1976;
Nilsson et al., 2005). Each vector being labeled
with one of the four possible transitions. We
trained the classifiers using the LIBLINEAR im-
plementation (Fan et al., 2008) of logistic regres-
sion.

However, classes are not always separable us-
ing linear classifiers. We combined single features
as pairs or triples. This emulates to some extent
quadratic kernels used in support vector machines,
while preserving the speed of the linear models.
Table 2 shows the complete feature set to predict
the transitions. A feature is defined by

e A source: S for stack and @ for the queue;

e An offset: 0 for the top of the stack and first
in the queue; 1 and 2 for levels down in the
stack or to the right in the queue;



Name Action

Condition

n|S,n'|Q, A) — (n'|n]S,Q, AU (n,n))

Initialization  (nil, W, ()

Termination (S, nil, A)

RightArc

Reduce (]S, Q, 4) — (5,Q, 4)

Shift

(
(
LeftArc én\S, n'|Q, A) — (S,n'|Q, AU {(n',n)})
(
{

-In” (n,n") € A
—3n”, (n';n") € A
In’, (n,n') € A

5,n|Q, A) — (nlS, Q, A)

Table 1: Parser transitions. W is the original input sentence, A is the dependency graph, S is the stack,
and @ is the queue. The triplet (S, @), A) represents the parser state. n, n’, and n” are lexical tokens. The
pair (n/, n) represents an arc from the head n’ to the dependent n.

e Possible applications of the function head, H,
leftmost child, LC, or righmost child, RC;

e The value: word, w, or POS tag, ¢, at the
specified position.

Queue Q0w

Qlw

QOt

Qlt

QOtQOwW
QOtQ1t
QlwQlIt
QOtQ1tQ2t
QOwQ1tQ2t
SOt

SOw

S0tSOw
SOtS1t
SOwQOw
QOtSOt
QI1tSO0t
QOtS1t
QItS1t
S0tQOtQ1t
S0tQOwQOt
SOHtS0tQOt
QOLCtS0tQOt
QOLCtS0tQOw
SORCtS0tQOt
SORCtS0tQOw

Stack

Stack/Queue

Partial Graph

Table 2: Feature model for predicting parser ac-
tions with combined features.

4.3 Calculating Graph Probabilities

Nivre (2006) showed that every terminating tran-
sition sequence A7 (a1, ...,an) applied to
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a sentence W (w1, ..., wy) defines exactly
one parse tree (G. We approximated the prob-
ability P(G|W7{") of a dependency graph G as
P(AT'|W]") and we estimated the probability of
G as the product of the transition probabilities, so
that

PParse(G’W{L) P(Agnlwln)

m — k—1
T, Plag|Ab L wpt=h),

where aj is member of the set {LeftArc,
RightArc, Shift, Reduce} and ¢(k) corre-
sponds to the index of the current word at tran-
sition k.

We  finally  approximated  the
Alf_l,VVfs (k=1) to the feature set and com-
puted probability estimates using the logistic
regression output.

term

4.4 Beam Search

We extended Nivre’s parser with a beam search to
mitigate error propagation that occurs with a de-
terministic parser (Johansson and Nugues, 2006).
We maintained [V parser states in parallel and we
applied all the possible transitions to each state.
We scored each transition action and we ranked
the states with the product of the action’s proba-
bilities leading to this state. Algorithm 3 outlines
beam search with a diameter of V.

An alternative to training parser transitions us-
ing local features is to use an online learning al-
gorithm (Johansson and Nugues, 2007; Zhang and
Clark, 2008). The classifiers are then computed
over the graph that has already been built instead
of considering the probability of a single transi-
tion.



4.5 Evaluation

We evaluated our dependency parser separately
from the rest of the application and Table 3 shows
the results. We optimized our parameter selection
for the unlabeled attachment score (UAS). This
explains the relatively high difference with the la-
beled attachment score (LAS): about —8.6.

Table 3 also shows the highest scores ob-
tained on the same Talbanken corpus of Swedish
text (Einarsson, 1976; Nilsson et al., 2005) in
the CoNLL-X evaluation (Buchholz and Marsi,
2006): 89.58 for unlabeled attachments (Corston-
Oliver and Aue, 2006) and 84.58 for labeled at-
tachments (Nivre et al., 2006). CoNLL-X systems
were optimized for the LAS category.

The figures we reached were about 1.10% be-
low those reported in CONLL-X for the UAS cat-
egory. However our results are not directly compa-
rable as the parsers or the classifiers in CONLL-X
have either a higher complexity or are more time-
consuming. We chose linear classifiers over kernel
machines as it was essential to our application to
run on mobile devices with limited resources in
both CPU power and memory size.

This paper CONLL-X
Beam width LAS UAS | LAS UAS

1 7945 88.05 || 84.58 89.54

2 79.76 88.41

4 7975 88.40

8 79.77 8841

16 79.78 88.42

32 79.77 8841

64 79.79 88.44

Table 3: Parse results on the Swedish Talbanken
corpus obtained for this paper as well as the best
reported results in CONLL-X on the same corpus
(Buchholz and Marsi, 2006).

S Dependencies to Predict the Next Word

We built a syntactic score to measure the grammat-
ical relevance of a candidate word w in the current
context, that is the word sequence so far wy, ..., w;.
We defined it as the weighted sum of three terms:
the score of the partial graph resulting from the
analysis of the words to the left of the candidate
word and the scores of the link from w to its head,
h(w), using their lexical forms and their parts of
speech:
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SDepSyn<w) = )\IPParse(G(w)’wb -eey Wiy w)+
A2 Ppink(w, h(w))+
A3 PLink(POS(w), POS(h(w))),

where G(w) is the partial graph representing the
word sequence w1, ..., w;, w. The Py, terms are
intended to give an extra-weight to the probabil-
ity of an association between the predicted word
and a possible head to the left of it. They hint at
the strength of the ties between w and the words
before it.

We used the transition probabilities described in
Sect. 4.3 to compute the score of the partial graph,
yielding

J
PParse(G(w)|wla .eey Wy, w) = H P(ak)a
k=1

where ay, ..., a; is the sequence of transition ac-
tions producing G(w) and P(ag), the probability
output of transition k given by the logistic regres-
sion engine.

The last two terms Prix(w,h(w)) and
Prink(POS(w), POS(h(w))) are computed
from counts in the training corpus using maxi-
mum likelihood estimates:

PLink(wa h(w))
C(Link(w, h(w)) + 1

S vepw C(Link(wr, h(w)))

+ [PW]|

and

Prink(POS(w), POS(h(w))) =
C(Link(POS(w), POS(h(w)))) + 1
Zwlepw C(Link(POS(w;), h(POS(wy))))
+|PW|,

where PW = match(ks'), is the set of predicted
words for the current key sequence.

If the current word w has not been assigned a
head yet, we default h(w) to the root of the graph
and POS(h(w)) to the ROOT value.

6 Experiments and Results

6.1 Experimental Setup

Figure 2 shows an overview of the three stages
to produce and evaluate our models: training,



tuning, and testing. Ideally, we would have
trained the classifiers on a corpus matching a
text entry application. However, as there is no
large available SMS corpus in Swedish, we used
the Stockholm-Umea corpus (SUC) (Ejerhed and
Killgren, 1997). SUC is balanced and the largest
available POS-tagged corpus in Swedish with
more than 1 million words.

We parsed the corpus and we divided it ran-
domly into a training set (80%), a development set
(10%), and a test set (10%). The training set was
used to gather statistics on word n-grams, POS
n-grams, collocations, lemma frequencies, depen-
dent/head relations. We discarded hapaxes: rela-
tions and sequences occurring only once. We used
lemmas instead of stems in the semantic related-
ness score, SemR, because stemming is less ap-
propriate in Swedish than in English.

We used the development set to find optimal
weights for the scoring functions, resulting in the
lowest KSPC. We ran an exhaustive search using
all possible linear combinations with increments
of 0.1, except for two functions, where this was
too coarse. We used 0.01 then.

We applied the resulting linear combinations of
scoring functions to the test set. We first compared
the frequency-based disambiguation acting as a
baseline to linear combinations involving or not
involving syntax, but always excluding bigrams.
Table 4 shows the most significant combinations.
We then compared a set of other combinations
with the bigram model. They are shown in Ta-
ble 6.

6.2 Maetrics

We redefined the KSPC metric of MacKenzie
(2002), since the number of characters needed to
input a word is now dependent on the word’s left
context in the sentence. Let S = (w1,...,wy,) €
L be a sentence in the test corpus. The KSPC for
the test corpus then becomes

Y oser Dowes KS(w|LContext(w, S))

KSPC =
Yoser 2wes Chars(w)

where KS(w|LContext) is the number of key
strokes needed to enter a word in a given context,
LContext(w, S) is the left context of w in .S, and
Chars(w) is the number of characters in w.
Another performance measure is the disam-
biguation accuracy (DA), which is the percentage
of words that are correctly disambiguated after all
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the keys have been pressed

Z Z PredHit(w|LContext(w, S))
DA — SeLwesS

#w ’

where PredHit(w|Context) = 1 if w is the
top prediction and O otherwise, and #w, the to-
tal number of words in L. A good DA means that
the user can more often simply accept the default
proposed word instead of navigating the prediction
list for the desired word.

As scoring tokens, we chose to keep the ones
that actually have the ability to differentiate the
models, i.e. we did not count the KSPC and DA
for words that were not in the dictionary. Neither
did we count white spaces, nor the punctuation
marks.

All our measures are without word or phrase
completion. This means that the lower-limit fig-
ure for KSPC'is 1.

6.3 Results

As all the KSPC figures are close to 1, we com-
puted the error reduction rate (ERR), i.e. the re-
duction in the number of extra keystrokes needed
beyond one. We carried out all the optimizations
considering KSPC, but we can observe that KSPC
ERR and DA ERR strongly correlate.

Table 5 shows the results with scoring func-
tions using the word frequencies. The columns
include KSPC and DA together with KSPC ERR
and DA ERR compared with the baseline. Table 7
shows the respective results when using a bigram-
based disambiguation instead of just frequency.
The ERR is still compared to the word frequency
baseline but attention should also be drawn on the
relative increases: how much the new models can
improve bigram-based disambiguation.

7 Discussion

We can observe from the results that a model based
on dependency grammars improves the prediction
considerably. The DepSyn model is actually the
most effective one when applied together with the
frequency counts. Furthermore, the improvements
from the POS, SemA, and DepSyn model are
almost disjunct, as the combined model improve-
ment matches the sum of their respective individ-
ual contributions.

The 4.2% ERR observed when adding the
SemA model is consistent with the result from



Training
subset

Set of scoring

——’l Word n-gram data

functions

Development Test subset

subset
Finding Linear
weights combination

——>| Semantic affinity data I——
——-I Part-of-speech validity data I—
Classifier training

Classifier model
Dependency parser |—

Figure 2: System architecture, where the set of scoring functions is S = {Sras, SSemA, SPOS, S Depsyn}

and the linear combination is = Z As - s(w).
ses

Gong et al. (2008), where a 4.6% ERR was found.
On the other hand, the POS model only con-
tributed 4.7% ERR in our case, whereas Gong et
al. (2008) observed 12.6%. One possible expla-
nation for this is that they clustered related POS
tags into 19 groups reducing the sparseness prob-
lem. By performing this grouping, we can effec-
tively ignore morphological and lexical features
that have no relevance, when deciding which word
should come next. Other possible explanations in-
clude that our backoff model is not well suited for
this problem or that the POS sequences are not an
applicable model for Swedish.

The bigram language model has the largest im-
pact on the performance. The ERR for bigrams
alone is higher than all the other models com-
bined. Still, the other models have the ability to
contribute on top of the bigram model. For exam-
ple, the PO.S model increases the ERR by about
5% both when using bigram- and frequency-based
disambiguation, suggesting that this information is
not captured by the bigrams. On the other hand,
DepSyn increases the ERR by a more modest 3%
when using bigrams instead of 7% with word fre-
quencies. This is likely due to the fact that about
half of the dependency links only stretch to the
next preceding or succeeding word in the corpus.

The most effective combination of models are
the bigrams together with the POS sequence and
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the dependency structure, both embedding syntac-
tic information. With this combination, we were
able to reduce the number of erroneous disam-
biguations as well as extra keystrokes by almost
one third.

8 Further Work

SMS texting, which is the target of our system,
is more verbal than the genres gathered in the
Stockholm-Umea corpus. The language models
of a final application would then change consid-
erably from the ones we extracted from the SUC.
A further work would be to collect a SMS corpus
and replicate the experiments: retrain the models
and obtain the corresponding performance figures.

Moreover, we carried out our implementation
and simulations on desktop computers. The POS
model has an estimated size of 700KB (Gong et
al., 2008). The Ppg;se term of the DepSyn model
can be made as small as the feature model. We ex-
pect the optimized size of this model to be under
100KB in an embedded environment. The size of
the lexical variant of Py, is comparable to the bi-
gram model. This could however be remedied by
using the probability of the action that constructed
this last link. The computational power required
by LIBLINEAR is certainly within the reach of
modern hand-held devices. However, a prototype
simulation with real hardware conditions would



be needed to prove an implementability on mobile
devices.

Finally, a user might perceive subtle differences
in the presentation of the words compared with
that of popular commercial products. Gutowitz
(2003) noted the reluctance to single-tap input
methods because of their “unpredictable” behav-
ior.  Introducing syntax-based disambiguation
could increase this perception. A next step would
be to carry out usability studies and assess this el-
ement.
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Algorithm 1 Nivre’s algorithm.

I: Queue <= W
2: Stack <= nil
3: while —Queue.isEmpty() do

4:  features <= ExtractFeatures()

5. action < guide.Predict(features)

6: if action = RightArc A canRightArc() then
7: RightArc()

8: elseif action = LeftArc A canLeftArc() then
9: LeftArc

10:  elseif action = Reduce A canReduce() then
11: Reduce()

12:  else

13: Shift()

14:  end if

15: end while
16: return(A)

Algorithm 2 Reference parsing.

I: Queue =W
2: Stack <= nil
3: while ~Queue.isEmpty() do

4:  x < ExtractFeatures()

5. if (Stack.peek(), Queue.get(0)) € A A canRight Arc() then

6: t < RightArc

7. elseif (Queue.get(0), Stack.peek()) € A A canLeftArc() then

8: t < LeftArc

9: elseif Jw € Stack : (w, Queue.get(0)) € AV (Queue.get(0),w) € A) A canReduce() then
10: t < Reduce

11:  else

121 t< Shift

13:  endif

14:  store training example (x, t)
15: end while

Algorithm 3 Beam parse.

1. Agenda.add(Initital ParserState)

2: while —done do

3:  for parserState € Agenda do
Output.add(parserState.doLeft Arc())
Output.add(parserState.doRight Arc())
Output.add(parserState.doReduce())
Output.add(parserState.doShift())

end for

Sort(Output)

10:  Clear(Agenda)

11:  Take IV best parse trees from Qutput and put in Agenda.

12: end while

13: Return best item in Agenda.

R A
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Configuration  Scoring model DepSyn weights
F1 baseline 1 x LM1 (Word frequencies) -

F2 0.9x LM1+0.1 x POS -

F3 0.7x LM1+0.3 x SemA -

F4 0.6 x LM1+ 0.4 x DepSyn (0.3,0.7,0.0)
F5 0.6 x LM1+0.1 x POS+ 0.3 x DepSyn (0.01.00.0)
F6 0.5 x LM1+0.2 x SemA + 0.3 x DepSyn (0.20.70.1)
F7 0.4 x LM1+0.1 x POS+ 0.3 x DepSyn + 0.2 x SemA (0.2,0.8, 0.0)

Table 4: The different combinations of scoring models using frequency-based disambiguation as a base-
line. The DepSyn weight triples corresponds to (A1, A2, Az) in Sect. 5.

Configuration KSPC DA KSPCERR DA ERR
F1 1.015559 94.15% 0.00% 0.00%
F2 1.014829 94.31% 4.69% 2.72%
F3 1.014902  94.36% 4.22% 3.62%
F4 1.014462 94.56% 7.05% 7.04%
F5 1.013625 94.75% 12.43%  10.28%
F6 1.014159 94.62% 9.00% 8.10%
F7 1.013438 94.86% 13.63%  12.16%

Table 5: Results for the disambiguation based on word frequencies together with the semantic and syn-
tactic models.

Configuration Scoring model Bigram weights  DepSyn weights
Bl 1 x LM?2 (Bigram frequencies) (0.9,0.1) -

B2 0.9 x LM2+0.1 x POS (0.8,0.2) -

B3 0.95 x LM2+ 0.05 x SemA (0.8,0.2) -

B4 0.9 x LM2+ 0.1 x DepSyn (0.8,0.2) (0.2,0.8,0.0)
B5 0.8 x LM2+0.1 x POS+0.1 x SemA (0.8,0.2) -

B6 0.81 x LM2 +0.08 x POS + 0.11 x DepSyn (0.8, 0.2) (0.2,0.8,0.0)

Table 6: The different combinations of scoring models using bigram-based disambiguation as baseline.
In addition to the DepSyn weights, this table also shows the language model interpolation weights, 31
and (35 described in Sect. 2.2.

Label KSPC DA KSPCERR DA ERR
Bl 1.012159254 95.48% 21.85%  22.81%
B2 1.011434213 95.75% 2651%  27.41%
B3 1.011860573 95.50% 23.77%  23.20%
B4 1.011698693 95.62% 2481%  25.19%
B5 1.011146932 95.80% 2836%  28.23%
B6 1.010980592 95.91% 29.43%  30.09%

Table 7: Results for the disambiguation based on bigrams plus the semantic and syntactical models. The
error reduction rate is relative to the word frequency baseline.
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Abstract

Program analysis tools used in software
maintenance must be robust and ought to
be accurate. Many data-driven parsing ap-
proaches developed for natural languages
are robust and have quite high accuracy
when applied to parsing of software. We
show this for the programming languages
Java, C/C++, and Python. Further studies
indicate that post-processing can almost
completely remove the remaining errors.
Finally, the training data for instantiating
the generic data-driven parser can be gen-
erated automatically for formal languages,
as opposed to the manually development
of treebanks for natural languages. Hence,
our approach could improve the robust-
ness of software maintenance tools, proba-
bly without showing a significant negative
effect on their accuracy.

1 Introduction

Software engineering, especially software mainte-
nance, is supported by numerous program anal-
ysis tools. Maintenance tasks include program
comprehension (understanding unknown code for
fixing bugs or further development), quality as-
sessment (judging code, e.g., in code reviews),
and reverse-engineering (reifying the design doc-
uments for given source code). To extract infor-
mation from the programs, the tools first parse the
program code and produce an abstract syntax tree
(AST) for further analysis and abstraction (Strein
et al., 2007). As long as the program conforms
to the syntax of a programming language, clas-
sical parsing techniques known from the field of
compiler construction may be applied. This, how-
ever, cannot be assumed in general, as the pro-
grams to analyze can be incomplete, erroneous, or
conform to a (yet unknown) dialect or version of
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the language. Despite error stabilization, classi-
cal parsers then lose a lot of information or simply
break down. This is unsatisfactory for tools sup-
porting maintenance. Therefore, quite some effort
has gone into the development of robust parsers of
programs for these tools (cf. our related work sec-
tion 5). This effort, however, has to be repeated
for every programming language.

The development of robust parsers is of special
interest for languages like C/C++ due to their nu-
merous dialects in use (Anderson, 2008). Also,
tools for languages frequently coming in new ver-
sions, like Java, benefit from robust parsing. Fi-
nally, there are languages like HTML where exist-
ing browsers are forgiving if documents do not ad-
here to the formal standard with the consequence
that there exist many formally erroneous docu-
ments. In such cases, robust parsing is even a pre-
requisite for tool-supported maintenance.

The accuracy of parsing is a secondary goal
in the context of software maintenance. Tasks
like program comprehension, quality assessment,
and reverse-engineering are fuzzy by their nature.
There is no well-defined notion of correctness—
rather an empirical answer to the question: Did
it help the software engineers in fulfilling their
tasks? Moreover, the information provided to the
engineers abstracts anyway from the concrete pro-
gram syntax and semantics, i.e., inaccuracies in
the input may disappear in the output. Finally, pro-
gram analyses are often heuristics themselves, ap-
proximating computationally hard problems like
pattern matching and optimal clustering.

The natural language processing (NLP) com-
munity has for many years developed parsing tech-
nology that is both completely robust and highly
accurate. The present approach applies this tech-
nology to programming languages. It is robust in
the sense that, for each program, the parser always
gives a meaningful model even for slightly incor-
rect and incomplete programs. The approach is,
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however, not accurate to 100%, i.e., even correct
programs may lead to slightly incorrect models.
As we will show, it is quite accurate when applied
to programming languages.

The data-driven dependency parsing approach
applied here only needs correct examples of the
source and the expected analysis model. Then it
automatically trains and adapts a generic parser.
As we will show, training data for adapting to a
new programming language can even be gener-
ated automatically. Hence, the effort for creating
a parser for a new programming language is quite
small.

The basic idea — applying natural language pars-
ing to programming languages — has been pre-
sented to the program maintenance community be-
fore (Nilsson et al., 2009). This paper contributes
with experimental results on

1. data-driven dependency parsing of the pro-
gramming languages C/C++, Java, and
Python,

transformations between dependency struc-
ture and phrase structure adapted to program-
ming languages,

. generic parser model selection and its effect
on parsing accuracy.

Section 2 gives an introduction to the parsing tech-
nology applied here. In section 3, the preparation
of the training examples necessary is described,
while section 4 presents the experimental results.
Section 5 discusses related work in information
extraction for software maintenance. We end with
conclusions and future work in section 6.

2 NLP Background

Dependency structure is one way of representing
the syntax of natural languages. Dependency trees
form labeled, directed and rooted trees, as shown
in figure 1. One essential difference compared to
context-free grammar is the absence of nontermi-
nals. Another difference is that the syntactic struc-
ture is composed of lexical tokens (also called ter-
minals or words) linked by binary and directed re-
lations called dependencies. Each token in the fig-
ure is labeled with a part-of-speech, shown at the
bottom of the figure. Each dependency relation is
also labeled.

The parsing algorithm used in the experiments
of section 4, known as the Nivre’s arc-eager al-
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Figure 1: Sentence with a dependency tree.

gorithm (Nivre, 2003), can produce such depen-
dency trees. It bears a resemblance to the shift-
reduce parser for context-free grammars, with the
most apparent difference being that terminals (not
nonterminals) are pushed onto the stack. Parser
configurations are represented by a stack, a list
of (remaining) input tokens, and the (current) set
of arcs for the dependency tree. Similar to the
shift-reduce parser, the construction of syntactic
structure is created by a sequence of transitions.
The parser starts with an empty stack and termi-
nates when the input queue is empty, parsing in-
put from left to right. It has four transitions (Left-
Arc, Right-Arc, Reduce and Shift), manipulating
these data structures. The algorithm has a linear
time complexity as it is guaranteed to terminate
after at most 2n transitions, given that the length
of the input sentence is n.

In contrast to a parser guided by a grammar
(e.g., ordinary shift-reduce parsing for context-
free grammars), this parser is guided by a clas-
sifier induced from empirical data using machine
learning (Nivre et al., 2004). Hence, the parser re-
quires training data containing dependency trees.
In other words, the parser has a training phase
where the training data is used by the training
module in order to learn the correct sequence of
transitions. The training data can contain depen-
dency trees for sentences of any language irrespec-
tively of whether the language is a natural or for-
mal one.

The training module produces the correct tran-
sition sequences using the dependency trees of
the training data. These correct parser configura-
tions and transition sequences are then provided as
training data to a classifier, which predicts the cor-
rect transitions (including a dependency label for
Left-Arc, Right-Arc) given parser configurations.
A parser configuration contains a vast amount of
information located in the data-structures. It is
therefore necessary to abstract it into a set of fea-
tures. Possible features are word forms and parts-



of-speech of tokens on the stack and in the list
of input tokens, and dependency labels of depen-
dency arcs created so far.

The parser produces exactly one syntactic anal-
ysis for every input, even if the input does not con-
form to a grammar. The price we have to pay for
this robustness is that any classifier is bound to
commit errors even if the input is acceptable ac-
cording to a grammar.

3 General Approach

In section 2, we presented a parsing algorithm for
producing dependency trees for natural languages.
Here we will show how it can be used to produce
syntactic structures for programming languages.
Since the framework requires training data form-
ing correct dependency trees, we need an approach
for converting source code to dependency trees.

The general approach can be divided into two
phases, training and production. In order to be
able to perform both these phases in this study, we
need to adapt natural language parsing to the needs
of information extraction from programming lan-
guage code, i.e., we need to automatically produce
training data. Therefore, we apply:

(a) Source Code = Syntax Tree: the classical
approach for generating syntax trees for cor-
rect and complete source code of a program-
ming language.

(b) Syntax Tree = Dependency Tree: an ap-
proach for encoding the syntax trees as de-
pendency trees adapted to programming lan-
guages.

(c) Dependency Tree = Syntax Tree: an ap-
proach to convert the dependency trees back
to syntax trees.

These approaches have been accomplished as pre-
sented below. In the training phase, we need to
train and adapt the generic parsing approach to a
specific programming language. Therefore:

(1) Generate training data automatically by
producing syntax trees and then dependency
trees for correct programs using approaches
(a) and (b).

(2) Train the generic parser with the training
data.

This automated training phase needs to be done
for every new programming language we adapt to.
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Finally, in the production phase, we extract the in-
formation from (not necessarily correct and com-
plete) programs:

(3) Parse the new source code into dependency
trees.

(4) Convert the dependency trees into syntax
trees using approach (c).

This automated production phase needs to be exe-
cuted for every project we analyze.

Steps (2) and (3) have already been discussed in
section 2 for parsing natural languages. They can
be generalized to parsing programming languages
as described in section 3.1. Both the training phase
and the production phase are complete, once the
steps (a)—(c) have been accomplished. We present
them in sections 3.2, 3.3, and 3.4, respectively.

3.1 Adapting the Input

As mentioned, the parsing algorithm described
in section 2 has been developed for natural lan-
guages, which makes it necessary to resolve a
number of issues that arise when the parser is
adapted for source code as input. First, the parsing
algorithm takes a sequence of words as input, and
for simplicity, we map the tokens in a program-
ming language to words.

One slightly more problematic issue is how to
define a “sentence” in source code. A natural
language text syntactically decomposes into a se-
quence of sentences in a relatively natural way.
But is there also a natural way of splitting source
code into sentences? The most apparent approach
may be to define a sentence as a compilation unit,
that is, a file of source code. This can however re-
sult in practical problems since a sentence in a nat-
ural language text is usually on average between
15-25 words long, partially depending on the au-
thor and the type of text. The sequence of tokens
in a source file may on the other hand be much
longer. Time complexity is usually in practice of
less importance when the average sentence length
is as low as in natural languages, but that is hardly
the case when there can be several thousands to-
kens in a sentence to parse.

Other approaches could for instance be to let
one method be a sentence. However, then we need
to deal with other types of source code construc-
tions explicitly. We have in this study for sim-
plicity let one compilation unit be one sentence.
This is possible in practice due to the linear time



complexity of the parsing algorithm of section 2,
a quite unusual property compared to other NLP
parsers guided by machine learning with state-of-
the-art accuracy.

3.2 Source Code = Syntax Tree

In order to produce training data for the parser
for a programming language, an analyzer that
constructs syntax trees for correct and complete
source code of the programming language is
needed. We are in this study focusing on Java,
Python and C/C++, and consequently need one
such analyzer for each language. For example, fig-
ure 2 shows the concrete syntax tree of the follow-
ing fragments of Java:

Example (1):

public String getName () {
return name;

}
Example (2):

while (count > 0) {
stack [-—-count]=null;

}

We also map the output of the lexical ana-
lyzer to the parts-of-speech for the words (e.g.,
Identifier for String and getName). All
source code comments and indentation informa-
tion (except for Python where the indentation con-
veys hierarchical information) have been excluded
from the syntax trees. All string and character
literals have also been mapped to “string” and
“char”, respectively. This does not entail that the
approach is lossy, since all this information can
be retained in a post-processing step, if neces-
sary. As pointed out by, for instance, Collard et
al. (2003), comments and indentation may among
other things be of interest when trying to under-
stand source code.

3.3 Syntax Tree = Dependency Tree

Here we will discuss the conversion of syntax trees
into dependency trees. We use a method that has
been successfully applied for natural languages
for converting syntax trees into a convertible de-
pendency tree that makes it possible to perform
the inverse conversion, meaning that information
about the syntax tree is saved in complex arc la-
bels (Hall and Nivre, 2008). We also present re-
sults in section 4 using the dependency trees that
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cannot be used for the inverse conversion, which
we call non-convertible dependency trees.

The conversion is performed in a two-step ap-
proach. First, the algorithm traverses the syntax
tree from the root and identifies the head-child and
the terminal head for all nonterminals in a recur-
sive depth-first search. To identify the head-child
for each nonterminal, the algorithm uses heuristics
called head-finding rules, inspired by, for instance,
Magerman (1995). Three head-finding strategies
have been investigated. For each nonterminal:

1. FREQ: Let the element with the most fre-
quently occurring name be the head, but ex-
clude the token °;” as a potential head. If two
tokens have the same frequency, let the left-
most occurring element be the head.

LEFT: let the leftmost terminal in the entire
subtree of the nonterminal be the head of all
other elements.

. RIGHT: let the rightmost terminal in the en-
tire subtree of the nonterminal be the head of
all other elements.

The dependency trees in figures 3 and 4 use LEFT
and FREQ. LEFT and RIGHT induce that all arcs
are pointing to the right and left, respectively. The
head-finding rules for FREQ are automatically cre-
ated by counting the children’s names for each
distinct non-terminal name in the syntax trees of
the training data. The priority list is then com-
piled by ordering the elements by descending fre-
quency for each distinct non-terminal name. For
instance, given that the syntax trees are grammati-
cally correct, every non-terminal Whi le will con-
tain the tokens (, ) and while. These tokens
have thus the highest priority, and while there-
fore becomes the head in the lower dependency
tree of figure 4. This is the same as choosing the
left-most mandatory element for each left-hand
side in the grammar. An interesting observation
is that binary operators and the copy assignment
operator become the heads of their operands for
FREQ, which is the case for < and = in figure 4.
Note also that the element names of terminals act
as part-of-speech tags, e.g., the part-of-speech for
Stringis Identifier.

In the second step, a dependency tree is created
according to the identified terminal heads. The
arcs in the convertible dependency tree are labeled
with complex arc labels, where each complex arc
label consists of two sublabels:
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Figure 3: Non-convertible dependency trees for example (1) using LEFT (upper) and FREQ (lower).

. Encode the dependent spine, i.e., the se-
quence of nonterminal labels from the de-
pendent terminal to the highest nonterminal
where the dependent terminal is the terminal
head; “|” separates the nonterminal labels,

Encode the attachment point in the head
spine, a non-negative integer value a, which
means that the dependent spine is attached a
steps up in the head spine.

By encoding the arc labels with these two subla-
bels, it is possible to perform the inverse conver-
sion, (see subsection 3.4).

The non-convertible dependency labels allow us
to reduce the complexity of the arc labels, making
the learning problem simpler due to fewer distinct
arc labels. This may result in a higher accuracy
during parsing and can be used as input for fur-
ther processing directly without taking the detour
back to syntax trees. This can be motivated by
the fact that all information in the syntax trees is
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usually not needed anyway in many reverse engi-
neering tasks, but labels indicating method calls
and declarations — the most important information
for most program comprehension tasks — are pre-
served. This is exemplified by the fact that both
dependency structures in figure 3 contain the la-
bel Met hodsDecl .. We thus believe that all the
necessary information is also captured in this less
informative dependency tree. Each dependency la-
bel is the highest nonterminal name of the spine,
that is, the single nonterminal name that is closest
to its head. The non-convertible dependency label
also excludes the attachment point value, making
the learning problem even simpler. Figures 3 and
4 show the non-convertible dependency labels of
the syntax trees (or phrase structure trees) in the
same figures, where each label contains just a sin-
gle nonterminal name of the original syntax trees.

3.4 Dependency Tree = Syntax Tree

The inverse conversion is a bottom-up and top-
down process on the convertible dependency tree
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Figure 4: Non-convertible dependency trees for example (2) using LEFT (upper) and FREQ (lower).

(must contain complex arc labels). First, the algo-
rithm visits every terminal in the convertible de-
pendency tree and restores the spines of nontermi-
nals with labels for each terminal using the infor-
mation in the first sublabel of the incoming arc.
Thus, the bottom-up process results in a spine of
zero or more arcs from each terminal to the highest
nonterminal of which the terminal is the terminal
head. Secondly, the spines are weaved together ac-
cording to the arcs of the dependency tree. This is
achieved by traversing the dependency tree recur-
sively from the root using a pre-order depth-first
search, where the dependent spine is attached to
its head spine or to the root of the syntax tree. The
attachment point a, given by the second sublabel,
specifies the number of nonterminals between the
terminal head and the attachment nonterminal.

4 Experiments

We will in this section present parsing experiments
and evaluate the accuracy of the syntax trees pro-
duced by the parser. As mentioned in section 2,
the parsing algorithm is robust in the sense that it
always produces a syntactic analysis no matter the
input, but it can commit errors even for correct in-
put. This section investigates the accuracy for cor-
rect input, when varying feature set, head-finding
rules and language. We begin with the experimen-
tal setup.

4.1 Experimental Setup

The open-source software MaltParser (malt-
parser.org) (Nivre et al., 2006) is used in the ex-
periments. It contains an implementation of the
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parsing algorithm, as well as an implementation
of the conversion strategy from syntax trees to
dependency trees and back, presented in subsec-
tions 3.3 and 3.4. It comes with the machine
learner LIBSVM (Chang and Lin, 2001), pro-
ducing the most accurate results for parsing nat-
ural languages compared to other evaluated ma-
chine learners (Hall et al., 2006). LIBSVM re-
quires training data. The source files of the follow-
ing projects have been converted into dependency
trees:

e For Java: Recoder 0.83 (Gutzmann et al.,
2007), using all source files in the directory
“src” (having 400 source files with 92k LOC
and 335k tokens).

For C/C++: Elsa 2005.08.22b (McPeak,
2005), where 1389 source files were used,
including the 978 C/C++ benchmark files in
the distribution (thus comprising 1389 source
files with 265k LOC and 691k tokens).

For Python: Natural Language Toolkit
0.9.5 (Bird et al., 2008), where all source files
in the directory “nltk” were used (having 160
source files with 65k LOC and 280k tokens).

To construct the syntax tree for the source code
file of Recoder, we have used Recoder. It cre-
ates an abstract syntax tree for a source file, but
we are currently interested in the concrete syntax
tree with all the original tokens. In this first con-
version step, the tokens of the syntax trees are thus
retained. For example, the syntax trees in figure 2
are generated by Recoder.



The same strategy was adopted for Elsa with the
difference that CDT 4.0.3, a plug-in to the Eclipse
IDE to produce syntax trees for source code of
C/C++, was used for producing the abstract syntax
trees.! It produces abstract syntax trees just like
Recoder, so the concrete syntax trees have also
been created by retaining the tokens.

The Python 2.5 interpreter is actually shipped
with an analyzer that produces concrete syn-
tax trees (using the Python imports from
_ast import PyCF_ONLY_AST and import
parser), which we have utilized for the Python
project above. Hence, no additional processing is
needed in order prepare the concrete syntax trees
as training data.

For the experiments, the source files have been
divided into a training set 7' and a development
test set D, where the former comprises 80% of the
dependency trees and the latter 10%. The remain-
ing 10% (F) has been left untouched for later use.
The source files have been ordered alphabetically
by the file names including the path. The depen-
dency trees have then been distributed into the data
sets in a pseudo-randomized way. Every tenth de-
pendency tree starting at index 9 (i.e. dependency
trees 9, 19, 29, ...) will belong to D, and every
tenth dependency trees starting at index O to F.
The remaining trees constitute the training set 7.

4.2 Metrics

The standard evaluation metric for parse trees for
natural languages based on context-free grammar
is F-score, the harmonic mean of precision and
recall. F-score compares constituents — defined
by triples (i, j, X P) spanning between terminals
1 and j — derived from the test data with those
derived from the parser. A constituent in the
parser output matches a constituent in the test data
when they span over the same terminals in the
input string. Recall is the ratio of matched con-
stituents over all constituents in the test data. Pre-
cision is the ratio of matched constituents over
all constituents found by the parser. F-score
comes in two versions, one unlabeled (F;;) and
one labeled (Fj,), where each correct constituent
in the latter also must have the correct nontermi-
nal name (i.e., X P). The metric is implemented
in Evalb (Collins and Sekine, 2008).

'Tt is worth noting that CDT failed to produce syntax trees
for 2.2% of these source files, which were consequently ex-
cluded from the experiments. This again indicates the diffi-
cult of parsing C/C++ due to its different dialects.
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F, Fy
FR LE Ri |FR LE RiI
UL || 82.1 935 7461|923 979 90.6
L | 8.7 977 80.8 958 993 092.1

Table 1: F-score for various parser models and
head-finding rules for Java, where FR = FREQ, LE
= LEFT and RI = RIGHT.

The standard evaluation metric measuring accu-
racy for dependency parsing for natural language
is, on the other hand, labeled (AS;,) and unlabeled
(ASyy) attachment score. ASy is the ratio of to-
kens attached to its correct head. ASy, is the same
as ASy with the additional requirement that the
dependency label should be correct as well.

4.3 Results

This section presents the parsing results. The first
experiment was conducted for Java, using the in-
verse transformation back to syntax trees. Two
feature models are evaluated, one unlexicalized
feature sets (UL) containing 13 parts-of-speech
and 4 dependency label features, and one lexical-
ized feature sets (L) containing all these 17 fea-
tures and 13 additional word form features, de-
veloped by manual feature optimization. Table 1
compares these two feature sets, as well as the dif-
ferent head-finding rules discussed previously.

The figures give a clear answer to the question
whether lexical information is beneficial or not.
Every figure in the row L is higher than its cor-
responding figure in the row UL. This means that
names of variables, methods, classes, etc., actu-
ally contain valuable information for the classifier.
This is in contrast to ordinary syntactic parsing us-
ing a grammar of programming languages where
all names are mapped to the same value (e.g. Iden-
tifier), and, e.g., integer constants to IntLiteral, be-
fore the parse. One potential contributing factor
of the difference is the naming conventions that
programmers normally follow. For example, nam-
ing classes, class attributes and local variables, etc.
using typical methods names, such as equals in
Java, is usually avoided by programmers.

It is just as clear that the choice of head-finding
strategy is very important. For both F;, and Fy,
the best choice is with a wide margin LEFT, fol-
lowed by FREQ. RIGHT is consequently the least
accurate one. A higher amount of arcs pointing to
the right seems to be beneficial for the strategy of



AS], ASy
FR LE Ri |FR LE RI
CO || 87.6 96.6 86.6 909 982 90.7
NC 910 991 895|921 997 90.7

Table 2: Attachment score for Java and the lexical
feature set, where CO = convertible and NC = non-
convertible dependency trees.

Python C/C++
Fy |F, Fy

U 15 92.1 956 96.4
99.1 99.2 | 96.5 96.9

Table 3: F-score for various parser models and
head-finding rules LEFT for Python and C/C++.

parsing from left to right.

Table 1 can be compared to the accuracy on
the parser output before conversion from depen-
dency trees to syntax trees. This is shown in the
first row (CO) of table 2, where all information
in the complex dependency label is concatenated
and placed in the dependency label. The relation-
ships between the head-finding strategies remain
the same, but it is worth noting that the accuracies
for FREQ and RIGHT are closer to each other, en-
tailing a more difficult conversion to syntax trees
for the latter. The first row can also be compared
to the second row (NC) in the same table, show-
ing the accuracies when training and parsing with
non-convertible dependency trees. One observa-
tion is that each figure 