
IWPT-09

Proceedings of the 11th
International Conference on

Parsing Technologies

7-9 October 2009
Paris, France

Production and Manufacturing by
RAPHIDOC
1 rue Isabey
92500 Rueil-Malmaison
France

Sponsored by

ACL/SIGParse

ANR Passage

c©2009 The Association for Computational Linguistics

Photo credit: Fotolia

ii

Preface

Welcome to the Eleventh International Conference on Parsing Technologies, IWPT’09, in the splendid
city of Paris.

IWPT’09 continues the tradition of biennial conferences on parsing technology organized by SIGPARSE,
the Special Interest Group on Parsing of the Association for Computational Linguistics (ACL). The first
conference, in 1989, took place in Pittsburgh and Hidden Valley, Pennsylvania. Subsequently, IWPT
conferences were held in Cancun (Mexico) in 1991; Tilburg (Netherlands) and Durbuy (Belgium) in
1993; Prague and Karlovy Vary (Czech Republic) in 1995; Boston/Cambridge (Massachusetts) in 1997;
Trento (Italy) in 2000; Beijing (China) in 2001; Nancy (France) in 2003; Vancouver (Canada) in 2005;
and Prague (Czech Republic) in 2007.

Over the years the IWPT Workshops have become the major forum for researchers in natural language
parsing. They have lead to the publication of four books on parsing technologies; a fifth one about to be
published.

Where the IWPT conferences from 1989 through 2003 were standalone conferences, the last two IWPTs
were organised as co-satellite event of large conferences: IWPT 2005 was co-loated with the HLT-
EMNLP conference in Vancouver, and IWPT 2007 with the main ACL conference in Prague. This
worked well from a logistic point of view, thanks to the support from ACL, but it was felt to lead to
somewhat less interesting events than in the past, sitting in the shadow of the larger conference and
competing with other satellite events. It was therefore decided to return to the standalone format in 2009,
with INRIA Rocquencourt and the University of Paris 7 volunteering to take charge of the organisation.
We would like to thank Eric de la Clergerie, Laurence Danlos, Benoit Sagot and the support staff at
INRIA and University of Paris 7 for their efforts to realize IWPT’09.

IWPT’09 is fortunate to have three very distinguished invited speakers: John Carroll from the university
of Sussex, Mark Johnson from Brown University, and Joakim Nivre from the University of Uppsala.

I would like to thank all the programme committee members for their careful and timely work, especially
those that took up extra rewiewing obligations at very short notice and those who participated in
discussions on diverging reviews. Special thanks go to Eric de la Clergerie, the programme chair,
for organising the reviewing, designing the workshop programme and producing the proceedings. The
scientific programme includes 14 accepted full papers and 27 accepted short papers (the latter being an
all-time high for IWPT), covering virtually all currently hot topics in parsing technology. Together with
the three invited talks by top experts in parsing, these papers provide a fascinating picture of the state of
the art in parsing natural language, that I hope you will enjoy and will find inspiring.

Harry Bunt
IWPT’09 General Chair

iii

Organizers

General Chair:

Harry Bunt (Tilburg University, Netherlands)

Programme Chair:

Éric Villemonte de la Clergerie (INRIA, France)

Logistic Arrangements Chair:

Laurence Danlos (University Paris Diderot, France)

Programme Committee:

Philippe Blache (CNRS/Provence University, Aix-en-Provence, France)
Harry Bunt (TiCC, Tilburg University, Netherlands)
David Chiang(USC/ISI, Marina del Rey, USA)
John Carroll (University of Sussex, Brighton, UK)
Stephen Clark (University of Cambridge, UK)
Éric Villemonte de la Clergerie (INRIA, Rocquencourt, France) (chair)
Jason Eisner (Johns Hopkins University, Baltimore, USA)
James Henderson (University of Edinburgh,UK)
Julia Hockenmaier (University of Pennsylvania, Philadelphia, USA)
Aravind Joshi (University of Pennsylvania, Philadelphia, USA)
Ronald Kaplan (Xerox Palo Alto Research Center, USA)
Martin Kay (Xerox Palo Alto Research Center, USA)
Sadao Kurohashi (University of Kyoto, Japan)
Alon Lavie (Carnegie-Mellon University, Pittsburgh, USA)
Rob Malouf (San Diego State University, USA)
Yuji Matsumoto (Nara Institute of Science and Technology, Japan)
Paola Merlo (University of Geneva, Switzerland)
Bob Moore (Microsoft, Redmond, USA)
Mark-Jan Nederhof (University of St. Andrews, Scotland)
Joakim Nivre (University of Uppsala, Sweden)
Gertjan van Noord (University of Groningen, Netherlands)
Stephan Oepen (University of Oslo, Norway)
Stefan Riezler (Xerox Palo Alto Research Center, USA)
Giorgio Satta (University of Padua, Italy)
Kenji Sagae (Institute for Creative Technologies, Marina del Rey, USA)
Khalil Sima’an (University of Amsterdam, Netherlands)
Hozumi Tanaka (Chukyo University, Japan)
K. Vijay-Shanker (University of Delaware, USA)
Éric Wehrli (LATL, University of Geneva, Switzerland)
David Weir (University of Sussex, Brighton, UK)
Shuly Wintner (University of Haifa, Israel)
Dekai Wu (Hong Kong University of Science and Technology, China)

v

Additional Reviewers:

Tejaswini Deoskar (ILLC, University of Amsterdam, Netherlands)
Sylvain Schmitz (ENS Cachan, France)

Invited Speakers:

John Carroll (University of Sussex, Brighton, UK)
Mark Johnson (Brown University, USA)
Joakim Nivre (University of Uppsala, Sweden)

Panel Chair:

Josef van Genabith (DCU, Dublin, Ireland)

vi

Table of Contents

Parsing Algorithms based on Tree Automata
Andreas Maletti and Giorgio Satta . 1

Weighted parsing of trees
Mark-Jan Nederhof . 13

Automatic Adaptation of Annotation Standards for Dependency Parsing ? Using Projected Treebank as
Source Corpus

Wenbin Jiang and Qun Liu .25

Learning Stochastic Bracketing Inversion Transduction Grammars with a Cubic Time Biparsing Algo-
rithm

Markus Saers, Joakim Nivre and Dekai Wu. 29

Empirical lower bounds on translation unit error rate for the full class of inversion transduction gram-
mars

Anders Søgaard and Dekai Wu . 33

Predictive Text Entry using Syntax and Semantics
Sebastian Ganslandt, Jakob Jörwall and Pierre Nugues. .37

Parsing Formal Languages using Natural Language Parsing Techniques
Jens Nilsson, Welf Löwe, Johan Hall and Joakim Nivre . 49

An Incremental Earley Parser for Simple Range Concatenation Grammar
Laura Kallmeyer and Wolfgang Maier . 61

Deductive Parsing in Interaction Grammars
Joseph Le Roux . 65

Synchronous Rewriting in Treebanks
Laura Kallmeyer, Wolfgang Maier and Giorgio Satta . 69

An Improved Oracle for Dependency Parsing with Online Reordering
Joakim Nivre, Marco Kuhlmann and Johan Hall . 73

Two stage constraint based hybrid approach to free word order language dependency parsing
Akshar Bharati, Samar Husain, Dipti Misra and Rajeev Sangal . 77

Analysis of Discourse Structure with Syntactic Dependencies and Data-Driven Shift-Reduce Parsing
Kenji Sagae . 81

Evaluating Contribution of Deep Syntactic Information to Shallow Semantic Analysis
Sumire Uematsu and Jun’ichi Tsujii . 85

Weight Pushing and Binarization for Fixed-Grammar Parsing
Matt Post and Daniel Gildea . 89

Co-Parsing with Competitive Models
Lidia Khmylko, Kilian A. Foth and Wolfgang Menzel . 99

vii

Capturing Consistency between Intra-clause and Inter-clause Relations in Knowledge-rich Dependency
and Case Structure Analysis

Daisuke Kawahara and Sadao Kurohashi . 108

Constructing parse forests that include exactly the n-best PCFG trees
Pierre Boullier, Alexis Nasr and Benoı̂t Sagot . 117

Hebrew Dependency Parsing: Initial Results
Yoav Goldberg and Michael Elhadad . 129

Scalable Discriminative Parsing for German
Yannick Versley and Ines Rehbein . 134

Improving generative statistical parsing with semi-supervised word clustering
Marie Candito and Benoı̂t Crabbé . 138

Application of feature propagation to dependency parsing
Kepa Bengoetxea and Koldo Gojenola . 142

Guessing the Grammatical Function of a Non-Root F-Structure in LFG
Anton Bryl, Josef Van Genabith and Yvette Graham . 146

Cross parser evaluation : a French Treebanks study
Djamé Seddah, Marie Candito and Benoı̂t Crabbé . 150

Transition-Based Parsing of the Chinese Treebank using a Global Discriminative Model
Yue Zhang and Stephen Clark . 162

Grammar Error Detection with Best Approximated Parse
Jean-Philippe Prost . 172

The effect of correcting grammatical errors on parse probabilities
Joachim Wagner and Jennifer Foster . 176

Effective Analysis of Causes and Inter-dependencies of Parsing Errors
Tadayoshi Hara, Yusuke Miyao and Jun’ichi Tsujii . 180

Clustering Words by Syntactic Similarity improves Dependency Parsing of Predicate-argument Struc-
tures

Kenji Sagae and Andrew S. Gordon . 192

The chunk as the period of the functions length and frequency of words on the syntagmatic axis
Jacques Vergne . 202

Using a maximum entropy-based tagger to improve a very fast vine parser
Anders Søgaard and Jonas Kuhn . 206

HPSG Supertagging: A Sequence Labeling View
Yao-zhong Zhang, Takuya Matsuzaki and Jun’ichi Tsujii . 210

Smoothing fine-grained PCFG lexicons
Tejaswini Deoskar, Mats Rooth and Khalil Sima’an . 214

Wide-coverage parsing of speech transcripts
Jeroen Geertzen . 218

viii

Interactive Predictive Parsing
Ricardo Sánchez-Sáez, Joan-Andreu Sánchez and José-Miguel Benedı́ . 222

Using Treebanking Discriminants as Parse Disambiguation Features
Md. Faisal Mahbub Chowdhury, Yi Zhang and Valia Kordoni . 226

Heuristic search in a cognitive model of human parsing
John Hale . 230

Dependency Parsing with Energy-based Reinforcement Learning
Lidan Zhang and Kwok Ping Chan . 234

A generative re-ranking model for dependency parsing
Federico Sangati, Willem Zuidema and Rens Bod . 238

Dependency Constraints for Lexical Disambiguation
Guillaume Bonfante, Bruno Guillaume and Mathieu Morey . 242

Parsing Directed Acyclic Graphs with Range Concatenation Grammars
Pierre Boullier and Benoı̂t Sagot . 254

ix

Conference Program

Wednesday, October 7, 2009

9:00–9:15 Opening Remarks

9:15–10:15 Invited Talk by John Carroll

Coffee Break and Poster Display

10:45–11:15 Parsing Algorithms based on Tree Automata
Andreas Maletti and Giorgio Satta

11:15–11:45 Weighted parsing of trees
Mark-Jan Nederhof

11:45–12:20 Short Paper Session I

Automatic Adaptation of Annotation Standards for Dependency Parsing ? Using
Projected Treebank as Source Corpus
Wenbin Jiang and Qun Liu

Learning Stochastic Bracketing Inversion Transduction Grammars with a Cubic
Time Biparsing Algorithm
Markus Saers, Joakim Nivre and Dekai Wu

Empirical lower bounds on translation unit error rate for the full class of inversion
transduction grammars
Anders Søgaard and Dekai Wu

Lunch

14:00–14:30 Predictive Text Entry using Syntax and Semantics
Sebastian Ganslandt, Jakob Jörwall and Pierre Nugues

14:30–15:00 Parsing Formal Languages using Natural Language Parsing Techniques
Jens Nilsson, Welf Löwe, Johan Hall and Joakim Nivre

15:00–16:00 Short Paper Session II

An Incremental Earley Parser for Simple Range Concatenation Grammar
Laura Kallmeyer and Wolfgang Maier

Deductive Parsing in Interaction Grammars
Joseph Le Roux

Synchronous Rewriting in Treebanks
Laura Kallmeyer, Wolfgang Maier and Giorgio Satta

xi

Wednesday, October 7, 2009 (continued)

An Improved Oracle for Dependency Parsing with Online Reordering
Joakim Nivre, Marco Kuhlmann and Johan Hall

Two stage constraint based hybrid approach to free word order language
dependency parsing
Akshar Bharati, Samar Husain, Dipti Misra and Rajeev Sangal

Coffee Break and Poster Display

16:35–17:00 Short Paper Session III

Analysis of Discourse Structure with Syntactic Dependencies and Data-Driven Shift-
Reduce Parsing
Kenji Sagae

Evaluating Contribution of Deep Syntactic Information to Shallow Semantic Analysis
Sumire Uematsu and Jun’ichi Tsujii

17:00–17:30 Weight Pushing and Binarization for Fixed-Grammar Parsing
Matt Post and Daniel Gildea

17:30–18:00 Co-Parsing with Competitive Models
Lidia Khmylko, Kilian A. Foth and Wolfgang Menzel

Thursday, October 8, 2009

9:00–10:00 Invited Talk by Mark Johnson

Coffee Break and Poster Display

10:30–11:00 Capturing Consistency between Intra-clause and Inter-clause Relations in Knowledge-
rich Dependency and Case Structure Analysis
Daisuke Kawahara and Sadao Kurohashi

11:00–11:30 Constructing parse forests that include exactly the n-best PCFG trees
Pierre Boullier, Alexis Nasr and Benoı̂t Sagot

11:30–12:30 Short Paper Session IV

Hebrew Dependency Parsing: Initial Results
Yoav Goldberg and Michael Elhadad

Scalable Discriminative Parsing for German
Yannick Versley and Ines Rehbein

Improving generative statistical parsing with semi-supervised word clustering
Marie Candito and Benoı̂t Crabbé

xii

Thursday, October 8, 2009 (continued)

Application of feature propagation to dependency parsing
Kepa Bengoetxea and Koldo Gojenola

Guessing the Grammatical Function of a Non-Root F-Structure in LFG
Anton Bryl, Josef Van Genabith and Yvette Graham

Lunch

14:00–14:30 Cross parser evaluation : a French Treebanks study
Djamé Seddah, Marie Candito and Benoı̂t Crabbé

14:30–15:00 Transition-Based Parsing of the Chinese Treebank using a Global Discriminative Model
Yue Zhang and Stephen Clark

15:00–15:25 Short Paper Session V

Grammar Error Detection with Best Approximated Parse
Jean-Philippe Prost

The effect of correcting grammatical errors on parse probabilities
Joachim Wagner and Jennifer Foster

Coffee Break and Poster Display

16:00–18:15 Panel: Statistical Parsing for Morphologically-rich Languages

Friday, October 9, 2009

9:00-10:00 Invited Talk by Joakim Nivre

10:00–10:30 Effective Analysis of Causes and Inter-dependencies of Parsing Errors
Tadayoshi Hara, Yusuke Miyao and Jun’ichi Tsujii

10:30–11:00 Clustering Words by Syntactic Similarity improves Dependency Parsing of Predicate-
argument Structures
Kenji Sagae and Andrew S. Gordon

Coffee Break and Poster Display

11:30–12:30 Short Paper Session VI

The chunk as the period of the functions length and frequency of words on the syntagmatic
axis
Jacques Vergne

Using a maximum entropy-based tagger to improve a very fast vine parser
Anders Søgaard and Jonas Kuhn

xiii

Friday, October 9, 2009 (continued)

HPSG Supertagging: A Sequence Labeling View
Yao-zhong Zhang, Takuya Matsuzaki and Jun’ichi Tsujii

Smoothing fine-grained PCFG lexicons
Tejaswini Deoskar, Mats Rooth and Khalil Sima’an

Wide-coverage parsing of speech transcripts
Jeroen Geertzen

Lunch

13:45–14:15 ACL/SIGParse Business Meeting

14:15–15:15 Short Paper Session VII

Interactive Predictive Parsing
Ricardo Sánchez-Sáez, Joan-Andreu Sánchez and José-Miguel Benedı́

Using Treebanking Discriminants as Parse Disambiguation Features
Md. Faisal Mahbub Chowdhury, Yi Zhang and Valia Kordoni

Heuristic search in a cognitive model of human parsing
John Hale

Dependency Parsing with Energy-based Reinforcement Learning
Lidan Zhang and Kwok Ping Chan

A generative re-ranking model for dependency parsing
Federico Sangati, Willem Zuidema and Rens Bod

Coffee Break and Poster Display

15:45–16:15 Dependency Constraints for Lexical Disambiguation
Guillaume Bonfante, Bruno Guillaume and Mathieu Morey

16:15–16:45 Parsing Directed Acyclic Graphs with Range Concatenation Grammars
Pierre Boullier and Benoı̂t Sagot

16:45–17:00 Closing Remarks

xiv

Invited Talks

Moving Parsing into the Real World: Noisy Text, Grammatical
Representations and Applications

John Carroll
University of Sussex, Brighton, UK

J.A.Carroll@sussex.ac.uk

Much recent research in natural language parsing
takes as input carefully crafted, edited text, of-
ten from newspapers. However, many real-world
applications involve processing text which is not
written carefully by a native speaker, is produced
for an eventual audience of only one, and is in
essence ephemeral. In this talk I will present a
number of research and commercial applications

of this type which I and collaborators are develop-
ing, in which we parse text as diverse as mobile
phone text messages, non-native language learner
essays, internet chat, and primary care medical
notes. I will discuss the problems these types of
text pose for a parser, and outline how we integrate
information from parsing into applications.

Learning Rules with Adaptor Grammars

Mark Johnson
Brown University, USA

Mark Johnson@Brown.edu

Nonparametric Bayesian methods are interesting
because they may provide a way of learning the
appropriate units of generalization (i.e., the ”rules”
of a grammar) as well as the generalization’s
probability or weight (i.e., the rule’s probability).
Adaptor Grammars are a framework for stating
a variety of hierarchical nonparametric Bayesian
models, where the units of generalization can be
viewed as kinds of PCFG rules. This talk de-

scribes the mathematical and computational prop-
erties of Adaptor Grammars and linguistic appli-
cations such as word segmentation, syllabification
and named entity recognition. The later part of
the talk reviews MCMC inference and describes
the MCMC algorithms we use to sample adaptor
grammars.

Joint work with Sharon Goldwater and Tom Grif-
fiths.

xv

Discontinuous Dependency Parsing

Joakim Nivre
University of Uppsala, Sweden
joakim.nivre@lingfil.uu.se

There is a strong tendency in natural language syn-
tax such that elements that have a direct syntac-
tic relation are also adjacent in the surface real-
ization of a sentence. Nevertheless, notable ex-
ceptions to this generalization exist in practically
all languages and are especially common in lan-
guages with free or flexible word order. Syntactic
theorists, on the one hand, have developed a va-
riety of representational devices for dealing with
these exceptions, including phonetically null ele-
ments, gap threading, and non-projective depen-

dency trees. Syntactic parsers, on the other hand,
use these devices very restrictively since they add
to the complexity of an already daunting task. This
is especially true of data-driven parsers, where dis-
continuity is often simply ignored. In this talk, I
will review techniques for dealing with discontin-
uous structures in the framework of dependency
parsing, focusing on parsing algorithms that build
structures from non-adjacent elements and in par-
ticular transition-based algorithms that use online
reordering.

xvi

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 1–12,
Paris, October 2009. c©2009 Association for Computational Linguistics

Parsing Algorithms based on Tree Automata

Andreas Maletti
Departament de Filologies Romàniques

Universitat Rovira i Virgili, Tarragona, Spain
andreas.maletti@urv.cat

Giorgio Satta
Department of Information Engineering

University of Padua, Italy
satta@dei.unipd.it

Abstract
We investigate several algorithms related
to the parsing problem for weighted au-
tomata, under the assumption that the in-
put is a string rather than a tree. This
assumption is motivated by several natu-
ral language processing applications. We
provide algorithms for the computation of
parse-forests, best tree probability, inside
probability (called partition function), and
prefix probability. Our algorithms are ob-
tained by extending to weighted tree au-
tomata the Bar-Hillel technique, as defined
for context-free grammars.

1 Introduction

Tree automata are finite-state devices that recog-
nize tree languages, that is, sets of trees. There
is a growing interest nowadays in the natural
language parsing community, and especially in
the area of syntax-based machine translation, for
probabilistic tree automata (PTA) viewed as suit-
able representations of grammar models. In fact,
probabilistic tree automata are generatively more
powerful than probabilistic context-free gram-
mars (PCFGs), when we consider the latter as de-
vices that generate tree languages. This difference
can be intuitively understood if we consider that a
computation by a PTA uses hidden states, drawn
from a finite set, that can be used to transfer infor-
mation within the tree structure being recognized.

As an example, in written English we can em-
pirically observe different distributions in the ex-
pansion of so-called noun phrase (NP) nodes, in
the contexts of subject and direct-object positions,
respectively. This can be easily captured using
some states of a PTA that keep a record of the dif-
ferent contexts. In contrast, PCFGs are unable to
model these effects, because NP node expansion
should be independent of the context in the deriva-
tion. This problem for PCFGs is usually solved by

resorting to so-called parental annotations (John-
son, 1998), but this, of course, results in a different
tree language, since these annotations will appear
in the derived tree.

Most of the theoretical work on parsing and es-
timation based on PTA has assumed that the in-
put is a tree (Graehl et al., 2008), in accordance
with the very definition of these devices. How-
ever, both in parsing as well as in machine transla-
tion, the input is most often represented as a string
rather than a tree. When the input is a string, some
trick is applied to map the problem back to the
case of an input tree. As an example in the con-
text of machine translation, assume a probabilistic
tree transducer T as a translation model, and an
input string w to be translated. One can then inter-
mediately construct a tree automaton Mw that rec-
ognizes the set of all possible trees that have w as
yield, with internal nodes from the input alphabet
of T . This automaton Mw is further transformed
into a tree transducer implementing a partial iden-
tity translation, and such a transducer is composed
with T (relation composition). This is usually
called the ‘cascaded’ approach. Such an approach
can be easily applied also to parsing problems.

In contrast with the cascaded approach above,
which may be rather inefficient, in this paper we
investigate a more direct technique for parsing
strings based on weighted and probabilistic tree
automata. We do this by extending to weighted
tree automata the well-known Bar-Hillel construc-
tion defined for context-free grammars (Bar-Hillel
et al., 1964) and for weighted context-free gram-
mars (Nederhof and Satta, 2003). This provides
an abstract framework under which several pars-
ing algorithms can be directly derived, based on
weighted tree automata. We discuss several appli-
cations of our results, including algorithms for the
computation of parse-forests, best tree probability,
inside probability (called partition function), and
prefix probability.

1

2 Preliminary definitions

Let S be a nonempty set and · be an associative
binary operation on S. If S contains an element 1
such that 1 · s = s = s · 1 for every s ∈ S, then
(S, ·, 1) is a monoid. A monoid (S, ·, 1) is com-
mutative if the equation s1 · s2 = s2 · s1 holds
for every s1, s2 ∈ S. A commutative semiring
(S,+, ·, 0, 1) is a nonempty set S on which a bi-
nary addition + and a binary multiplication · have
been defined such that the following conditions are
satisfied:
• (S,+, 0) and (S, ·, 1) are commutative

monoids,
• · distributes over + from both sides, and
• s · 0 = 0 = 0 · s for every s ∈ S.

A weighted string automaton, abbreviated WSA,
(Schützenberger, 1961; Eilenberg, 1974) is a sys-
tem M = (Q,Σ,S, I, ν, F) where
• Q is a finite alphabet of states,
• Σ is a finite alphabet of input symbols,
• S = (S,+, ·, 0, 1) is a semiring,
• I : Q→ S assigns initial weights,
• ν : Q×Σ×Q→ S assigns a weight to each

transition, and
• F : Q→ S assigns final weights.
We now proceed with the semantics of M . Let

w ∈ Σ∗ be an input string of length n. For each
integer i with 1 ≤ i ≤ n, we write w(i) to denote
the i-th character of w. The set Pos(w) of posi-
tions of w is {i | 0 ≤ i ≤ n}. A run of M on w
is a mapping r : Pos(w) → Q. We denote the set
of all such runs by RunM (w). The weight of a
run r ∈ RunM (w) is

wtM (r) =
n∏

i=1

ν(r(i− 1), w(i), r(i)) .

We assume the right-hand side of the above equa-
tion evaluates to 1 in case n = 0. The WSA M
recognizes the mapping M : Σ∗ → S, which is
defined for every w ∈ Σ∗ of length n by1

M(w) =
∑

r∈RunM (w)

I(r(0)) ·wtM (r) ·F (r(n)) .

In order to define weighted tree automata (Bers-
tel and Reutenauer, 1982; Ésik and Kuich, 2003;
Borchardt, 2005), we need to introduce some addi-
tional notation. Let Σ be a ranked alphabet, that

1We overload the symbol M to denote both an automaton
and its recognized mapping. However, the intended meaning
will always be clear from the context.

is, an alphabet whose symbols have an associated
arity. We write Σk to denote the set of all k-ary
symbols in Σ. We use a special symbol e ∈ Σ0

to syntactically represent the empty string ε. The
set of Σ-trees, denoted by TΣ, is the smallest set
satisfying both of the following conditions
• for every α ∈ Σ0, the single node labeled α,

written α(), is a tree of TΣ,
• for every σ ∈ Σk with k ≥ 1 and for every
t1, . . . , tk ∈ TΣ, the tree with a root node la-
beled σ and trees t1, . . . , tk as its k children,
written σ(t1, . . . , tk), belongs to TΣ.

As a convention, throughout this paper we assume
that σ(t1, . . . , tk) denotes σ() if k = 0. The size
of the tree t ∈ TΣ, written |t|, is defined as the
number of occurrences of symbols from Σ in t.

Let t = σ(t1, . . . , tk). The yield of t is recur-
sively defined by

yd(t) =





σ if σ ∈ Σ0 \ {e}
ε if σ = e

yd(t1) · · · yd(tk) otherwise.

The set of positions of t, denoted by Pos(t), is
recursively defined by

Pos(σ(t1, . . . , tk)) =
{ε} ∪ {iw | 1 ≤ i ≤ k,w ∈ Pos(ti)} .

Note that |t| = |Pos(t)| and, according to our con-
vention, when k = 0 the above definition provides
Pos(σ()) = {ε}. We denote the symbol of t at
position w by t(w) and its rank by rkt(w).

A weighted tree automaton (WTA) is a system
M = (Q,Σ,S, µ, F) where
• Q is a finite alphabet of states,
• Σ is a finite ranked alphabet of input symbols,
• S = (S,+, ·, 0, 1) is a semiring,
• µ is an indexed family (µk)k∈N of mappings
µk : Σk → SQ×Q

k
, and

• F : Q→ S assigns final weights.
In the above definition, Qk is the set of all strings
over Q having length k, with Q0 = {ε}. Fur-
ther note that SQ×Q

k
is the set of all matrices

with elements in S, row index set Q, and column
index set Qk. Correspondingly, we will use the
common matrix notation and write instances of µ
in the form µk(σ)q0,q1···qk . Finally, we assume
q1 · · · qk = ε if k = 0.

We define the semantics also in terms of runs.
Let t ∈ TΣ. A run of M on t is a mapping
r : Pos(t)→ Q. We denote the set of all such runs

2

by RunM (t). The weight of a run r ∈ RunM (t)
is

wtM (r) =
∏

w∈Pos(t)
rkt(w)=k

µk(t(w))r(w),r(w1)···r(wk) .

Note that, according to our convention, the string
r(w1) · · · r(wk) denotes ε when k = 0. The
WTA M recognizes the mapping M : TΣ → S,
which is defined by

M(t) =
∑

r∈RunM (t)

wtM (r) · F (r(ε))

for every t ∈ TΣ. We say that t is recognized
by M if M(t) 6= 0.

In our complexity analyses, we use the follow-
ing measures. The size of a transition (p, α, q) in
(the domain of ν in) a WSA is |pαq| = 3. The size
of a transition in a WTA, viewed as an instance
(σ, q0, q1 · · · qk) of some mapping µk, is defined
as |σq0 · · · qk|, that is, the rank of the input symbol
occurring in the transition plus two. Finally, the
size |M | of an automaton M (WSA or WTA) is
defined as the sum of the sizes of its nonzero tran-
sitions. Note that this does not take into account
the size of the representation of the weights.

3 Binarization

We introduce in this section a specific transfor-
mation of WTA, called binarization, that reduces
the transitions of the automaton to some normal
form in which no more than three states are in-
volved. This transformation maps the set of rec-
ognized trees into a special binary form, in such a
way that the yields of corresponding trees and their
weights are both preserved. We use this transfor-
mation in the next section in order to guarantee
the computational efficiency of the parsing algo-
rithm we develop. The standard ‘first-child, next-
sibling’ binary encoding for trees (Knuth, 1997)
would eventually result in a transformed WTA of
quadratic size. To obtain instead a linear size
transformation, we introduce a slightly modified
encoding (Högberg et al., 2009, Section 4), which
is inspired by (Carme et al., 2004) and the classical
currying operation.

Let Σ be a ranked alphabet and assume a
fresh symbol @ /∈ Σ (corresponding to the ba-
sic list concatenation operator). Moreover, let
∆ = ∆2 ∪ ∆1 ∪ ∆0 be the ranked alphabet such
that ∆2 = {@}, ∆1 =

⋃
k≥1 Σk, and ∆0 = Σ0. In

σ

γ

α

δ

β σ

β α

α

σ

@

γ

α

δ

@

β @

σ

@

β α

α

Figure 1: Input tree t and encoded tree enc(t).

words, all the original non-nullary symbols from
Σ are now unary, @ is binary, and the original
nullary symbols from Σ have their rank preserved.
We encode each tree of TΣ as a tree of T∆ as fol-
lows:
• enc(α) = α() for every α ∈ Σ0,
• enc(γ(t)) = γ(enc(t)) for every γ ∈ Σ1 and
t ∈ TΣ, and
• for k ≥ 2, σ ∈ Σk, and t1, . . . , tk ∈ TΣ

enc(σ(t1, . . . , tk)) =
σ(@(enc(t1), . . .@(enc(tk−1), enc(tk)) · · ·)).

An example of the above encoding is illustrated
in Figure 1. Note that |enc(t)| ∈ O(|t|) for every
t ∈ TΣ. Furthermore, t can be easily reconstructed
from enc(t) in linear time.

Definition 1 LetM = (Q,Σ,S, µ, F) be a WTA.
The encoded WTA enc(M) is (P,∆,S, µ′, F ′)
where

P = {[q] | q ∈ Q} ∪
∪ {[w] |µk(σ)q,uw 6= 0, u ∈ Q∗, w ∈ Q+},

F ′([q]) = F (q) for every q ∈ Q, and the transi-
tions are constructed as follows:

(i) µ′0(α)[q],ε = µ0(α)q,ε for every α ∈ Σ0,
(ii) µ′1(σ)[q],[w] = µk(σ)q,w for every σ ∈ Σk,

k ≥ 1, q ∈ Q, and w ∈ Qk, and
(iii) µ′2(@)[qw],[q][w] = 1 for every [qw] ∈ P with
|w| ≥ 1 and q ∈ Q.

All remaining entries in F ′ and µ′ are 0. 2

Notice that each transition of enc(M) involves no
more than three states from P . Furthermore, we
have |enc(M)| ∈ O(|M |). The following result is
rather intuitive (Högberg et al., 2009, Lemma 4.2);
its proof is therefore omitted.

3

Theorem 1 Let M = (Q,Σ,S, µ, F) be a WTA,
and let M ′ = enc(M). Then M(t) = M ′(enc(t))
for every t ∈ TΣ. 2

4 Bar-Hillel construction

The so-called Bar-Hillel construction was pro-
posed in (Bar-Hillel et al., 1964) to show that
the intersection of a context-free language and
a regular language is still a context-free lan-
guage. The proof of the result consisted in an
effective construction of a context-free grammar
Prod(G,N) from a context-free grammar G and
a finite automaton N , such that Prod(G,N) gen-
erates the intersection of the languages generated
by G and N .

It was later recognized that the Bar-Hillel con-
struction constitutes one of the foundations of the
theory of tabular parsing based on context-free
grammars. More precisely, by taking the finite
automaton N to be of some special kind, accept-
ing only a single string, the Bar-Hillel construction
provides a framework under which several well-
known tabular parsing algorithms can easily be de-
rived, that were proposed much later in the litera-
ture.

In this section we extend the Bar-Hillel con-
struction to WTA, with a similar purpose of es-
tablishing an abstract framework under which one
could easily derive parsing algorithms based on
these devices. In order to guarantee computational
efficiency, we avoid here stating the Bar-Hillel
construction for WTA with alphabets of arbitrary
rank. The next result therefore refers to WTA with
alphabet symbols of rank at most 2. These may,
but need not, be automata obtained through the bi-
nary encoding discussed in Section 3.

Definition 2 Let M = (Q,Σ,S, µ, F) be a WTA
such that the maximum rank of a symbol in Σ is 2,
and let N = (P,Σ0 \ {e},S, I, ν,G) be a WSA
over the same semiring. We construct the WTA

Prod(M,N) = (P ×Q× P,Σ,S, µ′, F ′)

as follows:
(i) For every σ ∈ Σ2, states p0, p1, p2 ∈ P , and

states q0, q1, q2 ∈ Q let

µ′2(σ)(p0,q0,p2),(p0,q1,p1)(p1,q2,p2) = µ2(σ)q0,q1q2 .

(ii) For every symbol γ ∈ Σ1, states p0, p1 ∈ P ,
and states q0, q1 ∈ Q let

µ′1(γ)(p0,q0,p1),(p0,q1,p1) = µ1(γ)q0,q1 .

p0 p2

p0 p1 p1 p2

σ

=
=

=

p0 p1

p0 p1

γ

= =

p0 α p1

ν(p0, α, p1)

p0 e p0

=

Figure 2: Information transport in the first and
third components of the states in our Bar-Hillel
construction.

(iii) For every symbol α ∈ Σ0, states p0, p1 ∈ P ,
and q ∈ Q let

µ′0(α)(p0,q,p1),ε = µ0(α)q,ε · s

where

s =

{
ν(p0, α, p1) if α 6= e

1 if α = e and p0 = p1 .

(iv) F ′(p0, q, p1) = I(p0) ·F (q) ·G(p1) for every
p0, p1 ∈ P and q ∈ Q.

All remaining entries in µ′ are 0. 2

Theorem 2 Let M and N be as in Definition 2,
and let M ′ = Prod(M,N). If S is commutative,
thenM ′(t) = M(t) ·N(yd(t)) for every t ∈ TΣ.2

PROOF For a state q ∈ P × Q × P , we write qi
to denote its i-th component with i ∈ {1, 2, 3}.
Let t ∈ TΣ and r ∈ RunM ′(t) be a run of M ′

on t. We call the run r well-formed if for every
w ∈ Pos(t):

(i) if t(w) = e, then r(w)1 = r(w)3,
(ii) if t(w) /∈ Σ0, then:

(a) r(w)1 = r(w1)1,
(b) r(w rkt(w))3 = r(w)3, and
(c) if rkt(w) = 2, then r(w1)3 = r(w2)1.

Note that no conditions are placed on the second
components of the states in r. We try to illustrate
the conditions in Figure 2.

A standard proof shows that wtM ′(r) = 0 for
all runs r ∈ RunM ′(t) that are not well-formed.
We now need to map runs of M ′ back into ‘cor-
responding’ runs for M and N . Let us fix some
t ∈ TΣ and some well-formed run r ∈ RunM ′(t).

4

We define the run πM (r) ∈ RunM (t) by letting

πM (r)(w) = r(w)2,

for every w ∈ Pos(t). Let {w1, . . . , wn} =
{w′ | w′ ∈ Pos(t), t(w′) ∈ Σ0 \ {e}}, with
w1 < · · · < wn according to the lexico-
graphic order on Pos(t). We also define the run
πN (r) ∈ RunN (yd(t)) by letting

πN (r)(i− 1) = r(wi)1,

for every 1 ≤ i < n, and

πN (r)(n) = r(wn)3 .

Note that conversely every run of M on t and ev-
ery run of N on yd(t) yield a unique run of M ′

on t.
Now, we claim that

wtM ′(r) = wtM (πM (r)) · wtN (πN (r))

for every well-formed run r ∈ RunM ′(t). To
prove the claim, let t = σ(t1, . . . , tk) for some
σ ∈ Σk, k ≤ 2, and t1, . . . , tk ∈ TΣ. Moreover,
for every 1 ≤ i ≤ k let ri(w) = r(iw) for every
w ∈ Pos(ti). Note that ri ∈ RunM ′(ti) and that
ri is well-formed for every 1 ≤ i ≤ k.

For the induction base, let σ ∈ Σ0; we can write

wtM ′(r)
= µ′0(σ)r(ε),ε

=

{
µ0(σ)r(ε)2,ε · ν(r(ε)1, σ, r(ε)3) if σ 6= e

µ0(σ)r(ε)2,ε if σ = e

= wtM (πM (r)) · wtN (πN (r)) .

In the induction step (i.e., k > 0) we have

wtM ′(r)

=
∏

w∈Pos(t)
rkt(w)=n

µ′n(t(w))r(w),r(w1)···r(wn)

= µ′k(σ)r(ε),r(1)···r(k) ·
k∏

i=1

wtM ′(ri) .

Using the fact that r is well-formed, commutativ-
ity, and the induction hypothesis, we obtain

= µk(σ)r(ε)2,r(1)2···r(k)2
·

·
k∏

i=1

(
wtM (πM (ri)) · wtN (πN (ri))

)

= wtM (π2(r)) · wtN (πN (r)) ,

where in the last step we have again used the fact
that r is well-formed. Using the auxiliary state-
ment wtM ′(r) = wtM (πM (r)) ·wtN (πN (r)), the
main proof now is easy.

M ′(t)

=
∑

r∈RunM′ (t)

wtM ′(r) · F ′(r(ε))

=
∑

r∈RunM′ (t)
r well-formed

wtM (πM (r)) · wtN (πN (r)) ·

· I(r(ε)1) · F (r(ε)2) ·G(r(ε)3)

=
(∑

r∈RunM (t)

wtM (r) · F (r(ε))
)
·

·
(∑

w=yd(t)
r∈RunN (w)

I(r(0)) · wtN (r) ·G(r(|w|))
)

= M(t) ·N(yd(t)) �

Let us analyze now the computational complex-
ity of a possible implementation of the construc-
tion in Definition 2. In step (i), we could restrict
the computation by considering only those transi-
tions inM satisfying µ2(σ)q0,q1q2 6= 0, which pro-
vides a number of choices in O(|M |). Combined
with the choices for the states p0, p1, p2 of N ,
this provides O(|M | · |P |3) non-zero transitions
in Prod(M,N). This is also a bound on the over-
all running time of step (i). Since we additionally
assume that weights can be multiplied in constant
time, it is not difficult to see that all of the remain-
ing steps can be accommodated within such a time
bound. We thus conclude that the construction in
Definition 2 can be implemented to run in time and
space O(|M | · |P |3).

5 Parsing applications

In this section we discuss several applications of
the construction presented in Definition 2 that are
relevant for parsing based on WTA models.

5.1 Parse forest

Parsing is usually defined as the problem of con-
structing a suitable representation for the set of all
possible parse trees that are assigned to a given in-
put string w by some grammar model. The set of
all such parse trees is called parse forest. The ex-
tension of the Bar-Hillel construction that we have

5

presented in Section 4 can be easily adapted to ob-
tain a parsing algorithm for WTA models. This is
described in what follows.

First, we should represent the input string w in
a WSA that recognizes the language {w}. Such
an automaton has a state set P = {p0, . . . , p|w|}
and transition weights ν(pi−1, w(i), pi) = 1 for
each i with 1 ≤ i ≤ |w|. We also set I(p0) = 1
and F (p|w|) = 1. Setting all the weights to 1 for
a WSA N amounts to ignoring the weights, i.e.,
those weights will not contribute in any way when
applying the Bar-Hillel construction.

Assume now that M is our grammar model,
represented as a WTA. The WTA Prod(M,N)
constructed as in Definition 2 is not necessarily
trim, meaning that it might contain transitions
with non-zero weight that are never used in the
recognition. Techniques for eliminating such use-
less transitions are well-known, see for instance
(Gécseg and Steinby, 1984, Section II.6), and can
be easily implemented to run in linear time. Once
Prod(M,N) is trim, we have a device that rec-
ognizes all and only those trees that are assigned
by M to the input string w, and the weights of
those trees are preserved, as seen in Theorem 2.
The WTA Prod(M,N) can then be seen as a rep-
resentation of a parse forest for the input string w,
and we conclude that the construction in Defini-
tion 2, combined with some WTA reduction al-
gorithm, represents a parsing algorithm for WTA
models working in cubic time on the length of the
input string and in linear time on the size of the
grammar model.

More interestingly, from the framework devel-
oped in Section 4, one can also design more effi-
cient parsing algorithms based on WTA. Borrow-
ing from standard ideas developed in the litera-
ture for parsing based on context-free grammars,
one can specialize the construction in Definition 2
in such a way that the number of useless transi-
tions generated for Prod(M,N) is considerably
reduced, resulting in a more efficient construction.
This can be done by adopting some search strat-
egy that guides the construction of Prod(M,N)
using knowledge of the input string w as well as
knowledge about the source model M .

As an example, we can apply step (i) only on de-
mand, that is, we process a transition µ′2(σ)q0,q1q2
in Prod(M,N) only if we have already computed
non-zero transitions of the form µ′k1

(σ1)q1,w1 and
µ′k2

(σ2)q2,w2 , for some σ1 ∈ Σk1 , w1 ∈ Qk1 and

σ2 ∈ Σk2 , w2 ∈ Qk2 where Q is the state set
of Prod(M,N). The above amounts to a bottom-
up strategy that is also used in the Cocke-Kasami-
Younger recognition algorithm for context-free
grammars (Younger, 1967).

More sophisticated strategies are also possible.
For instance, one could adopt the Earley strategy
developed for context-free grammar parsing (Ear-
ley, 1970). In this case, parsing is carried out in
a top-down left-to-right fashion, and the binariza-
tion construction of Section 3 is carried out on the
flight. This has the additional advantage that it
would be possible to use WTA models that are not
restricted to the special normal form of Section 3,
still maintaining the cubic time complexity in the
length of the input string. We do not pursue this
idea any further in this paper, since our main goal
here is to outline an abstract framework for pars-
ing based on WTA models.

5.2 Probabilistic tree automata
Let us now look into specific semirings that are
relevant for statistical natural language process-
ing. The semiring of non-negative real numbers
is R≥0 = (R≥0,+, ·, 0, 1). For the remainder of
the section, let M = (Q,Σ,R≥0, µ, F) be a WTA
over R≥0. M is convergent if

∑

t∈TΣ

M(t) < ∞.

We say that M is a probabilistic tree automa-
ton (Ellis, 1971; Magidor and Moran, 1970),
or PTA for short, if µk(σ)q,q1···qk ∈ [0, 1]
and F (q) ∈ [0, 1], for every σ ∈ Σk and
q, q1, . . . , qk ∈ Q. In other words, in a PTA all
weights are in the range [0, 1] and can be inter-
preted as probabilities. For a PTA M we therefore
write pM (r) = wt(r) and pM (t) = M(t), for
each t ∈ TΣ and r ∈ RunM (t).

A PTA is proper if
∑

q∈Q F (q) = 1 and

∑

σ∈Σk,k≥0,w∈Qk

µk(σ)q,w = 1

for every q ∈ Q. Since the set of symbols is finite,
we could have only required that the sum over all
weights as shown with w ∈ Qk equals 1 for every
q ∈ Q and σ ∈ Σk. A simple rescaling would then
be sufficient to arrive at our notion. Furthermore, a
PTA is consistent if

∑
t∈TΣ

pM (t) = 1. If a PTA
is consistent, then pM is a probability distribution
over the set TΣ.

6

The WTAM is unambiguous if for every input
tree t ∈ TΣ, there exists at most one r ∈ RunM (t)
such that r(ε) ∈ F and wtM (r) 6= 0. In other
words, in an unambiguous WTA, there exists at
most one successful run for each input tree. Fi-
nally, M is in final-state normal form if there ex-
ists a state qS ∈ Q such that
• F (qS) = 1,
• F (q) = 0 for every q ∈ Q \ {qS}, and
• µk(σ)q,w = 0 if w(i) = qS for some

1 ≤ i ≤ k.
We commonly denote the unique final state by qS .
For the following result we refer the reader
to (Droste et al., 2005, Lemma 4.8) and (Bozapa-
lidis, 1999, Lemma 22). The additional properties
mentioned in the items of it are easily seen.

Theorem 3 For every WTA M there exists an
equivalent WTA M ′ in final-state normal form.
• If M is convergent (respectively, proper, con-

sistent), then M ′ is such, too.
• If M is unambiguous, then M ′ is

also unambiguous and for every
t ∈ TΣ and r ∈ RunM (t) we have
wtM ′(r′) = wtM (r) · F (r(ε)) where
r′(ε) = qS and r′(w) = r(w) for every
w ∈ Pos(t) \ {ε}. 2

It is not difficult to see that a proper PTA in
final-state normal form is always convergent.

In statistical parsing applications we use gram-
mar models that induce a probability distribution
on the set of parse trees. In these applications,
there is often the need to visit a parse tree with
highest probability, among those in the parse for-
est obtained from the input sentence. This imple-
ments a form of disambiguation, where the most
likely tree under the given model is selected, pre-
tending that it provides the most likely syntactic
analysis of the input string. In our setting, the
above approach reduces to the problem of ‘unfold-
ing’ a tree from a PTA Prod(M,N), that is as-
signed the highest probability.

In order to find efficient solutions for the above
problem, we make the following two assumptions.
• M is in final-state normal form. By Theo-

rem 3 this can be achieved without loss of
generality.
• M is unambiguous. This restrictive assump-

tion avoids the so-called ‘spurious’ ambigu-
ity, that would result in several computations
in the model for an individual parse tree.

It is not difficult to see that PTA satisfying these

1: Function BESTPARSE(M)
2: E ← ∅
3: repeat
4: A ← {q |µk(σ)q,q1···qk > 0, q /∈ E ,

q1, . . . , qk ∈ E}
5: for all q ∈ A do

6: δ(q)← max
σ∈Σk,k≥0
q1,...,qk∈E

µk(σ)q,q1···qk ·
k∏
i=1

δ(qi)

7: E ← E ∪ {argmax
q∈A

δ(q)}
8: until qS ∈ E
9: return δ(qS)

Figure 3: Search algorithm for the most probable
parse in an unambiguous PTAM in final-state nor-
mal form.

two properties are still more powerful than the
probabilistic context-free grammar models that are
commonly used in statistical natural language pro-
cessing.

Once more, we borrow from the literature on
parsing for context-free grammars, and adapt a
search algorithm developed by Knuth (1977); see
also (Nederhof, 2003). The basic idea here is
to generalize Dijkstra’s algorithm to compute the
shortest path in a weighted graph. The search al-
gorithm is presented in Figure 3.

The algorithm takes as input a trim PTA M that
recognizes at least one parse tree. We do not im-
pose any bound on the rank of the alphabet sym-
bols forM . Furthermore,M needs not be a proper
PTA. In order to simplify the presentation, we pro-
vide the algorithm in a form that returns the largest
probability assigned to some tree by M .

The algorithm records into the δ(q) variables
the largest probability found so far for a run that
brings M into state q, and stores these states into
an agenda A. States for which δ(q) becomes opti-
mal are popped from A and stored into a set E .
Choices are made on a greedy base. Note that
when a run has been found leading to an optimal
probability δ(q), from our assumption we know
that the associated tree has only one run that ends
up in state q.

Since E is initially empty (line 2), only weights
satisfying µ0(σ)q,ε > 0 are considered when line 4
is executed for the first time. Later on (line 7)
the largest probability is selected among all those
that can be computed at this time, and the set E is
populated. As a consequence, more states become

7

available in the agenda in the next iteration, and
new transitions can now be considered. The algo-
rithm ends when the largest probability has been
calculated for the unique final state qS .

We now analyze the computational complexity
of the algorithm in Figure 3. The ‘repeat-until’
loop runs at most |Q| times. Entirely reprocess-
ing setA at each iteration would be too expensive.
We instead implement A as a priority heap and
maintain a clock for each weight µk(σ)q,q1···qk ,
initially set to k. Whenever a new optimal proba-
bility δ(q) becomes available through E , we decre-
ment the clock associated with each µk(σ)q,q1···qk
by d, in case d > 0 occurrences of q are found
in the string q1 · · · qk. In this way, at each it-
eration of the ‘repeat-until’ loop, we can con-
sider only those weights µk(σ)q,q1···qk with asso-
ciated clock of zero, compute new values δ(q),
and update the heap. For each µk(σ)q,q1···qk > 0,
all clock updates and the computation of quan-
tity µk(σ)q,q1···qk ·

∏k
i=1 δ(qi) (when the associ-

ated clock becomes zero) both take an amount of
time proportional to the length of the transition
itself. The overall time to execute these opera-
tions is therefore linear in |M |. Accounting for
the heap, the algorithm has overall running time
in O(|M |+ |Q| log|Q|).

The algorithm can be easily adapted to return a
tree having probability δ(qS), if we keep a record
of all transitions selected in the computation along
with links from a selected transition and all of the
previously selected transitions that have caused its
selection. If we drop the unambiguity assump-
tion for the PTA, then the problem of comput-
ing the best parse tree becomes NP-hard, through
a reduction from similar problems for finite au-
tomata (Casacuberta and de la Higuera, 2000). In
contrast, the problem of computing the probability
of all parse trees of a string, also called the inside
probability, can be solved in polynomial time in
most practical cases and will be addressed in Sub-
section 5.4.

5.3 Normalization

Consider the WTA Prod(M,N) obtained as in
Definition 2. If N is a WSA encoding an in-
put string w as in Subsection 5.1 and if M is a
proper and consistent PTA, then Prod(M,N) is
a PTA as well. However, in general Prod(M,N)
will not be proper, nor consistent. Properness and
consistency of Prod(M,N) are convenient in all

those applications where a statistical parsing mod-
ule needs to be coupled with other statistical mod-
ules, in such a way that the composition of the
probability spaces still induces a probability dis-
tribution. In this subsection we deal with the more
general problem of how to transform a WTA that
is convergent into a PTA that is proper and con-
sistent. This process is called normalization. The
normalization technique we propose here has been
previously explored, in the context of probabilis-
tic context-free grammars, in (Abney et al., 1999;
Chi, 1999; Nederhof and Satta, 2003).

We start by introducing some new notions. Let
us assume that M is a convergent WTA. For every
q ∈ Q, we define

wtM (q) =
∑

t∈TΣ,r∈RunM (t)
r(ε)=q

wtM (r) .

Note that quantity wtM (q) equals the sum of the
weights of all trees in TΣ that would be recognized
by M if we set F (q) = 1 and F (p) = 0 for each
p ∈ Q \ {q}, that is, if q is the unique final state
of M . It is not difficult to show that, since M is
convergent, the sum in the definition of wtM (q)
converges for each q ∈ Q. We will show in Sub-
section 5.4 that the quantities wtM (q) can be ap-
proximated to any desired precision.

To simplify the presentation, and without any
loss of generality, throughout this subsection we
assume that our WTA are in final-state normal
form. We can now introduce the normalization
technique.

Definition 3 Let M = (Q,Σ,R≥0, µ, F) be a
convergent WTA in final-state normal form. We
construct the WTA

Norm(M) =(Q,Σ,R≥0, µ
′, F) ,

where for every σ ∈ Σk, k ≥ 0, and
q, q1, . . . , qk ∈ Q

µ′k(σ)q,q1···qk = µk(σ)q,q1···qk ·

· wtM (q1) · . . . · wtM (qk)
wtM (q)

. 2

We now show the claimed property for our
transformation.

Theorem 4 Let M be as in Definition 3, and let
M ′ = Norm(M). Then M ′ is a proper and
consistent PTA, and for every t ∈ TΣ we have
M ′(t) = M(t)

wtM (qS) . 2

8

PROOF Clearly, M ′ is again in final-state normal
form. An easy derivation shows that

wtM (q) =
∑

σ∈Σk
q1,...,qk∈Q

µk(σ)q,q1···qk ·
k∏

i=1

wtM (qi)

for every q ∈ Q. Using the previous remark, we
obtain

∑

σ∈Σk,q1,...,qk∈Q
µ′k(σ)q,q1···qk

=
∑

σ∈Σk,q1,...,qk∈Q
µk(σ)q,q1···qk ·

· wtM (q1) · . . . · wtM (qk′)
wtM (q)

=

∑

σ∈Σk,
q1,...,qk∈Q

µk(σ)q,q1···qk ·
k∏

i=1

wtM (qi)

∑

σ∈Σk,
p1,...,pk∈Q

µk(σ)q,p1···pk
·
k∏

i=1

wtM (pi)

= 1 ,

which proves that M ′ is a proper PTA.
Next, we prove an auxiliary statement. Let

t = σ(t1, . . . , tk) for some σ ∈ Σk, k ≥ 0, and
t1, . . . , tk ∈ TΣ. We claim that

wtM ′(r) =
wtM (r)

wtM (r(ε))

for every r ∈ RunM (t) = RunM ′(t). For ev-
ery 1 ≤ i ≤ k, let ri ∈ RunM (ti) be such that
ri(w) = r(iw) for every w ∈ Pos(ti). Then

wtM ′(r) =
∏

w∈Pos(t)
rkt(w)=n

µ′n(t(w))r(w),r(w1)···r(wn)

= µ′k(σ)r(ε),r(1)···r(k) ·
k∏

i=1

wtM ′(ri)

= µ′k(σ)r(ε),r1(ε)···rk(ε) ·
k∏

i=1

wtM (ri)
wtM (ri(ε))

= µk(σ)r(ε),r(1)···r(k) ·
wtM (r1) · · · · · wtM (rk)

wtM (r(ε))

=
wtM (r)

wtM (r(ε))
.

Consequently,

M ′(t) =
∑

r∈RunM′ (t)
r(ε)=qS

wtM ′(r)

=
∑

r∈RunM (t)
r(ε)=qS

wtM (r)
wtM (qS)

=
M(t)

wtM (qS)

and
∑

t∈TΣ

M ′(t) =
∑

t∈TΣ,r∈RunM′ (t)
r(ε)=qS

wtM ′(r)

=
∑

t∈TΣ,r∈RunM (t)
r(ε)=qS

wtM (r)
wtM (qS)

=
wtM (qS)
wtM (qS)

= 1 ,

which prove the main statement and the consis-
tency of M ′, respectively. �

5.4 Probability mass of a state
AssumeM is a convergent WTA. We have defined
quantities wtM (q) for each q ∈ Q. Note that when
M is a proper PTA in final-state normal form, then
wtM (q) can be seen as the probability mass that
‘rests’ on state q. When dealing with such PTA,
we use the notation ZM (q) in place of wtM (q),
and call ZM the partition function of M . This
terminology is borrowed from the literature on ex-
ponential or Gibbs probabilistic models.

In the context of probabilistic context-free
grammars, the computation of the partition func-
tion has several applications, including the elim-
ination of epsilon rules (Abney et al., 1999) and
the computation of probabilistic distances between
probability distributions realized by these for-
malisms (Nederhof and Satta, 2008). Besides
what we have seen in Subsection 5.3, we will pro-
vide one more application of partition functions
for the computations of so-called prefix probabil-
ities in Subsection 5.5 We also add that, when
computed on the Bar-Hillel automata of Section 4,
the partition function provides the so-called inside
probabilities of (Graehl et al., 2008) for the given
states and substrings.

Let |Q| = n and let us assume an arbitrary or-
dering q1, . . . , qn for the states in Q. We can then
rewrite the definition of wtM (q) as

wtM (q) =
∑

σ∈Σk,k≥0
qi1 ,...,qik∈Q

µk(σ)q,qi1 ···qik ·
k∏

j=1

wtM (qij)

(see proof of Theorem 4). We rename wtM (qi)
with the unknown Xqi , 1 ≤ i ≤ n, and derive a

9

system of n nonlinear polynomial equations of the
form

Xqi =
∑

σ∈Σk,k≥0
qi1 ,...,qik∈Q

µk(σ)q,qi1 ···qik ·Xqi1
· . . . ·Xqik

= fqi(Xq1 , . . . , Xqn) , (1)

for each i with 1 ≤ i ≤ n.
Throughout this subsection, we will consider

solutions of the above system in the extended non-
negative real number semiring

R∞≥0 = (R≥0 ∪ {∞},+, ·, 0, 1)

with the usual operations extended to ∞. We
can write the system in (1) in the compact form
X = F (X), where we represent the unknowns
as a vector X = (Xq1 , . . . , Xqn) and F is a map-
ping of type (R∞≥0)n → (R∞≥0)n consisting of the
polynomials fqi(X).

We denote the vector (0, . . . , 0) ∈ (R∞≥0)n as
X0. Let X,X ′ ∈ (R∞≥0)n. We write X ≤ X ′

if Xqi ≤ X ′qi for every 1 ≤ i ≤ n. Since
each polynomial fqi(X) has coefficients repre-
sented by positive real numbers, it is not difficult
to see that, for each X,X ′ ∈ (R∞≥0)n, we have
F (X) ≤ F (X ′) whenever X0 ≤ X ≤ X ′. This
means that F is an order preserving, or monotone,
mapping.

We observe that ((R∞≥0)n,≤) is a complete
lattice with least element X0 and greatest el-
ement (∞, . . . ,∞). Since F is monotone on
a complete lattice, by the Knaster-Tarski theo-
rem (Knaster, 1928; Tarski, 1955) there exists a
least and a greatest fixed-point of F that are solu-
tions of X = F (X).

The Kleene theorem states that the least fixed-
point solution of X = F (X) can be obtained
by iterating F starting with the least element X0.
In other words, the sequence Xk = F (Xk−1),
k = 1, 2, . . . converges to the least fixed-point so-
lution. Notice that each Xk provides an approxi-
mation for the partition function of M where only
trees of depth not larger than k are considered.
This means that limk→∞Xk converges to the par-
tition function of M , and the least fixed-point so-
lution is also the sought solution. Thus, we can
approximate wtM (q) with q ∈ Q to any degree by
iterating F a sufficiently large number of times.

The fixed-point iteration method discussed
above is also well-known in the numerical calcu-
lus literature, and is frequently applied to systems

of nonlinear equations in general, because it can
be easily implemented. When a number of stan-
dard conditions are met, each iteration of the algo-
rithm (corresponding to the value of k above) adds
a fixed number of bits to the precision of the ap-
proximated solution; see (Kelley, 1995) for further
discussion.

Systems of the form X = F (X) where all
fqi(X) are polynomials with nonnegative real co-
efficients are called monotone system of poly-
nomials. Monotone systems of polynomials as-
sociated with proper PTA have been specifically
investigated in (Etessami and Yannakakis, 2005)
and (Kiefer et al., 2007), where worst case results
on exponential rate of convergence are reported
for the fixed-point method.

5.5 Prefix probability

In this subsection we deal with one more applica-
tion of the Bar-Hillel technique presented in Sec-
tion 4. We show how to compute the so-called
prefix probabilities, that is, the probability that a
tree recognized by a PTA generates a string start-
ing with a given prefix. Such probabilities have
several applications in language modeling. As an
example, prefix probabilities can be used to com-
pute the probability distribution on the terminal
symbol that follows a given prefix (under the given
model).

For probabilistic context-free grammars, the
problem of the computation of prefix probabili-
ties has been solved in (Jelinek et al., 1992); see
also (Persoon and Fu, 1975). The approach we
propose here, originally formulated for probabilis-
tic context-free grammars in (Nederhof and Satta,
2003; Nederhof and Satta, 2009), is more abstract
than the previous ones, since it entirely rests on
properties of the Bar-Hillel construction that we
have already proved in Section 4.

Let M = (Q,Σ,R≥0, µ, F) be a proper
and consistent PTA in final-state normal form,
∆ = Σ0 \ {e}, and let u ∈ ∆+ be some string.
We assume here that M is in the binary form
discussed in Section 3. In addition, we assume
that M has been preprocessed in order to remove
from its recognized trees all of the unary branches
as well as those branches that generate the null
string ε. Although we do not discuss this con-
struction at length in this paper, the result follows
from a transformation casting weighted context-
free grammars into Chomsky Normal Form (Fu

10

and Huang, 1972; Abney et al., 1999).
We define

Pref(M,u) = {t | t ∈ TΣ, M(t) > 0,
yd(t) = uv, v ∈ ∆∗} .

The prefix probability of u underM is defined as
∑

t∈Pref(M,u)

pM (t) .

Let |u| = n. We define a WSA Nu with state
set P = {p0, . . . , pn} and transition weights
ν(pi−1, u(i), pi) = 1 for each i with 1 ≤ i ≤ n,
and ν(pn, σ, pn) = 1 for each σ ∈ ∆. We also
set I(p0) = 1 and F (pn) = 1. It is easy to see
that Nu recognizes the language {uv | v ∈ ∆∗}.
Furthermore, the PTA Mp = Prod(M,Nu) spec-
ified as in Definition 2 recognizes the desired tree
set Pref(M,u), and it preserves the weights of
those trees with respect to M . We therefore con-
clude that ZMp(qS) is the prefix probability of u
under M . Prefix probabilities can then be approx-
imated using the fixed-point iteration method of
Subsection 5.4. Rather than using an approxima-
tion method, we discuss in what follows how the
prefix probabilities can be exactly computed.

Let us consider more closely the product au-
tomaton Mp, assuming that it is trim. Each state
of Mp has the form π = (pi, q, pj), pi, pj ∈ P and
q ∈ Q, with i ≤ j. We distinguish three, mutually
exclusive cases.

(i) j < n: From our assumption that M (and
thus Mp) does not have unary or ε branches,
it is not difficult to see that all ZMp(π) can be
exactly computed in time O((j − i)3).

(ii) i = j = n: We have π = (pn, q, pn).
Then the equations for ZMp(π) exactly
mirror the equations for ZM (q), and
ZMp(π) = ZMp(q). Because M is proper
and consistent, this means that ZMp(π) = 1.

(iii) i < j = n: A close inspection of Definition 2
reveals that in this case the equations (1) are
all linear, assuming that we have already re-
placed the solutions from (i) and (ii) above
into the system. This is because any weight
µ2(σ)π0,π1π > 0 in Mp with π = (pi, q, pn)
and i < n must have (π1)3 < n. Quanti-
ties ZMp(π) can then be exactly computed as
the solution of a linear system of equations in
time O(n3).

Putting together all of the observations above,
we obtain that for a proper and consistent PTA that

has been preprocessed, the prefix probability of u
can be computed in cubic time in the length of the
prefix itself.

6 Concluding remarks

In this paper we have extended the Bar-Hillel con-
struction to WTA, closely following the method-
ology proposed in (Nederhof and Satta, 2003) for
weighted context-free grammars. Based on the ob-
tained framework, we have derived several parsing
algorithms for WTA, under the assumption that the
input is a string rather than a tree.

As already remarked in the introduction, WTA
are richer models than weighted context-free
grammar, since the formers use hidden states in
the recognition of trees. This feature makes it
possible to define a product automaton in Defini-
tion 2 that generates exactly those trees of interest
for the input string. In contrast, in the context-
free grammar case the Bar-Hillel technique pro-
vides trees that must be mapped to the tree of in-
terest using some homomorphism. For the same
reason, one cannot directly convert WTA into
weighted context-free grammars and then apply
existing parsing algorithms for the latter formal-
ism, unless the alphabet of nonterminal symbols
is changed. Finally, our main motivation in de-
veloping a framework specifically based on WTA
is that this can be extended to classes of weighted
tree transducers, in order to deal with computa-
tional problems that arise in machine translation
applications. We leave this for future work.

Acknowledgments

The first author has been supported by the Minis-
terio de Educación y Ciencia (MEC) under grant
JDCI-2007-760. The second author has been par-
tially supported by MIUR under project PRIN No.
2007TJNZRE 002.

References
S. Abney, D. McAllester, and F. Pereira. 1999. Relat-

ing probabilistic grammars and automata. In 37th
Annual Meeting of the Association for Computa-
tional Linguistics, Proceedings of the Conference,
pages 542–549, Maryland, USA, June.

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On
formal properties of simple phrase structure gram-
mars. In Y. Bar-Hillel, editor, Language and Infor-
mation: Selected Essays on their Theory and Appli-
cation, chapter 9, pages 116–150. Addison-Wesley,
Reading, Massachusetts.

11

J. Berstel and C. Reutenauer. 1982. Recognizable for-
mal power series on trees. Theoret. Comput. Sci.,
18(2):115–148.

B. Borchardt. 2005. The Theory of Recognizable Tree
Series. Ph.D. thesis, Technische Universität Dres-
den.

S. Bozapalidis. 1999. Equational elements in additive
algebras. Theory Comput. Systems, 32(1):1–33.

J. Carme, J. Niehren, and M. Tommasi. 2004. Query-
ing unranked trees with stepwise tree automata. In
Proc. RTA, volume 3091 of LNCS, pages 105–118.
Springer.

F. Casacuberta and C. de la Higuera. 2000. Com-
putational complexity of problems on probabilis-
tic grammars and transducers. In L. Oliveira, edi-
tor, Grammatical Inference: Algorithms and Appli-
cations; 5th International Colloquium, ICGI 2000,
pages 15–24. Springer.

Z. Chi. 1999. Statistical properties of probabilistic
context-free grammars. Computational Linguistics,
25(1):131–160.

M. Droste, C. Pech, and H. Vogler. 2005. A Kleene
theorem for weighted tree automata. Theory Com-
put. Systems, 38(1):1–38.

J. Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102,
February.

S. Eilenberg. 1974. Automata, Languages, and Ma-
chines, volume 59 of Pure and Applied Math. Aca-
demic Press.

C. A. Ellis. 1971. Probabilistic tree automata. Infor-
mation and Control, 19(5):401–416.

Z. Ésik and W. Kuich. 2003. Formal tree series. J.
Autom. Lang. Combin., 8(2):219–285.

K. Etessami and M. Yannakakis. 2005. Recursive
Markov chains, stochastic grammars, and monotone
systems of nonlinear equations. In 22nd Interna-
tional Symposium on Theoretical Aspects of Com-
puter Science, volume 3404 of Lecture Notes in
Computer Science, pages 340–352, Stuttgart, Ger-
many. Springer-Verlag.

K.S. Fu and T. Huang. 1972. Stochastic grammars and
languages. International Journal of Computer and
Information Sciences, 1(2):135–170.

F. Gécseg and M. Steinby. 1984. Tree Automata.
Akadémiai Kiadó, Budapest.

J. Graehl, K. Knight, and J. May. 2008. Training tree
transducers. Comput. Linguist., 34(3):391–427.

J. Högberg, A. Maletti, and H. Vogler. 2009. Bisim-
ulation minimisation of weighted automata on un-
ranked trees. Fundam. Inform. to appear.

F. Jelinek, J.D. Lafferty, and R.L. Mercer. 1992. Basic
methods of probabilistic context free grammars. In
P. Laface and R. De Mori, editors, Speech Recogni-
tion and Understanding — Recent Advances, Trends
and Applications, pages 345–360. Springer-Verlag.

M. Johnson. 1998. PCFG models of linguistic
tree representations. Computational Linguistics,
24(4):613–632.

C. T. Kelley. 1995. Iterative Methods for Linear and
Nonlinear Equations. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA.

S. Kiefer, M. Luttenberger, and J. Esparza. 2007. On
the convergence of Newton’s method for monotone
systems of polynomial equations. In Proceedings of
the 39th ACM Symposium on Theory of Computing,
pages 217–266.

B. Knaster. 1928. Un théorème sur les fonctions
d’ensembles. Ann. Soc. Polon. Math., 6:133–134.

D. E. Knuth. 1977. A generalization of Dijkstra’s al-
gorithm. Information Processing Letters, 6(1):1–5,
February.

D. E. Knuth. 1997. Fundamental Algorithms. The Art
of Computer Programming. Addison Wesley, 3rd
edition.

M. Magidor and G. Moran. 1970. Probabilistic tree
automata and context free languages. Israel Journal
of Mathematics, 8(4):340–348.

M.-J. Nederhof and G. Satta. 2003. Probabilistic pars-
ing as intersection. In 8th International Workshop
on Parsing Technologies, pages 137–148, LORIA,
Nancy, France, April.

M.-J. Nederhof and G. Satta. 2008. Computation of
distances for regular and context-free probabilistic
languages. Theoretical Computer Science, 395(2-
3):235–254.

M.-J. Nederhof and G. Satta. 2009. Computing parti-
tion functions of PCFGs. Research on Language &
Computation, 6(2):139–162.

M.-J. Nederhof. 2003. Weighted deductive parsing
and Knuth’s algorithm. Computational Linguistics,
29(1):135–143.

E. Persoon and K.S. Fu. 1975. Sequential classi-
fication of strings generated by SCFG’s. Interna-
tional Journal of Computer and Information Sci-
ences, 4(3):205–217.

M. P. Schützenberger. 1961. On the definition of a
family of automata. Information and Control, 4(2–
3):245–270.

A. Tarski. 1955. A lattice-theoretical fixpoint theorem
and its applications. Pacific J. Math., 5(2):285–309.

D. H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10:189–208.

12

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 13–24,
Paris, October 2009. c©2009 Association for Computational Linguistics

Weighted parsing of trees

Mark-Jan Nederhof
School of Computer Science, University of St Andrews

North Haugh, St Andrews, KY16 9SX, Scotland

Abstract

We show how parsing of trees can be for-
malized in terms of the intersection of two
tree languages. The focus is on weighted
regular tree grammars and weighted tree
adjoining grammars. Potential applica-
tions are discussed, such as parameter es-
timation across formalisms.

1 Introduction

In parsing theory, strings and trees traditionally
have had a very different status. Whereas strings
in general receive the central focus, the trees in-
volved in derivations of strings are often seen as
auxiliary concepts at best. Theorems tend to be
about the power of grammatical formalisms to
produce strings (weak generative power) rather
than trees (strong generative power).

This can be explained by looking at typical
applications of parsing. In compiler construc-
tion for example, one distinguishes between parse
trees and (abstract) syntax trees, the former being
shaped according to a grammar that is massaged
to make it satisfy relatively artificial constraints,
e.g. that of LALR(1), which is required by many
compiler generators (Aho et al., 2007). The form
of syntax trees is often chosen to simplify phases
of semantic processing that follow parsing. As
the machinery used in such processing is generally
powerful, this offers much flexibility in the choice
of the exact shape and labelling of syntax trees, as
intermediate form between parsing and semantic
analysis.

In the study of natural languages, parse trees
have played a more important role. Whereas lin-
guistic utterances are directly observable and trees
deriving them are not, there are nevertheless tradi-
tions within linguistics that would see one struc-
tural analysis of a sentence as strongly preferred
over another. Furthermore, within computational

linguistics there are empirical arguments to claim
certain parses are correct and others are incorrect.
For example, a question answering systems may
verifiably give the wrong answer if the question
is parsed incorrectly. See (Jurafsky and Martin,
2000) for general discussion on the role of parsing
in NLP.

Despite the relative importance of strong gen-
erative power in computational linguistics, there
is still much freedom in how exactly parse trees
are shaped and how vertices are labelled, due to
the power of semantic analysis that typically fol-
lows parsing. This has affected much of the the-
oretical investigations into the power of linguistic
formalisms, and where strong equivalence is con-
sidered at all, it is often ”modulo relabelling” or
allowing minor structural changes.

With the advent of syntax-based machine trans-
lation, trees have however gained much impor-
tance, and are even considered as the main ob-
jects of study. This is because many MT mod-
ules have trees both as input and output, which
means the computational strength of such mod-
ules can be measured only in terms of the tree lan-
guages they accept and the transductions between
tree languages that they implement. See for exam-
ple (Knight, 2007).

In contrast, trees have always been the central
issue in an important and well-established subfield
of formal language theory that studies tree lan-
guages, tree automata and tree transducers (Gc-
seg and Steinby, 1997). The string languages gen-
erated by the relevant formalisms in this context
are mostly taken to be of secondary importance, if
they are considered at all.

This paper focuses on tree languages, but in-
volves a technique that was devised for string lan-
guages, and shows how the technique carries over
to tree languages. The original technique can be
seen as the most fundamental idea in the field of
context-free parsing, as it captures the essence of

13

finding hierarchical structure in a linear sequence.
The generalization also finds structure in a lin-
ear sequence, but now the sequence corresponds
to paths in trees each leading down from a vertex
to a leaf. This means that the proposed type of
parsing is orthogonal to the conventional parsing
of strings.

The insights this offers have the potential to cre-
ate new avenues of research into the relation be-
tween formalisms that were until now considered
only in isolation. We seek credence to this claim
by investigating how probability distributions can
be carried over from tree adjoining grammars to
regular tree grammars, and vice versa.

The implication that the class of tree languages
of tree adjoining grammars (TAGs) is closed under
intersection with regular tree languages is not sur-
prising, as the linear context-free tree languages
(LCFTLs) are closed under intersection with reg-
ular tree languages (Kepser and Mönnich, 2006).
The tree languages of TAGs form a subclass of the
LCFTLs, and the main construction in the proof
of the closure result for the latter can be suitably
restricted to the former.

The structure of this paper is as follows. The
main grammatical formalisms considered in this
paper are summarized in Section 2 and Sec-
tion 3 discusses a number of analyses of these for-
malisms that will be used in later sections. Sec-
tion 4 starts by explaining how parsing of a string
can be seen as the construction of a grammar that
generates the intersection of two languages, and
then moves on to a type of parsing involving in-
tersection of tree languages in place of string lan-
guages.

In order to illustrate the implications of the the-
ory, we consider how it can be used to solve a prac-
tical problem, in Section 5. A number of possible
extensions are outlined in Section 6.

2 Formalisms

In this section, we recall the formalisms of
weighted regular tree grammars and weighted tree
adjoining grammars. We use similar notation and
terminology for both, in order to prepare for Sec-
tion 4, where we investigate the combination of
these formalisms through intersection. As a conse-
quence of the required unified notation, we deviate
to some degree from standard definitions, without
affecting generative power however.

For common definitions of weighted regular

tree grammars, the reader is referred to (Graehl
and Knight, 2004). Weighted tree adjoining gram-
mars are a straightforward generalization of prob-
abilistic (or stochastic) tree adjoining grammars,
as introduced by (Resnik, 1992) and (Schabes,
1992).

For both regular tree grammars (RTGs) and tree
adjoining grammars (TAGs), we will write a la-
beled and ordered tree as A(α). where A is the la-
bel of the root node, and α is a sequence of expres-
sions of the same form that each represent an im-
mediate subtree. In our presentation, labels do not
have explicit ranks, that is, the number of children
of a node is not determined by its label. This al-
lows an interesting generalization, to be discussed
in Section 6.2.

Where we are interested in the string language
generated by a tree-generating grammar, we may
distinguish between two kinds of labels, the ter-
minal labels, which may occur only at leaves, and
the nonterminal labels, which may occur at any
node. It is customary to write terminal leaves as
a instead of a(). The yield of a tree is the string
of occurrences of terminal labels in it, from left to
right. Note that also nonterminal labels may occur
at the leaves, but they will not be included in the
yield; cf. epsilon rules in context-free grammars.

2.1 Weighted regular tree grammars

A weighted regular tree grammar (WRTG) is a 4-
tuple G = (S,L,R, s`), where S and L are two
finite sets of states and labels, respectively, s` ∈ S
is the initial state, and R is a finite set of rules.
Each rule has the form:

s0 → A(s1 · · · sm) 〈w〉,

where s0, s1, . . . , sm are states (0 ≤ m), A is a
label and w is a weight.

Rewriting starts with a string containing only
the initial state s`. This string is repeatedly rewrit-
ten by replacing the left-hand side state of a rule by
the right-hand side of the same rule, until no state
remains. It may be convenient to assume a canoni-
cal order of rewriting, for example in terms of left-
most derivations (Hopcroft and Ullman, 1979).

Although alternative semirings can be consid-
ered, here we always assume that the weights
of rules are non-negative real numbers, and the
weight of a derivation of a tree is the product of
the weights of the rule occurrences. If several
(left-most) derivations result in the same tree, then

14

the weight of that tree is given by the sum of the
weights of those derivations. Where we are inter-
ested in the string language, the weights of trees
with the same yield are added to obtain the weight
of that yield.

A (weighted) context-free grammar can be seen
as a special case of a (weighted) regular tree gram-
mar, where the set of states equals the set of labels,
and rules have the form:

A→ A(B1 · · ·Bm).

Also the class of (weighted) tree substitution
grammars (Sima’an, 1997) can be seen as a spe-
cial case of (weighted) regular tree grammars, by
letting the set of labels overlap with the set of
states, and imposing two constraints on the allow-
able rules. The first constraint is that for each la-
bel that is also a state, all defining rules are of the
form:

A→ A(s1 · · · sm).

The second constraint is that for each state that is
not a label, there is exactly one rule with that state
in the left-hand side. This means that exactly one
subtree (or elementary tree) can be built top-down
out of such states, down to a level where we again
encounter states that are also labels. If desired, we
can exclude infinite elementary trees by imposing
an additional constraint on allowed sets of rules
(no cycles composed of states that are not labels);
alternatively, we can demand that the grammar
does not contain any useless rules, which automat-
ically excludes such infinite elementary trees.

2.2 Weighted linear indexed grammars
Although we are mainly interested in the tree lan-
guages of tree adjoining grammars, we will use
an equivalent representation in terms of linear in-
dexed grammars, in order to obtain a uniform no-
tation with regard to regular tree grammars.

Thus, a weighted linear indexed grammar
(WLIG) is a 5-tuple G = (S, I, L,R, s`), where
S, I and L are three finite sets of states, indices
and labels, respectively, s` ∈ S is the initial state,
and R is a finite set of rules. Each rule has one of
the following four forms:

1. s0[◦◦]→ A(s1[] · · ·
sj−1[] sj [◦◦] sj+1[] · · ·
sm[]) 〈w〉,

where s0, s1, . . . , sm are states (1 ≤ j ≤ m),
A is a label and w is a weight;

2. s[]→ A() 〈w〉;

3. s[◦◦]→ s′[ι◦◦] 〈w〉, where ι is an index;

4. s[ι◦◦]→ s′[◦◦] 〈w〉.

The expression ◦◦ may be thought of as a vari-
able denoting a string of indices on a stack, and
this variable is to be consistently substituted in
the left-hand and the right-hand sides of rules
upon application during rewriting. In other words,
stacks are copied from the left-hand side of a rule
to at most one member in the right-hand side,
which we will call the head of that rule. The ex-
pression [] stands for the empty stack and [ι◦◦] de-
notes a stack with top element ι. Thereby, rules of
the third type implement a stack push and rules of
the fourth type implement a pop. Rewriting starts
from s`[]. The four subsets of R containing rules
of the respective four forms above will be referred
to as R1, R2, R3 and R4.

In terms of tree adjoining grammars, which as-
sume a finite number of elementary trees, the in-
tuition behind the four types of rules is as fol-
lows. Rules of the first type correspond to con-
tinued construction of the same elementary tree.
Rules of the third type correspond to the initiation
of a newly adjoined auxiliary tree and rules of the
fourth type correspond to its completion at a foot
node, returning to an embedding elementary tree
that is encoded in the index that is popped. Rules
of the second type correspond to construction of
leaves, as in the case of regular tree grammars.
See further (Vijay-Shanker and Weir, 1994) for the
equivalence of linear indexed grammars and tree
adjoining grammars.

Note that regular tree grammars can be seen as
special cases of linear indexed grammars, by ex-
cluding rules of the third and fourth types, which
means that stacks of indices always remain empty
(Joshi and Schabes, 1997).

2.3 Probabilistic grammars
A weighted regular tree grammar, or weighted lin-
ear indexed grammar, respectively, is called prob-
abilistic if the weights are probabilities, that is,
values between 0 and 1. A probabilistic regular
tree grammar (PRTG) is proper if for each state
s, the probabilities of all rules that have left-hand
side s sum to one.

Properness for a probabilistic linear indexed
grammar (PLIG) is more difficult to define, due
to the possible overlap of applicability between

15

the four types of rules, listed in the section above.
However, if we encode a given TAG as a LIG in a
reasonable way, then a state s may occur both in
left-hand sides of rules from R1 and in left-hand
sides of rules from R3, but all other such overlap
between the four types is precluded.

Intuitively, a state may represent an internal
node of an elementary tree, in which case rules
from both R1 and R3 may apply, or it may rep-
resent a non-foot leaf node, in which case a rule
from R2 may apply, or it may be a foot node, in
which case a rule from R4 may apply.

With this assumption that the only overlap in ap-
plicability is between R1 and R3, properness can
be defined as follows.

• For each state s, either there are no rules in
R1 or R3 with s in the left-hand side, or the
sum of probabilities of all such rules equals
one.

• For each state s, either there are no rules in
R2 with s in the left-hand side, or the sum of
probabilities of all such rules equals one.

• For each state s and index ι, either there
are no rules in R4 with left-hand side s[ι◦◦],
or the sum of probabilities of all such rules
equals one.

We say a weighted regular tree grammar, or
weighted linear indexed grammar, respectively, is
consistent if the sum of weights of all (left-most)
derivations is one. This is equivalent to saying that
the sum of weights of all trees is one, and to saying
that the sum of weights of all strings is one.

For each consistent WRTG (WLIG, respec-
tively), there is an equivalent proper and consistent
PRTG (PLIG, respectively). The proof lies in nor-
malization. For WRTGs this is a trivial extension
of normalization of weighted context-free gram-
mars, as described for example by (Nederhof and
Satta, 2003). For WLIGs (and weighted TAGs),
the problem of normalization also becomes very
similar once we consider that the set of derivation
trees of tree adjoining grammars can be described
with context-free grammars, and that this carries
over to weighted derivation trees. See also (Sarkar,
1998).

WLIGs seemingly incur an extra complication,
if a state may occur in combination with an index
on top of the associated stack such that no rules are
applicable. However, for LIGs that encode TAGs,

the problem does not arise as, informally, one may
always resume construction of the embedding el-
ementary tree below the foot node of an adjoined
auxiliary tree.

We say a LIG is in TAG-normal form if (a) at
least one rule is applicable for each combination
of state s and index ι such that s[ι◦◦] is deriv-
able from s`[], and (b) the only overlap in ap-
plicability of the four types of rules is between
R1 and R3. Statements in what follows involv-
ing WLIGs (or PLIGs) in TAG-normal form also
hold for weighted (or probabilistic) TAGs.

3 Analysis of grammars

We call a grammar rule useless if it cannot be part
of any derivation of a tree (or of a string, in the
case of grammars with an emphasis on string lan-
guages). We say a grammar is reduced if it does
not contain useless rules.

Whereas most grammars written by hand or in-
duced by a corpus or treebank are reduced, there
are practical operations that turn reduced gram-
mars into grammars with useless rules; we will
see an example in the next section, where gram-
mars are constructed that generate the intersection
of two given languages. In order to determine
whether the intersection is non-empty, it suffices to
identify useless rules in the intersection grammar.
If and only if all rules are useless, the generated
language is empty.

In the case of context-free grammars (see for ex-
ample (Sippu and Soisalon-Soininen, 1988)), the
analysis to identify useless rules can be split into
two phases:

1. a bottom-up phase to identify the grammar
symbols that generate substrings, which may
include the start symbol if the generated lan-
guage is non-empty; and

2. a top-down phase to identify the grammar
symbols that are reachable from the start
symbol.

The intersection of the generating symbols and the
reachable symbols gives the set of useful symbols.
One can then identify useless rules as those that
contain one or more symbols that are not useful.

The procedure for linear indexed grammars is
similarly split into two phases, of which the first
is given in Figure 1 in the form of a deduction
system. The inference rules simultaneously derive

16

(s, s)

{
s ∈ S (a)

s

{
s[]→ A() (b)

s1 · · · sj−1 (sj , s) sj+1 · · · sm

(s0, s)

{
s0[◦◦]→ A(s1[] · · · sj [◦◦] · · · sm[]) (c)

s1 · · · sm

s0

{
s0[◦◦]→ A(s1[] · · · sj [◦◦] · · · sm[]) (d)

(s1, s2)
(s3, s4)
(s0, s4)

{
s0[◦◦]→ s1[ι◦◦]
s2[ι◦◦]→ s3[◦◦] (e)

(s1, s2)
s3
s0

{
s0[◦◦]→ s1[ι◦◦]
s2[ι◦◦]→ s3[◦◦] (f)

Figure 1: Simultaneous analysis of two kinds of subderivations in a LIG. Items (s, s′) represent existence
of one or more subderivations s[]→∗ α(s′[]), where α is a tree with a gap in the form of an unresolved
state s′ associated with an empty stack. Furthermore, s and s′ are connected through propagation of a
stack of indices, or in other words, the occurrence of s′ is the head of a rule, of which the left-hand side
state is the head of another rule, etc., up to s. In the inference rules, items s represent existence of one or
more subderivations s[]→∗ α, where α is a complete tree (without any unresolved states).

two types of item. The generated language is non-
empty if the item s` can be derived.

We will explain inference rule (f), which is the
most involved of the six rules. The two items
in the antecedent indicate the existence of deriva-
tions s1[] →∗ α(s2[]) and s3[] →∗ β. Note
that s1[] →∗ α(s2[]) implies s1[ι] →∗ α(s2[ι]),
because an additional element in the bottom of
a stack would not block an existing derivation.
Hence s0[] → s1[ι] →∗ α(s2[ι]) → α(s3[]) →∗

α(β), which justifies the item s0 in the consequent
of the rule.

After determining which items can be derived
through the deduction system, it is straightforward
to identify those rules that are useful, by applying
the inference rules in reverse, from consequent to
antecedents, starting with s`.

The running time of the analysis is determined
by how often each of the inference rules can be
applied, which is bounded by the number of ways
each can be instantiated with states and rules from
the grammar. The six inference rules together give
usO(|S|+ |R2|+ |R1| · |S|+ |R1|+ |R3| · |R4| ·
|S| + |R3| · |R4|) = O(|S| + |R1| · |S| + |R2|

+ |R3| · |R4| · |S|) = |G|3, where we assume a
reasonable measure for the size |G| of a LIG G, for
example, the total number of occurrences of states,
labels and indices in the rules.

It is not difficult to see that there is exactly one
deduction of s` in the deduction system for each
complete derivation in the grammar. We leave the
full proof to the interested reader, but provide the
hint that items (s, s′) can only play a role in a
complete deduction provided s′ is rewritten by a
rule that pops an index from the stack. Because
of this, derivations in the grammar of the form
s[] →∗ α(s′[]) or of the form s[] →∗ α can be
divided in a unique way into subderivations repre-
sentable by our items.

The above deduction system is conceptually
very close to a system of equations that expresses
the sum of weights of all derivations in the gram-
mar, or in(s`), in terms of similar values of the
form in(s), which is the sum of weights of all
subderivations s[] →∗ α, and in(s, s′), which is
the sum of weights of all subderivations s[] →∗

α(s′[]). The equations are given in Figure 2.

Although the expressions look unwieldy, they

17

in(s0) =
∑

s0[]→ A() 〈w〉
w +

∑

s0[◦◦]→ A(s1[] · · · sj [◦◦] · · · sm[]) 〈w〉
w · in(s1) · . . . · in(sm) +

∑

s0[◦◦]→ s1[ι◦◦] 〈w〉
s2[ι◦◦]→ s3[◦◦] 〈v〉

w · v · in(s1, s2) · in(s3)

in(s0, s) = δ(s0 = s) + ∑

s0[◦◦]→ A(s1[] · · · sj [◦◦] · · · sm[]) 〈w〉
w · in(s1) · . . . · in(sj , s) · . . . · in(sm) +

∑

s0[◦◦]→ s1[ι◦◦] 〈w〉
s2[ι◦◦]→ s3[◦◦] 〈v〉

w · v · in(s1, s2) · in(s3, s)

Figure 2: The sum of weights of all derivations in a WLIG, or in(s`), is defined by the smallest non-
negative solution to a system of equations. The function δ with a boolean argument evaluates to 1 if the
condition is true and to 0 otherwise.

express exactly the ‘inside’ value of the weighted
context-free grammar that we can extract out of
the deduction system from Figure 1, by instanti-
ating the inference rules in all possible ways, and
then taking the consequent as the left-hand side of
a rule, and the antecedent as the right-hand side.
The weight is the product of weights of rules that
appear in the side conditions. It is possible to ef-
fectively solve the system of equations, as shown
by (Wojtczak and Etessami, 2007).

In the same vein we can compute ‘outside’
values for weighted linear indexed grammars, as
straightforward analogues of the outside values of
weighted and probabilistic context-free grammars.
The outside value is the sum of weights of partial
derivations that may lie ‘outside’ a subderivation
s[]→∗ α in the case of out(s), or a subderivation
s[]→∗ α(s′[]) in the case of out(s, s′). The equa-
tions in Figure 3 again follow trivially from the
view of Figure 1 as weighted context-free gram-
mar and the usual definition of outside values.

The functions in and out are particularly useful
for PLIGs in TAG-normal form, as they allow the
expected number of occurrences of state s to be
expressed as:

E(s) = in(s) · out(s)

Similarly, the expected number of subderivations

of the form s[]→∗ α(s′[]) is:

E(s, s′) = in(s, s′) · out(s, s′)

We will return to this issue in Section 5.

4 Weighted intersection

Before we discuss intersection on the level of
trees, we first show how a well-established type of
intersection on the level of strings, with weighted
context-free grammars and weighted finite au-
tomata (WFAs), can be trivially extended to re-
place CFGs with RTGs or LIGs. The intersec-
tion paradigm is originally due to (Bar-Hillel et
al., 1964). Extension to tree adjoining grammars
and linear indexed grammars was proposed before
by (Lang, 1994) and (Vijay-Shanker and Weir,
1993b).

4.1 Intersection of string languages
Let us assume a WLIG G with terminal and nonter-
minal labels. Furthermore, we assume a weighted
finite automaton A, with an input alphabet equal
to the set of terminal labels of G. The transitions
of A are of the form:

q
a7→ q′ 〈w〉,

where q and q′ are states, a is a terminal symbol,
and w is a weight. To simplify the presentation,

18

out(s′) = δ(s′ = s`) + ∑

s0[◦◦]→ A(s1[] · · · sj [◦◦] · · · sm[]) 〈w〉
k ∈ {1, . . . , sj−1, sj+1, . . . , sm} s.t. s′ = sk

w · out(s0, s) · in(sj , s) ·
∏

p /∈ {j, k}
in(sp) +

∑

s0[◦◦]→ A(s1[] · · · sj [◦◦] · · · sm[]) 〈w〉
k ∈ {1, . . . , sm} s.t. s′ = sk

w · out(s0) ·
∏

p 6= k

in(sp) +

∑

s0[◦◦]→ s1[ι◦◦] 〈w〉
s2[ι◦◦]→ s′[◦◦] 〈v〉

w · v · out(s0) · in(s1, s2)

out(s′, s) =
∑

s0[◦◦]→ A(s1[] · · · sj [◦◦] · · · sm[]) 〈w〉
s′ = sj

w · out(s0, s) ·
∏

p 6= j

in(sp) +

∑

s0[◦◦]→ s′[ι◦◦] 〈w〉
s[ι◦◦]→ s3[◦◦] 〈v〉

w · v · out(s0, s4) · in(s3, s4) +

∑

s0[◦◦]→ s1[ι◦◦] 〈w〉
s2[ι◦◦]→ s′[◦◦] 〈v〉

w · v · out(s0, s) · in(s1, s2) +

∑

s0[◦◦]→ s′[ι◦◦] 〈w〉
s[ι◦◦]→ s3[◦◦] 〈v〉

w · v · out(s0) · in(s3)

Figure 3: The outside values in a WLIG.

we ignore epsilon transitions, and assume there is
a unique initial state q` and a unique final state qa.

We can construct a new WLIG G′ whose gen-
erated language is the intersection of the language
generated by G and the language accepted by A.
The rules of G′ are:

1. (q0, s0, qm)[◦◦]→
A((q0, s1, q1)[] · · ·

(qj−2, sj−1, qj−1)[]
(qj−1, sj , qj)[◦◦]
(qj , sj+1, qj+1)[] · · ·
(qm−1, sm, qm)[]) 〈w〉,

for each rule s0[◦◦] → A(s1[] · · · sj−1[]
sj [◦◦] sj+1[] · · · sm[]) 〈w〉 from G and se-
quence q0, . . . , qm of states from A;

2. (q, s, q)[] → A() 〈w〉, for each rule s[] →
A() 〈w〉 from G and state q from A;

3. (q, s, q′)[] → a 〈w · v〉, for each rule s[] →

a 〈w〉 from G and transition q a7→ q′ 〈v〉 from
A;

4. (q, s, q′)[◦◦] → (q, s′, q′)[ι◦◦] 〈w〉, for each
rule s[◦◦] → s′[ι◦◦] 〈w〉 from G and states
q, q′ from A;

5. (q, s, q′)[ι◦◦] → (q, s′, q′)[◦◦] 〈w〉, for each
rule s[ι◦◦] → s′[◦◦] 〈w〉 from G and states
q, q′ from A.

The new states (q, s, q′) give (left-most) deriva-
tions in G′ that each simultaneously represent one
(left-most) derivation in G of a certain substring,
starting from state s, and one sequence of transi-
tions taking the automaton A from state q to state
q′ while scanning the same substring. The initial
state of G′ is naturally (q`, s`, qa), which derives
strings in the intersection of the original two lan-
guages.

Further note that each derivation in G′ has a
weight that is the product of the weight of the cor-

19

responding derivation in G and the weight of the
corresponding sequence of transitions in A. This
allows a range of useful applications. For exam-
ple, if A is deterministic (the minimum require-
ment is in fact absence of ambiguity) and if it as-
signs the weight one to all transitions, then G′ gen-
erates a set of trees that is exactly the subset of
trees generated by G whose yields are accepted by
A. Furthermore, the weights of those derivations
are preserved. If G is a consistent PLIG in TAG-
normal form, and if A accepts the language of all
strings containing a fixed substring x, then the sum
of probabilities of all derivations in G′ gives the
substring probability of x. The effective computa-
tion of this probability was addressed in Section 3.

An even more restricted, but perhaps more fa-
miliar case is if A is a linear structure that accepts
a single input string y of length n. Then G′ gen-
erates exactly the set of trees generated by G that
have y as yield. In other words, the string y is
thereby parsed.

If G is binary, i.e. all rules have at most two
states in the right-hand side, then G′ has a size
that is cubic in n. This may seem surprising, in
the light of the awareness that practical parsing al-
gorithms for tree adjoining grammars have a time
complexity of no less thanO(n6). However, in or-
der to solve the recognition problem, an analysis
is needed to determine whether G′ allows at least
one derivation.

The analysis from Figure 1 requires O(|S′| +
|R′

1| · |S′| + |R′
2| + |R′

3| · |R′
4| · |S′|) steps, where

|S′| = O(n2) is the number of states of G′, and
|R′

1| = O(n3), |R′
2| = |R′

3| = |R′
4| = O(n2) are

the numbers of rules of G′, divided into the four
main types. This leads to an overall time com-
plexity of O(n6), as expected.

The observation that recognition can be harder
than parsing was made before by (Lang, 1994).
The central new insight this provided was that the
notion of ‘parsing’ is ill-defined in the literature.
One may choose a form in which to capture all
parses of an input allowed by a grammar, but dif-
ferent such forms may incur different costs of ex-
tracting individual parse trees.

In Section 6.2 we will consider the complexity
of parsing and recognition if G is not binary.

4.2 Intersection of tree languages

We now shift our attention from strings to trees,
and consider the intersection of the tree language

generated by a weighted linear indexed grammar
G1 and the tree language generated by a weighted
regular tree grammar G2. This intersection is gen-
erated by another weighted linear indexed gram-
mar G, which has the following rules:

1. (s0, q0)[◦◦]→ A((s1, q1)[] · · ·
(sj−1, qj−1)[]
(sj , qj)[◦◦]
(sj+1, qj+1)[] · · ·
(sm, qm)[]) 〈w · v〉,

for each rule s0[◦◦] → A(s1[] · · · sj−1[]
sj [◦◦] sj+1[] · · · sm[]) 〈w〉 from G1 and each
rule q0 → A(q1 · · · qm) 〈v〉 from G2;

2. (s, q)[] → A() 〈w · v〉, for each rule s[] →
A() 〈w〉 from G1 and each rule q → A() 〈v〉
from G2;

3. (s, q)[◦◦] → (s′, q)[ι◦◦] 〈w〉, for each rule
s[◦◦]→ s′[ι◦◦] 〈w〉 from G1 and state q from
G2;

4. (s, q)[ι◦◦] → (s′, q)[◦◦] 〈w〉, for each rule
s[ι◦◦]→ s′[◦◦] 〈w〉 from G1 and state q from
G2.

Much as in the previous section, each (left-
most) derivation in G corresponds to one (left-
most) derivation in G1 and one in G2. Further-
more, these three derivations derive the same la-
belled tree, and a derivation in G has a weight that
is the product of the weights of the corresponding
derivations in G1 and G2.

It can be instructive to look at special cases.
Suppose that G2 is an unambiguous regular tree
grammar of size O(n) generating a single tree t
with n vertices, assigning weight one to all its
rules. Then the above construction can be seen
as parsing of that tree t. The sum of weights of
derivations in G then gives the weight of the tree
in G1. See Section 3 once more for a general way
to compute this weight, as the inside value of the
initial state of G, which is naturally (s`, q`).

In order to do recognition of t, or in other words,
to determine whether G allows at least one deriva-
tion, the analysis from Figure 1 can be used, which
has time complexity O(|S| + |R1| · |S| + |R2|
+ |R3| · |R4| · |S|), where |S| = O(n) is the
number of states of G, and the numbers of rules
are |R1| = O(n), |R2| = |R3| = |R4| = O(n).
Note that |R1| = O(n) because we have assumed
that G2 allows only one derivation of one tree t,

20

hence q0 uniquely determines q1, . . . , qm. Over-
all, we obtain O(n3) steps, which concurs with a
known result about the complexity of TAG parsing
of trees, as opposed to strings (Poller and Becker,
1998).

Another special case is if WLIG G1 simplifies
to a WRTG (i.e. the stacks of indices remain al-
ways empty), which means we compute the inter-
section of two weighted regular tree grammars G1

and G2. For recognition, or in other words to de-
cide non-emptiness of the intersection, we can still
use Figure 1, although now only inference rules
(b) and (d) are applicable (with a small refinement
to the algorithm we can block spurious application
of (a) where no rules exist that pop indices.) The
complexity is determined by (d), which requires
O(|G1| · |G2|) steps.

5 Parameter estimation

PLIGs allow finer description of probability distri-
butions than PRTG, both over string languages and
over tree languages. However, the (string) pars-
ing complexity of regular tree grammars is O(n3)
and that of LIGs is O(n6). It may therefore be
preferable for reasons of performance to do pars-
ing with a PRTG even when a PTAGs or PLIG is
available with accurately trained probabilities. Al-
ternatively, one may do both, with a PRTG used
in a first phase to heuristically reduce the search
space.

This section outlines how a suitable PRTG G2

can be extracted out of a PLIG G1, assuming the
underlying RTG G′2 without weights is already
given. The tree language generated by G′2 may be
an approximation of that generated by G1. The ob-
jective is to make G2 as close as possible to G1 in
terms of probability distributions over trees. We
assume that G′2 is unambiguous, that is, for each
tree it generates, there is at most one derivation.

The procedure is a variant of the one described
by (Nederhof, 2005). The idea is that derivations
in G1 are mapped to those in G′2, via the trees in the
intersection of the two tree languages. The proba-
bility distribution of states and rules in G2 is esti-
mated based on the expected frequencies of states
and rules from G′2 in the intersection.

Concretely, we turn the RTG G′2 into a PRTG
G′′2 that is obtained simply be assigning weight
one to all rules. We then compute the intersec-
tion grammar G as in Section 4.2. Subsequently,
the inside and outside values are computed for G,

as explained in Section 3. The expected number of
occurrences of a rule in G of the form:

(s0, q0)[◦◦]→ A((s1, q1)[] · · ·
(sj−1, qj−1)[]
(sj , qj)[◦◦]
(sj+1, qj+1)[] · · ·
(sm, qm)[]) 〈w · v〉,

is given by multiplying the outside and inside
probabilities and the rule probability, as usual.
We get two terms however that we need to sum.
The intuition is that we must count both rule oc-
currences used for building initial TAG trees and
those used for building auxiliary TAG trees. This
gives:

w · v · out((s0, q0)) ·
∏

k

in((sk, qk)) +

w · v ·
∑

s,q

out((s0, q0), (s, q)) ·

in((sj , qj), (s, q)) ·
∏

k 6=j

in((sk, qk))

By summing these expected numbers for different
rules s0[◦◦] → A(s1[] · · · sj−1[] sj [◦◦] sj+1[]
· · · sm[]), we obtain the expected number of oc-
currences of q0 → A(q1 · · · qm), Let us denote
this sum by E(q0 → A(q1 · · · qm)). By summing
these for fixed q0, we obtain the expected number
of occurrences of q0, which we denote by E(q0).
The probability of q0 → A(q1 · · · qm) in G2 is then
set to be the ratio of E(q0 → A(q1 · · · qm)) and
E(q0).

By this procedure, the Kullback-Leibler dis-
tance between G1 and G2 is minimized. Although
the present paper deals with very different for-
malisms, the proof of correctness is identical to
that in (Nederhof, 2005). The reason is that in both
cases the mathematical analysis must focus on the
objects in the intersection (strings or trees) which
may correspond to multiple derivations in the orig-
inal model (here G1) but to a single derivation in
the unambiguous model to be trained (here G2),
and each derivation is composed of rules, whose
probabilities are to be multiplied.

6 Extensions

6.1 Transduction

For various formalisms describing (string or tree)
languages, there are straightforward generaliza-
tions that describe a relation between two or more

21

languages, which is known as a transduction. The
idea is that the underlying control mechanism,
such as the states in regular tree grammars or lin-
ear indexed grammars, is now coupled to two or
more surface forms that are synchronously pro-
duced. For example, a rule in a weighted syn-
chronous regular tree grammar (WSRTG) has the
form:

s0 → A(s1 · · · sm), B(sπ(1) · · · sπ(m)) 〈w〉,

where π is a permutation of 1, . . . ,m. We can gen-
eralize this to having a third label C and a second
permutation π′, in order to describe simultaneous
relations between three tree languages, etc. In this
section we will restrict ourselves to binary rela-
tions however, and call the first surface form the
input and the second surface form the output. For
synchronous tree adjoining grammars, see for ex-
ample (Shieber, 1994).

If we apply intersection on the input or on the
output of a synchronous grammar formalism, then
this is best seen as composition. This is well-
known in the case of finite-state transducers and
some forms of context-free transduction (Berstel,
1979), and application to a wider range of for-
malisms is gaining interest in the area of machine
translation (Knight, 2007).

With the intersection from Section 4.2 trivially
extended to composition, we can now implement
composition of the form:

τ1 ◦ . . . ◦ τk,

where the different τj are transducers, of which
k − 1 are (W)SRTGs and at most one is a
(weighted) synchronous LIG ((W)SLIG). The re-
sult of the composition is another (W)SLIG. It
should be noted that a (W)RTS (or (W)LIG) can
be seen as a (W)SRTG (or (W)SLIG, respectively)
that represents the identity relation on its tree lan-
guage.

6.2 Binarization

In the discussion of complexity in Section 4.1, we
assumed that rules are binary, that is, that they
have at most two states in each right-hand side.
However, whereas any context-free grammar can
be transformed into a binary form (e.g. Chomsky
normal form), the grammars as we have defined
them cannot be. We will show that this is to a large
extent a consequence of our definitions, which

were motivated by presentational ease, rather than
by generality.

The main problem is formed by rules of the
form s0 → A(s1 · · · sm), where m > 2. Such
long rules cannot be broken up into shorter rules
of the same form, as this would require an addi-
tional labelled vertex, changing the tree language.
An apparent solution lies in allowing branching
rules without any label, for example s1 → s2 s3.
Regrettably this could create substantial computa-
tional problems for intersection of the described
tree languages. As labels provide the mechanism
through which to intersect tree languages, rules
of the above form are somewhat similar to unit
rules or epsilon rules in context-free grammars, in
that they are not bound to observable elements.
Branching rules furthermore have the potential
to generate context-free languages, and therefore
they are more pernicious to intersection, consider-
ing that emptiness of intersection of context-free
languages is undecidable.

It therefore seems better to restrict branching
rules s1 → s2 s3 to finite-state power, for exam-
ple by making these rules exclusively left-linear
or right-linear. A more elegant but equivalent way
of looking at this may be to have rules of the form:

s0 → A(R),

where R is a regular language over states. In the
case of linear indexed grammars, we would have
rules of the form:

s[◦◦]→ A(L s′[◦◦]R)

where L andR are regular languages over expres-
sions of the form s[]. Appropriate weighted fi-
nite automata can be used to assign weights to se-
quences of such expressions in L and R. With
these extended types of rules, our construction
from Section 4.2 still works. The key observation
here is that regular languages are closed under in-
tersection.

One of the implications of the above extended
definitions is that labels appear not only with-
out fixed ranks, as we have assumed from the
start in Section 2, but even without a bound on
the rank. Concretely, a vertex may appear with
any number of children in a tree. Whereas this
may be unconventional in certain areas of formal
language theory, it is a well-accepted practice in
the parsing of natural language to make the num-
ber of constituents of syntactic categories flexi-
ble and conceptually unbounded; see for example

22

(Collins, 1997). Also the literature on unranked
tree automata is very relevant; see for example
(Schwentick, 2007). Binarization for LIGs was
considered before by (Vijay-Shanker and Weir,
1993a).

6.3 Beyond TAGs

In the light of results by (Kepser and Mönnich,
2006) it is relatively straightforward to consider
larger classes of linear context-free tree grammars
in place of tree-adjoining grammars, in order to
generalize the construction in Section 4.2.

The generalization described in what follows
seems less straightforward. Context-free lan-
guages can be characterized in terms of parse trees
in which path sets (sets of strings of labels on
paths from the root to a leaf) are regular. In the
case of tree adjoining languages, the path sets are
context-free. There is a hierarchy of classes of lan-
guages in which the third step is to consider path
sets that are tree adjoining languages (Weir, 1992).
In this paper, we have considered the parsing-as-
intersection paradigm for the first two members of
the hierarchy. It may be possible that the paradigm
is also applicable to the third and following mem-
bers. This avenue is yet to be pursued.

7 Conclusions

This paper has extended the parsing-as-
intersection paradigm from string languages
to tree languages. Probabilities, or weights in
general, were incorporated in this framework in a
natural way. We have discussed one particular ap-
plication involving a special case of the extended
paradigm.

Acknowledgements

Helpful comments by anonymous reviewers are
gratefully acknowledged. The basic result from
Section 4.1 as it pertains to RTGs as subclass of
LIGs was discussed with Heiko Vogler, who pro-
posed two alternative proofs. Sylvain Schmitz
pointed out to me the relevance of literature on lin-
ear context-free tree languages.

References

A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman.
2007. Compilers: Principles, Techniques, & Tools.
Addison-Wesley.

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On
formal properties of simple phrase structure gram-
mars. In Y. Bar-Hillel, editor, Language and Infor-
mation: Selected Essays on their Theory and Appli-
cation, chapter 9, pages 116–150. Addison-Wesley,
Reading, Massachusetts.

J. Berstel. 1979. Transductions and Context-Free Lan-
guages. B.G. Teubner, Stuttgart.

M. Collins. 1997. Three generative, lexicalised mod-
els for statistical parsing. In 35th Annual Meeting of
the Association for Computational Linguistics, Pro-
ceedings of the Conference, pages 16–23, Madrid,
Spain, July.

J. Graehl and K. Knight. 2004. Training tree transduc-
ers. In HLT-NAACL 2004, Proceedings of the Main
Conference, Boston, Massachusetts, USA, May.

F. Gcseg and M. Steinby. 1997. Tree languages. In
G. Rozenberg and A. Salomaa, editors, Handbook
of Formal Languages, Vol. 3, chapter 1, pages 1–68.
Springer, Berlin.

J.E. Hopcroft and J.D. Ullman. 1979. Introduction
to Automata Theory, Languages, and Computation.
Addison-Wesley.

A.K. Joshi and Y. Schabes. 1997. Tree-adjoining
grammars. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages. Vol 3: Beyond
Words, chapter 2, pages 69–123. Springer-Verlag,
Berlin/Heidelberg/New York.

D. Jurafsky and J.H. Martin. 2000. Speech and Lan-
guage Processing. Prentice-Hall.

S. Kepser and U. Mönnich. 2006. Closure properties
of linear context-free tree languages with an appli-
cation to optimality theory. Theoretical Computer
Science, 354:82–97.

K. Knight. 2007. Capturing practical natural language
transformations. Machine Translation, 21:121–133.

B. Lang. 1994. Recognition can be harder than pars-
ing. Computational Intelligence, 10(4):486–494.

M.-J. Nederhof and G. Satta. 2003. Probabilistic pars-
ing as intersection. In 8th International Workshop
on Parsing Technologies, pages 137–148, LORIA,
Nancy, France, April.

M.-J. Nederhof. 2005. A general technique to train
language models on language models. Computa-
tional Linguistics, 31(2):173–185.

P. Poller and T. Becker. 1998. Two-step TAG pars-
ing revisited. In Fourth International Workshop on
Tree Adjoining Grammars and Related Frameworks,
pages 143–146. Institute for Research in Cognitive
Science, University of Pennsylvania, August.

23

P. Resnik. 1992. Probabilistic tree-adjoining grammar
as a framework for statistical natural language pro-
cessing. In Proc. of the fifteenth International Con-
ference on Computational Linguistics, pages 418–
424. Nantes, August.

A. Sarkar. 1998. Conditions on consistency of prob-
abilistic tree adjoining grammars. In 36th Annual
Meeting of the Association for Computational Lin-
guistics and 17th International Conference on Com-
putational Linguistics, volume 2, pages 1164–1170,
Montreal, Quebec, Canada, August.

Y. Schabes. 1992. Stochastic lexicalized tree-
adjoining grammars. In Proc. of the fifteenth Inter-
national Conference on Computational Linguistics,
pages 426–432. Nantes, August.

Thomas Schwentick. 2007. Automata for XML–a
survey. Journal of Computer and System Sciences,
73:289–315.

S.M. Shieber. 1994. Restricting the weak-generative
capacity of synchronous tree-adjoining grammars.
Computational Intelligence, 10(4):371–385.

K. Sima’an. 1997. Efficient disambiguation by means
of stochastic tree substitution grammars. In D. Jones
and H. Somers, editors, New Methods in Language
Processing. UCL Press, UK.

S. Sippu and E. Soisalon-Soininen. 1988. Parsing The-
ory, Vol. I: Languages and Parsing, volume 15 of
EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag.

K. Vijay-Shanker and D.J. Weir. 1993a. Parsing some
constrained grammar formalisms. Computational
Linguistics, 19(4):591–636.

K. Vijay-Shanker and D.J. Weir. 1993b. The use of
shared forests in tree adjoining grammar parsing. In
Sixth Conference of the European Chapter of the As-
sociation for Computational Linguistics, Proceed-
ings of the Conference, pages 384–393, Utrecht, The
Netherlands, April.

K. Vijay-Shanker and D.J. Weir. 1994. The equiva-
lence of four extensions of context-free grammars.
Mathematical Systems Theory, 27:511–546.

D.J. Weir. 1992. A geometric hierarchy beyond
context-free languages. Theoretical Computer Sci-
ence, 104:235–261.

D. Wojtczak and K. Etessami. 2007. PReMo: an an-
alyzer for Probabilistic Recursive Models. In Tools
and Algorithms for the Construction and Analysis
of Systems, 13th International Conference, volume
4424 of Lecture Notes in Computer Science, pages
66–71, Braga, Portugal. Springer-Verlag.

24

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 25–28,
Paris, October 2009. c©2009 Association for Computational Linguistics

Automatic Adaptation of Annotation Standards for Dependency Parsing
— Using Projected Treebank as Source Corpus

Wenbin Jiang and Qun Liu

Key Lab. of Intelligent Information Processing
Institute of Computing Technology

Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190, China

{jiangwenbin, liuqun}@ict.ac.cn

Abstract

We describe for dependency parsing an an-
notation adaptation strategy, which can au-
tomatically transfer the knowledge from
a source corpus with a different annota-
tion standard to the desiredtarget parser,
with the supervision by atarget corpus an-
notated in the desired standard. Further-
more, instead of a hand-annotated one, a
projected treebank derived from a bilin-
gual corpus is used as the source cor-
pus. This benefits the resource-scarce
languages which haven’t different hand-
annotated treebanks. Experiments show
that the target parser gains significant im-
provement over the baseline parser trained
on the target corpus only, when the target
corpus is smaller.

1 Introduction

Automatic annotation adaptation for sequence la-
beling (Jiang et al., 2009) aims to enhance a
tagger with one annotation standard by transfer-
ring knowledge from a source corpus annotated in
another standard. It would be valuable to adapt
this strategy to parsing, since for some languages
there are also several treebanks with different an-
notation standards, such as Chomskian-style Penn
Treebank (Marcus et al., 1993) and HPSG LinGo
Redwoods Treebank (Oepen et al., 2002) for En-
glish. However, we are not content with conduct-
ing annotation adaptation between existing differ-
ent treebanks, because it would be more valuable
to boost the parsers also for the resource-scarce
languages, rather than only for the resource-rich
ones that already have several treebanks.

Although hand-annotated treebanks are costly
and scarce, it is not difficult for many languages to
collect large numbers of bilingual sentence-pairs
aligned to English. According to the word align-
ment, the English parses can be projected across

to their translations, and the projected trees can be
leveraged to boost parsing. Many efforts are de-
voted to the research on projected treebanks, such
as (Lü et al., 2002), (Hwa et al., 2005) and
(Ganchev et al., 2009), etc. Considering the fact
that a projected treebank partially inherits the En-
glish annotation standard, some hand-written rules
are designed to deal with the divergence between
languages such as in (Hwa et al., 2002). How-
ever, it will be more valuable and interesting to
adapt this divergence automatically and boost the
existing parsers with this projected treebank.

In this paper, we investigate the automatic anno-
tation adaptation strategy for Chinese dependency
parsing, where the source corpus for adaptation is
a projected treebank derived from a bilingual cor-
pus aligned to English with word alignment and
English trees. We also propose a novel, error-
tolerant tree-projecting algorithm, which dynam-
ically searches the project Chinese tree that has
the largest consistency with the corresponding En-
glish tree, according to an alignment matrix rather
than a single alignment. Experiments show that
when the target corpus is smaller, the projected
Chinese treebank, although with inevitable noise
caused by non-literal translation and word align-
ment error, can be successfully utilized and re-
sult in significant improvement over the baseline
model trained on the target corpus only.

In the rest of the paper, we first present the tree-
projecting algorithm (section 2), and then the an-
notation adaptation strategy (section 3). After dis-
cussing the related work (section 4) we show the
experiments (section 5).

2 Error-Tolerant Tree-Projecting
Algorithm

Previous works making use of projected cor-
pus usually adopt the direct-mapping method for
structure projection (Yarowsky and Ngai, 2001;
Hwa et al., 2005; Ganchev et al., 2009), where

25

some filtering is needed to eliminate the inaccurate
or conflicting labels or dependency edges. Here
we propose a more robust algorithm for depen-
dency tree projection. According to the align-
ment matrix, this algorithm dynamically searches
the projected Chinese dependency tree which has
the largest consistency with the corresponding En-
glish tree.

We briefly introduce the alignment matrix be-
fore describing our projecting algorithm. Given
a Chinese sentenceC1:M and its English transla-
tion E1:N , the alignment matrixA is anM × N
matrix with each elementAi,j denoting the proba-
bility of Chinese wordCi aligned to English word
Ej . Such structure potentially encodes many more
possible alignments.

UsingC(TC |TE , A) to denote the degree of Chi-
nese treeTC being consistent with English treeTE

according to alignment matrixA, the projecting al-
gorithm aims to find

T̂C = argmax
TC

C(TC |TE , A) (1)

C(TC |TE , A) can be factorized into each depen-
dency edgex → y in TC , that is to say

C(TC |TE , A) =
∏

x→y∈TC

Ce(x → y|TE , A) (2)

We can obtainCe by simple accumulation across
all possible alignments

Ce(x → y|TE, A)

=
∑

1≤x′,y′≤|E|
Ax,x′ ×Ay,y′ × δ(x′, y′|TE) (3)

whereδ(x′, y′|TE) is a 0-1 function that equals 1
only if x′ → y′ exists inTE .

The searching procedure, argmax operation in
equation 1, can be effectively solved by a simple,
bottom-up dynamic algorithm with cube-pruning
speed-up (Huang and Chiang, 2005). We omit the
detailed algorithm here due to space restrictions.

3 Annotation Adaptation for
Dependency Parsing

The automatic annotation adaptation strategy for
sequence labeling (Jiang et al., 2009) aims to
strengthen a tagger trained on a corpus annotated
in one annotation standard with a larger assistant
corpus annotated in another standard. We can de-
fine the purpose of the automatic annotation adap-
tation for dependency parsing in the same way.

Similar to that in sequence labeling, the train-
ing corpus with the desired annotation standard is
called thetarget corpus while the assistant cor-
pus annotated in a different standard is called
the source corpus. For training, an intermediate
parser, called thesource parser, is trained directly
on the source corpus and then used to parse the tar-
get corpus. After that a second parser, called the
target parser, is trained on the target corpus with
guide features extracted from the source parser’s
parsing results. For testing, a token sequence is
first parsed by the source parser to obtain an inter-
mediate parsing result with the source annotation
standard, and then parsed by the target parser with
the guide features extracted from the intermediate
parsing result to obtain the final result.

The design of the guide features is the most im-
portant, and is specific to the parsing algorithm of
the target parser. In this work we adopt the max-
imum spanning tree (MST) algorithm (McDon-
ald et al., 2005; McDonald and Pereira, 2006) for
both the source and the target parser, so the guide
features should be defined on dependency edges
in accordance with the edge-factored property of
MST models. In the decoding procedure of the
target parser, the degree of a dependency edge be-
ing supported can be adjusted by the relationship
between this edge’s head and modifier in the in-
termediate parsing result of the source parser. The
most intuitionistic relationship is whether the de-
pendency between head and modifier exists in this
intermediate result. Such a bi-valued relationship
is similar to that in the stacking method for com-
bining dependency parsers (Martins et al., 2008;
Nivre and McDonald, 2008). The guide features
are then defined as this relationship itself as well as
its combinations with the lexical features of MST
models.

Furthermore, in order to explore more de-
tailed knowledge from the source parser, we re-
define the relationship as a four-valued variable
which covers the following situations:parent-
child, child-parent, siblings and else. With the
guide features, the parameter tuning procedure of
the target parser will automatically learn the regu-
larity of using the source parser’s intermediate re-
sult to guide its decision making.

4 Related Works

Many works have been devoted to obtain pars-
ing knowledge from word aligned bilingual cor-

26

pora. (Lü et al., 2002) learns Chinese bracket-
ing knowledge via ITG alignment; (Hwa et al.,
2005) and (Ganchev et al., 2009) induces depen-
dency grammar via projection from aligned En-
glish, where some filtering is used to reduce the
noise and some hand-designed rules to handle lan-
guage heterogeneity.

Just recently, Smith and Eisner (2009) gave
an idea similar to ours. They perform depen-
dency projection and annotation adaptation with
Quasi-Synchronous Grammar (QG) Features. Al-
though both related to projection and annotation,
there are still important differences between these
two works. First, we design an error-tolerant
alignment-matrix-based tree-projecting algorithm
to perform whole-tree projection, while they re-
sort to QG features to score local configurations
of aligned source and target trees. Second, their
adaptation emphasizes to transform a tree from
one annotation standard to another, while our
adaptation emphasizes to strengthen the parser us-
ing a treebank annotated in a different standard.

5 Experiments

The source corpus for annotation adaptation, that
is, the projected Chinese treebank, is derived from
5.6 millions LDC Chinese-English sentence pairs.
The Chinese side of the bilingual corpus is word-
segmented and POS-tagged by an implementation
of (Jiang et al., 2008), and the English sentences
are parsed by an implementation of (McDonald
and Pereira, 2006) which is instead trained on WSJ
section of Penn English Treebank (Marcus et al.,
1993). The alignment matrixes for sentence pairs
are obtained according to (Liu et al., 2009). The
English trees are then projected across to Chinese
using the algorithm in section 2. Out of these pro-
jected trees, we only select 500 thousands with
word countl s.t. 6≤ l ≤ 100 and with project-
ing confidencec = C(TC |TE , A)1/l s.t. c ≥ 0.35.
While for the target corpus, we take Penn Chinese
Treebank (CTB) 1.0 and CTB 5.0 (Xue et al.,
2005) respectively, and follow the traditional cor-
pus splitting: chapters 271-300 for testing, chap-
ters 301-325 for development, and else for train-
ing.

We adopt the 2nd-order MST model (McDon-
ald et al., 2005) as the target parser for better
performance, and the 1st-order MST model as
the source parser for fast training. Both the two
parsers are trained with averaged perceptron algo-

Model P% on CTB 1 P% on CTB 5
source parser 53.28 53.28
target parser 83.56 87.34
baseline parser 82.23 87.15

Table 1: Performances of annotation adaptation
with CTB 1.0 and CTB 5.0 as the target corpus re-
spectively, as well as of the baseline parsers (2nd-
order MST parsers trained on the target corpora).

 0.7

 0.75

 0.8

 0.85

 100 1000 10000

de
pe

nd
en

cy
 a

cc
ur

ac
y

sentence count of target corpus

baseline
target parser

Figure 1: Performance of the target parsers with
target corpora of different scales.

rithm (Collins, 2002). The development set of
CTB is also used to determine the best model for
the source parser, conditioned on the hypothesis
of larger isomorphisme between Chinese and En-
glish.

Table 1 shows that the experimental results of
annotation adaptation, with CTB 1.0 and CTB 5.0
as the target corpus respectively. We can see that
the source parsers, directly trained on the source
corpora of projected trees, performs poorly on
both CTB test sets (which are in fact the same).
This is partly due to the noise in the projected tree-
bank, and partly due to the heterogeneous between
the CTB trees and the projected trees. On the
contrary, automatic annotation adaptation effec-
tively transfers the knowledge to the target parsers,
achieving improvement on both target corpora.
Especially on CTB 1.0, an accuracy increment of
1.3 points is obtained over the baseline parser.

We observe that for the much larger CTB 5.0,
the performance of annotation adaptation is much
lower. To further investigate the adaptation perfor-
mances with target corpora of different scales, we
conduct annotation adaptation on a series of tar-
get corpora which consist of different amount of
dependency trees from CTB 5.0. Curves in Fig-
ure 1 shows the experimental results. We see that
the smaller the training corpus is, the more signif-
icant improvement can be obtained. For example,

27

with a target corpus composed of 2K trees, nearly
2 points of accuracy increment is achieved. This
is a good news to the resource-scarce languages.

6 Conclusion and Future Works

This paper describes for dependency parsing an
automatic annotation adaptation strategy. What
is more important, we use a projected treebank,
rather than a hand-annotated one, as the source
corpus for adaptation. This is quite different from
previous works on projected trees (Hwa et al.,
2005; Ganchev et al., 2009), and is also more valu-
able than previous works of annotation adaptation
(Jiang et al., 2009). Experiments show that this
strategy gains improvement over baseline parsers
with target corpora of different scales, especially
the smaller ones. This provides a new strategy for
resource-scarce languages to train high-precision
dependency parsers. In the future, we will adapt
this strategy to constituent parsing, which is more
challenging and interesting due to the complexity
of projection between constituent trees, and due
to the obscurity of annotation adaptation for con-
stituent parsing.

Acknowledgement

This project was supported by National Natural
Science Foundation of China, Contracts 60603095
and 60736014, and 863 State Key Project No.
2006AA010108. We are grateful to the anony-
mous reviewers for their valuable suggestions. We
also thank Yang Liu for sharing his codes of align-
ment matrix generation, and Liang Huang and
Haitao Mi for helpful discussions.

References

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. InProceedings
of the EMNLP, pages 1–8, Philadelphia, USA.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction via
bitext projection constraints. InProceedings of the
47th ACL.

Liang Huang and David Chiang. 2005. Better k-best
parsing. InProceedings of the IWPT, pages 53–64.

Rebecca Hwa, Philip Resnik, Amy Weinberg, and
Okan Kolak. 2002. Evaluating translational corre-
spondence using annotation projection. InProceed-
ings of the ACL.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
In Natural Language Engineering, volume 11, pages
311–325.

Wenbin Jiang, Liang Huang, Yajuan Lü, and Qun Liu.
2008. A cascaded linear model for joint chinese
word segmentation and part-of-speech tagging. In
Proceedings of the ACL.

Wenbin Jiang, Liang Huang, and Qun Liu. 2009. Au-
tomatic adaptation of annotation standards: Chinese
word segmentation and pos tagging–a case study. In
Proceedings of the 47th ACL.

Yang Liu, Tian Xia, Xinyan Xiao, and Qun Liu. 2009.
Weighted alignment matrices for statistical machine
translation. InProceedings of the EMNLP.

Yajuan Lü, Sheng Li, Tiejun Zhao, and Muyun Yang.
2002. Learning chinese bracketing knowledge
based on a bilingual language model. InProceed-
ings of the COLING.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. InComputa-
tional Linguistics.

André F. T. Martins, Dipanjan Das, Noah A. Smith, and
Eric P. Xing. 2008. Stacking dependency parsers.
In Proceedings of EMNLP.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. InProceedings of EACL, pages 81–88.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. InProceedings of ACL, pages 91–
98.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. InProceedings of ACL.

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning Dan Flickinger, and Thorsten
Brants. 2002. The lingo redwoods treebank: Moti-
vation and preliminary applications. InIn Proceed-
ings of COLING.

David Smith and Jason Eisner. 2009. Parser adap-
tation and projection with quasi-synchronous gram-
mar features. InProceedings of EMNLP.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. InNatural
Language Engineering.

David Yarowsky and Grace Ngai. 2001. Inducing mul-
tilingual pos taggers and np bracketers via robust
projection across aligned corpora. InProceedings
of the NAACL.

28

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 29–32,
Paris, October 2009. c©2009 Association for Computational Linguistics

Learning Stochastic Bracketing Inversion Transduction Grammars
with a Cubic Time Biparsing Algorithm

Markus SAERS Joakim NIVRE

Dept. of Linguistics and Philology
Uppsala University

Sweden
first.last@lingfil.uu.se

Dekai WU
Human Language Technology Center

Dept. of Computer Science and Engineering
HKUST

Hong Kong
dekai@cs.ust.hk

Abstract

We present a biparsing algorithm for
Stochastic Bracketing Inversion Transduc-
tion Grammars that runs in O(bn3) time
instead of O(n6). Transduction gram-
mars learned via an EM estimation proce-
dure based on this biparsing algorithm are
evaluated directly on the translation task,
by building a phrase-based statistical MT
system on top of the alignments dictated
by Viterbi parses under the induced bi-
grammars. Translation quality at different
levels of pruning are compared, showing
improvements over a conventional word
aligner even at heavy pruning levels.

1 Introduction

As demonstrated by Saers & Wu (2009) there
is something to be gained by applying structural
models such as Inversion Transduction Grammars
(ITG) to the problem of word alignment. One is-
sue is that naı̈ve methods for inducing ITGs from
parallel data can be very time consuming. We in-
troduce a parsing algorithm for inducing Stochas-
tic Bracketing ITGs from parallel data in O(bn3)
time instead ofO(n6), where b is a pruning param-
eter (lower = tighter pruning). We try out different
values for b, and evaluate the results on a transla-
tion tasks.

In section 2 we summarize the ITG framework;
in section 3 we present our algorithm, whose time
complexity is analyzed in section 4. In section 5
we describe how the algorithm is evaluated, and in
section 6, the empirical results are given.

2 Inversion Transduction Grammars

Inversion transductions are a theoretically inter-
esting and empirically useful equivalence class of
transductions, with expressiveness and computa-
tional complexity characteristics lying intermedi-

ate between finite-state transductions and syntax-
directed transductions. An Inversion Transduc-
tion Grammar (ITG) can be used to synchronously
generate sentence pairs, synchronously parse sen-
tence pairs, or transduce from a sentence in one
language to a sentence in another.1

The equivalence class of inversion transduc-
tions can be described by restricting Syntax-
Directed Transduction Grammars (SDTG)2 in var-
ious equivalent ways to the special cases of (a) bi-
nary SDTGs, (b) ternary SDTGs, or (c) SDTGs
whose transduction rules are restricted to straight
and inverted permutations only.

Thus on one hand, any binary or ternary SDTG
is an ITG. Conversely, any ITG can be stated in
binary two-normal form (Wu, 1997). Only three
kinds of rules are present in the normal form:

A→ [BC]
A→ 〈BC〉
A→ e/f

On the other hand, under characterization (c),
what distinguishes ITGs is that the permutation of
constituents is restricted in such a way that all chil-
dren of a node must be read either left-to-right, or
right-to-left. The movement only applies to one of
the languages, the other is fixed. Formally, an ITG
is a tuple 〈N,V,∆, S〉, where N is a set of nonter-
minal symbols, ∆ is a set of rewrite rules, S ∈ N
is the start symbol and V ⊆ VE × VF is a set of
biterminal symbols, where VE is the vocabulary of
E and VF is the vocabulary of F . We will write a
biterminal as e/f , where e ∈ VE and f ∈ VF . A
sentence pair will be written as e/f , and a bispan
as es..t/fu..v.

Each rule δ ∈ ∆ is a tuple 〈X, γ, θ〉 where
X ∈ N is the right hand side of the rule, γ ∈

1All transduction grammars (a.k.a. synchronous gram-
mars, or simply bigrammars) can be interpreted as models
for generation, recognition, or transduction.

2SDTGs (Lewis & Stearns (1968); Aho & Ullman (1969),
(1972)) are also recently called synchronous CFGs.

29

{N ∪ V }∗ is a series of nonterminal and biter-
minal symbols representing the production of the
rule and θ ∈ {∅, [], 〈〉} denotes the orientation (ax-
iomatic, straight or inverted) of the rule. Straight
rules are read left-to-right in both languages, while
inverted rules are read left-to-right in E and right-
to-left in F . The direction of the axiomatic rules is
undefined, as they must be completely made up of
terminals. For notational convenience, the orien-
tation of the rule is written as surrounding the pro-
duction, like so: X → γ, X → [γ] and X → 〈γ〉.
The vocabularies of the languages may both in-
clude the empty token ε, allowing for deletions
and insertions. The empty biterminal, ε/ε is not
allowed.

2.1 Stochastic ITGs
In a Stochastic ITG (SITG), each rule is also asso-
ciated with a probability, such that

∑

γ

Pr(X → γ) = 1

for all X ∈ N . The probability of a deriva-
tion S

∗⇒ e/f is defined as the production of
the probabilities of all rules used. As shown by
Wu (1995), it is possible to fit the parameters of
a SITG to a parallel corpus via EM (expectation-
maximization) estimation.

2.2 Bracketing ITGs
An ITG where there is only one nonterminal (other
than the start symbol) is called a bracketing ITG
(BITG). Since the one nonterminal is devoid of
information, it can only be used to group its chil-
dren together, imposing a bracketing on the sen-
tence pairs.

3 Parsing SBITGs

In this section we present a biparsing algorithm
for Stochastic Bracketing Inversion Transduction
Grammars (SBITGs) in normal form which incor-
porates a pruning parameter b. The algorithm is
basically an agenda-based bottom-up chart parser,
where the pruning parameter controls the number
of active items of a given length.

To parse a sentence pair e/f , the parser needs
a chart C and a series of T + V agendas
A1, A2, . . . , AT+V , where T = |e| and V = |f |.
An item is defined as a nonterminal symbol (we
use X to denote the anonymous nonterminal sym-
bol of the bracketing ITG) and one span in each

language, written as Xstuv where 0 ≤ s ≤ t ≤ T
corresponds to the span es..t and 0 ≤ u ≤ v ≤ V
corresponds to the span fu..v. The length of an
item is defined as |Xstuv| = (t−s)+(v−u). Since
items are grouped by their length, highly skewed
links (eg. 6:1) will be competing with very even
links (eg. 4:3). Skewed links are generally bad
(and should be pruned), or have a high probability
(which means they are likely to survive pruning).
An item may be active or passive, the active items
are present in the agendas and the chart, whereas
the passive items are only present in the chart.

The parser starts by asserting items from all lex-
ical rules (X → e/f), and placing them on their
respective agendas. After the initial seeding, the
agendas are processed in order. When an agenda
is processed, it is first pruned, so that only the b
best items are kept active. After pruning, the re-
maining active items are allowed to be extended.
When extended, the item combines with an adja-
cent item in the chart to form a larger item. The
newly created item is considered active, and added
to both the chart and the appropriate agenda. Once
an item has been processed it goes from being ac-
tive to being passive. The process is halted when
the goal item S0T0V is reached, or when no active
items remain. To build the forest corresponding to
the parse process, back-pointers are used.

3.1 Initialization
In the initial step, the set of lexical items L is built.
All lexical items i ∈ L are then activated by plac-
ing them on their corresponding agenda A|i|.

L =



Xstuv

∣∣∣∣∣∣

0≤s≤ t≤T,
0≤u≤v≤V,
X → es..t/fu..v ∈ ∆





By limiting the length of phrasal terminals to some
threshold µ, the variables t and v can be limited to
s+µ and u+µ respectively, limiting the complexity
of the initialization step from O(n4) to O(n2).

3.2 Recursion
In the recursive step we build a set of extensions
E(i) for all active items i. All items in E(i)
are then activated by placing them on their cor-
responding agenda (i ∈ A|i|).
E(Xstuv) =
{XStUv|0≤S≤s, 0≤U≤u,XSsUu ∈ C} ∪
{XsSuU |t≤S≤T, v≤U≤V,XtSvU ∈ C} ∪
{XsSUv|t≤S≤T, 0≤U≤u,XtSUu ∈ C} ∪
{XStuU |0≤S≤s, v≤U≤V,XSsvU ∈ C}

30

Since we are processing the agendas in order, any
item in the chart will be as long as or shorter than
the item being extended. This fact can be exploited
to limit the number of possible siblings explored,
but has no impact on time complexity.

3.3 Viterbi parsing
When doing Viterbi parsing, all derivations but
the most probable are discarded. This gives an
unambiguous parse, which dictates exactly one
alignment between e and f . The alignment of
the Viterbi parse can be used to substitute that of
other word aligners (Saers and Wu, 2009) such as
GIZA++ (Och and Ney, 2003).

4 Analysis

Looking at the algorithm, it is clear that there will
be a total of T + V = O(n) agendas, each con-
taining items of a certain length. The items in an
agenda can start anywhere in the alignment space:
O(n2) possible starting points, but once the end
point in one language is set, the end point in the
other follows from that, adding a factor O(n).
This means that each agenda contains O(n3) ac-
tive items. Each active item has to go through all
possible siblings in the recursive step. Since the
start point of the sibling is determined by the item
itself (it has to be adjacent), only the O(n2) pos-
sible end points have to be explored. This means
that each active item takes O(n2) time to process.

The total time is thus O(n6): O(n) agendas,
containing O(n3) active items, requiring O(n2)
time to process. This is also the time complex-
ity reported for ITGs in previous work (Wu, 1995;
Wu, 1997).

The pruning works by limiting the number of
active items in an agenda to a constant b, meaning
that there are O(n) agendas, containing O(b) ac-
tive items, requiring O(n2) time to process. This
gives a total time complexity of O(bn3).

5 Evaluation

We evaluate the parser on a translation task
(WMT’08 shared task3). In order to evaluate on
a translation task, a translation system has to be
built. We use the alignments from the Viterbi
parses of the training corpus to substitute the
alignments of GIZA++. This is the same approach
as taken in Saers & Wu (2009). We will evalu-
ate the resulting translations with two automatic

3http://www.statmt.org/wmt08/

metrics: BLEU (Papineni et al., 2002) and NIST
(Doddington, 2002).

6 Empirical results

In this section we describe the experimental setup
as well as the outcomes.

6.1 Setup

We use the Moses Toolkit (Koehn et al., 2007) to
train our phrase-based SMT models. The toolkit
also includes scripts for applying GIZA++ (Och
and Ney, 2003) as a word aligner. We have
trained several systems, one using GIZA++ (our
baseline system), one with no pruning at all, and
6 different values of b (1, 10, 25, 50, 75 and
100). We used the grow-diag-final-and
method to extract phrases from the word align-
ment, and MERT (Och, 2003) to optimize the re-
sulting model. We trained a 5-gram SRI language
model (Stolcke, 2002) using the corpus supplied
for this purpose by the shared task organizers. All
of the above is consistent with the guidelines for
building a baseline system for the WMT’08 shared
task.

The translation tasks we applied the above
procedure to are all taken from the Europarl
corpus (Koehn, 2005). We selected the tasks
German-English, French-English and Spanish-
English. Furthermore, we restricted the training
sentence pairs so that none of the sentences ex-
ceeded length 10. This was necessary to be able to
carry out exhaustive search. The total amount of
training data was roughly 100,000 sentence pairs
in each language pair, which is a relatively small
corpus, but by no means a toy example.

6.2 Grammar induction

It is possible to set the parameters of a SBITG
by applying EM to an initial guess (Wu, 1995).
As our initial guess, we used word co-occurrence
counts, assuming that there was one empty token
in each sentence. This gave an estimate of the lex-
ical rules. The probability mass was divided so
that the lexical rules could share half of it, while
the other half was shared equally by the two struc-
tural rules (X → [XX] and X → 〈XX〉).

Several training runs were made with different
pruning parameters. The EM process was halted
when a relative improvement in log-likelihood of
10−3 was no longer achieved over the previous it-
eration.

31

Baseline Different values of b for SBITGs
Metric (GIZA++) ∞ 100 75 50 25 10 1

Spanish-English
BLEU 0.2597 0.2663 0.2671 0.2661 0.2653 0.2655 0.2608 0.1234
NIST 6.6352 6.7407 6.7445 6.7329 6.7101 6.7312 6.6439 3.9705
time 03:20:00 02:40:00 02:00:00 01:20:00 00:38:00 00:17:00 00:03:10

German-English
BLEU 0.2059 0.2113 0.2094 0.2091 0.2090 0.2091 0.2050 0.0926
NIST 5.8668 5.9380 5.9086 5.8955 5.8947 5.9292 5.8743 3.4297
time 03:40:00 02:45:00 02:10:00 01:25:00 00:41:00 00:17:00 00:03:20

French-English
BLEU 0.2603 0.2663 0.2655 0.2668 0.2669 0.2654 0.2632 0.1268
NIST 6.6907 6.8151 6.8068 6.8068 6.8065 6.7013 6.7136 4.0849
time 03:10:00 02:45:00 02:10:00 01:25:00 00:42:00 00:17:00 00:03:25

Table 1: Results. Time measures are approximate time per iteration.

Once the EM process terminated, Viterbi parses
were calculated for the training corpus, and the
alignments from them outputted in the same for-
mat produced by GIZA++.

6.3 Results
The results are presented in Table 1. GIZA++
generally terminates within minutes (6–7) on the
training corpora used, making it faster than any
of the SBITGs (they generally required 4–6 iter-
ations to terminate, making even the fastest ones
slower than GIZA++). To put the times in per-
spective, about 6 iterations were needed to get
the ITGs to converge, making the longest training
time about 16–17 hours. The time it takes to ex-
tract the phrases and tune the model using MERT
is about 14 hours for these data sets.

Looking at translation quality, we see a sharp
initial rise as b grows to 10. At this point the
SBITG system is on par with GIZA++. It con-
tinues to rise up to b = 25, but after that is more or
less levels out. From this we conclude that the pos-
itive results reported in Saers & Wu (2009) hold
under harsh pruning.

7 Conclusions

We have presented a SBITG biparsing algorithm
that uses a novel form of pruning to cut the com-
plexity of EM-estimation from O(n6) to O(bn3).
Translation quality using the resulting learned
SBITG models is improved over using conven-
tional word alignments, even under harsh levels of
pruning.

Acknowledgments
The authors are grateful for the comments made by the two anonymous review-
ers. This work was funded by the Swedish National Graduate School of Lan-
guage Technology, the Defense Advanced Research Projects Agency (DARPA)

under GALE Contract No. HR0011-06-C-0023, and the Hong Kong Research
Grants Council (RGC) under research grants GRF621008, DAG03/04.EG09,
RGC6256/00E, and RGC6083/99E. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the Defense Advanced Research Projects
Agency.

References
Alfred V. Aho and Jeffrey D. Ullman. 1969. Syntax-directed translations

and the pushdown assembler. Journal of Computer and System Sciences,
3(1):37–56.

Alfred V. Aho and Jeffrey D. Ullman. 1972. The Theory of Parsing, Transla-
tion, and Compiling (Volumes 1 and 2). Prentice-Halll, Englewood Cliffs,
NJ.

George Doddington. 2002. Automatic evaluation of machine translation qual-
ity using n-gram co-occurrence statistics. In Human Language Technology
conference (HLT-2002), San Diego, CA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open source toolkit for statistical machine trans-
lation. In ACL-2007 Demo and Poster Sessions, pages 177–180, Prague,
Jun.

Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine trans-
lation. In Machine Translation Summit X, Phuket, Thailand, September.

Philip M. Lewis and Richard E. Stearns. 1968. Syntax-directed transduction.
Journal of the Association for Computing Machinery, 15(3):465–488.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various
statistical alignment models. Computational Linguistics, 29(1):19–52.

Franz Josef Och. 2003. Minimum error rate training in statistical machine
translation. In 41st Annual Meeting of the Association for Computational
Linguistics, pages 160–167, Sapporo, Japan, Jul.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A method for automatic evaluation of machine translations. In 40th Annual
Meeting of the Association for Computational Linguistics (ACL-2002),
pages 311–318, Philadelphia, Jul.

Markus Saers and Dekai Wu. 2009. Improving phrase-based translation via
word alignments from Stochastic Inversion Transduction Grammars. In
Proceedings of SSST-3, Third Workshop on Syntax and Structure in Statis-
tical Translation (at NAACL HLT 2009), pages 28–36, Boulder, CO, Jun.

Andreas Stolcke. 2002. SRILM – an extensible language modeling toolkit.
In International Conference on Spoken Language Processing, Denver, CO,
Sep.

Dekai Wu. 1995. Trainable coarse bilingual grammars for parallel text brack-
eting. In Third Annual Workshop on Very Large Corpora (WVLC-3), pages
69–81, Cambridge, MA, Jun.

Dekai Wu. 1997. Stochastic Inversion Transduction Grammars and bilingual
parsing of parallel corpora. Computational Linguistics, 23(3):377–404,
Sep.

32

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 33–36,
Paris, October 2009. c©2009 Association for Computational Linguistics

Empirical lower bounds on translation unit error rate for th e full class of
inversion transduction grammars

Anders Søgaard
Center for Language Technology

University of Copenhagen
soegaard@hum.ku.dk

Dekai Wu
Human Language Technology Center

Hong Kong Univ. of Science and Technology
dekai@cs.ust.hk

Abstract

Empirical lower bounds studies in which
the frequency of alignment configurations
that cannot be induced by a particular for-
malism is estimated, have been important
for the development of syntax-based ma-
chine translation formalisms. The for-
malism that has received most attention
has been inversion transduction grammars
(ITGs) (Wu, 1997). All previous work
on the coverage of ITGs, however, con-
cerns parse failure rates (PFRs) or sen-
tence level coverage, which is not di-
rectly related to any of the evaluation mea-
sures used in machine translation. Søgaard
and Kuhn (2009) induce lower bounds on
translation unit error rates (TUERs) for a
number of formalisms, incl. normal form
ITGs, but not for the full class of ITGs.
Many of the alignment configurations that
cannot be induced by normal form ITGs
can be induced by unrestricted ITGs, how-
ever. This paper estimates the difference
and shows that the average reduction in
lower bounds on TUER is 2.48 in absolute
difference (16.01 in average parse failure
rate).

1 Introduction

The first stage in training a machine translation
system is typically that of aligning bilingual text.
The quality of alignments is in that case of vi-
tal importance to the quality of the induced trans-
lation rules used by the system in subsequent
stages. In string-based statistical machine trans-
lation, the alignment space is typically restricted
by then-grams considered in the underlying lan-
guage model, but in syntax-based machine trans-
lation the alignment space is restricted by very
different and less transparent structural contraints.

While it is easy to estimate the consequences of
restrictions ton-grams of limited size, it is less
trivial to estimate the consequences of the struc-
tural constraints imposed by syntax-based ma-
chine translation formalisms. Consequently, much
work has been devoted to this task (Wu, 1997;
Zens and Ney, 2003; Wellington et al., 2006;
Macken, 2007; Søgaard and Kuhn, 2009).

The task of estimating the consequences of
the structural constraints imposed by a particular
syntax-based formalism consists in finding what is
often called “empirical lower bounds” on the cov-
erage of the formalism (Wellington et al., 2006;
Søgaard and Kuhn, 2009). Gold standard align-
ments are constructed and queried in some way
as to identify complex alignment configurations,
or they are parsed by an all-accepting grammar
such that a parse failure indicates that no align-
ment could be induced by the formalism.

The assumption in this and related work that en-
ables us to introduce a meaningful notion of align-
ment capacity is that simultaneously recognized
words are aligned (Wu, 1997; Zhang and Gildea,
2004; Wellington et al., 2006; Søgaard and Kuhn,
2009). As noted by Søgaard (2009), this defi-
nition of alignment has the advantageous conse-
quence that candidate alignments can be singled
out by mere inspection of the grammar rules. It
also has the consequence that alignments are tran-
sitive (Goutte et al., 2004), since simultaneity is
transitive.

While previous work (Søgaard and Kuhn, 2009)
has estimated empirical lower bounds for normal
form ITGs at the level of translation units (TUER),
or cepts (Goutte et al., 2004), defined as maxi-
mally connected subgraphs in alignments, nobody
has done this for the full class of ITGs. What
is important to understand is that while normal
form ITGs can induce the same class of transla-
tions as the full class of ITGs, they donot induce
the same class of alignments. They do not, for ex-

33

ample, induce discontinuous translation units (see
Sect. 3). Sect. 2 briefly presents some related re-
sults in the literature. Some knowledge about for-
malisms used in machine translation is assumed.

2 Related work

Aho and Ullman (1972) showed that 4-ary syn-
chronous context-free grammars (SCFGs) could
not be binarized, and Satta and Peserico (2005)
showed that the hiearchy of SCFGs beyond ternary
ones does not collapse; they also showed that the
complexity of the universal recognition problem
for SCFGs is NP-complete. ITGs on the other
hand has aO(|G|n6) solvable universal recog-
nition problem, which coincides with the unre-
stricted alignment problem (Søgaard, 2009). The
result extends to decoding in conjunction with a
bigram language model (Huang et al., 2005).

Wu (1997) introduced ITGs and normal form
ITGs. ITGs are a notational variant of the sub-
class of SCFGs such that all indexed nonterminals
in the source side of the RHS occur in the same
order or exactly in the inverse order in the target
side of the RHS. It turns out that this subclass of
SCFGs defines the same set of translations that can
be defined by binary SCFGs. The different forms
of production rules are listed below with the more
restricted normal form production rules in the right
column, withφ ∈ (N ∪{e/f | e ∈ T ∗, f ∈ T ∗})∗
(N nonterminals andT terminals, as usual). The
RHS operator[] preserves source language con-
stituent order in the target language, while〈 〉 re-
verses it.1

A → [φ] A → [BC]
A → 〈φ〉 A → 〈BC〉

A → e/f

Several studies have adressed the alignment ca-
pacity of ITGs and normal form ITGs. Zens and
Ney (2003) induce lower bounds on PRFs for
normal form ITGs. Wellington et al. (2006) in-
duce lower bounds on PRFs for ITGs. Søgaard
and Kuhn (2009) induce lower bounds on TUER
for normal form ITGs and more expressive for-
malisms for syntax-based machine translation. No
one has, however, to the best our knowledge in-
duced lower bounds on TUER for ITGs.

1One reviewer argues that our definition of full ITGs is
not equivalent to the definition in Wu (1997), which, in the
reviewer’s words, allows “at most one lexical item from each
language”. Sect. 6 of Wu (1997), however, explicitly encour-
ages lexical elements in rules to have more than one lexical
item in many cases.

3 Experiments

As already mentioned empirical lower bounds
studies differ in four important respects, namely
wrt.: (i) whether they use hand-aligned or auto-
matically aligned gold standards, (ii) the level at
which they count failures, e.g. sentence, align-
ment or translation unit level, (iii) whether they
interpret translation units disjunctively or conjunc-
tively, and (iv) whether they induce the lower
bounds (a) by running an all-accepting grammar
on the gold standard data, (b) by logical charac-
terization of the structures that can be induced by
a formalism, or (c) by counting the frequency of
complex alignment configurations. The advantage
of (a) and (b) is that they are guaranteed to find the
highest possible lower bound on the gold standard
data, whereas (c) is more modular (formalism-
independent) and actually tells us what configu-
rations cause trouble.

(i) In this study we use hand-aligned gold stan-
dard data. It should be obvious why this is prefer-
able to automatically aligned data. The only rea-
son that some previous studies used automatically
aligned data is that hand-aligned data are hard to
come by. This study uses the data also used by
Søgaard and Kuhn (2009), which to the best of
our knowledge uses the largest collection of hand-
aligned parallel corpora used in any of these stud-
ies. (ii) Failures are counted at the level of trans-
lation units as argued for in the above, but sup-
plemented by parse failure rates for completeness.
(iii) Since we count failures at the level of transla-
tion units, it is natural to interpret them conjunc-
tively. Otherwise we would in reality count fail-
ures at the level of alignments. (iv) We use (c).

The conjunctive interpretation of translation
units was also adopted by Fox (2002) and is mo-
tivated by the importance of translation units and
discontinuous ones in particular to machine trans-
lation in general (Simard and colleagues, 2005;
Ayan and Dorr, 2006; Macken, 2007; Shieber,
2007). In brief,

TUER = 1− 2|SU ∩GU |
|SU |+ |GU |

whereGU are the translation units in the gold stan-
dard, andSU the translation units produced by
the system. This evaluation measure is related to
consistent phrase error rate (CPER) introduced in
Ayan and Dorr (2006), except that it does not only
consider contiguous phrases.

34

3.1 Data

The characteristics of the hand-aligned gold stan-
dard parallel corpora used are presented in Fig-
ure 1. The Danish-Spanish text is part of
the Copenhagen Dependency Treebank (Parole),
English-German is from Pado and Lapata (2006)
(Europarl), and the six combinations of English,
French, Portuguese and Spanish are documented
in Graca et al. (2008) (Europarl).

3.2 Alignment configurations

The full class of ITGs induces many alignment
configurations that normal form ITGs do not in-
duce, incl. discontinuous translation units (DTUs),
i.e. translation units with at least one gap, double-
sided DTUs, i.e. DTUs with both a gap in the
source side and a gap in the target side, and multi-
gap DTUs with arbitrarily many gaps (as long as
the contents in the gap are either respect the linear
order of the source side or the inverted order).

ITGs do not induce (i) inside-out alignments,
(ii) cross-serial DTUs, (iii) what is called the “bon-
bon” configuration below, and (iv) multigap DTUs
with mixed order in the target side. The reader is
referred to Wu (1997) for discussion of inside-out
alignments. (ii) and (iii) are explained below.

3.2.1 Induced configurations

DTUs are easily induced by unrestricted ITG pro-
ductions, while they cannot be induced by pro-
ductions in normal form. The combination of the
production rulesA → [ǫ/ne B nothing/pas] and
B → [change/modifie], for example, induces a
DTU with a gap in the French side for the pair of
substrings〈change nothing, ne modifie pas〉.

Multigap DTUs with up to three gaps are fre-
quent (Søgaard and Kuhn, 2009) and have shown
to be important for translation quality (Simard and
colleagues, 2005). While normal form ITGs do
not induce multigap DTUs, ITGs induce a partic-
ular subclass of multigap DTUs, namely those that
are constructed by linear or inverse interpolation.

3.2.2 Non-induced configurations

Inside-out alignments were first described by
Wu (1997), and their frequency has been a mat-
ter of some debate (Lepage and Denoual, 2005;
Wellington et al., 2006; Søgaard and Kuhn, 2009).

Cross-serial DTUsare made of two DTUs non-
contiguous to the same side such that both have
material in the gap of each other.Bonbons are
similar, except the DTUs are non-contiguous to

different sides, i.e.D has a gap in the source side
that contains at least one token inE, andE has
a gap in the target side that contains at least one
token inD. Here’s an example of a bonbon con-
figuration from Simard et al. (2005):

Pierre ne mange pas

Pierre does not eat

Multigap DTUs with mixed transfer are, as al-
ready mentioned multigap DTUs with crossing
alignments from material in two distinct gaps.

3.3 Results

The lower bounds on TUER for the full class of
ITGs are obtained by summing the ratios of inside-
out alignments, cross-serial DTUs, bonbons and
mixed order multigap DTUs, subtracting any over-
lap between these classes of configurations. The
lower bounds on TUER for normal form ITGs
sum ratios of inside-out aligments and DTUs sub-
tracting any overlap. Figure 1 presents the ratio
(×100), and Figure 2 presents the induced lower
bounds on the full class of ITGs and normal form
ITGs. Any two configurations differon all trans-
lation units in order to count as two distinct con-
figurations in these statistics. Otherwise a single
translation unit could be removed to simplify two
or more configurations.

4 Discussion

The usefulness of alignment error rate (AER) (Och
and Ney, 2000) has been questioned lately (Fraser
and Marcu, 2007); most importantly, AER does
not always seem to correlate with translation qual-
ity. TUER is likely to correlate better with transla-
tion quality, since it by definition correlates with
CPER (Ayan and Dorr, 2006). No large-scale
experiment has been done yet to estimate the
strength of this correlation.

Our study also relies on the assumption that
simulatenously recognized words are aligned in
bilingual parsing. The relationship between pars-
ing and alignment can of course be complicated in
ways that will alter the alignment capacity of ITG
and its normal form; on some definitions the two
formalisms may even become equally expressive.

5 Conclusion

It was shown that the absolute reduction in average
lower bound on TUER is 2.48 for the full class of
ITGs over its canonical normal form. For PRF, it
is 16.01.

35

Snts TUs IOAs DTUs CDTUs Bonbons MIX-DTUs
Da-Sp 926 6441 0.56 9.16 0.81 0.16 0.23
En-Fr 100 869 0.23 2.99 0.12 0.23 0.23
En-Ge 987 17354 1.75 5.55 0.45 0.05 0.79
En-Po 100 783 0.26 2.17 0.00 0.00 0.38
En-Sp 100 831 0.48 1.32 0.00 0.00 0.36
Po-Fr 100 862 0.23 3.13 0.58 0.00 0.46
Po-Sp 100 882 0.11 0.90 0.00 0.00 0.00
Sp-Fr 100 914 0.11 2.95 0.55 0.00 0.22

Figure 1:Characteristics of the parallel corpora and frequency of configurations (n

TUs × 100).

ITGs NF-ITGs
LB-TUER LB-PFR Ovlp(TUs) Ovlp(Snts) LB-TUER PFR Ovlp(TUs) Ovlp(Snts)

Da-Sp 1.58 10.37 11 10 8.54 40.50 76 32
En-Fr 0.69 6.00 1 1 2.88 22.00 3 2
En-Ge 2.75 47.32 49 42 5.24 69.30 357 236
En-Po 0.64 5.00 0 0 2.43 19.00 0 0
En-Sp 0.84 7.00 0 0 1.80 15.00 0 0
Po-Fr 1.04 9.00 2 2 3.36 24.00 0 0
Po-Sp 0.11 1.00 1 1 0.90 8.00 1 1
Sp-Fr 0.77 7.00 1 1 3.06 23.00 0 0
AV 1.05 11.59 3.53 27.60

Figure 2: Induced lower bounds for ITGs and normal form ITGs (NF-ITGs). LB-TUER lists the lower bounds on TUER.
LB-PFR lists the lower bounds on parse failure rates. Finally, the third and fourth columns list configuration overlaps at the
level of translation units, resp. sentences.

References
Alfred Aho and Jeffrey Ullman. 1972.The theory of parsing,

translation and compiling. Prentice-Hall.

Necip Ayan and Bonnie Dorr. 2006. Going beyond AER. In
COLING-ACL’06, Sydney, Australia.

Heidi Fox. 2002. Phrasal cohesion and statistical machine
translation. InEMNLP’02, Philadelphia, PA.

Alexander Fraser and Daniel Marcu. 2007. Measuring word
alignment quality for statistical machine translation.Com-
putational Linguistics, 33(3):293–303.

Cyril Goutte, Kenji Yamada, and Eric Gaussier. 2004.
Aligning words using matrix factorisation. InACL’04,
Barcelona, Spain.

Joao Graca, Joana Pardal, Luı́sa Coheur, and Diamantino
Caseiro. 2008. Building a golden collection of paral-
lel multi-language word alignments. InLREC’08, Mar-
rakech, Morocco.

Liang Huang, Hao Zhang, and Daniel Gildea. 2005. Ma-
chine translation as lexicalized parsing with hooks. In
IWPT’05, pages 65–73, Vancouver, BC.

Yves Lepage and Etienne Denoual. 2005. Purest ever
example-based machine translation.Machine Translation,
19(3–4):251–282.

Lieve Macken. 2007. Analysis of translational correspon-
dence in view of sub-sentential alignment. InMETIS-II,
pages 9–18, Leuven, Belgium.

Franz Och and Hermann Ney. 2000. A comparison of align-
ment models for statistical machine translation. InCOL-
ING’00, Saarbrücken, Germany.

Sebastian Padó and Mirella Lapata. 2006. Optimal con-
stituent alignment with edge covers for semantic projec-
tion. In ACL-COLING’06, Sydney, Australia.

Giorgio Satta and Enoch Peserico. 2005. Some compu-
tational complexity results for synchronous context-free
grammars. InHLT-EMNLP’05, Vancouver, BC.

Stuart Shieber. 2007. Probabilistic synchronous tree-
adjoining grammars for machine translation. InSSST’07,
pages 88–95, Rochester, NY.

Michel Simard and colleagues. 2005. Translating with non-
contiguous phrases. InHLT-EMNLP’05, Vancouver, BC.

Anders Søgaard and Jonas Kuhn. 2009. Empirical lower
bounds on alignment error rates in syntax-based machine
translation. InNAACL-HLT’09, SSST-3, Boulder, CO.

Anders Søgaard. 2009. On the complexity of alignment
problems in two synchronous grammar formalisms. In
NAACL-HLT’09, SSST-3, Boulder, CO.

Benjamin Wellington, Sonjia Waxmonsky, and Dan
Melamed. 2006. Empirical lower bounds on the com-
plexity of translational equivalence. InACL’06, pages
977–984, Sydney, Australia.

Dekai Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora.Computa-
tional Linguistics, 23(3):377–403.

Richard Zens and Hermann Ney. 2003. A comparative study
on reordering constraints in statistical machine translation.
In ACL’03, Sapporo, Japan.

Hao Zhang and Daniel Gildea. 2004. Syntax-based align-
ment: supervised or unsupervised? InCOLING’04, pages
418–424, Geneva, Switzerland.

36

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 37–48,
Paris, October 2009. c©2009 Association for Computational Linguistics

Predictive Text Entry using Syntax and Semantics

Sebastian Ganslandt

sebastian@ganslandt.nu

Jakob Jörwall
Department of Computer Science

Lund University
S-221 00 Lund, Sweden

d02jjr@student.lth.se

Pierre Nugues

pierre.nugues@cs.lth.se

Abstract

Most cellular telephones use numeric key-
pads, where texting is supported by dic-
tionaries and frequency models. Given a
key sequence, the entry system recognizes
the matching words and proposes a rank-
ordered list of candidates. The ranking
quality is instrumental to an effective en-
try.

This paper describes a new method to en-
hance entry that combines syntax and lan-
guage models. We first investigate com-
ponents to improve the ranking step: lan-
guage models and semantic relatedness.
We then introduce a novel syntactic model
to capture the word context, optimize
ranking, and then reduce the number of
keystrokes per character (KSPC) needed
to write a text. We finally combine this
model with the other components and we
discuss the results.

We show that our syntax-based model
reaches an error reduction in KSPC of
12.4% on a Swedish corpus over a base-
line using word frequencies. We also show
that bigrams are superior to all the other
models. However, bigrams have a mem-
ory footprint that is unfit for most devices.
Nonetheless, bigrams can be further im-
proved by the addition of syntactic mod-
els with an error reduction that reaches
29.4%.

1 Introduction

The 12-key input is the most common keypad lay-
out on cellular telephones. It divides the alpha-
bet into eight lists of characters and each list is
mapped onto one key as shown in Figure 1. Since
three or four characters are assigned to a key, a
single key press is ambiguous.

Figure 1: Standard 12-button keypad layout (ISO
9995-8).

1.1 Multi-tap

Multi-tap is an elementary method to disam-
biguate input for a 12-button keypad. Each charac-
ter on a key is assigned an index that corresponds
to its visual position, e.g. ‘A’, 1, ‘B’, 2, and ‘C’,
3 and each consecutive stroke – tap – on the same
key increments the index. When the user wants
to type a letter, s/he presses the corresponding key
until the desired index is reached. The user then
presses another key or waits a predefined time to
verify that the correct letter is selected. The key
sequence 8-4-4-3-3, for example, leads to the word
the.

Multi-tap is easy to implement and no dictio-
nary is needed. At the same time, it is slow and
tedious for the user, notably when two consecutive
characters are placed on the same key.

1.2 Single Tap with Predictive Text

Single tap with predictive text requires only one
key press to enter a character. Given a keystroke
sequence, the system proposes words using a dic-
tionary or language modeling techniques.

Dictionary-based techniques search the words
matching the key sequence in a list that is stored
by the system (Haestrup, 2001). While some

37

keystroke sequences produce a unique word, oth-
ers are ambiguous and the system returns a list
with all the candidates. The key sequence 8-4-3,
for example, corresponds to at least three possi-
ble words: the, tie, and vie. The list of candidates
is then sorted according to certain criteria, such
as the word or character frequencies. If the word
does not exist in the dictionary, the user has to fall
back to multi-tap to enter it. The T91 commercial
product is an example of a dictionary-based sys-
tem (Grover et al., 1998).

LetterWise (MacKenzie et al., 2001) is a tech-
nique that uses letter trigrams and their frequen-
cies to predict the next character. For example,
pressing the key 3 after the letter bigram ‘th’ will
select ‘e’, because the trigram ‘the’ is far more fre-
quent than ‘thd’ or ‘thf’ in English. When the sys-
tem proposes a wrong letter, the user can access
the next most likely one by pressing a next-key.
LetterWise does not need a dictionary and has a
KSPC of 1.1500 (MacKenzie, 2002).

1.3 Modeling the Context

Language modeling can extend the context from
letter sequences to word n-grams. In this case, the
system is not restricted to the disambiguation or
the prediction of the typed characters. It can com-
plete words and even predict phrases. HMS (Has-
selgren et al., 2003) is an example of this that uses
word bigrams in Swedish. It reports a KSPC
ranging from 0.8807 to 1.0108, depending on the
type of text. eZiText2 is a commercial example of
a word and phrase completion system. However,
having a large lexicon of bigrams still exceeds the
memory capacity of many mobile devices.

Some systems use a combination of syntac-
tic and semantic information to model the con-
text. Gong et al. (2008) is a recent example that
uses word frequencies, a part-of-speech language
model, and a semantic relatedness metric. The
part-of-speech language model acts as a lexical
n-gram language model, but occupies much less
memory since the vocabulary is restricted to the
part-of-speech tagset. The semantic relatedness,
modified from Li and Hirst (2005), is defined as
the conditional probability of two stems appearing
in the same context (the same sentence):

1www.t9.com
2www.zicorp.com/ezitext.htm

SemR(w1|w2) =
C(stem(w1), stem(w2))

C(w2)
.

The three components are combined linearly
and their coefficients are adjusted using a devel-
opment set. Setting 1 as the limit of the KSPC
figure, Gong et al. (2008) reported an error reduc-
tion over the word frequency baseline of 4.6% for
the semantic model, 12.6% for the part-of-speech
language model, and 15.8% for the combination
of both.

1.4 Syntax in Predictive Text

Beyond part-of-speech language modeling, there
are few examples of systems using syntax in pre-
dictive text entry. Matiasek et al. (2002) describes
a predictive text environment aimed at disabled
persons, which originally relied on language mod-
els. Gustavii and Pettersson (2003) added a syn-
tactic component to it based on grammar rules.
The rules corresponded to common grammatical
errors and were used to rerank the list of candidate
words. The evaluation results were disappointing
and the syntactic component was not added be-
cause of the large overhead it introduced (Mati-
asek, 2006).

In the same vein, Sundarkantham and Shalinie
(2007) used grammar rules to discard infeasible
grammatical constructions. The authors evaluated
their system by giving it an incomplete sentence
and seeing how often the system correctly guessed
the next word (Shannon, 1951). They achieved
better results than previously reported, although
their system has not been used in the context of
predictive text entry for mobile devices.

2 Predictive Text Entry Using Syntax

We propose a new technique that makes use of
a syntactic component to model the word context
and improve the KSPC figure. It builds on Gong
et al. (2008)’s system and combines a dependency
grammar model with word frequencies, a part-of-
speech language model, and the semantic related-
ness defined in Sect. 1.3. As far as we are aware,
no predictive text entry system has yet used a data-
driven syntactic model of the context.

We used Swedish as our target language all
over our experiments, but the results we obtained
should be replicable in any other language.

38

2.1 Reranking Candidate Words
The system consists of two components. The first
one disambiguates the typed characters using a
dictionary and produces a list of candidate words.
The second component reranks the candidate list.
Although the techniques we describe could be ap-
plied to word completion, we set aside this aspect
in this paper.

More formally, we frame text input as a se-
quence of keystrokes, ksi = ksi1 . . . ks

i
n, to en-

ter a desired word, wi. The words matching
the key sequence in the system dictionary form
an ordered set of alternatives, match(ksi) =
{cw0, . . . , cwm}, where it takes k extra keystrokes
to reach candidate cwk. Using our example
in Sect. 1.2, a lexical ordering would yield
match(8 − 4 − 3) = {the, tie, vie}, where two
extra keystrokes are needed to reach vie.

We assign each candidate word w member of
match(ksi) a score

Score(w|Context) =
∑

s∈S
λs · s(w|Context),

to rerank (sort) the prediction list, where s is a
scoring function from a set S, λs, the weight of
s, and Score(w|Context), the total score of w in
the current context.

In this framework, optimizing predictive text
entry is the task of finding the scoring functions,
s, and the weights, λs, so that they minimize k on
average.

As scoring functions, we considered lexical lan-
guage models in the form of unigrams and bi-
grams, sLM1 and sLM2, a part-of-speech model
using sequences of part-of-speech tags of a length
of up to five tags, sPOS , and a semantic affin-
ity, sSemA, derived from the semantic relatedness.
In addition, we introduce a syntactic component
in the form of a data-driven dependency syntax,
sDepSyn so that the complete scoring set consists
of

S = {sLM1, sLM2, sSemA, sPOS , sDepSyn}.

2.2 Language and Part-of-Speech Models
The language model score is the probability of a
candidate word w, knowing the sequence entered
so far, w1, . . . , wi:

P (w|w1, w2, . . . , wi).

We approximate it using unigrams, sLM1(w) =
P (w), or bigrams, sLM2(w) = P (w|wi) that we

derive from a corpus using the maximum like-
lihood estimate. To cope with sparse data, we
used a deleted interpolation so that sLM2(w) =
β1P (w|wi)+β2P (w), where we adjusted the val-
ues of β1 and β2 on a development corpus.

In practice, it is impossible to maintain a large
list of bigrams on cellular telephones as it would
exceed the available memory of most devices. In
our experiments, the sLM2 score serves as an indi-
cator of an upper-limit performance, while sLM1

serves as a baseline, as it is used in commercial
dictionary-based products.

Part-of-speech models offer an interesting alter-
native to lexical models as the number of parts
of speech does not exceed 100 tags in most lan-
guages. The possible number of bigrams is then at
most 10,000 and much less in practice. We defined
the part-of-speech model score, sPOS as

P (t|t1, t2, . . . , ti),

where ti is the part of speech of wi and t, the part
of speech of the candidate word w. We used a
5-gram approximation of this probability with a
simple back-off model:

sPOS =





P (t|ti−3, . . . , ti) if C(ti−3, ..., ti) 6= 0
P (t|ti−2, . . . , ti) if C(ti−2, ..., ti) 6= 0
...
P (t), otherwise

We used the Granska tagger (Carlberger and
Kann, 1999) to carry out the part-of-speech anno-
tation of the word sequence.

3 Semantic Affinity

Because of their arbitrary length, language mod-
els miss possible relations between words that are
semantically connected in a sentence but within
a distance greater than one, two, or three words
apart, the practical length of most n-grams mod-
els. Li and Hirst (2005) introduced the semantic
relatedness between two words to measure such
relations within a sentence. They defined it as

SemR(wi, wj) =
C(wi, wj)
C(wi)C(wj)

,

where C(wi, wj) is the number of times the words
wi and wj co-occur in a sentence in the corpus,

39

and C(wi) is the count of word wi in the corpus.
The relation is symmetrical, i.e.

C(wi, wj) = C(wj , wi).

The estimated semantic affinity of a word w is
defined as:

SemA(w|H) =
∑

wj∈H
SemR(w,wj),

where H is the context of the word w. In our case,
H consists of words to the left of the current word.

Gong et al. (2008) used a similar model in a pre-
dictive text application with a slight modification
to the SemR function:

SemR(wi, wj) =
C(stem(wi), stem(wj))

C(stem(wj))
,

where the stem(w) function removes suffixes
from words. We refined this model further and we
replaced the stemming function with a real lemma-
tization.

4 Dependency Parsing

Dependency syntax (Tesnière, 1966) has attracted
a considerable interest in the recent years, spurred
by the availability of data-driven parsers as well
as annotated data in multiple languages includ-
ing Arabic, Chinese, Czech, English, German,
Japanese, Portuguese, or Spanish (Buchholz and
Marsi, 2006; Nivre et al., 2007). We used this
syntactic formalism because of its availability in
many languages.

4.1 Parser Implementation
There are two main classes of data-driven de-
pendency parsers: graph-based (McDonald and
Pereira, 2006) and transition-based (Nivre, 2003).
We selected Nivre’s parser because of its imple-
mentation simplicity, small memory footprint, and
linear time complexity. Parsing is always achieved
in at most 2n− 1 actions, where n is the length of
the sentence. Both types of parser can be com-
bined, see Zhang and Clark (2008) for a discus-
sion.

Nivre’s parser is an extension to the shift–
reduce algorithm that creates a projective and
acyclic graph. It uses a stack, a list of input words,
and builds a set of arcs representing the graph of
dependencies. The parser uses two operations in
addition to shift and reduce, left-arc and right-arc:

• Shift pushes the next input word onto the
stack.

• Reduce pops the top of the stack with the
condition that the corresponding word has a
head.

• LeftArc adds an arc from the next input
word to the top of the stack and pops it.

• RightArc adds an arc from the top of the
stack to the next input word and pushes the
input word on the stack.

Table 1 shows the start and final parser states as
well as the four transitions and their conditions
and Algorithm 1 describes the parsing algorithm.

4.2 Features

At each step of the parsing procedure, the parser
turns to a guide to decide on which transition
to apply among the set {LeftArc, RightArc,
Shift, Reduce}. We implemented this guide
as a four-class classifier that uses features it ex-
tracts from the parser state. The features consist
of words and their parts of speech in the stack, in
the queue, and in the partial graph resulting from
what has been parsed so far. The classifier is based
on a linear logistic regression function that evalu-
ates the transition probabilities from the features
and predicts the next one.

In the learning phase, we extracted a data set
of feature vectors using the gold-standard parsing
procedure (Algorithm 2) that we applied to Tal-
banken corpus of Swedish text (Einarsson, 1976;
Nilsson et al., 2005). Each vector being labeled
with one of the four possible transitions. We
trained the classifiers using the LIBLINEAR im-
plementation (Fan et al., 2008) of logistic regres-
sion.

However, classes are not always separable us-
ing linear classifiers. We combined single features
as pairs or triples. This emulates to some extent
quadratic kernels used in support vector machines,
while preserving the speed of the linear models.
Table 2 shows the complete feature set to predict
the transitions. A feature is defined by

• A source: S for stack and Q for the queue;

• An offset: 0 for the top of the stack and first
in the queue; 1 and 2 for levels down in the
stack or to the right in the queue;

40

Name Action Condition
Initialization 〈nil,W, ∅〉
Termination 〈S, nil, A〉
LeftArc 〈n|S, n′|Q,A〉 → 〈S, n′|Q,A ∪ {〈n′, n〉}〉 ¬∃n′′, 〈n, n′′〉 ∈ A
RightArc 〈n|S, n′|Q,A〉 → 〈n′|n|S,Q,A ∪ 〈n, n′〉〉 ¬∃n′′, 〈n′, n′′〉 ∈ A
Reduce 〈n|S,Q,A〉 → 〈S,Q,A〉 ∃n′, 〈n, n′〉 ∈ A
Shift 〈S, n|Q,A〉 → 〈n|S,Q,A〉

Table 1: Parser transitions. W is the original input sentence, A is the dependency graph, S is the stack,
andQ is the queue. The triplet 〈S,Q,A〉 represents the parser state. n, n′, and n′′ are lexical tokens. The
pair 〈n′, n〉 represents an arc from the head n′ to the dependent n.

• Possible applications of the function head,H ,
leftmost child, LC, or righmost child, RC;

• The value: word, w, or POS tag, t, at the
specified position.

Queue Q0w
Q1w
Q0t
Q1t
Q0tQ0w
Q0tQ1t
Q1wQ1t
Q0tQ1tQ2t
Q0wQ1tQ2t

Stack S0t
S0w
S0tS0w
S0tS1t

Stack/Queue S0wQ0w
Q0tS0t
Q1tS0t
Q0tS1t
Q1tS1t
S0tQ0tQ1t
S0tQ0wQ0t

Partial Graph S0HtS0tQ0t
Q0LCtS0tQ0t
Q0LCtS0tQ0w
S0RCtS0tQ0t
S0RCtS0tQ0w

Table 2: Feature model for predicting parser ac-
tions with combined features.

4.3 Calculating Graph Probabilities

Nivre (2006) showed that every terminating tran-
sition sequence Am1 = (a1, ..., am) applied to

a sentence Wn
1 = (w1, ..., wn) defines exactly

one parse tree G. We approximated the prob-
ability P (G|Wn

1) of a dependency graph G as
P (Am1 |Wn

1) and we estimated the probability of
G as the product of the transition probabilities, so
that

PParse(G|Wn
1) = P (Am1 |Wn

1)
=

∏m
k=1 P (ak|Ak−1

1 ,W
φ(k−1)
1),

where ak is member of the set {LeftArc,
RightArc, Shift, Reduce} and φ(k) corre-
sponds to the index of the current word at tran-
sition k.

We finally approximated the term
Ak−1

1 ,W
φ(k−1)
1 to the feature set and com-

puted probability estimates using the logistic
regression output.

4.4 Beam Search

We extended Nivre’s parser with a beam search to
mitigate error propagation that occurs with a de-
terministic parser (Johansson and Nugues, 2006).
We maintained N parser states in parallel and we
applied all the possible transitions to each state.
We scored each transition action and we ranked
the states with the product of the action’s proba-
bilities leading to this state. Algorithm 3 outlines
beam search with a diameter of N .

An alternative to training parser transitions us-
ing local features is to use an online learning al-
gorithm (Johansson and Nugues, 2007; Zhang and
Clark, 2008). The classifiers are then computed
over the graph that has already been built instead
of considering the probability of a single transi-
tion.

41

4.5 Evaluation

We evaluated our dependency parser separately
from the rest of the application and Table 3 shows
the results. We optimized our parameter selection
for the unlabeled attachment score (UAS). This
explains the relatively high difference with the la-
beled attachment score (LAS): about –8.6.

Table 3 also shows the highest scores ob-
tained on the same Talbanken corpus of Swedish
text (Einarsson, 1976; Nilsson et al., 2005) in
the CoNLL-X evaluation (Buchholz and Marsi,
2006): 89.58 for unlabeled attachments (Corston-
Oliver and Aue, 2006) and 84.58 for labeled at-
tachments (Nivre et al., 2006). CoNLL-X systems
were optimized for the LAS category.

The figures we reached were about 1.10% be-
low those reported in CONLL-X for the UAS cat-
egory. However our results are not directly compa-
rable as the parsers or the classifiers in CONLL-X
have either a higher complexity or are more time-
consuming. We chose linear classifiers over kernel
machines as it was essential to our application to
run on mobile devices with limited resources in
both CPU power and memory size.

This paper CONLL-X
Beam width LAS UAS LAS UAS

1 79.45 88.05 84.58 89.54
2 79.76 88.41
4 79.75 88.40
8 79.77 88.41

16 79.78 88.42
32 79.77 88.41
64 79.79 88.44

Table 3: Parse results on the Swedish Talbanken
corpus obtained for this paper as well as the best
reported results in CONLL-X on the same corpus
(Buchholz and Marsi, 2006).

5 Dependencies to Predict the Next Word

We built a syntactic score to measure the grammat-
ical relevance of a candidate word w in the current
context, that is the word sequence so farw1, ..., wi.
We defined it as the weighted sum of three terms:
the score of the partial graph resulting from the
analysis of the words to the left of the candidate
word and the scores of the link from w to its head,
h(w), using their lexical forms and their parts of
speech:

sDepSyn(w) = λ1PParse(G(w)|w1, ..., wi, w)+
λ2PLink(w, h(w))+
λ3PLink(POS(w), POS(h(w))),

where G(w) is the partial graph representing the
word sequence w1, ..., wi, w. The PLink terms are
intended to give an extra-weight to the probabil-
ity of an association between the predicted word
and a possible head to the left of it. They hint at
the strength of the ties between w and the words
before it.

We used the transition probabilities described in
Sect. 4.3 to compute the score of the partial graph,
yielding

PParse(G(w)|w1, ..., wi, w) =
j∏

k=1

P (ak),

where a1, ..., aj is the sequence of transition ac-
tions producing G(w) and P (ak), the probability
output of transition k given by the logistic regres-
sion engine.

The last two terms PLink(w, h(w)) and
PLink(POS(w), POS(h(w))) are computed
from counts in the training corpus using maxi-
mum likelihood estimates:

PLink(w, h(w)) =
C(Link(w, h(w)) + 1∑

wl∈PW C(Link(wl, h(wl)))
+ |PW |

and

PLink(POS(w), POS(h(w))) =
C(Link(POS(w), POS(h(w)))) + 1∑
wl∈PW C(Link(POS(wl), h(POS(wl))))

+|PW |,

where PW = match(ksi), is the set of predicted
words for the current key sequence.

If the current word w has not been assigned a
head yet, we default h(w) to the root of the graph
and POS(h(w)) to the ROOT value.

6 Experiments and Results

6.1 Experimental Setup
Figure 2 shows an overview of the three stages
to produce and evaluate our models: training,

42

tuning, and testing. Ideally, we would have
trained the classifiers on a corpus matching a
text entry application. However, as there is no
large available SMS corpus in Swedish, we used
the Stockholm-Umeå corpus (SUC) (Ejerhed and
Källgren, 1997). SUC is balanced and the largest
available POS-tagged corpus in Swedish with
more than 1 million words.

We parsed the corpus and we divided it ran-
domly into a training set (80%), a development set
(10%), and a test set (10%). The training set was
used to gather statistics on word n-grams, POS
n-grams, collocations, lemma frequencies, depen-
dent/head relations. We discarded hapaxes: rela-
tions and sequences occurring only once. We used
lemmas instead of stems in the semantic related-
ness score, SemR, because stemming is less ap-
propriate in Swedish than in English.

We used the development set to find optimal
weights for the scoring functions, resulting in the
lowest KSPC. We ran an exhaustive search using
all possible linear combinations with increments
of 0.1, except for two functions, where this was
too coarse. We used 0.01 then.

We applied the resulting linear combinations of
scoring functions to the test set. We first compared
the frequency-based disambiguation acting as a
baseline to linear combinations involving or not
involving syntax, but always excluding bigrams.
Table 4 shows the most significant combinations.
We then compared a set of other combinations
with the bigram model. They are shown in Ta-
ble 6.

6.2 Metrics

We redefined the KSPC metric of MacKenzie
(2002), since the number of characters needed to
input a word is now dependent on the word’s left
context in the sentence. Let S = (w1, . . . , wn) ∈
L be a sentence in the test corpus. The KSPC for
the test corpus then becomes

KSPC =
∑

S∈L
∑

w∈SKS(w|LContext(w, S))∑
S∈L

∑
w∈S Chars(w)

where KS(w|LContext) is the number of key
strokes needed to enter a word in a given context,
LContext(w, S) is the left context of w in S, and
Chars(w) is the number of characters in w.

Another performance measure is the disam-
biguation accuracy (DA), which is the percentage
of words that are correctly disambiguated after all

the keys have been pressed

DA =

∑

S∈L

∑

w∈S
PredHit(w|LContext(w, S))

#w
,

where PredHit(w|Context) = 1 if w is the
top prediction and 0 otherwise, and #w, the to-
tal number of words in L. A good DA means that
the user can more often simply accept the default
proposed word instead of navigating the prediction
list for the desired word.

As scoring tokens, we chose to keep the ones
that actually have the ability to differentiate the
models, i.e. we did not count the KSPC and DA
for words that were not in the dictionary. Neither
did we count white spaces, nor the punctuation
marks.

All our measures are without word or phrase
completion. This means that the lower-limit fig-
ure for KSPC is 1.

6.3 Results
As all the KSPC figures are close to 1, we com-
puted the error reduction rate (ERR), i.e. the re-
duction in the number of extra keystrokes needed
beyond one. We carried out all the optimizations
considering KSPC, but we can observe that KSPC
ERR and DA ERR strongly correlate.

Table 5 shows the results with scoring func-
tions using the word frequencies. The columns
include KSPC and DA together with KSPC ERR
and DA ERR compared with the baseline. Table 7
shows the respective results when using a bigram-
based disambiguation instead of just frequency.
The ERR is still compared to the word frequency
baseline but attention should also be drawn on the
relative increases: how much the new models can
improve bigram-based disambiguation.

7 Discussion

We can observe from the results that a model based
on dependency grammars improves the prediction
considerably. The DepSyn model is actually the
most effective one when applied together with the
frequency counts. Furthermore, the improvements
from the POS, SemA, and DepSyn model are
almost disjunct, as the combined model improve-
ment matches the sum of their respective individ-
ual contributions.

The 4.2% ERR observed when adding the
SemA model is consistent with the result from

43

Figure 2: System architecture, where the set of scoring functions is S = {sLM , sSemA, sPOS , sDepSyn}
and the linear combination is =

∑

s∈S
λs · s(w).

Gong et al. (2008), where a 4.6% ERR was found.
On the other hand, the POS model only con-
tributed 4.7% ERR in our case, whereas Gong et
al. (2008) observed 12.6%. One possible expla-
nation for this is that they clustered related POS
tags into 19 groups reducing the sparseness prob-
lem. By performing this grouping, we can effec-
tively ignore morphological and lexical features
that have no relevance, when deciding which word
should come next. Other possible explanations in-
clude that our backoff model is not well suited for
this problem or that the POS sequences are not an
applicable model for Swedish.

The bigram language model has the largest im-
pact on the performance. The ERR for bigrams
alone is higher than all the other models com-
bined. Still, the other models have the ability to
contribute on top of the bigram model. For exam-
ple, the POS model increases the ERR by about
5% both when using bigram- and frequency-based
disambiguation, suggesting that this information is
not captured by the bigrams. On the other hand,
DepSyn increases the ERR by a more modest 3%
when using bigrams instead of 7% with word fre-
quencies. This is likely due to the fact that about
half of the dependency links only stretch to the
next preceding or succeeding word in the corpus.

The most effective combination of models are
the bigrams together with the POS sequence and

the dependency structure, both embedding syntac-
tic information. With this combination, we were
able to reduce the number of erroneous disam-
biguations as well as extra keystrokes by almost
one third.

8 Further Work

SMS texting, which is the target of our system,
is more verbal than the genres gathered in the
Stockholm-Umeå corpus. The language models
of a final application would then change consid-
erably from the ones we extracted from the SUC.
A further work would be to collect a SMS corpus
and replicate the experiments: retrain the models
and obtain the corresponding performance figures.

Moreover, we carried out our implementation
and simulations on desktop computers. The POS
model has an estimated size of 700KB (Gong et
al., 2008). The PParse term of theDepSynmodel
can be made as small as the feature model. We ex-
pect the optimized size of this model to be under
100KB in an embedded environment. The size of
the lexical variant of PLink is comparable to the bi-
gram model. This could however be remedied by
using the probability of the action that constructed
this last link. The computational power required
by LIBLINEAR is certainly within the reach of
modern hand-held devices. However, a prototype
simulation with real hardware conditions would

44

be needed to prove an implementability on mobile
devices.

Finally, a user might perceive subtle differences
in the presentation of the words compared with
that of popular commercial products. Gutowitz
(2003) noted the reluctance to single-tap input
methods because of their “unpredictable” behav-
ior. Introducing syntax-based disambiguation
could increase this perception. A next step would
be to carry out usability studies and assess this el-
ement.

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-

X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 149–164, New York City.

Johan Carlberger and Viggo Kann. 1999. Implement-
ing an efficient part-of-speech tagger. Software –
Practice and Experience, 29(2):815–832.

Simon Corston-Oliver and Anthony Aue. 2006. De-
pendency parsing with reference to slovene, spanish
and swedish. In Proceedings of the Tenth Confer-
ence on Computational Natural Language Learning
(CoNLL-X), pages 196–200, New York City, June.

Jan Einarsson. 1976. Talbankens skriftspråkskonkor-
dans. Technical report, Lund University, Institutio-
nen för nordiska språk, Lund.

Eva Ejerhed and Gunnel Källgren. 1997. Stockholm
Umeå Corpus version 1.0, SUC 1.0.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Jun Gong, Peter Tarasewich, and I. Scott MacKenzie.
2008. Improved word list ordering for text entry on
ambiguous keypads. In NordiCHI ’08: Proceedings
of the 5th Nordic conference on Human-computer
interaction, pages 152–161, Lund, Sweden.

Dale L. Grover, Martin T. King, and Clifford A. Kush-
ler. 1998. Reduced keyboard disambiguating com-
puter. U.S. Patent no. 5,818,437.

Ebba Gustavii and Eva Pettersson. 2003. A Swedish
grammar for word prediction. Technical report, De-
partment of Linguistics, Uppsala University.

Howard Gutowitz. 2003. Barriers to adoption of
dictionary-based text-entry methods; a field study.
In Proceedings of the Workshop on Language Mod-
eling for Text Entry Systems (EACL 2003), pages 33–
41, Budapest.

Jan Haestrup. 2001. Communication terminal hav-
ing a predictive editor application. U.S. Patent no.
6,223,059.

Jon Hasselgren, Erik Montnemery, Pierre Nugues, and
Markus Svensson. 2003. HMS: A predictive text
entry method using bigrams. In Proceedings of
the Workshop on Language Modeling for Text Entry
Methods (EACL 2003), pages 43–49, Budapest.

Richard Johansson and Pierre Nugues. 2006. In-
vestigating multilingual dependency parsing. In
Proceedings of the Tenth Conference on Compu-
tational Natural Language Learning (CONLL-X),
pages 206–210, New York.

Richard Johansson and Pierre Nugues. 2007. Incre-
mental dependency parsing using online learning.
In Proceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL, pages 1134–1138, Prague, June
28-30.

Jianhua Li and Graeme Hirst. 2005. Semantic knowl-
edge in word completion. In Assets ’05: Proceed-
ings of the 7th international ACM SIGACCESS con-
ference on Computers and accessibility, pages 121–
128, Baltimore.

I. Scott MacKenzie, Hedy Kober, Derek Smith, Terry
Jones, and Eugene Skepner. 2001. LetterWise:
Prefix-based disambiguation for mobile text input.
In 14th Annual ACM Symposium on User Interface
Software and Technology, Orlando, Florida.

I. Scott MacKenzie. 2002. KSPC (keystrokes per char-
acter) as a characteristic of text entry techniques. In
Proceedings of the Fourth International Symposium
on Human Computer Interaction with Mobile De-
vices, pages 195–210, Heidelberg, Germany.

Johannes Matiasek, Marco Baroni, and Harald Trost.
2002. FASTY – A multi-lingual approach to text
prediction. In ICCHP ’02: Proceedings of the
8th International Conference on Computers Helping
People with Special Needs, pages 243–250, London.

Johannes Matiasek. 2006. The language component
of the FASTY predictive typing system. In Karin
Harbusch, Kari-Jouko Raiha, and Kumiko Tanaka-
Ishii, editors, Efficient Text Entry, number 05382 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL), pages 81–88, Trento.

Jens Nilsson, Johan Hall, and Joakim Nivre. 2005.
MAMBA meets TIGER: Reconstructing a Swedish
treebank from antiquity. In Proceedings of the
NODALIDA Special Session on Treebanks, Joensuu,
Finland.

45

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen
Eryigit, and Svetoslav Marinov. 2006. Labeled
pseudo-projective dependency parsing with support
vector machines. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learn-
ing (CoNLL-X), pages 221–225, June.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
915–932, Prague.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT), pages 149–160, Nancy.

Joakim Nivre. 2006. Inductive Dependency Parsing.
Springer, Dordrecht, The Netherlands.

Claude Elwood Shannon. 1951. Prediction and en-
tropy of printed English. The Bell System Technical
Journal, pages 50–64, January.

K. Sundarkantham and S. Mercy Shalinie. 2007. Word
predictor using natural language grammar induction
technique. Journal of Theoretical and Applied In-
formation Technology, 3:1–8.

Lucien Tesnière. 1966. Éléments de syntaxe struc-
turale. Klincksieck, Paris, 2e edition.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: Investigating and combining graph-
based and transition-based dependency parsing us-
ing beam-search. In Proceedings of the 2008 Con-
ference on Empirical Methods in Natural Language
Processing, pages 562–571, Hawaii, October 25–27.

46

Algorithm 1 Nivre’s algorithm.
1: Queue⇐W
2: Stack ⇐ nil
3: while ¬Queue.isEmpty() do
4: features⇐ ExtractFeatures()
5: action⇐ guide.Predict(features)
6: if action = RightArc ∧ canRightArc() then
7: RightArc()
8: else if action = LeftArc ∧ canLeftArc() then
9: LeftArc

10: else if action = Reduce ∧ canReduce() then
11: Reduce()
12: else
13: Shift()
14: end if
15: end while
16: return(A)

Algorithm 2 Reference parsing.
1: Queue⇐W
2: Stack ⇐ nil
3: while ¬Queue.isEmpty() do
4: x⇐ ExtractFeatures()
5: if 〈Stack.peek(), Queue.get(0)〉 ∈ A ∧ canRightArc() then
6: t⇐ RightArc
7: else if 〈Queue.get(0), Stack.peek()〉 ∈ A ∧ canLeftArc() then
8: t⇐ LeftArc
9: else if ∃w ∈ Stack : 〈w,Queue.get(0)〉 ∈ A∨ 〈Queue.get(0), w〉 ∈ A) ∧ canReduce() then

10: t⇐ Reduce
11: else
12: t⇐ Shift
13: end if
14: store training example 〈x, t〉
15: end while

Algorithm 3 Beam parse.
1: Agenda.add(InititalParserState)
2: while ¬done do
3: for parserState ∈ Agenda do
4: Output.add(parserState.doLeftArc())
5: Output.add(parserState.doRightArc())
6: Output.add(parserState.doReduce())
7: Output.add(parserState.doShift())
8: end for
9: Sort(Output)

10: Clear(Agenda)
11: Take N best parse trees from Output and put in Agenda.
12: end while
13: Return best item in Agenda.

47

Configuration Scoring model DepSyn weights
F1 baseline 1× LM1 (Word frequencies) –
F2 0.9× LM1 + 0.1× POS –
F3 0.7× LM1 + 0.3× SemA –
F4 0.6× LM1 + 0.4×DepSyn (0.3, 0.7, 0.0)
F5 0.6× LM1 + 0.1× POS + 0.3×DepSyn (0.0 1.0 0.0)
F6 0.5× LM1 + 0.2× SemA+ 0.3×DepSyn (0.2 0.7 0.1)
F7 0.4× LM1 + 0.1× POS + 0.3×DepSyn+ 0.2× SemA (0.2, 0.8, 0.0)

Table 4: The different combinations of scoring models using frequency-based disambiguation as a base-
line. The DepSyn weight triples corresponds to (λ1, λ2, λ3) in Sect. 5.

Configuration KSPC DA KSPC ERR DA ERR
F1 1.015559 94.15% 0.00% 0.00%
F2 1.014829 94.31% 4.69% 2.72%
F3 1.014902 94.36% 4.22% 3.62%
F4 1.014462 94.56% 7.05% 7.04%
F5 1.013625 94.75% 12.43% 10.28%
F6 1.014159 94.62% 9.00% 8.10%
F7 1.013438 94.86% 13.63% 12.16%

Table 5: Results for the disambiguation based on word frequencies together with the semantic and syn-
tactic models.

Configuration Scoring model Bigram weights DepSyn weights
B1 1× LM2 (Bigram frequencies) (0.9, 0.1) –
B2 0.9× LM2 + 0.1× POS (0.8, 0.2) –
B3 0.95× LM2 + 0.05× SemA (0.8, 0.2) –
B4 0.9× LM2 + 0.1×DepSyn (0.8, 0.2) (0.2, 0.8, 0.0)
B5 0.8× LM2 + 0.1× POS + 0.1× SemA (0.8, 0.2) –
B6 0.81× LM2 + 0.08× POS + 0.11×DepSyn (0.8, 0.2) (0.2, 0.8, 0.0)

Table 6: The different combinations of scoring models using bigram-based disambiguation as baseline.
In addition to the DepSyn weights, this table also shows the language model interpolation weights, β1

and β2 described in Sect. 2.2.

Label KSPC DA KSPC ERR DA ERR
B1 1.012159254 95.48% 21.85% 22.81%
B2 1.011434213 95.75% 26.51% 27.41%
B3 1.011860573 95.50% 23.77% 23.20%
B4 1.011698693 95.62% 24.81% 25.19%
B5 1.011146932 95.80% 28.36% 28.23%
B6 1.010980592 95.91% 29.43% 30.09%

Table 7: Results for the disambiguation based on bigrams plus the semantic and syntactical models. The
error reduction rate is relative to the word frequency baseline.

48

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 49–60,
Paris, October 2009. c©2009 Association for Computational Linguistics

Parsing Formal Languages using Natural Language Parsing Techniques

Jens Nilsson∗ Welf Löwe∗ Johan Hall†∗ Joakim Nivre†∗
∗Växjö University, School of Mathematics and Systems Engineering, Sweden
†Uppsala University, Department of Linguistics and Philology, Sweden

{jens.nilsson|welf.lowe|johan.hall|joakim.nivre}@vxu.se

Abstract

Program analysis tools used in software
maintenance must be robust and ought to
be accurate. Many data-driven parsing ap-
proaches developed for natural languages
are robust and have quite high accuracy
when applied to parsing of software. We
show this for the programming languages
Java, C/C++, and Python. Further studies
indicate that post-processing can almost
completely remove the remaining errors.
Finally, the training data for instantiating
the generic data-driven parser can be gen-
erated automatically for formal languages,
as opposed to the manually development
of treebanks for natural languages. Hence,
our approach could improve the robust-
ness of software maintenance tools, proba-
bly without showing a significant negative
effect on their accuracy.

1 Introduction

Software engineering, especially software mainte-
nance, is supported by numerous program anal-
ysis tools. Maintenance tasks include program
comprehension (understanding unknown code for
fixing bugs or further development), quality as-
sessment (judging code, e.g., in code reviews),
and reverse-engineering (reifying the design doc-
uments for given source code). To extract infor-
mation from the programs, the tools first parse the
program code and produce an abstract syntax tree
(AST) for further analysis and abstraction (Strein
et al., 2007). As long as the program conforms
to the syntax of a programming language, clas-
sical parsing techniques known from the field of
compiler construction may be applied. This, how-
ever, cannot be assumed in general, as the pro-
grams to analyze can be incomplete, erroneous, or
conform to a (yet unknown) dialect or version of

the language. Despite error stabilization, classi-
cal parsers then lose a lot of information or simply
break down. This is unsatisfactory for tools sup-
porting maintenance. Therefore, quite some effort
has gone into the development of robust parsers of
programs for these tools (cf. our related work sec-
tion 5). This effort, however, has to be repeated
for every programming language.

The development of robust parsers is of special
interest for languages like C/C++ due to their nu-
merous dialects in use (Anderson, 2008). Also,
tools for languages frequently coming in new ver-
sions, like Java, benefit from robust parsing. Fi-
nally, there are languages like HTML where exist-
ing browsers are forgiving if documents do not ad-
here to the formal standard with the consequence
that there exist many formally erroneous docu-
ments. In such cases, robust parsing is even a pre-
requisite for tool-supported maintenance.

The accuracy of parsing is a secondary goal
in the context of software maintenance. Tasks
like program comprehension, quality assessment,
and reverse-engineering are fuzzy by their nature.
There is no well-defined notion of correctness—
rather an empirical answer to the question: Did
it help the software engineers in fulfilling their
tasks? Moreover, the information provided to the
engineers abstracts anyway from the concrete pro-
gram syntax and semantics, i.e., inaccuracies in
the input may disappear in the output. Finally, pro-
gram analyses are often heuristics themselves, ap-
proximating computationally hard problems like
pattern matching and optimal clustering.

The natural language processing (NLP) com-
munity has for many years developed parsing tech-
nology that is both completely robust and highly
accurate. The present approach applies this tech-
nology to programming languages. It is robust in
the sense that, for each program, the parser always
gives a meaningful model even for slightly incor-
rect and incomplete programs. The approach is,

49

however, not accurate to 100%, i.e., even correct
programs may lead to slightly incorrect models.
As we will show, it is quite accurate when applied
to programming languages.

The data-driven dependency parsing approach
applied here only needs correct examples of the
source and the expected analysis model. Then it
automatically trains and adapts a generic parser.
As we will show, training data for adapting to a
new programming language can even be gener-
ated automatically. Hence, the effort for creating
a parser for a new programming language is quite
small.

The basic idea – applying natural language pars-
ing to programming languages – has been pre-
sented to the program maintenance community be-
fore (Nilsson et al., 2009). This paper contributes
with experimental results on

1. data-driven dependency parsing of the pro-
gramming languages C/C++, Java, and
Python,

2. transformations between dependency struc-
ture and phrase structure adapted to program-
ming languages,

3. generic parser model selection and its effect
on parsing accuracy.

Section 2 gives an introduction to the parsing tech-
nology applied here. In section 3, the preparation
of the training examples necessary is described,
while section 4 presents the experimental results.
Section 5 discusses related work in information
extraction for software maintenance. We end with
conclusions and future work in section 6.

2 NLP Background

Dependency structure is one way of representing
the syntax of natural languages. Dependency trees
form labeled, directed and rooted trees, as shown
in figure 1. One essential difference compared to
context-free grammar is the absence of nontermi-
nals. Another difference is that the syntactic struc-
ture is composed of lexical tokens (also called ter-
minals or words) linked by binary and directed re-
lations called dependencies. Each token in the fig-
ure is labeled with a part-of-speech, shown at the
bottom of the figure. Each dependency relation is
also labeled.

The parsing algorithm used in the experiments
of section 4, known as the Nivre’s arc-eager al-

Figure 1: Sentence with a dependency tree.

gorithm (Nivre, 2003), can produce such depen-
dency trees. It bears a resemblance to the shift-
reduce parser for context-free grammars, with the
most apparent difference being that terminals (not
nonterminals) are pushed onto the stack. Parser
configurations are represented by a stack, a list
of (remaining) input tokens, and the (current) set
of arcs for the dependency tree. Similar to the
shift-reduce parser, the construction of syntactic
structure is created by a sequence of transitions.
The parser starts with an empty stack and termi-
nates when the input queue is empty, parsing in-
put from left to right. It has four transitions (Left-
Arc, Right-Arc, Reduce and Shift), manipulating
these data structures. The algorithm has a linear
time complexity as it is guaranteed to terminate
after at most 2n transitions, given that the length
of the input sentence is n.

In contrast to a parser guided by a grammar
(e.g., ordinary shift-reduce parsing for context-
free grammars), this parser is guided by a clas-
sifier induced from empirical data using machine
learning (Nivre et al., 2004). Hence, the parser re-
quires training data containing dependency trees.
In other words, the parser has a training phase
where the training data is used by the training
module in order to learn the correct sequence of
transitions. The training data can contain depen-
dency trees for sentences of any language irrespec-
tively of whether the language is a natural or for-
mal one.

The training module produces the correct tran-
sition sequences using the dependency trees of
the training data. These correct parser configura-
tions and transition sequences are then provided as
training data to a classifier, which predicts the cor-
rect transitions (including a dependency label for
Left-Arc, Right-Arc) given parser configurations.
A parser configuration contains a vast amount of
information located in the data-structures. It is
therefore necessary to abstract it into a set of fea-
tures. Possible features are word forms and parts-

50

of-speech of tokens on the stack and in the list
of input tokens, and dependency labels of depen-
dency arcs created so far.

The parser produces exactly one syntactic anal-
ysis for every input, even if the input does not con-
form to a grammar. The price we have to pay for
this robustness is that any classifier is bound to
commit errors even if the input is acceptable ac-
cording to a grammar.

3 General Approach

In section 2, we presented a parsing algorithm for
producing dependency trees for natural languages.
Here we will show how it can be used to produce
syntactic structures for programming languages.
Since the framework requires training data form-
ing correct dependency trees, we need an approach
for converting source code to dependency trees.

The general approach can be divided into two
phases, training and production. In order to be
able to perform both these phases in this study, we
need to adapt natural language parsing to the needs
of information extraction from programming lan-
guage code, i.e., we need to automatically produce
training data. Therefore, we apply:

(a) Source Code ⇒ Syntax Tree: the classical
approach for generating syntax trees for cor-
rect and complete source code of a program-
ming language.

(b) Syntax Tree ⇒ Dependency Tree: an ap-
proach for encoding the syntax trees as de-
pendency trees adapted to programming lan-
guages.

(c) Dependency Tree ⇒ Syntax Tree: an ap-
proach to convert the dependency trees back
to syntax trees.

These approaches have been accomplished as pre-
sented below. In the training phase, we need to
train and adapt the generic parsing approach to a
specific programming language. Therefore:

(1) Generate training data automatically by
producing syntax trees and then dependency
trees for correct programs using approaches
(a) and (b).

(2) Train the generic parser with the training
data.

This automated training phase needs to be done
for every new programming language we adapt to.

Finally, in the production phase, we extract the in-
formation from (not necessarily correct and com-
plete) programs:

(3) Parse the new source code into dependency
trees.

(4) Convert the dependency trees into syntax
trees using approach (c).

This automated production phase needs to be exe-
cuted for every project we analyze.

Steps (2) and (3) have already been discussed in
section 2 for parsing natural languages. They can
be generalized to parsing programming languages
as described in section 3.1. Both the training phase
and the production phase are complete, once the
steps (a)–(c) have been accomplished. We present
them in sections 3.2, 3.3, and 3.4, respectively.

3.1 Adapting the Input

As mentioned, the parsing algorithm described
in section 2 has been developed for natural lan-
guages, which makes it necessary to resolve a
number of issues that arise when the parser is
adapted for source code as input. First, the parsing
algorithm takes a sequence of words as input, and
for simplicity, we map the tokens in a program-
ming language to words.

One slightly more problematic issue is how to
define a “sentence” in source code. A natural
language text syntactically decomposes into a se-
quence of sentences in a relatively natural way.
But is there also a natural way of splitting source
code into sentences? The most apparent approach
may be to define a sentence as a compilation unit,
that is, a file of source code. This can however re-
sult in practical problems since a sentence in a nat-
ural language text is usually on average between
15–25 words long, partially depending on the au-
thor and the type of text. The sequence of tokens
in a source file may on the other hand be much
longer. Time complexity is usually in practice of
less importance when the average sentence length
is as low as in natural languages, but that is hardly
the case when there can be several thousands to-
kens in a sentence to parse.

Other approaches could for instance be to let
one method be a sentence. However, then we need
to deal with other types of source code construc-
tions explicitly. We have in this study for sim-
plicity let one compilation unit be one sentence.
This is possible in practice due to the linear time

51

complexity of the parsing algorithm of section 2,
a quite unusual property compared to other NLP
parsers guided by machine learning with state-of-
the-art accuracy.

3.2 Source Code⇒ Syntax Tree

In order to produce training data for the parser
for a programming language, an analyzer that
constructs syntax trees for correct and complete
source code of the programming language is
needed. We are in this study focusing on Java,
Python and C/C++, and consequently need one
such analyzer for each language. For example, fig-
ure 2 shows the concrete syntax tree of the follow-
ing fragments of Java:

Example (1):

public String getName() {
return name;

}

Example (2):

while (count > 0) {
stack[--count]=null;

}

We also map the output of the lexical ana-
lyzer to the parts-of-speech for the words (e.g.,
Identifier for String and getName). All
source code comments and indentation informa-
tion (except for Python where the indentation con-
veys hierarchical information) have been excluded
from the syntax trees. All string and character
literals have also been mapped to “string” and
“char”, respectively. This does not entail that the
approach is lossy, since all this information can
be retained in a post-processing step, if neces-
sary. As pointed out by, for instance, Collard et
al. (2003), comments and indentation may among
other things be of interest when trying to under-
stand source code.

3.3 Syntax Tree⇒ Dependency Tree

Here we will discuss the conversion of syntax trees
into dependency trees. We use a method that has
been successfully applied for natural languages
for converting syntax trees into a convertible de-
pendency tree that makes it possible to perform
the inverse conversion, meaning that information
about the syntax tree is saved in complex arc la-
bels (Hall and Nivre, 2008). We also present re-
sults in section 4 using the dependency trees that

cannot be used for the inverse conversion, which
we call non-convertible dependency trees.

The conversion is performed in a two-step ap-
proach. First, the algorithm traverses the syntax
tree from the root and identifies the head-child and
the terminal head for all nonterminals in a recur-
sive depth-first search. To identify the head-child
for each nonterminal, the algorithm uses heuristics
called head-finding rules, inspired by, for instance,
Magerman (1995). Three head-finding strategies
have been investigated. For each nonterminal:

1. FREQ: Let the element with the most fre-
quently occurring name be the head, but ex-
clude the token ‘;’ as a potential head. If two
tokens have the same frequency, let the left-
most occurring element be the head.

2. LEFT: let the leftmost terminal in the entire
subtree of the nonterminal be the head of all
other elements.

3. RIGHT: let the rightmost terminal in the en-
tire subtree of the nonterminal be the head of
all other elements.

The dependency trees in figures 3 and 4 use LEFT

and FREQ. LEFT and RIGHT induce that all arcs
are pointing to the right and left, respectively. The
head-finding rules for FREQ are automatically cre-
ated by counting the children’s names for each
distinct non-terminal name in the syntax trees of
the training data. The priority list is then com-
piled by ordering the elements by descending fre-
quency for each distinct non-terminal name. For
instance, given that the syntax trees are grammati-
cally correct, every non-terminal While will con-
tain the tokens (,) and while. These tokens
have thus the highest priority, and while there-
fore becomes the head in the lower dependency
tree of figure 4. This is the same as choosing the
left-most mandatory element for each left-hand
side in the grammar. An interesting observation
is that binary operators and the copy assignment
operator become the heads of their operands for
FREQ, which is the case for < and = in figure 4.
Note also that the element names of terminals act
as part-of-speech tags, e.g., the part-of-speech for
String is Identifier.

In the second step, a dependency tree is created
according to the identified terminal heads. The
arcs in the convertible dependency tree are labeled
with complex arc labels, where each complex arc
label consists of two sublabels:

52

Figure 2: Syntax trees for examples (1) and (2).

Figure 3: Non-convertible dependency trees for example (1) using LEFT (upper) and FREQ (lower).

1. Encode the dependent spine, i.e., the se-
quence of nonterminal labels from the de-
pendent terminal to the highest nonterminal
where the dependent terminal is the terminal
head; “|” separates the nonterminal labels,

2. Encode the attachment point in the head
spine, a non-negative integer value a, which
means that the dependent spine is attached a
steps up in the head spine.

By encoding the arc labels with these two subla-
bels, it is possible to perform the inverse conver-
sion, (see subsection 3.4).

The non-convertible dependency labels allow us
to reduce the complexity of the arc labels, making
the learning problem simpler due to fewer distinct
arc labels. This may result in a higher accuracy
during parsing and can be used as input for fur-
ther processing directly without taking the detour
back to syntax trees. This can be motivated by
the fact that all information in the syntax trees is

usually not needed anyway in many reverse engi-
neering tasks, but labels indicating method calls
and declarations – the most important information
for most program comprehension tasks – are pre-
served. This is exemplified by the fact that both
dependency structures in figure 3 contain the la-
bel MethodsDecl.. We thus believe that all the
necessary information is also captured in this less
informative dependency tree. Each dependency la-
bel is the highest nonterminal name of the spine,
that is, the single nonterminal name that is closest
to its head. The non-convertible dependency label
also excludes the attachment point value, making
the learning problem even simpler. Figures 3 and
4 show the non-convertible dependency labels of
the syntax trees (or phrase structure trees) in the
same figures, where each label contains just a sin-
gle nonterminal name of the original syntax trees.

3.4 Dependency Tree⇒ Syntax Tree

The inverse conversion is a bottom-up and top-
down process on the convertible dependency tree

53

Figure 4: Non-convertible dependency trees for example (2) using LEFT (upper) and FREQ (lower).

(must contain complex arc labels). First, the algo-
rithm visits every terminal in the convertible de-
pendency tree and restores the spines of nontermi-
nals with labels for each terminal using the infor-
mation in the first sublabel of the incoming arc.
Thus, the bottom-up process results in a spine of
zero or more arcs from each terminal to the highest
nonterminal of which the terminal is the terminal
head. Secondly, the spines are weaved together ac-
cording to the arcs of the dependency tree. This is
achieved by traversing the dependency tree recur-
sively from the root using a pre-order depth-first
search, where the dependent spine is attached to
its head spine or to the root of the syntax tree. The
attachment point a, given by the second sublabel,
specifies the number of nonterminals between the
terminal head and the attachment nonterminal.

4 Experiments

We will in this section present parsing experiments
and evaluate the accuracy of the syntax trees pro-
duced by the parser. As mentioned in section 2,
the parsing algorithm is robust in the sense that it
always produces a syntactic analysis no matter the
input, but it can commit errors even for correct in-
put. This section investigates the accuracy for cor-
rect input, when varying feature set, head-finding
rules and language. We begin with the experimen-
tal setup.

4.1 Experimental Setup

The open-source software MaltParser (malt-
parser.org) (Nivre et al., 2006) is used in the ex-
periments. It contains an implementation of the

parsing algorithm, as well as an implementation
of the conversion strategy from syntax trees to
dependency trees and back, presented in subsec-
tions 3.3 and 3.4. It comes with the machine
learner LIBSVM (Chang and Lin, 2001), pro-
ducing the most accurate results for parsing nat-
ural languages compared to other evaluated ma-
chine learners (Hall et al., 2006). LIBSVM re-
quires training data. The source files of the follow-
ing projects have been converted into dependency
trees:

• For Java: Recoder 0.83 (Gutzmann et al.,
2007), using all source files in the directory
“src” (having 400 source files with 92k LOC
and 335k tokens).

• For C/C++: Elsa 2005.08.22b (McPeak,
2005), where 1389 source files were used,
including the 978 C/C++ benchmark files in
the distribution (thus comprising 1389 source
files with 265k LOC and 691k tokens).

• For Python: Natural Language Toolkit
0.9.5 (Bird et al., 2008), where all source files
in the directory “nltk” were used (having 160
source files with 65k LOC and 280k tokens).

To construct the syntax tree for the source code
file of Recoder, we have used Recoder. It cre-
ates an abstract syntax tree for a source file, but
we are currently interested in the concrete syntax
tree with all the original tokens. In this first con-
version step, the tokens of the syntax trees are thus
retained. For example, the syntax trees in figure 2
are generated by Recoder.

54

The same strategy was adopted for Elsa with the
difference that CDT 4.0.3, a plug-in to the Eclipse
IDE to produce syntax trees for source code of
C/C++, was used for producing the abstract syntax
trees.1 It produces abstract syntax trees just like
Recoder, so the concrete syntax trees have also
been created by retaining the tokens.

The Python 2.5 interpreter is actually shipped
with an analyzer that produces concrete syn-
tax trees (using the Python imports from
ast import PyCF ONLY AST and import
parser), which we have utilized for the Python
project above. Hence, no additional processing is
needed in order prepare the concrete syntax trees
as training data.

For the experiments, the source files have been
divided into a training set T and a development
test set D, where the former comprises 80% of the
dependency trees and the latter 10%. The remain-
ing 10% (E) has been left untouched for later use.
The source files have been ordered alphabetically
by the file names including the path. The depen-
dency trees have then been distributed into the data
sets in a pseudo-randomized way. Every tenth de-
pendency tree starting at index 9 (i.e. dependency
trees 9, 19, 29, . . .) will belong to D, and every
tenth dependency trees starting at index 0 to E.
The remaining trees constitute the training set T .

4.2 Metrics

The standard evaluation metric for parse trees for
natural languages based on context-free grammar
is F-score, the harmonic mean of precision and
recall. F-score compares constituents – defined
by triples 〈i, j,XP 〉 spanning between terminals
i and j – derived from the test data with those
derived from the parser. A constituent in the
parser output matches a constituent in the test data
when they span over the same terminals in the
input string. Recall is the ratio of matched con-
stituents over all constituents in the test data. Pre-
cision is the ratio of matched constituents over
all constituents found by the parser. F-score
comes in two versions, one unlabeled (FU) and
one labeled (FL), where each correct constituent
in the latter also must have the correct nontermi-
nal name (i.e., XP). The metric is implemented
in Evalb (Collins and Sekine, 2008).

1It is worth noting that CDT failed to produce syntax trees
for 2.2% of these source files, which were consequently ex-
cluded from the experiments. This again indicates the diffi-
cult of parsing C/C++ due to its different dialects.

FL FU

FR LE RI FR LE RI

UL 82.1 93.5 74.6 92.3 97.9 90.6
L 89.7 97.7 80.8 95.8 99.3 92.1

Table 1: F-score for various parser models and
head-finding rules for Java, where FR = FREQ, LE

= LEFT and RI = RIGHT.

The standard evaluation metric measuring accu-
racy for dependency parsing for natural language
is, on the other hand, labeled (ASL) and unlabeled
(ASU) attachment score. ASU is the ratio of to-
kens attached to its correct head. ASL is the same
as ASU with the additional requirement that the
dependency label should be correct as well.

4.3 Results

This section presents the parsing results. The first
experiment was conducted for Java, using the in-
verse transformation back to syntax trees. Two
feature models are evaluated, one unlexicalized
feature sets (UL) containing 13 parts-of-speech
and 4 dependency label features, and one lexical-
ized feature sets (L) containing all these 17 fea-
tures and 13 additional word form features, de-
veloped by manual feature optimization. Table 1
compares these two feature sets, as well as the dif-
ferent head-finding rules discussed previously.

The figures give a clear answer to the question
whether lexical information is beneficial or not.
Every figure in the row L is higher than its cor-
responding figure in the row UL. This means that
names of variables, methods, classes, etc., actu-
ally contain valuable information for the classifier.
This is in contrast to ordinary syntactic parsing us-
ing a grammar of programming languages where
all names are mapped to the same value (e.g. Iden-
tifier), and, e.g., integer constants to IntLiteral, be-
fore the parse. One potential contributing factor
of the difference is the naming conventions that
programmers normally follow. For example, nam-
ing classes, class attributes and local variables, etc.
using typical methods names, such as equals in
Java, is usually avoided by programmers.

It is just as clear that the choice of head-finding
strategy is very important. For both FL and FU ,
the best choice is with a wide margin LEFT, fol-
lowed by FREQ. RIGHT is consequently the least
accurate one. A higher amount of arcs pointing to
the right seems to be beneficial for the strategy of

55

ASL ASU

FR LE RI FR LE RI

CO 87.6 96.6 86.6 90.9 98.2 90.7
NC 91.0 99.1 89.5 92.1 99.7 90.7

Table 2: Attachment score for Java and the lexical
feature set, where CO = convertible and NC = non-
convertible dependency trees.

Python C/C++
FL FU FL FU

UL 91.5 92.1 95.6 96.4
L 99.1 99.2 96.5 96.9

Table 3: F-score for various parser models and
head-finding rules LEFT for Python and C/C++.

parsing from left to right.
Table 1 can be compared to the accuracy on

the parser output before conversion from depen-
dency trees to syntax trees. This is shown in the
first row (CO) of table 2, where all information
in the complex dependency label is concatenated
and placed in the dependency label. The relation-
ships between the head-finding strategies remain
the same, but it is worth noting that the accuracies
for FREQ and RIGHT are closer to each other, en-
tailing a more difficult conversion to syntax trees
for the latter. The first row can also be compared
to the second row (NC) in the same table, show-
ing the accuracies when training and parsing with
non-convertible dependency trees. One observa-
tion is that each figure in NC is higher than its
corresponding figure in CO (even ASU for RIGHT

with more decimals), probably attributed to the
lower burden on the parser. Both ASU and ASL

are above 99% for the non-convertible dependency
trees using LEFT.

We can see that choosing an appropriate repre-
sentation of syntactic structure to be used during
parsing is just as important for programming lan-
guages as for natural languages, when using data-
driven natural language parsers (Bikel, 2004).

The parser output in table 1 can more eas-
ily be used as input to existing program com-
prehension tools, normally requiring abstract syn-
tax trees. However, the highly accurate output
for LEFT using non-convertible dependency trees
could be worth using instead, but it requires some
additional processing.

In order to investigate the language indepen-

dence of our approach, table 3 contains the cor-
responding figures as in table 1 for Python and
C/C++, restricted to LEFT, which is the best
head-finding strategy for these languages as well.
Again, each lexicalized feature set (L) outper-
forms its corresponding unlexicalized feature set
(UL). Python has higher FL and virtually the same
FU as Java, whereas C/C++ has the lowest accu-
racies for L. However, the UL figures are not far
behind the L figures for C/C++, and C/C++ has
in fact higher FL for UL compared to Java and
Python. These results can maybe be explained by
the fact that C/C++ has less verbose syntax than
both Java and Python, making the lexical features
less informative.

The FL figures for Java, Python and C/C++ us-
ing LEFT can also be compared to the correspond-
ing figures in Nilsson et al. (2009). They use the
same data sets but a slightly different head-finding
strategy. Instead of selecting the leftmost element
(terminal or non-terminal) as in LEFT, they always
select the leftmost terminal, resulting in FL=99.5
for Java, FL=98.3 for Python and FL=96.5 for
C/C++. That is, our results are slightly lower for
Java, higher for Python, and slightly higher for
C/C++. The same holds for FU as well. That
is, having only arcs pointing to the right results in
high accuracy for all languages (which is the case
for Left described in section 3), but small devia-
tions from this head-finding strategy can in fact be
beneficial for some languages.

We are not aware of any similar studies for
programming languages2 so we compare the re-
sults to natural language parsing. First, the fig-
ures in table 2 for dependency structure are better
than figures reported for natural languages. Some
natural languages are easier to parse than others,
and the parsing results of the CoNLL shared task
2007 (Nivre et al., 2007) for dependency structure
indicate that English and Catalan are relatively
easy, with ASL around 88-89% and ASU around
90-94% for the best dependency parsers.

Secondly, compared to parsing German with
phrase structure with the same approach as here,
with FU = 81.4 and FL = 78.7%, and Swedish,
with FU = 76.8 and FL = 74.0 (Hall and Nivre,

2A comparative experiment using another data-driven
NLP parser for context-free grammar could be of theoreti-
cal interest. However, fast parsing time is important in pro-
gram comprehension tasks, and data-driven NLP parsers for
context-free grammar have worse than a linear time complex-
ity. As, e.g., the Java project has 838 tokens per source file,
linear time complexity is a prerequisite in practice.

56

Correct Label Parsing Label
66 FieldReference VariableReference
25 VariableReference FieldReference
12 MethodDeclaration LocalVariableDeclaration
9 Conditional FieldReference
5 NotEquals MethodReference
4 Plus MethodReference
4 Positive *
4 LessThan FieldReference
4 GreaterOrEquals FieldReference
4 Divide FieldReference
4 Modulo FieldReference
4 LessOrEquals FieldReference
3 Equals NotEquals
3 LessOrEquals Equals
3 NotEquals Equals

Table 4: Confusion matrix for Java using non-
convertible dependency trees with LEFT, ordered
by descending frequency.

2008), the figures reported in tables 1 and 3 are
also much better. It is however worth noting that
natural languages are more complex and less reg-
ular compared to programming languages. Al-
though it remains to be shown, we conjecture that
these figures are sufficiently high for a large num-
ber of program comprehension tasks.

4.4 Error Analysis

This subsection will study the result for Java with
non-convertible dependency trees (NC) and LEFT,
in order to get a deeper insight into the types of
errors that the parser commits. Specifically, the
labeling mistakes caused by the parser are investi-
gated here. This is done by producing a confusion
matrix based on the dependency labels. That is,
how often does a parser confuse label X with la-
bel Y . This is shown in table 4 for the 15 most
common errors.

The two most frequent errors show that the
parser confuses FieldReference and VariableRef-
erence. A FieldReference refers to a class attribute
whereas a VariableReference could refer to either
an attribute or a local variable. The parser mixes a
reference to a class attribute with a reference that
could also be a local variable or vice versa. The
error is understandable, since the parser obviously
has no knowledge about where the variables are
declared. This is an error that type and name anal-
ysis can easily resolve. On the use-occurrence of a
name (reference), analysis looks up for both pos-
sible define-occurrences of the name (declaration),
first a LocalVariableDeclaration and then a Field-
Declaration. It uses the one that is found first.

Another type of confusion involves declara-
tions, where a MethodDeclaration is misinter-
preted as a LocalVariableDeclaration. This type
of error can be resolved by a simple post-
processing step: a LocalVariableDeclaration fol-
lowed by opening parenthesis (always recognized
correctly) is a MethodDeclaration.

Errors that involve binary operators, e.g., Con-
ditional, NotEqual, Plus, are at rank 4 and below
in the list of the most frequent errors. They are
most likely a result of the incremental left-to-right
parsing strategy. The whole expression should be
labeled in accordance with its binary operator (see
count > 0 in figure 4 for LEFT), but is incor-
rectly labeled as either MethodReference, Field-
Reference or some other operator instead. The ref-
erences actually occur in the left-hand side sub-
expression of the binary operators. This means
that subexpressions and bracketing were recog-
nized correctly, but the type of the top expression
node was mixed up. Extending the lookahead in
the list of remaining input tokens, making it pos-
sible for the classifier in the parser to look at even
more yet unparsed tokens, might be one possible
solution. However, these errors are by and large
relatively harmless anyway. Hence, no correction
is in practice needed.

Figure 5 displays some typical mistakes for the
example program fragment

return (fw.unitIndex == unitIndex &&
fw.unitIndex.equals(unitList));

The parser mixes up a ParenthesizedExpression
with a Conditional, a boolean ParenthesizedEx-
pression only occurring in conditional statements
and expressions. Then it incorrectly assigns the
label Equals to the arc between the first left paren-
thesis and the first fw instead of the correct la-
bel LogicalAnd. It mixes up the type of the whole
expression, an Equals- (i.e., ==) is taken for an
LogicalAnd-expression (i.e., &&). Finally, the two
FieldReferences are taken as more general Vari-
ableReferences, which is corrigible as discussed.

In addition to a possible error correction in a
post-processing step, the parsing errors could dis-
appear due to the abstraction of subsequent anal-
yses as commonly used in software maintenance
tools. For instance, without any error correction,
the type reference graphs of our test program, the
correct one and the one constructed using the not
quite correct parsing results, are identical.

57

Correct:

Parsed:

Figure 5: Typical errors for LEFT using by non-convertible dependency trees.

5 Related Work

Classical parsers for formal languages have been
known for many years. They (conventionally) ac-
cept a context-free language defined by a context-
free grammar. For each program, the parsers
produce a phrase structure referred to as an ab-
stract syntax tree (AST) which is also defined by a
context-free language. Parsers including error sta-
bilization and AST-constructors can be generated
from context-free grammars for parsers (Kastens
et al., 2007). A parser for a new language still
requires the development of a complex specifica-
tion. Moreover, error stabilization often throws
away large parts of the source – it is robust but
does not care about maximizing accuracy.

Breadth-First Parsing (Ophel, 1997) was de-
signed to provide better error stabilization than tra-
ditional parsers and parser generators. It uses a
two phase approach: the first phase identifies high-
level entities – the second phase parses the struc-
ture with these entities as root nonterminals (ax-
ioms).

Fuzzy Parsing (Koppler, 1997) was designed
to efficiently develop parsers by performing the
analysis on selected parts of the source instead
of the whole input. It is specified by a set of
(sub)grammars each with their own axioms. The
actual approach is then similar to Breadth-First
Parsing: it scans for instances of the axioms and
then parses according to the grammar. It makes
parsing more robust in the sense that it ignores
source fragments – including missing parts, errors

and deviations therein – that subsequent analyses
abstract from anyway. A prominent tool using
the fuzzy parsing approach for information extrac-
tion in reverse-engineering tools is Sniff (Bischof-
berger, 1992) for analyzing C++ code.

Island grammars (Moonen, 2001) generalize on
Fuzzy Parsing. Parsing is controlled by two gram-
mar levels (island and sea) where the sea-level is
used when no island-level production applies. The
island-level corresponds to the sub-grammars of
fuzzy parsing. Island grammars have been applied
in reverse-engineering, specifically, to bank soft-
ware (Moonen, 2002).

Syntactic approximation based on lexical anal-
ysis was developed with the same motivation as
our work: when maintenance tools need syntac-
tic information but the documents could not be
parsed for some reason, hierarchies of regular ex-
pression analyses could be used to approximate
the information with high accuracy (Murphy and
Notkin, 1995; Cox and Clarke, 2003). Their in-
formation extraction approach is characterized as
“lightweight” in the sense that it requires little
specification effort.

A similar robust and light-weight approach for
information extraction constructs XML formats
(JavaML and srcML) from C/C++/Java programs
first, before further processing with XML tools
like Xpath (Badros, 2000; Collard et al., 2003). It
combines lexical and context free analyses. Lex-
ical pattern matching is also used in combination
with context free parsing in order to extract facts
from semi-structured specific comments and con-

58

figuration specifications in frameworks (Knodel
and Pinzger, 2003).

TXL is a rule-based language defining informa-
tion extraction and transformation rules for formal
languages (Cordy et al., 1991). It makes it possible
to incrementally extend the rule base and to adapt
to language dialects and extensions. As the rules
are context-sensitive, TXL goes beyond the lexical
and context-free approaches discussed before.

The fundamental difference of our approach
compared to lexical, context-free, and context-
sensitive approaches (and combinations thereof) is
that we use automated machine learning instead of
manual specification for defining and adapting the
information extraction.

General NLP techniques have been applied for
extracting facts from general source code com-
ments to support software maintenance (Etzkorn
et al., 1999). Comments are extracted from source
code using classical lexical analysis; additional in-
formation is extracted (and then added) with clas-
sical compiler front-end technology.

NLP has also been applied to other informa-
tion extraction tasks in software maintenance to
analyze unstructured or very large information
sources, e.g., for analyzing requirement speci-
fications (Sawyer et al., 2002), in clone detec-
tion (Marcus and Maletic, 2001; Grant and Cordy,
2009), and to connect program documentation to
source code (Marcus and Maletic, 2003).

6 Conclusions and Future Work

In this paper, we applied natural language parsing
techniques to programming languages. One ad-
vantage is that it offers robustness, since it always
produces some output even if the input is incorrect
or incomplete. Completely correct analysis can,
however, not be guaranteed even for correct input.
However, the experiments showed that accuracy is
in fact close to 100%.

In contrast to robust information extractors used
so far for formal languages, the approach pre-
sented here is rapidly adaptable to new languages.
We automatically generate the language specific
information extractor using machine learning and
training of a generic parsing, instead of explicitly
specifying the information extractor using gram-
mar and transformation rules. Also the training
data can be generated automatically. This could
increase the development efficiency of parsers,
since no language specification has to be provided,

only examples.
Regarding accuracy, the experiments showed

that selecting the syntactic base representation
used by the parser internally has a major impact.
Incorporating, for instance, class, method and
variable names in the set of features of the parser
improves the accuracy more than expected. The
detailed error analysis showed that many errors
committed by the parser are forgivable, as they
are anyway abstracted in later processing phases.
Other errors are easily corrigible. We can also
see that the best results presented here are much
higher than the best parsing results for natural lan-
guages.

Besides efficient information extractor develop-
ment, efficient parsing itself is important. Applied
to programs which can easily contain several mil-
lion lines of code, a parser with more than linear
time complexity is not acceptable. The data-driven
parser utilized here has linear parsing time.

These results are only the first (promising) step
towards natural language parsing leveraging infor-
mation extraction for software maintenance. How-
ever, the only way to really evaluate the usefulness
of the approach is to use its output as input to client
analyses, e.g., software measurement and archi-
tecture recovery, which we plan to do in the fu-
ture. Another direction for future work is to apply
the approach to more dialects of C/C++, such as
analyzing correct, incomplete, and erroneous pro-
grams for both standard C and its dialects.

References
Paul Anderson. 2008. 90 % Perspiration: Engineering

Static Analysis Techniques for Industrial Applica-
tions. In Proceedings of the 8th IEEE International
Working Conference on Source Code Analysis and
Manipulation, pages 3–12.

Greg J. Badros. 2000. JavaML: a Markup Language
for Java Source Code. In Proceedings of the 9th
International World Wide Web conference on Com-
puter networks : the international journal of com-
puter and telecommunications networking, pages
159–177.

Daniel M. Bikel. 2004. Intricacies of Collins’ Parsing
Model. Computational Linguistics, 30(4):479–511.

Steven Bird, Edward Loper, and Ewan Klein.
2008. Natural Language Toolkit (NLTK) 0.9.5.
http://nltk.org/.

Walter R. Bischofberger. 1992. Sniff: A Pragmatic
Approach to a C++ Programming Environment. In
USENIX C++ Conference, pages 67–82.

59

Chih-Chung Chang and Chih-Jen Lin. 2001. LIB-
SVM: A Library for Support Vector Machines.

Michael L. Collard, Huzefa H. Kagdi, and Jonathan I.
Maletic. 2003. An XML-Based Lightweight C++
Fact Extractor. In 11th IEEE International Work-
shop on Program Comprehension, pages 134–143.

Michael Collins and Satoshi Sekine. 2008. Evalb.
http://nlp.cs.nyu.edu/evalb/.

James R. Cordy, Charles D. Halpern-Hamu, and Eric
Promislow. 1991. TXL: a Rapid Prototyping Sys-
tem for Programming Language Dialects. Computer
Languages, 16(1):97–107.

Anthony Cox and Charles L. A. Clarke. 2003. Syntac-
tic Approximation Using Iterative Lexical Analysis.
In Proceedings of the 11th IEEE International Work-
shop on Program Comprehension, pages 154–163.

Letha H. Etzkorn, Lisa L. Bowen, and Carl G. Davis.
1999. An Approach to Program Understanding by
Natural Language Understanding. Natural Lan-
guage Engineering, 5(3):219–236.

Scott Grant and James R. Cordy. 2009. Vector Space
Analysis of Software Clones. In Proceedings of
the IEEE 17th International Conference on Program
Comprehension, pages 233–237.

Tobias Gutzmann, Dirk Heuzeroth, and Mircea Trifu.
2007. Recoder 0.83. http://recoder.sourceforge.net/.

Johan Hall and Joakim Nivre. 2008. Parsing Discon-
tinuous Phrase Structure with Grammatical Func-
tions. In Proceedings of GoTAL, pages 169–180.

Johan Hall, Joakim Nivre, and Jens Nilsson. 2006.
Discriminative Classifiers for Deterministic Depen-
dency Parsing. In Proceedings of COLING-ACL,
pages 316–323.

Uwe Kastens, Anthony M. Sloane, and William M.
Waite. 2007. Generating Software from Specifica-
tions. Jones and Bartlett Publishers.

Jens Knodel and Martin Pinzger. 2003. Improving
Fact Extraction of Framework-Based Software Sys-
tems. In Proceedings of 10th Working Conference
on Reverse Engineering, pages 186–195.

Rainer Koppler. 1997. A Systematic Approach to
Fuzzy Parsing. Software - Practice and Experience,
27(6):637–649.

David M. Magerman. 1995. Statistical Decision-tree
Models for Parsing. In Proceedings of ACL, pages
276–283.

Andrian Marcus and Jonathan I. Maletic. 2001. Iden-
tification of High-Level Concept Clones in Source
Code. In Proceedings of the 16th IEEE interna-
tional conference on Automated software engineer-
ing, page 107.

Andrian Marcus and Jonathan I. Maletic. 2003. Re-
covering Documentation-to-Source-Code Traceabil-
ity Links using Latent Semantic Indexing. In Pro-
ceedings of the 25th International Conference on
Software Engineering, pages 125–135.

Scott McPeak. 2005. Elsa: The
Elkhound-based C/C++ Parser.
http://www.cs.berkeley.edu/∼smcpeak.

Leon Moonen. 2001. Generating Robust Parsers using
Island Grammars. In Proceedings of the 8th Work-
ing Conference on Reverse Engineering, pages 13–
22.

Leon Moonen. 2002. Lightweight Impact Analysis us-
ing Island Grammars. In Proceedings of the 10th In-
ternational Workshop on Program Comprehension,
pages 219–228.

Gail C. Murphy and David Notkin. 1995. Lightweight
Source Model Extraction. SIGSOFT Software Engi-
neering Notes, 20(4):116–127.

Jens Nilsson, Welf Löwe, Johan Hall, and Joakim
Nivre. 2009. Natural Language Parsing for Fact Ex-
traction from Source Code. In Proceedings of 17th
IEEE International Conference on Program Com-
prehension, pages 223–227.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based Dependency Parsing. In Proceed-
ings of CoNLL, pages 49–56.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
MaltParser: A Data-Driven Parser-Generator for
Dependency Parsing. In Proceedings of LREC,
pages 2216–2219.

Joakim Nivre, Johan Hall, Sanda Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 Shared Task on De-
pendency Parsing. In Proceedings of CoNLL/ACL,
pages 915–932.

Joakim Nivre. 2003. An Efficient Algorithm for
Projective Dependency Parsing. In Proceedings of
IWPT, pages 149–160.

John Ophel. 1997. Breadth-First
Parsing. citeseerx.ist.psu.edu/view-
doc/summary?doi=10.1.1.50.3035.

Pete Sawyer, Paul Rayson, and Roger Garside. 2002.
REVERE: Support for Requirements Synthesis
from Documents. Information Systems Frontiers,
4(11):343–353.

Dennis Strein, Rüdiger Lincke, Jonas Lundberg, and
Welf Löwe. 2007. An Extensible Meta-Model for
Program Analysis. IEEE Transactions on Software
Engineering, 33(9):592–607.

60

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 61–64,
Paris, October 2009. c©2009 Association for Computational Linguistics

An Incremental Earley Parser for Simple Range Concatenation Grammar

Laura Kallmeyer and Wolfgang Maier
Collaborative Research Center 833

University of Tübingen
Tübingen, Germany

{lk,wmaier}@sfs.uni-tuebingen.de

Abstract

We present an Earley-style parser for
simple range concatenation grammar, a
formalism strongly equivalent to linear
context-free rewriting systems. Further-
more, we present different filters which
reduce the number of items in the pars-
ing chart. An implementation shows that
parses can be obtained in a reasonable
time.

1 Introduction

Linear context-free rewriting systems (LCFRS)
(Vijay-Shanker et al., 1987), the equivalent mul-
tiple context-free grammars (MCFG) (Seki et al.,
1991) and simple range concatenation grammars
(sRCG) (Boullier, 1998) have recently attracted
an increasing interest in the context of natu-
ral language processing. For example, Maier
and Søgaard (2008) propose to extract simple
RCGs from constituency treebanks with crossing
branches while Kuhlmann and Satta (2009) pro-
pose to extract LCFRS from non-projective depen-
dency treebanks. Another application area of this
class of formalisms is biological computing (Kato
et al., 2006).

This paper addresses the symbolic parsing of
sRCG/LCFRS. Starting from the parsing algo-
rithms presented in Burden and Ljunglöf (2005)
and Villemonte de la Clergerie (2002), we pro-
pose an incremental Earley algorithm for simple
RCG. The strategy is roughly like the one pur-
sued in Villemonte de la Clergerie (2002). How-
ever, instead of the automaton-based formalization
in Villemonte de la Clergerie’s work, we give a
general formulation of an incremental Earley al-
gorithm, using the framework of parsing as de-
duction. In order to reduce the search space, we
introduce different types of filters on our items.
We have implemented this algorithm and tested it

on simple RCGs extracted from the German tree-
banks Negra and Tiger.

In the following section, we introduce simple
RCG and in section 3, we present an algorithm for
symbolic parsing of simple RCG. Section 4 then
presents different filtering techniques to reduce the
number of items. We close discussing future work.

2 Grammar Formalism

A range concatenation grammar (RCG)is a 5-
tupleG = (N,T, V, P, S). N is a finite set of non-
terminals (predicate names) with an arity function
dim: N → N+, T andV are disjoint finite sets of
terminals and variables.P is a finite set of clauses
of the formψ0 → ψ1 . . . ψm, wherem ≥ 0 and
each of theψi, 0 ≤ i ≤ m, is a predicate of the
form Ai(αi

1, . . . , α
i
dim(A)). Eachαi

j ∈ (T ∪ V)∗,
1 ≤ j ≤ dim(A) and0 ≤ i ≤ k, is an argument.
As a shorthand notation forAi(α1, . . . , αdim(A)),
we useAi(~α). S ∈ N is the start predicate name
with dim(S) = 1.

Note that the order of right-hand side (RHS)
predicates in a clause is of no importance. Sub-
classes of RCGs are introduced for further ref-
erence: An RCGG = (N,T, V, P, S) is sim-
ple if for all c ∈ P , it holds that every variable
X occurring inc occurs exactly once in the left-
hand side (LHS) and exactly once in the RHS, and
each argument in the RHS ofc contains exactly
one variable. A simple RCG isordered if for all
ψ0 → ψ1 · · ·ψm ∈ P , it holds that if a variableX1

precedes a variableX2 in aψi, 1 ≤ i ≤ m, then
X1 also precedesX2 in ψ0. The ordering require-
ment does not change the expressive power, i.e.,
ordered simple RCG is equivalent to simple RCG
(Villemonte de la Clergerie, 2002). An RCG is
ε-free if it either contains noε-rules or there is ex-
actly one ruleS(ε) → ε andS does not appear in
any of the righthand sides of the rules in the gram-
mar. A rule is anε-rule if one of the arguments

61

of the lefthand side is the empty stringε. (Boul-
lier, 1998) shows that for every simple RCG, one
can construct an equivalentε-free simple RCG. An
RCGG = (N,T, V, P, S) is a k-RCG if for all
A ∈ N, dim(A) ≤ k.

The language of RCGs is based on the notion
of range. For a stringw1 · · ·wn a range is a pair
of indices 〈i, j〉 with 0 ≤ i ≤ j ≤ n, i.e., a
string span, which denotes a substringwi+1 · · ·wj

in the source string or a substringvi+1 · · · vj in
the target string. Only consecutive ranges can be
concatenated into new ranges. Terminals, vari-
ables and arguments in a clause are bound to
ranges by a substitution mechanism. Aninstan-
tiated clause is a clause in which variables and ar-
guments are consistently replaced by ranges; its
components areinstantiated predicates. For ex-
ampleA(〈g · · ·h〉) → B(〈g + 1 · · · h〉) is an in-
stantiation of the clauseA(aX1) → B(X1) if
the target string is such thatwg+1 = a. A de-
rive relation⇒ is defined on strings of instanti-
ated predicates. If an instantiated predicate is the
LHS of some instantiated clause, it can be replaced
by the RHS of that instantiated clause. The lan-
guage of an RCGG = (N,T, V, P, S) is the set
L(G) = {w1 · · ·wn | S(〈0, n〉) ∗⇒ ε}, i.e., an in-
put stringw1 · · ·wn is recognized if and only if the
empty string can be derived fromS(〈0, n〉). In this
paper, we are dealing only with ordered simple
RCGs. The ordering requirement does not change
the expressive power (Villemonte de la Clergerie,
2002). Furthermore, without loss of generality, we
assume that for every clause, there is ak ≥ 0 such
that the variables occurring in the clause are ex-
actlyX1, . . . ,Xk.

We define derivation trees for simple RCGs as
unordered trees whose internal nodes are labelled
with predicate names and whose leaves are la-
belled with ranges such that all internal nodes
are licensed by RCG clause instantiations: given
a simple RCGG and a stringw, a treeD =
〈V,E, r〉 is a derivation tree of w = a1 . . . an

iff 1. there are exactlyn leaves inD labelled
〈0, 1〉, . . . , 〈n − 1, n〉 and 2. for allv0 ∈ V with
v1, . . . , vn ∈ V , n ≥ 1 being all vertices with
〈v0, vi〉 ∈ E (1 ≤ i ≤ n) such that the leftmost
range dominated byvi precedes the leftmost range
dominated byvi+1 (1 ≤ i < n): there is a clause
instantiationA0(~ρ0) → A1(~ρ1) . . . An(~ρn) such
that a)l(vi) = Ai for 0 ≤ i ≤ n and b) the yield
of the leaves dominates byvi is ~ρi.

3 Parsing

Our parsing algorithm is a modification of the
“incremental algorithm” of Burden and Ljunglöf
(2005) with a strategy very similar to the strategy
adopted byThread Automata (Villemonte de la
Clergerie, 2002). It assumes the grammar to be
ordered andε-free. We refrain from supporting
non-ε-free grammars since the treebank grammars
used with our implementation are allε-free. How-
ever, note that only minor modifications would be
necessary in order to support non-ε-free grammars
(see below).

We process the arguments of LHS of clauses in-
crementally, starting from anS-clause. Whenever
we reach a variable, we move into the clause of
the corresponding RHS predicate (predict or re-
sume). Whenever we reach the end of an argu-
ment, wesuspendthis clause and move into the
parent clause that has called the current one. In
addition, we treat the case where we reach the end
of the last argument and move into the parent as a
special case. Here, we firstconvert the item into
a passive one and thencomplete the parent item
with this passive item. This allows for some addi-
tional factorization.

The item form for passive items is[A, ~ρ] where
A a predicate of some arityk, ~ρ is a range vector of
arity k. The item form for active items:[A(~φ) →
A1(~φ1) . . . Am(~φm), pos, 〈i, j〉, ~ρ] whereA(~φ) →
A1(~φ1) . . . Am(~φm) ∈ P ; pos ∈ {0, . . . , n} is the
position up to which we have processed the input;
〈i, j〉 ∈ N2 marks the position of our dot in the
arguments of the predicateA: 〈i, j〉 indicates that
we have processed the arguments up to thejth ele-
ment of theith argument;~ρ is an range vector con-
taining the bindings of the variables and terminals
occurring in the lefthand side of the clause (~ρ(i)
is the range theith element is bound to). When
first predicting a clause, it is initialized with a vec-
tor containing only symbols “?” for “unknown”.
We call such a vector (of appropriate arity)~ρinit.
We introduce an additional piece of notation. We
write ~ρ(X) for the range bound to the variableX
in ~ρ. Furthermore, we write~ρ(〈i, j〉) for the range
bound to thejth element in theith argument of the
clause lefthand side.

Applying a range vector~ρ containing variable
bindings for a given clausec to the argument vec-
tor of the lefthand side ofc means mapping theith
element in the arguments to~ρ(i) and concatenat-
ing adjacent ranges. The result is defined iff every

62

argument is thereby mapped to a range.
We start by predicting the S-predicate:

[S(~φ) → ~Φ, 0, 〈1, 0〉, ~ρinit]
S(~φ) → ~Φ ∈ P

Scan: Whenever the next symbol after the dot
is the next terminal in the input, we can scan it:

[A(~φ) → ~Φ, pos, 〈i, j〉, ~ρ]
[A(~φ) → ~Φ, pos+ 1, 〈i, j + 1〉, ~ρ′]

~φ(i, j+1) = wpos+1

where ~ρ′ is ~ρ updated with ~ρ(i, j + 1) =
〈pos, pos+ 1〉.

In order to supportε-free grammars, one would
need to store the pair of indices aε is mapped to
in the range vector, along with the mappings of
terminals and variables. The indices could be ob-
tained through aScan-ε operation, parallel to the
Scanoperation.

Predict: Whenever our dot is left of a variable
that is the first argument of some RHS predicate
B, we predict newB-clauses:

[A(~φ) → . . . B(X, . . .) . . . , pos, 〈i, j〉, ~ρA]

[B(~ψ) → ~Ψ, pos, 〈1, 0〉, ~ρinit]

with the side condition~φ(i, j + 1) = X,B(~ψ) →
~Ψ ∈ P .

Suspend: Whenever we arrive at the end of an
argument that is not the last argument, we suspend
the processing of this clause and we go back to the
item that was used to predict it.

[B(~ψ) → ~Ψ, pos′, 〈i, j〉, ~ρB],

[A(~φ) → . . . B(~ξ) . . . , pos, 〈k, l〉, ~ρA]

[A(~φ) → . . . B(~ξ) . . . , pos′, 〈k, l + 1〉, ~ρ]
where the dot in the antecedentA-item precedes
the variable~ξ(i), |~ψ(i)| = j (theith argument has
length j and has therefore been completely pro-
cessed),|~ψ| < i (the ith argument is not the last
argument ofB), ~ρB(~ψ(i)) = 〈pos, pos′〉 and for
all 1 ≤ m < i: ~ρB(~ψ(m)) = ~ρA(~ξ(m)). ~ρ is ~ρA

updated with~ρA(~ξ(i)) = 〈pos, pos′〉.
Convert: Whenever we arrive at the end of the

last argument, we convert the item into a passive
one:

[B(~ψ) → ~Ψ, pos, 〈i, j〉, ~ρB]
[B, ρ]

|~ψ(i)| = j, |~ψ| = i,

~ρB(~ψ) = ρ

Complete: Whenever we have a passiveB item
we can use it to move the dot over the variable of
the last argument ofB in a parentA-clause that
was used to predict it.

[B, ~ρB], [A(~φ) → . . . B(~ξ) . . . , pos, 〈k, l〉, ~ρA]

[A(~φ) → . . . B(~ξ) . . . , pos′, 〈k, l + 1〉, ~ρ]
where the dot in the antecedentA-item precedes
the variable ~ξ(|~ρB |), the last range in~ρB is
〈pos, pos′〉, and for all1 ≤ m < |~ρB |: ~ρB(m) =

~ρA(~ξ(m)). ~ρ is ~ρA updated with~ρA(~ξ(|~ρB |)) =
〈pos, pos′〉.

Resume: Whenever we are left of a variable
that is not the first argument of one of the RHS
predicates, we resume the clause of the RHS pred-
icate.

[A(~φ) → . . . B(~ξ) . . . , pos, 〈i, j〉, ~ρA],

[B(~ψ) → ~Ψ, pos′, 〈k − 1, l〉, ~ρB]

[B(~ψ) → ~Ψ, pos, 〈k, 0〉, ~ρB]

where~φ(i)(j + 1) = ~ξ(k), k > 1 (the next el-
ement is a variable that is thekth element in~ξ,
i.e., thekth argument ofB), |~ψ(k − 1)| = l, and
~ρA(~ξ(m)) = ~ρB(~ψ)(m) for all 1 ≤ m ≤ k − 1.

Thegoal item has the form[S, 〈0, n〉].
Note that, in contrast to a purely bottom-up

CYK algorithm, the Earley algorithm presented
here is prefix valid, provided that the grammar
does not contain useless symbols.

4 Filters

During parsing, various optimizations known from
(P)CFG parsing can be applied. More concretely,
because of the particular form of our simple
RCGs, we can use several filters to reject items
very early that cannot lead to a valid parse tree for
a given inputw = w1 . . . wn.

Since our grammars areε-free, we know that
each variable or occurrence of a terminal in the
clause must cover at least one terminal in the in-
put. Furthermore, since separations between ar-
guments are generated only in cases where be-
tween two terminals belonging to the yield of a
non-terminal, there is at least one other terminals
that is not part of the yield, we know that between
different arguments of a predicate, there must be at
least one terminal in the input. Consequently, we
obtain as a filtering condition on the validity of an
active item that the length of the remaining input
must be greater or equal to the number of variables
and terminal occurrences plus the number of argu-
ment separations to the right of the dot in the left-
hand side of the clause. More formally, an active
item [A(~φ) → A1(~φ1) . . . Am(~φm), pos, 〈i, j〉, ~ρ]
satisfies thelength filter iff

(n− pos)
≥ (|~φ(i)| − j) + Σdim(A)

k=i+1 |~φ(k)|+ (dim(A) − i)

The length filter is applied to results ofpredict,
resume, suspendandcomplete.

A second filter, first proposed in Klein and
Manning (2003), checks for the presence of re-
quired preterminals. In our case, we assume the

63

preterminals to be treated as terminals, so this fil-
ter amounts to checking for the presence of all
terminals in the predicted part of a clause (the
part to the right of the dot) in the remaining in-
put. Furthermore, we check that the terminals
appear in the predicted order and that the dis-
tance between two of them is at least the num-
ber of variables/terminals and argument separa-
tions in between. In other words, an active item
[A(~φ) → A1(~φ1) . . . Am(~φm), pos, 〈i, j〉, ~ρ] satis-
fies theterminal filter iff we can find an injec-
tive mappingfT : Term = {〈k, l〉 | ~φ(k)(l) ∈ T
and eitherk > i or (k = i and l > j)} →
{pos+ 1, . . . , n} such that

1. wfT (〈k,l〉) = ~φ(k)(l) for all 〈k, l〉 ∈ Term;

2. for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 = k2

and l1 < l2: fT (〈k2, l2〉) ≥ fT (〈k1, l1〉) +
(l2 − l1);

3. for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 <
k2: fT (〈k2, l2〉) ≥ fT (〈k1, l1〉) + (|~φ(k1)| −
l1) + Σk2−1

k=k1+1|~φ(k)|+ l2 + (k2 − k1).

Checking this filter amounts to a linear traversal
of the part of the lefthand side of the clause that
is to the right of the dot. We start with indexi =
pos + 1, for every variable or gap we increment
i by 1. For every terminala, we search the next
a in the input, starting at positioni. If it occurs
at positionj, then we seti = j and continue our
traversal of the remaining parts of the lefthand side
of the clause.

The preterminal filter is applied to results of the
predict andresumeoperations.

We have implemented the incremental Earley
parser with the filtering conditions on items. In
order to test it, we have extracted simple RCGs
from the first 1000 sentences of Negra and Tiger
(with removed punctuation) using the algorithm
described in Maier and Søgaard (2008) and parsed
the sentences 1001-1100 with it. The grammars
contained 2474 clauses (Negra) and 2554 clauses
(Tiger). The following table contains the to-
tal number of sentences for different length and
resp. the number of sentences for which a parse
was found, along with the average parsing times
of those that had a parse:

Negra Tiger
parse/tot av. t. parse/tot av. t.

|w| ≤ 20 73/84 0.40 sec. 50/79 0.32
20 ≤
|w| ≤ 35 14/16 2.14 sec. 10/19 2.16

5 Conclusion and Future Work

We have presented an Earley-style algorithm for
simple range concatenation grammar, formulated
as deduction system. Furthermore, we have pre-
sented a set of filters on the chart reducing the
number of items. An implementation and a test
with grammars extracted from treebanks showed
that reasonable parsing times can be achieved.

We are currently working on a probabilistic
k-best extension of our parser which resumes
comparable work for PCFG (Huang and Chiang,
2005). Unfortunately, experiments with the Ear-
ley algorithm have shown that with grammars of a
reasonable size for data-driven parsing (> 15, 000
clauses), an exhaustive parsing is no longer ef-
ficient, due to the highly ambiguous grammars.
Algorithms using only passive items seem more
promising in this context since they facilitate the
application of A∗ parsing techniques.

References
Pierre Boullier. 1998. Proposal for a natural lan-

guage processing syntactic backbone. Rapport de
Recherche RR-3342, INRIA.

Håkan Burden and Peter Ljunglöf. 2005. Parsing lin-
ear context-free rewriting systems. InProceedings
of IWPT 2005.

Liang Huang and David Chiang. 2005. Betterk-best
parsing. InProceedings of IWPT 2005.

Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 2006.
Stochastic multiple context-free grammar for RNA
pseudoknot modeling. InProceedings of TAG+8.

Dan Klein and Christopher D. Manning. 2003. A*
Parsing: Fast Exact Viterbi Parse Selection. InPro-
ceedings of HLT-NAACL.

Marco Kuhlmann and Giorgio Satta. 2009. Treebank
grammar techniques for non-projective dependency
parsing. InProceedings of EACL.

Wolfgang Maier and Anders Søgaard. 2008. Tree-
banks and mild context-sensitivity. InProceedings
of Formal Grammar 2008.

Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-free
grammars.Theoretical Computer Science.

K. Vijay-Shanker, David Weir, and Aravind Joshi.
1987. Characterising structural descriptions used by
various formalisms. InProceedings of ACL.

Eric Villemonte de la Clergerie. 2002. Parsing mildly
context-sensitive languages with thread automata.
In Proceedings of COLING.

64

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 65–68,
Paris, October 2009. c©2009 Association for Computational Linguistics

Deductive Parsing with Interaction Grammars

Joseph Le Roux
NCLT, School of Computing,

Dublin City University
jleroux@computing.dcu.ie

Abstract

We present a parsing algorithm for In-
teraction Grammars using the deductive
parsing framework. This approach brings
new perspectives to this problem, depart-
ing from previous methods which rely on
constraint-solving techniques.

1 Introduction

An Interaction Grammar (IG) (Guillaume and Per-
rier, 2008) is a lexicalized grammatical formal-
ism that primarily focuses on valency, explicitly
expressed using polarities decorating syntagms.
These polarities and the use of underspecified
structures naturally lead parsing to be viewed as
a constraint-solving problem – for example (Bon-
fante et al.) reduce the parsing problem to a graph-
rewriting problem in (2003) .

However, in this article we depart from this ap-
proach and present an algorithm close to (Earley,
1970) for context-free grammars. We introduce
this algorithm using the standard framework of de-
ductive parsing (Shieber et al., 1995).

This article is organised as follows: we first
present IGs (section 2), then we describe the algo-
rithm (section 3). Finally we discuss some techni-
cal points and conclude (sections 4 and 5).

2 Interaction Grammars

We briefly introduce IGs as in (Guillaume and Per-
rier, 2008)1. However, we omit polarized feature
structures, for the sake of exposition.

2.1 Polarized Tree Descriptions
The structures associated with words by the lexi-
con are Polarized Tree Descriptions (PTDs). They
represent fragments of parse trees. The nodes of
these structures are labelled with a category and a

1This paper also discusses the linguistic motivations be-
hind IGs.

polarity. IGs use 4 polarities, P = {→,←,=,∼},
namely positive, negative, neutral and virtual.

A multiset of polarities is superposable2 if it
contains at most one→ and at most one←.

A multiset of polarities is saturated if it contains
either (1) one→, one← and any number of∼ and
=, or (2) zero→, zero←, any number of∼ and at
least one =.

The two previous definitions can be extended to
nodes: a multiset of nodes is saturated (resp. su-
perposable) if all the elements have the same cat-
egory and if the induced multiset of polarities is
saturated (resp. superposable).

A PTD is a DAG with four binary relations: the
immediate dominance >, the general dominance
>∗, the immediate precedence ≺ and the general
precedence ≺+. A valid PTD is a PTD where (1)
> and >∗ define a tree structure3 , (2) ≺ and ≺+

are restricted to couples of nodes having the same
ancestor by >, and (3) one leaf is the anchor. In
the rest of this paper, all PTDs will be valid.

We now introduce some notations : if n >∗

m, we say that m is constrained by n and for a
set of nodes N , we define Nz = {N |∃M ∈
N ,MzN} wherez is a binary relation.

2.2 Grammars

An IG is a tuple G = {Σ,C, S,P, phon}, where Σ
is the terminal alphabet, C the non-terminal alpha-
bet, S ∈ C the initial symbol, P is a set of PTDs
with node labels in C× P, and phon is a function
from anchors in P to Σ.

The structure obtained from parsing is a syntac-
tic tree, a totally ordered tree in which all nodes
are labelled with a non-terminal. We call lab(A)
the label of node A. If a leaf L is labelled with a
terminal, this terminal is denoted word(L).

2This name comes from the superposition introduced in
previous presentations of IGs.

3For readers familiar with D-Tree Grammars (Rambow et
al., 1995), > adds an i-edge while >∗ adds a d-edge.

65

We will write M � N if the node M is
the mother of N and N � [N1, . . . , Nk] if the
N is the mother of the ordered list of nodes
[N1, . . . , Nk]. The order between siblings can also
be expressed using the relation ≺≺: M ≺≺ N
means that N is the immediate successor of M .
≺≺+ is the transitive closure of ≺≺ and �∗ the
reflexive transitive closure of�.

We define the phonological projection PP
of a node as : PP (M) = [t] if M �
[] and word(M) = t, or PP (M) =
[PP (N1) . . . PP (Nk)] if M � [N1, . . . , Nk]

A syntactic tree T is a model for a multisetD of
PTDs if there exists a total function I from nodes
in D (ND) to nodes in T (NT). I must respect
the following conditions, where variables M,N
range over ND and A,B over NT :

1. I−1(A) is saturated and non-empty.

2. if M > N then I(M)� I(N)

3. if M >∗ N then I(M)�∗ I(N)

4. if M ≺ N then I(M) ≺≺ I(N)

5. if M ≺+ N then I(M) ≺≺+ I(N)

6. if A� B then there exists M ∈ I−1(A) and
N ∈ I−1(B) such that M > N

7. lab(A) = lab(M) for all M ∈ I−1(A)

8. if phon(M) = w then PP (I(M)) = [w]

Given an IG G = {Σ,C, S,P, phon} and a sen-
tence s = w1, . . . , wn in Σ∗, a syntactic tree T is
a parse tree for s if there exists a multiset of PTDs
D from P such that the root node R of T is la-
belled with S and PP (R) = [w1, . . . , wn]. The
language generated by G is the set of strings in Σ∗

for which there is a parse tree.

3 Parsing Algorithm

We use the deductive parsing framework (Shieber
et al., 1995). A state of the parser is encoded as an
item, created by applying deductive rules. Our al-
gorithm resembles the Earley algorithm for CFGs
and uses the same rules : prediction, scanning and
completion.

3.1 Items
Items [A(H,N,F) → α • β, i, j, (O,U,D)] con-
sist of a dotted rule, 2 position indexes and a 3-
tuple of sets of constrained nodes.

The dotted rule A(H,N,F) → α • β means
that there exists a node A in the parse tree with
antecedentsH ∪N ∪F . Elements of the sequence
α are also nodes of the parse tree. For the sequence
β, the elements have the form Bk(Hk) where Bk

is a node of the parse tree and Hk is a subset of its
antecedents, the predicted antecedents.

This item asserts that a syntactic tree can be par-
tially built from the input grammar and sentence,
that contains A � [A1 . . . AkB1 . . . Bl] and that
PP (A1) ◦ · · · ◦ PP (Ak) = [mi+1 . . .mj].

The proper use of constrained nodes is managed
by O, U and D:

• Nodes in D are available in prediction to find
antecedents for new parse tree nodes.

• Nodes in O must be used in a sub-parse. To
use an item as a completer, O must be empty.

• U contains constrained nodes that have been
used in a prediction, and for which the con-
straining nodes have not been completed yet.

Moreover, we will use 3 additional symbols: >
as the left-hand side of the axiom item which can
be seen as a dummy root, and � or � that mark
items for which prediction is not terminated.

We will need sequences of antecedents that re-
spect the order relations of an IG. Given a set of
nodes N , we define the set of all these orderings:

ord(N) = {[N1 . . .Nk]|
(Ni)1≤i≤k is a partition of N∧
1 ≤ i ≤ k,Ni is superposable ∧
if n1, n2 ∈ N and n1 ≺ n2 then
∃1 ≤ j < k s.t. n1 ∈ Nj and n2 ∈ Nj+1∧

if n1, n2 ∈ N and n1 ≺+ n2 then
∃1 ≤ i < j ≤ k s.t. n1 ∈ Ni and n2 ∈ Nj}

3.2 Deductive Rules
In this section, we assume an input sentence s =
w1, . . . , wn and a IG G = {Σ,C, S,P, phon}.
Axiom This rule creates the first item. It pre-
pares the prediction of a node of category S start-
ing at position 0 without constrained nodes.

[> → •S(∅), 0, 0, (∅, ∅, ∅)]ax

66

Prediction This rule initializes a sub-parse. We
divide it in three in order to introduce the different
constraints one at a time.

[A(H,N,F)→ α • C(HC)β, i, j, (O,U,D)]
[C(HC , ∅, ∅)→ �, j, j, (∅, U,D ∪O)]

p1

In this first step, we initialize a new sub-parse
at the current position j where C will be the pre-
dicted node that we want to find antecedents for. If
some antecedentsHC have already been predicted
we use them. The nodes in O, that must be used
in one of the sub-parse of A, become available as
possible antecedents for C.

[C(HC , ∅, ∅)→ �, j, j, (∅, U1, D1)]
[C(HC , NC , ∅)→ �, j, j, (∅, U2, D2)]

p2





HC ∪NC 6= ∅
HC ∪NC is superposable
NC ⊂ D1 ∪ roots(P)
D2 = D1 −NC

U2 = U1 ∪ (D1 ∩NC)

In this second step, new antecedents for C are
added from the set NC , chosen among available
nodes in D1 and root nodes from the PTDs of
the grammar. The 3 node sets are then updated.
Constrained nodes that have been chosen as an-
tecedents for C are not available anymore and are
added to the set of used constrained nodes.

[C(HC , NC , ∅)→ �, j, j, (∅, U,D)]
[C(HC , NC , FC)→ •γ, j, j, (O,U,D)]

p3





HC ∪NC ∪ FC is saturated
γ ∈ ord((HC ∪NC ∪ FC)>)
FC =

⋃
iQi, Q0 ⊆ (HC ∪NC)>∗

, Qi+1 ⊆ Q>∗
i

O = (HC ∪NC ∪ FC)>∗ − FC

no anchor node in HC ∪NC ∪ FC

In this last step of prediction, we can choose
new antecedents for C among nodes constrained
by antecedents already chosen in the previous
steps in order to saturate them. This choice is re-
cursive : each added antecedent triggers the pos-
sibility of choosing the nodes it constrains. The
second part of this step consists of predicting the
shape of the tree. We need to order and superpose
the daughter nodes of the antecedents in such a
way that ordering relations in PTDs are respected:
an element of ord((HC ∪NC ∪ FC)>) is chosen.

Finally, the nodes that must be used in a sub-
parse are the ones that are constrained by an-
tecedents of C and not antecedents themselves.

Scan This is the rule that checks predictions
against the input string. It is similar to the previ-
ous rule, but one (and only one) of the antecedents
must be an anchor.

[C(HC , NC , ∅)→ �, j, j, (∅, U,D)]
[C(HC , NC , FC)→ •, j, j + 1, (∅, U,D)]

s





HC ∪NC ∪ FC is saturated
(HC ∪NC ∪ FC)> = ∅
FC =

⋃
iQi, Q0 ⊆ (HC ∪NC)>∗

, Qi+1 ⊆ Q>∗
i

(HC ∪NC ∪ FC)>∗ − FC = ∅
one anchor a in HC ∪NC ∪ FC

phon(a) = wj+1

If the expected terminal is read on the input
string, parsing can proceed. Note that antecedents
for C should not constrain nodes that are not an-
tecedents of C themselves.

Completion This rule extends a parse by com-
bining it with a complete sub-parse.

[A(H,N,F)→ α • C(Hc)β, i, j, (O1, U1, D1)]
[C(HC , NC , FC)→ γ•, j, k, (∅, U2, D2)]
[A(H,N,F)→ αC • β, i, k, (O3, U3, D3)]

c





NC ⊆ D1 ∪O1 ∪ P
D2 ⊆ (D1 ∪O1)−NC

U1 ⊆ U2

O3 = O1 − U2

D3 = D1 − U2

U3 = U2 −O1

We have to make sure that the second hypothe-
sis is a sub-parse for the first : (1) the set of avail-
able nodes in the sub-parse must be a subset of
the available nodes for current parse, (2) the set of
used nodes in the main parse must be a subset of
the used nodes in the sub-parse and (3) used nodes
constrained by the first hypothesis disappear.

Goal Parsing is successful if the following item
is created : [> → S•, 0, n, (∅, ∅, ∅)].

4 Discussion

4.1 Consistency and completeness
An item [A(H,N,F)→ α•β, i, j, (O,U,D)] as-
serts the following invariants :

67

• A and the elements αl of α are models for
saturated sets of nodes. Conditions 1, 7 and 3
(reflexive case) of a model are respected.

• Elements βk of β are superposable. Then we
have βk ⊆ (A−1)> (conditions 2 and 6).

• the sequence αβ is compatible with the order
relations from the PTDs (conditions 4 and 5).

• PP (α1) ◦ . . . ◦ PP (αl) = [wi+1 · · ·wj]

• a node N in U is a constrained node in re-
lation >∗ with a node such that condition 3
holds.

These invariants can be checked by induction
on rules. Hence, such an item asserts there exists a
function J from the nodes of a subset of the PTDs
of an IG to a syntactic tree with its root labelled
by S and phonological projection w1 . . . wj . This
function has the same properties as the function I
for models but conditions 2 to 5 only apply if both
nodes are in the domain of J . The parsing process
extends the domain until (1) all the nodes of each
PTD selected are used and (2) the input string has
been read completely. Then J defines a syntactic
tree which is a parse tree.

4.2 Sources of non-determinism

The parsing problem in IGs is a NP-hard prob-
lem (Bonfante et al., 2003). Our presentation lets
us see several sources of non-determinism.

In p2, new antecedents are chosen among avail-
able nodes and root nodes of PTDs from the in-
put grammar. There is an exponential number of
such choices. However, IGs are lexicalized : only
PTDs associated with a word in the sentence will
be used and efficient lexical filters have been de-
veloped for IGs (Bonfante et al., 2006) that drasti-
cally decrease the number of PTDs to consider.

In p3 and s, constrained nodes can be chosen as
antecedents (nodes in FC). There is again an ex-
ponential number of such choices. But in existing
IGs, nodes have at most one successor by >∗ and
there is no chain of nodes in relation by >∗. Con-
sequently, |FC | can be bounded by |HC ∪NC |.

In p3, daughters must be partitioned. Instead of
building all these partitions in p3 and generating
many useless items, one can think of a lazy ap-
proach like the one proposed by (Nederhof et al.,
2003) for pomset-CFGS.

It can be noticed that the completion rule, while
having the most positional indexes, is not a partic-
ular source of non-determinism.

5 Conclusion

We presented a parsing algorithm for IGs. Al-
though we used a simplified version without polar-
ized feature structures, adding a unification mech-
anism shouldn’t be an issue. The novelty of
this presentation is the use of deductive parsing
for a formalism developed in the model-theoretic
framework (Pullum and Scholz, 2001).

This change of perspective provides new in-
sights on the causes of non-determinism. It is
a first step to a precise complexity study of the
problem. In the future, it will be interesting to
search for algorithmical approximations to im-
prove efficiency. Another way to overcome NP-
hardness is to restrict superpositions, as in (k-)TT-
MCTAGs (Kallmeyer and Parmentier, 2008).

References
G. Bonfante, B. Guillaume, and G. Perrier. 2003.

Analyse syntaxique électrostatique. Traitement Au-
tomatique des Langues, 44(3).

G. Bonfante, J. Le Roux, and G. Perrier. 2006. Lexi-
cal disambiguation with polarities and automata. In
Proceedings of CIAA.

J. Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

B. Guillaume and G. Perrier. 2008. Interaction Gram-
mars. Research Report RR-6621, INRIA.

L. Kallmeyer and Y. Parmentier. 2008. On the relation
between TT-MCTAG and RCG. In Proceedings of
LATA.

M.J. Nederhof, G. Satta, and S. Shieber. 2003. Par-
tially ordered multiset context-free grammars and
ID/LP parsing. In Proceedings of IWPT.

G. Pullum and B. Scholz. 2001. On the distinction be-
tween model-theoretic and generative-enumerative
syntactic frameworks. In Proccedings of LACL.

O. Rambow, K. Vijay-Shanker, and D. Weir. 1995. D-
tree grammars. In Proceedings of ACL.

S. Shieber, Y. Schabes, and F. Pereira. 1995. Principles
and implementation of deductive parsing. Journal of
Logic Programming, 24(1–2):3–36.

68

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 69–72,
Paris, October 2009. c©2009 Association for Computational Linguistics

Synchronous Rewriting in Treebanks

Laura Kallmeyer
University of Tübingen

Tübingen, Germany
lk@sfs.uni-tuebingen.de

Wolfgang Maier
University of Tübingen

Tübingen, Germany
wo.maier@uni-tuebingen.de

Giorgio Satta
University of Padua

Padova, Italy
satta@dei.unipd.it

Abstract

Several formalisms have been proposed
for modeling trees with discontinuous
phrases. Some of these formalisms allow
for synchronous rewriting. However, it
is unclear whether synchronous rewriting
is a necessary feature. This is an impor-
tant question, since synchronous rewrit-
ing greatly increases parsing complexity.
We present a characterization of recursive
synchronous rewriting in constituent tree-
banks with discontinuous annotation. An
empirical investigation reveals that syn-
chronous rewriting is actually a neces-
sary feature. Furthermore, we transfer this
property to grammars extracted from tree-
banks.

1 Introduction

Discontinuous phrases are frequent in natural
language, particularly in languages with a rela-
tively free word order. Several formalisms have
been proposed in the literature for modeling trees
containing such phrases. These include non-
projective dependency grammar (Nivre, 2006),
discontinuous phrase structure grammar (DPSG)
(Bunt et al., 1987), as well as linear context-
free rewriting systems (LCFRS) (Vijay-Shanker et
al., 1987) and the equivalent formalism of sim-
ple range concatenation grammar (sRCG) (Boul-
lier, 2000). Kuhlmann (2007) uses LCFRS for
non-projective dependency trees. DPSG have
been used in Plaehn (2004) for data-driven pars-
ing of treebanks with discontinuous constituent
annotation. Maier and Søgaard (2008) extract
sRCGs from treebanks with discontinuous con-
stituent structures.

Both LCFRS and sRCG can model discontinu-
ities and allow for synchronous rewriting as well.
We speak of synchronous rewriting when two or

more context-free derivation processes are instan-
tiated in a synchronous way. DPSG, which has
also been proposed for modeling discontinuities,
does not allow for synchronous rewriting because
the different discontinuous parts of the yield of a
non-terminal are treated locally, i.e., their deriva-
tions are independent from each other. So far, syn-
chronous rewriting has not been empirically mo-
tivated by linguistic data from treebanks. In this
paper, we fill this gap by investigating the exis-
tence of structures indicating synchronous rewrit-
ing in treebanks with discontinuous annotations.
The question of whether we can find evidence for
synchronous rewriting has consequences for the
complexity of parsing. In fact, parsing with syn-
chronous formalisms can be carried out in time
polynomial in the length of the input string, with
a polynomial degree depending on the maximum
number of synchronous branches one can find in
derivations (Seki et al., 1991).

In this paper, we characterize synchronous
rewriting as a property of trees with crossing
branches and in an empirical evaluation, we con-
firm that treebanks do contain recursive syn-
chronous rewriting which can be linguistically
motivated. Furthermore, we show how this char-
acterization transfers to the simple RCGs describ-
ing these trees.

2 Synchronous Rewriting Trees in
German treebanks

By synchronous rewriting we indicate the syn-
chronous instantiation of two or more context-free
derivation processes. As an example, consider the
languageL = {anbncndn | n ≥ 1}. Each
of the two halves of somew ∈ L can be ob-
tained through a stand-alone context-free deriva-
tion, but forw to be inL the two derivations must
be synchronized somehow. For certain tasks, syn-
chronous rewriting is a desired property for a for-
malism. In machine translation, e.g., synchronous

69

rewriting is extensively used to model the syn-
chronous dependence between the source and tar-
get languages (Chiang, 2007). The question we
are concerned with in this paper is whether we can
find instances of recursive synchronous rewriting
in treebanks that show discontinuous phrases.

We make the assumption that, if the annota-
tion of a treebank allows to express synchronous
rewriting, then all cases of synchronous rewriting
are present in the annotation. This means that, on
the one hand, there are no cases of synchronous
rewriting that the annotator “forgot” to encode.
Therefore unrelated cases of parallel iterations in
different parts of a tree are taken to be truly unre-
lated. On the other hand, if synchronous rewrit-
ing is annotated explicitely, then we take it to be a
case of true synchronous rewriting, even if, based
on the string, it would be possible to find an anal-
ysis that does not require synchronous rewriting.
This assumption allows us to concentrate only on
explicit cases of synchronous rewriting .

We concentrate on German treebanks annotated
with trees with crossing branches. In such trees,
synchronous rewriting amounts to cases where dif-
ferent components of a non-terminal category de-
velop in parallel. In particular, we search for cases
where the parallelism can be iterated. An exam-
ple is the relative clause in (1), found in TIGER.
Fig. 1 gives the annotation. As can be seen in
the annotation, we have two VP nodes, each of
which has a discontinuous span consisting of two
parts. The two parts are separated by lexical ma-
terial not belonging to the VPs. The two com-
ponents of the second VP (Pop-Idol andwerden)
are included in the two components of the first,
higher, VP (genausogut auch Pop-Idoland wer-
den k̈onnen). In other words, the two VP compo-
nents are rewritten in parallel containing again two
smaller VP components.

(1) . . . der
. . . who

genausogut
as well

auch
also

Pop-Idol
pop-star

hätte
AUX

werden
become

können
could

“who could as well also become a pop-star”

Let us assume the following definitions: We
map the elements of a string to their positions. We
then say that the yieldΥ of a noden in a tree is
the set of all indicesi such thatn dominates the
leaf labeled with theith terminal. A yieldΥ has a
gap if there arei1 < i2 < i3 such thati1, i3 ∈ Υ
andi2 /∈ Υ. For all i, j ∈ Υ with i < j, the set
Υ〈i,j〉 = {k | i ≤ k ≤ j} is a component ofΥ if
Υ〈i,j〉 ⊆ Υ andi−1 /∈ Υ andj+1 /∈ Υ. We order

the components ofΥ such thatΥ〈i1,j1〉 < Υ〈i2,j2〉
if i1 < i2.

Trees showingrecursive synchronous rewrit-
ing can be characterized as follows: We have a
non-terminal noden1 with label A whose yield
has a gap.n1 dominates another noden2 with la-
belA such that for somei 6= j, theith component
of the yield ofn2 is contained in theith component
of the yield ofn1 and similar for thejth compo-
nent. We call the path fromn1 to n2 a recursive
synchronous rewriting segment (RSRS).

Table 1 shows the results obtained from search-
ing for recursive synchronous rewriting in the Ger-
man TIGER and NeGra treebanks. In a prepro-
cessing step, punctuation has been removed, since
it is directly attached to the root node and therefore
not included in the annotation.

TIGER NeGra
number of trees 40,013 20,597

total num. of RSRS in all trees 1476 600
av. RSRS length in all trees 2.13 2.12

max. RSRS length in all trees 5 4

Table 1: Synchronous rewriting in treebanks

Example (1) shows that we find instances of re-
cursive synchronous rewriting where each of the
rewriting steps adds something to both of the par-
allel components. (1) was not an isolated case.

The annotation of (1) in Fig. 1 could be turned
into a context-free structure if the lowest node
dominating the material in the gap while not
dominating the synchronous rewriting nodes (here
VAFIN) is attached lower, namely below the lower
VP node. (Note however that there is good linguis-
tic motivation for attaching it high.) Besides such
cases, we even encountered cases where the dis-
continuity cannot be removed this way. An exam-
ple is (2) (resp. Fig. 2) where we have a gap con-
taining an NP such that the lowest node dominat-
ing this NP while not dominating the synchronous
rewriting nodes has a daughter to the right of the
yields of the synchronous rewriting nodes, namely
the extraposed relative clause. This structure is of
the typeancbnd, wherea and b depend on each
other in a left-to-right order and can be nested,
andc andd also depend on each other and must
be generated together. This is a structure that re-
quires synchronous rewriting, even on the basis of
the string language. Note that the nesting of VPs
can be iterated, as can be seen in (3).

(2) . . . ob
. . . whether

auf
on

deren
their

Gelände
premises

der
the

Typ
type

von
of

70

S

VP

VP

PRELS ADV ADV NN VAFIN VAINF VMINF
der genausogut auch Pop-Idol hätte werden können

Figure 1: Example for recursive synchronous rewriting

Abstellanlage
parking facility

gebaut
built

werden
be

könne,
could,

der
which

. . .

. . .
“whether on their premises precisely the type of parking
facility could be built, which . . . ”

(3) . . . ob
. . . whether

auf
on

deren
their

Gelände
premises

der
the

Typ
type

von
of

Abstellanlage
parking facility

eigentlich
actually

hätte
had

schon
already

gebaut
built

werden
be

sollen,
should,

der
which

. . .

. . .
“whether on their premises precisely the type of parking
facility should actually already have been built, which
. . . ”

As a conclusion from these empirical results,
we state that to account for the data we can find in
treebanks with discontinuities, i.e., with crossing
branches, we need a formalism that can express
synchronous rewriting.

3 Synchronous Rewriting in Grammars
Extracted from Treebanks

In the following, we will use simple RCG (which
are equivalent to LCFRS) to model our treebank
annotations. We extract simple RCG rewriting
rules from NeGra and TIGER and check them for
the possibility to generate recursive synchronous
rewriting.

A simple RCG (Boullier, 2000) is a tupleG =
(N,T, V, P, S) where a)N is a finite set of pred-
icate names with an arity functiondim: N → N,
b) T andV are disjoint finite sets of terminals and
variables, c)P is a finite set of clauses of the form

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1))

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

for m ≥ 0 whereA,A1, . . . , Am ∈ N , X
(i)
j ∈

V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) andαi ∈
(T ∪ V)∗ for 1 ≤ i ≤ dim(A), and e)S ∈ N is
the start predicate name withdim(S) = 1. For all
c ∈ P , it holds that every variableX occurring in
c occurs exactly once in the left-hand side (LHS)
and exactly once in the RHS. A simple RCGG =
(N,T, V, P, S) is a simplek-RCG if for all A ∈
N, dim(A) ≤ k.

For the definition of the language of a simple

RCG, we borrow the LCFRS definitions here: Let
G = 〈N,T, V, P, S〉 be a simple RCG. For every
A ∈ N , we define the yield ofA, yield(A) as
follows:

a) For everyA(~α) → ε, ~α ∈ yield(A);

b) For every clause

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)

dim(A1)
)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

and all ~τi ∈ yield(Ai) for 1 ≤ i ≤ m,
〈f(α1), . . . , f(αdim(A))〉 ∈ yield(A) where
f is defined as follows:

(i) f(t) = t for all t ∈ T ,

(ii) f(X(i)
j) = ~τi(j) for all 1 ≤ i ≤ m, 1 ≤

j ≤ dim(Ai) and

(iii) f(xy) = f(x)f(y) for all x, y ∈ (T ∪
V)+.

c) Nothing else is inyield(A).

The language is then{w | 〈w〉 ∈ yield(S)}.
We are using the algorithm from Maier and

Søgaard (2008) to extract simple RCGs from Ne-
Gra and TIGER. For the tree in Fig. 1, the algo-
rithm produces for instance the following clauses:

PRELS(der)→ ε
ADV(genausogut)→ ε
. . .
S(X1X2X3X4) → PRELS(X1)VP2(X1,X4) VAFIN(X3)
VP2(X1X2X3,X4X5) → ADV(X1) ADV(X2)

VP2(X3,X4) VMINF(X5)
VP2(X1,X2) → NN(X1) VAINF(X2)

We distinguish different usages of the same cat-
egory depending on their numbers of yield com-
ponents. E.g., we distinguish non-terminals VP1,
VP2, . . . depending on the arity of the VP. We de-
fine cat(A) for A ∈ N as the category ofA, inde-
pendent from the arity, e.g.,cat(VP2) =VP.

In terms of simple RCG, synchronous rewrit-
ing means that in a single clause distinct variables
occurring in two different arguments of the LHS
predicate are passed to two different arguments of
the same RHS predicate. We call thisrecursive

71

S
NP

VP
VP

VP
PP NP

ob auf dem Gelände der Typ von Abstellanlage . . . hätte . . . gebaut werden sollen, der. . .

Figure 2: Iterable treebank example for synchronous rewriting

if, by a sequence of synchronous rewriting steps,
we can reach the same two arguments of the same
predicate again. Derivations using such cycles of
synchronous rewriting lead exactly to the recursive
synchronous rewriting trees characterized in sec-
tion 2. In the following, we check to which extent
the extracted simple RCG allows for such cycles.

In order to detect synchronous rewriting in a
simple k-RCG G, we build a labeled directed
graphG = (VG , EG , l) from the grammar with
VG a set of nodes,EG a set of arcs andl :
VG → N ′ × {0, . . . , k} × {0, . . . , k} whereN ′ =
{cat(A) |A ∈ N} a labeling function.G is con-
structed as follows. For each clauseA0(~α) →
A1(~α1) . . . Am(~αm) ∈ P we consider all pairs of
variablesXs,Xt for which the following condi-
tions hold: (i)Xs andXt occur in different argu-
mentsi andj of A0, 1 ≤ i < j ≤ dim(A0); and
(ii) Xs andXt occur in different argumentsq and
r of the same occurrence of predicateAp in the
RHS,1 ≤ q < r ≤ dim(Ap) and1 ≤ p ≤ m.
For each of these pairs, two nodes with labels
[cat(A0), i, j] and[cat(Ap), q, r], respectively, are
added toVG (if they do not yet exist, otherwise we
take the already existing nodes) and a directed arc
from the first node to the second node is added to
EG . The intuition is that an arc inG represents
one or more clauses from the grammar in which
a gap between two variables in the LHS predicate
is transferred to the same RHS predicate. To de-
tect recursive synchronous rewriting, we then need
to discover all elementary cycles inG, i.e., all cy-
cles in which no vertex appears twice. In order to
accomplish this task efficiently, we exploit the al-
gorithm presented in Johnson (1975). On a gram-
mar extracted from NeGra (19,100 clauses), the
algorithm yields a graph with 28 nodes containing
206,403 cycles of an average length of 12.86 and
a maximal length of 28.

4 Conclusion

The starting point of this paper was the question
whether synchronous rewriting is a necessary fea-
ture of grammer formalisms for modelling natu-

ral languages. In order to answer this question,
we have characterized synchronous rewriting in
terms of properties of treebank trees with crossing
branches. Experiments have shown that recursive
cases of synchronous rewriting occur in treebanks
for German which leads to the conclusion that,
in order to model these data, we need formalisms
that allow for synchronous rewriting. In a second
part, we have extracted a simple RCG from these
treebanks and we have characterized the grammar
properties that are necessary to obtain recursive
synchronous rewriting. We then have investigated
the extent to which a grammar extracted from Ne-
Gra allows for recursive synchronous rewriting.

References
Pierre Boullier. 2000. Range concatenation grammars.

In Proceedings of IWPT.

Harry Bunt, Jan Thesingh, and Ko van der Sloot. 1987.
Discontinuous constituents in trees, rules and pars-
ing. In Proceedings of EACL.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics.

Donald B. Johnson. 1975. Finding all the elementary
circuits of a directed graph.SIAM Journal on Com-
puting.

Marco Kuhlmann. 2007.Dependency Structures and
Lexicalized Grammars. Dissertation, Saarland Uni-
versity.

Wolfgang Maier and Anders Søgaard. 2008. Tree-
banks and mild context-sensitivity. InProceedings
of Formal Grammar.

Joakim Nivre. 2006.Inductive Dependency Parsing.
Springer.

Oliver Plaehn. 2004. Computing the most probable
parse for a discontinuous phrase-structure grammar.
In New developments in parsing technology. Kluwer.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. 1991.
On multiple context-free grammars.Theoretical
Computer Science.

K. Vijay-Shanker, David Weir, and Aravind Joshi.
1987. Characterising structural descriptions used by
various formalisms. InProceedings of ACL.

72

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 73–76,
Paris, October 2009. c©2009 Association for Computational Linguistics

An Improved Oracle for Dependency Parsing with Online Reordering

Joakim Nivre?† Marco Kuhlmann? Johan Hall?
?Uppsala University, Department of Linguistics and Philology, SE-75126 Uppsala

†Växjö University, School of Mathematics and Systems Engineering, SE-35195 Växjö
E-mail: FIRSTNAME.LASTNAME@lingfil.uu.se

Abstract

We present an improved training strategy
for dependency parsers that use online re-
ordering to handle non-projective trees.
The new strategy improves both efficiency
and accuracy by reducing the number of
swap operations performed on non-project-
ive trees by up to 80%. We present state-of-
the-art results for five languages with the
best ever reported results for Czech.

1 Introduction

Recent work on dependency parsing has resulted in
considerable progress with respect to both accuracy
and efficiency, not least in the treatment of discon-
tinuous syntactic constructions, usually modeled
by non-projective dependency trees. While non-
projective dependency relations tend to be rare in
most languages (Kuhlmann and Nivre, 2006), it
is not uncommon that up to 25% of the sentences
have a structure that involves at least one non-pro-
jective relation, a relation that may be crucial for
an adequate analysis of predicate-argument struc-
ture. This makes the treatment of non-projectivity
central for accurate dependency parsing.

Unfortunately, parsing with unrestricted non-pro-
jective structures is a hard problem, for which exact
inference is not possible in polynomial time except
under drastic independence assumptions (McDon-
ald and Satta, 2007), and most data-driven parsers
therefore use approximate methods (Nivre et al.,
2006; McDonald et al., 2006). One recently ex-
plored approach is to perform online reordering
by swapping adjacent words of the input sentence
while building the dependency structure. Using this
technique, the system of Nivre (2009) processes
unrestricted non-projective structures with state-of-
the-art accuracy in observed linear time.

The normal procedure for training a transition-
based parser is to use an oracle that predicts an

optimal transition sequence for every dependency
tree in the training set, and then approximate this
oracle by a classifier. In this paper, we show that
the oracle used for training by Nivre (2009) is sub-
optimal because it eagerly swaps words as early
as possible and therefore makes a large number of
unnecessary transitions, which potentially affects
both efficiency and accuracy. We propose an altern-
ative oracle that reduces the number of transitions
by building larger structures before swapping, but
still handles arbitrary non-projective structures.

2 Background

The fundamental reason why sentences with non-
projective dependency trees are hard to parse is that
they contain dependencies between non-adjacent
substructures. The basic idea in online reordering
is to allow the parser to swap input words so that
all dependency arcs can be constructed between
adjacent subtrees. This idea is implemented in the
transition system proposed by Nivre (2009). The
first three transitions of this system (LEFT-ARC,
RIGHT-ARC, and SHIFT) are familiar from many
systems for transition-based dependency parsing
(Nivre, 2008). The only novelty is the SWAP trans-
ition, which permutes two nodes by moving the
second-topmost node from the stack back to the
input buffer while leaving the top node on the stack.

To understand how we can parse sentences with
non-projective dependency trees, in spite of the
fact that dependencies can only be added between
nodes that are adjacent on the stack, note that, for
any sentence x with dependency tree G, there is
always some permutation x′ of x such thatG is pro-
jective with respect to x′. There may be more than
one such permutation, but Nivre (2009) defines the
canonical projective order <G for x given G as
the order given by an inorder traversal of G that
respects the order < between a node and its direct
dependents. This is illustrated in Figure 1, where
the words of a sentence with a non-projective tree

73

ROOT Who did you send the letter to ?
0 6 1 2 3 4 5 7 8

ROOT

NMOD

P

VG

SUBJ

OBJ2

OBJ1

DET

Figure 1: Dependency tree for an English sentence with projective order annotation.

have been annotated with their positions in the pro-
jective order; reading the words in this order gives
the permuted string Did you send the letter who to?

3 Training Oracles

In order to train classifiers for transition-based pars-
ing, we need a training oracle, that is, a function
that maps every dependency tree T in the training
set to a transition sequence that derives T . While
every complete transition sequence determines a
unique dependency tree, the inverse does not neces-
sarily hold. This also means that it may be possible
to construct different training oracles. For simple
systems that are restricted to projective dependency
trees, such differences are usually trivial, but for
a system that allows online reordering there may
be genuine differences that can affect both the effi-
ciency and accuracy of the resulting parsers.

3.1 The Old Oracle

Figure 2 defines the original training oracle τ1 pro-
posed by Nivre (2009). This oracle follows an
eager reordering strategy; it predicts SWAP in every
configuration where this is possible. The basic in-
sight in this paper is that, by postponing swaps and
building as much of the tree structure as possible
before swapping, we can significantly decrease the
length of the transition sequence for a given sen-
tence and tree. This may benefit the efficiency of
the parser trained using the oracle, as each trans-
ition takes a certain time to predict and to execute.
Longer transition sequences may also be harder to
learn than shorter ones, which potentially affects
the accuracy of the parser.

3.2 A New Oracle

While it is desirable to delay a SWAP transition
for as long as possible, it is not trivial to find the

right time point to actually do the swap. To see
this, consider the dependency tree in Figure 1. In a
parse of this tree, the first configuration in which
swapping is possible is when who6 and did1 are the
two top nodes on the stack. In this configuration we
can delay the swap until did has combined with its
subject you by means of a RIGHT-ARC transition,
but if we do not swap in the second configuration
where this is possible, we eventually end up with
the stack [ROOT0,who6, did1, send3, to7]. Here we
cannot attach who to to by means of a LEFT-ARC

transition and get stuck.

In order to define the new oracle, we introduce
an auxiliary concept. Consider a modification of
the oracle τ1 from Figure 2 that cannot predict
SWAP transitions. This oracle will be able to pro-
duce valid transition sequences only for projective
target trees; for non-projective trees, it will fail to
reconstruct all dependency arcs. More specifically,
a parse with this oracle will end up in a configur-
ation in which the set of constructed dependency
arcs forms a set of projective dependency trees, not
necessarily a single such tree. We call the elements
of this set the maximal projective components of
the target tree. To illustrate the notion, we have
drawn boxes around nodes in the same component
in Figures 1.

Based on the concept of maximal projective com-
ponents, we define a new training oracle τ2, which
delays swapping as long as the next node in the
input is in the same maximal projective compon-
ent as the top node on the stack. The definition
of the new oracle τ2 is identical to that of τ1 ex-
cept that the third line is replaced by “SWAP if
c = ([σ|i, j], [k|β], Ac), j <G i, and MPC(j) 6=
MPC(k)”, where MPC(i) is the maximal project-
ive component of node i. As a special case, τ2
predicts SWAP if j <G i and the buffer B is empty.

74

τ1(c) =





LEFT-ARCl if c = ([σ|i, j], B,Ac), (j, l, i)∈A and Ai ⊆ Ac

RIGHT-ARCl if c = ([σ|i, j], B,Ac), (i, l, j)∈A and Aj ⊆ Ac

SWAP if c = ([σ|i, j], B,Ac) and j <G i

SHIFT otherwise

Figure 2: Training oracle τ1 for an arbitrary target tree G = (Vx, A), following the notation of Nivre
(2009), where c = (Σ,B,Ac) denotes a configuration c with stack Σ, input buffer B and arc set Ac. We
write Ai to denote the subset of A that only contains the outgoing arcs of the node i. (Note that Ac is the
arc set in configuration c, while A is the arc set in the target tree G.)

For example, in extracting the transition se-
quence for the target tree in Figure 1, the new oracle
will postpone swapping of did when you is the next
node in the input, but not postpone when the next
node is send. We can show that a parser informed
by the new training oracle can always proceed to
a terminal configuration, and still derive all (even
non-projective) dependency trees.

4 Experiments

We now test the hypothesis that the new training
oracle can improve both the accuracy and the ef-
ficiency of a transition-based dependency parser.
Our experiments are based on the same five data
sets as Nivre (2009). The training sets vary in size
from 28,750 tokens (1,534 sentences) for Slovene
to 1,249,408 tokens (72,703 sentences) for Czech,
while the test sets all consist of about 5,000 tokens.

4.1 Number of Transitions

For each language, we first parsed the training set
with both the old and the new training oracle. This
allowed us to compare the number of SWAP trans-
itions needed to parse all sentences with the two
oracles, shown in Table 1. We see that the reduction
is very substantial, ranging from 55% (for Czech)
to almost 84% (for Arabic). While this difference
does not affect the asymptotic complexity of pars-
ing, it may reduce the number of calls to the classi-
fier, which is where transition-based parsers spend
most of their time.

4.2 Parsing Accuracy

In order to assess whether the reduced number of
SWAP transitions also has a positive effect on pars-
ing accuracy, we trained two parsers for each of
the five languages, one for each oracle. All sys-
tems use SVM classifiers with a polynomial kernel
with features and parameters optimized separately

for each language and training oracle. The train-
ing data for these classifiers consist only of the
sequences derived by the oracles, which means that
the parser has no explicit notion of projective order
or maximal projective components at parsing time.

Table 2 shows the labeled parsing accuracy of the
parsers measured by the overall attachment score
(AS), as well as labeled precision, recall and (bal-
anced) F-score for non-projective dependencies.1

For comparison, we also give results for the two
best performing systems in the original CoNLL-X
shared task, Malt (Nivre et al., 2006) and MST (Mc-
Donald et al., 2006), as well as the combo system
MSTMalt, (Nivre and McDonald, 2008).

Looking first at the overall labeled attachment
score, we see that the new training oracle consist-
ently gives higher accuracy than the old one, with
differences of up to 0.5 percentage points (for Ar-
abic and Slovene), which is substantial given that
the frequency of non-projective dependencies is
only 0.4–1.9%. Because the test sets are so small,
none of the differences is statistically significant
(McNemar’s test, α = .05), but the consistent im-
provement over all languages nevertheless strongly
suggests that this is a genuine difference.

In relation to the state of the art, we note that
the parsers with online reordering significantly out-
perform Malt and MST on Czech and Slovene,
and MST on Turkish, and have significantly lower
scores than the combo system MSTMalt only for
Arabic and Danish. For Czech, the parser with
the new oracle actually has the highest attachment
score ever reported, although the difference with
respect to MSTMalt is not statistically significant.

Turning to the scores for non-projective depend-
encies, we again see that the new oracle consist-
ently gives higher scores than the old oracle, with

1These metrics are not meaningful for Arabic as the test
set only contains 11 non-projective dependencies.

75

Arabic Czech Danish Slovene Turkish
Old (τ1) 1416 57011 8296 2191 2828
New (τ2) 229 26208 1497 690 1253
Reduction (%) 83.8 55.0 82.0 68.5 55.7

Table 1: Number of SWAP transitions for the old (τ1) and new (τ2) training oracle.

Arabic Czech Danish Slovene Turkish
System AS AS P R F AS P R F AS P R F AS P R F
Old (τ1) 67.2 82.5 74.7 72.9 73.8 84.2 30.0 30.0 30.0 75.2 33.3 26.4 29.5 64.7 12.5 11.4 11.9
New (τ2) 67.5 82.7 79.3 71.0 79.3 84.3 38.2 32.5 35.1 75.7 60.6 27.6 37.9 65.0 14.3 13.2 13.7
Malt 66.7 78.4 76.3 57.9 65.8 84.8 45.8 27.5 34.4 70.3 45.9 20.7 25.1 65.7 16.7 9.2 11.9
MST 66.9 80.2 60.5 61.7 61.1 84.8 54.0 62.5 57.9 73.4 33.7 26.4 29.6 63.2 – 11.8 –
MSTMalt 68.6 82.3 63.9 69.2 66.1 86.7 63.0 60.0 61.5 75.9 31.6 27.6 29.5 66.3 11.1 9.2 10.1

Table 2: Labeled attachment score (AS) overall; precision (P), recall (R) and balanced F-score (F) for
non-projective dependencies. Old = τ1; New = τ2; Malt = Nivre et al. (2006), MST = McDonald et al.
(2006), MSTMalt = Nivre and McDonald (2008).

the single exception that the old one has marginally
higher recall for Czech. Moreover, the reordering
parser with the new oracle has higher F-score than
any other system for all languages except Danish.
Especially the result for Czech, with 79.3% preci-
sion and 71.0% recall, is remarkably good, making
the parser almost as accurate for non-projective de-
pendencies as it is for projective dependencies. It
seems likely that the good results for Czech are due
to the fact that Czech has the highest percentage of
non-projective structures in combination with the
(by far) largest training set.

5 Conclusion

We have presented a new training oracle for the
transition system originally presented in Nivre
(2009). This oracle postpones swapping as long as
possible but still fulfills the correctness criterion.
Our experimental results show that the new training
oracle can reduce the necessary number of swaps
by more than 80%, and that parsers trained in this
way achieve higher precision and recall on non-
projective dependency arcs as well as higher at-
tachment score overall. The results are particularly
good for languages with a high percentage of non-
projective dependencies, with an all-time best over
all metrics for Czech.

An interesting theoretical question is whether
the new oracle defined in this paper is optimal with
respect to minimizing the number of swaps. The an-
swer turns out to be negative, and it is possible to re-
duce the number of swaps even further by general-

izing the notion of maximal projective components
to maximal components that may be non-projective.
However, the characterization of these generalized
maximal components is non-trivial, and is therefore
an important problem for future research.

References
Marco Kuhlmann and Joakim Nivre. 2006. Mildly

non-projective dependency structures. In Proceed-
ings of the COLING/ACL 2006 Main Conference
Poster Sessions, pages 507–514.

Ryan McDonald and Giorgio Satta. 2007. On the
complexity of non-projective data-driven depend-
ency parsing. In Proceedings of IWPT, pages 122–
131.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a
two-stage discriminative parser. In Proceedings of
CoNLL, pages 216–220.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency pars-
ers. In Proceedings of ACL, pages 950–958.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Ery-
iğit, and Svetoslav Marinov. 2006. Labeled pseudo-
projective dependency parsing with support vector
machines. In Proceedings of CoNLL, pages 221–
225.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34:513–553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of ACL-
IJCNLP.

76

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 77–80,
Paris, October 2009. c©2009 Association for Computational Linguistics

Two stage constraint based hybrid approach to free word order lan-
guage dependency parsing

Akshar Bharati, Samar Husain, Dipti Misra and Rajeev Sangal
Language Technologies Research Centre, IIIT-Hyderabad, India

{samar, dipti, sangal}@mail.iiit.ac.in

Abstract

The paper describes the overall design of a
new two stage constraint based hybrid ap-
proach to dependency parsing. We define
the two stages and show how different
grammatical construct are parsed at appro-
priate stages. This division leads to selec-
tive identification and resolution of specif-
ic dependency relations at the two stages.
Furthermore, we show how the use of
hard constraints and soft constraints helps
us build an efficient and robust hybrid
parser. Finally, we evaluate the imple-
mented parser on Hindi and compare the
results with that of two data driven depen-
dency parsers.

1 Introduction

Due to the availability of annotated corpora for
various languages since the past decade, data
driven parsing has proved to be immensely suc-
cessful. Unlike English, however, most of the
parsers for morphologically rich free word order
(MoR-FWO) languages (such as Czech, Turkish,
Hindi, etc.) have adopted the dependency gram-
matical framework. It is well known that for
MoR-FWO languages, dependency framework
provides ease of linguistic analysis and is much
better suited to account for their various struc-
tures (Shieber, 1975; Mel'Cuk, 1988; Bharati et
al., 1995). The state of the art parsing accuracy
for many MoR-FWO languages is still low com-
pared to that of English. Parsing experiments
(Nivre et al., 2007; Hall et al., 2007) for these
languages have pointed towards various reasons
for this low performance. For Hindi1, (a) difficul-
ty in extracting relevant linguistic cues, (b) non-
projectivity, (c) lack of explicit cues, (d) long
distance dependencies, (e) complex linguistic
phenomena, and (f) less corpus size, have been
suggested (Bharati et al., 2008) for low perfor-

1 Hindi is a verb final language with free word order and
a rich case marking system. It is one of the official lan-
guages of India, and is spoken by ~800 million people.

mance. The approach proposed in this paper
shows how one can minimize these adverse ef-
fects and argues that a hybrid approach can prove
to be a better option to parsing such languages.
There have been, in the past, many attempts to
parsing using constraint based approaches. Some
recent works include (Debusmann et al., 2004;
Schröder, 2002; Bharati et al., 1993).

The paper describes the overall design of a
new two stage constraint based hybrid approach
to dependency parsing. We define the two stages
and show how different grammatical construct
are parsed at appropriate stages. This division
leads to selective identification and resolution of
specific dependency relations at two different
stages. Furthermore, we show how the use of
hard constraints (H-constraints) and soft con-
straints (S-constraints) helps us build an efficient
and robust hybrid parser. Specifically, H-con-
straints incorporate the knowledge base of the
language and S-constraints are weights corre-
sponding to various constraints. These weights
are automatically learnt from an annotated tree-
bank. Finally, we evaluate the implemented pars-
er on Hindi and compare the results with that of
two data driven dependency parsers.

2 Two Stage Parsing

The parser tries to analyze the given input sen-
tence, which has already been POS tagged and
chunked2, in 2 stages; it first tries to extract intra-
clausal3 dependency relations. These relations
generally correspond to the argument structure of
the verb, noun-noun genitive relation, infinitive-
verb relation, infinitive-noun relation, adjective-
noun, adverb-verb relations, etc. In the 2nd stage
it then tries to handle more complex relations
such as conjuncts, relative clause, etc. What this

2 A chunk is a set of adjacent words which are in depen-
dency relation with each other, and are connected to the
rest of the words by a single incoming arc. The parser
marks relations between the head of the chunks (inter-
chunk relations); this is done to avoid local details and
can be thought as a device for modularity.

3 A clause is a group of word such that the group con-
tains a single finite verb chunk.

77

essentially means is a 2-stage resolution of de-
pendencies, where the parser selectively resolves
the dependencies of various lexical heads at their
appropriate stage, for example verbs in the 1st

stage and conjuncts and inter-verb relations in
the 2nd stage. The key ideas of the proposed lay-
ered architecture are: (1) There are two layers
stages, (2) the 1st stage handles intra-clausal rela-
tions, and the 2nd stage handles inter-clausal rela-
tions, (3) the output of each layer is a linguisti-
cally valid partial parse that becomes, if neces-
sary, the input to the next layer, and (4) the out-
put of the final layer is the desired full parse.

By following the above approach we are able
to get 4-fold advantage, (1) Each layer in effect
does linguistically valid partial parsing, (2) by di-
viding the labels into different functional sets
(intra-clausal and inter-clausal) we localize the
dependencies that need to be identified, hence
the problem of long distance dependencies is
minimizes, (3) by attacking the problem in a
modular way, i.e. handling only individual claus-
es at 1st stage, we reduce non-projective struc-
tures significantly, and (4) the two stage con-
straint based approach can easily capture com-
plex linguistic cues that are difficult to learn via
the data-driven parsers. We’ll revisit these points
in Section 5. The 1st stage output for example 1 is
shown in figure 1 (a).
Eg. 1: mai ghar gayaa kyomki mai
 ’I’ ’home’ ’went’ ’because’ ’I’
 bimaar thaa
 ’sick’ ‘was’
 ‘I went home because I was sick’

Figure 1. Eg 1 (a): 1st stage output, (b): 2nd stage
final parse

In figure 1a, the parsed matrix clause subtree
‘mai ghar gayaa’ and the subordinate clause are
attached to _ROOT_. The subordinating conjunct
‘kyomki’ is also seen attached to the _ROOT_.
ROOT ensures that the parse we get after each
stage is connected and takes all the analyzed 1st

stage sub-trees along with unprocessed nodes as
its children. The dependency tree thus obtained

in the 1st stage is partial, but linguistically sound.
Later in the 2nd stage the relationship between
various clauses are identified. The 2nd stage parse
for the above sentences is also shown in figure
1b. Note that under normal conditions the 2nd

stage does not modify the parse sub-trees ob-
tained from the 1st stage, it only establishes the
relations between the clauses.

3 Hard and Soft Constraints

Both 1st and 2nd stage described in the previ-
ous section use linguistically motivated con-
straints. These hard constraints (H-constraints)
reflect that aspect of the grammar that in general
cannot be broken. H-constraints comprise of lex-
ical and structural knowledge of the language.
The H-constraints are converted into integer pro-
gramming problem and solved (Bharati et al.,
1995). The solution(s) is/are valid parse(s). The
soft constraints (S-constraints) on the other hand
are learnt as weights from an annotated treebank.
They reflect various preferences that a language
has towards various linguistic phenomena. They
are used to prioritize the parses and select the
best parse. Both H & S constraints reflect the lin-
guistic realities of the language and together can
be thought as the grammar of a language. Figure
2 shows the overall design of the proposed parser
schematically.

3.1 Hard Constraints

The core language knowledge being currently
considered that cannot be broken without the
sentence being called ungrammatical is named
H-constraints. There can be multiple parses
which can satisfy these H-constraints. This indi-
cates the ambiguity in the sentence if only the
limited knowledge base is considered. Stated an-
other way, H-constraints are insufficient to re-
strict multiple analysis of a given sentence and
that more knowledge (semantics, other prefer-
ences, etc.) is required to curtain the ambiguities.
Moreover, we know that many sentences are syn-
tactically ambiguous unless one uses some prag-
matic knowledge, etc. For all such constructions
there are multiple parses. As described earlier,
H-constraints are used during intra-clausal (1st

stage) and inter-clausal (2nd stage) analysis (cf.
Figure 2). They are used to form a constraint
graph which is converted into integer program-
ming equalities (or inequalities). These are then
solved to get the final solution graph(s). Some of
the H-constraints are: (1) Structural constraints
(ensuring the solution graph to be a tree,

78

Figure 2. Overall parser design
removing implausible language specific ungram-
matical structures, etc.), (2) Lexicon (linguistic
demands of various heads), and (3) Other lexi-
cal constraints (some language specific charac-
teristics), etc.

3.2 Soft Constraints

The S-constraints on the other hand are the con-
straints which can be broken, and are used in the
language as preferences. These are used during
the prioritization stage. Unlike the H-constraints
that are derived from a knowledge base and are
used to form a constraint graph, S-constraints
have weights assigned to them. These weights
are automatically learnt using a manually anno-
tated dependency treebank. The tree with the
maximum overall score is the best parse. Some
such S-constraints are, (1) Order of the argu-
ments, (2) Relative position of arguments w.r.t.
the verb, (3) Agreement principle, (4) Alignment
of prominence scale, and (5) Structural prefer-
ences/General graph properties (mild non-pro-
jectivity, valency, dominance, etc.), etc.

4 Evaluation

Malt Parser (version 0.4) (Nivre et al., 2007), and
MST Parser (version 0.4b) (McDonald et al.,
2005) have been tuned for Hindi by Bharati et al.
(2008). Parsers were trained on a subset of a Hin-
di Treebank (Begum et al., 2008a). We use the
same experimental setup (parameters, features,
etc.) used by them and compare the results of the
two data driven parsers with that of the proposed
constraint based hybrid parser (CBP) on the
same dataset4 in terms of

4 For details on the corpus type, annotation scheme,
tagset, etc. see Begum et al. (2008a).

unlabeled attachments (UA), label (L) and la-
beled attachment (LA) accuracy. In Table 1,
CBP’ shows the performance of the system when
a basic prioritizer is used, while CBP’’ shows it
for the best parse that is available in the first 25
parses. CBP gives the accuracy when the 1st

parse is selected. We show CBP’’ to show that a
good parse is available in as few as the first 25
parses and that once the prioritizer is further im-
proved the overall performance will easily cross
CBP’’.

 UA LA L
CBP 86.1 63 65

CBP’ 87.69 69.67 72.39
CBP” 90.1 75 76.9
MST 87.8 70.4 72.3
Malt 86.6 68.0 70.6

Table 1. Parser Evaluation

5 Observations

The initial results show that the proposed parser
performs better than the state-of-the-art data
driven Hindi parsers. There are various reasons
why we think that the proposed approach is bet-
ter suited to parsing MoR-FWO. (1) Complex
linguistic cues can easily be encoded as part of
various constraints. For example, it has been
shown by Bharati et al. (2008) that, for Hindi,
complex agreement patterns, though present in
the data, are not being learnt by data driven
parsers. Such patterns along with other idiosyn-
cratic language properties can be easily incorpo-
rated as constraints, (2) Making clauses as basic
parsing unit drastically reduces non-projective

79

sentences. Experiments in parsing MoR-FOW
have shown that such non-projective sentences
impede parser performances (Bharati et al., 2008;
Hall et al., 2007). Note that there will still remain
some intra-clausal non-projective structures in
the 1st stage, but they will be short distance de-
pendencies, (3) Use of H-constraints and S-con-
straints together reflect the grammar of a lan-
guage. The rules in the form of H-constraints are
complemented by the weights of S-constraints
learnt from the annotated corpus, (4) 2 stage
parsing lends itself seamlessly to parsing com-
plex sentences by modularizing the task of over-
all parsing, (5) the problem of label bias (Bharati
et al., 2008) faced by the data driven Hindi
parsers for some cases does not arise here as con-
textually similar entities are disambiguated by
tapping in hard to learn features, (6) Use of
clauses as basic parsing units reduces the search
space at both the stages, (7) Parsing closely relat-
ed languages will become easy.

The performance of our parser is affected due
to the following reasons, (a) Small lexicon (lin-
guistic demands of various heads): The total
number of such demand frames which the parser
currently uses is very low. There are a total of
around 300 frames, which have been divided into
20 verb classes (Begum et al., 2008b). As the
coverage of this lexicon increases, the efficiency
will automatically increase. (b) Unhandled con-
structions: The parser still doesn’t handle some
constructions, such as the case when a conjunct
takes another conjunct as its dependent, and (c)
Prioritization mistakes: As stated earlier the pri-
oritizer being used is basic and is still being im-
proved. The overall performance will increase
with the improvement of the prioritizer.

6 Conclusion

In this paper we proposed a new two stage con-
straint based hybrid approach to dependency
parsing. We showed how by modularizing the
task of overall parsing into 2 stages we can over-
come many problems faced by data driven pars-
ing. We showed how in the 1st stage only intra-
clausal dependencies are handled and later in the
2nd stage the inter-clausal dependencies are iden-
tified. We also briefly described the use of H-
constraints and S-constraints. We argued that
such constraints complement each other in get-
ting the best parse and that together they repre-
sent the grammar of the language. We evaluated
our system for Hindi with two data driven
parsers. Initial results show that the proposed

parser performs better than those parsers. Finally,
we argued why the proposed hybrid approach is
better suited to handle the challenges posed by
MoR-FWO and gave few pointers as how we can
further improve our performance.

The proposed parser is still being improved at
various fronts. To begin with a prioritization
mechanism has to be improved. We need to en-
rich the verb frame lexicon along with handling
some unhandled constructions. This will be taken
up as immediate future work.

References

R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai,
and R. Sangal. 2008a. Dependency annotation
scheme for Indian languages. Proc. of IJCNLP08.

R. Begum, S. Husain, D. Sharma and L. Bai. 2008b.
Developing Verb Frames in Hindi. Proc. of
LREC08.

A. Bharati, S. Husain, B. Ambati, S. Jain, D. Sharma
and R. Sangal. 2008. Two Semantic features make
all the difference in Parsing accuracy. Proc. of
ICON-08.

A. Bharati and R. Sangal. 1993. Parsing Free Word
Order Languages in the Paninian Framework.
Proc. of ACL: 93.

A. Bharati, V. Chaitanya and R. Sangal. 1995. Natu-
ral Language Processing: A Paninian Perspective,
Prentice-Hall of India, New Delhi.

R. Debusmann, D. Duchier and G. Kruijff. 2004. Ex-
tensible dependency grammar: A new methodolo-
gy. Proceedings of the Workshop on Recent Ad-
vances in Dependency Grammar, pp. 78–85.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi,
M. Nilsson and M. Saers. 2007. Single Malt or
Blended? A Study in Multilingual Parser Optimiza-
tion. Proc. of EMNLP-CoNLL shared task 2007.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic.
2005. Non-projective dependency parsing using
spanning tree algorithms. Proc. of HLT/EMNLP.

I. A. Mel'Cuk. 1988. Dependency Syntax: Theory and
Practice, State University Press of New York.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S.
Kübler, S. Marinov and E Marsi. 2007. MaltParser:
A language-independent system for data-driven de-
pendency parsing. NLE.

S. M. Shieber. 1985. Evidence against the context-
freeness of natural language. In Linguistics and
Philosophy, p. 8, 334–343.

I. Schröder. 2002. Natural Language Parsing with
Graded Constraints. PhD thesis, Hamburg Univ.

80

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 81–84,
Paris, October 2009. c©2009 Association for Computational Linguistics

Analysis of Discourse Structure with Syntactic Dependencies and
Data-Driven Shift-Reduce Parsing

 Kenji Sagae

USC Institute for Creative Technologies
Marina del Rey, CA 90292 USA

sagae@ict.usc.edu

Abstract

We present an efficient approach for dis-
course parsing within and across sen-
tences, where the unit of processing is an
entire document, and not a single sen-
tence. We apply shift-reduce algorithms
for dependency and constituent parsing to
determine syntactic dependencies for the
sentences in a document, and subse-
quently a Rhetorical Structure Theory
(RST) tree for the entire document. Our
results show that our linear-time shift-
reduce framework achieves high accu-
racy and a large improvement in effi-
ciency compared to a state-of-the-art ap-
proach based on chart parsing with dy-
namic programming.

1 Introduction

Transition-based dependency parsing using shift-
reduce algorithms is now in wide use for de-
pendency parsing, where the goal is to determine
the syntactic structure of sentences. State-of-the-
art results have been achieved for syntactic
analysis in a variety of languages (Bucholz and
Marsi, 2006). In contrast to graph-based ap-
proaches, which use edge-factoring to allow for
global optimization of parameters over entire tree
structures using dynamic programming or maxi-
mum spanning tree algorithms (McDonald et al.,
2005) transition-based models are usually opti-
mized at the level of individual shift-reduce ac-
tions, and can be used to drive parsers that pro-
duce competitive accuracy using greedy search
strategies in linear time.

Recent research in data-driven shift-reduce
parsing has shown that the basic algorithms used
for determining dependency trees (Nivre, 2004)
can be extended to produce constituent structures
(Sagae and Lavie, 2005), and more general de-

pendency graphs, where words can be linked to
more than one head (Henderson et al., 2008; Sa-
gae and Tsujii, 2008). A remarkably similar
parsing approach, which predates the current
wave of interest in data-driven shift-reduce pars-
ing sparked by Yamada and Matsumoto (2003)
and Nivre and Scholz (2004), was proposed by
Marcu (1999) for data-driven discourse parsing,
where the goal is to determine the rhetorical
structure of a document, including relationships
that span multiple sentences. The linear-time
shift-reduce framework is particularly well suited
for discourse parsing, since the length of the in-
put string depends on document length, not sen-
tence length, making cubic run-time chart pars-
ing algorithms often impractical.

Soricut and Marcu (2003) presented an ap-
proach to discourse parsing that relied on syntac-
tic information produced by the Charniak (2000)
parser, and used a standard bottom-up chart pars-
ing algorithm with dynamic programming to
determine discourse structure. Their approach
greatly improved on the accuracy of Marcu’s
shift-reduce approach, showing the value of us-
ing syntactic information in discourse analysis,
but recovered only discourse relations within
sentences.

We present an efficient approach to discourse
parsing using syntactic information, inspired by
Marcu’s application of a shift-reduce algorithm
for discourse analysis with Rhetorical Structure
Theory (RST), and Soricut and Marcu’s use of
syntactic structure to help determine discourse
structure. Our transition-based discourse parsing
framework combines elements from Nivre
(2004)’s approach to dependency parsing, and
Sagae and Lavie (2005)’s approach to constituent
parsing. Our results improve on accuracy over
existing approaches for data-driven RST parsing,
while also improving on speed over Soricut and
Marcu’s chart parsing approach, which produces
state-of-the-art results for RST discourse rela-
tions within sentences.

81

2 Discourse analysis with the RST Dis-
course Treebank

The discourse parsing approach presented here is
based on the formalization of Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988)
used in the RST Discourse Treebank (Carlson et
al., 2003). In this scheme, the discourse structure
of a document is represented as a tree, where the
leaves are contiguous spans of text, called ele-
mentary discourse units, or EDUs. Each node in
the tree corresponds to a contiguous span of text
formed by concatenation of the spans corre-
sponding to the node’s children, and represents a
rhetorical relation (attribution, enablement,
elaboration, consequence, etc.) between these
text segments. In addition, each node is marked
as a nucleus or as a satellite, depending on
whether its text span represents an essential unit
of information, or a supporting or background
unit of information, respectively. While the no-
tions of nucleus and satellite are in some ways
analogous to head and dependent in syntactic
dependencies, RST allows for multi-nuclear rela-
tions, where two nodes marked as nucleus can be
linked into one node.

Our parsing framework includes three compo-
nents: (1) syntactic dependency parsing, where
standard techniques for sentence-level parsing
are applied; (2) discourse segmentation, which
uses syntactic and lexical information to segment
text into EDUs; and (3) discourse parsing, which
produces a discourse structure tree from a string
of EDUs, also benefiting from syntactic informa-
tion. In contrast to the approach of Soricut and
Marcu (2003), which also includes syntactic
parsing, discourse segmentation and discourse
parsing, our approach assumes that the unit of
processing for discourse parsing is an entire
document, and that discourse relations may exist
within sentences as well as across sentences,
while Soricut and Marcu’s processes one sen-
tence at a time, independently, finding only dis-
course relations within individual sentences.
Parsing entire documents at a time is made pos-
sible in our approach through the use of linear-
time transition-based parsing. An additional mi-
nor difference is that in our approach syntactic
information is represented using dependencies,
while Soricut and Marcu used constituent trees.

2.1 Syntactic parsing and discourse seg-
mentation

Assuming the document has been segmented into
sentences, a task for which there are approaches

with very high accuracy (Gillick, 2009), we start
by finding the dependency structure for each sen-
tence. This includes part-of-speech (POS) tag-
ging using a CRF tagger trained on the Wall
Street Journal portion of the Penn Treebank, and
transition-based dependency parsing using the
shift-reduce arc-standard algorithm (Nivre, 2004)
trained with the averaged perceptron (Collins,
2002). The dependency parser is also trained
with the WSJ Penn Treebank, converted to de-
pendencies using the head percolation rules of
Yamada and Matsumoto (2003).

Discourse segmentation is performed as a bi-
nary classification task on each word, where the
decision is whether or not to insert an EDU
boundary between the word and the next word.
In a sentence of length n, containing the words
w1, w2 … wn, we perform one classification per
word, in order. For word wi, the binary choice is
whether to insert an EDU boundary between wi
and wi+1. The EDUs are then the words between
EDU boundaries (assuming boundaries exist in
the beginning and end of each sentence).

The features used for classification are: the
current word, its POS tag, its dependency label,
and the direction to its head (whether the head
appears before or after the word); the previous
two words, their POS tags and dependency la-
bels; the next two words, their POS tags and de-
pendency labels; the direction from the previous
word to its head; the leftmost dependent to the
right of the current word, and its POS tag; the
rightmost dependent to the left of the current
word, and its POS tag; whether the head of the
current word is between the previous EDU
boundary and the current word; whether the head
of the next word is between the previous EDU
boundary and the current word. In addition, we
used templates that combine these features (in
pairs or triples). Classification was done with
the averaged perceptron.

2.2 Transition-based discourse parsing

RST trees can be represented in a similar way as
constituent trees in the Penn Treebank, with a
few differences: the trees represent entire docu-
ments, instead of single sentences; the leaves of
the trees are EDUs consisting of one or more
contiguous words; and the node labels contain
nucleus/satellite status, and possibly the name of
a discourse relation. Once the document has
been segmented into a sequence of EDUs, we
use a transition-based constituent parsing ap-
proach (Sagae and Lavie, 2005) to build an RST
tree for the document.

82

Sagae and Lavie’s constituent parsing algo-
rithm uses a stack that holds subtrees, and con-
sumes the input string (in our case, a sequence of
EDUs) from left to right, using four types of ac-
tions: (1) shift, which removes the next token
from the input string, and pushes a subtree con-
taining exactly that token onto the stack; (2) re-
duce-unary-LABEL, which pops the stack, and
push onto it a new subtree where a node with
label LABEL dominates the subtree that was
popped (3) reduce-left-LABEL, and (4) reduce-
right-LABEL, which each pops two items from
the stack, and pushes onto it a new subtree with
root LABEL, which has as right child the subtree
previously on top of the stack, and as left child
the subtree previously immediately below the top
of the stack. The difference between reduce-left
and reduce-right is whether the head of the new
subtree comes from the left or right child. The
algorithm assumes trees are lexicalized, and in
our use of the algorithm for discourse parsing,
heads are entire EDUs, and not single words.

Our process for lexicalization of discourse
trees, which is required for the parsing algorithm
to function properly, is a simple percolation of
“head EDUs,” performed in the same way as
lexical heads can be assigned in Penn Treebank-
style trees using a head percolation table
(Collins, 1999). To determine head EDUs, we
use the nucleus/satellite status of nodes, as fol-
lows: for each node, the leftmost child with nu-
cleus status is the head; if no child is a nucleus,
the leftmost satellite is the head. Most nodes
have exactly two children, one nucleus and one
satellite. The parsing algorithm deals only with
binary trees. We use the same binarization trans-
form as Sagae and Lavie, converting the trees in
the training set to binary trees prior to training
the parser, and converting the binary trees pro-
duced by the parser at run-time into n-ary trees.

As with the dependency parser and discourse
segmenter, learning is performed using the aver-
aged perceptron. We use similar features as Sa-
gae and Lavie, with one main difference: since
there is usually no single head-word associated
with each node, but a EDU that contains a se-
quence of words, we use the dependency struc-
ture of the EDU to determine what lexical fea-
tures and POS tags should be used as features
associated with each RST tree node. In place of
the head-word and POS tag of the top four items
on the stack, and the next four items in the input,
we use subsets of the words and POS tags in the
EDUs for each of those items. The subset of
words (and POS tags) that represent an EDU

contain the first two and last words in the EDU,
and each word in the EDU whose head is outside
of the EDU. In the vast majority of EDUs, this
subset of words with heads outside the EDU (the
EDU head set) contains a single word. In addi-
tion, we extract these features for the top three
(not four) items on the stack, and the next three
(not four) words in the input. For the top two
items on the stack, in addition to subsets of
words and POS tags described above, we also
take the words and POS tags for the leftmost and
rightmost children of each word in the EDU head
set. Finally, we use feature templates that com-
bine these and other individual features from Sa-
gae and Lavie, who used a polynomial kernel
and had no need for such templates (at the cost of
increased time for both training and running).

3 Results

To test our discourse parsing approach, we used
the standard training and testing sections of the
RST Discourse Treebank and the compacted 18-
label set described by Carlson et al. (2003). We
used approximately 5% of the standard training
set as a development set.

Our part-of-speech tagger and syntactic parser
were not trained using the standard splits of the
Penn Treebank for those tasks, since there are
documents in the RST Discourse Treebank test
section that are included in the usual training sets
for POS taggers and parsers. The POS tagger
and syntactic parser were then trained on sec-
tions 2 to 21 of the WSJ Penn Treebank, exclud-
ing the specific documents used in the test sec-
tion of the RST Discourse Treebank.

Table 1 shows the precision, recall and f-score
of our discourse segmentation approach on the
test set, compared to that of Soricut and Marcu
(2003) and Marcu (1999). In all cases, results
were obtained with automatically produced syn-
tactic structures. We also include the total time
required for syntactic parsing (required in our

 Prec. Recall F-score Time
Marcu99 83.3 77.1 80.1 -
S&M03 83.5 82.7 83.1 361s
this work 87.4 86.0 86.7 40s

Table 1: Precision, recall, f-score and time
for discourse segmenters, tested on the RST
Discourse Treebank. Time includes syntactic
parsing, Charniak (2000) for S&M03, and
our implemetation of Nivre arc-standard for
our segmenter.

83

segmentation approach and Soricut and Marcu’s)
and segmentation. For comparison with previous
results, we include only segmentation within sen-
tences (if all discourse boundaries are counted,
including sentence boundaries, our f-score is
92.9).

Using our discourse segmentation and transi-
tion-based discourse parsing approach, we obtain
42.9 precision and 46.2 recall (44.5 f-score) for
all discourse structures in the test set. Table 2
shows f-score of labeled bracketing for discourse
relations within sentences only, for comparison
with previously published results. We note that
human performance on this task has f-score 77.0.

While our f-score is still far below that of hu-
man performance, we have achieved a large gain
in speed of processing compared to a state-of-
the-art approach.

4 Conclusion

We have presented an approach to discourse
analysis based on transition-based algorithms for
dependency and constituent trees. Dependency
parsing is used to determine the syntactic struc-
ture of text, which is then used in discourse seg-
mentation and parsing. A simple discriminative
approach to segmentation results in an overall
improvement in discourse parsing f-score, and
the use of a linear-time algorithm results in an a
large improvement in speed over a state-of-the-
art approach.

Acknowledgments

The work described here has been sponsored by
the U.S. Army Research, Development, and En-
gineering Command (RDECOM). Statements
and opinions expressed do not necessarily reflect
the position or the policy of the United States
Government, and no official endorsement should
be inferred.

References
Buchholz, S. and Marsi, E. 2006. CoNLL-X shared

task on multilingual dependency parsing. In Proc.
of CoNLL 2006 Shared Task.

Carlson, L., Marcu, D., and Okurowski, M. E. 2003.
Building a discourse-tagged corpus in the frame-
work of Rhetorical Structure Theory. In J. van
Kuppevelt and R. W. Smith, editors, Current and
New Directions in Discourse and Dialogue. Klu-
wer Academic Publishers.

Charniak, E. 2000. A maximum-entropy-inspired
parser. In Proc. of NAACL.

Collins, M. 1999. Head-driven statistical models for
natural language processing. PhD dissertation,
University of Pennsylvania.

Collins, M. 2002. Discriminative Training Methods
for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proc. of
EMNLP. Philadelphia, PA.

Gillick, D. 2009. Sentence Boundary Detection and
the Problem with the U.S. In Proc. of the NAACL
HLT: Short Papers. Boulder, Colorado.

Henderson, J., Merlo, P., Musillo, G., Titov, I. 2008.
A Latent Variable Model of Synchronous Parsing
for Syntactic and Semantic Dependencies. In Proc.
of CoNLL 2008 Shared Task, Manchester, UK.

Mann, W. C. and Thompson, S. A. 1988. Rhetorical
Structure Theory: toward a functional theory of
text organization. Text, 8(3):243-281.

Marcu, D. 1999. A decision-based approach to rhe-
torical parsing. In Proc. of the Annual Meeting of
the Association for Computational Linguistics.

McDonald, R., Pereira, F., Ribarov, K., and Hajic, J.
2005. Non-projective dependency parsing using
spanning tree algorithms. In Proc. of HLT/EMNLP.

Nivre, J. 2004. Incrementality in Deterministic De-
pendency Parsing. In Incremental Parsing: Bring-
ing Engineering and Cognition Together (work-
shop at ACL-2004). Barcelona, Spain.

Nivre, J. and Scholz, M. 2004. Deterministic Depend-
ency Parsing of English Text. In Proc. of COLING.

Sagae, K. and Lavie, A. 2005. A classifier-based
parser with linear run-time complexity. In Proc. of
IWPT.

Sagae, K. and Tsujii, J. 2008. Shift-reduce depend-
ency DAG parsing. In Proc. of COLING.

Soricut, R. and Marcu, D. 2003. Sentence level dis-
course parsing using syntactic and lexical informa-
tion. In Proc. of NAACL. Edmonton, Canada.

Yamada, H. and Matsumoto, Y. 2003. Statistical de-
pendency analysis with support vector machines. In
Proc. of IWPT.

 F-score Time
Marcu99 37.2 -
S&M03 49.0 481s
this work 52.9 69s
human 77.0 -

Table 2: F-score for bracketing of RST dis-
course trees on the test set of the RST Dis-
course Treebank, and total time (syntactic
parsing, segmentation and discourse parsing)
required to parse the test set (S&M03 and our
approach were run on the same hardware).

84

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 85–88,
Paris, October 2009. c©2009 Association for Computational Linguistics

Evaluating Contribution of Deep Syntactic Information
to Shallow Semantic Analysis

Sumire Uematsu Jun’ichi Tsujii
Graduate School of Information Science and Technology

The University of Tokyo
{uematsu,tsujii}@is.s.u-tokyo.ac.jp

Abstract
This paper presents shallow semantic pars-
ing based only on HPSG parses. An
HPSG-FrameNet map was constructed
from a semantically annotated corpus, and
semantic parsing was performed by map-
ping HPSG dependencies to FrameNet re-
lations. The semantic parsing was evalu-
ated in a Senseval-3 task; the results sug-
gested that there is a high contribution of
syntactic information to semantic analysis.

1 Introduction

This paper presents semantic parsing based only
on HPSG parses, and examines the contribution of
the syntactic information to semantic analysis.

In computational linguistics, many researchers
have studied the relationship between syntax and
semantics. Its quantitative analysis was formal-
ized as semantic parsing, or semantic role label-
ing, and has attracted the attention of researchers.

Recently, an improvement in the accuracy and
robustness of “deep parsers” has enabled us to di-
rectly map deep syntactic dependencies to seman-
tic relations. Deep parsers are based on linguisti-
cally expressive grammars; e.g. HPSG, LFG, etc,
and less affected by syntactic alternations such as
passivization. Their results are therefore expected
to closely relate to semantic annotations. For ex-
ample, the sentences in figure 1 share the same
set of semantic roles, and the roles have one-to-
one relations to deep syntactic dependencies in the
sentences. However, the results of the deep parsers
are represented in complex structures, shown in
figure 3, and cannot be straightforwardly com-
pared to semantic annotations.

In order to directly map the deep dependencies
to semantic relations, we adapted the corpus anal-
ysis method of (Frank and Semecký, 2004) for
the semantic parsing using HPSG parses. We per-
formed the semantic parsing by mapping paths in

HPSG parses to semantic predicate-argument re-
lations. The analysis of the HPSG paths for the
predicate-argument pairs, and the preliminary re-
sult of the semantic parsing indicate the contribu-
tion of syntactic analysis to semantic parsing.

2 Related Work

Besides (Frank and Semecký, 2004)’s work, as
mentioned above, there have been several studies
on the relationship between deep syntax and se-
mantic parsing. Although the studies did not focus
on direct mappings between deep syntax and shal-
low semantics, they suggested a strong relation-
ship between the two. (Miyao and Tsujii, 2004)
evaluated the accuracy of an HPSG parser against
PropBank semantic annotations, and showed that
the HPSG dependants correlated with semantic ar-
guments of the PropBank, particularly with “core”
arguments. In (Gildea and Hockenmaier, 2003)
and (Zhang et al., 2008), features from deep parses
were used for semantic parsing, together with fea-
tures from CFG or dependency parses. The deep
features were reported to contribute to a perfor-
mance gain.

3 Syntactic and Semantic Parsing

Some semantic relations are easily identified by
using syntactic parsing while others are more diffi-
cult. This section presents easy and difficult cases
in syntax-semantics map construction.

Trivial when using syntactic analysis: Syn-
tactic parsing, including CFG analysis, detects
semantic similarity of sentences sharing similar
phrase structures. For the example sentences a)
and b) in figure 1, the parsing provides similar
phrase structures, and therefore gives the same
syntactic dependency to occurrences of each role.

Trivial when using deep analysis: Deep pars-
ing reveals the semantic similarity of sentences

85

a) …, ICommunicator praise themEvaluee for being 99 percent perfectReason.

b) …, but heCommunicator praised the Irish premierEvaluee for making a ``sensible’’ speechReason.

…, HeEvaluee has been particularly praised as an exponent of …,

d) …, SheCommunicator was supposed, therefore, to praise himEvaluee and then …

c) The childEvaluee is praised for having a dry bedReason and …

e) ItEvaluee received high praise, …

f) AliceWearer ’s dress

g) Versace’s dress

Figure 1: Sentences with a set of semantic roles for the predicate praise.

a) …, ICommunicator praise themEvaluee for being 99 percent perfectReason.

b) …, but heCommunicator praised the Irish premierEvaluee for making a ``sensible’’ speechReason.

…, HeEvaluee has been particularly praised as an exponent of …,

d) …, SheCommunicator was supposed, therefore, to praise himEvaluee and then …

c) The childEvaluee is praised for having a dry bedReason and …

e) ItEvaluee received high praise, …

f) AliceWearer ’s dress

g) Versace’s dress

Figure 2: Example phrases
for section 3.

Mary

Head‐Complement schema

Head‐Subject schema

likes

SYNSEM|LOCAL

CAT

CONT|HOOK

HEAD

VAL

3

6

VFORM: fin

verb

AUX: none

SUBJ: < >
1
COMP:< >
2

verb_arg12

PRED: “like”

ARG1:
 4
ARG2:
 5

The

SYNSEM:
 LOCAL

CAT

CONT|HOOK

HEAD: det

VAL| SPEC: < >
8

det_arg1

PRED: “the”

ARG1:
 4

7

LOCAL
2

noun_arg0

PRED: “Mary”

CAT

CONT|HOOK

HEAD

VAL

CASE: acc

noun

AGR: 3sg

5

SUBJ: < >

COMP:< >

SYNSEM:

girl

noun_arg0

PRED: “girl”

SPR: < >

LOCAL
CAT

CONT|HOOK

HEAD

VAL

CASE: nom

noun

AGR: 3sg

4

SUBJ: < >

COMP:< >

7

SYNSEM:
8

Head‐Specifier schema

1 SYNSEM:
 LOCAL
CAT

CONT|HOOK:

HEAD

VAL

CASE: nom

noun

AGR: 3sg

4

SUBJ: < >

COMP:< >

SYNSEM|LOCAL

CAT

CONT|HOOK:

HEAD:

VAL

3

6

SUBJ: < >
1
COMP:< >

SYNSEM|LOCAL

CAT

CONT|HOOK:

HEAD:

VAL

3

6

SUBJ: < >

COMP:< >

Figure 3: An HPSG parse for The girl likes Mary.

containing complex syntactic phenomena, which
is not easily detected by CFG analysis. The sen-
tences c) and d) in figure 1 contain passivization
and object raising, while deep parsing provides
one dependency for each role in the figure.

Not trivial even when using deep analysis:
Some semantic arguments are not direct syntactic
dependants of their predicates - especially of noun
predicates. In sentence e) in figure 2, the Evaluee
phrase depends on the predicate praise, through
the support verb receive. The deep analysis would
be advantageous in capturing such dependencies,
because it provides receive with direct links to the
phrases of the role and the predicate.

Problematic when using only syntactic analy-
sis: Sometimes, the semantic role of a phrase is
strongly dependent on the type of the mentioned
entity, rather than on the syntactic dependency. In
phrases f) and g) in figure 2, the phrases Alice and
Versace, have the same syntactic relation to the
predicate dress. However, the Wearer role is given
only to the former phrase.

4 A Wide-Coverage HPSG Parser

We employed a wide-coverage HPSG parser for
semantic parsing, and used deep syntactic depen-
dencies encoded in a Predicate Argument Struc-
ture (PAS) in each parse node.

In our experiments, the parser results were con-
sidered as graphs, as illustrated by figures 3 and 4,
to extract HPSG dependencies conveniently. The

The girl likes Mary.

verb_arg12
 noun_arg0
noun_arg0
det_arg1

ARG1

ARG2
ARG1

Figure 4: A simplified representation of figure 3.

graph is obtained by ignoring most of the linguis-
tic information in the original parse nodes, and
by adding edges directing to the PAS dependants.
The PAS information is represented in the graph,
by the terminal nodes’ PAS types, e.g. verb arg12,
etc., and by the added edges. Note that the inter-
pretation of the edge labels depends on the PAS
type. If the PAS type is verb arg12, the ARG2 de-
pendant is the object of the transitive verb or its
equivalence (the subject of the passive, etc.). If
the PAS type is prep arg12, then the dependant is
the NP governed by the preposition node.

5 Semantic Parsing Based on FrameNet

We employed FrameNet (FN) as a semantic cor-
pus. Furthermore, we evaluated our semantic pars-
ing on the SRL task data of Senseval-3 (Litkowski,
2004), which consists of FN annotations.

In FN, semantic frames are defined, and each
frame is associated with predicates that evoke the
frame. For instance, the verb and noun praise are
predicates of the Judgment communication frame,
and they share the same set of semantic roles.

The Senseval-3 data is a standard for evaluation
of semantic parsing. The task is defined as identi-
fying phrases and their semantic roles for a given
sentence, predicate, and frame. The data includes
null instantiations of roles1, which are “conceptu-
ally salient”, but do not appear in the text.

6 Methods

The semantic parsing using an HPSG-FN map
consisted of the processes shown in figure 5.

1An example of a null instantiation is the Communicator
role in the sentence, “All in all the conference was acclaimed
as a considerable success.”

86

Map construc,on

HPSG
parsing

Raw sentences

Seman,c annota,ons

Training data

HPSG parses

Phrase
projec,on

HPSG parses with
seman,cally
marked nodes

HPSG dependency
extrac,on

HPSG dependency between
predicate1 and role1

Map instances

HPSG dependency between
predicate1 and role2

HPSG
parsing

Raw sentences

Predicate annota,ons

Test data

HPSG parses

Phrase
projec,on

HPSG parses with
nodes marked as

predicates

Role node
predic,on

Feature filter

HPSG parses with
seman,cally
marked nodes

Role predic,on rules

Seman,c parsing (Map evalua,on)

Figure 5: Processes in the map construction and evaluation.

It recieved high praise, …

adj_arg1
verb_arg12
noun_arg0

ARG2

ARG1
ARG1

Evaluee role

noun_arg0

Figure 6: an HPSG path for a
semantic relation.

Predicate base: The base form of the semantic
predicate word. (praise in the case of figure 6).
Predicate type: The PAS type of the HPSG
terminal node for the predicate - see section 4.
(noun arg0 in figure 6).
Intermediate word base: The base form of the
intermediate word, corresponding to a terminal
passed by the path, and satisfying pre-defined
conditions. The word may be a support verb.
- see figure 6. (receive in figure 6).
Intermediate word type: The PAS type of the
intermediate word. (verb arg12 in figure 6).
Dependency label sequence: The labels of
the path’s edges. We omitted labels presenting
head-child relations, for identifying a phrase with
another phrase sharing the same head word.
(Reverse of ARG2, ARG1 in figure 6).

Table 1: Features used to represent a HPSG path.

Filter Pred. Inter. Dep.
base type base type label

Same
√ √ √ √ √

AllInter
√ √ √ √

AllPred
√ √ √ √

AllPred-AllInter
√ √ √

Table 2: Syntactic features for role prediction.

Phrase projection: Because we used FN anno-
tations, which are independent of any syntactic
framework, role phrases needed to be projected
to appropriate HPSG nodes. We projected the
phrases based on maximal projection, which was
generally employed, with heads defined in the
HPSG.

HPSG dependency extraction: As an HPSG
dependency for a predicate-argument pair, we
used the shortest path between the predicate node
and the argument node in the HPSG parse. The

path was then represented by pre-defined fea-
tures, listed in table 1. The search for the short-
est path was done in the simplified graph of the
HPSG parse (see figure 4), with the edges denot-
ing deep dependencies, and head-child relations.
An instance of the HPSG-FN map consisted of the
path’s features, the FN frame, and the role label.

Role node prediction: The role prediction was
based on simple rules with scores. The rules were
obtained by filtering features of the map instances.
Table 2 shows the feature filters. The score of a
rule was the number of map instances matching
the rule’s features. In the test, for each node of a
HPSG parse, the role label with the highest score
was selected as the result, where the score of a la-
bel was that of the rule providing the label.

7 Experiments

For the experiments, we employed a wide cover-
age HPSG parser, Enju version 2.3.12, and the data
for the Semantic Role Labeling task of Senseval-3.

7.1 Analysis of Map Instances

We extracted 41,193 HPSG-FN map instances
from the training set, the training data apart from
the development set. The instances amounted to
97.7 % (41,193 / 42,163) of all the non-null in-
stantiated roles in the set, and HPSG paths were
short for many instances. Paths to syntactic ar-
guments were almost directly mapped to semantic
roles, while roles for other phrases were more am-
biguous.

The length distribution of HPSG paths: 64 %
(26410 / 41193) of the obtained HPSG paths were
length-one, and 8 % (3390 / 41193) were length-
two, due to the effect of direct links provided by
HPSG parsing. The length of a path was defined

2http://www-tsujii.is.s.u-tokyo.ac.jp/enju/

87

Pred. Freq. Feature representation Interpretation
Verb 3792 verb arg12/–/–/ARG2 The object of the transitive predicate

3191 verb arg12/–/–/ARG1 The subject of the transitive predicate
Noun 7468 noun arg0/–/–/– NP headed by the predicate

1161 noun arg0/of/prep arg12/Rev-ARG1 The PP headed by “of”, attaching to the predicate
Adj 1595 adj arg1/–/–/ARG1 The modifiee of the predicate

274 verb arg12/–/–/ARG2 The modifiee of the predicate treated as a verb

Table 3: Most frequent syntactic paths extracted for predicates of each POS.

as the number of the labels in the Dep. label seq.
of the path. Most of the one-length paths were
paths directing to syntactic arguments, and to PPs
attaching to the predicates. The two-length paths
included paths using support verbs (see figure 6).

Most frequent HPSG dependencies: The most
frequent paths are shown in table 3; syntactic de-
pendencies are presented and counted as taples of
Pred. type, Inter. base, Inter. type, and Dep.
label seq. The interpretation column describes
the syntactic dependencies for the taples. Note
that the column denotes normalized dependencies,
in which object indicates objects of active voice
verbs, subjects of passive-voiced verbs, etc.

7.2 Performance of Semantic Parsing
Finally, semantic parsing was evaluated on the test
data. Table 4 shows the overall performance. The
scores were measured by the Senseval-3 official
script, in the restrictive setting, and can be directly
compared to other systems’ scores. Since our pre-
liminary system of semantic parsing ignored null
instantiations of roles, it lost around 0.10 point
of the recalls. We believe that such instantia-
tions may be separately treated. Although the sys-
tem was based on only the syntactic information,
and was very naı̈ve, the system’s performance was
promising, and showed the high contribution of
syntactic dependencies for semantic parsing.

8 Conclusion

This paper presents semantic parsing based on
only HPSG parses, and investigates the contribu-
tion of syntactic information to semantic parsing.

We constructed an HPSG-FN map by finding
the HPSG paths that corresponded to semantic re-
lations, and used it as role prediction rules in se-
mantic parsing. The semantic parsing was evalu-
ated on the SRL task data of Senseval-3. Although
the preliminary system used only the syntactic in-
formation, the performance was promising, and

Rule set Prec. Overlap Recall
Same 0.799 0.783 0.518
AllInter 0.599 0.586 0.589
AllPred 0.472 0.462 0.709
AllPred-AllInter 0.344 0.335 0.712
Senseval-3 best 0.899 0.882 0.772
Senseval-3 4th best 0.802 0.784 0.654

Table 4: Semantic parsing result on the test data.

indicated that syntactic dependencies may make
significant contribution to semantic analysis.

This paper also suggests a limit of the seman-
tic analysis based purely on syntax. A next step
for accurate HPSG-FN mapping could be analy-
sis of the interaction between the HPSG-FN map
and other information, such as named entity types
which were shown to be effective in many studies.

Acknowledgments

This work was partially supported by Grant-in-Aid
for Specially Promoted Research (MEXT, Japan)
and Special Coordination Funds for Promoting
Science and Technology (MEXT, Japan).

References
Anette Frank and Jiřı́ Semecký. 2004. Corpus-based

induction of an LFG syntax-semantics interface for
frame semantic processing. In Proc. of International
Workshop on Linguistically Interpreted Corpora.

Daniel Gildea and Julia Hockenmaier. 2003. Identi-
fying semantic roles using combinatory categorial
grammar. In Proc. of EMNLP.

Ken Litkowski. 2004. Senseval-3 task: Automatic la-
beling of semantic roles. In Proc. of Senseval-3.

Yusuke Miyao and Jun’ichi Tsujii. 2004. Deep lin-
guistic analysis for the accurate identification of
predicate-argument relations. In Proc. of Coling.

Yi Zhang, Rui Wang, and Hans Uszkoreit. 2008. Hy-
brid learning of dependency structures from hetero-
geneous linguistic resources. In Proc. of CoNLL.

88

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 89–98,
Paris, October 2009. c©2009 Association for Computational Linguistics

Weight pushing and binarization for fixed-grammar parsing

Matt Post and Daniel Gildea
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

We apply the idea ofweight pushing
(Mohri, 1997) to CKY parsing with fixed
context-free grammars. Applied after
rule binarization, weight pushing takes the
weight from the original grammar rule and
pushes it down across its binarized pieces,
allowing the parser to make better prun-
ing decisions earlier in the parsing pro-
cess. This process can be viewed as gen-
eralizing weight pushing from transduc-
ers to hypergraphs. We examine its ef-
fect on parsing efficiency with various bi-
narization schemes applied to tree sub-
stitution grammars from previous work.
We find that weight pushing produces dra-
matic improvements in efficiency, espe-
cially with small amounts of time and with
large grammars.

1 Introduction

Fixed grammar-parsing refers to parsing that em-
ploys grammars comprising a finite set of rules
that is fixed before inference time. This is in
contrast to markovized grammars (Collins, 1999;
Charniak, 2000), variants of tree-adjoining gram-
mars (Chiang, 2000), or grammars with wildcard
rules (Bod, 2001), all of which allow the con-
struction and use of rules not seen in the training
data. Fixed grammars must be binarized (either
explicitly or implicitly) in order to maintain the
O(n3|G|) (n the sentence length,|G| the grammar
size) complexity of algorithms such as the CKY
algorithm.

Recently, Song et al. (2008) explored different
methods of binarization of a PCFG read directly
from the Penn Treebank (the Treebank PCFG),

showing that binarization has a significant effect
on both the number of rules and new nontermi-
nals introduced, and subsequently on parsing time.
This variation occurs because different binariza-
tion schemes produce different amounts of shared
rules, which are rules produced during the bina-
rization process from more than one rule in the
original grammar. Increasing sharing reduces the
amount of state that the parser must explore. Bina-
rization has also been investigated in the context of
parsing-based approaches to machine translation,
where it has been shown that paying careful atten-
tion to the binarization scheme can produce much
faster decoders (Zhang et al., 2006; Huang, 2007;
DeNero et al., 2009).

The choice of binarization scheme will not af-
fect parsing results if the parser is permitted to ex-
plore the whole search space. In practice, how-
ever, this space is too large, so parsers use prun-
ing to discard unlikely hypotheses. This presents
a problem for bottom-up parsing algorithms be-
cause of the way the probability of a rule is dis-
tributed among its binarized pieces: The standard
approach is to place all of that probability on the
top-level binarized rule, and to set the probabilities
of lower binarized pieces to 1.0. Because these
rules are reconstructed from the bottom up, prun-
ing procedures do not have a good estimate of the
complete cost of a rule until the entire original rule
has been reconstructed. It is preferable to have this
information earlier on, especially for larger rules.

In this paper we adapt the technique ofweight
pushing for finite state transducers (Mohri, 1997)
to arbitrary binarizations of context-free grammar
rules. Weight pushing takes the probability (or,
more generally, the weight) of a rule in the origi-
nal grammar and pushes it down across the rule’s
binarized pieces. This helps the parser make bet-

89

ter pruning decisions, and to make them earlier in
the bottom-up parsing process. We investigate this
algorithm with different binarization schemes and
grammars, and find that it improves the time vs.
accuracy tradeoff for parsers roughly proportion-
ally to the size of the grammar being binarized.

This paper extends the work of Song et al.
(2008) in three ways. First, weight pushing fur-
ther reduces the amount of time required for pars-
ing. Second, we apply these techniques to Tree
Substitution Grammars (TSGs) learned from the
Treebank, which are both larger and more accu-
rate than the context-free grammar read directly
from the Treebank.1 Third, we examine the inter-
action between binarization schemes and the in-
exact search heuristic of beam-based andk-best
pruning.

2 Weight pushing

2.1 Binarization

Not all binarization schemes are equivalent in
terms of efficiency of representation. Consider the
grammar in the lefthand column of Figure 1 (rules
1 and 2). If this grammar is right-binarized or
left-binarized, it will produce seven rules, whereas
the optimal binarization (depicted) produces only
5 rules due to the fact that two of them are shared.
Since the complexity of parsing with CKY is a
function of the grammar size as well as the input
sentence length, and since in practice parsing re-
quires significant pruning, having a smaller gram-
mar with maximal shared substructure among the
rules is desirable.

We investigate two kinds of binarization in this
paper. The first is right binarization, in which non-
terminal pairs are collapsed beginning from the
two rightmost children and moving leftward. The
second is a greedy binarization, similar to that of
Schmid (2004), in which the most frequently oc-
curring (grammar-wide) nonterminal pair is col-
lapsed in turn, according to the algorithm given in
Figure 2.

Binarization must ensure that the product of the
probabilities of the binarized pieces is the same as
that of the original rule. The easiest way to do
this is to assign each newly-created binarized rule
a probability of 1.0, and give the top-level rule the
complete probability of the original rule. In the
following subsection, we describe a better way.

1The mean rule rank in a Treebank PCFG is 2.14, while
the mean rank in our sampled TSG is 8.51. See Table 1.

NP

a JJ NN NN PP

〈〈JJ:NN〉:NN〉

〈JJ:NN〉 NN

JJ NN

〈a:〈〈JJ:NN〉:NN〉〉

a

PP

NP
E

C

B

A

1Rule

NP

the JJ NN NN

Rule 2

〈〈JJ:NN〉:NN〉

〈JJ:NN〉 NN

JJ NN

NP

the

A

B

D

Figure 1: A two-rule grammar. The greedy
binarization algorithm produces the binarization
shown, with the shared structure highlighted. Bi-
narized rules A, B, and C are initially assigned
a probability of 1.0, while rules D and E are as-
signed the original probabilities of rules 2 and 1,
respectively.

2.2 Weight pushing

Spreading the weight of an original rule across
its binarized pieces is complicated by sharing,
because of the constraint that the probability of
shared binarized pieces must be set so that the
product of their probabilities is the same as the
original rule, for each rule the shared piece partici-
pates in. Mohri (1997) introducedweight pushing
as a step in the minimization of weighted finite-
state transducers (FSTs), which addressed a sim-
ilar problem for tasks employing finite-state ma-
chinery. At a high level, weight pushing moves
the weight of a path towards the initial state, sub-
ject to the constraint that the weight of each path
in the FST is unchanged. To do weight pushing,
one first computes for each stateq in the trans-
ducer the shortest distanced(q) to any final state.
Let σ(q, a) be the state transition function, deter-
ministically transitioning on inputa from stateq to
stateσ(q, a). Pushing adjusts the weight of each
edgew(e) according to the following formula:

w′(e) = d(q)−1 × w(e)× d(σ(q, a)) (1)

Mohri (1997, §3.7) and Mohri and Riley (2001)
discuss how these operations can be applied us-
ing various semirings; in this paper we use the
(max,×) semiring. The important observation for
our purposes is that pushing can be thought of as a
sequence of local operations on individual nodes

90

1: function GREEDYBINARIZE(P)
2: while RANK(P) > 2 do
3: κ := UPDATECOUNTS(P)
4: for each ruleX → x1x2 · · ·xr do
5: b := argmaxi∈(2···r) κ[xi−1, xi]
6: l := 〈xb−1 : xb〉
7: addl → xb−1xb to P
8: replacexb−1xb with l in rule

9: function UPDATECOUNTS(P)
10: κ := {} ⊲ a dictionary
11: for each ruleX → x1x2 · · ·xr ∈ P do
12: for i ∈ (2 · · · r) do
13: κ[xi−1, xi]++

return κ

Figure 2: A greedy binarization algorithm. The
rank of a grammar is the rank of its largest rule.
Our implementation updates the counts inκ more
efficiently, but we present it this way for clarity.

q, shifting a constant amount of weightd(q)−1

from q’s outgoing edges to its incoming edges.
Klein and Manning (2003) describe an encod-

ing of context-free grammar rule binarization that
permits weight pushing to be applied. Their ap-
proach, however, works only with left or right bi-
narizations whose rules can be encoded as an FST.
We propose a form of weight pushing that works
for arbitrary binarizations. Weight pushing across
a grammar can be viewed as generalizing push-
ing from weighted transducers to a certain kind of
weighted hypergraph. To begin, we use the fol-
lowing definition of a hypergraph:

Definition. A hypergraph H is a tuple
〈V, E, F, R〉, whereV is a set of nodes,E is a
set of hyperedges,F ⊂ V is a set of final nodes,
andR is a set of permissible weights on the hy-
peredges. Each hyperedgee ∈ E is a triple
〈T (e), h(e), w(e)〉, whereh(e) ∈ V is its head
node,T (e) is a sequence of tail nodes, andw(e) is
its weight.

We can arrange the binarized rules of Figure 1
into a shared hypergraph forest (Figure 3), with
nodes as nonterminals and binarized rules as hy-
peredges. We distinguish between final and non-
final nodes and hyperedges. Nonfinal nodes are
those inV −F . Nonfinal hyperdgesENF are those
in {e : h(e) ∈ V − F}, that is, all hyperedges
whose head is a nonfinal node. Because all nodes
introduced by our binarization procedure expand
deterministically, each nonfinal node is the head
of no more than one such hyperedge. Initially, all

0.6/1.0

0.4/0.67̅

1.0/0.6

1.0/1.0

1.0/1.0

〈〈JJ:NN〉:NN〉

〈JJ:NN〉 NN

JJ NN

NP

the

〈a:〈〈JJ:NN〉:NN〉〉

a

PP

Figure 3: The binarized rules of Figure 1 arranged
in a shared hypergraph forest. Each hyperedge is
labeled with its weight before/after pushing.

nonfinal hyperedges have a probability of 1, and fi-
nal hyperedges have a probability equal to the that
of the original unbinarized rule. Each path through
the forest exactly identifies a binarization of a rule
in the original grammar, and hyperpaths overlap
where binarized rules are shared.

Weight pushing in this hypergraph is similar to
weight pushing in a transducer. We consider each
nonfinal nodev in the graph and execute a local
operation that moves weight in some way from the
set of edges{e : v ∈ T (e)} (v’s outgoing hyper-
edges) to the edgeeh for which v = h(e) (v’s
incoming hyperedge).

A critical difference from pushing in trans-
ducers is that a node in a hyperpath may be
used more than once. Consider adding the rule
NP→JJ NN JJ NN to the binarized two-rule gram-
mar we have been considering. Greedy binariza-
tion could2 binarize it in the following manner

NP → 〈JJ:NN〉 〈JJ:NN〉
〈JJ:NN〉 → JJ NN

which would yield the hypergraph in Figure 4. In
order to maintain hyperpath weights, a pushing
procedure at the〈JJ:NN〉 node must pay attention
to the number of times it appears in the set of tail
nodes of each outgoing hyperedge.

2Depending on the order in which theargmax variablei
of Line 5 from the algorithm in Figure 2 is considered. This
particular binarization would not have been produced if the
values2 . . . r were tested sequentially.

91

0.6/1.0

0.3/0.5

1.0/0.6

1.0/1.0

1.0/1.0

0.1/0.27̅

〈〈JJ:NN〉:NN〉

〈JJ:NN〉 NN

JJ NN

NP

the

〈a:〈〈JJ:NN〉:NN〉〉

a

PP

Figure 4: A hypergraph containing a hyperpath
representing a rule using the same binarized piece
twice. Hyperedge weights are again shown be-
fore/after pushing.

With these similarities and differences in mind,
we can define the local weight pushing procedure.
For each nonfinal nodev in the hypergraph, we
defineeh as the edge for whichh(e) = v (as be-
fore), P = {e : v ∈ T (e)} (the set of outgo-
ing hyperedges), andc(v, T (e)) as the number of
timesv appears in the sequence of tail nodesT (e).
The minimum amount of probability available for
pushing is then

max{ c(v,T (e))
√

w(e) : e ∈ P} (2)

This amount can then be multiplied intow(eh) and
divided out of each edgee ∈ P . This max is a
lower bound because we have to ensure that the
amount of probability we divide out of the weight
of each outgoing hyperedge isat least as large as
that of the maximum weight.

While finite state transducers each have a
unique equivalent transducer on which no further
pushing is possible, defined by Equation 1, this is
not the case when operating on hypergraphs. In
this generalized setting, the choice of which tail
nodes to push weight across can result in differ-
ent final solutions. We must define a strategy for
choosing among sequences of pushing operations,
and for this we now turn to a discussion of the
specifics of our algorithm.

2.3 Algorithm

We present two variants.Maximal pushing, analo-
gous to weight pushing in weighted FSTs, pushes
the original rule’s weight down as far as pos-
sible. Analysis of interactions between pruning

1: function DIFFUSEWEIGHTS(PBIN , Π)
2: R := bottom-up sort ofPBIN

3: for each ruler ∈ R do
4: r.pr := max{ c(r,p)

√
p.pr : p ∈ Π(r)}

5: for each rulep ∈ Π(r) do
6: p.pr := p.pr/r.prc(r,p)

Figure 6: Maximal weight pushing algorithm ap-
plied to a binarized grammar,PBIN . Π is a dictio-
nary mapping from an internal binary rule to a list
of top-level binary rules that it appeared under.

and maximal pushing discovered situations where
maximal pushing resulted in search error (see
§4.2). To address this, we also discussnthroot
pushing, which attempts to distribute the weight
more evenly across its pieces, by taking advantage
of the fact that Equation 2 is a lower bound on the
amount of probability available for pushing.

The algorithm for maximal pushing is listed
in Figure 6, and works in the following manner.
When binarizing we maintain, for each binarized
piece, a list of all the original rules that share
it. We then distribute that original rule’s weight
by considering each of these binarized pieces in
bottom-up topological order and setting the prob-
ability of the piece to the maximum (remaining)
probability of these parents. This amount is then
divided out of each of the parents, and the process
continues. See Figure 5 for a depiction of this pro-
cess. Note that, although we defined pushing as a
local operation between adjacent hyperedges, it is
safe to move probability mass from the top-level
directly to the bottom (as we do here). Intuitively,
we can imagine this as a series of local pushing
operations on all intervening nodes; the end result
is the same.

For nthroot pushing, we need to maintain a dic-
tionaryδ which records, for each binary piece, the
rank (number of items on the rule’s righthand side)
of the original rule it came from. This is accom-
plished by replacing line 4 in Figure 6 with

r.pr := max{ (δ(p)−1)·c(r,p)
√

p.pr : p ∈ Π(r)}
Applying weight pushing to a binarized PCFG

results in a grammar that is not a PCFG, be-
cause rule probabilities for each lefthand side
no longer sum to one. However, the tree dis-
tribution, as well as the conditional distribution
P(tree|string) (which are what matter for parsing)
are unchanged. To show this, we argue from
the algorithm in Figure 6, demonstrating that, for

92

step A B C D E
0 1.0 1.0 1.0 x y

1 max(x, y) · · x
max(x,y)

y
max(x,y)

2 · max(z1,D, z1,E) · z1,D

max(z1,D,z1,E)
z1,D

max(z1,D,z1,E)

3 · · max(z2,D, z2,E) z2,D

max(z2,D,z2,E)
z2,E

max(z2,D,z2,E)

4 · · · · ·

Figure 5: Stepping through the maximal weight pushing algorithm for the binarized grammar in Figure 1.
Rule labels A through E were chosen so that the binarized pieces are sorted in topological order. A (·)
indicates a rule whose value has not changed from the previous step, and the valuezr,c denotes the value
in row r columnc.

each rule in the original grammar, its probability
is equal to the product of the probabilities of its
pieces in the binarized grammar. This invariant
holds at the start of the algorithm (because the
probability of each original rule was placed en-
tirely at the top-level rule, and all other pieces re-
ceived a probability of 1.0) and is also true at the
end of each iteration of the outer loop. Consider
this loop. Each iteration considers a single binary
piece (line 3), determines the amount of probabil-
ity to claim from the parents that share it (line 4),
and then removes this amount of weight from each
of its parents (lines 5 and 6). There are two impor-
tant considerations.

1. A binarized rule piece may be used more than
once in the reconstruction of an original rule;
this is important because we are assigning
probabilities to binarized ruletypes, but rule
reconstruction makes use of binarized ruleto-
kens.

2. Multiplying together two probabilities results
in a lower number: when we shift weightp
from the parent rule to (n instances of) a bi-
narized piece beneath it, we are creating a
new set of probabilitiespc andpp such that
pn

c · pp = p, wherepc is the weight placed on
the binarized rule type, andpp is the weight
we leave at the parent. This means that we
must choosepc from the range[p, 1.0].3

In light of these considerations, the weight re-
moved from each parent rule in line 6 must be
greater than or equal to each parent sharing the
binarized rule piece. To ensure this, line 4 takes

3The upper bound of 1.0 is set to avoid assigning a nega-
tive weight to a rule.

the maximum of thec(r, p)th root of each parent’s
probability, wherec(r, p) is the number of times
binarized rule tokenr appears in the binarization
of p.

Line 4 breaks the invariant, but line 6 restores it
for each parent rule the current piece takes part in.
From this it can be seen that weight pushing does
not change the product of the probabilities of the
binarized pieces for each rule in the grammar, and
hence the tree distribution is also unchanged.

We note that, although Figures 3 and 4 show
only one final node, any number of final nodes can
appear if binarized pieces are shared across differ-
ent top-level nonterminals (which our implemen-
tation permits and which does indeed occur).

3 Experimental setup

We present results from four different grammars:

1. The standard Treebank probabilistic context-
free grammar (PCFG).

2. A “spinal” tree substitution grammar (TSG),
produced by extractingn lexicalized subtrees
from each lengthn sentence in the training
data. Each subtree is defined as the sequence
of CFG rules from leaf upward all sharing the
same lexical head, according to the Mager-
man head-selection rules (Collins, 1999). We
detach the top-level unary rule, and add in
counts from the Treebank CFG rules.

3. A “minimal subset” TSG, extracted and then
refined according to the process defined in
Bod (2001). For each heighth, 2 ≤ h ≤ 14,
400,000 subtrees are randomly sampled from
the trees in the training data, and the counts

93

rank
grammar # rules median mean max
PCFG 46K 1 2.14 51
spinal 190K 3 3.36 51
sampled 804K 8 8.51 70
minimal 2,566K 10 10.22 62

Table 1: Grammar statistics. A rule’s rank is the
number of symbols on its right-hand side.

grammar unbinarized right greedy
PCFG 46K 56K 51K
spinal 190K 309K 235K
sampled 804K 3,296K 1,894K
minimal 2,566K 15,282K 7,981K

Table 2: Number of rules in each of the complete
grammars before and after binarization.

are summed. From these counts we remove
(a) all unlexicalized subtrees of height greater
than six and (b) all lexicalized subtrees con-
taining more than twelve terminals on their
frontier, and we add all subtrees of height one
(i.e., the Treebank PCFG).

4. A sampled TSG produced by inducing
derivations on the training data using a
Dirichlet Process prior (described below).

The sampled TSG was produced by inducing a
TSG derivation on each of the trees in the train-
ing data, from which subtree counts were read di-
rectly. These derivations were induced using a
collapsed Gibbs sampler, which sampled from the
posterior of a Dirichlet process (DP) defined over
the subtree rewrites of each nonterminal. The DP
describes a generative process that prefers small
subtrees but occasionally produces larger ones;
when used for inference, it essentially discovers
TSG derivations that contain larger subtrees only
if they are frequent in the training data, which dis-
courages model overfitting. See Post and Gildea
(2009) for more detail. We ran the sampler for 100
iterations with a stop probability of 0.7 and the DP
parameterα = 100, accumulating subtree counts
from the derivation state at the end of all the itera-
tions, which corresponds to the(100, 0.7,≤ 100)
grammar from that paper.

All four grammar were learned from all sen-
tences in sections 2 to 21 of the Wall Street Journal
portion of the Penn Treebank. All trees were pre-
processed to remove empty nodes and nontermi-

NP

NP

DT

a

JJ NN NN

PP

Figure 7: Rule 1 in Figure 1 was produced by
flattening this rule from the sampled grammar.

nal annotations. Punctuation was retained. Statis-
tics for these grammars can be found in Table 1.
We present results on sentences with no more than
forty words from section 23.

Our parser is a Perl implementation of the CKY
algorithm.4 For the larger grammars, memory lim-
itations require us to remove from consideration
all grammar rules that could not possibly take part
in a parse of the current sentence, which we do by
matching the rule’s frontier lexicalization pattern
against the words in the sentence. All unlexical-
ized rules are kept. This preprocessing time is not
included in the parsing times reported in the next
section.

For pruning, we group edges into equivalence
classes according to the following features:

• span(s, t) of the input

• level of binarization (0,1,2+)

The level of binarization refers to the height of a
nonterminal in the subtree created by binarizing a
CFG rule (with the exception that the root of this
tree has a binarization level of 0). The naming
scheme used to create new nonterminals in line 6
of Figure 2 means we can determine this level by
counting the number of left-angle brackets in the
nonterminal’s name. In Figure 1, binarized rules
D and E have level 0, C has level 3, B has level 2,
and A has level 1.

Within each bin, only theβ highest-weight
items are kept, whereβ ∈ (1, 5, 10, 25, 50) is a pa-
rameter that we vary during our experiments. Ties
are broken arbitrarily. Additionally, we maintain a
beam within each bin, and an edge is pruned if its
score is not within a factor of10−5 of the highest-
scoring edge in the bin. Pruning takes place when
the edge is added and then again at the end of each

4It is available fromhttp://www.cs.rochester.
edu/ ˜ post/ .

94

span in the CKY algorithm (but before applying
unary rules).

In order to binarize TSG subtrees, we follow
Bod (2001) in first flattening each subtree to a
depth-one PCFG rule that shares the subtree’s root
nonterminal and leaves, as depicted in Figure 7.
Afterward, this transformation is reversed to pro-
duce the parse tree for scoring. If multiple TSG
subtrees have identical mappings, we take only the
most probable one. Table 2 shows how grammar
size is affected by binarization scheme.

We note two differences in our work that ex-
plain the large difference between the scores re-
ported for the “minimal subset” grammar in Bod
(2001) and here. First, we did not implement the
smoothed “mismatch parsing”, which introduces
new subtrees into the grammar at parsing time by
allowing lexical leaves of subtrees to act as wild-
cards. This technique reportedly makes a large
difference in parsing scores (Bod, 2009). Second,
we approximate the most probable parse with the
single most probable derivation instead of the top
1,000 derivations, which Bod also reports as hav-
ing a large impact (Bod, 2003,§4.2).

4 Results

Figure 8 displays search time vs. model score for
the PCFG and the sampled grammar. Weight
pushing has a significant impact on search effi-
ciency, particularly for the larger sampled gram-
mar. The spinal and minimal graphs are similar to
the PCFG and sampled graphs, respectively, which
suggests that the technique is more effective for
the larger grammars.

For parsing, we are ultimately interested in ac-
curacy as measured by F1 score.5 Figure 9 dis-
plays graphs of time vs. accuracy for parses with
each of the grammars, alongside the numerical
scores used to generate them. We begin by noting
that the improved search efficiency from Figure 8
carries over to the time vs. accuracy curves for
the PCFG and sampled grammars, as we expect.
Once again, we note that the difference is less pro-
nounced for the two smaller grammars than for the
two larger ones.

4.1 Model score vs. accuracy

The tables in Figure 9 show that parser accuracy
is not always a monotonic function of time; some
of the runs exhibited peak performance as early

5F1 = 2·P ·R
P+R

, whereP is precision andR recall.

-340

-338

-336

-334

-332

-330

-328

-326

-324

-322

-320

1 5 10 25 50

m
od

el
 s

co
re

 (
th

ou
sa

nd
s)

(greedy,max)
(greedy,nthroot)

(greedy,none)
(right,max)

(right,nthroot)
(right,none)

-370

-360

-350

-340

-330

-320

-310

-300

-290

1 5 10 25 50

m
od

el
 s

co
re

 (
th

ou
sa

nd
s)

mean time per sentence (s)

(greedy,max)
(greedy,nthroot)

(greedy,none)
(right,max)

(right,nthroot)
(right,none)

Figure 8: Time vs. model score for the PCFG (top)
and the sampled grammar (bottom). Note that the
y-axis range differs between plots.

as at a bin size ofβ = 10, and then saw drops
in scores when given more time. We examined
a number of instances where the F1 score for a
sentence was lower at a higher bin setting, and
found that they can be explained as modeling (as
opposed to search) errors. With the PCFG, these
errors were standard parser difficulties, such as PP
attachment, which require more context to resolve.
TSG subtrees, which have more context, are able
to correct some of these issues, but introduce a dif-
ferent set of problems. In many situations, larger
bin settings permitted erroneous analyses to re-
main in the chart, which later led to the parser’s
discovery of a large TSG fragment. Because these
fragments often explain a significant portion of the
sentence more cheaply than multiple smaller rules
multiplied together, the parser prefers them. More
often than not, they are useful, but sometimes they
are overfit to the training data, and result in an in-
correct analysis despite a higher model score.

Interestingly, these dips occur most frequently
for the heuristically extracted TSGs (four of six

95

 50

 55

 60

 65

 70

 75

 80

 85

1 5 10 25 50

ac
cu

ra
cy

mean time per sentence (s)

(greedy,max)
(greedy,none)

(right,max)
(right,none)

PCFG
run 1 5 10 25 50
� (g,m) 66.44 72.45 72.54 72.54 72.51u (g,n) 65.44 72.21 72.47 72.45 72.47
N (g,-) 63.91 71.91 72.48 72.51 72.51
� (r,m) 67.30 72.45 72.61 72.47 72.49e (r,n) 64.09 71.78 72.33 72.45 72.47
△ (r,-) 61.82 71.00 72.18 72.42 72.41

 50

 55

 60

 65

 70

 75

 80

 85

1 5 10 25 50

ac
cu

ra
cy

mean time per sentence (s)

(greedy,max)
(greedy,none)

(right,max)
(right,none)

spinal
run 1 5 10 25 50
� (g,m) 68.33 78.35 79.21 79.25 79.24u (g,n) 64.67 78.46 79.04 79.07 79.09
N (g,-) 61.44 77.73 78.94 79.11 79.20
� (r,m) 69.92 79.07 79.18 79.25 79.05e (r,n) 67.76 78.46 79.07 79.04 79.04
△ (r,-) 65.27 77.34 78.64 78.94 78.90

 50

 55

 60

 65

 70

 75

 80

 85

1 5 10 25 50

ac
cu

ra
cy

mean time per sentence (s)

(greedy,max)
(greedy,none)

(right,max)
(right,none)

sampled
run 1 5 10 25 50
� (g,m) 63.75 80.65 81.86 82.40 82.41u (g,n) 61.87 79.88 81.35 82.10 82.17
N (g,-) 53.88 78.68 80.48 81.72 81.98
� (r,m) 72.98 81.66 82.37 82.49 82.40e (r,n) 65.53 79.01 80.81 81.91 82.13
△ (r,-) 61.82 77.33 79.72 81.13 81.70

 50

 55

 60

 65

 70

 75

 80

 85

1 5 10 25 50

ac
cu

ra
cy

mean time per sentence (s)

(greedy,max)
(greedy,none)

(right,max)
(right,none)

minimal
run 1 5 10 25 50
� (g,m) 59.75 77.28 77.77 78.47 78.52u (g,n) 57.54 77.12 77.82 78.35 78.36
N (g,-) 51.00 75.52 77.21 78.30 78.13
� (r,m) 65.29 76.14 77.33 78.34 78.13e (r,n) 61.63 75.08 76.80 77.97 78.31
△ (r,-) 59.10 73.42 76.34 77.88 77.91

Figure 9: Plots of parsing time vs. accuracy for each of the grammars. Each plot contains four sets of five
points (β ∈ (1, 5, 10, 25, 50)), varying the binarization strategy (right (r) or greedy (g)) and the weight
pushing technique (maximal (m) or none (-)). The tables also include data from nthroot (n) pushing.

96

 50

 55

 60

 65

 70

 75

 80

 85

1 5 10 25 50

ac
cu

ra
cy

(right,max)
(right,nthroot)

(right,none)

 50

 55

 60

 65

 70

 75

 80

 85

1 5 10 25 50

ac
cu

ra
cy

mean time per sentence (s)

(greedy,max)
(greedy,nthroot)

(greedy,none)

Figure 10: Time vs. accuracy (F1) for the sampled
grammar, broken down by binarization (right on
top, greedy on bottom).

runs for the spinal grammar, and two for the min-
imal grammar) and for the PCFG (four), and least
often for the model-based sampled grammar (just
once). This may suggest that rules selected by our
sampling procedure are less prone to overfitting on
the training data.

4.2 Pushing

Figure 10 compares the nthroot and maximal
pushing techniques for both binarizations of the
sampled grammar. We can see from this figure
that there is little difference between the two tech-
niques for the greedy binarization and a large dif-
ference for the right binarization. Our original mo-
tivation in developing nthroot pushing came as a
result of analysis of certain sentences where max-
imal pushing and greedy binarization resulted in
the parser producing a lower model score than
with right binarization with no pushing. One such
example was binarized fragmentA from Fig-
ure 1; when parsing a particular sentence in the
development set, the correct analysis required the
rule from Figure 7, but greedy binarization and

maximal pushing resulted in this piece getting
pruned early in the search procedure. This pruning
happened because maximal pushing allowed too
much weight to shift down for binarized pieces of
competing analyses relative to the correct analy-
sis. Using nthroot pushing solved the search prob-
lem in that instance, but in the aggregate it does
not appear to be helpful in improving parser effi-
ciency as much as maximal pushing. This demon-
strates some of the subtle interactions between bi-
narization and weight pushing when inexact prun-
ing heuristics are applied.

4.3 Binarization

Song et al. (2008, Table 4) showed that CKY pars-
ing efficiency is not a monotonic function of the
number of constituents produced; that is, enumer-
ating fewer edges in the dynamic programming
chart does not always correspond with shorter run
times. We see here that efficiency does not al-
ways perfectly correlate with grammar size, ei-
ther. For all but the PCFG, right binarization
improves upon greedy binarization, regardless of
the pushing technique, despite the fact that the
right-binarized grammars are always larger than
the greedily-binarized ones.

Weight pushing and greedy binarization both in-
crease parsing efficiency, and the graphs in Fig-
ures 8 and 9 suggest that they are somewhat com-
plementary. We also investigated left binarization,
but discontinued that exploration because the re-
sults were nearly identical to that of right bina-
rization. Another popular binarization approach
is head-outward binarization. Based on the anal-
ysis above, we suspect that its performance will
fall somewhere among the binarizations presented
here, and that pushing will improve it as well. We
hope to investigate this in future work.

5 Summary

Weight pushing increases parser efficiency, espe-
cially for large grammars. Most notably, it im-
proves parser efficiency for the Gibbs-sampled
tree substitution grammar of Post and Gildea
(2009).

We believe this approach could alo bene-
fit syntax-based machine translation. Zhang et
al. (2006) introduced a synchronous binariza-
tion technique that improved decoding efficiency
and accuracy by ensuring that rule binarization
avoided gaps on both the source and target sides

97

(for rules where this was possible). Their binariza-
tion was designed to share binarized pieces among
rules, but their approach to distributing weight was
the default (nondiffused) case found in this paper
to be least efficient: The entire weight of the orig-
inal rule is placed at the top binarized rule and all
internal rules are assigned a probability of 1.0.

Finally, we note that the weight pushing algo-
rithm described in this paper began with a PCFG
and ensured that the tree distribution was not
changed. However, weight pushing need not be
limited to a probabilistic interpretation, but could
be used to spread weights for grammars with dis-
criminatively trained features as well, with neces-
sary adjustments to deal with positively and nega-
tively weighted rules.

Acknowledgments We thank the anonymous
reviewers for their helpful comments. This work
was supported by NSF grants IIS-0546554 and
ITR-0428020.

References

Rens Bod. 2001. What is the minimal set of fragments
that achieves maximal parse accuracy? InPro-
ceedings of the 39th Annual Conference of the As-
sociation for Computational Linguistics (ACL-01),
Toulouse, France.

Rens Bod. 2003. Do all fragments count?Natural
Language Engineering, 9(4):307–323.

Rens Bod. 2009. Personal communication.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. InProceedings of the 2000 Meet-
ing of the North American chapter of the Association
for Computational Linguistics (NAACL-00), Seattle,
Washington.

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar. In
Proceedings of the 38th Annual Conference of the
Association for Computational Linguistics (ACL-
00), Hong Kong.

Michael John Collins. 1999.Head-driven Statistical
Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

John DeNero, Mohit Bansal, Adam Pauls, and Dan
Klein. 2009. Efficient parsing for transducer gram-
mars. InProceedings of the 2009 Meeting of the
North American chapter of the Association for Com-
putational Linguistics (NAACL-09), Boulder, Col-
orado.

Liang Huang. 2007. Binarization, synchronous bi-
narization, and target-side binarization. InNorth

American chapter of the Association for Computa-
tional Linguistics Workshop on Syntax and Struc-
ture in Statistical Translation (NAACL-SSST-07),
Rochester, NY.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: Fast exact Viterbi parse selection. InPro-
ceedings of the 2003 Meeting of the North American
chapter of the Association for Computational Lin-
guistics (NAACL-03), Edmonton, Alberta.

Mehryar Mohri and Michael Riley. 2001. A weight
pushing algorithm for large vocabulary speech
recognition. InEuropean Conference on Speech
Communication and Technology, pages 1603–1606.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing.Computational Lin-
guistics, 23(2):269–311.

Matt Post and Daniel Gildea. 2009. Bayesian learning
of a tree substitution grammar. InProceedings of the
47th Annual Meeting of the Association for Compu-
tational Linguistics (ACL-09), Suntec, Singapore.

Helmut Schmid. 2004. Efficient parsing of highly am-
biguous context-free grammars with bit vectors. In
Proceedings of the 20th International Conference on
Computational Linguistics (COLING-04), Geneva,
Switzerland.

Xinying Song, Shilin Ding, and Chin-Yew Lin. 2008.
Better binarization for the CKY parsing. In2008
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-08), Honolulu, Hawaii.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for ma-
chine translation. InProceedings of the 2006 Meet-
ing of the North American chapter of the Associ-
ation for Computational Linguistics (NAACL-06),
New York, NY.

98

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 99–107,
Paris, October 2009. c©2009 Association for Computational Linguistics

Co-Parsing with Competitive Models

Lidia Khmylko
Natural Language Systems Group
University of Hamburg, Germany

khmylko@informatik.uni-hamburg.de

Kilian A. Foth
smartSpeed GmbH & Co. KG

Hamburg, Germany
kilian.foth@smartspeed.com

Wolfgang Menzel
Natural Language Systems Group
University of Hamburg, Germany

menzel@informatik.uni-hamburg.de

Abstract

We present an asymmetric approach to
a run-time combination of two parsers
where one component serves as a predic-
tor to the other one. Predictions are inte-
grated by means of weighted constraints
and therefore are subject to preferential
decisions. Previously, the same architec-
ture has been successfully used with pre-
dictors providing partial or inferior infor-
mation about the parsing problem. It has
now been applied to a situation where the
predictor produces exactly the same type
of information at a fully competitive qual-
ity level. Results show that the combined
system outperforms its individual compo-
nents, even though their performance in
isolation is already fairly high.

1 Introduction

Machine learning techniques for automatically ac-
quiring processing models from a data collec-
tion and traditional methods of eliciting linguistic
knowledge from human experts are usually con-
sidered as two alternative roadmaps towards nat-
ural language processing solutions. Since the re-
sulting components exhibit quite different perfor-
mance characteristics with respect to coverage, ro-
bustness and output quality, they might be able to
provide some kind of complementary information,
which could even lead to a notable degree of syn-
ergy between them when combined within a single
system solution.

For the task of dependency parsing, the high
potential for such a synergy has indeed been
demonstrated already (e.g. Zeman and Žabokrtský
(2005), Foth and Menzel (2006)).

A popular approach for combining alterna-
tive decision procedures is voting (Zeman and
Žabokrtský, 2005). It makes use of a symmet-
ric architecture, where a meta component chooses
from among the available candidate hypotheses by
means of a (weighted) voting scheme. Such an ap-
proach not only requires the target structures of all
components to be of the same kind, but in case of
complex structures like parse trees also requires
sophisticated decision procedures which are able
to select the optimal hypotheses with respect to ad-
ditional global constraints (e.g. the tree property).
Since this optimization problem has to be solved
by the individual parser anyhow, an asymmetric
architecture suggests itself as an alternative.

In asymmetric architectures, a master compo-
nent, i.e. a full fledged parser, is solely in charge of
deciding on the target structure, whilst the others
(so called helper or predictor components) provide
additional evidence which is integrated into the
global decision by suitable means. Such a scheme
has been extensively investigated for the Weighted
Constraint Dependency Grammar, WCDG (Foth,
2006). External evidence from the predictor com-
ponents is integrated by means of constraints,
which check for compatibility between a local
structure and a prediction, and penalize this hy-
pothesis in case of a conflict. So far, however,
all the additional information sources which have
been considered in this research differed consider-
ably from the master component: They either fo-
cused on particular aspects of the parsing problem
(e.g. POS tagging, chunking, PP attachment), or
used a simplified scheme for structural annotation
(e.g. projective instead of non-projective trees).

This paper takes one step further by investigat-
ing the same architecture under the additional con-
dition that (1) the helper component provides the

99

very same kind of target structure as the master,
and (2) the quality levels of each of the compo-
nents in isolation are considered.

As a helper component MSTParser (McDon-
ald, 2006), a state-of-the-art dependency parser for
non-projective structures based on a discrimina-
tive learning paradigm, is considered. The accu-
racy of MSTParser differs insignificatly from that
of WCDG with all the previously used helper com-
ponents active.

Section two introduces WCDG with a special
emphasis on the soft integration of external ev-
idence while section three describes MSTParser
which is used as a new predictor component. Since
parsing results for these systems have been re-
ported in quite different experimental settings we
first evaluate them under comparable conditions
and provide the results of using MSTParser as a
guiding predictor for WCDG in section four and
discuss whether the expected synergies have re-
ally materialized. Section five concentrates on a
comparative error analysis.

2 WCDG

The formalism of a Constraint Dependency Gram-
mar was first introduced by Maruyama (1990)
and suggests modeling natural language with the
help of constraints. Schröder (2002) has extended
the approach to Weighted Constraint Dependency
Grammar, WCDG, where weights are used to fur-
ther disambiguate between competing structural
alternatives. A WCDG models natural language
as labeled dependency trees and is entirely declar-
ative. It has no derivation rules — instead, con-
straints license well-formed tree structures. The
reference implementation of WCDG for the Ger-
man language used for the experiments described
below contains about 1, 000 manually compiled
constraints.1

Every constraint of the WCDG carries a weight,
also referred to as a penalty, in the interval from
zero to one, a lower value of the weight re-
flects its greater importance. Constraints having
zero weights are referred to as hard and are used
for prohibitive rules. Constraints with a weight
greater than zero, also called defeasible, may ex-
press universal principles or vague preferences for
language phenomena.

1Freely available from http://nats-www.
informatik.uni-hamburg.de/view/CDG/
DownloadPage

Attempts have been made to compute the
weights of a WCDG automatically by observing
which weight vectors perform best on a given cor-
pus, but the computations did not bring any sig-
nificant improvements to the manually assigned
scored (Schröder et al., 2001). Empirically, the
absolute values of defeasible constraints usually
do not matter greatly as long as the relative impor-
tance of the rules remains preserved so that typical
constructions are preferred, but seldom variations
are also allowed. Thus, the values of weights of
the WCDG constraints have to be determined by
the grammar writer experimentally.

If a set of dependency edges in a parse found by
the system violates any of the constraints, it is reg-
istered as a constraint violation between the struc-
ture and the rules of the language. The score of an
analysis is the product of all the weights for con-
straint violations occurring in the structure. It be-
comes possible to differentiate between the qual-
ity of different parse results: the analysis with a
higher score is considered preferable. Although,
under these conditions, an analysis having only a
few grave conflicts may be preferred by the system
against another one with a great number of smaller
constraint violations, but it ensures that an analysis
which violates any of the hard constraints always
receives the lowest possible score.

The parsing problem is being treated in the
WCDG system as a Constraint Satisfaction Prob-
lem. While a complete search is intractable for
such a problem, transformation-based solution
methods provide a reliable heuristic alternative.
Starting with an initial guess about the optimal
tree, changes of labels, subordinations, or lexi-
cal variants are applied, with constraint violations
used as a control mechanism guiding the transfor-
mation process (Foth et al., 2000).

A transformation-based search cannot guaran-
tee to find the best solution to the constraint sat-
isfaction problem. Compared to the resource re-
quirements of a complete search, however, it is not
only more efficient, but can also be interrupted at
any time. Even if interrupted, it will always return
an analysis, together with a list of constraint viola-
tions it was not able to remove. The algorithm ter-
minates on its own if no violated constraints with
a weight above a predefined threshold remain. Al-
ternatively, a timeout condition can be imposed.

The same kind of constraints that describe
grammar rules, can also be used as an interface

100

to external predictor components. Thus, the for-
malism turned out to be flexible enough to incor-
porate other sources of knowledge into the de-
cision process on the optimal structural interpre-
tation. Foth and Menzel (2006) have reported
about five additional statistical components that
have been successfully integrated into WCDG:
POS tagger, chunker, supertagger, PP attacher and
a shift-reduce oracle parser. They have also shown
that the accuracy improves if multiple compo-
nents interact and consistent predictions no longer
can be guaranteed. Even thought previously in-
tegrated predictor components have an accuracy
that is mostly — with the exception of the tag-
ger — below that of the parser itself, WCDG not
only avoids error propagation successfully, it also
improves its results consistently with each compo-
nent added.

3 MSTParser

MSTParser (McDonald, 2006) is a state-of-the-art
language independent data-driven parser. It pro-
cesses the input in two separate stages. In the first,
the dependency structure is determined, labeling is
applied to it successively in the second. The rea-
sons of its efficiency lie in the successful combi-
nation of discriminative learning with graph-based
solution methods for the parsing problem.

In this edge-factored graph-based model, each
edge of the dependency graph is assigned a real-
valued score by its linear model. The score of the
graph is defined as the sum of its edge scores.

If a scoring function for edges is known, the
parsing problem becomes equivalent to finding the
highest scoring directed spanning tree in the com-
plete graph over the given sentence, and the cor-
rect parse can be obtained by searching the space
of valid dependency graphs for a tree with a max-
imum score.

This formalism allows to find efficient solutions
for both projective and non-projective trees. When
only features over single edges are taken into ac-
count, the complexity falls to O(n2) (McDonald
et al., 2005).

Not only a single edge, but also adjacent edges
may be included into the scoring function. As a
result, intractability problems arise for the non-
projective algorithm, but an efficient approximate
algorithm based on exhaustive search is provided
for this case (McDonald et al., 2006). This algo-

rithm was also used for our experiments.2

The parsing model of MSTParser has the advan-
tage that it can be trained globally and eventually
be applied with an exact inference algorithm. On
the other hand, the parser has only limited access
to the history of parsing decisions. To avoid com-
plexity problems, the scores (and the feature rep-
resentations) are restricted to a single edge or ad-
jacent edges. Outsourcing labeling into a separate
stage comes at the price of not being able to com-
bine knowledge about the label and the structure it
is attached to. Such combined evidence, however,
might be helpful for some disambiguation prob-
lems.

4 Guiding WCDG by Predictions of
MSTParser

MSTParser predictions are integrated into the de-
cision procedure of WCDG by means of two ad-
ditional constraints, which monitor each depen-
dency hypothesis for being in accord with the pre-
diction and penalize it if a mismatch has been
found. One of the constraints checks the attach-
ment point being the same, while the other takes
care of the dependency label.

To properly adjust the weights of these con-
straints, it has to be determined how valuable the
information of the predictor is relative to the infor-
mation already present in the system. This grada-
tion is needed to establish a balance between the
influence of the grammar and the predictor. Ac-
cording to the scoring principles of WCDG, a low
weight strongly deprecates all deviations from the
prediction, thus forcing the system to follow them
almost without exception. Higher weights, on the
other hand, enable the grammar to override a pre-
diction. This, however, also means that predic-
tions have less guiding effect of the transformation
process. Typically for WCDG, the best suitable
weights have to be tuned on development data.

To determine the best constraint weights the
WCDG grammar has been extended with three
additional constraints similar to those used for
the shift-reduce predictor in the previous experi-
ments (Foth, 2006). Two of them advise WCDG
on the structural information available from the
MSTParser result and one fetches the edge label
predicted.

As a result of these experiments, the optimum

2MSTParser is freely available from http://
sourceforge.net/projects/mstparser

101

weight for the attachment predictions has been ad-
justed to 0.75. Compared to a weight of 0.9 for
the shift-reduce parser, this is a rather strong in-
fluence, which also reflects the differences in the
reliability of these two information sources. With
a weight of 0.9, the integration of the label predic-
tions is considerably weaker, which is consistent
with their lower degree of accuracy.

Evaluation

The most common general measures for the qual-
ity of dependency trees are structural accuracy
that points out the percentage of words correctly
attached to their head word, and labeled accuracy
which is the ratio of the correctly attached words
which also have the correct label. Still, it is dif-
ficult to directly compare the results reported for
different parsers, as the evaluation results are in-
fluenced by the data used during the experiment,
the domain of the data, and different annotation
guidelines. Moreover, the particular kind of POS
information might be relevant, which either can be
obtained from the manual annotations or be pro-
vided by a real tagger. Even such a condition
as the treatment of punctuation has not yet be-
come a standard. Following the evaluation proce-
dure in the CoNLL-X shared task (Buchholz and
Marsi, 2006), we will not include punctuation into
the performance measures, as was done in previ-
ous WCDG experiments (Foth and Menzel, 2006).
The source of POS tagging information will need
to be specified in each individual case.

All the evaluations were performed on a thou-
sand sentences (18, 602 – 19, 601) from the
NEGRA treebank, the same data set that was pre-
viously used in the performance evaluations of
WCDG, e.g. in (Foth, 2006). The NEGRA
treebank is a collection of newspaper articles; in
the original, it stores phrase structure annotations.
These have been automatically translated into de-
pendency trees and then manually corrected to
bring them in accord with the annotation guide-
lines of WCDG. The major difference consists
in a different treatment of non-projectivity, where
WCDG only allows non-projectivity in the attach-
ment of verbal arguments, relative clauses and co-
ordinations, i.e., the cases where it helps to de-
crease ambiguity. Furthermore, corrections were
applied when the annotations of NEGRA itself
turned out to be inconsistent (usually in connec-
tion with co-ordinated or elliptical structures, ad-

verbs and subclauses).
Unfortunately, these manually corrected data

were only available for a small part (3, 000 sen-
tences) of the NEGRA corpus, which is not
sufficient for training MSTParser on WCDG-
conforming tree structures. Previous evaluations
of the MSTParser have used much larger train-
ing sets. E.g., during the CoNLL-X shared
task 39,216 sentences from the TIGER Treebank
(Brants et al., 2002) were used.

Therefore, we used 20, 000 sentences from the
online archive of www.heise.de as an alterna-
tive training set. They have been manually an-
notated according to the WCDG guidelines (and
are referred to heiseticker in the following)3.
The texts in this corpus are all from roughly the
same domain as in NEGRA, and although very
many technical terms and proper nouns are used,
the sentences have only a slightly longer mean
length compared to the NEGRA corpus.

Using POS tags from the gold annotations,
MSTParser achieves 90.5% structural and 87.5%
labeled accuracy on the aforementioned NEGRA
test set (Table 1). Even a model trained on the
inconsistent NEGRA data excluding the test set
reaches state-of-the-art 90.5 and 87.3% for struc-
tural and labeled accuracy respectively, despite
the obvious mismatch between training and test
data. This performance is almost the same as the
90.4%/87.3% reported on the TIGER data during
the CoNLL-X 2006 shared task.

Experiment structural labeled

MSTParser-h 90.5 87.5
MSTParser-N 90.5 87.3

MSTParser(CoNLL-X) 90.4 87.3
WCDG + MST 92.9 91.3

WCDG + MST + 5P 93.3 92.0

Table 1: Structural/labeled accuracy results with
POS tagging from the gold standard. WCDG
— no statistical enhancements used. MSTParser-
h — MSTParser trained on the heiseticker.
MSTParser-N — MSTParser trained on NEGRA.
5P — with all five statistical predictors of WCDG.

As is to be expected, if a real POS tagger is used
in the experiments with MSTParser, the accuracy
is reduced quite expectedly by approximately one

3The heiseticker dependency treebank is under
preparation and will be available soon.

102

percent to 89.5%/86.0% (Table 2 (B)). All the re-
sults obtained with a real POS tagger are summa-
rized in Table 2. For comparison, under the same
evaluation conditions, the performance of WCDG
with different predictors is summarized in Table 2
(A).

Experiment structural labeled

(A) WCDG 88.0 86.0
CP 88.6 86.5
PP 89.4 87.3
ST 90.8 89.2
SR 90.0 88.4

PP+SR 90.2 88.6
ST+SR 91.0 89.4
ST+PP 90.8 89.2

5P 91.3 90.0
(B) MSTParser 89.5 86.0
(C) WCDG + MST 92.0 90.5

PP 92.0 90.6
CP 92.1 90.6
SR 92.2 90.6
ST 92.4 90.9

CP+SR 92.3 90.7
CP+ST 92.6 91.0
ST+SR 92.9 91.4

PP+CP+ST 92.6 91.1
PP+ST+SR 92.8 91.3
CP+ST+SR 92.9 91.4

5P 92.9 91.4

Table 2: Structural/labeled accuracy results with
a real POS tagger. (A) WCDG experiments with
different statistical enhancements (B) MSTParser
experiment with a real POS tagger. (C) Com-
bined experiments of WCDG and MSTParser with
other statistical enhancements of WCDG. CP —
chunker, ST — supertagger, PP — prepositional
attacher, SR — shift-reduce oracle parser, 5P —
POS + CP + PP + ST + SR.

The combined experiments in which MSTParser
was used as a predictor for WCDG have achieved
higher accuracy than each of the combined com-
ponents in isolation: the structural accuracy rises
to 92.0% while the labeled accuracy also gets over
the 90%-boundary (WCDG + MST experiment in

Table 2 (C)) .
Finally, the MSTParser predictor was evaluated

in combination with the other predictors avail-
able for WCDG. The results of the experiments
are shown in Table 2 (C). Every combination of
MSTParser with other predictors (first four exper-
iments) improves the accuracy. The increase is
highest (0.4%) for the combination with the su-
pertagger. This confirms earlier experiments with
WCDG, in which the supertagger also contributed
the largest gains.

The experimental results again confirm that
WCDG is a reliable platform for information in-
tegration. Although the use of multiple predictors
does not lead to an accumulation of the individual
improvements, the performance of predictor com-
binations is always higher that using them sepa-
rately. A maximum performance of 92.9%/91.4%
is reached with all the six available predictors ac-
tive. For comparison, the same experiment with
POS tags from the gold standard has achieved even
better results of 93.3%/92.0% (Table 1).

Unfortunately, the PP attacher brings accuracy
reductions when it is working parallel to the shift-
reduce predictor (experiment PP + CP + SR in Ta-
ble 2 (C)). This effect has already been observed
in the experiments that combined the two alone
(experiment PP + SR in Table 2 (A)). When MST
was combined with the PP attacher (experiment
PP in Table 2 (C)), the increase of the performance
was also below a tenth of a percent. The possible
reasons why the use of an additional information
source does not improve the performance in this
case may be the disadvantages of the PP attacher
compared to a full parser.

5 Error Analysis

A very useful property of WCDG is that it not only
can be used as a parser, but also as a diagnostic
tool for dependency structures. Applied to a given
dependency tree, any constraint violation reported
by the constraint solver indicates an inconsistency
between the structure and the WCDG constraint
grammar.

Among the most frequent hard constraint vio-
lations found in the MSTParser results are double
subjects, double objects and direct objects in pas-
sive, projectivity violations, conjunctions without
a clause as well as subordinate clause without con-
junction.

These findings are in line with the analysis of

103

McDonald and Nivre (2007). For example, the
errors in distinguishing noun complements of the
verb may be due to the fact that MSTParser is
more precise for longer dependency arcs and has
no access to the parsing history.

In absolute figures, MSTParser commits 1509
attachment errors of which 902 are corrected by
WCDG. On the other hand, WCDG adds another
542 errors of its own, so that the final result still
contains 1149 errors.

For most labels, accuracy of the predictor com-
bination is higher than in each of the parsers
alone. A particularly large gain has been observed
for coordinated elements (KON and CJ), subor-
dinate (NEB) and relative (REL) clauses, indi-
rect accusative objects (OBJA), genitive modifiers
(GMOD) and apposition (APP). Table 3) summa-
rizes the values of structural precision, the ratio of
the number of correct attachment of a given label
to the number of all the predictions for that label
made by the parser, and label recall, the ratio be-
tween the number of correct labeling decisions and
desired labeling.

In this respect, the increase in the structural pre-
cision of the PP attachment seems worth men-
tioning. MSTParser attaches 79.3% of PPs cor-
rectly on the used test set. Although MSTParser
does not use any special PP-attachment resolu-
tion mechanisms, it is comparable with the re-
sult of WCDG combined with the PP attacher that
achieves 78.7% structural precision for PP edges.

If MSTParser is trained on NEGRA exclud-
ing the test set — the rest of NEGRA lacking
consistence mentioned above — it performs even
better, attaching 80.4% of PP-s correctly. Thus,
MSTParser as a statistical parser trained on a full
corpus becomes a strong competitor for a PP at-
tacher that has been trained on restricted four-
tuples input.

As for the errors in the MSTParser output that
are most often corrected in the hybrid experiment,
this happens for both the structural precision and
label recall of most verb complements, such as di-
rect and indirect objects, or clausal objects as well
as for subordinate and relative clauses for such
subordinate clauses.

It even comes to one case in which the synergy
took place in spite of the incorrect predictions. Al-
though MSTParser has predicted possessive modi-
fiers more seldom than WCDG alone (the label re-
call of MSTParser for possessive modification was

(1) (2) (3)
Label p r p r p r

DET 98.4 99.3 98.7 99.5 99.3 99.5
PN 97.4 97.4 98.0 98.0 98.0 98.7
PP 67.6 98.1 78.3 97.4 80.1 98.5
ADV 76.6 94.7 79.4 95.4 82.2 97.2
SUBJ 94.0 90.9 91.3 86.4 95.8 94.0
ATTR 95.2 95.8 97.7 98.2 98.3 98.4
S 89.2 90.1 89.3 90.5 90.5 91.0
AUX 95.9 94.2 98.6 97.8 98.7 97.6
OBJA 87.9 83.9 83.8 72.5 92.5 88.7
APP 85.1 88.5 88.9 90.9 90.9 94.0
KON 78.9 88.1 78.9 88.3 86.0 89.2
CJ 85.6 86.5 90.9 91.4 93.0 93.5
GMOD 90.7 90.7 89.0 85.3 96.3 95.8
KONJ 88.6 91.9 91.9 95.7 95.1 95.7
PRED 90.3 75.0 85.4 60.4 91.7 76.4
NEB 68.9 82.8 73.0 66.4 79.5 90.2
REL 64.8 77.9 59.0 77.0 68.9 86.9

Table 3: Per label structural precision (p,
%) and label recal (r, %) in comparison for
the experiments with the real POS tagger (1)
WCDG, (2) MSTParser, (3) WCDG combined
with MSTParser

over 5% below that of WCDG) its structural pre-
cision and label recall in the combined experiment
are by around 6% greater than WCDG result.

Cases in which WCDG performs worse with
the predictor than its predictor alone can hardly be
found. Still, one may observe many cases in which
the predictor has a negative influence on the per-
formance of WCDG, such as for different kinds of
objects (indirect objects, object clauses and infini-
tive objects) and parenthetic matrix clauses. For
all, the result of MSTParser was below that of
the baseline WCDG with only the POS tagger ac-
tive. Same can be said about the labeled accu-
racy for split verb prefixes and nominal time ex-
pressions. This worsening effect can be attributed
to the lower values of the WCDG constraints for
the corresponding labels and edges than for the
MSTParser predictor. Thus, the search could not
find a decision scoring better than that when the
MSTParser prediction has been followed.

Around 15% of the sentences in the test set are

104

not projective. The accuracy of MSTParser on the
projective sentences of the test set is higher than
that on the non-projective sentences by more than
3 percent (Table 4), although these values can-
not be compared directly as the mean length of
non-projective sentences is longer (25.0 vs. 15.3
words).

Experiment Non-proj. Proj.

MSTParser (POS) 88.2 91.7
WCDG (POS) 87.2 90.2
WCDG (POS + SR) 88.7 92.2
WCDG (POS + MST) 91.3 93.6

Table 4: Structural accuracy, (%), for different
parsing runs for non-projective vs. projective sen-
tences.

MSTParser generally tends to find many more
non-projective edges than the data has, while the
precision remains restricted. The number of non-
projective edges was determined by counting how
often an edge crosses some other edge. Thus, if
a non-projective edge crossed three other edges
the number of non-projective edges equals three.
For MSTParser experiments with a real POS tag-
ger (MSTParser POS-experiment in Table 5), the
non-projective edge recall, the ratio of the non-
projective edges found in the experiment to the
corresponding value in the gold standard, is at
23% and non-projective edge precision, the ratio
of the correctly found non-projective edges to all
non-projective edges found, is also only 36% (sec-
ond column in Table 5).

Edges Sentences
Experiment r p r p

MSTParser (POS) 23 36 35 44
WCDG (POS) 37 53 51 63
WCDG (POS + SR) 41 47 57 55
WCDG (POS + MST) 48 53 61 61

Table 5: Recall (r, %) and precision (p, %) of the
non-projective edges and sentences for different
parsing runs.

Precision and recall of non-projective sentences
is a less rigid measure. If at least one edge-
crossing is correctly identified in a non-projective
sentence, it is added to the correctly identified

non-projective sentences, even if the identified
edge-crossing is not the one annotated in the gold
standard and the ratios are calculated respectively
(right column of Table 5). Under these relaxed
conditions, MSTParser correctly identifies slightly
less than a half of the non-projective sentences
and over a third of non-projective edges. In fact,
WCDG under the same conditions (WCDG POS-
experiment in Table 5) has a non-projective sen-
tence precision of 63% and a non-projective edge
precision of 53%. Still, WCDG misses a consid-
erable amount of non-projectivities. More impor-
tantly, as the present shift-reduce predictor has not
been designed for non-projective parsing, its in-
clusion reduces the non-projective sentence and
edge precision of WCDG — to 55% and 47% re-
spectively — WCDG (POS+SR) in Table 5.

The expected benefits for the non-projective
sentences have not yet been observed to the full
extent. The precision of the combined system to
find non-projective sentences and edges remained
limited by the performance that WCDG was able
to achieve alone (WCDG (POS+MST) in Table 5).
While MSTParser in many cases predicts non-
projectivity correctly WCDG is seldom capable of
accepting this external evidence. On the contrary,
WCDG often accepts an incorrect projective solu-
tion of the predictor instead of relying on its own
cues. In its interaction with external predictors
WCDG should typically decide about the alterna-
tives.

6 Related Work

So far, approaches to hybrid parsing have been
mainly based on the idea of a post-hoc selec-
tion which can be carried out for either complete
parses, or individual constituents and dependency
edges, respectively. The selection component it-
self can be based on heuristics, like a majority
vote. Alternatively, a second-level classifier is
trained to decide which component to trust under
which conditions and therefore the approach is of-
ten referred to as classifier stacking.

In a series of experiments, Henderson and Brill
(1999) combined three constituency-based parsers
by a selection mechanism for either complete pars-
ing results (parser switching) or individual con-
stituents (parse hybridization), using both a heuris-
tic decision rule as well as a naı̈ve Bayesian clas-
sifier in each case. Among the heuristics consid-
ered were majority votes for constituents and a

105

similarity-based measure for complete trees. Tests
on Penn Treebank data showed a clear improve-
ment of the combined results over the best individ-
ual parser. Constituent selection outperformed the
complete parse selection scheme, and Bayesian se-
lection was slightly superior.

Instead of coupling different data-driven parsers
which all provide comparable analyses for com-
plete sentences, Rupp et al. (2000) combined dif-
ferently elaborated structural descriptions (namely
chunks and phrase structure trees) obtained by
data-driven components with the output of a
HPSG-parser. Driven by the requirements of the
particular application (speech-to-speech transla-
tion), the focus was not only on parse selection,
but also on combining incomplete results. How-
ever, no quantitative evaluation of the results has
been published.

Zeman and Žabokrtský (2005) applied the se-
lection idea to dependency structures and extended
it by using more context features. They com-
bined seven different parsers for Czech, among
them also a system based on a manually com-
piled rule set. Some of the individual parsers had
a fairly poor performance, but even a simple vot-
ing scheme on single edges contributed a signifi-
cant improvement while the best results have been
obtained for a combination that did not include
the worst components. Alternatively the authors
experimented with a trained selection component
which not only had access to the alternative local
parsing results, but also to their structural context.
Neither a memory-based approach nor a model
based on decision trees did result in further gains.

In two separate experiments, Sagae and Lavie
(2006) combined a number of dependency and
constituent parsers, respectively. They created a
new weighted search space from the results of
the individual component parsers using different
weighting schemes for the candidates. They then
reparsed this search space and found a consistent
improvement for the dependency structures, but
not for the constituent-based ones.

While all these approaches attempt to integrate
the available evidence at parse time, Nivre and
McDonald (2008) pursued an alternative architec-
ture, where integration is achieved already at train-
ing time. They combined the two state-of-the-
art data-driven dependency parsers, MaltParser
(Nivre et al., 2006) and MSTParser (McDonald et
al., 2006), by integrating the features of each of the

classifiers into the parsing model of the other one
at training time. Since the two parsers are based
on quite different model types (namely a history-
based vs. a structure-based one), they exhibit a
remarkable complementary behavior (McDonald
and Nivre, 2007). Accordingly, significant mutual
benefits have been observed. Note, however, that
one of the major benefits of MaltParser, its incre-
mental left-to-right processing, is sacrificed under
such a combination scheme.

Martins et al. (2008) use stacked learning to
overcome the restriction to the single-edge fea-
tures in both MaltParser and MSTParser. They
suggest an architecture with two layers, where the
output of a standard parser in the first level pro-
vides new features for a parser in the subsequent
level. During the training phase, the second parser
learns to correct mistakes made by the first one. It
allows to involve higher-order predicted edges to
simulate non-local features in the second parser.
The results are competitive with McDonald and
Nivre (2007) whileO(n2) runtime of the spanning
tree algorithm is preserved.

7 Conclusion

Integrating MSTParser as a full predictor with
WCDG is beneficial for both of them. Since these
systems take their decisions based on completely
different sources of knowledge, combining both
helps avoid many mistakes each of them commits
in isolation. Altogether, with a real POS tagger, an
accuracy level of 92.9%/91.3% has been reached
(the last row in Table 2 (C)), which is higher than
what any of the parsers achieved alone. With POS
tagging from the gold standard, the accuracy has
been at 93.3%/92.0% (the last row in Table 1). To
the knowledge of the authors, these accuracy val-
ues are also better than any previous parsing re-
sults on the NEGRA test set.

WCDG can profit from the combination not
only with ancillary predictors for specific parsing
subtasks, but also with another full parser. This
result was achieved even though the second parser
is very similar to WCDG with respect to both the
richness and the accuracy of its target structures.
The probable reason lies in the considerable dif-
ference in the error profiles of both systems as re-
gards specific linguistic phenomena. WCDG was
also used as a diagnostic tool for the errors of
MSTParser.

Possibly, a higher degree of synergy could be

106

achieved if a stronger coupling of the compo-
nents were established by also using the scores of
MSTParser as additional information for WCDG,
reflecting the intuitive notion of preference or
plausibility of the predictions. This could be done
for the optimal parse tree alone as well as for the
complete hypothesis space. Alternatively, the out-
put of MSTParser can be used as a initial state
for the transformation procedure of WCDG. Vice
versa, MSTParser could be enriched with addi-
tional features based on the output of WCDG, sim-
ilar to the feature-based integration of data-driven
parsers evaluated by Nivre and McDonald (2008).

At the moment, the integration constraints treats
all attachment and label predictions as being uni-
formly reliable. To individualize them with re-
spect to their type or origin could not only make
the system sensitive to qualitative differences be-
tween predictions (for instance, with respect to
different labels). It would also allow the parser
to accommodate multiple oracle predictors and to
carefully distinguish between typical configura-
tions in which one prediction should be preferred
over an alternative one. MaltParser (Nivre et al.,
2006) is certainly a good candidate for carrying
out such experiments.

References
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-

gang Lezius, and George Smith. 2002. The TIGER
treebank. In: Proceedings of the First Workshop on
Treebanks and Linguistic Theories (TLT), pages 24–
41.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proc. CoNLL, pages 149 – 164.

Kilian A. Foth and Wolfgang Menzel. 2006. Hybrid
parsing: using probabilistic models as predictors for
a symbolic parser. In Proc. 21st Int. Conference on
Computational Linguistics and ACL-44, pages 321–
328.

Kilian A. Foth, Wolfgang Menzel, and Ingo Schröder.
2000. A Transformation-based Parsing Technique
with Anytime Properties. In 4th Int. Workshop on
Parsing Technologies, IWPT-2000, pages 89 – 100.

Kilian A. Foth. 2006. Hybrid Methods of Natural Lan-
guage Analysis. Doctoral thesis, Hamburg Univer-
sity.

John C. Henderson and Eric Brill. 1999. Exploiting
diversity in natural language processing: Combining
parsers. In Proceedings 4th Conference on Empiri-
cal Methods in Natural Language Processing, pages
187–194.

André F. T. Martins, Dipanjan Das, Noah A. Smith, and
Eric P. Xing. 2008. Stacking Dependency Parsers.
In Proc. of the 2008 Conf. on Empirical Methods in
Natural Language Processing, pages 157 – 166.

Hiroshi Maruyama. 1990. Structural disambiguation
with constraint propagation. In Proc. 28th Annual
Meeting of the ACL (ACL-90), pages 31–38.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proc. EMNLP-CoNLL, pages 122 – 131.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic̆. 2005. Non-projective dependency
parsing using spanning tree algorithms. In Proc.
HLT/EMNLP, pages 523 – 530.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proc. CoNLL, pages
216 – 220.

Ryan McDonald. 2006. Discriminative Learning and
Spanning Tree Algorithms for Dependency Parsing.
PhD dissertation, University of Pennsylvania.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proc. ACL-08: HLT, pages 950–958.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen
Eryiǧit, and Svetoslav Marinov. 2006. Labelled
pseudo-projective dependency parsing with support
vector machines. In Proc. CoNLL-2006, pages 221–
225.

Christopher G. Rupp, Jörg Spilker, Martin Klarner, and
Karsten L. Worm. 2000. Combining analyses from
various parsers. In Wolfgang Wahlster, editor, Verb-
mobil: Foundations of Speech-to-Speech Transla-
tion, pages 311–320. Springer-Verlag, Berlin etc.

Kenji Sagae and Alon Lavie. 2006. Parser combi-
nations by reparsing. In Proc. HLT/NAACL, pages
129–132.

Ingo Schröder. 2002. Natural Language Parsing with
Graded Constraints. Ph.D. thesis, Dept. of Com-
puter Science, University of Hamburg, Germany.

Ingo Schröder, Horia F. Pop, Wolfgang Menzel, and
Kilian A. Foth. 2001. Learning grammar weights
using genetic algorithms. In Proc. Euroconference
Recent Advances in Natural Language Processing,
pages 235 – 239.

Daniel Zeman and Zdeněk Žabokrtský. 2005. Improv-
ing parsing accuracy by combining diverse depen-
dency parsers. In Proc. 9th International Workshop
on Parsing Technologies (IWPT-2005), pages 171–
178, Vancouver, B.C.

107

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 108–116,
Paris, October 2009. c©2009 Association for Computational Linguistics

Capturing Consistency between Intra-clause and Inter-clause Relations
in Knowledge-rich Dependency and Case Structure Analysis

Daisuke Kawahara
National Institute of Information and

Communications Technology,
3-5 Hikaridai Seika-cho, Soraku-gun,

Kyoto, 619-0289, Japan
dk@nict.go.jp

Sadao Kurohashi
Graduate School of Informatics,

Kyoto University,
Yoshida-Honmachi, Sakyo-ku,

Kyoto, 606-8501, Japan
kuro@i.kyoto-u.ac.jp

Abstract

We present a method for dependency and
case structure analysis that captures the
consistency between intra-clause relations
(i.e., case structures or predicate-argument
structures) and inter-clause relations. We
assess intra-clause relations on the basis
of case frames and inter-clause relations
on the basis of transition knowledge be-
tween case frames. Both knowledge bases
are automatically acquired from a mas-
sive amount of parses of a Web corpus.
The significance of this study is that the
proposed method selects the best depen-
dency and case structure that are con-
sistent within each clause and between
clauses. We confirm that this method con-
tributes to the improvement of dependency
parsing of Japanese.

1 Introduction

The approaches of dependency parsing basically
assess the likelihood of a dependency relation be-
tween two words or phrases and subsequently
collect all the assessments for these pairs as the
dependency parse of the sentence. To improve
dependency parsing, it is important to consider
as broad a context as possible, rather than a
word/phrase pair.

In the recent evaluation workshops (shared
tasks) of multilingual dependency parsing (Buch-
holz and Marsi, 2006; Nivre et al., 2007),
transition-based and graph-based methods
achieved good performance by incorporating rich
context. Transition-based dependency parsers
consider the words following the word under
consideration as features of machine learning
(Kudo and Matsumoto, 2002; Nivre and Scholz,
2004; Sassano, 2004). Graph-based dependency
parsers consider sibling and grandparent nodes,

i.e., second-order and higher-order features
(McDonald and Pereira, 2006; Carreras, 2007;
Nakagawa, 2007).

It is desirable to consider a wider-range phrase,
clause, or a whole sentence, but it is difficult to
judge whether the structure of such a wide-range
expression is linguistically correct. One of the rea-
sons for this is the scarcity of the knowledge re-
quired to make such a judgment. When we use
the Penn Treebank (Marcus et al., 1993), which is
one of the largest corpora among the available ana-
lyzed corpora, as training data, even bi-lexical de-
pendencies cannot be learned sufficiently (Bikel,
2004). To circumvent such scarcity, for instance,
Koo et al. (2008) proposed the use of word classes
induced by clustering words in a large raw cor-
pus. They succeeded in improving the accuracy of
a higher-order dependency parser.

On the other hand, some researchers have pro-
posed other approaches where linguistic units such
as predicate-argument structures (also known as
case structures and logical forms) are considered
instead of arbitrary nodes such as sibling nodes.
To solve the problem of knowledge scarcity, they
learned knowledge of such predicate-argument
structures from a very large number of automat-
ically analyzed corpora (Abekawa and Okumura,
2006; Kawahara and Kurohashi, 2006b). While
Abekawa and Okumura (2006) used only co-
occurrence statistics of verbal arguments, Kawa-
hara and Kurohashi (2006b) assessed predicate-
argument structures by checking case frames,
which are semantic frames that are automatically
compiled for each predicate sense from a large raw
corpus. These methods outperformed the accuracy
of supervised dependency parsers.

In such linguistically-motivated approaches,
well-formedness within a clause was considered,
but coherence between clauses was not con-
sidered. Even if intra-clause relations (i.e., a
predicate-argument structure within a clause) are

108

p o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t eo r g a n i z et a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a t(b 1)
(a 1)

(c 1)

(a 2)
(b 2)

(c 2)

(a 3)
(b 3)
(c 3)

3 3 3
3 3 3
3 3 3

p o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t ep a c kt a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a t
p o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t eo r g a n i z et a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a tp o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t ep a c kt a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a t

p o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t eo r g a n i z et a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a t
p o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t ep a c kt a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a tp o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t ep a c kt a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a t

p o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t eo r g a n i z et a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a t
p o i n t o � w a ,p o i n t � T O Ph i t o t s u � n io n e � D A Tm a t o m e t ep a c kt a k u h a i b i n � d ec o u r i e r � C M I o k u r us e n dk o t o � d e s ub e t h a t

Figure 1: Possible dependency and case structures of sentence (1).

optimized, they might not be optimum when look-
ing at clause pairs or sequences. To improve the
accuracy of dependency parsing, we propose a
method for dependency and case structure analy-
sis that considers the consistency between intra-
clause and inter-clause relations. This method an-
alyzes intra-clause relations on the basis of case
frames and inter-clause relations on the basis of
transition knowledge between case frames. These
two knowledge sources are automatically acquired
from a massive amount of parses of a Web corpus.

The contributions of this paper are two-fold.
First, we acquire transition knowledge not be-
tween verbs or verb phrases but between case

frames, which are semantically disambiguated
representations. Second, we incorporate the tran-
sition knowledge into dependency and case struc-
ture analysis to capture the consistency between
intra-clause and inter-clause relations.

The remainder of this paper is organized as
follows. Section 2 illustrates our idea. Section
3 describes a method for acquiring the transi-
tion knowledge. Section 4 explains the proposed
method of incorporating the acquired transition
knowledge into a probabilistic model of depen-
dency and case structure analysis. Section 5 re-
ports experimental results. Section 6 gives the
conclusions.

109

2 Idea of Capturing Consistency between
Intra-clause and Inter-clause Relations

We propose a method for generative dependency
parsing that captures the consistency between
intra-clause and inter-clause relations.

Figure 1 shows the ambiguities of dependency
and case structure of pointo-wa (point-TOP) in the
following sentence:

(1) pointo-wa,
point-TOP

hitotsu-ni
one-DAT

matomete
pack

takuhaibin-de
courier-CMI

okuru
send

koto-desu
be that

(The point is that (we) pack (one’s bag-
gage) and send (it) using courier service.)

The correct structure is (c1), which is surrounded
by the dotted rectangle. Structures (c2), (c3)
and so on have the same dependency structure as
(c1), but have incorrect case structures, in which
incorrect case frames are selected. Note that
matomeru:5, okuru:6 and so on in the figure rep-
resent the IDs of the case frames.

The parser of Kawahara and Kurohashi (2006b)
(and also conventional Japanese parsers) erro-
neously analyzes the head of pointo-wa (point-
TOP)1 as matomete (organize), whereas the cor-
rect head is koto-desu (be that), as shown in struc-
ture (a1) in Figure 1.

This error is caused by the incorrect selection
of the case frame matomeru:6 (organize), which is
shown in Table 1. This case frame locally matches
the input predicate-argument structure “pointo-wa
hitotsu-ni matomeru” (organize points). There-
fore, this method considers only intra-clause re-
lations, and falls into local optimum.

If we consider the wide range of two clauses,
this error can be corrected. In structure (a1)
in Figure 1, the generative probability of case
frame transition, P (matomeru:6|okuru:6), is con-
sidered. This probability value is very low, be-
cause there are few relations between the case
frame matomeru:6 (organize) and the case frame
okuru:6 (send baggage) in corpora.

Consequently, structure (c1) is chosen as the
correct one, where both intra-clause and inter-
clause relations can be interpreted by the case

1In this paper, we use the following abbreviations:
NOM (nominative), ACC (accusative), ABL (ablative),
CMI (comitative) and TOP (topic marker).

Table 1: Case frame examples for matomeru and
okuru. “CS” represents case slot. Argument words
are written only in English. “<num>” represents
the class of numerals.

case frame ID CS example words
...

...
...

matomeru:5
(pack)

ga I, person, ...
wo baggage, luggage, variables, ...
ni <num>, pieces, compact, ...

matomeru:6
(organize)

ga doctor, ...
wo point, singularity, ...
ni <num>, pieces, below, ...

...
...

...

okuru:1
(send)

ga person, I, ...
wo mail, message, information, ...
ni friend, address, direction, ...
de mail, post, postage, ...

...
...

...

okuru:6
(send)

ga woman, ...
wo baggage, supply, goods, ...
ni person, Japan, parental house, ...
de mail, post, courier, ...

...
...

...

frames and the transition knowledge between case
frames.

3 Acquiring Transition Knowledge
between Case Frames

We automatically acquire large-scale transition
knowledge of inter-clause relations from a raw
corpus. The following two points are different
from previous studies on the acquisition of inter-
clause knowledge such as entailment/synonym
knowledge (Lin and Pantel, 2001; Torisawa, 2006;
Pekar, 2006; Zanzotto et al., 2006), verb relation
knowledge (Chklovski and Pantel, 2004), causal
knowledge (Inui et al., 2005) and event relation
knowledge (Abe et al., 2008):

• the unit of knowledge is disambiguated and
generalized

The unit in previous studies was a verb or a
verb phrase, in which verb sense ambiguities
still remain. Our unit is case frames that are
semantically disambiguated.

• the variation of relations is not limited

Although previous studies focused on lim-
ited kinds of semantic relations, we compre-
hensively collect generic relations between
clauses.

110

In this section, we first describe our unit of
transition knowledge, case frames, briefly. We
then detail the acquisition method of the transition
knowledge, and report experimental results. Fi-
nally, we refer to related work to the acquisition of
such knowledge.

3.1 The Unit of Transition Knowledge: Case
Frames

In this paper, we regard case frames as the unit of
transition knowledge. Case frames are constructed
from unambiguous structures and are semantically
clustered according to their meanings and usages.
Therefore, case frames can be a less ambiguous
and more generalized unit than a verb and a verb
phrase. Due to these characteristics, case frames
are a suitable unit for acquiring transition knowl-
edge and weaken the influence of data sparseness.

3.1.1 Automatic Construction of Case
Frames

We employ the method of Kawahara and Kuro-
hashi (2006a) to automatically construct case
frames. In this section, we outline the method for
constructing the case frames.

In this method, a large raw corpus is auto-
matically parsed, and the case frames are con-
structed from argument-head examples in the re-
sulting parses. The problems in automatic case
frame construction are syntactic and semantic am-
biguities. In other words, the parsing results in-
evitably contain errors, and verb senses are intrin-
sically ambiguous. To cope with these problems,
case frames are gradually constructed from reli-
able argument-head examples.

First, argument-head examples that have no
syntactic ambiguity are extracted, and they are dis-
ambiguated by a pair comprising a verb and its
closest case component. Such pairs are explic-
itly expressed on the surface of the text and can be
considered to play an important role in conveying
the meaning of a sentence. For instance, exam-
ples are distinguished not by verbs (e.g., “tsumu”
(load/accumulate)), but by pairs (e.g., “nimotsu-
wo tsumu” (load baggage) and “keiken-wo tsumu”
(accumulate experience)). argument-head exam-
ples are aggregated in this manner, and they yield
basic case frames.

Thereafter, the basic case frames are clustered
in order to merge similar case frames, including
similar case frames that are made from scram-
bled sentences. For example, since “nimotsu-

wo tsumu” (load baggage) and “busshi-wo tsumu”
(load supply) are similar, they are clustered to-
gether. The similarity is measured by using a dis-
tributional thesaurus based on the study described
in Lin (1998).

3.2 Acquisition of Transition Knowledge
from Large Corpus

To acquire the transition knowledge, we collect the
clause pairs in a large raw corpus that have a de-
pendency relation and represent them as pairs of
case frames. For example, from the following sen-
tence, a case frame pair, (matomeru:5, okuru:6), is
extracted.

(2) nimotsu-wo
baggage-ACC

matomete,
pack

takuhaibin-de
courier-CMI

okutta
sent

(packed one’s baggage and sent (it) using
courier service)

These case frames are determined by applying
a conventional case structure analyzer (Kawa-
hara and Kurohashi, 2006b), which selects the
case frames most similar to the input expres-
sions “nimotu-wo matomeru” (pack baggage) and
“takuhaibin-de okuru” (send with courier service)
from among the case frames of matomeru (or-
ganize/settle/pack/...) and okuru (send/remit/see
off/...); some of the case frames of matomeru and
okuru are listed in Table 1.

We adopt the following steps to acquire the tran-
sition knowledge between case frames:

1. Apply dependency and case structure analy-
sis to assign case frame IDs to each clause in
a large raw corpus.

2. Collect clause pairs that have a dependency
relation, and represent them as pairs of case
frame IDs.

3. Count the frequency of each pair of case
frame IDs; these statistics are used in the
analysis described in Section 4.

At step 2, we collect both syntactically ambigu-
ous and unambiguous relations in order to allevi-
ate data sparseness. The influence of a small num-
ber of dependency parsing errors would be hidden
by a large number of correct (unambiguous) rela-
tions.

111

Table 2: Examples of automatically acquired transition knowledge between case frames.
pairs of case frame IDs meaning freq.
(okuru:1, okuru:6) (send mails, send baggage) 186
(aru:1, okuru:6) (have, send baggage) 150
(suru:1, okuru:6) (do, send baggage) 134
(issyoda:10, okuru:6) (get together, send baggage) 118
(kaku:1, okuru:6) (write, send baggage) 115

...
...

...
(matomeru:5, okuru:6) (pack, send baggage) 12
(dasu:3, okuru:6) (indicate, send baggage) 12

...
...

...

3.3 Experiments of Acquiring Transition
Knowledge between Case Frames

To obtain the case frames and the transition knowl-
edge between case frames, we first built a Japanese
Web corpus by using the method of Kawahara and
Kurohashi (2006a). We first crawled 100 million
Japanese Web pages, and then, we extracted and
unduplicated Japanese sentences from the Web
pages. Consequently, we developed a Web corpus
consisting of 1.6 billion Japanese sentences.

Using the procedure of case frame construction
presented in Section 3.1.1, we constructed case
frames from the whole Web corpus. They con-
sisted of 43,000 predicates, and the average num-
ber of case frames for a predicate was 22.2.

Then, we acquired the transition knowledge be-
tween case frames using 500 million sentences of
the Web corpus. The resulting knowledge con-
sisted of 108 million unique case frame pairs. Ta-
ble 2 lists some examples of the acquired transition
knowledge. In the acquired transition knowledge,
we can find various kinds of relation such as en-
tailment, cause-effect and temporal relations.

Let us compare this result with the results of
previous studies. For example, Chklovski and
Pantel (2004) obtained 29,165 verb pairs for sev-
eral semantic relations in VerbOcean. The tran-
sition knowledge acquired in this study is several
thousand times larger than that in VerbOcean. It
is very difficult to make a meaningful compari-
son, but it can be seen that we have succeeded in
acquiring generic transition knowledge on a large
scale.

3.4 Related Work

In order to realize practical natural language pro-
cessing (NLP) systems such as intelligent dialog

systems, a lot of effort has been made to develop
world knowledge or inference knowledge. For ex-
ample, in the CYC (Lenat, 1995) and Open Mind
(Stork, 1999) projects, such knowledge has been
obtained manually, but it is difficult to manually
develop broad-coverage knowledge that is suffi-
cient for practical use in NLP applications.

On the other hand, the automatic acquisition of
such inference knowledge from corpora has at-
tracted much attention in recent years. First, se-
mantic knowledge between entities has been au-
tomatically obtained (Girju and Moldovan, 2002;
Ravichandran and Hovy, 2002; Pantel and Pennac-
chiotti, 2006). For example, Pantel and Pennac-
chiotti (2006) proposed the Espresso algorithm,
which iteratively acquires entity pairs and extrac-
tion patterns using reciprocal relationship between
entities and patterns.

As for the acquisition of the knowledge be-
tween events or clauses, which is most relevant
to this study, many approaches have been adopted
to acquire entailment knowledge. Lin and Pan-
tel (2001) and Szpektor and Dagan (2008) learned
entailment rules based on distributional similar-
ity between instances that have a relation to a
rule. Torisawa (2006) extracted entailment knowl-
edge using coordinated verb pairs and noun-verb
co-occurrences. Pekar (2006) also collected en-
tailment knowledge with discourse structure con-
straints. Zanzotto et al. (2006) obtained entailment
knowledge using nominalized verbs.

There have been some studies on relations other
than entailment relations. Chklovski and Pan-
tel (2004) obtained verb pairs that have one of
five semantic relations by using a search engine.
Inui et al. (2005) classified the occurrences of
the Japanese connective marker tame. Abe et al.

112

(2008) learned event relation knowledge for two
semantic relations. They first gave seed pairs of
verbs or verb phrases and extracted the patterns
that matched these seed pairs. Subsequently, by
using the Espresso algorithm (Pantel and Pennac-
chiotti, 2006), this process was iterated to augment
both instances and patterns. The acquisition unit
in these studies was a verb or a verb phrase.

In contrast to these studies, we obtained generic
transition knowledge between case frames without
limiting target semantic relations.

4 Incorporating Transition Knowledge
into Dependency and Case Structure
Analysis

We employ the probabilistic generative model of
dependency and case structure analysis (Kawahara
and Kurohashi, 2006b) as a base model. We incor-
porate the obtained transition knowledge into this
base parser.

Our model assigns a probability to each possi-
ble dependency structure, T , and case structure,
L, of the input sentence, S, and outputs the de-
pendency and case structure that have the highest
probability. In other words, the model selects the
dependency structure T best and the case structure
Lbest that maximize the probability P (T,L|S) or
its equivalent, P (T,L, S), as follows:

(T best, Lbest) = argmax (T,L)P (T,L|S)

= argmax (T,L)
P (T,L, S)

P (S)
= argmax (T,L)P (T,L, S). (1)

The last equation follows from the fact that P (S)
is constant.

In the model, a clause (or predicate-argument
structure) is considered as a generation unit and
the input sentence is generated from the end of the
sentence. The probability P (T,L, S) is defined
as the product of the probabilities of generating
clauses Ci as follows:

P (T,L, S) =
∏

Ci∈SP (Ci|Ch), (2)

where Ch is the modifying clause of Ci. Since the
Japanese language is head final, the main clause at
the end of a sentence does not have a modifying
head; we account for this by assuming Ch = EOS
(End Of Sentence).

The probability P (Ci|Ch) is defined in a man-
ner similar to that in Kawahara and Kurohashi

(2006b). However, the difference between the
probability in the above-mentioned study and that
in our study is the generative probability of the
case frames, i.e., the probability of generating a
case frame CF i from its modifying case frame
CF h. The base model approximated this proba-
bility as the product of the probability of gener-
ating a predicate vi from its modifying predicate
vh and the probability of generating a case frame
CF i from the predicate vi as follows:

P (CF i|CF h) ≈
P (vi|vh)× P (CF i|vi). (3)

Our proposed model directly estimates the proba-
bility P (CF i|CF h) and considers the transition
likelihood between case frames. This probabil-
ity is calculated from the transition knowledge be-
tween case frames using maximum likelihood.

In practice, to avoid the data sparseness prob-
lem, we interpolate the probability P (CF i|CF h)
with the probability of generating predicates,
P (vi|vh), as follows:

P ′(CF i|CF h) ≈
λP (CF i|CF h) + (1− λ)P (vi|vh), (4)

where λ is determined using the frequencies of the
case frame pairs, (CF i, CF h), in the same man-
ner as in Collins (1999).

5 Experiments

We evaluated the dependency structures that were
output by our new dependency parser. The case
frames used in these experiments are the same as
those described in Section 3.3, which were au-
tomatically constructed from 1.6 billion Japanese
sentences obtained from the Web.

In this study, the parameters related to unlexi-
cal types were calculated from the Kyoto Univer-
sity Text Corpus, which is a small tagged corpus
of newspaper articles, and lexical parameters were
obtained from a large Web corpus. To evaluate the
effectiveness of our model, our experiments were
conducted using sentences obtained from the Web.
As a test corpus, we used 759 Web sentences2,
which were manually annotated using the same
criteria as those in the case of the Kyoto Univer-
sity Text Corpus. We also used the Kyoto Univer-
sity Text Corpus as a development corpus to op-
timize some smoothing parameters. The system

2The test set was not used to construct case frames and
estimate probabilities.

113

Table 3: The dependency accuracies in our experiments.
syn syn+case syn+case+cons

all 4,555/5,122 (88.9%) 4,581/5,122 (89.4%) 4,599/5,122 (89.8%)
NP→VP 2,115/2,383 (88.8%) 2,142/2,383 (89.9%) 2,151/2,383 (90.3%)
NP→NP 1,068/1,168 (91.4%) 1,068/1,168 (91.4%) 1,068/1,168 (91.4%)
VP→VP 779/928 (83.9%) 777/928 (83.7%) 783/928 (84.4%)
VP→NP 579/623 (92.9%) 579/623 (92.9%) 582/623 (93.4%)

input was automatically tagged using the JUMAN
morphological analyzer 3.

We used two baseline systems for the purposes
of comparison: a rule-based dependency parser
(Kurohashi and Nagao, 1994) and the probabilistic
generative model of dependency and case struc-
ture analysis (Kawahara and Kurohashi, 2006b)4.
We use the above-mentioned case frames also in
the latter baseline parser, which also requires au-
tomatically constructed case frames.

5.1 Evaluation of Dependency Structures

We evaluated the obtained dependency structures
in terms of phrase-based dependency accuracy —
the proportion of correct dependencies out of all
dependencies5.

Table 3 lists the dependency accuracies. In this
table, “syn” represents the rule-based dependency
parser, “syn+case” represents the probabilistic
parser of syntactic and case structure (Kawahara
and Kurohashi, 2006b)6, and “syn+case+cons”
represents our proposed model. In the table, the
dependency accuracies are classified into four cat-
egories on the basis of the phrase classes (VP:
verb phrase7 and NP: noun phrase) of a dependent
and its head. The parser “syn+case+cons” signif-
icantly outperformed the two baselines for “all”
(McNemar’s test; p < 0.05). In particular, the ac-
curacy of the intra-clause (predicate-argument) re-
lations (“NP→VP”) was improved by 1.5% from
“syn” and by 0.4% from “syn+case.” These im-

3http://nlp.kuee.kyoto-u.ac.jp/
nl-resource/juman-e.html

4http://nlp.kuee.kyoto-u.ac.jp/
nl-resource/knp-e.html

5Since Japanese is head-final, the second to last phrase
unambiguously depends on the last phrase. However, we in-
clude such dependencies into our evaluation as in most of
previous studies.

6The accuracy described in Kawahara and Kurohashi
(2006b) is different from that of this paper due to the different
evaluation measure excluding the unambiguous dependencies
of the second last phrases.

7VP includes not only verbs but also adjectives and nouns
with copula.

provements are due to the incorporation of the
transition knowledge into syntactic/case structure
analysis.

In order to compare our results with a state-of-
the-art discriminative dependency parser, we in-
put the test corpus into an SVM-based Japanese
dependency parser, CaboCha8(Kudo and Mat-
sumoto, 2002), which was trained using the Kyoto
University Text Corpus. Its dependency accuracy
was 88.6% (4,540/5,122), which is close to that of
“syn.” This low accuracy is attributed to the lack
of knowledge of both intra-clause and inter-clause
relations. Another cause of the low accuracy is the
out-of-domain training corpus. In other words, the
parser was trained on a newspaper corpus, while
the test corpus was obtained from the Web because
a tagged Web corpus that is large enough to train
a supervised parser is not available.

5.2 Discussions

Figure 2 shows some improved analyses; here, the
dotted lines represent the results of the analysis
performed using the baseline “syn + case,” and
the solid lines represent the analysis performed
using the proposed method, “syn+case+cons.”
These sentences are incorrectly analyzed by the
baseline but correctly analyzed by the proposed
method. For example, in sentence (a), the head of
gunegunemichi-wo (winding road-ACC) was cor-
rectly analyzed as yurareru (be jolted). This is
because the case frame of “basu-ni yurareru” (be
jolted by bus) is likely to generate tatsu (stand)
that does not take the wo (ACC) slot. In this man-
ner, by considering the transition knowledge be-
tween case frames, the selection of case frames
became accurate, and thus, the accuracy of the
dependencies within clauses (predicate-argument
structures) was improved.

In the case of the dependencies between pred-
icates (VP→VP), however, only small improve-

8http://chasen.org/∼taku/software/
cabocha/

114

? ?
(a) gunegunemichi-wo tattamama basu-ni yurareru toko-wo kakugoshimashita.

winding road-ACC stand bus-DAT be jolted (that)-ACC be resolved
(be resolved to be jolted standing on the bus by the winding road.)

??
(b) nanika-wo eru tame-ni suteta mono-nimo miren-wo nokoshiteiru.

something-ACC get for discarded thing-also lingering desire-ACC retain
(retain a lingering desire also for the thing that was discarded to get something.)

??
(c) senbei-no hako-wa, kankaku-wo akete chinretsusareteiruno-ga mata yoi.

rice cracker-GEN box-TOP interval-ACC place be displayed-NOM also good
(It is also good that boxes of rice cracker are displayed placing an interval.)

Figure 2: Improved examples.

? ?
(d) ketsuron-kara itteshimaeba, kaitearukoto-wa machigattenaishi, juyouna kotodato-wa wakaru.

conclusion-ABL say content-TOP not wrong important (that)-TOP understand
(Saying from conclusions, the content is not wrong and (I) understand that (it) is important)

Figure 3: An erroneous example.

ments were achieved by using the transition
knowledge between case frames. This is mainly
because the heads of the predicates are intrinsi-
cally ambiguous in many cases.

For example, in sentence (d) in Figure 3, the
correct head of itteshimaeba (say) is wakaru (un-
derstand) as designated by the solid line, but our
model incorrectly judged the head to be machigat-
teinaishi, (not wrong) as designated by the dotted
line. However, in this case, both the phrases that
are being modified are semantically related to the
modifier. To solve this problem, it is necessary to
re-consider the evaluation metrics of dependency
parsing.

6 Conclusion

In this paper, we have described a method for ac-
quiring the transition knowledge of inter-clause re-
lations and a method for incorporating this knowl-
edge into dependency and case structure analy-
sis. The significance of this study is that the pro-
posed parsing method selects the best dependency
and case structures that are consistent within each
clause and between clauses. We confirmed that
this method contributed to the improvement of the
dependency parsing of Japanese.

The case frames that are acquired from 1.6 bil-
lion Japanese sentences have been made freely

available to the public9. In addition, we are prepar-
ing to make the acquired transition knowledge ac-
cessible on the Web.

In future, we will investigate the iteration of
knowledge acquisition and parsing based on the
acquired knowledge. Since our parser is a gener-
ative model, we are expecting a performance gain
by the iteration. Furthermore, we would like to ex-
plore the use of the transition knowledge between
case frames to improve NLP applications such as
recognizing textual entailment (RTE) and sentence
generation.

References

Shuya Abe, Kentaro Inui, and Yuji Matsumoto. 2008.
Acquiring event relation knowledge by learning
cooccurrence patterns and fertilizing cooccurrence
samples with verbal nouns. In Proceedings of IJC-
NLP2008, pages 497–504.

Takeshi Abekawa and Manabu Okumura. 2006.
Japanese dependency parsing using co-occurrence
information and a combination of case elements. In
Proceedings of COLING-ACL2006, pages 833–840.

Daniel M. Bikel. 2004. Intricacies of Collins’ parsing
model. Computational Linguistics, 30(4):479–511.

9http://nlp.kuee.kyoto-u.ac.jp/
nl-resource/caseframe-e.html

115

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL-X, pages 149–164.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceedings
of EMNLP-CoNLL2007 Shared Task, pages 957–
961.

Timothy Chklovski and Patrick Pantel. 2004. VerbO-
cean: Mining the web for fine-grained semantic verb
relations. In Proceedings of EMNLP2004, pages
33–40.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Roxana Girju and Dan Moldovan. 2002. Mining an-
swers for causation questions. In Proceedings of
AAAI Spring Symposium.

Takashi Inui, Kentaro Inui, and Yuji Matsumoto.
2005. Acquiring causal knowledge from text us-
ing the connective marker tame. ACM Transactions
on Asian Language Information Processing (ACM-
TALIP), 4(4):435–474.

Daisuke Kawahara and Sadao Kurohashi. 2006a.
Case frame compilation from the web using
high-performance computing. In Proceedings of
LREC2006.

Daisuke Kawahara and Sadao Kurohashi. 2006b. A
fully-lexicalized probabilistic model for Japanese
syntactic and case structure analysis. In Proceed-
ings of HLT-NAACL2006, pages 176–183.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In Proceedings of ACL-08:HLT, pages 595–603.

Taku Kudo and Yuji Matsumoto. 2002. Japanese de-
pendency analysis using cascaded chunking. In Pro-
ceedings of CoNLL2002, pages 29–35.

Sadao Kurohashi and Makoto Nagao. 1994. A syn-
tactic analysis method of long Japanese sentences
based on the detection of conjunctive structures.
Computational Linguistics, 20(4):507–534.

Douglas B. Lenat. 1995. CYC: A large-scale invest-
ment in knowledge infrastructure. Communications
of the ACM, 38(11):32–38.

Dekang Lin and Patrick Pantel. 2001. DIRT - discov-
ery of inference rules from text. In Proceedings of
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 323–328.

Dekang Lin. 1998. Automatic retrieval and cluster-
ing of similar words. In Proceedings of COLING-
ACL98, pages 768–774.

Mitchell Marcus, Beatrice Santorini, and Mary
Marcinkiewicz. 1993. Building a large annotated
corpus of English: the Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of EACL2006, pages 81–88.

Tetsuji Nakagawa. 2007. Multilingual dependency
parsing using global features. In Proceedings of
EMNLP-CoNLL2007 Shared Task, pages 952–956.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. In Proceedings
of COLING2004, pages 64–70.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on
dependency parsing. In Proceedings of EMNLP-
CoNLL2007, pages 915–932.

Patrick Pantel and Marco Pennacchiotti. 2006.
Espresso: Leveraging generic patterns for automati-
cally harvesting semantic relations. In Proceedings
of COLING-ACL2006, pages 113–120.

Viktor Pekar. 2006. Acquisition of verb entailment
from text. In Proceedings of HLT-NAACL2006,
pages 49–56.

Deepak Ravichandran and Eduard Hovy. 2002. Learn-
ing surface text patterns for a question answering
system. In Proceedings of ACL2002, pages 41–47.

Manabu Sassano. 2004. Linear-time dependency anal-
ysis for Japanese. In Proceedings of COLING2004,
pages 8–14.

David G. Stork. 1999. Character and document re-
search in the open mind initiative. In Proceedings
of International Conference on Document Analysis
and Recognition, pages 1–12.

Idan Szpektor and Ido Dagan. 2008. Learning entail-
ment rules for unary templates. In Proceedings of
COLING2008, pages 849–856.

Kentaro Torisawa. 2006. Acquiring inference rules
with temporal constraints by using Japanese coordi-
nated sentences and noun-verb co-occurrences. In
Proceedings of HLT-NAACL2006, pages 57–64.

Fabio Massimo Zanzotto, Marco Pennacchiotti, and
Maria Teresa Pazienza. 2006. Discovering asym-
metric entailment relations between verbs using se-
lectional preferences. In Proceedings of COLING-
ACL2006, pages 849–856.

116

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 117–128,
Paris, October 2009. c©2009 Association for Computational Linguistics

Constructing parse forests that include exactly then-best PCFG trees

Pierre Boullier1, Alexis Nasr2 and Benôıt Sagot1

1. Alpage, INRIA Paris-Rocquencourt & Université Paris 7
Domaine de Voluceau — Rocquencourt, BP 105 — 78153 Le ChesnayCedex, France

{Pierre.Boullier,Benoit.Sagot}@inria.fr
2. LIF, Univ. de la Méditerrannée

163, avenue de Luminy - Case 901 — 13288 Marseille Cedex 9, France
Alexis.Nasr@lif.univ-mrs.fr

Abstract

This paper describes and compares two al-
gorithms that take as input a shared PCFG
parse forest and produce shared forests
that contain exactly then most likely trees
of the initial forest. Such forests are
suitable for subsequent processing, such
as (some types of) reranking or LFG f-
structure computation, that can be per-
formed ontop of a shared forest, but that
may have a high (e.g., exponential) com-
plexity w.r.t. the number of trees contained
in the forest. We evaluate the perfor-
mances of both algorithms on real-scale
NLP forests generated with a PCFG ex-
tracted from the Penn Treebank.

1 Introduction

The output of a CFG parser based on dynamic
programming, such as an Earley parser (Earley,
1970), is a compact representation of all syntac-
tic parses of the parsed sentence, called ashared
parse forest(Lang, 1974; Lang, 1994). It can rep-
resent an exponential number of parses (with re-
spect to the length of the sentence) in a cubic size
structure. This forest can be used for further pro-
cessing, as reranking (Huang, 2008) or machine
translation (Mi et al., 2008).

When a CFG is associated with probabilistic in-
formation, as in a Probabilistic CFG (PCFG), it
can be interesting to process only then most likely
trees of the forest. Standard state-of-the-art algo-
rithms that extract then best parses (Huang and
Chiang, 2005) produce a collection of trees, los-
ing the factorization that has been achieved by the
parser, and reproduce some identical sub-trees in
several parses.

This situation is not satisfactory since post-
parsing processes, such as reranking algorithms
or attribute computation, cannot take advantage

of this lost factorization and may reproduce some
identical work on common sub-trees, with a com-
putational cost that can be exponentally high.

One way to solve the problem is to prune the
forest by eliminating sub-forests that do not con-
tribute to any of then most likely trees. But this
over-generates: the pruned forest contains more
than then most likely trees. This is particularly
costly for post-parsing processes that may require
in the worst cases an exponential execution time
w.r.t. the number of trees in the forest, such as
LFG f-structures construction or some advanced
reranking techniques. The experiments detailed
in the last part of this paper show that the over-
generation factor of pruned sub-forest is more or
less constant (see 6): after pruning the forest so as
to keep then best trees, the resulting forest con-
tains approximately103n trees. At least for some
post-parsing processes, this overhead is highly
problematic. For example, although LFG parsing
can be achieved by computing LFG f-structures
on top of a c-structure parse forest with a reason-
able efficiency (Boullier and Sagot, 2005), it is
clear that a103 factor drastically affects the overall
speed of the LFG parser.

Therefore, simply pruning the forest is not an
adequate solution. However, it will prove useful
for comparison purposes.

The new direction that we explore in this pa-
per is the production of shared forests that con-
tain exactlythen most likely trees, avoiding both
the explicit construction ofn different trees and
the over-generation of pruning techniques. This
can be seen as a transduction which is applied on
a forest and produces another forest. The trans-
duction applies some local transformations on the
structure of the forest, developing some parts of
the forest when necessary.

The structure of this paper is the following. Sec-
tion 2 defines the basic objects we will be dealing
with. Section 3 describes how to prune a shared

117

forest, and introduces two approaches for build-
ing shared forests that contain exactly then most
likely parses. Section 4 describes experiments that
were carried out on the Penn Treebank and sec-
tion 5 concludes the paper.

2 Preliminaries

2.1 Instantiated grammars

Let G = 〈N ,T ,P, S〉 be a context-free grammar
(CFG), defined in the usual way (Aho and Ullman,
1972). Throughout this paper, we suppose that we
manipulate only non-cyclic CFGs,1 but they may
(and usually do) includeε-productions. Given a
productionp ∈ P, we notelhs(p) its left-hand
side,rhs(p) its right-hand side and|p| the length
of rhs(p). Moreover, we noterhsk(p), with 1 ≤
k ≤ |p|, the kth symbol of rhs(p). We call A-
production any productionp ∈ P of G such that
lhs(p) = A.

A complete derivation of a sentencew =
t1 . . . t|w| (∀i ≤ |w|, ti ∈ T) w.r.t.G is of the form

S
∗⇒

G,w
αAβ ⇒

G,w
αX1X2 . . . Xrβ

∗⇒
G,w

w. By def-

inition, A → X1X2 . . . Xr is a production ofG.
Each ofA, X1, X2, . . . , Xr spans a unique oc-
currence of a substringti+1 . . . tj of w, that can
be identified by the correspondingrange, noted
i..j. A complete derivation represents aparse tree
whose yield isw, in which each symbolX of
rangei..j roots a subtree whose yield isti+1 . . . tj
(i.e., a derivation of the formX ∗⇒

G,w
ti+1 . . . tj).

Let us define thew-instantiationoperation (or
instantiation). It can be applied to symbols and
productions ofG, and toG itself, w.r.t. a string
w. It corresponds to the well-known intersection
of G with the linear automaton that corresponds
to the stringw. We shall go into further detail for
terminology, notation and illustration purposes.

An instantiated non terminal symbolis a triple
notedAi..j whereA ∈ N and0 ≤ i ≤ j ≤ |w|.
Similarly, an instantiated terminal symbolis a
triple notedTi..j whereT ∈ T and0 ≤ i ≤ j =
i + 1 ≤ |w|. An instantiated symbol, terminal or
non terminal, is notedXi..j. For any instantiated
symbolXi..j, i (resp. j) is called itslower bound

1Actually, cyclic CFG can be treated as well, but not
cyclic parse forests. Therefore, if using a cyclic CFG which,
on a particular sentence, builds a cyclic parse forest, cycles
have to be removed before the algorithms descibed in the next
sections are applied. This is the case in the SYNTAX system
(see below).

(resp. upper bound), and can be extracted by the
operatorlb() (resp.ub()).

An instantiated production(or instantiated
rule) is a context-free productionAi..j →
X1

i1..j1
X2

i2..j2
. . . Xr

ir ..jr
whose left-hand side is an

instantiated non terminal symbol and whose right-
hand side is a (possibly empty) sequence of in-
stantiated (terminal or non terminal) symbols, pro-
vided the followings conditions hold:

1. the indexes involved are such thati = i1, j =
jr, and∀l such that1 ≤ l < r, jl = il+1;

2. the corresponding non-instantiated produc-
tion A → X1X2 . . . Xr is a production of
G.

If lhs(p) = Ai..j, we setlb(p) = i andub(p) = j.
In a complete derivationS ∗⇒

G,w
αAβ ⇒

G,w

αX1X2 . . . Xrβ
∗⇒

G,w
w, any symbolX that spans

the rangei..j can be replaced by the instantiated
symbolsXi..j. For example, the axiomS can be
replaced by the instantiated axiomS0..|w| in the
head of the derivation. If applied to the whole
derivation, this operation creates aninstantiated
derivation, whose rewriting operations define a
particular set of instantiated productions. Given
G andw, the set of all instantiated productions in-
volved in at least one complete derivation ofw is
unique, and notedPw. An instantiated derivation
represents aninstantiated parse tree, i.e., a parse
tree whose node labels are instantiated symbols.
In an instantiated parse tree, each node label is
unique, and therefore we shall not distinguish be-
tween a node in an instantiated parse tree and its
label (i.e., an instantiated symbol).

Then, thew-instantiated grammarGw for G
andw is a CFG〈Nw,Tw,Pw, S0..|w|〉 such that:

1. Pw is defined as explained above;

2. Nw is a set of instantiated non terminal sym-
bols;

3. Tw is a set of instantiated terminal symbols.

It follows from the definition ofPw that (instan-
tiated) symbols ofGw have the following prop-
erties: Ai..j ∈ Nw ⇔ A

∗⇒
G,w

ti+1 . . . tj, and

Ti..j ∈ Tw ⇔ T = tj.
Thew-instantiated CFGGw representsall parse

trees forw in a shared (factorized) way. It is the
grammar representation of the parse forest ofw

118

w.r.t. G.2 In fact, L(Gw) = {w} and the set
of parses ofw with respect toGw is isomorphic
to the set of parses ofw with respect toG, the
isomorphism being thew-instantiation operation.
The sizeof a forest is defined as the size of the
grammar that represents it, i.e., as the number of
symbol occurrences in this grammar, which is de-
fined as the number of productions plus the sum of
the lengths of all right-hand sides.

Example 1: First running example.
Let us illustrate these definitions by an example.

Given the sentencew = the boy saw a man with a
telescopeand the grammarG (that the reader has
in mind), the instantiated productions ofGw are:

Det0..1 → the0..1 N1..2 → boy1..2

NP0..2 → Det0..1 N1..2 V2..3 → saw2..3

Det3..4 → a3..4 N4..5 → man4..5

NP3..5 → Det3..4 N4..5 Prep5..6 → with5..6

Det6..7 → a6..7 N7..8 → telescope7..8

NP6..8 → Det6..7 N7..8 PP5..8 → Prep5..6 NP6..8

NP3..8 → NP3..5 PP5..8 VP2..8 → V2..3 NP3..8

VP2..5 → V2..3 NP3..5 VP2..8 → VP2..5 PP5..8

S0..8 → NP0..2 VP2..8

They represent the parse forest ofw according to
G. This parse forest contains two trees, since there
is one ambiguity: VP2..8 can be rewritten in two
different ways.

The instantiated grammarGw can be repre-
sented as an hypergraph (as in (Klein and Man-
ning, 2001) or (Huang and Chiang, 2005)) where
the instantiated symbols ofGw correspond to the
vertices of the hypergraph and the instantiated pro-
ductions to the hyperarcs.

We define theextensionof an instantiated sym-
bol Xi..j, notedE(Xi..j), as the set of instantiated
parse trees that haveXi..j as a root. The set of all
parse trees ofw w.r.t. G is thereforeE(S0..|w|). In
the same way, we define the extension of an in-
stantiated productionXi..j → α to be the subset
of E(Xi..j) that corresponds to derivations of the
form Xi..j ⇒

G,w
α

∗⇒
G,w

ti+1 . . . tj (i.e., trees rooted

in Xi..j and where the daughters of the nodeXi..j

are the symbols ofα).

2.2 Forest traversals

Let us suppose that we deal with non-cyclic
forests, i.e., we only consider forests that are rep-

2In particular, ifG is a binary grammar, itsw-instantation
(i.e., the parse forest ofw) has a sizeO(|w|3), whereas it rep-
resents a potentially exponential number of parse trees w.r.t
|w| since we manipulate only non-cyclic grammars.

resented by a non-recursive instantiated CFG. In
this case, we can define two different kinds of for-
est traversals.

A bottom-up traversalof a forest is a traversal
with the following constraint: anAi..j-production
is visited if and only if all its instantiated right-
hand side symbols have already been visited; the
instantiated symbolAi..j is visited once allAi..j-
productions have been visited. The bottom-up
visit starts by visiting all instantiated productions
with right-hand sides that are empty or contain
only (instantiated) terminal symbols.

A top-down traversalof a forest is a traversal
with the following constraint: a nodeAi..j is vis-
ited if and only if all the instantiated productions
in which it occurs in right-hand side have already
been visited; once an instantiated productionAi..j

has been visited, all itsAi..j-productions are vis-
ited as well. Of course the top-down visit starts by
the visit of the axiomS0..|w|.

2.3 Ranked instantiated grammar

When an instantiated grammarGw =
〈Nw,Tw,Pw, S0..|w|〉 is built on a PCFG, ev-
ery parse tree inE(S0..|w|) has a probability that
is computed in the usual way (Booth, 1969). We
might be interested in extracting thekth most
likely tree of the forest represented byGw,3 with-
out unfoldingthe forest, i.e., without enumerating
trees. In order to do so, we need to add some
extra structure to the instantiated grammar. The
augmented instantiated grammar will be called a
ranked instantiated grammar.

This extra structure takes the form ofn-best ta-
blesthat are associated with each instantiated non
terminal symbol (Huang and Chiang, 2005), thus
leading toranked instantiated non terminal sym-
bols, or simplyinstantiated symbolswhen the con-
text is non ambiguous. A ranked instantiated non
terminal symbol is written〈Ai..j,T (Ai..j)〉, where
T (Ai..j) is then-best table associated with the in-
stantiated symbolAi..j.
T (Ai..j) is a table of at mostn entries. The

k-th entry of the table, notede, describes how to
build the k-th most likely tree ofE(Ai..j). This
tree will be called thek-th extention ofAi..j, noted
Ek(Ai..j). More precisely,e indicates the instanti-
atedAi..j-productionp such thatEk(Ai..j) ∈ E(p).
It indicates furthermore which trees of the exten-

3In this paper, we shall use thekth most likely treeandthe
tree of rankk as synonyms.

119

sions ofp’s right-hand side symbols must be com-
bined together in order to buildEk(Ai..j).

We also define them,n-extension ofAi..j as
follows: Em,n(Ai..j) = ∪m≤k≤nEk(Ai..j).

Example 2: n-best tables for the first running
example.

Let us illustrate this idea on our first running ex-
ample. Recall that in Example 1, the symbol VP2..8

can be rewritten using the two following produc-
tions :

VP2..8 → V2..3 NP3..8

VP2..8 → VP2..5 PP5..8

T (VP2..8) has the following form:

1 P1 VP2..8 → V2..3 NP3..8 〈1, 1〉 1
2 P2 VP2..8 → VP2..5 PP5..8 〈1, 1〉 1

This table indicates that the most likely tree
associated with VP2..8 (line one) has probability
P1 and is built using the production VP2..8 →
V2..3 NP3..8 by combining the most likely tree of
E(V2..3) (indicated by the first1 in 〈1, 1〉) with the
most likely tree ofE(NP3..8) (indicated by the sec-
ond 1 in 〈1, 1〉). It also indicates that the most
likely tree ofE(VP2..8) is the most likely tree of
E(VP2..8 → V2..3 NP3..8) (indicated by the pres-
ence of1 in the last column of entry1) and the
second most likely tree ofE(VP2..8) is the most
likely tree ofE(VP2..8 → VP2..5 PP5..8). This last
integer is called the local rank of the entry.

More formally, the entryT (Ai..j)[k] is defined
as a4-tuple 〈Pk, pk, ~vk, lk〉 wherek is the rank
of the entry, Pk is the probability of the tree
Ek(Ai..j), pk is the instantiated production such
that Ek(Ai..j) ∈ E(pk), ~vk is a tuple of|rhs(pk)|
integers andlk is the local rank.

The treeEk(Ai..j) is rooted byAi..j, and its
daughters rootN = |rhs(pk)| subtrees that are
E ~vk[1](rhs1(pk)), . . . , E ~vk [N](rhsN (pk)).

Given an instantiated symbolAi..j and an in-
stantitated productionp ∈ P (Ai..j), we define
the n-best table ofp to be the table composed
of the entries〈Pk, pk, ~vk, lk〉 of T (Ai..j) such that
pk = p.

Example 3: Second running example.
The following is a standard PCFG (probabili-

ties are shown next to the corresponding clauses).

S→ A B 1
A→ A1 0.7 A1→ a 1
A→ A2 0.3 A2→ a 1
B→ B1 0.6 B1→ b 1
B→ B2 0.4 B2→ b 1

The instantiation of the underlying (non-
probabilistic) CFG grammar by the input text
w = a b is the following.

S1..3 → A1..2 B2..3

A1..2 → A11..2 A11..2 → a1..2

A1..2 → A21..2 A21..2 → a1..2

B2..3 → B12..3 B12..3 → b2..3

B2..3 → B22..3 B22..3 → b2..3

This grammar represents a parse forest that con-
tains four different trees, since on the one hand one
can reach (parse) the instantiated terminal symbol
a1..2 throughA1 or A2, and on the other hand one
can reach (parse) the instantiated terminal sym-
bol b1..2 throughB1 or B2. Therefore, when dis-
cussing this example in the remainder of the paper,
each of these four trees will be named accordingly:
the tree obtained by reachinga throughAi and b
through Bj (i and j are 1 or 2) shall be called
Ti,j.

The correspondingn-best tables are trivial
(only one line) for all instantiated symbols but
A1..2, B2..3 and S1..3. That of A1..2 is the follow-
ing 2-line table.

1 0.7 A→ A1 〈1〉 1
2 0.3 A→ A2 〈1〉 1

Then-best table for B2..3 is similar. Then-best
table for S1..3 is:

1 0.42 S1..3 → A1..2 B2..3 〈1, 1〉 1
2 0.28 S1..3 → A1..2 B2..3 〈1, 2〉 2
3 0.18 S1..3 → A1..2 B2..3 〈2, 1〉 3
4 0.12 S1..3 → A1..2 B2..3 〈2, 2〉 4

Thanks to the algorithm sketched in section 2.4,
these tables allow to compute the following obvi-
ous result: the best tree isT1,1, the second-best
tree isT1,2, the third-best tree isT2,1 and the worst
tree isT2,2.

If n = 3, the pruned forest over-generates: all
instantiated productions take part in at least one
of the three best trees, and therefore the pruned
forest is the full forest itself, which contains four
trees.

We shall use this example later on so as to il-
lustrate both methods we introduce for building
forests that contain exactly then best trees, with-
out overgenerating.

2.4 Extracting the kth-best tree

An efficient algorithm for the extraction of then-
best trees is introduced in (Huang and Chiang,
2005), namely the authors’ algorithm 3, which

120

is a re-formulation of a procedure originally pro-
posed by (Jiménez and Marzal, 2000). Contrar-
ily to (Huang and Chiang, 2005), we shall sketch
this algorithm with the terminology introduced
above (whereas the authors use the notion of hy-
pergraph). The algorithm relies on then-best ta-
bles described above: extracting thekth-best tree
consists in extending then-best tables as much as
necessary by computing all lines in eachn-best ta-
ble up to those that concern thekth-best tree.4

The algorithm can be divided in two sub-
algorithms: (1) a bottom-up traversal of the for-
est for extracting the best tree; (2) a top-down
traversal for extracting thekth-best tree provided
the(k − 1)th-best has been already extracted.

The extraction of the best tree can be seen as a
bottom-up traversal that initializes then-best ta-
bles: when visiting a nodeAi..j, the best probabil-
ity of eachAi..j-production is computed by using
the tables associated with each of their right-hand
side symbols. The best of these probabilities gives
the first line of then-best table forAi..j (the result
for other productions are stored for possible later
use). Once the traversal is completed (the instanti-
ated axiom has been reached), the best tree can be
easily output by following recursively where the
first line of the axiom’sn-best table leads to.

Let us now assume we have extracted allk′-best
trees,1 ≤ k′ < k, for a givenk ≤ n. We want
to extract thekth-best tree. We achieve this recur-
sively by a top-down traversal of the forest. In or-
der to start the construction of thekth-best tree, we
need to know the following:

• which instantiated productionp must be used
for rewriting the instantiated axiom,

• for each ofp’s right-hand side symbolsAi..j,
which subtree rooted inAi..j must be used;
this subtree is identified by itslocal rank
kAi..j , i.e., the rank of its probability among
all subtrees rooted inAi..j.

This information is given by thekth line of then-
best table associated with the instantiated axiom.
If this kth line has not been filled yet, it is com-
puted recursively.5 Once thekth line of then-best

4In the remainder of this paper, we shall use “extracting
thekth-best tree” as a shortcut for “extending then-best ta-
bles up to what is necessary to extract thekth-best tree” (i.e.,
we do not necessarily really build or print thekth-best tree).

5Because thek − 1th-best tree has been computed, thisn-
best table is filled exactly up to linek−1. Thekth line is then

table is known, i.e.,p and allkAi..j ’s are known,
the rankk is added top’s so-calledrankset, noted
ρ(p). Then, the top-down traversal extracts recur-
sively for eachAi..j the appropriate subtree as de-
fined by kAi..j . After having extracted then-th
best tree, we know that a given productionp is in-
cluded in thekth-best tree,1 ≤ k ≤ n, if and only
if k ∈ ρ(p).

3 Computing sub-forests that only
contain then best trees

Given a ranked instantiated grammarGw, we are
interested in building a new instantiated grammar
which contains exactly then most likely trees of
E(Gw). In this section, we introduce two algo-
rithms that compute such a grammar (or forest).
Both methods rely on the construction of new
symbols, obtained by decorating instantiated sym-
bols ofGw.

An empirical comparison of the two methods is
described in section 4. In order to evaluate the
size of the new constructed grammars (forests),
we consider as a lower bound the so-calledpruned
forest, which is the smallest sub-grammar of the
initial instantiated grammar that includes then
best trees. It is built simply by pruning produc-
tions with an empty rankset: no new symbols
are created, original instantiated symbols are kept.
Therefore, it is a lower bound in terms of size.
However, the pruned forest usually overgenerates,
as illustrated by Example 3.

3.1 The ranksets method

The algorithm described in this section builds an
instantiated grammarGn

w by decorating the sym-
bols of Gw. The new (decorated) symbols have
the formAρ

i..j whereρ is a set of integers called
a rankset. An integer r is a rank iff we have
1 ≤ r ≤ n.

The starting point of this algorithm is set ofn-
best tables, built as explained in section 2.4, with-
out explicitely unfolding the forest.

computed as follows: while constructing thek′th-best trees
for eachk′ between1 andk−1, we have identified many pos-
sible rewritings of the instantiated axiom, i.e., many (produc-
tion, right-hand side local ranks) pairs; we know the proba-
bility of all these rewritings, although only some of them con-
situte a line of the instantiated axiom’sn-best table; we now
identify new rewritings, starting from known rewritings and
incrementing only one of their local ranks; we compute (re-
cursively) the probability of these newly identified rewritings;
the rewriting that has the best probability among all those that
are not yet a line of then-best table is then added: it is itskth

line.

121

A preliminary top-down step uses thesen-best
tables for building a parse forest whose non-
terminal symbols (apart from the axiom) have the
form Aρ

i..j whereρ is a singleton{r}: the sub-

forest rooted inA{r}
i..j contains only one tree, that

of local rankr. Only the axiom is not decorated,
and remains unique. Terminal symbols are not af-
fected either.

At this point, the purpose of the algorithm is to
merge productions with identical right-hand sides,
whenever possible. This is achieved in a bottom-
up fashion as follows. Consider two symbolsAρ1

i..j

and Aρ2
i..j, which differ only by their underlying

ranksets. These symbols correspond to two dif-
ferent production sets, namely the set of allAρ1

i..j-
productions (resp. Aρ2

i..j-productions). Each of
these production sets define a set of right-hand
sides. If these two right-hand side sets are iden-
tical we say thatAρ1

i..j andAρ2
i..j areequivalent. In

that case introduce the ranksetρ = ρ1 ∪ ρ2 and
create a new non-terminal symbolAρ

i..j. We now
simply replace all occurrences ofAρ1

i..j and Aρ2
i..j

in left- and right-hand sides byAρ
i..j. Of course

(newly) identical productions are erased. After
such a transformation, the newly created symbol
may appear in the right-hand side of productions
that now only differ by their left-hand sides; the
factorization spreads to this symbol in a bottom-
up way. Therefore, we perform this transforma-
tion until no new pair of equivalent symbols is
found, starting from terminal leaves and percolat-
ing bottom-up as far as possible.

Example 4: Applying the ranksets method to
the second running example.

Let us come back to the grammar of Example 3,
and the same input textw = a b as before. As
in Example 3, we consider the case when we are
interested in then = 3 best trees.

Starting from the instantiated grammar and the
n-best tables given in Example 3, the preliminary
top-down step builds the following forest (for clar-
ity, ranksets have not been shown on symbols that
root sub-forests containing only one tree):

S1..3 → A{1}
1..2 B{1}

2..3

S1..3 → A{1}
1..2 B{2}

2..3

S1..3 → A{2}
1..2 B{1}

2..3

A{1}
1..2 → A11..2 A11..2 → a1..2

A{2}
1..2 → A21..2 A21..2 → a1..2

B{1}
2..3 → B12..3 B12..3 → b2..3

B{2}
2..3 → B22..3 B22..3 → b2..3

In this example, the bottom-up step doesn’t fac-
torize out any other symbols, and this is therefore
the final output of the ranksets method. It con-
tains 2 more productions and 3 more symbols than
the pruned forest (which is the same as the origi-
nal forest), but it contains exactly the 3 best trees,
contrarily to the pruned forest.

3.2 The rectangles method

In this section only, we assume that the grammar
G is binary (and therefore the forest, i.e., the gram-
mar Gw, is binary). Standard binarization algo-
rithms can be found in the litterature (Aho and Ull-
man, 1972).

The algorithm described in this section per-
forms, as the preceding one, a decoration of the
symbols ofGw. The new (decorated) symbols
have the formAx,y

i..j , wherex andy denote ranks
such that1 ≤ x ≤ y ≤ n. The semantics of the
decoration is closely related to thex, y extention
of Ai..j, introduced in 2.3:

E(Ax,y
i..j) = Ex,y(Ai..j)

It corresponds to ranksets (in the sense of the
previous section) that are intervals:Ax,y

i..j is equiv-

alent to the previous section’sA{x,x+1,...,y−1,y}
i..j . In

other words, the sub-forest rooted withAx,y
i..j con-

tains exactly the trees of the initial forest, rooted
with Ai..j, which rank range fromx to y.

The algorithm performs a top-down traversal of
the initial instantiated grammarGw. This traver-
sal also takes as input two parametersx andy. It
starts with the symbolS0..|w| and parameters1 and
n. At the end of the traversal, a new decorated for-
est is built which contains exactlyn most likely
the parses. During the traversal, every instantiated
symbolAi..j will give birth to decorated instanti-
ated symbols of the formAx,y

i..j wherex andy are
determined during the traversal. Two different ac-
tions are performed depending on whether we are

122

visiting an instantiated symbol or an instantiated
production.

3.2.1 Visiting an instantiated symbol

When visiting an instantiated symbolAi..j with
parametersx and y, a new decorated instan-
tiated symbol Ax,y

i,j is created and the traver-
sal continues on the instantiated productions of
P (Ai..j) with parameters that have to be com-
puted. These parameters depend on how the el-
ements ofEx,y(Ai..j) are “distributed” among the
setsE(p) with p ∈ P (Ai..j). In other words, we
need to determinexk ’s andyk’s such that:

Ex,y(Ai..j) =
⋃

pk∈P (Ai..j)

Exk,yk
(pk)

The idea can be easily illustrated on an exam-
ple. Suppose we are visiting the instantiated sym-
bol Ai..j with parameters5 and10. Suppose also
that Ai..j can be rewritten using the two instanti-
ated productionsp1 andp2. Suppose finally that
the5 to 10 entries ofT (Ai..j) are as follows6:

5 p1 4
6 p2 2
7 p2 3
8 p1 5
9 p2 4
10 p1 6

This table says thatE5(Ai..j) = E4(p1) i.e. the
5th most likely analysis ofE(Ai..j) is the4th most
likely analysis ofE(p1) andE6(Ai..j) = E2(p2)
and so on. From this table we can deduce that:

E5,10(Ai..j) = E4,6(p1) ∪ E2,4(p2)

The traversal therefore continues onp1 andp2

with parameters4, 6 and2, 4.

3.2.2 Visiting an instantiated production

When visiting an instantiated productionp of the
form Ai..j → Bi..l Cl..j with parametersx andy,
a collection ofq instantiated productionspr of the

form Ax,y
i..j → B

x1
r,x2

r
i..l C

y1
r ,y2

r
l..j , with 1 ≤ r ≤ q,

are built, where the parametersx1
r, x

2
r , y

1
r , y

2
r and

q have to be computed.
Once the parametersq and x1

r, x
2
r , y

1
r , y

2
r with

1 ≤ r ≤ q, have been computed, the traversal
continues independently onBi..l with parameters
x1

r andx2
r and onCl..j with parametersy1

r andy2
r .

6Only the relevant part of the table have been kept in the
figure.

The computation of the parametersx1
r, x

2
r , y

1
r

andy2
r for 1 ≤ r ≤ q, is the most complex part of

the algorithm, it relies on the three notions ofrect-
angles, q-partitionsandn-best matrices, which are
defined below.

Given a 4-tuple of parametersx1
r , x

2
r, y

1
r , y

2
r ,

a rectangle is simply a pairing of the form
〈〈x1

r , x
2
r〉, 〈y1

r , y
2
r 〉〉. A rectangle can be interpreted

as a couple of rank ranges :〈x1
r , y

1
r 〉 and〈x2

r , y
2
r〉.

It denotes the cartesian product
[
x1

r, x
2
r

]×[
y1

r , y
2
r

]
.

Let 〈〈x1
1, x

2
1〉, 〈y1

1 , y
2
1〉〉, . . . , 〈〈x1

q , x
2
q〉, 〈y1

q , y
2
q 〉〉

be a collection ofq rectangles. It will be called a
q-partition of the instantiated productionp iff the
following is true:

Ex,y(p) =
⋃

1≤r≤q

E(Ax,y
i..j → B

x1
r,x2

r
i..l C

y1
r ,y2

r
l..j)

To put it differently, this definition means that
〈〈x1

1, x
2
1〉, 〈y1

1 , y
2
1〉〉, . . . , 〈〈x1

q , x
2
q〉, 〈y1

q , y2
q〉〉 is a q

partition of p if any tree ofE(Bx1
r,x2

r
i..l) combined

with any tree ofE(Cy1
r ,y2

r
l..j) is a tree ofEx,y(p) and,

conversely, any tree ofEx,y(p) is the combination

of a tree ofE(Bx1
r,x2

r
i..l) and a tree ofE(Cy1

r ,y2
r

l..j).
The n-best matrixassociated with an instanti-

ated productionp, introduced in (Huang and Chi-
ang, 2005), is merely a two dimensional represen-
tation of then-best table ofp. Such a matrix, rep-
resents how then most likely trees ofE(p) are
built. An example of ann-best matrix is repre-
sented in figure 1. This matrix says that the first
most likely tree ofp is built by combining the
treeE1(Bi..l) with the treeE1(Cl..j) (there is a1
in the cell of coordinate〈1, 1〉). The second most
likely tree is built by combining the treeE1(Bi..l)
andE2(Cl..j) (there is a2 in the cell of coordinate
〈1, 2〉) and so on.

1 2

3

4

6

7

8

9

10

11

12

13

14 15

16

17

18

20 21

23

5

24

26

2 3 5 6

2

3

4

5

6

19

41

1

22 2725

28

29

30

31 32 34

33

35

36

Cl..j

Bi..l

Figure 1:n-best matrix

An n-best matrixM has, by construction, the
remarkable following properties:

123

M(i, y) < M(x, y) ∀i 1 ≤ i < x
M(x, j) < M(x, y) ∀j 1 ≤ j < y

Given ann-best matrixM of dimensionsd =
X · Y and two integersx andy such that1 ≤ x <
y ≤ d, M can be decomposed into three regions:

• the lower region, composed of the cells
which contain ranksi with 1 ≤ i < x

• the intermediate region, composed of the
cells which contain ranksi with x ≤ i ≤ y

• the upper region, composed of the cells
which contain ranksi such thaty < i ≤ d.

The three regions of the matrix of figure 1, for
x = 4 andy = 27 have been delimited with bold
lines in figure 2.

1 2

3

4

6

7

8

9

10

11

12

13

14 15

16

17

18

20 21

23

5

24

26

2 3 5 6

2

3

4

5

6

19

41

1

22 2725

28

29

30

31 32 34

33

35

36

Bi..l

Cl..j

Figure 2: Decomposition of ann-best matrix into
a lower, an intermediate and an upper region with
parameters4 and27.

It can be seen that a rectangle, as introduced
earlier, defines asub-matrixof then-best matrix.
For example the rectangle〈〈2, 5〉, 〈2, 5〉〉 defines
the sub-matrix which north west corner isM(2, 2)
and south east corner isM(5, 5), as represented in
figure 3.

When visiting an instantiated productionp, hav-
ing M as ann-best matrix, with the two parame-
tersx andy, the intermediate region ofM , with
respect tox andy, contains, by definition, all the
ranks that we are interested in (the ranks rang-
ing from x to y). This region can be partitioned
into a collection of disjoint rectangular regions.
Each such partition therefore defines a collection
of rectangles or aq-partition.

The computation of the parametersx1
r, y

1
r , x

2
r

andy2
r for an instantiated productionp therefore

boils down to the computation of a partition of the
intermediate region of then-best matrix ofp.

9

10

11

12

13

17

18

20 21

5

24

26

2 5

2

5 19 22 2725

Cl..j

Bi..l

Figure 3: The sub-matrix corresponding to the
rectangle〈〈2, 5〉, 〈2, 5〉〉

We have represented schematically, in figure 4,
two 4-partitions and a3-partition of the interme-
diate region of the matrix of figure 2. The left-
most (resp. rightmost) partition will be called the
vertical (resp. horizontal) partition. The middle
partition will be called an optimal partition, it de-
composes the intermediate region into a minimal
number of sub-matrices.

���
���
���

���
���
���

III

IV

I

II

���
���
���

���
���
���

I

III

II

���
���
���

���
���
���

II

I

III

IV

Figure 4: Three partitions of ann-best matrix

The three partitions of figure 4 will give birth to
the following instantiated productions:

• Vertical partition

A4,27
i..j → B3,6

i..l C1,1
l..j A4,27

i..j → B2,5
i..l C2,2

l..j

A4,27
i..j → B1,5

i..l C3,5
l..j A4,27

i..j → B1,1
i..l C6,6

l..j

• Optimal partition

A4,27
i..j → B1,1

i..l C3,6
l..j A4,27

i..j → B2,5
i..l C2,5

l..j

A4,27
i..j → B3,6

i..l C1,1
l..j

• Horizontal partition

A4,27
i..j → B1,1

i..l C3,6
l..j A4,27

i..j → B2,2
i..l C2,5

l..j

A4,27
i..j → B3,5

i..l C1,5
l..j A4,27

i..j → B6,6
i..l C1,1

l..j

Vertical and horizontal partition of the interme-
diate region of an-best matrix can easily be com-
puted. We are not aware of an efficient method that
computes an optimal partition. In the implemen-
tation used for experiments described in section 4,

124

a simple heuristic has been used which computes
horizontal and vertical partitions and keeps the
partition with the lower number of parts.

The size of the new forest is clearly linked to
the partitions that are computed: a partition with
a lower number of parts will give birth to a lower
number of decorated instantiated productions and
therefore a smaller forest. But this optimization
is local, it does not take into account the fact that
an instantiated symbol may be shared in the initial
forest. During the computation of the new forest,
an instantiated productionp can therefore be vis-
ited several times, with different parameters. Sev-
eral partitions ofp will therefore be computed. If
a rectangle is shared by several partitions, this will
tend to decrease the size of the new forest. The
global optimal must therefore take into account all
the partitions of an instantiated production that are
computed during the construction of the new for-
est.

Example 5: Applying the rectangles method to
the second running example.

We now illustrate more concretely the rectan-
gles method on our second running example intro-
duced in Example 3. Let us recall that we are in-
terested in then = 3 best trees, the original forest
containing 4 trees.

As said above, this method starts on the instan-
tiated axiom S1..3. Since it is the left-hand side
of only one production, this production is visited
with parameters1, 3. Moreover, itsn-best table is
the same as that of S1..3, given in Example 3. We
show here the correspondingn-best matrix, with
the empty lower region, the intermediate region
(cells corresponding to ranks 1 to 3) and the upper
region:

4

1 2

3

2

2

1

1A1..2

B2..3

As can be seen on that matrix, there are two op-
timal 2-partitions, namely the horizontal and the
vertical partitions, illustrated as follows:

II
I

II I

Let us arbitrarily chose the vertical partition. It
gives birth to twoS 1..3-productions, namely:

S 1,3
1..3 → A1,2

1..2 B1,1
2..3

S 1,3
1..3 → A1,1

1..2 B2,2
2..3

Since this is the only non-trivial step while apply-
ing the rectangles algorithm to this example, we
can now give its final result, in which the axiom’s
(unnecessary) decorations have been removed:

S1..3 → A1,2
1..2 B{1,1}

2..3

S1..3 → A1,1
1..2 B{2,2}

2..3

A1,2
1..2 → A11..2 A11..2 → a1..2

A1,2
1..2 → A21..2 A21..2 → a1..2

B1,2
2..3 → B12..3 B12..3 → b2..3

B2,2
2..3 → B22..3 B22..3 → b2..3

Compared to the forest built by the ranksets algo-
rithm, this forest has one less production and one
less non-terminal symbol. It has only one more
production than the over-generating pruned for-
est.

4 Experiments on the Penn Treebank

The methods described in section 3 have been
tested on a PCFGG extracted from the Penn Tree-
bank (Marcus et al., 1993).G has been extracted
naively: the trees have been decomposed into bi-
nary context free rules, and the probability of ev-
ery rule has been estimated by its relative fre-
quency (number of occurrences of the rule divided
by the number of occurrences of its left hand side).
Rules occurring less than3 times and rules with
probabilities lower than3× 10−4 have been elim-
inated. The grammar produced contains932 non
terminals and3, 439 rules.7

The parsing has been realized using the SYN-
TAX system which implements, and optimizes, the
Earley algorithm (Boullier, 2003).

The evaluation has been conducted on the1, 845
sentences of section1, which constitute our test
set. For every sentence and for increasing values
of n, ann-best sub-forest has been built using the
rankset and the rectangles method.

The performances of the algorithms have been
measured by the averagecompression ratethey

7We used this test set only to generate practical NLP
forests, with a real NLP grammar, and evaluate the perfor-
mances of our algorithms for constucting sub-forests that
contain only then-best trees, both in terms of compression
rate and execution time. Therefore, the evaluation carriedout
here has nothing to do with the usual evaluation of the pre-
cision and recall of parsers based on the Penn Treebank. In
particular, we are not interested here in the accuracy of such
a grammar, its only purpose is to generate parse forests from
whichn-best sub-forests will be built.

125

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

9e+05

 0 100 200 300 400 500 600 700 800 900 1000

a
v
g
.

n
b

o
f

t
r
e
e
s

i
n

t
h
e

p
r
u
n
e
d

f
o
r
e
s
t

n

Figure 5: Overgeneration of the prunedn-best forest

 1

 10

 100

 1000

 1 10 100 1000

c
o
m
p
r
e
s
s
i
o
n

r
a
t
e

n

pruned forest
rectangles
ranksets

Figure 6: Average compression rates

achieve for different values ofn. The compres-
sion rate is obtained by dividing the size of the
n-best sub-forest of a sentence, as defined in sec-
tion 2, by the size of the (unfolded)n-best forest.
The latter is the sum of the sizes of all trees in the
forest, where every tree is seen as an instantiated
grammar, its size is therefore the size of the corre-
sponding instantiated grammar.

The size of then-best forest constitutes a natu-
ral upper bound for the representation of then-best
trees. Unfortunately, we have no natural lower
bound for the size of such an object. Neverthe-
less, we have computed the compression rates of
the prunedn-best forest and used it as an imperfect
lower bound. As already mentioned, its imper-
fection comes from the fact that a prunedn-best

forest contains more trees than then best ones.
This overgeneration appears clearly in Figure 5
which shows, for increasing values ofn, the av-
erage number of trees in then-best pruned forest
for all sentences in our test set.

Figure 6 shows the average compression rates
achieved by the three methods (forest pruning,
rectangles and ranksets) on the test set for increas-
ing values ofn. As predicted, the performances lie
between1 (no compression) and the compression
of then-best pruned forest. The rectangle method
outperforms the ranksets algorithm for every value
of n.

The time needed to build an100-best forest with
the rectangle and the ranksets algorithms is shown
in Figure 7. This figure shows the average parsing

126

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40 45

t
i
m
e

i
n

m
i
l
l
i
s
e
c
o
n
d
s

sentence length

parsing
ranksets

rectangles

Figure 7: Processing time

time for sentences of a given length, as well as the
average time necessary for building the100-best
forest using the two aforementioned algorithms.
This time includes the parsing time i.e. it is the
time necessary for parsing a sentence and build-
ing the100-best forest. As shown by the figure,
the time complexities of the two methods are very
close.

5 Conclusion and perspectives

This work presented two methods to buildn-
best sub-forests. The so called rectangle meth-
ods showed to be the most promising, for it al-
lows to build efficient sub-forests with little time
overhead. Future work will focus on computing
optimized partitions of then-best matrices, a cru-
cial part of the rectangle method, and adapting the
method to arbitrary (non binary) CFG. Another
line of research will concentrate on performing
re-ranking of then-best trees directly on the sub-
forest.

Acknowledgments

This research is supported by the French National
Research Agency (ANR) in the context of the
SEQUOIA project (ANR-08-EMER-013).

References

Alfred V. Aho and Jeffrey D. Ullman. 1972.The
Theory of Parsing, Translation, and Compiling, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ.

Taylor L. Booth. 1969. Probabilistic representation of
formal languages. InTenth Annual Symposium on
Switching and Automata Theory, pages 74–81.

Pierre Boullier and Philippe Deschamp. 1988.
Le système SYNTAX TM - manuel d’utilisation.
http://syntax.gforge.inria.fr/syntax3.8-manual.pdf.

Pierre Boullier and Benot Sagot. 2005. Efficient and
robust LFG parsing: SXLFG. In Proceedings of
IWPT’05, Vancouver, Canada.

Pierre Boullier. 2003. Guided Earley parsing. InPro-
ceedings of IWPT’03, pages 43–54.

Jay Earley. 1970. An efficient context-free parsing
algorithm. Communication of the ACM, 13(2):94–
102.

Liang Huang and David Chiang. 2005. Better k-best
parsing. InProceedings of IWPT’05, pages 53–64.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. InProceedings of
ACL’08, pages 586–594.

Vı́ctor M. Jiménez and Andrés Marzal. 2000. Com-
putation of the n best parse trees for weighted and
stochastic context-free grammars. InProceedings
of the Joint IAPR International Workshops on Ad-
vances in Pattern Recognition, pages 183–192, Lon-
don, United Kingdom. Springer-Verlag.

Dan Klein and Christopher D. Manning. 2001. Parsing
and hypergraphs. InProceedings of IWPT’01.

Bernard Lang. 1974. Deterministic techniques for ef-
ficient non-deterministic parsers. In J. Loeckx, ed-
itor, Proceedings of the Second Colloquium on Au-
tomata, Languages and Programming, volume 14 of
Lecture Notes in Computer Science, pages 255–269.
Springer-Verlag.

127

Bernard Lang. 1994. Recognition can be harder then
parsing.Computational Intelligence, 10:486–494.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn treebank.Computa-
tional Linguistics, 19(2):313–330, June.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. InProceedings of ACL-08: HLT,
pages 192–199.

128

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 129–133,
Paris, October 2009. c©2009 Association for Computational Linguistics

Hebrew Dependency Parsing: Initial Results

Yoav Goldberg and Michael Elhadad
Ben Gurion University of the Negev

Department of Computer Science
POB 653 Be’er Sheva, 84105, Israel

{yoavg,elhadad}@cs.bgu.ac.il

Abstract
We describe a newly available Hebrew
Dependency Treebank, which is extracted
from the Hebrew (constituency) Tree-
bank. We establish some baseline un-
labeled dependency parsing performance
on Hebrew, based on two state-of-the-art
parsers, MST-parser and MaltParser. The
evaluation is performed both in an artifi-
cial setting, in which the data is assumed
to be properly morphologically segmented
and POS-tagged, and in a real-world set-
ting, in which the parsing is performed on
automatically segmented and POS-tagged
text. We present an evaluation measure
that takes into account the possibility of
incompatible token segmentation between
the gold standard and the parsed data.
Results indicate that (a) MST-parser per-
forms better on Hebrew data than Malt-
Parser, and (b) both parsers do not make
good use of morphological information
when parsing Hebrew.

1 Introduction

Hebrew is a Semitic language with rich morpho-
logical structure and free constituent order.

Previous computational work addressed unsu-
pervised Hebrew POS tagging and unknown word
resolution (Adler, 2007), Hebrew NP-chunking
(Goldberg et al., 2006), and Hebrew constituency
parsing (Tsarfaty, 2006; Golderg et al., 2009).
Here, we focus on Hebrew dependency parsing.

Dependency-parsing got a lot of research at-
tention lately, in part due to two CoNLL shared
tasks focusing on multilingual dependency parsing
(Buchholz and Erwin, 2006; Nivre et al., 2007).
These tasks include relatively many parsing re-
sults for Arabic, a Semitic language similar to He-
brew. However, parsing accuracies for Arabic usu-
ally lag behind non-semitic languages. Moreover,

while there are many published results, we could
not find any error analysis or even discussion of
the results of Arabic dependency parsing models,
or the specific properties of Arabic making it easy
or hard to parse in comparison to other languages.

Our aim is to evaluate current state-of-the-art
dependency parsers and approaches on Hebrew
dependency parsing, to understand some of the
difficulties in parsing a Semitic language, and to
establish a strong baseline for future work.

We present the first published results on Depen-
dency Parsing of Hebrew.

Some aspects that make Hebrew challenging
from a parsing perspective are:

Affixation Common prepositions, conjunctions
and articles are prefixed to the following word,
and pronominal elements often appear as suffixes.
The segmentation of prefixes and suffixes is of-
ten ambiguous and must be determined in a spe-
cific context only. In term of dependency pars-
ing, this means that the dependency relations oc-
cur not between space-delimited tokens, but in-
stead between sub-token elements which we’ll re-
fer to as segments. Furthermore, any mistakes in
the underlying token segmentations are sure to be
reflected in the parsing accuracy.

Relatively free constituent order The ordering
of constituents inside a phrase is relatively free.
This is most notably apparent in the verbal phrases
and sentential levels. In particular, while most sen-
tences follow an SVO order, OVS and VSO con-
figurations are also possible. Verbal arguments
can appear before or after the verb, and in many
ordering. For example, the message “went from
Israel to Thailand” can be expressed as “went to
Thailand from Israel”, “to Thailand went from Is-
rael”, “from Israel went to Thailand”, “from Israel
to Thailand went” and “to Thailand from Israel
went”. This results in long and flat VP and S struc-
tures and a fair amount of sparsity, which suggests

129

that a dependency representations might be more
suitable to Hebrew than a constituency one.
Rich templatic morphology Hebrew has a
very productive morphological structure, which
is based on a root+template system. The pro-
ductive morphology results in many distinct word
forms and a high out-of-vocabulary rate, which
makes it hard to reliably estimate lexical param-
eters from annotated corpora. The root+template
system (combined with the unvocalized writing
system) makes it hard to guess the morphological
analyses of an unknown word based on its prefix
and suffix, as usually done in other languages.
Unvocalized writing system Most vowels are
not marked in everyday Hebrew text, which re-
sults in a very high level of lexical and morpho-
logical ambiguity. Some tokens can admit as many
as 15 distinct readings, and the average number of
possible morphological analyses per token in He-
brew text is 2.7, compared to 1.4 in English (Adler,
2007). This means that on average, every token is
ambiguous with respect to its POS and morpho-
logical features.
Agreement Hebrew grammar forces morpho-
logical agreement between Adjectives and Nouns
(which should agree in Gender and Number and
definiteness), and between Subjects and Verbs
(which should agree in Gender and Number).

2 Hebrew Dependency Treebank

Our experiments are based on the Hebrew De-
pendency Treebank (henceforth DepTB), which
we derived from Version 2 of the Hebrew
Constituency Treebank (Guthmann et al., 2009)
(henceforth TBv2). We briefly discuss the conver-
sion process and the resulting Treebank:
Parent-child dependencies TBv2 marks sev-
eral kinds of dependencies, indicating the mother-
daughter percolation of features such as number,
gender, definiteness and accusativity. See (Guth-
mann et al., 2009) for the details. We follow
TBv2’s HEAD, MAJOR and MULTIPLE depen-
dency marking in our-head finding rules. When
these markings are not available we use head find-
ing rules in the spirit of Collins. The head-finding
rules were developed by Reut Tsarfaty and used
in (Tsarfaty and Sima’an, 2008). We slightly ex-
tended them to handle previously unhandled cases.
Some conventions in TBv2 annotations resulted in
bad dependency structures. We identified these
constructions and transformed the tree structure,

Figure 1: Coordinated Verbs

Figure 2: Coordinated Sentence

either manually or automatically, prior to the de-
pendency extraction process.

The conversion process revealed some errors
and inconsistencies in TBv2, which we fixed.

We take relativizers as the head S and SBAR,
and prepositions as the heads of PPs. In the case
the parent of a word X is an empty element, we
take the parent of the empty element as the par-
ent of X instead. While this may result in non-
projective structures, in practice all but 34 of the
resulting trees are projective.

We take conjunctions to be the head of a coordi-
nated structure, resulting in dependency structures
such as the one in Figures 1 and 2. Notice how
in Figure 1 the parent of the subject ”He/הוא“ is
the coordinator ,”and/ו“ and not one of the verbs.
While this makes things harder for the parser, we
find this representation to be much cleaner and
more expressive than the usual approach in which
the first coordinated element is taken as the head
of the coordinated structure.1

Dependency labels TBv2 marks 3 kinds of
functional relations: Subject, Object and Comple-
mentizer. We use these in our conversion pro-
cess, and label dependencies as being SBJ, OBJ
or CMP, as indicated in TBv2. We also trivially
mark the ROOT dependency, and introduce the re-
lations INF PREP, AT INF POS INF RB INF be-
tween a base word and its suffix for the cases of
suffix-inflected prepositions, accusative suffixes,
possessive suffixes and inflected-adverbs, respec-
tively. Still, most dependency relations remain un-
labeled. We are currently seeking a method of re-
liably labeling the remaining edges with a rich set

1A possible alternative would be to allow multiple par-
ents, as done in (de Marneffe et al., 2006), but current parsing
algorithms require the output to be tree structured.

130

of relations. However, in the current work we fo-
cus on the unlabeled dependency structure.
POS tags The Hebrew Treebank follows a syn-
tactic tagging scheme, while other Hebrew re-
sources prefer a more morphological/dictionary-
based scheme. For a discussion of these two tag-
ging schemes in the context of parsing, see (Gold-
erg et al., 2009). In DepTB, we kept the two
tagsets, and each token has two POS tags asso-
ciated with it. However, as current dependency
parsers rely on an external POS tagger, we per-
formed all of our experiments only with the mor-
phological tagset, which is what our tagger pro-
duces.

3 The Parsing Models

To establish some baseline results for Hebrew de-
pendency parsing, we experiment with two pars-
ing models, the graph-based MST-parser (Mc-
Donald, 2006) and the transition-based MaltParser
(Nivre et al., 2006). These two parsers repre-
sent the current mainstream approaches for de-
pendency parsing, and each was shown to pro-
vide state-of-the-art results on many languages
(CoNLL Shared Task 2006, 2007).

Briefly, a graph-based parsing model works by
assigning a score to every possible attachment be-
tween a pair (or a triple, for a second-order model)
of words, and then inferring a global tree struc-
ture that maximizes the sum of these local scores.
Transition-based models work by building the de-
pendency graph in a sequence of steps, where each
step is dependent on the next input word(s), the
previous decisions, and the current state of the
parser. For more details about these parsing mod-
els as well as a discussion on the relative benefits
of each model, see (McDonald and Nivre, 2007).

Contrary to constituency-based parsers, depen-
dency parsing models expect a morphologically
segmented and POS tagged text as input.

4 Experiments

Data We follow the train-test-dev split estab-
lished in (Tsarfaty and Sima’an, 2008). Specifi-
cally, we use Sections 2-12 (sentences 484-5724)
of the Hebrew Dependency Treebank as our train-
ing set, and report results on parsing the develop-
ment set, Section 1 (sentences 0-483). We do not
evaluate on the test set in this work.

The data in the Treebank is segmented and
POS-tagged. All of the models were trained on the

gold-standard segmented and tagged data. When
evaluating the parsing models, we perform two
sets of evaluations. The first one is an oracle ex-
periment, assuming gold segmentation and tag-
ging is available. The second one is a real-world
experiment, in which we segment and POS-tag the
test-set sentences using the morphological disam-
biguator described in (Adler, 2007; Goldberg et
al., 2008) prior to parsing.
Parsers and parsing models We use the freely
available implementation of MaltParser2 and
MSTParser3, with default settings for each of the
parsers.

For MaltParser, we experiment both with the de-
fault feature representation (MALT) and the fea-
ture representation used for parsing Arabic in
CoNLL 2006 and 2007 multilingual dependency
parsing shared tasks (MALT-ARA).

For MST parser, we experimented with first-
order (MST1) and second-order (MST2) models.

We varied the amount of lexical information
available to the parser. Each of the parsers was
trained on 3 datasets: LEXFULL, in which all the
lexical items are available, LEX20, in which lexi-
cal items appearing less than 20 times in the train-
ing data were replaced by an OOV token, and
LEX100 in which we kept only lexical items ap-
pearing more than 100 times in training.

We also wanted to control the effect of the rich
morphological information available in Hebrew
(gender and number marking, person, and so on).
To this end, we trained and tested each model ei-
ther with all the available morphological informa-
tion (+MORPH) or without any morphological in-
formation (-MORPH).
Evaluation Measure We evaluate the resulting
parses in terms of unlabeled accuracy – the percent
of correctly identified (child,parent) pairs4. To be
precise, we calculate:

number of correctly identified pairs

number of pairs in gold parse

For the oracle case in which the gold-standard
token segmentation is available for the parser, this
is the same as the traditional unlabeled-accuracy
evaluation metric. However, in the real-word set-
ting in which the token segmentation is done auto-
matically, the yields of the gold-standard and the

2http://w3.msi.vxu.se/∼jha/maltparser/
3http://sourceforge.net/projects/mstparser/
4All the results are macro averaged. The micro-averaged

numbers are about 2 percents higher for all cases.

131

Features MST1 MST2 MALT MALT-ARA
-M

O
R

P
H Full Lex 83.60 84.31 80.77 80.32

Lex 20 82.99 84.52 79.69 79.40
Lex 100 82.56 83.12 78.66 78.56

+
M

O
R

P
H Full Lex 83.60 84.39 80.77 80.73

Lex 20 83.60 84.77 79.69 79.84
Lex 100 83.23 83.80 78.66 78.56

Table 1: Unlabeled dependency accuracy with
oracle token segmentation and POS-tagging.

Features MST1 MST2 MALT MALT-ARA

-M
O

R
P

H Full Lex 75.64 76.38 73.03 72.94
Lex 20 75.48 76.41 72.04 71.88
Lex 100 74.97 75.49 70.93 70.73

+
M

O
R

P
H Full Lex 73.90 74.62 73.03 73.43

Lex 20 73.56 74.41 72.04 72.30
Lex 100 72.90 73.78 70.93 70.97

Table 2: Unlabeled dependency accuracy with
automatic token segmentation and POS-tagging.

automatic parse may differ, and one needs to de-
cide how to handle the cases in which one or more
elements in the identified (child,parent) pair are
not present in the gold-standard parse. Our evalua-
tion metric penalizes these cases by regarding any
such case as a mistake.

5 Results and Analysis

Results are presented in Tables 1 and 2.
It seems that the graph-based parsers perform

better than the transitions-based ones. We at-
tribute this to 2 factors: first, our representa-
tion of coordinated structure is hard to capture
with a greedy local search as performed by a
transition-based parser, because we need to de-
fer many attachment decisions until the final co-
ordinator is revealed. The global inference of the
graph-based parser is much more robust to these
kinds of structure. Indeed, when evaluating the
gold-morphology, fully-lexicalized models on a
subset of the test-set (314 sentences) which does
not have coordinated structures, the accuracy of
MALT improves in 3.98% absolute (from 80.77 to
84.75), while MST improves only in 2.66% abso-
lute (from 83.60 to 86.26). Coordination is hard
for both parsing models, but more so to the transi-
tion based MALT.

Second, it might be hard for a transition-based
parser to handle the free constituent order of He-
brew, as it has no means of generalizing from the
training set to various possible constituent order-
ing. The graph-based parser’s features and infer-
ence method do not take constituent order into ac-

count, making it more suitable for free constituent
order language.

As expected, the Second-order graph based
models perform better than the first-order ones.
Surprisingly, the Arabic-optimized feature-set do
not perform better than the English one for the
transition-based parsers. Overall, morphological
information seems to contribute very little (if at
all) to any of the parsers in the gold-morphology
(oracle) setting. MALTARA gets some benefit
from the morphological information in the fully-
lexicalized case, while the MST variants benefit
from morphology in the lexically-pruned models.

Overall, full lexicalization is not needed. In-
deed, less lexicalized LEX20 2nd-order graph-
based models perform better than the fully lexi-
calized ones. This strengthens our intuition that
robust lexical statistics are hard to acquire from
small annotated corpora, even more so for a lan-
guage with productive morphology such as He-
brew.

Moving from the oracle morphological disam-
biguation to an automatic one greatly hurts the per-
formance of all the models. This is in line with re-
sults for Hebrew constituency parsing, where go-
ing from gold segmentation to a parser derived one
caused a similar drop in accuracy (Golderg et al.,
2009). This suggests that we should either strive
to improve the tagging accuracy, or perform joint
inference for parsing and morphological disam-
biguation. We believe the later would be a better
way to go, but it is currently unsupported in state-
of-the-art dependency parsing algorithms.

Interestingly, in the automatic morphological
disambiguation setting MALTARA benefits a little
from the addition of morpological features, while
the MST models perform better without these fea-
tures.

6 Conclusions

We presented the first results for unlabeled de-
pendency parsing of Hebrew, with two state-of-
the-art dependency parsing models of different
families. We experimented both with gold mor-
phological information, and with an automatically
derived one. It seems that graph-based models
have a slight edge in parsing Hebrew over current
transition-based ones. Both model families are not
currently making good use of morphological infor-
mation.

132

References
Meni Adler. 2007. Hebrew Morphological Disam-

biguation: An Unsupervised Stochastic Word-based
Approach. Ph.D. thesis, Ben-Gurion University of
the Negev, Beer-Sheva, Israel.

Sabine Buchholz and Marsi Erwin. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proc. of CoNLL.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proc. of LREC.

Yoav Goldberg, Meni Adler, and Michael Elhadad.
2006. Noun phrase chunking in hebrew: Influence
of lexical and morphological features. In Proc. of
COLING/ACL.

Yoav Goldberg, Meni Adler, and Michael Elhadad.
2008. EM can find pretty good HMM POS-Taggers
(when given a good start). In Proc. of ACL.

Yoav Golderg, Reut Tsarfaty, Meni Adler, and Michael
Elhadad. 2009. Enhancing unlexicalized parsing
performance using a wide coverage lexicon, fuzzy
tag-set mapping, and EM-HMM-based lexical prob-
abilities. In Proc of EACL.

Noemie Guthmann, Yuval Krymolowski, Adi Milea,
and Yoad Winter. 2009. Automatic annotation of
morpho-syntactic dependencies in a modern hebrew
treebank. In Proc of TLT.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proc. of EMNLP.

Ryan McDonald. 2006. Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

Joakim Nivre, Johan Hall, and Jens Nillson. 2006.
MaltParser: A data-driven parser-generator for de-
pendency parsing. In Proc. of LREC.

Joakim Nivre, Johan Hall, Sandra Kubler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proc. of the EMNLP-CoNLL.

Reut Tsarfaty and Khalil Sima’an. 2008. Relational-
realizational parsing. In Proc. of CoLING, August.

Reut Tsarfaty. 2006. Integrated morphological and
syntactic disambiguation for modern hebrew. In
Proceedings of ACL-SRW.

133

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 134–137,
Paris, October 2009. c©2009 Association for Computational Linguistics

Scalable Discriminative Parsing for German

Yannick Versley
SFB 833

Universität Tübingen
versley@sfs.uni-tuebingen.de

Ines Rehbein
Dep. of Computational Linguistics

Universität des Saarlandes
rehbein@coli.uni-sb.de

Abstract

Generative lexicalized parsing models,
which are the mainstay for probabilistic
parsing of English, do not perform as well
when applied to languages with differ-
ent language-specific properties such as
free(r) word order or rich morphology. For
German and other non-English languages,
linguistically motivated complex treebank
transformations have been shown to im-
prove performance within the framework
of PCFG parsing, while generative lexical-
ized models do not seem to be as easily
adaptable to these languages.

In this paper, we show a practical way
to use grammatical functions as first-class
citizens in a discriminative model that al-
lows to extend annotated treebank gram-
mars with rich feature sets without hav-
ing to suffer from sparse data problems.
We demonstrate the flexibility of the ap-
proach by integrating unsupervised PP at-
tachment and POS-based word clusters
into the parser.

1 Introduction

To capture the semantic relations inherent in a
text, parsing has to recover both structural infor-
mation and grammatical functions, which com-
monly coincide in English, but not in freer
word order languages such as German. In-
stead one has to make use of morphological fea-
tures in addition to exploiting ordering preferences
such as the (violatable) default ordering of (sub-
ject<)dative<accusative.

Because of this fact, many successful ap-
proaches for German PCFG parsing (Schiehlen,
2004; Dubey, 2005; Versley, 2005) use annotated
treebank grammars where the constituent trees

from the treebank are enriched with further lin-
guistic information that allows an adequate recon-
struction of syntactic relationships, suggesting that
probabilistic context-free grammars are an ade-
quate tool for parsing these languages.

In the ACL 2008 workshop on Parsing Ger-
man (Kübler, 2008), Rafferty and Manning (2008)
used a lexicalized PCFG parser using markoviza-
tion and parent annotation, but no linguistically in-
spired transformations; Rafferty and Manning did
quite well on constituents, but were not success-
ful in reconstructing grammatical functions, with
results considerably worse than for other submis-
sions in the shared task.

The framework we present in this paper – an-
notated treebank grammars with a discriminative
model that allows lexicalization based on gram-
matical function assignment, as well as the ad-
dition of features based on unsupervised learn-
ing, including PP attachment and word clusters –
shows that it is possible to achieve good improve-
ments over generative lexicalized models by using
the additional flexibility gained over standard lex-
icalized PCFG models. Our approach offers more
flexibility than generative PCFG models, while
computational costs for development and practi-
cal use are still acceptable. While we only present
results for German, we are confident that the re-
sults carry over to other languages where anno-
tated treebank grammars have been used success-
fully.

2 Parsing German with Morphology and
Valence Information

As a base parser, we use BitPar (Schmid, 2004),
a fast unlexicalized PCFG parser based on a first
pass where non-probabilistic bottom-up parsing
and top-down filtering is carried out efficiently by
storing the chart in bit vectors, and construct the
probabilistic chart only after top-down filtering.
We use an annotated treebank PCFG that is de-

134

rived from the Tiger treebank and largely inspired
by earlier work on annotated treebank grammars
for German (Schiehlen, 2004; Dubey, 2005; Vers-
ley, 2005).

Subcategorization With respect to the treebank
grammar, we refine the node labels with linguisti-
cally important information that is only implicit in
the treebank but would be tedious (and pointless)
to annotate by hand:

Firstly, we annotate NPs by case; clause nodes
(S and VP) are subcategorized by the clause type
(fin,inf,izu,rel), and NPs and PPs with a relative
pronoun are marked. Comparative phrases (e.g.,
bigger [than a house], marked as NP in Tiger and
TüBa-D/Z) are marked by adding a “CC” ending
to the node label. Finally, auxiliaries are split ac-
cording to their verb lemma into sein (be), haben
(have), werden (become).

To aid the identification of noun phrase case,
we add information related to case/number/gender
syncretism to the preterminal labels of determin-
ers, nouns, and adjectives (for details, see Versley,
2005) that allows to accurately determine the set of
possible cases while keeping the size of the tagset
relatively small .

Verb Valence We use information from the lex-
icon of the WCDG parser for German (Foth and
Menzel, 2006) to mark verbs according to the ar-
guments that they can take. While the WCDG
lexicon contains more information, we only en-
code the possibility of accusative and dative com-
plements, ignoring entries for genitive or clausal
complements.

Markovization with Argument Marking It
has been noted consistently (Klein and Manning,
2003; Schiehlen, 2004) that using markovization
- replacing the original treebank rules by an ap-
proximation that only considers a limited context
window of one or two siblings - improves re-
sults at least for a constituency-based evaluation.
However, in some cases this simple markoviza-
tion scheme leads to undesirable results includ-
ing sentences with multiple subjects, as predica-
tive arguments also have nominative case. To
avoid this, we additionally mark which arguments
have already been seen, yielding node labels such
as S fin<VVFIN a<RNP a<sa in the case of a
partial constituent for a finite sentence (S fin)
expanding to the right (<R) where both subject (s)
and accusative object (a) have already been seen.

Unknown Words For the base PCFG parse, we
use a decision tree with 43 regular expressions as
features, five of which are tailored towards rec-
ognizing the past and zu-infinitive form of sep-
arable prefix verbs (abarbeiten ⇒ abgearbeitet,
abzuarbeiten), which cannot be recognized by
considering suffixes only. The extended part of
speech tags for verbs (which contain valency in-
formation) are interpolated between the distribu-
tion at the concrete leaf of the decision tree and the
global valency distribution for the (coarse) part-of-
speech tag.

Additionally, we use SMOR (Schmid et al.,
2004) in conjunction with the verb lexicon and
a gazetteer list containing person and location
names to determine possible fine-grained part-of-
speech tags for unknown words.

Restoring Grammatical Functions Adding
edge labels to the nodes in PCFG parsing easily
creates sparse data problems, as reported by
Rafferty and Manning (2008), who witness a drop
in constituent F-measure (excluding grammatical
function labels) when they include function labels
in the symbols of their PCFG. On the other hand,
the informativity of grammatical function labels
for the contents of the node does not always
justify their cost in terms of data sparseness.
Thus, we chose an approach where we include
linguistically relevant information in the node
labels (see above), and use the finer categoriza-
tion to restore the grammatical function labels
automatically: Using the most frequent function
label sequence associated with a rule yields good
results even in the presence of markovization,
where some of the surrounding context is lost.
Furthermore, this approach allows us to use the
grammatical function label assignments in the
subsequent discriminative model, thus yielding
typed dependencies rather than the unlabeled
dependencies that are used in the lexicalization
model of the Stanford parser.

3 Discriminative Parsing

Generative parsing models are based on few dis-
tributions that use different feature combinations
based on smoothing; incorporating additional fea-
tures into these is very difficult at best.

As a result, the use of external preferences in
such parsers is usually limited to approaches that
reattach dependents in the output of the parser
rather than integrating them in the parsing process.

135

Settings no GFs with GFs
Rafferty and Manning (2008) 77.40 NA
—, training with GFs 72.09 60.48
markov[unlex] 74.66 62.47
markov+parent[unlex] 73.94 61.63
markovGF[unlex] 75.00 63.58
markov[lex] 77.68 66.05
markovGF[lex] 77.55 66.69
markovGF[+pp] 78.43 67.90

Table 1: Evaluation results: PARSEVAL F1 on
PaGe development set

Discriminative parsing for unification-based
grammar commonly uses the conditional random
field formulation introduced by Miyao and Tsu-
jii (2002) and Geman and Johnson (2002), which
uses local features to select a parse from a packed
forest. The much larger cost in terms of mem-
ory and time compared to generative models has
until recently made this approach largely unattrac-
tive (but see Finkel et al., 2008, who distributes the
learning process over several powerful machines).

An alternative use of discriminative models
has been to incorporate global features, either by
reranking (e.g. Charniak and Johnson, 2005, or
Kübler et al., 2009 for German) or by beam search
over a pruned parse forest (Huang, 2008). How-
ever, Huang shows that a discriminative model us-
ing only local features reaps most of the benefits
of the global model and performs at a similar level
than earlier reranking-based approaches, pointing
to the fact that local ambiguities often result in the
n-best list not containing the correct parse.

The model we propose here extracts a pruned
parse forest from a simple unlexicalized parser and
then uses a factored discriminative model to apply
a rich set of features using the lexicalized parse
tree and its typed dependencies.

CRF parsing on pruned forests We extract a
pruned forest that contains exactly those nodes and
edges that can occur in trees that have a probabil-
ity ≥ pbest · t, where in practice a threshold of
t = 10−3 ensures that no good parse is pruned
away while at the same time, the resulting forest
has only few nodes and edges.

For training, we extract an oracle tree, which is
selected according to a combination of correct (an-
notated grammar) constituents, the absence of in-
correct constituents, and the likelihood of the tree,
to account for the fact that the forest does not al-

fW-w-pos, CW-w-pos word form, cluster
f-sp, fS-sp-size node label, node size(1)

f-sp-RHS rule expansion
LDdir-sp-sd-hsd daughter attachment
LH-sp-sd-hsd-hld head projection
Lddir-hsp-hsd dependency (pos-pos)
Lddir-hsp-hsd-dist attachment length(1)

Ledir-hsp-hsd-hld dependency (pos-lemma)
Lfdir-hsp-hlp-hsd dependency (pos-lemma)
Lfdir-hsp-hlp-hsd-GF typed dep. (lemma-pos)
LhGF-hcp-hlp-hcd-hld typed dep. (lemma-lemma)
MIpp-prep, MIpp0-prep PP attach (noun)
MIppV-prep, MIppV0-prep PP attach (verb)

1) node sizes and attachment distances are discretized.
dir: one of H(head), L/R(head dep), B/I/E(nonheaded dep)
sp/d constituent symbol (parent/dep), hsp/d head cat, hc
head cat (coarse), hl head lemma

Table 2: List of Features

ways contain the exact gold tree. We then use
the AMIS maximum entropy learner of Miyao and
Tsujii (2002) to learn the discriminative model by
creating a forest from a grammar learned on the
remaining 4/5 of the training data.

Efficiency Parsing using the discriminative
model is quite efficient, with a memory con-
sumption for the whole system at about 270MB,
including the data used to determine the corpus
derived features (word clusters, mutual informa-
tion statistics, semantic role clusters). Parsing
speed is at 1.65sec./sentence on a 1.5GHz Pen-
tium M, against 1.84sec./sent for BitPar alone
when not using the tag filter for unknown words.

The time needed for learning can be reduced
by keeping the pruned parse charts and only re-
running the part of lexicalization and discrimina-
tive feature extraction; when reusing the old pa-
rameters as a starting point for AMIS’ model esti-
mation, the turn-around time including feature ex-
traction is below two hours.

3.1 Clustering for unknown words

To improve the behaviour on unknown words
where morphological analyzer and regular expres-
sions do not yield informative preferences, we ex-
ploit a large, part-of-speech-tagged corpus to in-
duce clusters which provide robust information
that is useful even in our case where preterminals
in the PCFG are finer than standard POS tags.

The following features were gathered and used
by weighting by the pointwise mutual information
between the word and feature occurrences:

The context feature retrieves windows of high-
frequent words surrounding the word in question

136

(e.g. der mit for ‘der Mann mit den Blumen’).
The context2 feature retrieves windows of one

high-frequent word and one part-of-speech tag
surrounding the word in question (e.g. der NN for
‘der schöne Mann’).

The postag feature simply retrieves the part-of-
speech tag that is assigned to the word.

The result of using the repeated bisecting
k-means implementation of CLUTO (Steinbach
et al., 2000) on the resulting features yields syntac-
tically sensible clusters containing years, money
sums, last names, or place names.

3.2 Unsupervised PP Attachment and
Subject-Object preferences

We used simple part-of-speech tag patterns to
gather statistics on the association between nouns
and immediately following prepositions, as well
as between prepositions and closely following
verbs on the DE-WaC corpus (Baroni and Kilgar-
iff, 2006), an 1.7G words sample of the German-
language WWW. The mutual information values
for PP attachment are made available to the parser
as features that are weighted by the mutual infor-
mation value.

4 Evaluation and Discussion

To evaluate our approach, we use the dataset
used for the ACL-2008 Parsing German Workshop
(Kübler, 2008) that contains 26,116 sentences of
the TIGER treebank (Brants et al., 2002), in a 8:1:1
split of training, testing, and evaluation data, and
validate our approach on the development data,
where the results published by Rafferty and Man-
ning (2008) provide a useful comparison. All our
experiments are done using tags automatically as-
signed by the parser, which reaches a tagging ac-
curacy of about 97.5% according to the EVALB

output.
We find that our final model, combining aug-

menting the treebank labels with lingustic infor-
mation in addition to lexicalization and unsuper-
vised PP attachment works better than the best-
performing models of Rafferty and Manning, with
a very large improvement in grammatical func-
tions that is only surpassed by the Berkeley Parser
(Petrov and Klein, 2008), showing that our combi-
nation of annotated treebank grammars with a fac-
tored discriminative model not only allows great
control and flexibility for experimenting with the
inclusion of novel features, but also yields very

good results compared with the state of the art
for German (see table 1 for results on the Tiger
treebank). Preliminary results on TüBa-D/Z with
a subset of the transformations of Versley (2005)
show the same tendency as the results for Tiger,
with 91.3% for constituents only, and 80.1% in-
cluding function labels (compared to 88.9% and
77.2% for the Stanford parser).

Future work will investigate the impact of in-
cluding additional features into the discriminative
parsing model.

References
Baroni, M. and Kilgariff, A. (2006). Large linguistically-

processed web corpora for multiple languages. In EACL
2006.

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G.
(2002). The TIGER treebank. In Proc. TLT 2002.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best
parsing and maxent discriminative reranking. In Proc.
ACL 2005.

Dubey, A. (2005). What to do when lexicalization fails: pars-
ing German with suffix analysis and smoothing. In ACL-
2005.

Finkel, J. R., Kleeman, A., and Manning, C. D. (2008). Effi-
cient, feature-based, conditional random field parsing. In
ACL/HLT-2008.

Foth, K. and Menzel, W. (2006). Hybrid parsing: Using prob-
abilistic models as predictors for a symbolic parser. In
ACL 2006.

Geman, S. and Johnson, M. (2002). Dynamic programming
for parsing and estimation of stochastic unification-based
grammars. In ACL 2002.

Huang, L. (2008). Forest reranking: Discriminative parsing
with non-local features. In HLT/ACL 2008.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized
parsing. In ACL 2003.

Kübler, S. (2008). The PaGe 2008 shared task on parsing
German. In Proceedings of the ACL-2008 Workshop on
Parsing German.

Kübler, S., Hinrichs, E., Maier, W., and Klett, E. (2009). Pars-
ing coordinations. In EACL 2009.

Miyao, Y. and Tsujii, J. (2002). Maximum entropy estimation
for feature forests. In HLT 2002.

Petrov, S. and Klein, D. (2008). Parsing German with latent
variable grammars. In Parsing German Workshop at ACL-
HLT 2008.

Rafferty, A. and Manning, C. D. (2008). Parsing three Ger-
man treebanks: Lexicalized and unlexicalized baselines.
In ACL’08 workshop on Parsing German.

Schiehlen, M. (2004). Annotation strategies for probabilistic
parsing in German. In Proc. Coling 2004.

Schmid, H. (2004). Efficient parsing of highly ambiguous
context-free grammars with bit vectors. In Proc. Coling
2004.

Schmid, H., Fitschen, A., and Heid, U. (2004). SMOR: A
German computational morphology covering derivation,
composition and inflection. In Proceedings of LREC 2004.

Steinbach, M., Karypis, G., and Kumar, V. (2000). A com-
parison of document clustering techniques. In KDD Work-
shop on Text Mining.

Versley, Y. (2005). Parser evaluation across text types. In
Proceedings of the Fourth Workshop on Treebanks and
Linguistic Theories (TLT 2005).

137

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 138–141,
Paris, October 2009. c©2009 Association for Computational Linguistics

Improving generative statistical parsing with semi-supervised word
clustering

Marie Candito and Benoît Crabbé
Université Paris 7/INRIA (Alpage), 30 rue du Château des Rentiers, 75013 Paris

Abstract

We present a semi-supervised method to
improve statistical parsing performance.
We focus on the well-known problem of
lexical data sparseness and present exper-
iments of word clustering prior to pars-
ing. We use a combination of lexicon-
aided morphological clustering that pre-
serves tagging ambiguity, and unsuper-
vised word clustering, trained on a large
unannotated corpus. We apply these clus-
terings to the French Treebank, and we
train a parser with the PCFG-LA unlex-
icalized algorithm of (Petrov et al., 2006).
We find a gain in French parsing perfor-
mance: from a baseline of F1=86.76% to
F1=87.37% using morphological cluster-
ing, and up to F1=88.29% using further
unsupervised clustering. This is the best
known score for French probabilistic pars-
ing. These preliminary results are encour-
aging for statistically parsing morpholog-
ically rich languages, and languages with
small amount of annotated data.

1 Introduction

Lexical information is known crucial in natural
language parsing. For probabilistic parsing, one
main drawback of the plain PCFG approach is to
lack sensitivity to the lexicon. The symbols acces-
sible to context-free rules are part-of-speech tags,
which encode generalizations that are too coarse
for many parsing decisions (for instance subcat-
egorization information is generally absent from
tagsets). The lexicalized models first proposed
by Collins reintroduced words at every depth of a
parse tree, insuring that attachments receive prob-
abilities that take lexical information into account.
On the other hand, (Matsuzaki et al., 2005) have
proposed probabilistic CFG learning with latent
annotation (hereafter PCFG-LA), as a way to au-
tomate symbol splitting in unlexicalized proba-
bilistic parsing (cf. adding latent annotations to
a symbol is comparable to splitting this symbol).

(Petrov et al., 2006) rendered the method usable in
practice, with a tractable technique to retain only
the beneficial splits.

We know that both lexicalized parsing algo-
rithm and PCFG-LA algorithm suffer from lex-
ical data sparseness. For lexicalized parsers,
(Gildea, 2001) shows that bilexical dependencies
parameters are almost useless in the probabilistic
scoring of parser because they are too scarce.
For PCFG-LA, we have previously studied the
lexicon impact on this so-called “unlexicalized”
algorithm, for French parsing (Crabbé and Can-
dito, 2008), (Candito et al., 2009). We have tested
a totally unlexicalized parser, trained on a treebank
where words are replaced by their POS tags. It ob-
tains a parseval F1=86.28 (note that it induces per-
fect tagging). We compared it to a parser trained
with word+tag as terminal symbols (to simulate a
perfect tagging), achieving F1=87.79. This proves
that lexical information is indeed used by the “un-
lexicalized” PCFG-LA algorithm: some lexical
information percolates through parse trees via the
latent annotations.

We have also reported a slight improvement
(F1=88.18) when word forms are clustered on a
morphological basis, into lemma+tag clusters. So
PCFG-LA uses lexical information, but it is too
sparse, hence it benefits from word clustering. Yet
the use of lemma+tag terminals supposes tagging
prior to parsing. We propose here to apply rather
a deterministic supervised morphological cluster-
ing that preserves tagging ambiguities, leaving it
to the parser to disambiguate POS tags.

We also investigate the use of unsupervised
word clustering, obtained from unannotated text.
It has been proved useful for parsing by (Koo et
al., 2008) and their work directly inspired ours.
They have shown that parsing improves when
cluster information is used as features in a discrim-
inative training method that learns dependency
parsers. We investigate in this paper the use of
such clusters in a generative approach to proba-
bilistic phrase-structure parsing, simply by replac-
ing each token by its cluster.

138

We present in section 2 the treebank instanti-
ation we use for our experiments, the morpho-
logical clustering in section 3, and the Brown al-
gorithm for unsupervised clustering in section 4.
Section 5 presents our experiments, results and
discussion. Section 6 discusses related work. Sec-
tion 7 concludes with some ideas for future work.

2 French Treebank

For our experiments, we use the French Treebank
(hereafter FTB) (Abeillé et al., 2003), containing
12531 sentences of the newspaperLe Monde. We
started with the treebank instantiation defined in
(Crabbé and Candito, 2008), where the rich origi-
nal annotation containing morphological and func-
tional information is mapped to a plain phrase-
structure treebank with a tagset of 28 POS tags.

In the original treebank, 17% of the tokens be-
long to a compound, and compounds range from
very frozen multi word expressions likey com-
pris (literally there included, meaningincluding)
to syntactically regular entities likeloi agraire
(land law). In most of the experiments with the
FTB, each compound is merged into a single to-
ken: (P (CL y) (A compris)) is merged as(P
y_compris). But because our experiments aim at
reducing lexical sparseness but also at augmenting
lexical coverage using an unannotated corpus, we
found it necessary to make the unannotated cor-
pus tokenisation and the FTB tokenisation consis-
tent. To set up a robust parser, we chose to avoid
recognizing compounds that exhibit syntactically
regular patterns. We create a new instance of the
treebank (hereafter FTB-UC), where syntactically
regular patterns are “undone” (Figure 1). This re-
duces the number of distinct compounds in the
whole treebank from 6125 to 3053.

NP

D

l’

N

N

Union

A

économique

C

et

A

monétaire

NP

D

l’

N

Union

AP

A

économique

COORD

C

et

AP

A

monétaire

Figure 1: A NP with a compound (left) changed
into a regular structure with simple words (right)

3 Morphological clustering

The aim of this step is to reduce lexical sparseness
caused by inflection, without hurting parsability,
and without committing ourselves as far as ambi-
guity is concerned. Hence, a morphological clus-

tering using lemmas is not possible, since lemma
assignment supposes POS disambiguation. Fur-
ther, information such as mood on verbs is nec-
essary to capture for instance that infinitive verbs
have no overt subject, that participial clauses are
sentence modifiers, etc... This is encoded in the
FTB with different projections for finite verbs
(projecting sentences) versus non finite verbs (pro-
jecting VPpart or VPinf).

We had the intuition that the other inflection
marks in French (gender and number for determin-
ers, adjectives, pronouns and nouns, tense and per-
son for verbs) are not crucial to infer the correct
phrase-structure projected by a given word1.

So to achieve morphological clustering, we de-
signed a process ofdesinflection, namely of re-
moving some inflection marks. It makes use of
the Lefff, a freely available rich morphological and
syntactic French lexicon (Sagot et al., 2006), con-
taining around 116000 lemmas (simple and com-
pounds) and 535000 inflected forms. The desin-
flection is as follows: for a tokent to desin-
flect, if it is known in the lexicon, for all the in-
flected lexical entriesle of t, try to get corre-
sponding singular entries. If for all thele, cor-
responding singular entries exist and all have the
same form, then replacet by the corresponding
singular. For instance forwt=entrées(ambigu-
ous betweenentrancesandentered, fem, plural),
the two lexical entries are[entrées/N/fem/plu]and
[entrées/V/fem/plu/part/past]2, each have a corre-
sponding singular lexical entry, with formentrée.

Then the same process applies to map feminine
forms to corresponding masculine forms. This
allows to changemangée(eaten, fem, sing) into
mangé(eaten, masc, sing). But for the formen-
trée, ambiguous between N and Vpastpart entries,
only the participle has a corresponding masculine
entry (with form entré). In that case, in order
to preserve the original ambiguity,entrée is not
replaced byentré. Finite verb forms, when un-
ambiguous with other POS, are mapped to sec-
ond person plural present indicative corresponding
forms. This choice was made in order to avoid cre-
ating ambiguity: the second person plural forms
end with a very typical-ezsuffix, and the result-
ing form is very unlikely ambiguous. For the first

1For instance, French oral comprehension does not seem
to need plural marks very much, since a majority of French
singular forms have their corresponding plural form pro-
nounced in the same way.

2This is just an example and not the real Lefff format.

139

token of a sentence, if unknown in the lexicon,
the algorithm tries to desinflect the low case cor-
responding form.

This desinflection reduces the number of dis-
tinct tokens in the FTB-UC from 27143 to 20268.

4 Unsupervised word clustering

We chose to use the (Brown et al., 1992) hard clus-
tering algorithm, which has proven useful for var-
ious NLP tasks, such as dependency parsing (Koo
et al., 2008) or named entity recognition (Liang,
2005). The algorithm to obtain C clusters is as
follows: each of the C most frequent tokens of
the corpus is assigned its own distinct cluster. For
the (C+1)th most frequent token, create a (C+1)th
cluster. Then for each pair among the C+1 result-
ing clusters, merge the pair that minimizes the loss
in the likelihood of the corpus, according to a bi-
gram language model defined on the clusters. Re-
peat this operation for the (C+2)th most frequent
token, etc... This results in a hard clustering into
C clusters. The process can be continued to fur-
ther merge pairs of clusters among the C clusters,
ending with a unique cluster for the whole vocab-
ulary. This can be traced to obtain a binary tree
representing the merges of the C clusters. A clus-
ter can be identified by its path within this binary
tree. Hence, clusters can be used at various levels
of granularity.

5 Experiments and discussion

For the Brown clustering algorithm, we used Percy
Liang’s code3, run on theL’Est Républicaincor-
pus, a 125 million word journalistic corpus, freely
available at CNRTL4. The corpus was tokenised5,
segmented into sentences and desinflected using
the process described in section 3. We ran the clus-
tering into 1000 clusters for the desinflected forms
appearing at least 20 times.

We tested the use of word clusters for parsing
with the Berkeley algorithm (Petrov et al., 2006).
Clustering words in this case has a double advan-
tage. First, it augments the known vocabulary,
which is made of all the forms of all the clus-
ters appearing in the treebank. Second, it reduces
sparseness for the latent annotations learning on
the lexical rules of the PCFG-LA grammar.

3http://www.eecs.berkeley.edu/ pliang/software
4http://www.cnrtl.fr/corpus/estrepublicain
5The 200 most frequent compounds of the FTB-UC were

systematically recognized as one token.

We used Petrov’s code, adapted to French by
(Crabbé and Candito, 2008), for the suffixes used
to classify unknown words, and we used the same
training(80%)/dev(10%)/test(10%) partition. We
used the FTB-UC treebank to train a baseline
parser, and three other parsers by changing the ter-
minal symbols used in training data:

desinflected forms: as described in section 3
clusters + cap: each desinflected form is re-

placed by its cluster bit string. If the desinflected
form has no corresponding cluster (it did not ap-
pear 20 times in the unannotated corpus), a spe-
cial cluster UNKC is used. Further, a _C suffix is
added if the form starts with a capital.

clusters + cap + suffixes: same as before, ex-
cept that 9 additional features are used as suffixes
to the cluster: if form is all digits, ends withant,
or r, or ez(cf. this is how end desinflected forms
of unambiguous finite verbs), ...

We give in table 1 parsing performance in terms
of labeled precision/recall/Fscore, and also the
more neutral unlabeled attachment score (UAS)6.

The desinflection process does help: benefits
from reducing data sparseness exceed the loss
of agreement markers. Yet tagging decreases a
little, and this directly impacts the dependency
score, because the dependency extraction uses
head propagation rules that are sensitive to tag-
ging. In the same way, the use of bare clusters
increases labeled recall/precision, but the tagging
accuracy decreases, and thus the UAS. This can
be due to the coarseness of the clustering method,
which sometimes groups words that have differ-
ent POS (for instance among a cluster of infinite
verbs, one may find a present participle). The
quality of the clusters is more crucial in our case
than when clusters are features, whose informativ-
ity is discriminatively learnt. This observation led
us to append a restricted set of suffixes to the clus-
ters, which gives us the best results for now.

6 Related work

We already mentioned that we were inspired by
the success of (Koo et al., 2008) in using word
clusters as features for the discriminative learning
of dependency parsers. Another approach to aug-
ment the known vocabulary for a generative prob-

6In all metrics punctuation tokens are ignored and all re-
sults are for sentences of less than 40 words. Note that we
used the FTB-UC treebank. There are mors tokens in sen-
tences than in the FTB with all compounds merged, and base-
line F1 scores are a little higher (86.79 versus 86.41).

140

terminal symbols LP LR F1 UAS Vocab. size Tagging Acc.
inflected forms (baseline) 86.94 86.65 86.79 91.00 27143 96.90
desinflected forms 87.42 87.32 87.37 91.14 20268 96.81
clusters + cap 88.08 87.50 87.79 91.12 1201 96.37
clusters + cap + suffixes 88.43 88.14 88.29 91.68 1987 97.04

Table 1: Parsing performance when training and parsing use clustered terminal symbols

abilistic parser is the one pursued in (Goldberg et
al., 2009). Within a plain PCFG, the lexical proba-
bilities for words that are rare or absent in the tree-
bank are taken from an external lexical probabil-
ity distribution, estimated using a lexicon and the
Baulm-Welch training of an HMM tagger. This is
proved useful to better parse Hebrew.

7 Conclusion and future work

We have tested the very simple method of replac-
ing inflected forms by clusters of forms in a gener-
ative probabilistic parser. This crude technique has
surprisingly good results and offers a very cheap
and simple way to augment the vocabulary seen at
training time. It seems interesting to try the tech-
nique on other generative approaches such as lex-
icalized probabilistic parsing.

We plan to optimize the exact shape of termi-
nal symbols to use. Bare unsupervised clusters are
unsatisfactory, and we have seen that adding sim-
ple suffixes to the clusters improved performance.
Learning such suffixes is a path to explore. Also,
the hierarchical organization of the clusters could
be used, in the generative approach adopted here,
by modulating the granularity of the clusters de-
pending on their frequency in the treebank.

We also need to check to what extent the desin-
flection step helps for taking advantage of the very
local information captured by the Brown cluster-
ing.Finally, we could try using other kinds of clus-
tering, such as the approach of (Lin, 1998), which
captures similarity between syntactic dependen-
cies beared by nouns and verbs.

8 Acknowledgements

The authors truly thank Percy Liang and Slav
Petrov for providing their code for respec-
tively Brown clustering and PCFG-LA. This
work was supported by the French National
Research Agency (SEQUOIA project ANR-08-
EMER-013).

References
Anne Abeillé, Lionel Clément, and François Toussenel,

2003. Building a Treebank for French. Kluwer,
Dordrecht.

Peter F. Brown, Vincent J. Della, Peter V. Desouza, Jen-
nifer C. Lai, and Robert L. Mercer. 1992. Class-
based n-gram models of natural language.Compu-
tational linguistics, 18(4):467–479.

Marie Candito, Benoit Crabbé, and Djamé Seddah.
2009. On statistical parsing of french with super-
vised and semi-supervised strategies. InEACL 2009
Workshop Grammatical inference for Computa-
tional Linguistics, Athens, Greece.

Benoit Crabbé and Marie Candito. 2008. Expériences
d’analyse syntaxique statistique du français. In
Actes de la 15ème Conférence sur le Traitement Au-
tomatique des Langues Naturelles (TALN’08), pages
45–54, Avignon, France.

Daniel Gildea. 2001. Corpus variation and parser per-
formance. InProc. of EMNLP’01, pages 167–202,
Pittsburgh, USA.

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and
Michael Elhadad. 2009. Enhancing unlexicalized
parsing performance using a wide coverage lexicon,
fuzzy tag-set mapping, and EM-HMM-based lexical
probabilities. InProc. of EACL-09, pages 327–335,
Athens, Greece.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In Proc. of ACL-08, Columbus, USA.

Percy Liang. 2005. Semi-supervised learning for nat-
ural language. InMIT Master’s thesis, Cambridge,
USA.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. InProc. of ACL-98, pages 768–
774, Montreal, Canada.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic cfg with latent annotations. In
Proc. of ACL-05, pages 75–82, Ann Arbor, USA.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. InProc. of ACL-06, Syd-
ney, Australia.

Benoît Sagot, Lionel Clément, Éric Villemonte de La
Clergerie, and Pierre Boullier. 2006. The Lefff 2
syntactic lexicon for french: architecture, acquisi-
tion, use. InProc. of LREC’06, Genova, Italy.

141

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 142–145,
Paris, October 2009. c©2009 Association for Computational Linguistics

Application of feature propagation to dependency parsing

Kepa Bengoetxea Koldo Gojenola

IXA NLP Group, Technical School of Engineering, Bilbao

University of the Basque Country, Plaza La Casilla 3, 48012, Bilbao

kepa.bengoetxea@ehu.es, koldo.gojenola@ehu.es

Abstract

This paper presents a set of experiments per-

formed on parsing the Basque Dependency

Treebank. We have applied feature propaga-

tion to dependency parsing, experimenting the

propagation of several morphosyntactic fea-

ture values. In the experiments we have used

the output of a parser to enrich the input of a

second parser. Both parsers have been gener-

ated by Maltparser, a freely data-driven de-

pendency parser generator. The transforma-

tions, combined with the pseudoprojective

graph transformation, obtain a LAS of 77.12%

improving the best reported results for Basque.

1 Introduction

This work presents several experiments per-

formed on dependency parsing of the Basque

Dependency Treebank (BDT, Aduriz et al.

2003). We have experimented the idea of feature

propagation through dependency arcs, in order to

help the parser. Feature propagation has been

used in classical unification-based grammars as a

means of propagating linguistic information

through syntax trees. We apply this idea in the

context of inductive dependency parsing, com-

bining a reduced set of linguistic principles that

express feature propagation among linguistic

elements with Maltparser (Nivre et al. 2007a), an

automatic dependency parser generator.

We have concentrated on propagating several

morphosyntactic feature values from: a) auxiliary

verbs to the main verb, b) the last constituent to

the head noun, in noun phrases c) the last con-

junct to the conjunction, in coordination.

This work was developed in the context of de-

pendency parsing exemplified by the CoNLL

shared task on dependency parsing in years 2006

and 2007 (Nivre et al. 2007b), where several sys-

tems had to compete analyzing data from a typo-

logically varied range of 11 languages. The tree-

banks for all languages were standardized using

a previously agreed CoNLL-X format (see Fig-

ure 1). BDT was one of the evaluated treebanks,

which will allow a direct comparison of results.

Many works on treebank parsing have dedi-

cated an effort to the task of pre-processing train-

ing trees (Nilsson et al. 2007). When these ap-

proaches have been applied to dependency pars-

ing several works (Nilsson et al. 2007; Ben-

goetxea and Gojenola 2009) have concentrated

on modifying the structure of the dependency

tree, changing the shape of the graph. In contrast,

rather than modifying the tree structure, we will

experiment changing the information contained

in the nodes of the tree. This approach requires

having an initial dependency tree in order to ap-

ply the feature propagation process, which will

be obtained by means of a standard trained

model. This way, the features will be propagated

through some incorrect dependency arcs, and the

process will be dependent on the reliability of the

initial arcs. After enriching the tree, a second

parsing model will try to use this new informa-

tion to improve the standard model. This process

can also be seen as an example of stacked learn-

ing (Martins et al. 2008, Nivre and McDonald

2008) where a second parser is used to improve

the performance of a first one.

The rest of the paper is organized as follows.

Section 2 presents the main resources used in this

work. Section 3 presents three different propos-

als for the propagation of the most important

morphological features. Next, section 4 will

evaluate the results of each transformation, and

the last section outlines the main conclusions.

2 Resources

This section will describe the main elements that

have been used in the experiments. First, subsec-

tion 2.1 will present the Basque Dependency

Treebank data, while subsection 2.2 will describe

the main characteristics of Maltparser, a state of

the art and data-driven dependency parser.

2.1 The Basque Dependency Treebank

The BDT can be considered a pure dependency

treebank, as its initial design considered that all

the dependency arcs would connect sentence to-

kens. Although this decision had consequences

on the annotation process, its simplicity is also

an advantage when applying several of the most

142

efficient parsing algorithms. The treebank con-

sists of 55,469 tokens forming 3,700 sentences,

334 of which were used as test data.

(1) Etorri (come) dela (that-has) eta
(and) joan (go) dela (that-has) esan
(tell) zien (did) mutil (boy)
txikiak(the-little)

He told the little boy that he has come
and he has gone

Figure 1 contains an example of a sentence

(1), annotated in the CoNLL-X format. The text

is organized in eight tab-separated columns:

word-number, form, lemma, category , subcate-

gory, morphological features, and the depend-

ency relation (headword + dependency). Basque

is an agglutinative language and it presents a

high power to generate inflected word-forms.

The information in Figure 1 has been simplified

due to space reasons, as typically the Features

column will contain many morphological fea-

tures, which are relevant for parsing.

2.2 Maltparser

Maltparser (Nivre et al. 2007a) is a state of the

art dependency parser that has been successfully

applied to typologically different languages and

treebanks. While several variants of the base

parser have been implemented, we will use one

of its standard versions (Maltparser version 0.4).

The parser obtains deterministically a depend-

ency tree in linear-time in a single pass over the

input. To determine which is the best action at

each parsing step, the parser uses history-based

feature models and discriminative machine learn-

ing. In all the following experiments, we made

use of a SVM classifier. The specification of the

features used for learning can in principle be any

kind of data in Figure 1 (such as word-form,

lemma, category or morphological features).

3 Experiments

We applied the following steps:

a) Application of feature propagation to the
training data, using the gold standard arcs, ob-

taining a “enriched training data”.

b) Training Maltparser on the “enriched train-

ing data” to generate a “enriched parser”.

c) Training Maltparser with the training data,

without any transformation, to generate a

“standard parser”.

d) Parse the test data with the “standard

parser”, obtaining the “standard output”.

e) Apply feature propagation to the “standard
output”, using the dependency arcs given by

the parser (with some incorrect arcs), obtain-

ing the “standard parser’s enriched output”.

f) Finally, parsing the “standard parser’s en-
riched output” with the “enriched parser”,

Index Word Lemma Category Subcategory Features Head Dependency
1 etorri etorri V V _ 3 lot
2 dela izan AUXV AUXV SC:CMP|SUBJ:3S 1 auxmod
3 eta eta CONJ CONJ _ 6 ccomp_obj
4 joan joan V V _ 3 lot
5 dela izan AUXV AUXV SC:CMP|SUBJ:3S 4 auxmod
6 esan esan V V _ 0 ROOT
7 zien *edun AUXV AUXV SUBJ:3S|OBJ:3P 6 auxmod
8 mutil mutil NOUN NOUN _ 6 ncsubj
9 txikiak txiki ADJ ADJ CASE:ERG|NUM:S 8 ncmod
10 . . PUNT PUNT_PUNT _ 9 PUNC

Figure 1: Example of a BDT sentence in the CONLL-X format

(V = main verb, AUXV = auxiliary verb, SC = subordinated clause, CMP = completive, ccomp_obj = clausal

complement object, SUBJ:3S: subject in 3rd person sing., OBJ:3P: object in 3rd person pl.).

auxmod

coord

auxmod auxmod

coord

ccomp_obj

Etorri da+la eta joan da+la esan zien mutil txiki+ak

come has+he+that and go has+he+that tell did+he+them boy little+the

V AUXV+3S+CMP CONJ V AUXV+3S+CMP V AUXV+SUBJ3S+OBJ3P NOUN ADJ+ERG

Figure 2: Dependency tree for the sentence in Figure 1.

(V = main verb; AUXV: auxiliary verb; CMP: completive subordinated mark; CONJ: conjunction; ERG: ergative case).

ncmod

ncsubj

143

evaluating the output with the gold test data.

We have applied three types of feature propa-

gation of the most important morphological fea-

ture values: a) from auxiliary verbs to the main

verb (verb phrases) b) from post-modifiers to the

head noun (noun phrases) c) from the last con-

junct to the conjunction (coordination). This was

done because Basque is a head final language,

where many relevant features are located at the

end of constituents. Figure 3 shows (dotted lines)

the arcs that will propagate features from child to

parent. The three transformations will be de-

scribed in the following subsections.

3.1 Verb compounds

In BDT the verbal elements are organized around

the main verb, but much syntactically relevant

verbal information, like subordination type, as-

pect, tense and agreement usually appear at-

tached to the auxiliary verb, which is the de-

pendent. Its main consequence for parsing is that

the elements bearing the relevant information for

parsing are situated far in the tree with respect to

their head. In Figure 2, we can see that the mor-

pheme –la, indicating a subordinated completive

sentence, appears down in the tree, and this could

affect the correct attachment of the two coordi-

nated verbs to the conjunction (eta), as conjunc-

tions should link elements showing similar

grammatical features (-la in this example). Simi-

larly, it could affect the decision about the de-

pendency type of eta (and) with respect to the

main verb esan (to say), as the dependency rela-

tion ccomp_obj is defined by means of the –la

(completive) morpheme, far down in the tree.

Figure 3 shows the effect of propagating the

completive feature value (CMP) from the auxil-

iary verb to the main verb through the auxmod

(auxiliary modifier) relation.

3.2 Noun Phrases

In noun phrases and postpositional phrases, the

most important morphological feature values

(case and number) are situated in the last post-

modifier after the noun. Figure 3 shows the ef-

fect of propagating the ergative (ERG) case fea-

ture value from the adjective (the last constituent

of the noun phrase) to the noun through the rela-

tion ncmod (non-clausal modifier).

3.3 Coordination

Coordination in BDT was annotated in the so

called Prague Style, where the conjunction is

taken as the head, and the conjuncts depend on it.

Basque is head final, so usually the last conjunct

contains syntactically relevant features. We ex-

perimented the promotion of the category, case

and subordination information from the last con-

junct to the conjunction. In the example in Figure

3, the conjunction (eta) receives a new feature

(HV for Head:Verb) from its dependent. This can

be seen as an alternative to (Nilsson et al. 2007)

who transform dependency arcs.

4 Evaluation

Evaluation was performed dividing the treebank

in three sets: training set (45,000 tokens), devel-

opment and test sets (5,000 tokens each). Train-

ing and testing of the system have been per-

formed on the same datasets presented at the

CoNLL 2007 shared task, which will allow for a

direct comparison. Table 1 presents the Labeled

Attachment Score (LAS) of the different tests on

development and test data. The first row presents

the best system score (76.94% LAS) in CoNLL

2007. This system combined six variants of a

base parser (Maltparser). The second row shows

the single Maltparser approach which obtained

the fifth position. Row 3 presents Bengoetxea

and Gojenola’s results (76.80% LAS) when ap-

plying graph transformations (pseudo-projective,

coordination and verb groups) to Basque, in the

spirit of Nilsson et al. (2007). Row 4 shows our

results after applying several feature optimiza-

tions, which we will use as our baseline.

auxmod

coord

auxmod auxmod

coord

ccomp_obj

Etorri da+la eta joan da+la esan zien mutil txiki+ak

come has+he+that and go has+he+that tell did+he+them boy little+the

V+CMP AUXV+3S+CMP CONJ+HV V+CMP AUXV+3S+CMP V AUXV+SUBJ3S+OBJ3P NOUN+ERG ADJ+ERG

Figure 3: Dependency tree after propagating the morphological features.

ncmod

ncsubj

144

Feature propagation in verb groups (PVG) im-

proves LAS in almost 0.5% (row 6 in Table 1).

While coordination and case propagation do not

improve significantly the accuracy by themselves

(rows 7 and 8), their combination with PVG (verb

groups) significantly increases LAS (+0.86%,

see row 10). Looking at the accuracy of the de-

pendency arcs used for feature propagation, aux-

liary verbs are the most reliable elements, as

their arcs (linking it to its head, the main verb)

have 97% precision and 98% recall. This is in

accord with PVG giving the biggest increase,

while arcs related to coordination (63% precision

and 65% recall) give a more modest contribution.

BDT contains 2.9% of nonprojective arcs, so

we experimented the effect of combining the

pseudoprojective transformation (Nilsson et al.

2007) with feature propagation, obtaining a LAS

of 77.12%, the best reported results for the BDT.

5 Conclusions

We have performed a set of experiments using

the output of a parser to enrich the input of a

second parser, propagating the relevant morpho-

logical feature values through dependency arcs.

The best system, after applying three types of

feature propagation, obtains a 77.12% LAS

(2.05% improvement over the baseline) on the

test set, which is the best reported result for

Basque dependency parsing, improving the better

published result for a combined parser (76.94%).

Acknowledgements

This research was supported by the Basque Gov-

ernment (EPEC-RS, S-PE08UN48) and the Uni-

versity of the Basque Country (EHU-EJIE,

EJIE07/05).

References

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa, A.

Diaz de Ilarraza, A. Garmendia and M. Oronoz.

2003. Construction of a Basque dependency

treebank. Treebanks and Linguistic Theories.

Kepa Bengoetxea and Koldo Gojenola. 2009. Explor-

ing Treebank Transformations in Dependency

Parsing. Proceedings of RANLP’2009.

Johan Hall, Jens Nilsson, Joakim Nivre J., Eryigit G.,

Megyesi B., Nilsson M. and Saers M. 2007. Single

Malt or Blended? A Study in Multilingual

Parser Optimization. Proceedings of the CoNLL
Shared Task EMNLP-CoNLL.

André F. T. Martins, Dipanjan Das, Noah A. Smith,

Eric P. Xing. 2008. Stacking Dependency Pars-

ing. EMNLP-2008.

Jens Nilsson, Joakim Nivre and Johan Hall. 2007.

Tree Transformations for Inductive Depend-

ency Parsing. Proceedings of the 45th ACL.

Joakim Nivre, Johan Hall, Jens Nilsson, Chanev A.,

Gülsen Eryiğit, Sandra Kübler, Marinov S., and

Edwin Marsi. 2007a. MaltParser: A language-

independent system for data-driven depend-

ency parsing. Natural Language Engineering.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan

McDonald, Jens Nilsson, Sebastian Riedel and

Deniz Yuret. 2007b. The CoNLL 2007 Shared

Task on Dependency Parsing. EMNLP-CoNLL.

Joakim Nivre and Ryan McDonald. 2008. Integrat-

ing graphbased and transition-based depend-

ency parsers. ACL-2008.

 LAS

 System Development Test

1 Nivre et al. 2007b (CoNLL 2007) - 76.94%

2 Hall et al. 2007 (CoNLL 2007) 74.99%

3 Bengoetxea and Gojenola 2009 76.80%

4 Feature optimization (baseline) 77.46% 75.07%

5 Proj 78.16% (+0.70) *75.99% (+0.92)

6 PVG 78.14% (+0.68) 75.54% (+0.47)

7 PCOOR 77.36% (-0.10) 75.22% (+0.15)

8 PCAS 77.32% (-0.14) 74.86% (-0.21)

9 PVG + PCAS 78.53% (+1.09) 75.42% (+0.35)

10 PCOOR + PVG + PCAS 78.31% (+0.85) *75.93% (+0.86)

11 PCOOR + PVG 78.25% (+0.79) *75.93% (+0.86)

12 Proj + PVG 78.91% (+1.45) *76.12% (+1.05)

13 Proj + PVG + PCOOR + PCAS 78.31% (+0.85) *77.12% (+2.05)

Table 1. Evaluation results

(Proj: Pseudo-projective, PVG, PCAS, PCOOR: Propagation on verb compounds, case (NPs) and coordination; *: statistically

significant in McNemar's test with respect to labeled attachment score with p < 0.01)

145

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 146–149,
Paris, October 2009. c©2009 Association for Computational Linguistics

Guessing the Grammatical Function of a Non-Root F-Structure in LFG

Anton Bryl
CNGL,

Dublin City University,
Dublin 9, Ireland

Josef van Genabith
CNGL,

Dublin City University,
Dublin 9, Ireland

{abryl,josef,ygraham}@computing.dcu.ie

Yvette Graham
NCLT,

Dublin City University,
Dublin 9, Ireland

Abstract
Lexical-Functional Grammar (Kaplan and
Bresnan, 1982) f-structures are bilexical
labelled dependency representations. We
show that the Naive Bayes classifier is able
to guess missing grammatical function la-
bels (i.e. bilexical dependency labels) with
reasonably high accuracy (82–91%). In
the experiments we use f-structure parser
output for English and German Europarl
data, automatically “broken” by replacing
grammatical function labels with a generic
UNKNOWN label and asking the classifier
to restore the label.

1 Introduction

The task of labeling unlabelled dependencies, a
sub-task of dependency parsing task, can occur
in transfer-based machine translation (when only
an inexact match can be found in the training
data for the given SL fragment) or in parsing
where the system produces fragmented output. In
such cases it is often reasonably straightforward
to guess which fragments are dependent on which
other fragments (e.g. in transfer-based MT). What
is harder to guess are the labels of the dependen-
cies connecting the fragments.

In this paper we systematically investigate the
labelling task by automatically deleting function
labels from Lexical-Functional Grammar-based
parser output for German and English Europarl
data, and then restoring them using a Naive Bayes
classifier trained on attribute names and attribute
values of the f-structure fragments. We achieve
82% (German) to 91% (English) accuracy for both
single and multiple missing function labels.

The paper is organized as follows: in Section 2
we define the problem and the proposed solution
more formally. Section 3 details the experimental
evaluations, and in Section 4 we present our con-
clusions.




PRED ‘adopt’

UNKNOWN f1




PERS 3
NUM sg
PRED ‘resolution’
SPEC f2

[
DET f3 [PRED ‘the’]

]




SUBJ f4




PERS 3
NUM sg
PRED ‘Parliament’







Figure 1: Example of a “broken” f-structure (sim-
plified). The sentence is ‘Parliament adopted the
resolution.’ The missing function of f1 is OBJ.

2 Guessing Unknown Grammatical
Functions

Let us introduce some useful definitions. By de-
pendent f-structure of the parent f-structure fP we
mean an f-structure fd which bears a grammati-
cal function within fP , or belongs to a set which
bears a grammatical function within fP . E.g., in
Figure 1 f2 is a dependent f-structure of f1. In this
paper we will not distinguish between these two
situations, but simply refer to multiple f-structures
bearing the same function within the same parent
for set-valued grammatical functions. C(φ, fP)
denotes the number of dependent f-structures of
fP which bear the grammatical function φ in fP

(either directly or as members of a set).
Let us formalize the simple case when the gram-

matical function of only one dependent f-structure
is missing. Let FP be the set of f-structures which
have a dependent f-structure with an UNKNOWN la-
bel instead of the grammatical function. Let Φ be
the set of all grammatical functions of the given
grammar. We need a guessing function G : FP →
Φ, such that G(fP) is a meaningful replacement
for the UNKNOWN label in fP . As the set Φ is fi-
nite, the problem is evidently a classification task.

F-structures are characterized by attributes
some of which potentially carry information about
the f-structure’s grammatical function, even if

146

Language N-GF N-DEP AVG-DEP MIN-DEP MAX-DEP
English 24 9724 1.57 1 5
German 39 10910 1.55 1 5

Table 1: Data used in the evaluation. N-GF is the number of different grammatical functions occurring
in the dataset. N-DEP is the number of dependent f-structures in the test set. AVG-DEP, MIN-DEP,
MAX-DEP is the average, min. and max. number of dependant structures per parent in the test set.

we observe these attributes completely separately
from each other. For example, it seems likely
that an f-structure with an ATYPE attribute is an
ADJUNCT, while an f-structure which has CASE
is probably a SUBJ or an OBJ. Given this, Naive
Bayes appears to be a promising solution here. Be-
low we describe a way to adapt this classifier to the
problem of grammatical function guessing.

Let ΦP ⊆ Φ be the set of grammatical functions
which are already present in fP . Let Ξ = {ξ1..ξn}
be the set of features, and let X = {x1..xn} be
the values of these features for the f-structure fd

for which the function should be guessed. Then
the answer φd is chosen as follows:

φd = arg max
φ∈Φ

(
p(φ)MP (φ)

n∏

i=1

p(ξi = xi|φ)

)
(1)

MP (φ) =

{
p(C(φ, fP) > 1), if φ ∈ ΦP
1, otherwise (2)

where the probabilities are estimated from the
training data. Equation (2) states that if φ is al-
ready present in the parent f-structure, the proba-
bility of φ being set-valued is considered.

We propose two ways of building the feature
set Ξ. First, it is possible to consider the pres-
ence/absence of each particular attribute in fd as
a binary feature. Second, it is possible to con-
sider atomic attribute values as features as well.
To give a motivating example, in many languages
the value of CASE is extremely informative when
distinguishing objects from subjects. We use only
those atomic attribute values which do not rep-
resent words. E.g., NUM, PRED or NUM=sg are
features, while PRED=‘resolution’ is not a
feature. This distinction prevents the feature set
from growing too large and thus the probability
estimates from being too inaccurate.

If grammatical functions are missing for sev-
eral dependent f-structures, it is possible to use
the same approach, guessing the missing func-
tions one by one. In general, however, these de-
cisions will not be independent. To illustrate this,

let us consider a situation when the functions are
to be guessed for two dependent f-structures of
the same parent f-structure, OBJ being the correct
answer for the first and SUBJ for the second. If
the guesser returns SUBJ for the first of the two,
this answer will not only be incorrect, but also de-
crease the probability of the correct answer for the
second by decreasing MP (SUBJ) in Equation (1).
This suggests that in such cases maximization of
the joint probability of the values of all the miss-
ing functions may be a better choice.

3 Experimental Evaluation

We present two experiments which assess the ac-
curacy of the proposed approach and compare dif-
ferent variants of it in order to select the best, and
an additional one which assesses the usefulness of
the approach for practical machine translation.

3.1 Data Used in the Evaluation

For our experiments we used sentences from
the German-English part of the Europarl cor-
pus (Koehn, 2005) parsed into f-structures with
the XLE parser (Kaplan et al., 2002) using En-
glish (Riezler et al., 2002) and German (Butt et
al., 2002) LFGs. We parsed only sentences of
length 5–15 words. For the first two experiments,
we picked 2000 sentences for training and 1000
for testing for both languages. We ignored robust-
ness features (FIRST, REST), functions related to
c-structure constraints (MOTHER, LEFT SISTER,
etc.), and TOPIC. Of the remaining functions, we
considered only those occurring in the PREDs-
only part of f-structure. If a dependent f-structure
has multiple functions within the same parent f-
structure, only the first function occurring in the
description is considered. This does not unduely
influence the results, as the grammatical function
of an f-structure, after exclusion of TOPIC, carries
multiple labels in only about 2% of the cases in the
English data and about 1% in the German data. In
Table 1 we provide some useful statistics to help
the reader interpret the results of the experiments.

147

Language MF NB-CASE NB-N NB-N&V
English 36.3% 56.7% 85.6% 91.6%
German 23.4% 51.0% 74.8% 82.5%

Table 2: Experiment 1: Guessing a Single Miss-
ing Grammatical Function. MF is the pick-most-
frequent classifier. NB-CASE is Naive Bayes
(NB) with only CASE values used as features. NB-
N is NB with only attribute names used as fea-
tures. NB-N&V is NB with both attribute names
and atomic attribute values used as features.

3.2 Experiment 1: Guessing a Single Missing
Grammatical Function

The goal of this experiment is to evaluate the ac-
curacy of the Bayesian guesser in the case when
the grammatical function is unknown only for one
dependent f-structure, and to assess whether the
inclusion of attribute values into the feature set
improves the results, and whether attributes other
than CASE are useful.

Procedure. As a baseline, we used a pick-most-
frequent algorithm MF which considers only the
function’s prior probability and the presence of
this function in the parent (returning to Equations
(1) and (2), MF is in fact Naive Bayes with an
empty feature set Ξ). The guesser was evaluated
in three variants: NB-CASE with the feature set
formed only from the values of CASE attributes
(if the f-structure has no CASE feature, the classi-
fier degenerates to MF), NB-N with the feature set
formed only from attribute names, and NB-N&V
with the feature set formed from both attribute
names and values. All grammatical functions in
the test set were used as test cases. At each step in
the evaluation, one function was removed and then
guessed by each algorithm. For both languages the
test set was split into 10 non-intersecting subsets
with approximately equal numbers of grammati-
cal functions in each, and the values obtained for
the 10 subsets were further used to assess the sta-
tistical significance of the differences in the results
with the paired Student’s t-test.

Results. Table 2 presents the results. For both
English and German all the three versions of the
classifier clearly outperform the baseline, and even
the advantage of NB-CASE over the baseline is
statistically significant at the 0.5% level for both
languages. However, NB-CASE performs much
worse than NB-N and NB-N&V (their advantage
over NB-CASE is statistically significant at the
0.5% level for both languages), confirming that

Language MF NB-S NB-J
English 22.0% 90.4% 91.2%
German 17.1% 81.4% 82.1%

Table 3: Experiment 2: Guessing Multiple Miss-
ing Functions. MF is the pick-most-frequent clas-
sifier. NB-S and NB-J are one-by-one and join-
probability-based Naive Bayesian guessers.

CASE is not the only feature which is useful in
our task. The increase in accuracy brought about
by including the atomic attribute values into the
feature space is visible and significant at the same
level. The increase is somewhat more pronounced
for German than for English. For English the in-
clusion of attribute values into the feature space
affects primarily the accuracy of SUBJ vs. OBJ
decisions. For German, the accuracy notably in-
creases for telling SUBJ, OBJ and ADJ-GEN from
one another.

3.3 Experiment 2: Guessing Multiple
Missing Grammatical Functions

The goal of this experiment is to assess the accu-
racy of the Bayesian guesser for multiple miss-
ing grammatical functions within one parent f-
structure, and to compare the accuracy of one-
by-one vs. joint-probability-based guessing. Our
evaluation procedure models the extreme case
when the functions are unknown for all the depen-
dent f-structures of a particular parent.

Procedure. As a baseline, we use the same al-
gorithm MF as in Experiment 1, applied to the
missing grammatical functions one by one. Two
Bayesian guessers are evaluated, NB-S guessing
the missing grammatical functions one by one, and
NB-J guessing them all at once by maximizing
the joint probability of the values. Both Bayesian
guessers use attribute names and values as fea-
tures. All grammatical functions in the test set
were used as test cases. At each step of the ex-
periment, the grammatical functions of all the de-
pendent f-structures of a particular parent were
removed simultaneously, and then guessed with
each of the algorithms considered in this experi-
ment. Statistical significance was assessed in the
same way as in Experiment 1.

Results. Table 3 presents the accuracy scores.
The one-by-one guesser and the joint-probability-
based guesser perform nearly equally well, result-
ing in accuracy levels very close to those obtained
in Experiment 1 for f-structures with a single

148

missing function. Joint-probability-based guess-
ing achieves an advantage which is statistically
significant at the 0.5% level for both languages
but is not exceeding 1% absolute improvement.
For both languages errors typically occur in distin-
guishing OBJ vs. SUBJ and ADJUNCT vs. MOD,
and additionally in XCOMP vs. OBJ for English.

3.3.1 Experiment 3: Postprocessing the
Output of an MT Decoder

The goal of this experiment is to see how the
method influences the results of an SMT system.

Procedure. For this experiment we use the Sulis
SMT system (Graham et al., 2009), and a decoder,
which selects the transfer rules by maximizing the
source-to-target probability of the complete trans-
lation. Such a decoder, though simple, allows us
to create a realistic environment for evaluation.
From the f-structures produced by the decoder,
candidate sentences are generated with XLE, and
then the one best translation is selected for each
sentence using a language model. The function
guesser is used to postprocess the output of the
decoder before sentence generation. In the ex-
periment, the function guesser uses both attribute
names and values to make a guess. Guessing of
multiple missing functions is performed one-by-
one, as joint guessing complicates the algorithm
and leads to a very small improvement in accuracy.
The function guesser is trained on 3000 sentences,
which are a subset of the set used for inducing the
transfer rules. The overall MT system is evaluated
both with and without function guessing on 500
held-out sentences, and the quality of the transla-
tion is measured using the BLEU metric (Papineni
et al., 2002). We also calculate the number of sen-
tences for which the generator output is unempty.

Results. The system without function guesser
produced results for 364 sentences out of 500,
with BLEU score equal to 5.69%; with function
guesser the number of successfully generated sen-
tences increases to 433, with BLEU improving to
6.95%. Thus, the absolute increase of BLEU score
brought about by the guesser is 1.24%. This sug-
gests that the algorithm succeeds on real data and
is useful in grammar-based machine translation.

4 Conclusion

In this paper we addressed the problem of restor-
ing unknown grammatical functions in automati-
cally generated f-structures. We proposed to view
this problem as a classification task and to solve

it with the Naive Bayes classifier, using the names
and the values of the attributes of the dependent
f-structure to construct the feature set.

The approach was evaluated on English and
German data, and showed reasonable accuracy,
restoring the missing functions correctly in about
91% of the cases for English and about 82% for
German. It is tempting to interpret the differences
in accuracy for English and German as reflecting
the complexity of grammatical function assign-
ment for the two languages. It is not clear, how-
ever, whether the differences are due to differences
in the grammars or in the underlying data.

The experiments reported here use LFG-type
representations. However, nothing much in the
method is specific to LFG, and therefore we are
confident that our method also applies to other
dependency-based representations.

Acknowledgments

The research presented here was supported by Sci-
ence Foundation Ireland grant 07/CE2/I1142 un-
der the CNGL CSET programme.

References
M. Butt, H. Dyvik, T. H. King, H. Masuichi, and

C. Rohrer. 2002. The parallel grammar project.
In COLING’02, Workshop on Grammar Engineer-
ing and Evaluation.

Y. Graham, A. Bryl, and J. van Genabith. 2009. F-
structure transfer-based statistical machine transla-
tion. In LFG’09 (To Appear).

R. Kaplan and J. Bresnan. 1982. Lexical functional
grammar, a formal system for grammatical represe-
nation. The Mental Representation of Grammatical
Relations, pages 173–281.

R. M. Kaplan, T. H. King, and J. T. Maxwell III. 2002.
Adapting existing grammars: the XLE experience.
In COLING’02, Workshop on Grammar Engineer-
ing and Evaluation.

P. Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT Summit X, pages
79–86.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
BLEU: a method for automatic evaluation of ma-
chine translation. In ACL’02, pages 311–318.

S. Riezler, T. H. King, R. M. Kaplan, R. Crouch,
J. T. Maxwell III, and M. Johnson. 2002. Pars-
ing the wall street journal using a lexical-functional
grammar and discriminative estimation techniques.
In ACL’02, pages 271–278.

149

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 150–161,
Paris, October 2009. c©2009 Association for Computational Linguistics

Cross Parser Evaluation and Tagset Variation : a French Treebank Study

Djamé Seddah†, Marie Candito‡ and Benoît Crabbé‡

† Université Paris-Sorbonne
LALIC & I NRIA (ALPAGE)

28 rue Serpente
F-75006 Paris — France

‡ Université Paris 7
INRIA (ALPAGE)

30 rue du Château des Rentiers
F-75013 Paris — France

Abstract

This paper presents preliminary investiga-
tions on the statistical parsing of French by
bringing a complete evaluation on French
data of the main probabilistic lexicalized
and unlexicalized parsers first designed
on the Penn Treebank. We adapted the
parsers on the two existing treebanks of
French (Abeillé et al., 2003; Schluter and
van Genabith, 2007). To our knowledge,
mostly all of the results reported here are
state-of-the-art for the constituent parsing
of French on every available treebank. Re-
garding the algorithms, the comparisons
show that lexicalized parsing models are
outperformed by the unlexicalized Berke-
ley parser. Regarding the treebanks, we
observe that, depending on the parsing
model, a tag set with specific features
has direct influence over evaluation re-
sults. We show that the adapted lexical-
ized parsers do not share the same sensi-
tivity towards the amount of lexical ma-
terial used for training, thus questioning
the relevance of using only one lexicalized
model to study the usefulness of lexical-
ization for the parsing of French.

1 Introduction

The development of large scale symbolic gram-
mars has long been a lively topic in the French
NLP community. Surprisingly, the acquisition of
probabilistic grammars aiming at stochastic pars-
ing, using either supervised or unsupervised meth-
ods, has not attracted much attention despite the
availability of large manually syntactic annotated
data for French. Nevertheless, the availability
of the Paris 7 French Treebank (Abeillé et al.,
2003), allowed (Dybro-Johansen, 2004) to carry
out the extraction of a Tree Adjoining Grammar
(Joshi, 1987) and led (Arun and Keller, 2005)

to induce the first effective lexicalized parser for
French. Yet, as noted by (Schluter and van Gen-
abith, 2007), the use of the treebank was “chal-
lenging”. Indeed, before carrying out successfully
any experiment, the authors had to perform a deep
restructuring of the data to remove errors and in-
consistencies. For the purpose of building a sta-
tistical LFG parser, (Schluter and van Genabith,
2007; Schluter and van Genabith, 2008) have re-
annotated a significant subset of the treebank with
two underlying goals: (1) designing an annota-
tion scheme that matches as closely as possible
the LFG theory (Kaplan and Bresnan, 1982) and
(2) ensuring a more consistent annotation. On the
other hand, (Crabbé and Candito, 2008) showed
that with a new released and corrected version of
the treebank1 it was possible to train statistical
parsers from the original set of trees. This path
has the advantage of an easier reproducibility and
eases verification of reported results.

With the problem of the usability of the data
source being solved, the question of finding one
or many accurate language models for parsing
French raises. Thus, to answer this question,
this paper reports a set of experiments where
five algorithms, first designed for the purpose of
parsing English, have been adapted to French:
a PCFG parser with latent annotation (Petrov et
al., 2006), a Stochastic Tree Adjoining Grammar
parser (Chiang, 2003), the Charniak’s lexicalized
parser (Charniak, 2000) and the Bikel’s implemen-
tation of Collins’ Model 1 and 2 (Collins, 1999)
described in (Bikel, 2002). To ease further com-
parisons, we report results on two versions of the
treebank: (1) the last version made available in
December 2007, hereafter FTB , and described
in (Abeillé and Barrier, 2004) and the (2) LFG

inspired version of (Schluter and van Genabith,
2007).
The paper is structured as follows : After a brief
presentation of the treebanks, we discuss the use-

1This has been made available in December 2007.

150

fulness of testing different parsing frameworks
over two parsing paradigms before introducing
our experimental protocol and presenting our re-
sults. Finally, we discuss and compare with re-
lated works on cross-language parser adaptation,
then we conclude.

2 Treebanks for French

This section provides a brief overview to the cor-
pora on which we report results: the French Tree-
bank (FTB) and the Modified French Treebank
(MFT).

2.1 The French Treebank

THE FRENCH TREEBANK is the first treebank
annotated and manually corrected for French. It
is the result of a supervised annotation project of
newspaper articles fromLe Monde(Abeillé and
Barrier, 2004). The corpus is annotated with la-
belled constituent trees augmented with morpho-
logical annotations and functional annotations of
verbal dependents as shown below :

<SENT>
<NP fct="SUJ">

<w cat="D" lemma="le" mph="ms" subcat="def">le</w>
<w cat="N" lemma="bilan" mph="ms" subcat="C">bilan</w>

</NP>
<VN>

<w cat="ADV" lemma="ne" subcat="neg">n’</w>
<w cat="V" lemma="être" mph="P3s" subcat="">est</w>

</VN>
<AdP fct="MOD">

<w compound="yes" cat="ADV" lemma="peut-être">
<w catint="V">peut</w>
<w catint="PONCT">-</w>
<w catint="V">être</w>

</w>
<w cat="ADV" lemma="pas" subcat="neg">pas</w>

</AdP>
<AP fct="ATS">

<w cat="ADV" lemma="aussi">aussi</w>
<w cat="A" lemma="sombre" mph="ms" subcat="qual">sombre </w>

</AP>
<w cat="PONCT" lemma="." subcat="S">.</w>

</SENT>

Figure 1: Simplified example of the FTB: ”Le bi-
lan n’est peut-être pas aussi sombre.”(i.e. The
result is perhaps not as bleak)

Though the original release (in 2000) consists
of 20,648 sentences, the subset of 12351 function-
ally annotated sentences is known to be more con-
sistently annotated and therefore is the one used
in this work. Its key properties, compared with
the Penn Treebank (hereafter PTB, (Marcus et al.,
1994)), are the following :

Size: The FTB consists of 385,458 tokens and
12,351 sentences, that is the third of the PTB. It
also entails that the average length of a sentence
is 27.48 tokens. By contrast the average sentence
length in the PTB is 24 tokens.

Inflection: French morphology is richer than
English and leads to increased data sparseness is-
sues for the purpose of statistical parsing. There
are 24,098 types in the FTB, entailing an average
of 16 tokens occurring for each type.

A Flat Annotation Scheme:Both the FTB

and the PTB are annotated with constituent trees.
However, the annotation scheme is flatter in the
FTB. For instance, there are no VPs for finite verbs
and only one sentential level for clauses or sen-
tences whether or not introduced by a complemen-
tizer. Onlyverbal nucleus(VN) is annotated and
comprises the verb, its clitics, auxiliaries, adverbs
and surrounding negation.

While X-bar inspired constituents are supposed
to contain all the syntactic information, in the FTB

the shape of the constituents does not necessar-
ily express unambiguously thetypeof dependency
existing between a head and a dependent appear-
ing in the same constituent. Yet, this is crucial to
extract the underlying predicate-argument struc-
tures. This has led to a “flat” annotation scheme,
completed with functional annotations that inform
on the type of dependency existing between a verb
and its dependents. This was chosen for French
to reflect, for instance, the possibility to mix post-
verbal modifiers and complements (Figure 2), or
to mix post-verbal subject and post-verbal indirect
complements : a post verbal NP in the FTB can
correspond to a temporal modifier, (most often) a
direct object, or an inverted subject, and all cases,
other subcategorized complements may appear.

SENT

NP-SUJ

D

une

N

lettre

VN

V

avait

V

été

V

envoyée

NP-MOD

D

la

N

semaine

A

dernière

PP-AOBJ

P

aux

NP

N

salariés
(a) A letter had been sent last week to the employees

SENT

NP-SUJ

D

Le

N

Conseil

VN

V

a

V

notifié

NP-OBJ

D

sa

N

décision

PP-AOBJ

P

à

NP

D

la

N

banque
(b) The Council has notified his decision to the bank

Figure 2: Two examples of post-verbal NPs : a
temporal modifier (a) and a direct object (b)

Compounds:Compounds are explicitly anno-
tated and very frequent in the treebank: 14.52% of
tokens are part of a compound (see the compound
peut-être ’perhaps’in Figure 1). They include

151

digit numbers (written with spaces in French) (e.g.
10 000), frozen compounds (eg.pomme de terre
’potato’) but also named entities or sequences
whose meaning is compositional but where inser-
tion is rare or difficult (e.g.garde d’enfant ’child
care’). As noted by (Arun and Keller, 2005), com-
pounds in French may exhibit ungrammatical se-
quences of tags as inà la va vite ’in a hurry’
: Prep+ Det+ finite verb + adverb or can in-
clude “words” which do not exist outside a com-
pound (e.ghui in aujourd’hui ’today’). Therefore,
compounds receive a two-level annotation : con-
stituent parts are described in a subordinate level
using the same POS tagset as the genuine com-
pound POS. This makes it more difficult to extract
a proper grammar from the FTB without merged
compounds2. This is why, following (Arun and
Keller, 2005) and (Schluter and van Genabith,
2007), all the treebanks used in this work contain
compounds.

2.2 The Modified French Treebank

THE MODIFIED FRENCH TREEBANK (MFT) has
been derived from the FTB by (Schluter and van
Genabith, 2008) as a basis for a PCFG-based Lexi-
cal Functional Grammar induction process (Cahill
et al., 2004) for French. The corpus is a subset of
4739 sentences extracted from the original FTB.
The MFT further introduces formal differences of
two kinds with respect to the original FTB: struc-
tural and labeling modifications.
Regarding structural changes, the main transfor-
mations include increased rule stratification (Fig.
3), coordination raising (Fig. 5).

Moreover, the MFT’s authors introduced new
treatments of linguistic phenomena that were not
covered by their initial source treebank. Those
include, for example, analysis for ’It’-cleft con-
structions.3 Since the MFT was designed for the
purpose of improving the task of grammar induc-
tion, the MFT’s authors also refined its tag set by
propagating information (such as mood features
added to VN node labels), and added functional
paths4 to the original function labels. The modifi-
cations introduced in the MFT meet better the for-
mal requirements of the LFG architecture set up

2Consider the case of the compoundpeut-être ’perhaps’
whose POS is ADV, its internal structure (Fig. 1) would lead
to a CFG rule of the form ADV−→ V V.

3See pages 2-3 of (Schluter and van Genabith, 2007) for
details.

4Inspired by the LFG framework (Dalrymple, 2001).

AdP

ADV

encore

ADV

pas

ADV

très

ADV

bien

AdP

ADV

encore

AdP

ADV

pas

AdP ADV

très

AdP ADV

bien

FTB initial analysis MFT modification

Figure 3: Increased stratification in the MFT : “en-
core pas très bien”(’still not very well’)

XP1

..Y.. X1 ..Z.. COORD

C XP2

XP1

COORD-XP

XP

..Y.. X1 ..Z..

C XP2

Figure 5: Coordinated structures in the general
case, for FTB (up) and MFT (down)

by (Cahill et al., 2004) and reduce the size of the
grammars extracted from the treebank. MFT has
also undergone a phase of error mining and an ex-
tensive manual correction.

2.3 Coordination in French Treebanks

One of the key differences between the two French
treebanks is the way they treat coordinate struc-
tures. Whereas the FTB represents them with an
adjunction of a COORD phrase as a sister or a
daughter of the coordinated element, the MFT in-
troduces a treatment closer to the one used in the
PTB to describe such structures. As opposed to
(Arun and Keller, 2005) who decided to transform
the FTB’s coordinations to match the PTB’s analy-
sis, the COORD label is not removed but extended
to include the coordinated label (Fig. 5).

In Figure 5, we show the general coordination
structure in the FTB, and the corresponding mod-
ified structure in the MFT. A more complicated
modification concerns the case ofVP coordina-
tions. (Abeillé et al., 2003) argue for a flat repre-
sentation with no VP-node for French, and this is

152

SENT

VN

CL

Elle

V

ajoute

Ssub

que ...

COORD

CC

et

VN

V

présente

NP

douze points de désaccord

SENT

NP

CL

Elle

COORD-VP

VP

VN-finite

V-finite

ajoute

Ssub

que ...

C-C

et

VP

VN-finite

V-finite

présente

NP

douze points de désaccord

Figure 4: Two representations of “VP coordinations” for the sentenceShe adds that ... and presents
twelve sticking points: in the FTB (left) and in the MFT (right)

particularly justified in some cases of subject-verb
inversion. Nevertheless, VP phrases are used in
the FTB for non-finite VPs only (nodes VPinf and
VPpart). In the MFT, finite VPs were introduced
to handleVP coordinations. In those cases, the
FTB annotation scheme keeps a flat structure (Fig-
ure 4, left), where the COORD phrase has to be in-
terpreted as a coordinate of the VN node; whereas
finite VP nodes are inserted in the MFT (Figure 4,
right).

2.4 Summary

In Table 2, we describe the annotation schemes of
the treebanks and we provide in Table 1 a numeric
summary of some relevant different features be-
tween these two treebanks. The reported numbers
take into account the base syntactic category labels
without functions, part-of-speech tags without any
morpho-syntactic information (ie. no ’gender’ or
number’).

properties FTB MFT

of sentences 12351 4739
Average sent. length 27.48 28.38
Average node branching 2.60 2.11
PCFG size (without term. prod.) 14874 6944
of NT symbols 13 39
of POS tags 15 27

Table 1: Treebanks Properties

3 Parsing Algorithms

Although Probabilistic Context Free Grammars
(PCFG) are a baseline formalism for probabilis-
tic parsing, it is well known that they suffer from
two problems: (a) The independence assumptions
made by the model are too strong, and (b) For Nat-
ural Language Parsing, they do not take into ac-
count lexical probabilities. To date, most of the
results on statistical parsing have been reported
for English. Here we propose to investigate how
to apply these techniques to another language –
French – by testing two distinct enhancements

FTB MFT

POS tags A ADV C CL D ET
I N P P+D P+PRO
PONCT PREF PRO
V

A A_card ADV
ADV_int AD-
Vne A_int CC CL
C_S D D_card
ET I N N_card
P P+D PONCT
P+PRO_rel PREF
PRO PRO_card
PRO_int PRO_rel
V_finite V_inf
V_part

NT labels AP AdP COORD NP
PP SENT Sint Srel
Ssub VN VPinf VP-
part

AdP AdP_int AP
AP_int COORD_XP
COORD_UC CO-
ORD_unary NC
NP NP_int NP_rel
PP PP_int PP_rel
SENT Sint Srel Ssub
VN_finite VN_inf
VN_part VP VPinf
VPpart VPpart_rel

Table 2: FTB’s and MFT’s annotation schemes

over the bare PCFGmodel carried out by two class
of parser models: an unlexicalized model attempt-
ing to overcome problem (a) and 3 different lex-
icalized models attempting to overcome PCFG’s
problems (a) and (b)5.

3.1 Lexicalized algorithms

The first class of algorithms used are lexicalized
parsers of (Collins, 1999; Charniak, 2000; Chi-
ang, 2003). The insight underlying the lexical-
ized algorithms is to model lexical dependencies
between a governor and its dependants in order to
improve attachment choices.

Even though it has been proven numerous times
that lexicalization was useful for parsing theWall
Street Journalcorpus (Collins, 1999; Charniak,
2000), the question of its relevance for other lan-
guages has been raised for German (Dubey and
Keller, 2003; Kübler et al., 2006) and for French

5Except (Chiang, 2003) which is indeed a TREE IN-
SERTION GRAMMAR (Schabes and Waters, 1995) parser but
which must extract a lexicalized grammar from the set of con-
text free rules underlying a treebank.

153

(Arun and Keller, 2005) where the authors ar-
gue that French parsing benefits from lexicaliza-
tion but the treebank flatness reduces its impact
whereas (Schluter and van Genabith, 2007) argue
that an improved annotation scheme and an im-
proved treebank consistency should help to reach
a reasonable state of the art. As only Collins’ mod-
els 1 & 2 have been used for French as instances
of lexicalised parsers, we also report results from
the history-based generative parser of (Charniak,
2000) and the Stochastic Tree Insertion Grammar
parser of (Chiang, 2003) as well as (Bikel, 2002)’s
implementation of the Collins’ models 1 & 2
(Collins, 1999). Most of the lexicalized parsers
we use in this work are well known and since their
releases, almost ten years ago, their core parsing
models still provide state-of-the-art performance
on the standard test set for English.6 We insist on
the fact that one of the goals of this work was to
evaluate raw performance of well known parsing
models on French annotated data. Thus, we have
not considered using more complex parsing archi-
tectures that makes use of reranking (Charniak and
Johnson, 2005) or self-training (McClosky et al.,
2006) in order to improve the performance of a
raw parsing model. Furthermore, studying and de-
signing a set of features for a reranking parser was
beyond the scope of this work. However, we did
use some of these models in a non classical way,
leading us to explore a Collins’ model 2 variation,
named model X, and a Stochastic Tree Adjoining
Grammar (Schabes, 1992; Resnik, 1992) variant7 ,
named Spinal Stochastic Tree Insertion Grammars
(hereafter SPINAL STIG), which was first used to
validate the heuristics used by our adaptation of
the Bikel’s parser to French. The next two subsec-
tions introduce these variations.

Collins’ Model 2 variation During the ex-
ploratory phase of this work, we found out that a
specific instance of the Collins’ model 2 leads to
significantly better performance than the canoni-
cal model when applied to any of the French Tree-
banks. The difference between those two models
relies on the way probabilities associated to so-
called “modifier non terminals” nodes are handled
by the generative model.
To explain the difference, let us recall that

6Section 23 of the Wall Street Journal section of the PTB.
7The formalism actually used in this parser is a con-

text free variant of Tree Adjoining Grammar, Tree Insertion
Grammars (TIG), first introduced in (Schabes and Waters,
1995).

a lexicalized PCFG can roughly be described
as a set of stochastic rules of the form:
P → Ln Ln−1 ..L1 H R1 .. Rm−1 Rm

whereLi, H, Ri and P are all lexicalized non
terminals; P inherits its head fromH (Bikel,
2004). The Collins’ model 2 deterministically
labels some nodes of a rule to be arguments of
a given Head and the remaining nodes are con-
sidered to be modifier non terminals (hereafter
MNT).
In this model, given a left-hand side symbol, the
head and its arguments are first generated and then
the MNT are generated from the head outward.
In Bikel’s implementation of Collins’s model 2
(Bikel, 2004), the MNT parameter class is the fol-
lowing (for clarity, we omit theverb intervening,
subcatand side features which are the same in
both classes) :

• model 2 (canonical) :
p(M(t)i|P, H, wh, th, map(Mi−1))

WhereM(t)i is the POS tag of theith MNT,
P the parent node label,H the head node
label, wh the head word andth its POS
tag. map(Mi−1) is a mapped version of
the previously-generated modifier added to
the conditioning context (see below for its
definition).

map(Mi) =

8
>>><
>>>:

+START+ if i = 0
CC if Mi = CC
+PUNC+ if Mi =,

or Mi =:
+OTHER+ otherwise

9
>>>=
>>>;

Whereas in the model we call X8, the mapping
version of the previously generated non terminal is
replaced by a complete list of all previously gen-
erated non terminals.

• Model X :
p(M(t)i|P, H, wh, th, (Mi−1, ..., Mi−k))

The FTB being flatter than the PTB, one can con-
jecture that giving more context to generate MNT
will improve parsing accuracy, whereas clustering
MNT in a X-bar scheme must help to reduce data
sparseness. Note that the Model X, to the best of
our knowledge, is not documented but included in
Bikel’s parser.

8See file NonTerminalModelStructure1.java in Bikel’s
parser source code athttp://www.cis.upenn.edu/
~dbikel/download/dbparser/1.2/install.sh .

154

The spinal STIG model In the case of the STIG

parser implementation, having no access to an
argument adjunct table leads it to extract a gram-
mar where almost all elementary trees consist of
a suite of unary productions from a lexical anchor
to its maximal projection (i.e. spine9). Therefore
extracted trees have no substitution node.
Moreover, the probability model, being split
between lexical anchors and tree templates,
allows a very coarse grammar that contains, for
example, only 83 tree templates for one treebank
instantiation, namely the FTB-CC (cf. section 5).
This behavior, although not documented10, is
close to Collins’ model 1, which does not use any
argument adjunct distinction information, and led
to results interesting enough to be integrated as
the “Chiang Spinal” model in our parser set. It
should be noted that, recently, the use of similar
models has been independently proposed in
(Carreras et al., 2008) with the purpose of getting
a richer parsing model that can use non local
features and in (Sangati and Zuidema, 2009) as a
mean of extracting a Lexicalized Tree Substitution
Grammar. In their process, the first extracted
grammar is actually a spinal STIG.

3.2 Unlexicalized Parser

As an instance of an unlexicalized parser, the last
algorithm we use is the Berkeley unlexicalized
parser (BKY) of (Petrov et al., 2006). This algo-
rithm is an evolution of treebank transformation
principles aimed at reducing PCFG independence
assumptions (Johnson, 1998; Klein and Manning,
2003).

Treebank transformations may be of two kinds
(1) structure transformation and (2) labelling
transformations. The Berkeley parser concentrates
on (2) by recasting the problem of acquiring an
optimal set of non terminal symbols as an semi-
supervised learning problem by learning a PCFG

with Latent annotations (PCFG-LA): given an ob-
served PCFG induced from the treebank, the latent
grammar is generated by combining every non ter-
minal of the observed grammar to a predefined set
H of latent symbols. The parameters of the latent
grammar are estimated from the actual treebank

9Not to be confused with the “spine” in the Tree Adjunct
Grammar (Joshi, 1987) framework which is the path from a
foot node to the root node.

10We mistakenly “discovered” this obvious property dur-
ing the preliminary porting phase.

trees (orobserved trees) using a specific instanci-
ation ofEM.

4 Experimental protocol

In this section, we specify the settings of the
parsers for French, the evaluation protocol and the
different instantiations of the treebanks we used
for conducting the experiments.

4.1 Parsers settings

Head Propagation table All lexicalized parsers
reported in this paper use head propagation tables.
Adapting them to the French language requires
to design French specific head propagation
rules. To this end, we used those described by
(Dybro-Johansen, 2004) for training a Stochastic
Tree Adjoining Grammar parser on French. From
this set, we built a set of meta-rules that were
automatically derived to match each treebank
annotation scheme.
As the Collins Model 2 and the STIG model need
to distinguish between argument and adjunct
nodes to acquire subcategorization frames prob-
abilities, we implemented an argument-adjunct
distinction table that takes advantage of the
function labels annotated in the treebank. This is
one of the main differences with the experiments
described in (Arun and Keller, 2005) and (Dybro-
Johansen, 2004) where the authors had to rely
only on the very flat treebank structure without
function labels, to annotate the arguments of a
head.

Morphology and typography adaptation Fol-
lowing (Arun and Keller, 2005), we adapted
the morphological treatment of unknown words
proposed for French when needed (BKY ’s and
BIKEL ’s parser). This process clusters unknown
words using typographical and morphological in-
formation. Since all lexicalized parsers contain
specific treatments for the PTB typographical con-
vention, we automatically converted the original
punctuation parts of speech to the PTB’s punctua-
tion tag set.

4.2 Experimental details

For the BKY parser, we use the Berkeley imple-
mentation, with an initial horizontal markoviza-
tion h=0, and 5 split/merge cycles. For the
COLLINS’ MODEL, we use the standard param-
eters set for the model 2, without any argu-

155

ment adjunct distinction table, as a rough emu-
lation of the COLLINS MODEL 1. The same set
of parameters used for COLLINS’ MODEL 2 is
used for theMODEL X except for the parameters
“Mod{Nonterminal,Word}ModelStructureNumber”set to
1 instead of 2.

4.3 Protocol

For all parsers, we report parsing results with the
following experimental protocol: a treebank is di-
vided in 3 sections : test (first 10%), development
(second 10%) and training (remaining 80%). The
MFT partition set is the canonical one (3800 sen-
tences for training, 509 for the dev set and the last
430 for the test set). We systematically report the
results with compounds merged. Namely, we pre-
process the treebank in order to turn each com-
pound into a single token both for training and test.

4.4 Evaluation metrics

Constituency Evaluation:we use the standard
labeled bracketed PARSEVAL metric for evalua-
tion (Black et al., 1991), along with unlabeled
dependency evaluation, which is described as a
more annotation-neutral metric in (Rehbein and
van Genabith, 2007). In the remainder of this pa-
per, we use PARSEVAL as a shortcut for Labeled
Brackets results on sentence of length 40 or less.
Dependency Evaluation:unlabeled dependencies
are computed using the (Lin, 1995) algorithm,
and the Dybro Johansens’s head propagation rules
cited above11. The unlabeled dependency accu-
racy gives the percentage of input words (exclud-
ing punctuation) that receive the correct head. All
reported evaluations in this paper are calculated on
sentences of length less than 40 words.

4.5 Baseline : Comparison using minimal
tagsets

We compared all parsers on three different in-
stances, but still comparable versions, of both the
FTB and the MFT. In order to establish a base-
line, the treebanks are converted to a minimal tag
set (only the major syntactic categories.) without
any other information (no mode propagation as in
the MFT) except for the BIKEL ’s parser in Collins’
model 2 (resp. model X) and the STIG parser (i.e.

11For this evaluation, the gold constituent trees are con-
verted into pseudo-gold dependency trees (that may con-
tain errors). Then parsed constituent trees are converted
into parsed dependency trees, that are matched against the
pseudo-gold trees.

STIG-pure) whose models needs function labels to
perform.
Note that by stripping all information from the
node labels in the treebanks, we do not mean
to compare the shape of the treebanks or their
parsability but rather to present an overview of
parser performance on each treebank regardless of
tagset optimizations. However, in each experiment
we observe that the BKY parser significantly out-
performs the other parsers in all metrics.
As the STIG parser presents non statistically sig-
nificant PARSEVAL results differences between its
two modes (PURE & SPINAL) with a f-score p-
value of 0.32, for the remaining of the paper we
will only present results for the STIG’s parser in
“spinal” mode.

FTB-min MFT-min
COLLINS MX PARSEVAL 81.65 79.19

UNLAB . DEP 88.48 84.96
COLLINS M2 PARSEVAL 80.1 78.38

UNLAB . DEP 87.45 84.57
COLLINS M1 PARSEVAL 77.98 76.09

UNLAB . DEP 85.67 82.83
CHARNIAK PARSEVAL 82,44 81.34

UNLAB . DEP 88.42 84.90
CHIANG-SPINAL PARSEVAL 80.66 80.74

UNLAB . DEP 87.92 85,14
BKY PARSEVAL 84,93 83.16

UNLAB . DEP 90.06 87.29
CHIANG-PURE PARSEVAL 80.52 79.56

UNLAB . DEP 87,95 85.02

Table 3: Labeled F1 scores for unlexicalised
and lexicalised parsers on treebanks with minimal
tagsets

5 Cross parser evaluation of tagset
variation

In (Crabbé and Candito, 2008), the authors
showed that it was possible to accurately train the
Petrov’s parser (Petrov et al., 2006) on the FTB us-
ing a more fine grained tag set. This tagset, named
CC12 annotates the basic non-terminal labels with
verbal mood information, and wh-features. Re-
sults were shown to be state of the art with aF1

parseval score of 86.42% on less than 40 words
sentences.
To summarize, the authors tested the impact of
tagset variations over the FTB using constituency
measures as performance indicators.
Knowing that the MFT has been built with PCFG-
based LFG parsing performance in mind (Schluter

12TREEBANKS+ in (Crabbé and Candito, 2008).

156

and van Genabith, 2008) but suffers from a small
training size and yet allows surprisingly high pars-
ing results (PARSEVAL F-score (<=40) of 79.95
% on the MFT gold standard), one would have
wished to verify its

performance with more annotated data.
However, some semi-automatic modifications
brought to the global structure of this treebank
cannot be applied, in an automatic and reversible
way, to the FTB. Anyway, even if we cannot evalu-
ate the influence of a treebank structure to another,
we can evaluate the influence of one tagset to an-
other treebank using handwritten conversion tools.
In order to evaluate the relations between tagsets
and parsing accuracy on a given treebank, we ex-
tract the optimal tagsets13 from the FTB, the CC
tagset and we convert the MFT POS tags to this
tagset. We then do the same for the FTB on which
we apply the MFT’s optimal tagset (ie. SCHLU).
Before introducing the results of our experiments,
we briefly describe these tagsets.

1. min : Preterminals are simply the main cate-
gories, and non terminals are the plain labels

2. cc : (Crabbé and Candito, 2008) best tagset.
Preterminals are the main categories, con-
catenated with a wh- boolean for A, ADV,
PRO, and with the mood for verbs (there are 6
moods). No information is propagated to non
terminal symbols. This tagset is shown in Ta-
ble 4, and described in (Crabbé and Candito,
2008).

ADJ ADJWH ADV ADVWH CC CLO CLR

CLS CS DET DETWH ET I NC NPP P P+D

P+PRO PONCT PREF PRO PROREL PROWH

V VIMP VINF VPP VPR VS

Table 4:CC tagset

3. schlu : N. Schluter’s tagset (Table 2.
Preterminals are the main categories, plus
an inf/finite/part verbal distinction, and
int/card/rel distinction on N, PRO, ADV, A.
These distinctions propagate to non terminal
nodes projected by the lexical head. Non ter-
minals for coordinating structures are split
according to the type of the coordinated
phrases.

Results of these experiments, presented in Table
5, show that BKY displays higher performances

13W.r.t constituent parsing accuracy

in every aspects (constituency and dependency,
except for the MFT-SCHLU). Regardless of the
parser type, we note that unlabeled dependency
scores are higher with the SCHLU tagset than with
the CC tagset. That can be explained by the finest
granularity of the SCHLU based rule set compared
to the other tagset’s rules. As these rules have all
been generated from meta description (a general
COORD label rewrites into COORD_vfinite, CO-
ORD_Sint, etc..) their coverage and global accu-
racy is higher. For example the FTB-CC contains
18 head rules whereas the FTB-SCHLU contains
43 rules.
Interestingly, the ranking of lexicalized parsers
w.r.t PARSEVAL metrics shows that CHARNIAK

has the highest performance over both treebank
tagsets variation even though the MFT’s table (ta-
ble 5) exhibits a non statistically significant vari-
ation between CHARNIAK and STIG-spinal on
PARSEVAL evaluation of the MFT-CC.14

One the other hand, unlabeled dependency evalu-
ations over lexicalized parsers are different among
treebanks. In the case of the FTB, CHARNIAK

exhibits the highest F-score (FTB-CC: 89.7,
FTB-SCHLU: 89.67) whereas SPINAL STIG per-
forms slightly better on the MFT-SCHLU (MFT-
CC: 86,7, MFT-SCHLU: 87.16). Note that both
tested variations of the Collins’ model 2 display
very high unlabeled dependency scores with the
SCHLU tagset.

6 Related Works

As we said in the introduction, the initial work
on the FTB has been carried by (Dybro-Johansen,
2004) in order to extract Tree Adjunct Grammars
from the treebank. Although parsing results were
not reported, she experienced the same argument
adjunct distinction problem than (Arun and Keller,
2005) due to the treebank flatness and the lack of
functional labels in this version. This led Arun
to modify some node annotations (VNG to distin-
guish nodes dominating subcategorized subject cl-
itics and so on) and to add bigrams probabilities to
the language model in order to enhance the over-
all COLLINS’ M ODEL’ performance. Although
our treebanks cannot be compared (20.000 sen-
tences for Arun’s one vs 12351 for the FTB), we
report his best PARSEVAL results (<=40): 80.65
LP, 80.25 LR, 80.45 F1.
However, our results are directly comparable with

14Precision P-value = 0.1272 and Recall = 0.06.

157

Parser

Collins (MX)
Collins (M2)
Collins (M1)
Charniak
Chiang (Sp)
Bky

Parseval Dependency
MFTCC MFTSCH. MFTCC MFTSCH.

80.2 80.96 85.97 87.98
78.56 79.91 84.84 87.43

74 78.49 81.31 85.94
82.5 82.66 86.45 86.94
82.6 81.97 86.7 87.16
83.96 82.86 87.41 86.87

Parseval Dependency
FTBCC FTBSCH. FTBCC FTBSCH.
82.52 82.65 88.96 89.12
80.8 79.56 87.94 87.87
79.16 78.51 86.66 86.93
84.27 83.27 89.7 89.67
81.73 81.54 88.85 89.02
86.02 84.95 90.48 90.73

Table 5: Evaluation Results: MFT-CC vs MFT-SCHLU and FTB-CC vs FTB-SCHLU

(Schluter and van Genabith, 2007) whose best
PARSEVAL F-score on raw text is 79.95 and our
best 82.86 on the MFT-SCHLU.

PARSER FTBARUN MFTSCHLU

Arun (acl05) 80.45 -
Arun (this paper) 81.08 -
Schluter (pacling07) - 79.95
Collins (Mx) 81.5 80,96
Collins (M2) 79.36 79,91
Collins (M1) 77.82 -
Charniak 82.35 82,66
Chiang (Sp) 80.94 81,86
Bky 84.03 82.86

Table 6: Labeled bracket scores on Arun’s FTB

version and on the MFT

In order to favour a “fair” comparison between
our work and (Arun and Keller, 2005), we also
ran their best adaptation of the COLLINS MODEL

2 on their treebank version using our own head
rules set15 and obtained 81.08% of F1 score (Ta-
ble 6). This shows the important influence of a
fine grained head rules set and argues in favor
of data driven induction of this kind of heuris-
tics. Even though it was established, in (Chiang
and Bikel, 2002), that unsupervised induction of
head rules did not lead to improvement over an
extremely hand crafted head rules set, we believe
that for resource poor languages, such methods
could lead toward significant improvements over
parsing accuracy. Thus, the new unsupervised
head rules induction method presented in (Sangati
and Zuidema, 2009) seems very promising for this
topic.
However, it would be of interest to see how the
Arun’s model would perform using theMODEL X
parameter variations.

7 Discussion

Regarding the apparent lack of success of a gen-
uine COLLINS’ M ODEL 2 (in most cases, its per-

15Due to the lack of function annotation labels in this tree-
bank, (Arun and Keller, 2005)’s argument distinction table
was used for this experiment.

formance is worse than the other parsers w.r.t to
constituent parsing accuracy) when trained on a
treebank with annotated function labels, we sus-
pect that this is caused by the increased data
sparseness added by these annotations. The same
can be said about the pure STIG model, whose re-
sults are only presented on the FTB-MIN because
the differences between the spinal model and itself
were too small and most of the time not statisti-
cally significant. In our opinion, there might be
simply not enough data to accurately train a pure
COLLINS’ M ODEL 2 on the FTB with function
labels used for clues to discriminate between argu-
ment and adjuncts. Nevertheless, we do not share
the commonly accepted opinion about the poten-
tial lack of success of lexicalized parsers.
To the best of our knowledge, most adaptations of
a lexicalized model to a western language have
been made with Dan Bikel’s implementation of
COLLINS’ MODELS.16

In fact, the adaptations of the CHARNIAK and
BKY ’s models exhibit similar magnitudes of per-
formances for French as for English. Evidence of
lexicalization usefulness is shown through a learn-
ing curve (Figure 6) obtained by running some of
our parsers in perfect tagging mode. This experi-
ment was done in the early stages of this work, the
goal was to see how well the parsers would behave
with the same head rules and the same set of pa-
rameters. We only compared the parsers that could
be used without argument adjunct distinction table
(ie. COLLIN ’ S MODEL 1, SPINAL STIG, CHAR-
NIAK and BKY).
For this earlier experiment, our implementation

of the COLLINS MODEL 1 actually corresponds to
the MODEL X without an argument adjunct dis-
tinction table. More precisely, the absence of ar-
gument nodes, used for the acquisition of subcat-
egorization frames features, makes the MODEL X
parsing model consider all the nodes of a rule, ex-

16Note that the CHARNIAK ’s parser has been adapted for
Danish (Zeman and Resnik, 2008) ; the authors report a 80.20
F1 score for a specific instance of the Danish Treebank.

158

2000 4000 6000 8000 10000

76
78

80
82

84
86

88

Number of training sentences

La
be

le
d

br
ac

ke
ts

 F
−

sc
or

e
(<

=
40

)

Berkeley
Charniak
SpinalTig
Model 1 (emulated)

Figure 6: Learning Curve experiment results for
parsers in perfect tagging mode

cept the head, as Modifier Non Terminal nodes
(MNTs). Hence, because of the impossibility to
extract subcategorization frames, the generation
of a MNT depends mainly on the parent head
word and on the whole list of previously gener-
ated MNTs. One can suppose that training on
small treebanks would lead this distribution to be
sparse, therefore most of the discriminant infor-
mation would come from less specific distribu-
tions. Namely the ones conditioned on the head
pos tag and on the last previously generated MNT
as shown in this model back-off structure (Table
7).

Back-off level p(M(t)i| · · ·)
0 P, H, wh, th, 〈Mi−1, ..., Mi−k〉
1 P, H, th, Mi−1

2 P, H, f

Table 7: MODEL X simplified parameter class for
MNTs
M(t)i is the POS tag of theith MNT, P the parent node

label,H the head node label,wh the head word,th its POS

tag,〈Mi−1, ..., Mi−k〉 the list of previously generated MNTs

andf a flag stating if the current node is the first MNT to be

generated.

Interestingly, in the SPINAL STIG model,
almost all the extracted trees are spinal and conse-
quently are handled by an operation calledSister
Adjunctionwhose probability model for a given
root node of an elementary tree, also conditions

its generation upon the label of the previously
generated tree (Chiang, 2003). Furthermore,
the second component of theSister Adjunction’s
back-off structure (Table 8) is made coarser by the
removing of the lexical anchor of the tree where a
sister-adjunction is to occur.
Studying in depth the respective impact of these
features on the performance of both models is
outside the scope of this paper, nevertheless we
note that their back-off structures are based on
similar principles: a deletion of the main lexical
information and a context limited to the root label
of the previously generated tree (resp. MNT node
label for theMODEL X). This can explain why
these formally different parsers display almost the
same learning curves (Fig. 6) and more over why
they surprisingly exhibit few sensitivity to the
amount of lexical material used for training.

Back-off level Psa(γ| · · ·)
0 τη, ωη, ηη, i, X
1 τη, ηη, i, X
2 τη, ηη, i

Table 8: SPINAL STIG parameter class for Sister-
adjoining tree templates (Chiang, 2003)
γ is the tree to be generated on the sister adjunction site

(ηη, i) of the tree templateτη, ωη is the lexical anchor ofτη,

τη is τη stripped from its anchor POS tag andX is the root

label of the previous tree to sister-adjoin at the site(ηη, i).

However, the learning curve also shows that the
CHARNIAK ’s17 and BKY ’s parsers have almost
parallel curves whereas this specific COLLIN ’ S

MODEL 1 parser and the SPINAL STIG model have
very similar shape and seem to reach an upper
limit very quickly.18 The last two parsers having
also very similar back-off models (Chiang, 2003),
we wonder (1) if we are not actually comparing
them because of data sparseness issues and (2) if
the small size of commonly used treebanks does
not lead the community to consider lexicalized
models, via the lone COLLINS’ MODELS, as inap-
propriate to parse other languages thanWall Street
JournalEnglish.

17As opposed to the other parsers, the Charniak’s parser
tagging accuracy did not reach the 100% limit, 98.32% for the
last split. So the comparison is not really fair but we believe
that the visible tendency still stands.

18We are of course aware that the curve’s values are also
function of the amount of new productions brought by the
increased treebank size. That should be of course taken into
account.

159

Regarding the remarkable performance of the
BKY algorithm, it remains unclear why exactly
it systematically outperforms the other lexicalized
algorithms. We can only make a few remarks
about that. First, the algorithm is totally dis-
joint from the linguistic knowledge, that is entirely
taken from the treebank, except for the suffixes
used for handling unknown words. This is not true
of the Collins’ or Charniak’s models, that were
set up with the PTB annotation scheme in mind.
Another point concerns the amount of data nec-
essary for an accurate learning. We had the intu-
ition that lexicalized algorithms would have ben-
efited more than BKY from the training data size
increase. Yet the BKY ’s learning curve displays a
somewhat faster progression than lexicalized algo-
rithms such as the SPINAL STIG and our specific
instance of the COLLINS’ MODEL 1.
In our future work, we plan to conduct
self-training experiments using discriminative
rerankers on very large French corpora to study
the exact impact of the lexicon on this unlexical-
ized algorithm.

8 Conclusion

By adapting those parsers to French and carry-
ing out extensive evaluation over the main char-
acteristics of the treebank at our disposal, we
prove indeed that probabilistic parsing was effi-
cient enough to provide accurate parsing results
for French. We showed that the BKY model estab-
lishes a high performance level on parsing results.
Maybe more importantly we emphasized the im-
portance of tag set model to get distinct state of
the art evaluation metrics for FTB parsing, namely
the SCHLU tagset to get more accurate unlabeled
dependencies and theCC tagset to get better con-
stituency parses. Finally, we showed that the lexi-
calization debate could benefit from the inclusion
of more lexicalized parsing models.

9 Acknowledgments

This work was supported by the ANR Sequoia
(ANR-08-EMER-013). We heartily thank A.
Arun, J. van Genabith an N. Schluter for kindly
letting us use our parsers on their treebanks.
Thanks to the anonymous reviewers for their com-
ments. All remaining errors are ours. We thank J.
Wagner for his help and we would like to acknowl-
edge the Centre for Next Generation Localization
(www.cngl.ie) for providing access to one of its

high-memory nodes.

References

Anne Abeillé and Nicolas Barrier. 2004. Enrich-
ing a french treebank. InProceedings of Language
Ressources and Evaluation Conference (LREC), Lis-
bon.

Anne Abeillé, Lionel Clément, and François Toussenel,
2003. Building a Treebank for French. Kluwer,
Dordrecht.

Abhishek Arun and Frank Keller. 2005. Lexicalization
in crosslinguistic probabilistic parsing: The case of
french. InProceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 306–313, Ann Arbor, MI.

Daniel M. Bikel. 2002. Design of a multi-lingual,
parallel-processing statistical parsing engine. In
Proceedings of the second international conference
on Human Language Technology Research, pages
178–182. Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA.

Daniel M. Bikel. 2004. Intricacies of Collins’ Parsing
Model. Computational Linguistics, 30(4):479–511.

E. Black, S. Abney, D. Flickinger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A proce-
dure for quantitatively comparing the syntactic cov-
erage of english grammars. InProceedings of the
DARPA Speech and Natural Language Workshop,
pages 306–311, San Mateo (CA). Morgan Kaufman.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef
van Genabith, and Andy Way. 2004. Long-Distance
Dependency Resolution in Automatically Acquired
Wide-Coverage PCFG-Based LFG Approximations.
In Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics, pages
320–327, Barcelona, Spain.

Xavier Carreras, Mickael Collins, and Terry Koo.
2008. TAG, dynamic programming, and the percep-
tron for efficient, feature-rich parsing. InProceed-
ings of the Twelfth Conference on Computational
Natural Language Learning (CoNLL), pages 9–16.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. InProceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2005), Ann Arbor (MI).

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. InProceedings of the 1st Annual
Meeting of the North American Chapter of the ACL
(NAACL), Seattle.

160

David Chiang and Daniel M. Bikel. 2002. Recover-
ing latent information in treebanks. InProceedings
of COLING’02, 19th International Conference on
Computational Linguistics, Taipei, Taiwan, August.

David Chiang, 2003.Statistical Parsing with an Auto-
matically Extracted Tree Adjoining Grammar, chap-
ter 16, pages 299–316. CSLI Publications.

Michael Collins. 1999.Head Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

Benoit Crabbé and Marie Candito. 2008. Expériences
d’analyse syntaxique statistique du français. In
Actes de la 15ème Conférence sur le Traitement Au-
tomatique des Langues Naturelles (TALN’08), pages
45–54, Avignon, France.

Mary Dalrymple. 2001.Lexical-Functional Grammar,
volume 34 ofSyntax and Semantics. San Diego,
CA; London. Academic Press.

Amit Dubey and Frank Keller. 2003. Probabilis-
tic parsing for german using sister-head dependen-
cies. In In Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 96–103.

Ane Dybro-Johansen. 2004. Extraction automatique
de grammaires à partir d’un corpus français. Mas-
ter’s thesis, Université Paris 7.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations.Computational Linguistics,
24(4):613–632.

Aravind K. Joshi. 1987. Introduction to tree adjoining
grammar. In A. Manaster-Ramer, editor,The Math-
ematics of Language. J. Benjamins.

R. Kaplan and J. Bresnan. 1982. Lexical-functional
grammar: A formal system for grammarical repre-
sentation. In J. Bresnan, editor,The Mental Repre-
sentation of Grammatical Relations, pages 173–281.
Mass.: MIT Press.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. InProceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430. Asso-
ciation for Computational Linguistics Morristown,
NJ, USA.

Sandra Kübler, Erhard W. Hinrichs, and Wolfgang
Maier. 2006. Is it really that difficult to parse ger-
man? InProceedings of the 2006 Conference on
Empirical Methods in Natural Language Process-
ing, pages 111–119, Sydney, Australia, July. Asso-
ciation for Computational Linguistics.

Dekang Lin. 1995. A dependency-based method for
evaluating broad-coverage parsers. InInternational
Joint Conference on Artificial Intelligence, pages
1420–1425, Montreal.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated
corpus of english: The penn treebank.Computa-
tional Linguistics, 19(2):313–330.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference, pages
152–159, New York City, USA, June. Association
for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. InProceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associ-
ation for Computational Linguistics, Sydney, Aus-
tralia, July. Association for Computational Linguis-
tics.

Ines Rehbein and Josef van Genabith. 2007. Tree-
bank annotation schemes and parser evaluation for
german. InProceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), Prague.

Philip Resnik. 1992. Probabilistic tree-adjoining
grammars as a framework for statistic natural lan-
guage processing.COLING’92, Nantes, France.

F. Sangati and W. Zuidema. 2009. Unsupervised
methods for head assignments. InProceedings of
the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 701–709, Athens, Greece.
Association for Computational Linguistics.

Y. Schabes and R.C. Waters. 1995. Tree Insertion
Grammar: Cubic-Time, Parsable Formalism that
Lexicalizes Context-Free Grammar without Chang-
ing the Trees Produced.Computational Linguistics,
21(4):479–513.

Yves Schabes. 1992. Stochastic Lexicalized Tree Ad-
joining Grammars. InProceedings of the 14th con-
ference on Computational linguistics, pages 425–
432, Nantes, France. Association for Computational
Linguistics.

Natalie Schluter and Josef van Genabith. 2007.
Preparing, restructuring, and augmenting a french
treebank: Lexicalised parsers or coherent treebanks?
In Proceedings of PACLING 07.

Natalie Schluter and Josef van Genabith. 2008.
Treebank-based acquisition of lfg parsing resources
for french. In European Language Resources As-
sociation (ELRA), editor,Proceedings of the Sixth
International Language Resources and Evaluation
(LREC’08), Marrakech, Morocco, may.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. InProceedings of IJCNLP 2008 Work-
shop on NLP for Less Privileged Languages, Haj-
darábádu, India.

161

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 162–171,
Paris, October 2009. c©2009 Association for Computational Linguistics

Transition-Based Parsing of the Chinese Treebank using a Global
Discriminative Model

Yue Zhang
Oxford University

Computing Laboratory
yue.zhang@comlab.ox.ac.uk

Stephen Clark
Cambridge University
Computer Laboratory

stephen.clark@cl.cam.ac.uk

Abstract

Transition-based approaches have shown
competitive performance on constituent
and dependency parsing of Chinese. State-
of-the-art accuracies have been achieved
by a deterministic shift-reduce parsing
model on parsing the Chinese Treebank 2
data (Wang et al., 2006). In this paper,
we propose a global discriminative model
based on the shift-reduce parsing process,
combined with a beam-search decoder, ob-
taining competitive accuracies onCTB2.
We also report the performance of the
parser onCTB5 data, obtaining the highest
scores in the literature for a dependency-
based evaluation.

1 Introduction

Transition-based statistical parsing associates
scores with each decision in the parsing process,
selecting the parse which is built by the highest
scoring sequence of decisions (Briscoe and Car-
roll, 1993; Nivre et al., 2006). The parsing algo-
rithm is typically some form of bottom-up shift-
reduce algorithm, so that scores are associated
with actions such asshift and reduce. One ad-
vantage of this approach is that the parsing can be
highly efficient, for example by pursuing a greedy
strategy in which a single action is chosen at each
decision point.

The alternative approach, exemplified by
Collins (1997) and Charniak (2000), is to use
a chart-based algorithm to build the space of
possible parses, together with pruning of low-
probability constituents and the Viterbi algorithm
to find the highest scoring parse. For English de-
pendency parsing, the two approaches give similar

results (McDonald et al., 2005; Nivre et al., 2006).
For English constituent-based parsing using the
Penn Treebank, the best performing transition-
based parser lags behind the current state-of-the-
art (Sagae and Lavie, 2005). In contrast, for Chi-
nese, the best dependency parsers are currently
transition-based (Duan et al., 2007; Zhang and
Clark, 2008). For constituent-based parsing using
the Chinese Treebank (CTB), Wang et al. (2006)
have shown that a shift-reduce parser can give
competitive accuracy scores together with high
speeds, by using anSVM to make a single decision
at each point in the parsing process.

In this paper we describe a global discrimina-
tive model for Chinese shift-reduce parsing, and
compare it with Wang et al.’s approach. We ap-
ply the same shift-reduce procedure as Wang et
al. (2006), but instead of using a local classifier
for each transition-based action, we train a gener-
alized perceptron model over complete sequences
of actions, so that the parameters are learned in
the context of complete parses. We apply beam
search to decoding instead of greedy search. The
parser still operates in linear time, but the use of
beam-search allows the correction of local deci-
sion errors by global comparison. UsingCTB2,
our model achieved Parseval F-scores comparable
to Wang et al.’s approach. We also present accu-
racy scores for the much largerCTB5, using both
a constituent-based and dependency-based evalu-
ation. The scores for the dependency-based eval-
uation were higher than the state-of-the-art depen-
dency parsers for theCTB5 data.

2 The Shift-Reduce Parsing Process

The shift-reduce process used by our beam-search
decoder is based on the greedy shift-reduce parsers
of Sagae and Lavie (2005) and Wang et al. (2006).

162

The process assumes binary-branching trees; sec-
tion 2.1 explains how these are obtained from the
arbitrary-branching trees in the Chinese Treebank.

The input is assumed to be segmented andPOS

tagged, and the word-POSpairs waiting to be pro-
cessed are stored in a queue. A stack holds the
partial parse trees that are built during the parsing
process. A parsestate is defined as a〈stack,queue〉
pair. Parser actions, includingSHIFT and various
kinds of REDUCE, define functions from states to
states by shifting word-POS pairs onto the stack
and building partial parse trees.

The actions used by the parser are:

• SHIFT, which pushes the next word-POSpair
in the queue onto the stack;

• REDUCE–unary–X, which makes a new
unary-branching node with label X; the stack
is popped and the popped node becomes the
child of the new node; the new node is pushed
onto the stack;

• REDUCE–binary–{L/R}–X, which makes a
new binary-branching node with label X; the
stack is popped twice, with the first popped
node becoming the right child of the new
node and the second popped node becoming
the left child; the new node is pushed onto the
stack;

• TERMINATE, which pops the root node off
the stack and ends parsing. This action
is novel in our parser. Sagae and Lavie
(2005) and Wang et al. (2006) only used the
first three transition actions, setting the fi-
nal state as all incoming words having been
processed, and the stack containing only one
node. However, there are a small number of
sentences (14 out of 3475 from the training
data) that have unary-branching roots. For
these sentences, Wang’s parser will be unable
to produce the unary-branching roots because
the parsing process terminates as soon as the
root is found. We define a separate action to
terminate parsing, allowing unary reduces to
be applied to the root item before parsing fin-
ishes.

The trees built by the parser are lexicalized, us-
ing the head-finding rules from Zhang and Clark
(2008). The left (L) and right (R) versions of the
REDUCE-binary rules indicate whether the head of

for nodeY = X1..Xm ∈ T :
if m > 2 :

find the head nodeXk(1 ≤ k ≤ m) of Y
m′ = m
while m′ > k andm′ > 2 :

new nodeY ∗ = X1..Xm′−1

Y ← Y ∗Xm′

m′ = m′ − 1
n′ = 1
while n′ < k andk − n′ > 1 :

new nodeY ∗ = Xn′ ..Xk

Y ← Xn′Y ∗

n′ = n′ + 1

Figure 2: the binarization algorithm with inputT

the new node is to be taken from the left or right
child. Note also that, since the parser is building
binary trees, the X label in theREDUCE rules can
be one of the temporary constituent labels, such
as NP∗, which are needed for the binarization pro-
cess described in Section 2.1. Hence the number
of left and right binary reduce rules is the number
of constituent labels in the binarized grammar.

Wang et al. (2006) give a detailed example
showing how a segmented andPOS-tagged sen-
tence can be incrementally processed using the
shift-reduce actions to produce a binary tree. We
show this example in Figure 1.

2.1 The binarization process

The algorithm in Figure 2 is used to mapCTB

trees into binarized trees, which are required by
the shift-reduce parsing process. For any tree node
with more than two child nodes, the algorithm
works by first finding the head node, and then pro-
cessing its right-hand-side and left-hand-side, re-
spectively. The head-finding rules are taken from
Zhang and Clark (2008).Y = X1..Xm represents
a tree nodeY with child nodesX1...Xm(m ≥ 1).

The label of the newly generated nodeY ∗ is
based on the constituent label of the original node
Y , but marked with an asterix. Hence binariza-
tion enlarges the set of constituent labels. We
call the constituents marked with∗ temporary con-
stituents. The binarization process is reversible, in
that output from the shift-reduce parser can be un-
binarized intoCTB format, which is required for
evaluation.

163

Figure 1: An example shift-reduce parsing process, adopted from Wang et al. (2006)

2.2 Restrictions on the sequence of actions

Not all sequences of actions produce valid bina-
rized trees. In the deterministic parser of Wang et
al. (2006), the highest scoring action predicted by
the classifier may prevent a valid binary tree from
being built. In this case, Wang et al. simply return

a partial parse consisting of all the subtrees on the
stack.

In our parser a set of restrictions is applied
which guarantees a valid parse tree. For example,
two simple restrictions are that aSHIFT action can
only be applied if the queue of incoming words

164

Variables: state itemitem = (S, Q), where
S is stack andQ is incoming queue;
the agendaagenda;
list of state itemsnext;

Algorithm :
for item ∈ agenda:

if item.score= agenda.bestScore and
item.isFinished:
rval = item
break

next = []
for move ∈ item.legalMoves:

next.push(item.TakeAction(move))
agenda = next.getBBest()

Outputs: rval

Figure 3: the beam-search decoding algorithm

is non-empty, and the binary reduce actions can
only be performed if the stack contains at least two
nodes. Some of the restrictions are more complex
than this; the full set is listed in the Appendix.

3 Decoding with Beam Search

Our decoder is based on the incremental shift-
reduce parsing process described in Section 2. We
apply beam-search, keeping theB highest scoring
state items in an agenda during the parsing pro-
cess. The agenda is initialized with a state item
containing the starting state, i.e. an empty stack
and a queue consisting of all word-POSpairs from
the sentence.

At each stage in the decoding process, existing
items from the agenda are progressed by applying
legal parsing actions. From all newly generated
state items, theB highest scoring are put back on
the agenda. The decoding process is terminated
when the highest scored state item in the agenda
reaches the final state. If multiple state items have
the same highest score, parsing terminates if any
of them are finished. The algorithm is shown in
Figure 3.

4 Model and Learning Algorithm

We use a linear model to score state items. Recall
that a parser state is a〈stack,queue〉 pair, with the
stack holding subtrees and the queue holding in-
coming words waiting to be processed. The score

Inputs: training examples(xi, yi)
Initialization : set ~w = 0
Algorithm :

for t = 1..T , i = 1..N :
zi = parse(xi, ~w)
if zi 6= yi:

~w = ~w + Φ(yi)− Φ(zi)
Outputs: ~w

Figure 4: the perceptron learning algorithm

for state itemY is defined by:

Score(Y) = ~w · Φ(Y) =
∑

i

λi fi(Y)

whereΦ(Y) is the global feature vector fromY ,
and ~w is the weight vector defined by the model.
Each element fromΦ(Y) represents the global
count of a particular feature fromY . The feature
set consists of a large number of features which
pick out various configurations from the stack and
queue, based on the words and subtrees in the state
item. The features are described in Section 4.1.
The weight values are set using the generalized
perceptron algorithm (Collins, 2002).

The perceptron algorithm is shown in Figure 4.
It initializes weight values as all zeros, and uses
the current model to decode training examples (the
parse function in the pseudo-code). If the output
is correct, it passes on to the next example. If
the output is incorrect, it adjusts the weight val-
ues by adding the feature vector from the gold-
standard output and subtracting the feature vector
from the parser output. Weight values are updated
for each example (making the processonline) and
the training data is iterated overT times. In or-
der to avoid overfitting we used the now-standard
averaged version of this algorithm (Collins, 2002).

We also apply theearly update modification
from Collins and Roark (2004). If the agenda, at
any point during the decoding process, does not
contain the correct partial parse, it is not possible
for the decoder to produce the correct output. In
this case, decoding is stopped early and the weight
values are updated using the highest scoring par-
tial parse on the agenda.

4.1 Feature set

Table 1 shows the set of feature templates for the
model. Individual features are generated from

165

Description Feature templates
Unigrams S0tc, S0wc, S1tc, S1wc,

S2tc, S2wc, S3tc, S3wc,

N0wt, N1wt, N2wt, N3wt,

S0lwc, S0rwc, S0uwc,

S1lwc, S1rwc, S1uwc,

Bigrams S0wS1w, S0wS1c, S0cS1w, S0cS1c,

S0wN0w, S0wN0t, S0cN0w, S0cN0t,

N0wN1w, N0wN1t, N0tN1w, N0tN1t

S1wN0w, S1wN0t, S1cN0w, S1cN0t,

Trigrams S0cS1cS2c, S0wS1cS2c,

S0cS1wS2c, S0cS1cS2w,

S0cS1cN0t, S0wS1cN0t,

S0cS1wN0t, S0cS1cN0w

Bracket S0wb, S0cb

S0wS1cb, S0cS1wb, S0cS1cb

S0wN0tb, S0cN0wb, S0cN0tb

Separator S0wp, S0wcp, S0wq, S0wcq,

S1wp, S1wcp, S1wq, S1wcq

S0cS1cp, S0cS1cq

Table 1: Feature templates

these templates by first instantiating a template
with particular labels, words and tags, and then
pairing the instantiated template with a particu-
lar action. In the table, the symbolsS0, S1, S2,
andS3 represent the top four nodes on the stack,
and the symbolsN0, N1, N2 andN3 represent the
first four words in the incoming queue.S0L, S0R
andS0U represent the left and right child for bi-
nary branchingS0, and the single child for unary
branchingS0, respectively;w represents the lex-
ical head token for a node;c represents the label
for a node. When the corresponding node is a ter-
minal, c represents itsPOS-tag, whereas when the
corresponding node is non-terminal,c represents
its constituent label;t represents thePOS-tag for a
word.

The contextS0, S1, S2, S3 andN0, N1, N2, N3

for the feature templates is taken from Wang et al.
(2006). However, Wang et al. (2006) used a poly-
nomial kernel function with anSVM and did not
manually create feature combinations. Since we
used the linear perceptron algorithm we manually
combined Unigram features into Bigram and Tri-
gram features.

The “Bracket” row shows bracket-related fea-
tures, which were inspired by Wang et al. (2006).
Here brackets refer to left brackets including “（”,

““” and “《” and right brackets including “）”,
“”” and “》”. In the table, b represents the
matching status of the last left bracket (if any)
on the stack. It takes three different values:
1 (no matching right bracket has been pushed
onto stack), 2 (a matching right bracket has been
pushed onto stack) and 3 (a matching right bracket
has been pushed onto stack, but then popped off).

The “Separator” row shows features that in-
clude one of the separator punctuations (i.e. “，”,
“。”, “、” and “；”) between the head words of
S0 and S1. These templates apply only when
the stack contains at least two nodes;p repre-
sents a separator punctuation symbol. Each unique
separator punctuation betweenS0 andS1 is only
counted once when generating the global feature
vector. q represents the count of any separator
punctuation betweenS0 andS1.

Whenever an action is being considered at each
point in the beam-search process, templates from
Table 1 are matched with the context defined by
the parser state and combined with the action to
generate features. Negative features, which are the
features from incorrect parser outputs but not from
any training example, are included in the model.
There are around a million features in our experi-
ments with theCTB2 dataset.

Wang et al. (2006) used a range of other fea-
tures, including rhythmic features ofS0 and S1

(Sun and Jurafsky, 2003), features from the most
recently found node that is to the left or right ofS0

andS1, the number of words and the number of
punctuations inS0 andS1, the distance between
S0 andS1 and so on. We did not include these
features in our parser, because they did not lead to
improved performance during development exper-
iments.

5 Experiments

The experiments were performed using the Chi-
nese Treebank 2 and Chinese Treebank 5 data.
Standard data preparation was performed before
the experiments: empty terminal nodes were re-
moved; any non-terminal nodes with no children
were removed; any unaryX → X nodes resulting
from the previous steps were collapsed into oneX
node.

For all experiments, we used theEVALB tool1

for evaluation, and used labeled recall (LR), la-
beled precision (LP) andF1 score (which is the

1http://nlp.cs.nyu.edu/evalb/

166

Figure 5: The influence of beam-size

Sections Sentences Words
Training 001–270 3475 85,058
Development 301–325 355 6,821
Test 271–300 348 8,008

Table 2: The standard split ofCTB2 data

harmonic mean ofLR andLP) to measure pars-
ing accuracy.

5.1 The influence of beam-size

Figure 5 shows the accuracy curves using differ-
ent beam-sizes for the decoder. The number of
training iterations is on thex-axis with F -score
on the y-axis. The tests were performed using
the development test data and gold-standardPOS-
tags. The figure shows the benefit of using a beam
size greater than 1, with comparatively little accu-
racy gain being obtained beyond a beam size of8.
Hence we set the beam size to16 for the rest of the
experiments.

5.2 Test results onCTB2

The experiments in this section were performed
using CTB2 to allow comparison with previous
work, with theCTB2 data extracted from Chinese
Treebank 5 (CTB5). The data was split into train-
ing, development test and test sets, as shown in Ta-
ble 2, which is consistent with Wang et al. (2006)
and earlier work. The tests were performed us-
ing both gold-standardPOS-tags andPOS-tags au-
tomatically assigned by aPOS-tagger. We used our

Model LR LP F1
Bikel Thesis 80.9% 84.5% 82.7%

Wang 2006 SVM 87.2% 88.3% 87.8%

Wang 2006 Stacked 88.3% 88.1% 88.2%

Our parser 89.4% 90.1% 89.8%

Table 3: Accuracies onCTB2 with gold-standard
POS-tags

own implementation of the perceptron-based tag-
ger from Collins (2002).

The results of various models measured using
sentences with less than40 words and using gold-
standardPOS-tags are shown in Table 3. The
rows represent the model from Bikel and Chiang
(2000), Bikel (2004), theSVM and ensemble mod-
els from Wang et al. (2006), and our parser, re-
spectively. The accuracy of our parser is competi-
tive using this test set.

The results of various models using automati-
cally assignedPOS-tags are shown in Table 4. The
rows in the table represent the models from Bikel
and Chiang (2000), Levy and Manning (2003),
Xiong et al. (2005), Bikel (2004), Chiang and
Bikel (2002), theSVM model from Wang et al.
(2006) and the ensemble system from Wang et
al. (2006), and the parser of this paper, respec-
tively. Our parser gave comparable accuracies to
the SVM and ensemble models from Wang et al.
(2006). However, comparison with Table 3 shows
that our parser is more sensitive toPOS-tagging er-
rors than some of the other models. One possible
reason is that some of the other parsers, e.g. Bikel
(2004), use the parser model itself to resolve tag-
ging ambiguities, whereas we rely on aPOS tag-
ger to accurately assign a single tag to each word.
In fact, for the Chinese data,POS tagging accu-
racy is not very high, with the perceptron-based
tagger achieving an accuracy of only93%. The
beam-search decoding framework we use could
accommodate joint parsing and tagging, although
the use of features based on the tags of incom-
ing words complicates matters somewhat, since
these features rely on tags having been assigned to
all words in a pre-processing step. We leave this
problem for future work.

In a recent paper, Petrov and Klein (2007) re-
portedLR andLP of 85.7% and86.9% for sen-
tences with less than 40 words and81.9% and
84.8% for all sentences on theCTB2 test set, re-

167

≤ 40 words ≤ 100 words Unlimited
LR LP F1 POS LR LP F1 POS LR LP F1 POS

Bikel 2000 76.8% 77.8% 77.3% - 73.3% 74.6% 74.0% - - - - -
Levy 2003 79.2% 78.4% 78.8% - - - - - - - - -
Xiong 2005 78.7% 80.1% 79.4% - - - - - - - - -
Bikel Thesis 78.0% 81.2% 79.6% - 74.4% 78.5% 76.4% - - - - -
Chiang 2002 78.8% 81.1% 79.9% - 75.2% 78.0% 76.6% - - - - -
Wang 2006 SVM 78.1% 81.1% 79.6% 92.5% 75.5% 78.5% 77.0% 92.2% 75.0% 78.0% 76.5% 92.1%
Wang 2006 Stacked79.2% 81.1% 80.1% 92.5% 76.7% 78.4% 77.5% 92.2% 76.2% 78.0% 77.1% 92.1%
Our parser 80.2% 80.5% 80.4% 93.5% 76.5% 77.7% 77.1% 93.1% 76.1% 77.4% 76.7% 93.0%

Table 4: Accuracies onCTB2 with automatically assigned tags

≤ 40 words Unlimited
LR LP F1 POS LR LP F1 POS
87.9% 87.5% 87.7% 100% 86.9% 86.7% 86.8% 100%
80.2% 79.1% 79.6% 94.1% 78.6% 78.0% 78.3% 93.9%

Table 5: Accuracies onCTB5 using gold-standard and automatically assignedPOS-tags

Sections Sentences Words
Set A 001–270 3,484 84,873
Set B Set A; 400–699 6,567 161,893
Set C Set B; 700–931 9,707 236,051

Table 6: Training sets with different sizes

spectively. These results are significantly better
than any model from Table 4. However, we did
not include their scores in the table because they
used a different training set fromCTB5, which is
much larger than theCTB2 training set used by all
parsers in the table. In order to make a compari-
son, we split the data in the same way as Petrov
and Klein (2007) and tested our parser using auto-
matically assignedPOS-tags. It gaveLR andLP
of 82.0% and80.9% for sentences with less than
40 words and77.8% and77.4% for all sentences,
significantly lower than Petrov and Klein (2007),
which we partly attribute to the sensitivity of our
parser to pos tag errors (see Table 5).

5.3 The effect of training data size

CTB2 is a relatively small corpus, and so we in-
vestigated the effect of adding more training data
from CTB5. Intuitively, more training data leads
to higher parsing accuracy. By using increased
amount of training sentences (Table 6) fromCTB5
with the same development test data (Table 2),
we draw the accuracy curves with different num-
ber of training iterations (Figure 6). This exper-
iment confirmed that the accuracy increases with
the amount of training data.

Figure 6: The influence of the size of training data

Another motivation for us to use more training
data is to reduce overfitting. We invested consid-
erable effort into feature engineering usingCTB2,
and found that a small variation of feature tem-
plates (e.g. changing the feature templateS0cS1c
from Table 1 toS0tcS1tc) can lead to a compar-
atively large change (up to1%) in the accuracy.
One possible reason for this variation is the small
size of theCTB2 training data. When performing
experiments using the larger set B from Table 6,
we observed improved stability relative to small
feature changes.

168

Sections Sentences Words

Training
001–815;

16,118 437,859
1001–1136

Dev
886–931;

804 20,453
1148–1151

Test
816–885;

1,915 50,319
1137–1147

Table 7: Standard split ofCTB5 data

Non-root Root Complete
Zhang 2008 86.21% 76.26% 34.41%
Our parser 86.95% 79.19% 36.08%

Table 8: Comparison with state-of-the-art depen-
dency parsing usingCTB5 data

5.4 Test accuracy usingCTB5

Table 5 presents the performance of the parser on
CTB5. We adopt the data split from Zhang and
Clark (2008), as shown in Table 7. We used the
same parser configurations as Section 5.2.

As an additional evaluation we also produced
dependency output from the phrase-structure
trees, using the head-finding rules, so that we
can also compare with dependency parsers, for
which the highest scores in the literature are cur-
rently from our previous work in Zhang and Clark
(2008). We compare the dependencies read off our
constituent parser usingCTB5 data with the depen-
dency parser from Zhang and Clark (2008). The
same measures are taken and the accuracies with
gold-standardPOS-tags are shown in Table 8. Our
constituent parser gave higher accuracy than the
dependency parser. It is interesting that, though
the constituent parser uses many fewer feature
templates than the dependency parser, the features
do include constituent information, which is un-
available to dependency parsers.

6 Related work

Our parser is based on the shift-reduce parsing
process from Sagae and Lavie (2005) and Wang
et al. (2006), and therefore it can be classified
as a transition-based parser (Nivre et al., 2006).
An important difference between our parser and
the Wang et al. (2006) parser is that our parser
is based on a discriminative learning model with
global features, whilst the parser from Wang et al.
(2006) is based on a local classifier that optimizes

each individual choice. Instead of greedy local de-
coding, we used beam search in the decoder.

An early work that applies beam search to con-
stituent parsing is Ratnaparkhi (1999). The main
difference between our parser and Ratnaparkhi’s is
that we use a global discriminative model, whereas
Ratnaparkhi’s parser has separate probabilities of
actions chained together in a conditional model.

Both our parser and the parser from Collins and
Roark (2004) use a global discriminative model
and an incremental parsing process. The major
difference is the use of different incremental pars-
ing processes. To achieve better performance for
Chinese parsing, our parser is based on the shift-
reduce parsing process. In addition, we did not in-
clude a generative baseline model in the discrimi-
native model, as did Collins and Roark (2004).

Our parser in this paper shares similarity
with our transition-based dependency parser from
Zhang and Clark (2008) in the use of a discrimina-
tive model and beam search. The main difference
is that our parser in this paper is for constituent
parsing. In fact, our parser is one of only a few
constituent parsers which have successfully ap-
plied global discriminative models, certainly with-
out a generative baseline as a feature, whereas
global models for dependency parsing have been
comparatively easier to develop.

7 Conclusion

The contributions of this paper can be summarized
as follows. First, we defined a global discrimina-
tive model for Chinese constituent-based parsing,
continuing recent work in this area which has fo-
cused on English (Clark and Curran, 2007; Car-
reras et al., 2008; Finkel et al., 2008). Second, we
showed how such a model can be applied to shift-
reduce parsing and combined with beam search,
resulting in an accurate linear-time parser. In stan-
dard tests usingCTB2 data, our parser achieved
comparable Parseval F-score to the state-of-the-
art systems. Moreover, we observed that more
training data lead to improvements on both accu-
racy and stability against feature variations, and
reported performance of the parser usingCTB5
data. By converting constituent-based output to
dependency relations using standard head-finding
rules, our parser also obtained the highest scores
for aCTB5 dependency evaluation in the literature.

Due to the comparatively low accuracy for Chi-
nesePOS-tagging, the parsing accuracy dropped

169

significantly when using automatically assigned
POS-tags rather than gold-standardPOS-tags. In
our further work, we plan to investigate possible
methods of jointPOS-tagging and parsing under
the discriminative model and beam-search frame-
work.

A discriminative model allows consistent train-
ing of a wide range of different features. We
showed in Zhang and Clark (2008) that it was pos-
sible to combine graph and transition-based de-
pendency parser into the same global discrimina-
tive model. Our parser framework in this paper
allows the same integration of graph-based fea-
tures. However, preliminary experiments with fea-
tures based on graph information did not show
accuracy improvements for our parser. One pos-
sible reason is that the transition actions for the
parser in this paper already include graph infor-
mation, such as the label of the newly gener-
ated constituent, while for the dependency parser
in Zhang and Clark (2008), transition actions do
not contain graph information, and therefore the
use of transition-based features helped to make
larger improvements in accuracy. The integration
of graph-based features for our shift-reduce con-
stituent parser is worth further study.

The source code of our parser is publicly avail-
able at http://www.sourceforge.net/projects/zpar.2

Appendix

The set of restrictions which ensures a valid binary
tree is shown below. The restriction on the num-
ber of consecutive unary rule applications is taken
from Sagae and Lavie (2005); it prevents infinite
running of the parser by repetitive use of unary re-
duce actions, and ensures linear time complexity
in the length of the sentence.

• the shift action can only be performed when
the queue of incoming words is not empty;
• when the node on top of the stack is tempo-

rary and its head word is from the right child,
no shift action can be performed;
• the unary reduce actions can be performed

only when the stack is not empty;
• a unary reduce with the same constituent la-

bel (Y → Y) is not allowed;
• no more than three unary reduce actions can

be performed consecutively;

2The make target for the parser in this paper is chi-
nese.conparser.

• the binary reduce actions can only be per-
formed when the stack contains at least two
nodes, with at least one of the two nodes on
top of stack (withR being the topmost andL
being the second) being non-temporary;
• if L is temporary with labelX∗, the result-

ing node must be labeledX or X∗ and left-
headed (i.e. to take the head word fromL);
similar restrictions apply whenR is tempo-
rary;
• when the incoming queue is empty and the

stack contains only two nodes, binary reduce
can be applied only if the resulting node is
non-temporary;
• when the stack contains only two nodes, tem-

porary resulting nodes from binary reduce
must be left-headed;
• when the queue is empty and the stack con-

tains more than two nodes, with the third
node from the top being temporary, binary re-
duce can be applied only if the resulting node
is non-temporary;
• when the stack contains more than two nodes,

with the third node from the top being tempo-
rary, temporary resulting nodes from binary
reduce must be left-headed;
• the terminate action can be performed when

the queue is empty, and the stack size is one.

170

References

Daniel M. Bikel and David Chiang. 2000. Two sta-
tistical parsing models applied to the Chinese Tree-
bank. InProceedings of SIGHAN Workshop, pages
1–6, Morristown, NJ, USA.

Daniel M. Bikel. 2004. On the Parameter Space of
Generative Lexicalized Statistical Parsing Models.
Ph.D. thesis, University of Pennsylvania.

Ted Briscoe and John Carroll. 1993. Generalized prob-
abilistic LR parsing of natural language (corpora)
with unification-based grammars.Computational
Linguistics, 19(1):25–59.

Xavier Carreras, Michael Collins, and Terry Koo.
2008. Tag, dynamic programming, and the percep-
tron for efficient, feature-rich parsing. InProceed-
ings of CoNLL, pages 9–16, Manchester, England,
August.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. InProceedings of NAACL, pages
132–139, Seattle, WA.

David Chiang and Daniel M. Bikel. 2002. Recovering
latent information in treebanks. InProceedings of
COLING.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models.Computational Linguistics,
33(4):493–552.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. InProceed-
ings of ACL, pages 111–118, Barcelona, Spain, July.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InProceedings of
the 35th Meeting of the ACL, pages 16–23, Madrid,
Spain.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. InProceedings
of EMNLP, pages 1–8, Philadelphia, USA, July.

Xiangyu Duan, Jun Zhao, and Bo Xu. 2007. Proba-
bilistic models for action-based Chinese dependency
parsing. InProceedings of ECML/ECPPKDD, War-
saw, Poland, September.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, con-
ditional random field parsing. InProceedings of
ACL/HLT, pages 959–967, Columbus, Ohio, June.
Association for Computational Linguistics.

Roger Levy and Christopher D. Manning. 2003. Is it
harder to parse Chinese, or the Chinese Treebank?
In Proceedings of ACL, pages 439–446, Sapporo,
Japan, July.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. InProceedings of ACL, pages 91–
98, Ann Arbor, Michigan, June.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen
Eryiǧit, and Svetoslav Marinov. 2006. Labeled
pseudo-projective dependency parsing with support
vector machines. InProceedings of CoNLL, pages
221–225, New York City, June.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. InProceedings of
HLT/NAACL, pages 404–411, Rochester, New York,
April. Association for Computational Linguistics.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models.Machine
Learning, 34(1-3):151–175.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. InProceed-
ings of IWPT, pages 125–132, Vancouver, British
Columbia, October.

Honglin Sun and Daniel Jurafsky. 2003. The effect of
rhythm on structural disambiguation in Chinese. In
Proceedings of SIGHAN Workshop.

Mengqiu Wang, Kenji Sagae, and Teruko Mitamura.
2006. A fast, accurate deterministic parser for Chi-
nese. InProceedings of COLING/ACL, pages 425–
432, Sydney, Australia.

Deyi Xiong, Shuanglong Li, Qun Liu, Shouxun Lin,
and Yueliang Qian. 2005. Parsing the Penn Chinese
Treebank with semantic knowledge. InProceedings
of IJCNLP.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-
based and transition-based dependency parsing us-
ing beam-search. InProceedings of EMNLP, pages
562–571, Hawaii, USA, October.

171

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 172–175,
Paris, October 2009. c©2009 Association for Computational Linguistics

Grammar Error Detection with Best Approximated Parse

Jean-Philippe Prost
LIFO, Université d’Orléans
INRIA Lille - Nord Europe

Jean-Philippe.Prost@univ-orleans.fr

Abstract
In this paper, we propose that grammar er-
ror detection be disambiguated in generat-
ing the connected parse(s) of optimal merit
for the full input utterance, in overcom-
ing the cheapest error. The detected er-
ror(s) are described as violated grammat-
ical constraints in a framework for Model-
Theoretic Syntax (MTS). We present a
parsing algorithm for MTS, which only re-
lies on a grammar of well-formedness, in
that the process does not require any extra-
grammatical resources, additional rules
for constraint relaxation or error handling,
or any recovery process.

1 Introduction

Grammar error detection is a crucial part of
NLP applications such as Grammar Checking or
Computer-Assisted Language Learning (CALL).
The problem is made highly ambiguous depending
on which context is used for interpreting, and thus
pinpointing, the error. For example, a phrase may
look perfectly fine when isolated (e.g. brief inter-
view), but is erroneous in a specific context (e.g.
in *The judge grants brief interview to this plain-
tiff, or in *The judges brief interview this plain-
tiff). Robust partial parsing is often not enough to
precisely desambiguate those cases. The solution
we prescribe is to point out the error(s) as a set
of violated (atomic) constraints of minimal cost,
along with the structural context used for measur-
ing that cost. Given an ungrammatical input string,
the aim is then to provide an approximated rooted
parse tree for it, along with a description of all the
grammatical constraints it violates. For example,
Figure 1 illustrates an approximated parse for an
ill-formed sentence in French, and the error be-
ing detected in that context. Property Grammar
(Blache, 2001) provides an elegant framework for
that purpose.

S15

NP3

D1

Le
The

N2

juge
judge

VP9

V8

octroie
grants

*NP7

AP6

A4

bref
brief

N5

entretien
interview

PP10

P11

à
to

NP12

D13

ce
this

N14

plaignant
plaintiff

Figure 1: Approximated parse for an erroneous French sen-
tence (the Noun ’entretien’ requires a Determiner).

Most of the relevant approaches to robust
knowledge-based parsing addresses the problem
as a recovery process. More specifically, we
observe three families of approaches in that re-
spect: those relying on grammar mal-rules in or-
der to specify how to correctly parse what ought
to be ungrammatical (Bender et al., 2004; Foster,
2007); those relying on constraint relaxation ac-
cording to specified relaxation rules (Douglas and
Dale, 1992); and those relying on constraint re-
laxation with no relaxation rules, along with a re-
covery process based on weighted parsing (Fou-
vry, 2003; Foth et al., 2005). The first two are
actually quite similar, in that, through their use
of extra-grammatical rules, they both extend the
grammar’s coverage with a set of ought-to-be-
ungrammatical utterances. The main drawback
of those approaches is that when faced with un-
expected input at best their outcome remains un-
known, at worst the parsing process fails. With
robust weighted parsing, on the other hand, that
problem does not occur. The recovery process
consists of filtering out structures with respect to
their weights or the weights of the constraints be-
ing relaxed. However, these strategies usually
can not discriminate between grammatical and un-
grammatical sentences. The reason for that comes

172

from the fact that grammaticality is disconnected
from grammar consistency: since the grammar
contains contradicting (universal) constraints, no
conclusion can be drawn with regard to the gram-
maticality of a syntactic structure, which violates
part of the constraint system. The same problem
occurs with Optimality Theory. In a different fash-
ion, Fouvry weighs unification constraints accord-
ing to “how much information it contains”. How-
ever, relaxation only seems possible for those uni-
fication constraints: error patterns such as word
order, co-occurrence, uniqueness, mutual exclu-
sion, . . . can not be tackled. The same restriction is
observed in VanRullen (2005), though to a much
smaller extent in terms of unrelaxable constraints.

What we would like is (i) to detect any type
of errors, and present them as conditions of well-
formedness being violated in solely relying on the
knowledge of a grammar of well-formedness—as
opposed to an error grammar or mal-rules, and
(ii) to present, along-side the violated constraints,
an approximated parse for the full sentence, which
may explain which errors have been found and
overcome. We propose here a parsing algorithm
which meets these requirements.

2 Property Grammar

The framework we are using for knowledge rep-
resentation is Property Grammar (Blache, 2001)
(PG), whose model-theoretical semantics was for-
malised by Duchier et al. (2009). Intuitively, a
PG grammar decomposes what would be rewriting
rules of a generative grammar into atomic syntac-
tic properties — a property being represented as a
boolean constraint. Take, for instance, the rewrit-
ing rule NP → D N. That rule implicitely informs
on different properties (for French): (1) NP has a
D child; (2) the D child is unique; (3) NP has an
N child; (4) the N child is unique; (5) the D child
precedes the N child; (6) the N child requires the
D child. PG defines a set of axioms, each axiom
corresponding to a constraint type. The proper-
ties above are then specified in the grammar as the
following constraints: (1) NP :M D; (2) NP : D!;
(3) NP :M N; (4) NP : N!; (5) NP : D ≺ N; (6)
NP : N ⇒ D. These constraints can be indepen-
dently violated. A PG grammar is traditionally
presented as a collection of Categories (or Con-
structions), each of them being specified by a set
of constraints. Table 1 shows an example of a
category. The class of models we are working

NP (Noun Phrase)
Features Property Type : Properties

[AVM]

obligation : NP:M(N ∨ PRO)
uniqueness : NP: D!

: NP: N!
: NP: PP!
: NP: PRO!

linearity : NP: D ≺ N
: NP: D ≺ PRO
: NP: D ≺ AP
: NP: N ≺ PP

requirement : NP: N ⇒ D
: NP: AP ⇒ N

exclusion : NP: N < PRO

dependency : NP: N
»

GEND 1

NUM 2

–
 D

»
GEND 1

NUM 2

–

Table 1: NP specification in Property Grammar

with is made up of trees labelled with categories,
whose surface realisations are the sentences σ of
language. A syntax tree of the realisation of the
well-formed sentence σ is a strong model of the
PG grammar G iff it satisfies every constraint in G.
The loose semantics also allows for constraints to
be relaxed. Informally, a syntax tree of the realisa-
tion of the ill-formed sentence σ is a loose model
of G iff it maximises the proportion of satisfied
constraints in G with respect to the total number
of evaluated ones for a given category. The set of
violated constraints provides a description of the
detected error(s).

3 Parsing Algorithm

The class of models is further restricted to con-
stituent tree structures with no pairwise intersect-
ing constituents, satisfying at least one constraint.
Since the solution parse must have a single root,
should a category not be found for a node a wild-
card (called Star) is used instead. The Star cate-
gory is not specified by any constraint in the gram-
mar.

We introduce an algorithm for Loose Satisfac-
tion Chart Parsing (LSCP), presented as Algo-
rithm 1. We have named our implementation of it
Numbat. LSCP is based on the probabilistic CKY,
augmented with a process of loose constraint sat-
isfaction. However, LSCP differs from CKY in
various respects. While CKY requires a grammar
in Chomsky Normal Form (CNF), LSCP takes an
ordinary PG grammar, since no equivalent of the
CNF exists for PG. Consequently, LSCP gener-
ates n-ary structures. LSCP also uses scores of
merit instead of probabilities for the constituents.
That score can be optimised, since it only factors
through the influence of the constituent’s immedi-
ate descendants.

Steps 1 and 2 enumerate all the possible and

173

Algorithm 1 Loose Satisfaction Chart Parsing
/∗ Initialisation ∗/
Create and clear the chart π: every score in π is set to 0

/∗ Base case: populate π with POS-tags for each word ∗/
for i← 1 to num words

for (each POS-category T of wi)
if merit(T) ≥ π[i, 1, T] then

Create constituent wT
i , whose category is T

π[i, 1, T]← {wT
i , merit(w

T
i)}

/∗ Recursive case ∗/
/∗ Step 1: SELECTION of the current reference span ∗/
for span← 1 to num words

for offset ← 1 to num words− span + 1
end ← offset + span− 1
K ← ∅

/∗ Step 2: ENUMERATION of all the configurations ∗/
for (every set partition P in [offset, . . . , end])
KP ← buildConfigurations(P)
K ← K ∪KP

/∗ Step 3: CHARACTERISATION of the constraint system from the grammar ∗/
for (every configurationA ∈ KP)
χA ← characterisation(A)

/∗ Step 4: PROJECTION into categories ∗/
/∗ CA is a set of candidate constituents ∗/
CA ← projection(χA)
checkpoint(CA)

/∗ Step 5: MEMOISATION of the optimal candidate constituent ∗/
for (every candidate constituent x ∈ CA, of construction C)

if merit(x) ≥ π[offset, span, C] then
π[offset, span, C]← {x, merit(x)}

if π[offset, span] = ∅ then
π[offset, span]← preferred forest inK

legal configurations of optimal sub-structures al-
ready stored in the chart for a given span and off-
set. At this stage, a configuration is a tree with
an unlabelled root. Note that Step 2 actually does
not calculate all the set partitions, but only the le-
gal ones, i.e. those which are made up of sub-
sets of contiguous elements. Step 3 evaluates the
constraint system, using a configuration as an as-
signment. The characterisation process is imple-
mented with Algorithm 2. Step 4 consists of mak-

Algorithm 2 Characterisation Function
function characterisation(A = 〈c1, . . . , cn〉 : assignment,

G: grammar)
returns the set of evaluated properties relevant toA,

and the set of projected categories forA.

/∗ For storing the result characterisation: ∗/
create and clear χA [property]: table of boolean, indexed by property
/∗ For storing the result projected categories: ∗/
create and clear CA: set of category
/∗ For temporarily storing the properties to be evaluated: ∗/
create and clear S: set of property

for (mask ∈ [1 . . . 2n − 1])
key← applyBinaryMask(A,mask)
if (key is in the set of indexes for G) then

/∗ Properties are retrieved from the grammar, then evaluated ∗/
S ← G[key].getProperties()
χA ← evaluate(S)
/∗ Projection Step: fetch the categories to be projected ∗/
CA ← G[key].getDominantCategories()

return χA , CA

The key is a hash-code of a combination of constructions, used for fetching the
constraints this combination is concerned with.

ing a category judgement for a configuration, on

the basis of which constraints are satisfied and vi-
olated, in order to label its root. The process is a
simple table lookup, the grammar being indexed
by properties. Step 5 then memoises the optimal
sub-structures for every possible category. Note
that the uniqueness of the solution is not guaran-
teed, and there may well be many different parses
with exact same merit for a given input utterance.

Should the current cell in the chart not being
populated with any constituents, a preferred for-
est of partial parses (= Star category) is used in-
stead. The preferred forest is constructed on the
fly (as part of buildConfigurations); a pointer
is maintained to the preferred configuration dur-
ing enumeration. The preference goes to: (i) the
constituents with the widest span; (ii) the least
overall number of constituents. This translates
heuristically into a preference score pF computed
as follows (where F is the forest, and Ci its con-
stituents): pF = span · (merit(Ci) + span). In
that way, LSCP always delivers a parse for any
input. The technique is somehow similar to the
one of Riezler et al. (2002), where fragment parses
are allowed for achieving increased robustness, al-
though their solution requires the standard gram-
mar to be augmented with a fragment grammar.

4 Evaluation

In order to measure Numbat’s ability to (i) detect
errors in an ungrammatical sentence, and (ii) build
the best approximated parse for it, Numbat should,
ideally, be evaluated on a corpus of both well-
formed and ill-formed utterances annotated with
spannnig phrase structures. Unfortunately, such
a Gold Standard is not available to us. The de-
velopment of adequate resources is central to fu-
ture works. In order to (partially) overcome that
problem we have carried out two distinct evalua-
tions: one aims to measure Numbat’s performance
on grammatical sentences, and the other one on
ungrammatical sentences. Evaluation 1, whose re-
sults are reported in Table 2, follows the proto-
col devised for the EASY evaluation campaign of
parsers of French (Paroubek et al., 2003), with a
subset of the campaign’s corpus. For comparison,
Table 3 reports the performance measured under
the same circumstances for two other parsers: a
shallow one (VanRullen, 2005) also based on PG,
and a stochastic one (VanRullen et al., 2006). The
grammar used for that evaluation was developed
by VanRullen (2005). Evaluation 2 was run on

174

Precision Recall F
Total 0.7835 0.7057 0.7416
general lemonde 0.8187 0.7515 0.7837
general mlcc 0.7175 0.6366 0.6746
general senat 0.8647 0.7069 0.7779
litteraire 0.8124 0.7651 0.788
mail 0.7193 0.6951 0.707
medical 0.8573 0.678 0.757
oral delic 0.6817 0.621 0.649
questions amaryllis 0.8081 0.7432 0.7743
questions trec 0.8208 0.7069 0.7596

Table 2: EASY scores of Numbat (Eval. 1)

Precision Recall F
shallow parser 0.7846 0.8376 0.8102
stochastic parser 0.9013 0.8978 0.8995

Table 3: Comparative EASY scores

a corpus of unannotated ungrammatical sentences
(Blache et al., 2006), where each of the ungram-
matical sentences (amounting to 94% of the cor-
pus) matches a controlled error pattern. Five ex-
pert annotators were asked whether the solution
trees were possible and acceptable syntactic parses
for their corresponding sentence. Specific instruc-
tions were given to make sure that the judgement
does not hold on the grammatical acceptability of
the surface sentence as such, but actually on the
parse associated with it. For that evaluation Van-
Rullen’s grammar was completed with nested cat-
egories (since the EASY annotation scheme only
has chunks). Given the nature of the material to
be assessed here, the Precision and Recall mea-
surements had to be modified. The total number
of input sentences is interpreted as the number of
predictions; the number of COMPLETE structures
is interpreted as the number of observations; and
the number of structures evaluated as CORRECT

by human judges is interpreted as the number of
correct solutions. Hence the following formula-
tions and scores: Precision=CORRECT/COMPLETE=0.74;
Recall=CORRECT/Total=0.68; F=0.71. 92% of the cor-
pus is analysed with a complete structure; 74% of
these complete parses were judged as syntactically
correct. The Recall score indicates that the correct
parses represent 68% of the corpus. In spite of a
lack of a real baseline, these scores compare with
those of grammatical parsers.

5 Conclusion

In this paper, we have proposed to address the
problem of grammar error detection in providing
a set of violated syntactic properties for an ill-
formed sentence, along with the best structural

context in the form of a connected syntax tree. We
have introduced an algorithm for Loose Satisfac-
tion Chart Parsing (LSCP) which meets those re-
quirements, and presented performance measures
for it. Future work includes optimisation of LSCP
and validation on more appropriate corpora.

Acknowledgement

Partly funded by ANR-07-MDCO-03 (CRoTAL).

References
E. M. Bender, D. Flickinger, S. Oepen, A. Walsh, and

T. Baldwin. 2004. Arboretum: Using a precision
grammar for grammar checking in CALL. In Proc.
of InSTIL/ICALL2004, volume 17, page 19.

P. Blache, B. Hemforth, and S. Rauzy. 2006. Ac-
ceptability Prediction by Means of Grammaticality
Quantification. In Proc. of CoLing/ACL, pages 57–
64. ACL.

P. Blache. 2001. Les Grammaires de Propriétés :
des contraintes pour le traitement automatique des
langues naturelles. Hermès Sciences.

S. Douglas and R. Dale. 1992. Towards Robust PATR.
In Proc. of CoLing, volume 2, pages 468–474. ACL.

D. Duchier, J-P. Prost, and T-B-H. Dao. 2009.
A Model-Theoretic Framework for Grammaticality
Judgements. In To appear in Proc. of FG’09, vol-
ume 5591 of LNCS. FOLLI, Springer.

J. Foster. 2007. Real bad grammar: Realistic grammat-
ical description with grammaticality. Corpus Lin-
guistics and Lingustic Theory, 3(1):73–86.

K. Foth, W. Menzel, and I. Schröder. 2005. Robust
Parsing with Weighted Constraints. Natural Lan-
guage Engineering, 11(1):1–25.

F. Fouvry. 2003. Constraint relaxation with weighted
feature structures. pages 103–114.

P. Paroubek, I. Robba, and A. Vilnat. 2003. EASY:
An Evaluation Protocol for Syntactic Parsers.
www.limsi.fr/RS2005/chm/lir/lir11/ (08/2008).

S. Riezler, T. H. King, R. M. Kaplan, R. Crouch,
J. T. III Maxwell, and M. Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-
Functional Grammar and Discriminative Estimation
Techniques. In Proc. of ACL, pages 271–278. ACL.

T. VanRullen, P. Blache, and J-M. Balfourier. 2006.
Constraint-Based Parsing as an Efficient Solution:
Results from the Parsing Evaluation Campaign
EASy. In Proc. of LREC, pages 165–170.

T. VanRullen. 2005. Vers une analyse syntaxique à
granularité variable. Thèse de doctorat.

175

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 176–179,
Paris, October 2009. c©2009 Association for Computational Linguistics

The effect of correcting grammatical errors on parse probabilities

Joachim Wagner
CNGL

School of Computing
Dublin City University, Ireland

jwagner@computing.dcu.ie

Jennifer Foster
NCLT

School of Computing
Dublin City University, Ireland.

jfoster@computing.dcu.ie

Abstract

We parse the sentences in three parallel er-
ror corpora using a generative, probabilis-
tic parser and compare the parse probabil-
ities of the most likely analyses for each
grammatical sentence and its closely re-
lated ungrammatical counterpart.

1 Introduction

The syntactic analysis of a sentence provided by
a parser is used to guide the interpretation process
required, to varying extents, by applications such
as question-answering, sentiment analysis and ma-
chine translation. In theory, however, parsing also
provides a grammaticality judgement as shown in
Figure 1. Whether or not a sentence is grammati-
cal is determined by its parsability with a grammar
of the language in question.

The use of parsing to determine whether a sen-
tence is grammatical has faded into the back-
ground as hand-written grammars aiming to de-
scribe only the grammatical sequences in a lan-
guage have been largely supplanted by treebank-
derived grammars. Grammars read from treebanks
tend to overgenerate. This overgeneration is un-
problematic if a probabilistic model is used to rank
analyses and if the parser is not being used to pro-
vide a grammaticality judgement. The combina-
tion of grammar size, probabilistic parse selection
and smoothing techniques results in high robust-
ness to errors and broad language coverage, de-
sirable properties in applications requiring a syn-
tactic analysis of any input, regardless of noise.
However, for applications which rely on a parser’s
ability to distinguish grammatical sequences from
ungrammatical ones, e.g. grammar checkers, over-
generating grammars are perhaps less useful as
they fail to reject ungrammatical strings.

A naive solution might be to assume that the
probability assigned to a parse tree by its proba-
bilistic model could be leveraged in some way to

Figure 1: Grammaticality and formal languages

determine the sentence’s grammaticality. In this
paper, we explore one aspect of this question by
using three parallel error corpora to determine the
effect of common English grammatical errors on
the parse probability of the most likely parse tree
returned by a generative probabilistic parser.

2 Related Work

The probability of a parse tree has been used be-
fore in error detection systems. Sunet al. (2007)
report only a very modest improvement when they
include a parse probability feature in their system
whose features mostly consist of linear sequential
patterns. Lee and Seneff (2006) detect ungram-
matical sentences by comparing the parse proba-
bility of a possibly ill-formed input sentence to the
parse probabilities of candidate corrections which
are generated by arbitrarily deleting, inserting and
substituting articles, prepositions and auxiliaries
and changing the inflection of verbs and nouns.
Fosteret al. (2008) compare the parse probabil-
ity returned by a parser trained on a regular tree-
bank to the probability returned by the same parser
trained on a “noisy” treebank and use the differ-
ence to decide whether the sentence is ill-formed.

Research in the field of psycholinguistics has
explored the link between frequency and gram-
maticality, often focusing on borderline acceptable
sentences (see Crocker and Keller (2006) for a dis-
cussion of the literature). Koonst-Garboden and
Jaeger (2003) find a weak correlation between the

176

frequency ratios of competing surface realisations
and human acceptability judgements. Hale (2003)
calculates the information-theoretic load of words
in sentences assuming that they were generated ac-
cording to a probabilistic grammar and finds that
these values are good predictors for observed read-
ing time and other measures of cognitive load.

3 Experimental Setup

The aim of this experiment is to find out to
what extent ungrammatical sentences behave dif-
ferently from correct sentences as regards their
parse probabilities. There are two types of corpora
we study: two parallel error corpora that consist
of authentic ungrammatical sentences and manual
corrections, and a parallel error corpus that con-
sists of authentic grammatical sentences and auto-
matically induced errors. Using parallel corpora
allows us to compare pairs of sentences that have
the same or very similar lexical content and dif-
fer only with respect to their grammaticality. A
corpus with automatically induced errors is in-
cluded because such a corpus is much larger and
controlled error insertion allows us to examine di-
rectly the effect of a particular error type.

The first parallel error corpus contains 1,132
sentence pairs each comprising an ungrammatical
sentence and a correction (Foster, 2005). The sen-
tences are taken from written texts and contain ei-
ther one or two grammatical errors. The errors in-
clude those made by native English speakers. We
call this the Foster corpus. The second corpus
is a learner corpus. It contains transcribed spo-
ken utterances produced by learners of English of
varying L1s and levels of experience in a class-
room setting. Wagner et al. (2009) manually cor-
rected 500 sentences of the transcribed utterances,
producing a parallel error corpus which we call
Gonzaga 500. The third parallel corpus contains
199,600 sentences taken from the British National
Corpus and ungrammatical sentences produced by
introducing errors of the following five types into
the original BNC sentences: errors involving an
extra word, errors involving a missing word, real-
word spelling errors, agreement errors and errors
involving an incorrect verbal inflection.

All sentence pairs in the three parallel cor-
pora are parsed using the June 2006 version
of the first-stage parser of Charniak and John-
son (2005), a lexicalised, generative, probabilistic
parser achieving competitive performance on Wall

Street Journal text. We compare the probability of
the highest ranked tree for the grammatical sen-
tence in the pair to the probability of the highest
ranked tree for the ungrammatical sentence.

4 Results

Figure 2 shows the results for the Foster corpus.
For ranges of 4 points on the logarithmic scale,
the bars depict how many sentence pairs have a
probability ratio within the respective range. For
example, there are 48 pairs (5th bar from left) for
which the correction has a parse probability which
is between 8 and 12 points lower than the parse
probability of its erroneous original, or, in other
words, for which the probability ratio is between
e−12 ande−8. 853 pairs show a higher probabil-
ity for the correction vs. 279 pairs which do not.
Since the probability of a tree is the product of
its rule probabilities, sentence length is a factor.
If we focus on corrections that do not change the
sentence length, the ratio sharpens to 414 vs. 90
pairs. Ungrammatical sentences do often receive
lower parse probabilities than their corrections.

Figure 3 shows the results for the Gonzaga 500.
Here we see a picture similar to the Foster cor-
pus although the peak for the range frome0 = 1
to e4 ≈ 54.6 is more pronounced. This time
there are more cases where the parse probability
drops despite a sentence being shortened and vice
versa. Overall, 348 sentence pairs show an in-
creased parse probability, 152 do not. For sen-
tences that stay the same length the ratio is 154
to 34, or 4.53:1, for this corpus which is almost
identical to the Foster corpus (4.60:1).

How do these observations translate to the artifi-
cial parallel error corpus created from BNC data?
Figure 4 shows the results for the BNC data. In
order to keep the orientation of the graph as be-
fore, we change the sign by looking at decrements
instead of increments. Also, we swap the keys
for shortened and lengthened sentences. Clearly,
the distribution is wider and moved to the right.
The peak is at the bar labelled 10. Accordingly,
the ratio of the number of sentence pairs above
and below the zero line is much higher than be-
fore (overall 32,111 to167, 489 = 5.22, for same
length only 8,537 to 111,171 = 13.02), suggest-
ing that our artificial errors might have a stronger
effect on parse probability than authentic errors.
Another possible explanation is that the BNC data
only contains five error types, whereas the range of

177

Figure 2: Effect of correcting erroneous sentences (Foster corpus) on the probability of the best parse.
Each bar is broken down by whether and how the correction changed thesentence length in tokens. A
bar labelledx covers ratios fromex−2 to ex+2 (exclusive).

Figure 3: Effect of correcting erroneous sentences (Gonzaga 500corpus) on the probability of the best
parse.

Figure 4: Effect of inserting errors into BNC sentences on the probabilityof the best parse.

178

errors in the Foster and Gonzaga corpus is wider.
Analysing the BNC data by error type and look-

ing firstly at those error types that do not involve a
change in sentence length, we see that:

• 96% of real-word spelling errors cause a re-
duction in parse probability.

• 91% of agreement errors cause a reduction in
parse probability. Agreement errors involving
articles most reliably decrease the probability.

• 92% of verb form errors cause a reduction.
Changing the form from present participle to
past participle1 is least likely to cause a reduc-
tion, whereas changing it from past participle
to third singular is most likely.

The effect of error types which change sentence
length is more difficult to interpret. Almost all of
the extra word errors cause a reduction in parse
probability and it is difficult to know whether this
is happening because the sentence length has in-
creased or because an error has been introduced.
The errors involving missing words do not system-
atically result in an increase in parse probability
– 41% of them cause a reduction in parse proba-
bility, and this is much more likely to occur if the
missing word is a function word (article, auxiliary,
preposition).

Since the Foster corpus is also error-annotated,
we can also examine its results by error type. This
analysis broadly agrees with that of the BNC data,
although the percentage of ill-formed sentences
for which there is a reduction in parse probability
is generally lower (see Fig. 2 vs. Fig. 4).

5 Conclusion

We have parsed the sentences in three parallel er-
ror corpora using a generative, probabilistic parser
and examined the parse probability of the most
likely analysis of each sentence. We find that
grammatical errors have some negative effect on
the probability assigned to the best parse, a find-
ing which corroborates previous evidence linking
sentence grammaticality to frequency. In our ex-
periment, we approximate sentence probability by
looking only at the most likely analysis – it might
be useful to see if the same effect holds if we sum

1This raises the issue of covert errors, resulting in gram-
matical sentence structures. Lee and Seneff (2008) give the
exampleI am prepared for the exam which was produced by
a learner of English instead ofI am preparing for the exam.
These occur in authentic error corpora and cannot be com-
pletely avoided when automatically introducing errors.

over parse trees. To fully exploit parse or sentence
probability in an error detection system, it is nec-
essary to fully account for the effect on probability
of 1) non-structural factors such as sentence length
and 2)particular error types. This study repre-
sents a contribution towards the latter.

Acknowledgements

We are grateful to James Hunter from Gonzaga
University for providing us with a learner corpus.
We thank Josef van Genabith and the reviewers for
their comments and acknowledge the Irish Cen-
tre for High-End Computing for the provision of
computational facilities. The BNC is distributed
by Oxford University Computing Services.

References
Eugene Charniak and Mark Johnson. 2005. Course-

to-fine n-best-parsing and maxent discriminative
reranking. InProceedings of ACL.

Matthew W. Crocker and Frank Keller. 2006. Prob-
abilistic grammars as models of gradience in lan-
guage processing. In Gisbert Fanselow, C. Féry,
R. Vogel, and M. Schlesewsky, editors,Gradience
in Grammar: Generative Perspectives, pages 227–
245. Oxford University Press.

Jennifer Foster, Joachim Wagner, and Josef van Gen-
abith. 2008. Adapting a WSJ-trained parser to
grammatically noisy text. InProceedings of ACL.

Jennifer Foster. 2005.Good Reasons for Noting Bad
Grammar: Empirical Investigations into the Pars-
ing of Ungrammatical Written English. Ph.D. the-
sis, University of Dublin, Trinity College.

John Hale. 2003. The information conveyed by words
in sentences.Journal of Psycholinguistic Research,
32(2):101–123.

Andrew Koontz-Garboden and T. Florian Jaeger.
2003. An empirical investigation of the frequency-
grammaticality correlation hypothesis. Student es-
say received or downloaded on 2006-03-13.

John Lee and Stephanie Seneff. 2006. Automatic
grammar correction for second-language learners.
In Interspeech 2006 - 9th ICSLP, pages 1978–1981.

John Lee and Stephanie Seneff. 2008. Correcting mis-
use of verb forms. InProceedings of ACL.

Guihua Sun, Xiaohua Liu, Gao Cong, Ming Zhou,
Zhongyang Xiong, John Lee, and Chin-Yew Lin.
2007. Detecting erroneous sentences using automat-
ically mined sequential patterns. InProc. of ACL.

Joachim Wagner, Jennifer Foster, and Josef van Gen-
abith. 2009. Judging grammaticality: Experiments
in sentence classification.CALICO Journal, 26(3).

179

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 180–191,
Paris, October 2009. c©2009 Association for Computational Linguistics

Effective Analysis of Causes and Inter-dependencies of Parsing Errors

Tadayoshi Hara1 Yusuke Miyao1

1Department of Computer Science, University of Tokyo
Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, JAPAN

2School of Computer Science, University of Manchester
3NaCTeM (National Center for Text Mining)

{harasan,yusuke,tsujii }@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii 1,2,3

Abstract

In this paper, we propose two methods for
analyzing errors in parsing. One is to clas-
sify errors into categories which grammar
developers can easily associate with de-
fects in grammar or a parsing model and
thus its improvement. The other is to
discover inter-dependencies among errors,
and thus grammar developers can focus on
errors which are crucial for improving the
performance of a parsing model.

The first method uses patterns of er-
rors to associate them with categories of
causes for those errors, such as errors in
scope determination of coordination, PP-
attachment, identification of antecedent of
relative clauses, etc. On the other hand,
the second method, which is based on re-
parsing with one of observed errors cor-
rected, assesses inter-dependencies among
errors by examining which other errors
were to be corrected as a result if a spe-
cific error was corrected.

Experiments show that these two meth-
ods are complementary and by being com-
bined, they can provide useful clues as to
how to improve a given grammar.

1 Introduction

In any kind of complex systems, analyzing causes
of errors is a crucial step for improving its perfor-
mance. In recent sophisticated parsing technolo-
gies, the step of error analysis has been becoming
more and more convoluted and time-consuming,
if not impossible. While common performance
evaluation measures such as F-values are useful to
compare the performance of systems or evaluate
improvement of a system, they hardly give useful
clues as to how to improve a system. Evaluation
measures usually assume uniform units such as the

number of correctly or incorrectly recognized con-
stituent boundaries and their labels, or in a similar
vein, dependency links among words and their la-
bels, and then compute single values such as the F-
value. These values do not give any insights as to
where the weaknesses exist in a parsing model. As
a result, the improvement process takes the form
of time consuming trial-error cycles.

Once grammar developers know the actual dis-
tribution of errors across different categories such
as PP-attachment, complement/adjunct distinc-
tion, gerund/participle distinction, etc., they can
think of focused and systematic improvement of
a parsing model.

Another problem of the F-value in terms of
uniform units is that it does not take inter-
dependencies among errors into consideration. In
particular, for parsers based on grammar for-
malisms such as LFG (Kaplan and Bresnan, 1995),
HPSG (Pollard and Sag, 1994), or CCG (Steed-
man, 2000), units (eg. single predicate-argument
links) are inter-related through hierarchical struc-
tures and structure sharing assumed by these for-
malisms. Single errors are inherently propagated
to other sets of errors. This is also the case, though
to a lesser extent, for parsing models in which
shallow parsing is followed by another component
for semantic label assignment.

In order to address these two issues, we propose
two methods in this paper. One is to recognize
cause categories of errors and the other is to cap-
ture inter-dependencies among errors. The former
method defines various patterns of errors to iden-
tify categories of error causes. The latter method
re-parses a sentence with a single target error cor-
rected, and regards the errors which are corrected
in re-parse as errors dependent on the target.

Although these two methods are implemented
for a specific parser using HPSG (Miyao and Tsu-
jii, 2005; Ninomiya et al., 2006), the same ideas
can be applied to any type of parsing models.

180

Predicate

Sentence: John has come

Predicative event 1:

Predicative event 2:

Word: has
Grammatical nature: auxiliary
of arguments: 2

Argument 1
John

Argument 2
come

Predicate

Word: come
Grammatical nature: verb
of arguments: 1

Argument 1
John

Predicate-argument relations

Figure 1: Predicate-argument relations

John aux_2args

ARG1 ARG2

verb_1arg

ARG1

has : come :

Figure 2: Representation of predicate-argument
relations

In the following, Section 2 introduces a parser
and its evaluation metrics, Section 3 illustrates dif-
ficulties in analyzing parsing errors based on com-
mon evaluation measures, and Section 4 proposes
the two methods for effective error analysis. Sec-
tion 5 presents experimental results which show
how our methods work for analyzing actual pars-
ing errors. Section 6 and Section 7 illustrate fur-
ther application of these methods to related topics.
Section 8 summarizes this research and indicates
some of future directions.

2 A parser and its evaluation

A parser is a system which interprets given sen-
tences in terms of structures derived from syn-
tactic or in some cases semantic viewpoints, and
structures constructed as a result are used as es-
sential information for various tasks of natural lan-
guage processing such as information extraction,
machine translation, and so on.

In this paper, we address issues involved in im-
proving the performance of a parser which pro-
duces structural representations deeper than sur-
face constituent structures. Such a parser is called
a “deep parser.” In many deep parsers, the output
structure is defined by a linguistics-based gram-
mar framework such as CFG, CCG (Steedman,
2000), LFG (Kaplan and Bresnan, 1995) or HPSG

Abbr. Full Abbr. Full
aux auxiliary conj conjunction
prep prepositional lgs logical subject
verb verb app apposition
coord coordination relative relative
det determiner Narg(s) takes N arguments
adj adjunction mod modifies a word

Table 1: Descriptions for predicate types

(Pollard and Sag, 1994). Alternatively, some deep
parsing models assume staged processing in which
a stage of shallow parsing is followed by a stage of
semantic role labeling, which assigns labels indi-
cating semantic relationships between predicates
and their arguments. In either case, we assume a
parser to produce a single “deep” structural rep-
resentation for a given sentence, which is chosen
from a set of possible interpretations as the most
probable one by a disambiguation model.

For evaluation of the performance of a parser,
various metrics have been introduced according
to the structure captured by a given grammar
formalism or a system of semantic labels. In
most cases, instead of examining correctness for
a whole structure, a parser is evaluated in terms of
the F-value which shows how correctly it recog-
nizes relationships among words and assigns “la-
bels” to the relationships in the structure. In this
paper, we assume a certain type of “predicate-
argument relation.”

In this measurement, a structure given for a
sentence is decomposed into a set of predicative
words and their arguments. A predicate takes
other words as its arguments. In our representa-
tion, the arguments are labeled by semantically
neutral labels such as ARGn(n = 1...5) and
MOD. In this representation, a basic unit is a
triplet, such as

<Predicate:PredicateType,
ArgumentLabel,
Argument>,

where “Predicate” and “Argument” are surface
words. As shown in the examples in Section 4,
“PredicateType” bears extra information concern-
ing the syntactic construction in which the triplet
is embedded. ARG1-ARG5 express relations be-
tween a Head and its complement, while MOD ex-
presses a relation between an Adjunct and its mod-
ifiee. Since all dependency relations are expressed
by triplets, triplets contain not only semantic de-

181

I saw a girl with a telescope Correct answer:

ARG1 ARG2

ARG1 ARG2

Parser output:

ARG1 ARG2

ARG1 ARG2

Compare

Error (25%):

ARG1

ARG1

Correct (75%):

ARG1 ARG2

ARG2ARG1 ARG2

ARG2

I saw a girl with a telescope

I saw a girl with a telescope

I saw a girl with a telescope

Figure 3: An example of parsing performance
evaluations

pendencies but also many dependencies which are
essentially syntactic in nature. Figure 1 shows an
example used in Miyao and Tsujii (2005) and Ni-
nomiya et al. (2006).

This example shows predicate-argument rela-
tions for “John has come.” There are two pred-
icates in this sentence, “has” and ”come”. The
word “has”, which is used as an auxiliary verb,
takes two words, “John” and “come”, as its ar-
guments, and therefore two triplets of predicate-
argument relation,<hasARG1 John> and<has
ARG2 come>. As for the predicative word
“come”, we have one triplet<comeARG1John>.
Note that, in this HPSG analysis, the auxiliary
verb “has” is analyzed in such a way that it takes
one NP as subject and one VP as complement,
and that the subject of the auxiliary verb is shared
by the verb (“come”) in VP as its subject (Fig-
ure 2). The fact that “has” in this sentence is an
auxiliary verb is indicated by the “PredicateType”,
aux 2args. A “PredicateType” consists of a type
and the number of arguments it takes (Table 1).

3 Difficulties in analyzing parsing errors

Figure 3 shows an example of the evaluation of
the parser based on these predicate-argument rela-
tions. Note that the predicate types are abbreviated
in this figure. In the sentence “I saw a girl with a
telescope”, there should be four triplets for the two
predicates, ”saw” and “with,” each of which takes

Error:

They completed the sale of for

ARG1ARG1

it to him $1,000

Conflict

Analysis 2: (Impossible)

They completed the sale of for
ARG1

ARG1

it to him $1,000

Analysis 1: (Possible) ARG1

ARG1

ARG1

ARG1

Can each error occur independently?

They completed the sale of for
ARG1

ARG1

it to him $1,000

ARG1

ARG1

Figure 4: Sketch of error propagation

The book on which read the shelf I yesterday
ARG1

ARG2

ARG2
ARG1

Error:

Figure 5: Parsing errors around one relative clause
attachment

two arguments. Although the parser output does
indeed contain four triplets, the first argument of
“with” is not the correct one. Thus, this output is
erroneous, with the F-value of 75%.

While the F-value thus computed is fine for cap-
turing the performance of a parser, it does not offer
any help for improving its performance.

First, because it does not give any indica-
tion on what portion of erroneous triplets are in
PP-attachment, complement/adjunct distinction,
gerund/participle distinction, etc., one cannot de-
termine which part of a parsing model should be
improved. In order to identify error categories, we
have to manually compare a parsing output with
a correct parse and classify them. Consider again
the example in Figure 3. We can easily observe
that “ARG1” of predicate “with” was mistaken. In
this case, the word linked via “ARG1” represents
a modifiee of the prepositional phrase, and thereby
we conclude that the error is in PP-attachment.
While the process looks straightforward for this
simple sentence and error, to perform such a man-
ual inspection for all sentences and more complex
types of errors is costly, and becomes inhibitive
when the size of a test set of sentences is realisti-

182

cally large.
Another problem with the F-value is that it ig-

nores inter-dependencies among errors. Since the
F-value does not consider inter-dependencies, one
cannot determine which errors are more crucial
than others in terms of the performance of the sys-
tem as a whole.

A simple example of inter-dependency is shown
in Figure 4. “ARG1” of “for” and “to” were mis-
taken by a parser, both of which can be classified
as PP-attachments as in Figure 3. However, the
two errors are not independent. The former error
can occur by itself (Analysis 1) while the latter
cannot because of the structural conflict with the
former (Analysis 2). The occurrence of the latter
error thus forces the former.

Moreover, inter-dependency in a deep parser
based on linguistics-based formalisms can be
complicated. Error propagation is ingrained in
grammar itself. Consider Figure 5. In this exam-
ple, a wrong decision on the antecedent of a rela-
tive clause results in a wrong triplet of the predi-
cate in the embedded clause with the antecedent.
That is, the two erroneous triplets, one of the
“ARG1” of “ which” and the other of the “ARG2”
of “ read,” were caused by a single wrong deci-
sion of the antecedent of a relative clause. Such
a propagation of errors can be even more compli-
cated, for example, when the predicate in the rela-
tive clause is a control verb.

In the following section we propose two meth-
ods for analyzing errors. Although both meth-
ods are implemented for the specific parserEnju
(Miyao and Tsujii, 2005; Ninomiya et al., 2006),
the same ideas can be implemented for any parsing
model.

4 Methods for effective error analysis

4.1 Recognizing categories of error causes

While the Enju parser produces rich feature struc-
tures as output, the performance is evaluated by
the F-value in terms of basic units of predicate-
argment structure. As we illustrated in Section 2,
the basic unit is a triplet in the following form.

<Predicate:PredicateType,
ArgumentLabel,
Argument>

We illustrated in Section 2 how we can identify
errors in PP-attachment simply by examining a

The car was designed to : use it for ...

Correct output:

aux_2argsto :[verb1] …
ARG3

[verb2]Parser output:

aux_mod_2args

MOD

to :

ARG2

Unknown subject

ARG1
ARG1

[verb1] … [verb2]

aux_2args

Example:

Parser output:

Correct answer:

ARG3

The car was designed to : use it for ...aux_mod_2args

MOD ARG2

Unknown subject

ARG1
ARG1

Pattern:

(Patterns of correct answer and parser output can be interchanged)

Figure 6: Pattern for “To-infinitive for modi-
fier/argument of verb”

triplet produced by the parser with the correspond-
ing triplet in the gold standard parse.

However, in more complex cases, we have to
consider a set of mismatched triplets collectively
in order to map errors to meaningful error causes.
The following are typical examples of error causes
and pattern rules which identify them.

(1) Interpretation of Infinitival Clauses as Adjunct
or Complement

Two different types of interpretations of the in-
finitival clauses are explicitly indicated by “Predi-
cateType.” Consider the following two sentences.

(a) [Infinitival clause as an adjunct of the main
clause]

The car was designed (by John) to use it for
business trips.

(b) [Infinitival clause as an argument of catena-
tive verb]

The car is designed to run fast.

In both sentences, “to” is treated as a predicate to
represent the infinitival clauses in triplets. How-
ever, Enju marks the “PredicateType” of (a) as
“aux-mod-2args,” while it marks the predicate
simply as “aux-2args” in (b). Furthermore, the
linkage between the main clause and the infinitival
clause is treated differently. In (a), the infinitival
clause takes the main clause with relation MOD,
while in (b) the main clause takes the infinitival

183

[gerund]: verb_Narg(s)Parser output:

[gerund]: verb_mod_Narg(s)Correct answer:

(Patterns of correct answer and parser output can be interchanged)

Pattern:

Example:

The customers walk the door

a package for them

expecting: verb_mod_3args

you to have

in

MOD

ARG1

ARG2
ARG3

Parser output:

Correct output:

The customers walk the door

a package for them

expecting: verb_3args

you to have

in

Not exist

ARG2
ARG3

ARG1 (MOD)

… …

… …

Figure 7: Pattern for “Gerund acts as modifier or
not”

clause as ARG3. Furthermore, in the catenative
verb interpretation of “designed”, the deep object
(the surface subject in this example) fills ARG1
of the verb in the infinitival clause (complement),
while in the adjunct interpretation, the deep sub-
ject which is missing in this sentence occupies
the same role. Consequently, a single erroneous
choice between these two interpretations results in
a set of mismatched triplets.

We recognize such a set of mismatched triplets
by a pattern rule (Figure 6) and map them to this
type of error cause.

(2) Interpretation of Gerund-Participle interpreta-
tions

A treatment similar to (1) is taken for different
interpretations of Gerund. Interpretation as Ad-
junct of a main clause is signaled by the “Predi-
cateType”verb-mod-*, while an interpretation as
a modifier of a noun is represented by the “Predi-
cateType”verb(Figure 7).

(3) Interpretation of “by”

A prepositional phrase with “by” in a passive
clause can be interpreted as a deep subject, while
the same phrase can be interpreted as an ordinary
PP phrase that is used as an adjunct. The first in-
terpretation is marked by the “PredicateType”lgs
(logical subject) which takes only one argument.
The relationship between the passivized verb and
the deep subject is captured by ARG1 which goes

Example:

Pattern:

Correct output:

Parser output: prep_2args

Unknown subject

[verb1] …

ARG1ARG1

…

lgs_1arg
ARG1

[verb1] … …

ARG1

A 50-state study released in September by : Friends …

Unknown subject

…

ARG1ARG1

prep_2args

Parser output:

Correct answer:

A 50-state study released in September by : Friends ……

ARG1ARG1

lgs_1arg

ARG1

(Patterns of correct answer and parser output can be interchanged)

Figure 8: Pattern for “Subject for passive sentence
or not”

Example:

Pattern:

relative_1arg

ARG1

Parser output: ARG1/2

Error

Parser output:

Correct answer:

The book on which : read

ARG1

the shelf I yesterday

ARG2

The book on which : read

ARG1

the shelf I yesterday

ARG2

relative_1arg

relative_1arg

Error

… …

Figure 9: Pattern for “Relative clause attachment”

from the verb to the noun phrase. On the other
hand, in the interpretation as an ordinary PP, the
preposition as predicate links the main verb and
NP via ARG1 and ARG2, respectively (Figure 8).

Again, a set of mismatched triplets should be
mapped to a single cause of errors via a pattern
rule.

(4) Antecedent of a Relative Clause

This type of error is manifested by two mis-
matched triplets with different predicates. This is
because a wrong choice of antecedent for a rela-
tive clause results in a wrong link for the trace of
the relative clause.

Since a relative clause pronoun is treated as a

184

Cause categories Patterns
[Argument selection]
Prepositional attachment ARG1 of prep *
Adjunction attachment ARG1 of adj *
Conjunction attachment ARG1 of conj *
Head selection for noun phrase ARG1 of det *
Coordination ARG1/2 ofcoord *
[Predicate type selection]
Preposition/Adjunction prep * ↔ adj *
Gerund acts as modifier/not verb modNarg(s)

↔ verb Narg(s)
Coordination/conjunction coord * ↔ conj *
of arguments for preposition prep Marg(s)

↔ prep Narg(s)
Adjunction/adjunctive noun adj * ↔ noun*
[More structural errors]
To-infinitive for see Figure 6

modifier/argument of verb
Subject for passive sentence/notsee Figure 8
[Others]
Comma any error around “,”
Relative clause attachment see Figure 9

Table 2: Defined patterns for cause categories

predicate which takes the antecedent as its single
argument, identification of error type can be done
simply by looking at ARG1. However, since the
errors usually propagate to the triplets that contain
their traces, we have to map them together to the
single error (Figure 9).

Table 2 shows the errors across different types
which our current version of pattern rules can
identify.

4.2 Capturing inter-dependencies among
errors

Some inter-dependencies among erroneous
triplets are ingrained in grammar, such as the case
of antecedent of a relative clause in (4) in Section
4.1. Some are caused by general constraints such
as the projection principle in dependency structure
(Figure 4 in Section 2).

Regardless of causes of dependencies, to recog-
nize inter-dependencies among errors is a crucial
step of effective error analysis.

Our method consists of the following four steps:

[Step 1] Re-parsing a target sentence: A given sen-
tence is re-parsed under the condition where an er-
ror is forcibly corrected.

[Step 2] Forming a network of inter-dependencies
of errors: By comparing the new parse result (a
set of triplets) with the initial parse result, this
step creates a directed graph of errors in the ini-

1

Re-parse a sentence under the condition where
each error is forcibly corrected

1

2

3

Correct 2

1

1

Form inter-dependent error groups and
error propagation network

4 1

43

3Correct

Correct

Correct

disappear

disappear

disappear

disappear

,

,

,

1 2 3 4

ARG1

our work force todayon

Errors:

ARG1 ARG1ARG2

ARG2
ARG1

ARG1
ARG1

It has no bearing

2 3 4

5

5 4Correct disappear1 32, , ,

4,

2 4,,

2 3,,

5
Propagation

Resultant network:

Inter-dependent error group Inter-dependent error group

(a)

(b)

(c)

Inter-dependency among errors:
re-parse

re-parse

re-parse

re-parse

re-parse

Figure 10: Schema of capturing inter-
dependencies

tial parse. A directed link shows that correction of
the error in the starting node produces a new parse
result in which the error in the receiving node of
the link disappears.

[Step 3] Forming groups of inter-dependent errors:
This step recognizes a group of inter-dependent er-
rors which forms a directed circle in the network
created by[Step 2].

[Step 4] Forming a network of error propagation:
This step creates a new network by reducing each
of inter-dependent error groups of[Step 3] to a sin-
gle node.

Figure 10 illustrates how these steps work. In
this example, while “today” should modify the
noun phrase “our work force”, the initial parse
wrongly takes “today” as the head noun of the
whole noun phrase. As a result, there are five er-
rors; three wrong outputs, “ARG2” of “on” (Er-
ror 1), “ARG1” of “our” (Error 2) and “ARG1”
of “work” (Error 3). There is an extra triplet for
“ARG1” of “ force” (Error 4), and a triplet for
“ARG1” of “today” (Error 5) is missing (Figure
10 (a)).

Figure 10 (b) shows inter-dependencies among
the errors recognized by[Step 2], and Figure 10

185

ofCause categories of errors Errors Locations
Classified 2,078 1,671
[Argument selection]
Prepositional attachment 579 579
Adjunction attachment 261 261
Conjunction attachment 43 40
Head selection for noun phrase 30 30
Coordination 202 184
[Predicate type selection]
Preposition/Adjunction 108 54
Gerund acts as modifier/not 84 31
Coordination/conjunction 54 27
of arguments for preposition 51 17
Adjunction/adjunctive noun 13 13
[More structural errors]
To-infinitive for 120 22

modifier/argument of verb
Subject for passive sentence/not 8 3
[Others]
Comma 444 372
Relative clause attachment 102 38

Unclassified 2,631 −
Total 4,709 −

Table 3: Errors classified into cause categories

(c) shows what the resultant network looks like.
An inter-dependent error group of 1, 2, 3 and 4 is
recognized by[Step 3] and represented as a single
node. Error 5 is propagated to this node in the final
network.

5 Experiments

We applied our methods to the analyses of actual
errors produced by Enju. This version of Enju was
trained on the Penn Treebank (Marcus et al., 1994)
Section 2-21.

5.1 Observation of identified cause categories

We first parsed sentences in PTB Section 22, and
based on the observation of errors, we defined the
patterns in Section 4. We then parsed sentences in
Section 0. The errors in Section 0 were mapped to
error cause categories by the pattern rules created
for Section 22.

Table 3 summarizes the distribution across the
causes of errors. The left and right numbers in the
table show the number of erroneous triplets clas-
sified into the categories and the frequency of the
patterns matched, respectively. The table shows
that, with the 14 pattern rules, we successfully ob-
served 1,671 hits and 2,078 erroneous triplets are
dealt with by these hits. This amounts to more
than 40% erroneous triplets (2,078/4,709). Since
this was the first attempt, we expect the coverage
can be easily improved by adding new patterns.

Evaluated sentences (erroneous) 1,811 (1,009)
Errors (Correctable) 4,709 (3,085)
Inter-dependent error groups 1,978
Correction propagations 501
F-score (LP/LR) 90.69 (90.78/90.59)

Table 4: Summary of inter-dependencies

�

���

����

����

� � � � � � � 	
 ��

��
��������������������������������

�
�
�
�
�
�
�
�
�

Figure 11: Frequency of each size of inter-
dependent error group

From the table, we can observe that a signif-
icant portion of errors is covered by simple types
of error causes such as PP-attachment and Adjunct
attachment. They are simple in the sense that the
number of erroneous triplets treated and the fre-
quency of the pattern application coincide. How-
ever, their conceived significance may be over-
rated. These simple types may constitute parts of
more complex error causes. Furthermore, since
pattern rules for these simple causes are easy to
prepare and have already been covered by the cur-
rent version, most of the remaining 60% of the er-
roneous triplets are likely to require patterns for
more complex causes.

On the other hand, patterns for complex causes
collect more erroneous triplets once they are fired.
This tendency is more noticeable in structural pat-
terns of errors. For example, in “To-infinitive for
modifier/argument of verb,” there were only 22
hits for the pattern, while the number of erroneous
triplets is 120. This implies five triplets per hit.
This is because, in a deep parser, a wrong choice
between adjunct or complement interpretations of
a to-infinitival clause affects the interpretation of
implicit arguments in the clause through control.
Though expected, such detailed observations show
how differences between shallow and deep parsers
may affect evaluation methods and the methods of
analyzing errors.

5.2 Observation of inter-dependencies

In the inter-dependency experiments we per-
formed, some errors could not be forcibly cor-
rected by our method. This was because the parser

186

The asbestos fiber , crocidolite , is unusually resilient once

it enters the lungs , with even brief exposures to it causing

symptoms that show up decades later , researchers said .

(a)

(b)

(c) (d)

… fiber ,: crocidolite …app_2args

… fiber ,: crocidolite …coord_2args

Correct answer:

Parser output:

… is usually resilient … the lungs , with …

… symptoms that show : up decades later …

Parser output:

Correct answer:
verb_1arg

… symptoms that show : up decades later …verb_2args

… it causing symptoms that show up decades later …

Sentence:

Inter-dependent error group (a):

Inter-dependent error group (b):

Inter-dependent error group (c):

Inter-dependent error group (d):

ARG1 ARG2

ARG1 ARG2

ARG1
ARG1

ARG1ARG1

ARG1

ARG1

ARG1

ARG2

ARG1

ARG1

Figure 12: Obtained inter-dependent error groups

we use prunes less probable parse substructures
during parsing. In some cases, even if we gave a
large positive value to a triplet which should be in-
cluded in the final parse, parsing paths which can
contain the triplet were pruned before. In this re-
search, we ignored such errors as “uncorrectable”
ones, and focused on the remaining “correctable”
errors.

Table 4 shows a summary of the analysis. As the
previous experiment, Enju produced 4,709 errors
for Section 0, of which 3,085 were correctable. By
applying the method illustrated in Section 4.2, we
obtained 1,978 inter-dependent error groups and
501 correction propagation relationships among
the groups.

Figure 11 shows the frequency of the size of
inter-dependent error groups. About half of the
groups contain only single errors which could
have only one-way correction propagations with
other errors or were completely independent of
other errors.

Figure 12 shows an example of the extracted
inter-dependent error groups. For the sentence
shown at the top, Enju gave seven errors. By ap-
plying the method in Section 4.2, these errors were
grouped into four inter-dependent error groups (a)
to (d), and no correction propagations were de-

She says she offered Mrs. Yeargin a quiet resignation and

thought she could help save her teaching certificate .
(a) (b)

Sentence:

Inter-dependent error group (a):

Inter-dependent error group (b):

Correct answer:

Parser output:

… she could help save : her teaching certificate .verb_3args

… she could help save : her teaching certificate .verb_2args

Correct answer:

Parser output:

… thought she could help : save …verb_2args

… thought she could help : save …aux_2args

Correction propagation from (a) to (b)

ARG2

ARG2

ARG2

ARG2

ARG1 ARG2

ARG1 ARG2

ARG3
ARG1

ARG1

ARG2

ARG2

ARG1

Figure 13: Correction propagation between ob-
tained inter-dependent error groups

tected among them. Group (a) contains two errors
on the comma’s local behavior as apposition or co-
ordination. Group (b) contains the errors on the
words which give almost the same attachment be-
haviors. Group (c) contains the errors on whether
the verb “show” took “decades” as its object or
not. Group (d) contains an error on the attachment
of the adverb “later”. Regardless of the overlap
of the regions in the sentence for (c) and (d), our
approach successfully grouped the errors into two
independent groups. The method shows that the
errors in each group are inter-dependent, but er-
rors in one group are independent of those in an-
other. This enables us to concentrate on each of
the co-occurring error groups separately, without
minding the errors in other groups.

Figure 13 shows another example. In this ex-
ample, eight errors for a sentence were classified
into two inter-dependent error groups (a) and (b).
Moreover, it shows that the correction of group (a)
results in correction of group (b).

The errors in group (a) were related to the
choice as to whether “help” had an auxiliary or
a pure verbal role. The errors in group (b) were
related with the choice as to whether “save” took
only one object (“her teaching certificate”) or two
objects (“her” and “teaching certificate”). Be-
tween group (a) and (b), no “structural” con-

187

It invests heavily in dollar-denominated securities overseas and

is currently waiving management fees , which boosts its yield .

(a)

(b)

Sentence:

Inter-dependent error group (a):

Inter-dependent error group (b):

Adjunction attachmentCause categories:

Comma,
Relative clause attachment

Cause categories:

It invests heavily in … securities overseas : …adj_1arg

ARG1

ARG1

… is currently waiving management fees , which boosts …

ARG1ARG1ARG1

ARG1
ARG1

ARG1

Figure 14: Combining our two methods (1)

flict could arise when correcting only each of the
groups. We could then hypothesize that the cor-
rection propagation between the two groups were
caused by the disambiguation model.

By dividing the errors into minimal units and
clarifying the effects of correcting a target error,
we can conclude that the inter-dependent group
(a) should be handled first for effective improve-
ment of the parser. In such a way, obtained inter-
dependencies among errors can suggest an effec-
tive strategy for parser improvement.

5.3 Combination of the two methods

By combining the two methods described in Sec-
tion 4.1 and 4.2, we can see how each error cause
affects the performance of a parser. The results
are summarized in Table 5. The leftmost column
in the table shows the numbers of errors in terms
of triplets, which are the same as the leftmost col-
umn in Table 3.

The “independence rate” shows the ratio of er-
roneous triplets in the category which are not af-
fected by correction of other erroneous triplets. On
the other hand, the “correction effect” shows how
many erroneous triplets would be corrected if one
of the erroneous triplets in the category was cor-
rected. These two columns are computed by using
the error propagation network constructed in Sec-
tion 4.2. That is, by using the network we obtain
the number of erroneous triplets to be corrected if
a given erroneous triplet in the category was cor-
rected, sum up these numbers and then calculate
the average number of expected side-effect correc-

Clark J. Vitulli was named senior vice president and general

manager of this U.S. sales and marketing arm of Japanese

auto Maker Mazda Motor Corp .

(b)(a)

Sentence:

Inter-dependent error group (a):

Inter-dependent error group (b):

Coordination (fragment)
Head selection for noun phrase

Cause categories:

… president … of this U.S. sales and : …coord_2args

ARG1

ARG1

of this : U.S. sales and : marketing armdet_1arg coord_2args

ARG2ARG1
ARG2

ARG1

ARG2
ARG1 ARG1 ARG1 ARG2

Correction propagation from (a) to (b)

Coordination (fragment)Cause categories:

Figure 15: Combining our two methods (2)

tion per erroneous triplet in the category.
Figure 14 shows an example ofindependenter-

rors. For the sentence at the top, the parser pro-
duced four errors. The method in Section 4.2
successfully discovered two inter-dependent error
groups (a) and (b). There was no error propaga-
tion relation between the two groups. On the other
hand, the method in Section 4.1 associated all of
these four errors with the categories of “Adjunc-
tion attachment,” “Comma” and “Relative clause
attachment,” and the error for the “Adjunction at-
tachment” corresponds to the inter-dependent er-
ror group (a). Because this group is not a receiving
node of any propagation in the network, the error
is regarded as an “independent” one.

Independenterrors mean that, if a new parsing
model could correct them, the correction would
not be destroyed by other errors which remain in
the new parsing model.

The correction effectshows the opposite and
desirable effect of the nature of the dependency
among errors which the propagation network rep-
resents. This means that, if one of erroneous
triplets in the category was corrected, the correc-
tion would be amplified through propagation, and
as a result other errors would also be corrected.

We show an example of the correction effect in
Figure 15. In the figure, the parser had six errors;
three false outputs for ARG1 of “and,” “ this” and

188

Independence Correction Expected range
Cause categories of errors # of errors rate (%) effect (%) of error correction
[Argument selection]

Prepositional attachment 579 74.8 144.3 625.0 - 835.5
Adjunction attachment 261 56.6 179.6 265.3 - 468.8
Conjunction attachment 43 36.4 239.4 37.5 - 102.9
Head selection for noun phrase 30 0.0 381.8 0.0 - 114.5
Coordination 202 42.5 221.2 189.9 - 446.8

[Predicate type selection]
Preposition/Adjunction 108 41.7 158.3 71.3 - 171.0
Gerund acts as modifier/not 84 46.2 159.0 61.7 - 133.0
Coordination/conjunction 54 44.4 169.4 40.6 - 91.5
of arguments for preposition 51 95.8 108.3 52.9 - 55.2
Adjunction/adjunctive noun 13 75.0 125.0 12.2 - 16.3

[More structural errors]
To-infinitive for 120 36.0 116.0 50.1 - 139.2

modifier/argument of verb
Subject for passive sentence/not 8 37.5 112.5 3.4 - 9.0

[Others]
Comma 444 39.5 194.4 341.0 - 863.1
Relative clause attachment 102 32.1 141.7 46.4 - 144.5

Table 5: Correction propagations between errors for each cause category and the other errors

“U.S.,” two false outputs for ARG2 of “of” and
“and,” and a missing output for ARG1 of “sales.”
Our method for inter-dependencies classified these
errors into two inter-dependent error groups (a)
and (b), and extracted an correction propagation
from (a) to (b). Our method for cause categories,
on the other hand, associated two errors of “and”
with the category “Coordination” and one error of
“ this” with the category “Head selection for noun
phrase.” When we correct an error in the interde-
pendent error group (a), the correction leads to not
only correction of the other errors in (a) but also
correction of the error in (b) via correction prop-
agation from (a) to (b). Therefore, a correction
effect of an error in group (a) results in 6.0.

On the basis of the above considerations, we es-
timated the range of the effect which an error cor-
rection in each category has. The minimum of ex-
pected correction range in Table 5 is given by the
product of the number of erroneous triplets in the
category, the independence rate and the correction
effect. On the other hand, the maximum is given
by the product of the number of erroneous triplets
in the category and the correction effect. This as-
sumes that all corrections made in the category are
not cancelled by other errors, while the figure in
the minimum are based on the assumption that all
corrections made in the category, except for the in-
dependent ones, are cancelled by other errors.

Table 5 would thus suggest which categories
should be resolved with high priority, from three
points of view: the number of errors in the cat-

egory, the number of independent errors, and the
correction effect.

6 Further applications of our methods

In this section, as an example of the further ap-
plication of our methods, we attempt to analyze
parsing behaviors in domain adaptation from the
viewpoints of error cause categories.

In Hara et al. (2007), we proposed a method for
adapting Enju to a target domain, and then suc-
ceeded in improving the parser performance for
the GENIA corpus (Kim et al., 2003), a biomed-
ical domain. Table 6 summarizes the parsing re-
sults for three types of settings respectively: pars-
ing PTB with Enju (“Enju for PTB”), parsing GE-
NIA with Enju (“Enju for GENIA”), and parsing
GENIA with the adapted model (“Adapted for GE-
NIA”). We then analyzed the performance transi-
tion among these settings from the viewpoint of
the cause categories given in Section 4.1 (Table 7).
In order to compare the error frequencies among
different settings, we took the percentage of target
errors in all of the evaluated triplets. The signed
values between the two settings show how much
the errors increased when moving from the left set-
tings to the right ones.

When we focus on the transition from “Enju
for PTB” to “Enju for GENIA,” we can observe
that the change in the domain resulted in a dif-
ferent distribution of error causes. The errors for
most categories increased, and in particular, the er-
rors for “Prepositional attachment” and “Coordi-

189

Enju for PTB Enju for GENIA Adapted for GENIA
Evaluated sentences 1,811 842 842
Evaluated triplets 44,934 22,230 22,230
Errors 4,709 3,120 2,229
F-score (LP/LR) 90.69 (90.78/90.59) 87.41 (87.60/87.22) 90.93 (91.10/90.76)

Table 6: Summary of parsing performances for domain and model variations

Rate of errors against total examined relations in test set (%)Cause categories of errors Enju for PTB −→ Enju for GENIA −→ Adapted for GENIA
Classified 4.62 +2.60↗ 7.22 −1.80↘ 5.42
[Argument selection]
Prepositional attachment 1.29 +0.93↗ 2.22 −0.64↘ 1.58
Adjunction attachment 0.58 +0.38↗ 0.96 −0.20↘ 0.76
Conjunction attachment 0.10 −0.04↘ 0.06 −0.04↘ 0.02
Head selection for noun phrase 0.07 +0.17↗ 0.24 −0.06↘ 0.18
Coordination 0.45 +0.59↗ 1.04 −0.25↘ 0.79
[Predicate type selection]
Preposition/Adjunction 0.24 +0.08↗ 0.32 −0.06↘ 0.26
Gerund acts as modifier/not 0.19 −0.07↘ 0.12 +0.01↗ 0.13
Coordination/conjunction 0.12 ±0.00→ 0.12 −0.07↘ 0.05
of arguments for preposition 0.11 −0.02↘ 0.09 ±0.00↘ 0.09
Adjunction/adjunctive noun 0.03 +0.19↗ 0.22 −0.08↘ 0.14
[More structural errors]
To-infinitive for 0.27 +0.02↗ 0.29 −0.09↘ 0.20

modifier/argument of verb
Subject for passive sentence/not 0.02 +0.34↗ 0.36 +0.01↗ 0.37
[Others]
Comma 0.99 −0.03↘ 0.96 −0.31↘ 0.65
Relative clause attachment 0.23 +0.05↗ 0.28 −0.03↘ 0.25

Unclassified 5.86 +0.96↗ 6.82 −2.22↘ 4.60
Total (Classified + Unclassified) 10.48 +3.56↗ 14.04 −4.01↘ 10.03

Table 7: Error distributions for domain and model variations

nation” increased remarkably. On the other hand,
the transition from “Enju for GENIA” to “Adapted
for GENIA” shows that their adaptation method
succeeded in reducing the errors for most cate-
gories to some extent. However, for “Preposi-
tional attachment,” “Coordination,” and “Subject
for passive sentence or not,” there were still no-
ticeable gaps in error distribution between “Enju
for PTB” and “Adapted for GENIA.” This would
mean that the adapted model requires further per-
formance improvement if we expect the same level
of performances for those categories as the parser
originally obtained in PTB.

We could thus capture some biases of cause
categories which occur in domain transition or
in domain adaptation, which would not be clari-
fied by F-score evaluation methods. With inter-
dependencies given by the method described in
Section 4.2, the above analysis would be useful
for effectively exploring further adaptation.

7 Related works

Although there have been many researchers who
analyzed errors in their own systems in the experi-

ments, there has been little research which focused
on error analysis itself.

In the field of parsing, McDonald and Nivre
(2007) compared parsing errors between graph-
based and transition-based parsers. They consid-
ered accuracy transitions from various points of
view, and the obtained statistical data suggested
that error propagation seemed to occur in the
graph structures of parsing outputs. Our research
proceeded one step further and attempted to re-
veal the nature of the propagations. In examin-
ing the combination of the two types of parsing,
they utilized approaches similar to our method for
capturing inter-dependencies of errors. They al-
lowed a parser to give only structures produced by
the parsers and utilized the ideas for evaluating the
parser’s potentials, whereas we utilized it for ob-
serving error propagations.

Dredze et al. (2007) showed that many of the
parsing errors in domain adaptation tasks may
come from inconsistencies between the annota-
tions of training resources. This would sug-
gest that just error comparisons without consider-
ing the inconsistencies could lead to a misunder-

190

standing of what happens in domain transitions.
The summarized error cause categories and inter-
dependencies given by our methods would be use-
ful clues for extracting such domain-dependent er-
ror phenomena.

When we look into other research areas in nat-
ural language processing, Giménez and M̀arquez
(2008) proposed an automatic error analysis ap-
proach in machine translation (MT) technologies.
They developed a metric set which could capture
features in MT outputs at different linguistic lev-
els with different levels of granularity. Like we
considered parsing systems, they explored ways to
resolve costly and rewardless error analysis in the
MT field. One of their objectives was to enable
researchers to easily obtain detailed linguistic re-
ports on the behavior of their systems, and to con-
centrate on analyses for the system improvements.

8 Conclusion

We proposed two methods for analyzing parsing
errors. One is to assign errors to cause categories,
and the other is to capture inter-dependencies
among errors. The first method defines error pat-
terns to identify cause categories and then asso-
ciates errors involved in the patterns with the cor-
responding categories. The second method re-
parses a sentence with a target error corrected, and
regards errors corrected together as dependent on
the target.

In our experiments with an HPSG parser, we
successfully associated more than 40% of the er-
rors with 14 cause categories, and captured 1,978
inter-dependent error groups. Moreover, the com-
bination of our methods gave a more detailed error
analysis for effective improvement of the parser.

In our future work, we would give more pat-
tern rules for classifying a large percentage of er-
rors into cause categories, and incorporateuncor-
rectableerrors into inter-dependency analysis. Af-
ter improving the analytical facilities of our indi-
vidual methods, we would explore the possibil-
ity of combining the methods for obtaining more
powerful and detailed clues on how to improve
parsing performance.

Acknowledgments

This work was partially supported by Grant-in-Aid
for Specially Promoted Research (MEXT, Japan).

References

Mark Dredze, John Blitzer, Partha Pratim Talukdar,
Kuzman Ganchev, João V. Graça, and Fernando
Pereira. 2007. Frustratingly hard domain adapta-
tion for dependency parsing. InProceedings of the
CoNLL Shared Task Session of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 1051–1055.

Jeśus Giḿenez and Llúıs Màrquez. 2008. Towards het-
erogeneous automatic mt error analysis. InProceed-
ings of the Sixth International Language Resources
and Evaluation (LREC’08), pages 1894–1901.

Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii.
2007. Evaluating impact of re-training a lexical dis-
ambiguation model on domain adaptation of an hpsg
parser. InProceedings of 10th International Confer-
ence on Parsing Technologies (IWPT 2007), pages
11–22.

Ronald M. Kaplan and Joan Bresnan. 1995. Lexical-
functional grammar: A formal system for gram-
matical representation.Formal Issues in Lexical-
Functional Grammar, pages 29–130.

Jin-Dong Kim, Tomoko Ohta, Yuka Teteisi, and
Jun’ichi Tsujii. 2003. GENIA corpus - a seman-
tically annotated corpus for bio-textmining.Bioin-
formatics, 19(suppl. 1):i180–i182.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert Macintyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The Penn Treebank: Annotating
predicate argument structure. InProceedings of
ARPA Human Language Technology Workshop.

Ryan McDonald and Joakim Nivre. 2007. Charac-
terizing the errors of data-driven dependency pars-
ing models. InProceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 122–131.

Yusuke Miyao and Jun’ichi Tsujii. 2005. Probabilis-
tic disambiguation models for wide-coverage HPSG
parsing. InProceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics
(ACL), pages 83–90.

Takashi Ninomiya, Takuya Matsuzaki, Yoshimasa Tsu-
ruoka, Yusuke Miyao, and Jun’ichi Tsujii. 2006.
Extremely lexicalized models for accurate and fast
HPSG parsing. InProceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 155–163.

Carl J. Pollard and Ivan A. Sag. 1994.Head-Driven
Phrase Structure Grammar. University of Chicago
Press.

Mark Steedman. 2000.The Syntactic Process. THE
MIT Press.

191

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 192–201,
Paris, October 2009. c©2009 Association for Computational Linguistics

Clustering Words by Syntactic Similarity Improves Dependency
Parsing of Predicate-Argument Structures

Kenji Sagae and Andrew S. Gordon

Institute for Creative Technologies
University of Southern California

13274 Fiji Way
Marina del Rey, CA 90292

{sagae,gordon}@ict.usc.edu

Abstract

We present an approach for deriving syntactic
word clusters from parsed text, grouping
words according to their unlexicalized syntac-
tic contexts. We then explore the use of these
syntactic clusters in leveraging a large corpus
of trees generated by a high-accuracy parser to
improve the accuracy of another parser based
on a different formalism for representing a dif-
ferent level of sentence structure. In our ex-
periments, we use phrase-structure trees to
produce syntactic word clusters that are used
by a predicate-argument dependency parser,
significantly improving its accuracy.

1 Introduction

Syntactic parsing of natural language has ad-
vanced greatly in recent years, in large part due
to data-driven techniques (Collins, 1999;
Charniak, 2000; Miyao and Tsujii, 2005;
McDonald et al., 2005; Nivre et al., 2007) cou-
pled with the availability of large treebanks. Sev-
eral recent efforts have started to look for ways
to go beyond what individual annotated data sets
and individual parser models can offer, looking
to combine diverse parsing models, develop
cross-framework interoperability and evaluation,
and leverage the availability of large amounts of
text available. Two research directions that have
produced promising improvements on the accu-
racy of data-driven parsing are: (1) combining
different parsers using ensemble techniques, such
as voting (Henderson and Brill, 1999; Sagae and
Lavie, 2006; Hall et al., 2007) and stacking
(Nivre and McDonald, 2008; Martins et al.,
2008), and (2) semi-supervised learning, where
unlabeled data (plain text) is used in addition to a

treebank (McClosky et al., 2006; Koo et al.,
2008).

In this paper we explore a new way to obtain
improved parsing accuracy by using a large
amount of unlabeled text and two parsers that use
different ways of representing syntactic structure.
In contrast to previous work where automatically
generated constituent trees were used directly to
train a constituent parsing model (McClosky et
al., 2006), or where word clusters were derived
from a large corpus of plain text to improve a
dependency parser (Koo et al., 2008), we use a
large corpus of constituent trees (previously gen-
erated by an accurate constituent parser), which
we use to produce syntactically derived clusters
that are then used to improve a transition-based
parser that outputs dependency graphs that re-
flect predicate-argument structure where words
may be dependents of more than one parent.
This type of representation is more general than
dependency trees (Sagae and Tsujii, 2008;
Henderson et al., 2008), and is suitable for repre-
senting both surface relations and long-distance
dependencies (such as control, it-cleft and tough
movement).

The first contribution of this work is a novel
approach for deriving syntactic word clusters
from parsed text, grouping words by the general
syntactic contexts where they appear, and not by
n-gram word context (Brown et al., 1992) or by
immediate dependency context (Lin, 1998). Un-
like in clustering approaches that rely on lexical
context (either linear or grammatical) to group
words, resulting in a notion of word similarity
that blurs syntactic and semantic characteristics
of lexical items, we use unlexicalized syntactic
context, so that words are clustered based only
on their syntactic behavior. This way, we at-
tempt to generate clusters that are more concep-
tually similar to part-of-speech tags or supertags

192

(Bangalore and Joshi, 1999), but organized hier-
archically to provide tagsets with varying levels
of granularity.

Our second contribution is a methodology for
leveraging a high-accuracy parser to improve the
accuracy of a parser that uses a different formal-
ism (that represents different structural informa-
tion), without the need to process the input with
both parsers at run-time. In our experiments, we
show that we can improve the accuracy of a fast
dependency parser for predicate-argument struc-
tures by using a corpus which was previously
automatically annotated using a highly accurate
but considerably slower phrase-structure tree
parser. This is accomplished by using the slower
parser only to parse the data used to create the
syntactic word clusters. During run-time, the
dependency parser uses these clusters, which
encapsulate syntactic knowledge from the
phrase-structure parser. Although our experi-
ments focus on the use of phrase-structure and
dependency parsers, the same framework can be
easily applied to data-driven parsing using other
syntactic formalisms, such as CCG or HPSG.

2 Clustering by Syntactic Similarity

We developed a new approach to clustering
words according to their syntactic similarity. Our
method involves the use of hierarchical agglom-
erate clustering techniques using the calculated
syntactic distance between words. Syntactic dis-
tance between words is computed as the cosine
distance between vector representations of the
frequency of unique parse tree paths emanating
from the word in a corpus of parse trees. In this
research, we employ a novel encoding of syntac-
tic parse tree paths that includes direction infor-
mation and non-terminal node labels, but does
not include lexical information or part-of-speech
tags. Consequently, the resulting hierarchy
groups words that appear in similar places in
similar parse trees, regardless of its assigned
part-of-speech tag. In this section we describe
our approach in detail.

2.1 Parse tree path representation

Gordon and Swanson (2007) first described a
corpus-based method for calculating a measure
of syntactic similarity between words, and dem-
onstrated its utility in improving the performance
of a syntax-based Semantic Role Labeling sys-
tem. The central idea behind their approach was
that parse tree paths could be used as features
for describing a word’s grammatical behavior.

Parse tree paths are descriptions of tree transi-
tions from a terminal (e.g. a verb) to a different
node in a constituent parse tree of a sentence.
Parse tree paths gained popularity in early Se-
mantic Role Labeling research (Gildea and Juraf-
sky, 2002), where they were used as features de-
scribing the relationship between a verb and a
particular semantic role label. For example, Fig-
ure 1 illustrates a parse tree path between a verb
and a semantically related noun phrase.

Gordon and Swanson viewed parse tree paths
as features that could be used to describe the syn-
tactic contexts of words in a corpus. In their ap-
proach, all of the possible parse tree paths that
begin at a given word were identified in a large
set of automatically generated constituent parse
trees. The normalized frequency counts of
unique parse tree paths were combined into a
feature vector that describes the location that the
given word appears in the set of parse trees. This
syntactic profile was then compared with other
profiles using a cosine distance function, produc-
ing a quantitative value of word similarity. In
this manner, the syntactic similarity between the
verb “pluck” and the verb “whisk” was calcu-
lated as 0.849.

One drawback of the approach of Gordon and
Swanson was the inclusion of part-of-speech tags
in the encoding of the parse tree paths. As a con-
sequence, the cosine distance between words of
different classes was always zero, regardless of
their similarities in the remainder of the paths.
To correct this problem in our current research,
we removed part-of-speech tags from the encod-
ing of parse tree paths, deleting the tag that be-
gins each path and replacing tags when they ap-
pear at the end of a path with a generic terminal
label.

A second drawback of the approach of Gordon
and Swanson is that the path directionality is un-
derspecified. Consider the parse tree paths that

Figure 1: An example parse tree path from
the verb ate to the argument NP He, repre-
sented as ↑VBD↑VP↑S↓NP.

193

emanate from each of the words “some” and
“pancakes” in Figure 1. In the original encoding,
the paths for each of these words would be iden-
tical (if the part of speech tags were removed),
despite their unique locations in this parse tree.
To correct this problem in our current research,
we elaborated the original set of two path identi-
fiers (↑ and ↓) to a set of six tags that included
information about the direction of the transition.
Up-Right () and Down-Left () transition are
used to and from nodes that are the first constitu-
ent of a non-terminal. Up-Left () and Down-
Right () transitions are used to and from nodes
that are the last constituent of a non-terminal.
Transitions to and from all other constituent
nodes are labeled Up-Middle (↑) or Down-
Middle (↓), accordingly. For example, we repre-
sent the parse tree path depicted in Figure 1 as:
VPSNP.

2.2 Profiles for BLLIP WSJ Corpus words

As in the previous work of Gordon and Swanson
(2007), we characterize the syntactic properties
of words as the normalized frequency of unique
parse tree paths emanating from the word in a
large corpus of syntactic parse trees.

In our research, we used the Brown Labora-
tory for Linguistic Information Processing
(BLLIP) 1987-89 WSJ Corpus Release 1
(Charniak et al., 2000), which contains approxi-
mately 30 million words of Wall Street Journal
news articles, parsed with Charniak (2000)
parser. Although the trees in the BLLIP corpus
are enriched with function tags and empty nodes,
we remove this information, leaving only the
trees produced by the Charniak parser. We iden-
tified the top five thousand most frequent words
(or, more generally, types, since these also in-
clude other sequences of characters, such as
numbers and punctuation) in this corpus, treating
words that differed in capitalization or in as-
signed part-of-speech tag as separate types.
These five thousand types correspond to ap-
proximately 85% of the tokens in the BLLIP
corpus. For each token instance of each of these
five thousand types, we identified every occur-
ring parse tree path emanating from the token in
each of the sentences in which it appeared. The
most frequent type was the comma, which ap-
peared 2.2 million times and produced 118 mil-
lion parse tree paths. The least frequent token in
this set was the singular noun “pollution,” with
731 instances producing 35,185 parse tree paths.

To generate syntactic profiles for a given type,
the frequency of unique parse tree paths was ta-

tabulated, and then normalized by dividing this
frequency by the number of tokens of that type in
the corpus. To reduce the dimensionality of these
normalized frequency vectors, parse tree paths
that appeared in less than 0.2% of the instances
were ignored. This threshold value produced
vectors with dimensionality that was comparable
across all five thousand types, and small enough
to process given our available computational re-
sources. The mean vector size was 2,228 dimen-
sions, with a standard deviation of 734.

2.3 Distance calculation and clustering

Pairwise distances between each of the five thou-
sand types were computed as the cosine distance
between their profile vectors. We then grouped
similar types using hierarchical agglomerate
clustering techniques, where distance between
clusters is calculated as mean distance between
elements of each cluster (average link cluster-
ing).

The three most similar types (the first 2 clus-
tering steps) consisted of the capitalized subordi-
nating conjunctions “Although,” “While,” and
“Though.” The two most dissimilar types (the
last to be included in any existing cluster) were
the symbol “@” and the question mark.

2.4 Cluster label selection

Hierarchical agglomerate clustering produces a
binary-branching tree structure, where each
branch point is ordered according to a similarity
value between 0 and 1. In our clustering of the
top five thousand most frequent types in the
BLLIP corpus, there are five thousand leaf nodes
representing individual tokens, and 4999 branch
points that cluster these types into a single tree.
We label each of these 4999 branch points, and
treat these cluster labels as features of the types
that they dominate. For example, the singular
noun “house” participates in 114 clusters of in-
creasing size. The syntactic features of this type
can therefore be characterized by 114 cluster la-
bels, which overlap with varying degrees with
other tokens in the set.

We view these cluster labels as conceptually
similar to traditional part-of-speech tags in that
they are indicative of the syntactic contexts in
which words are likely to appear. Because
words are clustered based on their unlexicalized
syntactic contexts, the resulting clusters are more
likely to reflect purely syntactic information than
are clusters derived from lexical context, such as
adjacent words (Brown et al., 1992) or immedi-
ate head-word (Lin, 1998). However, the extent

194

to which these syntactic contexts are specified
can vary from a more general to a more fine-
grained level than that of parts-of-speech. As
clusters become more fine-grained, they become
more similar to supertags (Bangalore and Joshi,
1999). Clusters that represent more specific syn-
tactic contexts can encode information about, for
example, subcategorization. As these labels are
derived empirically from a large corpus of syn-
tactic parse trees, they accurately represent syn-
tactic distinctions in real discourse at different
granularities, in contrast to the single arbitrary
granularity of theoretically derived part-of-
speech tags used in existing treebanks (Marcus et
al., 1993).

While it is sometimes useful to view types as
having multiple part-of-speech tags at different
levels of granularity (e.g. the 114 tags for the
token “house”), it is often useful to select a sin-
gle level of granularity to use across all tokens.
For example, it is useful to know which one of
the 114 cluster labels for “house” to use if ex-
actly 100 part-of-speech distinctions are to be
made among tokens in the set. These cluster la-
bels can be identified by slicing the tree at the
level for which there are exactly 100 branches,
then using the label of the first branch point in
each branch as the label for all of its leaf-node
types, or the leaf-node itself in the case where no
further branching exists. Given our hierarchical
clustering, there are five thousand different ways
to slice the tree in this manner, yielding sets of
cluster labels (and un-clustered types) that vary
in size from 1 to 5000. We identified these sets
for use in the experiments described in the next
sections.

Figure 2 shows a dendrogram representation
of the cluster tree when it is sliced to produce
exactly 60 clusters, 19 of which are individual
types. For the other 41 clusters, we show only
the most frequent word in the cluster and the
number of additional words in the cluster. The
scale line in the lower left of Figure 2 indicates
the horizontal length of a calculated similarity
between clusters of 0.1.

3 Transition-based dependency parsing
with word clusters

The clusters obtained with the approach de-
scribed in section 2 provide sets of syntactic tags
with varying levels of granularity. Previous
work by Koo et al. (2008) and Miller et al.
(2004) suggests that different levels of cluster
granularity may be useful in natural language

Figure 2: A hierarchical clustering of the top
five thousand tokens in the BLLIP corpus, cut
at 60 clusters.

195

processing tasks with discriminative training.
We add the syntactic clusters as features in a
transition-based parser that uses a classifier to
decide among shift/reduce parser actions based
on the local context of the decision. This transi-
tion-based parsing approach has been found to be
efficient and accurate in dependency parsing of
surface syntactic dependencies (Yamada and
Matsumoto, 2003; Nivre et al., 2004; Hall et al.,
2007) and predicate-argument parsing (Hender-
son et al., 2008; Sagae and Tsujii, 2008).

Our experiments are based on an implementa-
tion of Sagae and Tsujii (2008)’s algorithm for
basic shift-reduce parsing with multiple heads,
which we use to identify predicate-argument de-
pendencies extracted from the HPSG Treebank
developed by Miyao et al. (2004). Using this
data set allows for a comparison of our results
with those obtained in previous work on data-
driven HPSG predicate-argument analysis, while
demonstrating the use of our clustering approach
for cross-framework parser improvement, since
the clusters were derived from syntactic trees in
Penn Treebank format (as produced by the Char-
niak parser, without empty nodes, co-indexation
or function tags), and used in the identification of
HPSG Treebank predicate-argument
dependencies. Figure 3 shows a predicate-
argument dependency structure following the
annotation standard of the HPSG Treebank,
where arrows point from head to modifier. We
note that unlike in the widely known PropBank
(Palmer et al., 2005) predicate-argument struc-
tures, argument labels start from ARG1 (not
ARG0), and predicate-argument relationships are
annotated for all words. One difference between
in our implementation is that, instead of maxi-
mum entropy classification used by Sagae and
Tsujii, we perform parser action classification
using the averaged perceptron (Freund and

Schapire, 1999; Collins, 2002), which allows for
the inclusion of all of Sagae and Tsujii’s fea-
tures, in addition to a set of cluster-based fea-
tures, while retaining fast training times.

We now describe the parsing approach, start-
ing with the dependency DAG parser that we use
as a baseline, followed by how the syntactic clus-
ter features were added to the baseline parser.

3.1 Arc-standard parsing for dependency
DAGs

Sagae and Tsujii (2008) describe two algorithms
for dependency parsing with words that have
multiple heads. Each corresponds to extensions
of Nivre (2004)’s arc-standard and arc-eager al-
gorithms for dependency (tree) parsing. In our
experiments, we used an implementation of the
arc-standard extension.

Nivre’s arc-standard dependency parsing algo-
rithm uses a stack to process the input string one
word at a time, from left to right, using two gen-
eral types of parser action: shift (push the next
input token onto the stack), and reduce (create a
dependency arc between the top two items on the
stack, and pop the item marked as the depend-
ent). Reduce actions are subdivided into reduce-
right and reduce-left, indicating which of the two
items on the top of the stack is the head, and
which is the dependent in the newly formed de-
pendency arc. These two reduce actions can be
further subdivided to reflect what type of de-
pendency arc is created, in the case of labeled
dependency parsing. The extension for allowing
multiple heads per word consists of the addition
a new type of parser action: attach, which creates
a dependency arc without removing anything
from the stack. As with reduce actions, there are
two types of attach: attach-left which creates a
dependency arc between the top two items on the
stack such that the item on top is the head, and

Figure 3: Predicate-argument dependency structure following the HPSG Treebank standard.

196

right-attach, which creates a dependency arc be-
tween the top two items on the stack such that
the top item is the dependent, then pops it from
the stack and unshifts it back into the input. Fi-
nally, this algorithm for unlabeled graphs can be
extended to produce labeled dependencies in the
same way as Nivre’s algorithm, by replacing the
reduce and attach actions with sets of actions that
perform the reduce or attach operation and also
name the label of the arc created. Sagae and
Tsujii (2008) provide a more detailed description
of the algorithm, including an example that illus-
trates the new attach actions.

This basic algorithm is only capable of pro-
ducing labeled directed acyclic graphs where, if
the nodes (which correspond to words) are
placed on a left to right sequence on a horizontal
line in the order in which the words appear in the
input sentence, all arcs can be drawn above the
nodes without crossing. This corresponds to the
notion of projectivity that similarly limits the
types of trees produced by Nivre’s algorithm.
Just as in dependency parsing with tree struc-
tures, a way to effectively remove this limitation
is the use of pseudo-projective transformations
(Nivre and Nilsson, 2005), where arcs that cross
have their heads moved towards the root and
have their labels edited to reflect this change,
often making it reversible. Once crossing arcs
have been “lifted” so that no crossing arcs re-
main, the “projectivized” structures are used to
train a parsing model. Projective structures pro-
duced by this model can be “deprojectivized”
through the use of the edits in the arc labels, in
an attempt to produce structures that conform to
the scheme in the original data. Sagae and Tsujii
also propose a simple arc reversal transform,
which simply reverses the direction of a depend-
ency arc (editing the arc label to note this
change). This transformation, which can be re-
versed trivially, makes it possible to remove cy-
cles in dependency graphs.

3.2 Baseline features

To create output graph structures for an input
sentence, the algorithm described in section 3.1
relies on an oracle that tells it what action to take
at each parser state, where the state is the con-
tents of the stack, remaining words in the input,
and the dependency arcs formed so far. In
grammar-based shift-reduce parsing, this oracle
may take the form of a look-up table derived
from grammar rules. In our data-driven setting,
where the parser learns to choose actions based
on examples of correctly parsed data, the (likely

imperfect) substitute for the oracle is a classifier
that takes features that represent the parser state
as input, and produces a matching parser action
as output. These features should represent as-
pects of the parser state that may be informative
as to what the corresponding appropriate action
is. Our baseline model uses the averaged percep-
tron with a core set of features derived from the
following templates, where S(n) denotes the n-th
item from the top of the stack (for example, S(1)
is the item on top of the stack), and I(n) denotes
the next n-th input token:

1. For the items S(1) and S(2):

a. the total number of dependents;

b. the number of dependents to the
right of the item;

c. the number of dependents to the left
of the item;

d. the part-of-speech tag of the right-
most dependent of the item;

e. the part-of-speech tag of the leftmost
dependent of the item;

f. the arc label of the rightmost de-
pendent of the item;

g. the arc label of the leftmost depend-
ent of the item;

2. the words in items S(1), S(2), S(3), I(1) and
I(2);

3. the part-of-speech tags in items S(1), S(2),
S(3), I(1), I(2) and I(3);

4. the part-of-speech tag of the word i mmedi-
aely to the right of S(2);

5. the part-of-speech tag of the word immedi-
ately to the left of S(1);

6. whether an arc exists between S(1) and S(2);

7. whether an arc exists between S(1) and I(1);

8. the direction of the arc between S(1) and
S(2), if any;

9. the label of the arc between S(1) and S(2), if
any;

10. the label of the arc between S(1) and I(1), if
any;

11. the distance, in linear sequence of words,
between S(1) and S(2);

12. the distance, in linear sequence of words,
between S(1) and I(1);

197

13. the previous parser action.

In addition to the core set of features, we also
use features obtained by concatenating the part-
of-speech tags in S(1), S(2) and I(1) with the fea-
tures derived from templates 1-6, and additional
features derived from selected concatenation of
two or three core features.

3.3 Cluster-based features

To take advantage of the clusters that reflect syn-
tactic similarity between words, we assign arbi-
trary unique labels to each of the hierarchical
clusters obtained using the procedure described
in section 2. These cluster labels are used to
generate additional features that help the parser
make its decisions base on the syntactic profile
of words. As explained in section 2.4, each there
may be several cluster labels (corresponding to
clusters of different granularities) associated with
each word. To select the set of cluster labels to
be used to generate features, we first select a de-
sired granularity for the clusters, and use the set
of labels resulting from slicing the cluster tree at
the appropriate level, as discussed in section 2.4.
We experimented with several levels of cluster
granularity using development data, and follow-
ing Koo et al. (2008), we also experimented with
using two sets of cluster labels with different
levels of granularity at the same time. Given a
specific level of granularity, the cluster-based
features we used are:

14. the cluster labels for the words in items S(1),
S(2), S(3), I(1), I(2), I(3);

15. the cluster labels for the words in the right-
most and leftmost dependents of S(1) and
S(2);

16. the concatenation of the cluster labels for the
words in S(1), S(2) and I(1), and the features
derived from feature templates 1-15.

In experiments where we used two sets of
cluster labels corresponding to different levels of
granularity, we added all the cluster-based fea-
tures in 14 and 15 for both sets of labels, and the
features in 16 only for the set corresponding to
the coarser-grained clusters.

4 Experiments

Following previous experiments with Penn Tree-
bank WSJ data, or annotations derived from it,
we used sections 02-21 of the HPSG Treebank as
training material, section 22 for development,
and section 23 for testing. Only the predicate-

argument dependencies were used, not the phrase
structures or other information from the HPSG
analyses. For all experiments described here,
part-of-speech tagging was done separately using
a CRF tagger with accuracy of 97.3% on sections
22-24. Our evaluation is based on labeled preci-
sion and recall of predicate-argument dependen-
cies. Although accuracy is commonly used for
evaluation of dependency parsers, in our task the
parser is not restricted to output a fixed number
of dependencies. Labeled precision and recall of
predicate-argument pairs are also the standard
evaluation metrics for data-driven HPSG and
CCG parsers (although the predicate-argument
pairs extracted from the HPSG Treebank and the
CCGBank are specific to their formalisms and
not quantitatively comparable).

We started by eliminating cycles from the de-
pendency graphs extracted from the HPSG Tree-
bank by using the arc reversal transform in the
following way: for each cycle detected in the
data, the shortest arc in the cycle was reversed
until no cycles remained. We then applied
pseudo-projective transformation to create data
that can be used to train our parser, described in
section 3. By detransforming the projective
graphs generated from gold-standard dependen-
cies, we obtain labeled precision of 98.1% and
labeled recall of 97.7%, which is below the accu-
racy expected for detransformation of syntactic
dependency trees. This is expected, since arc
crossing occurs more frequently in predicate-
argument graphs in the HPSG Treebank than in
surface syntactic dependencies.

We first trained a parsing model without clus-
ter-based features, using only the baseline set of
features, which was the product of experimenta-
tion using the development set. On the test set,
this baseline model has labeled precision and
recall of 88.7 and 88.2, respectively, slightly be-
low the precision and recall obtained by Sagae
and Tsujii on the same data (89.0 precision and
88.5 recall).

We then used the development set to explore
the effects of cluster sets with different levels of
granularity. The baseline model has precision
and recall of 88.6 and 88.0 on the development
set. We found that by slicing the cluster tree
relatively close to the root, resulting in a set of
50 to 100 distinct cluster labels (corresponding to
relatively coarse clusters), we obtain small (0.3
to 0.4), but statistically significant (p < 0.005)
improvements on precision and recall over the
baseline model on the development set. By in-
creasing the number of cluster labels (making the

198

distinctions among members of different clusters
more fine-grained) in steps of 100, we observed
improvements in precision and recall until the
point where there were 600 distinct cluster la-
bels. This set of 600 cluster labels produced the
highest values of precision and recall (89.5 and
89.0) that we obtained for the development set
using only one set of cluster labels. Figure 4
shows how precision, recall and F-score on the
development set varied with the number of clus-
ter labels used.

Following Koo et al. (2008), we also experi-
mented with using two sets of cluster labels with
different levels of granularity. We found that
using the set of 600 labels and an additional set
with fewer than 600 labels did not improve or
hurt precision and recall. Finer grained clusters
with more than 1,000 labels (combined with the
set of 600 labels) improved results further. The
highest precision and recall figures of 90.1 and
89.6 were obtained with the sets of 600 and
1,400 labels.

We parsed the test set using the best configu-
ration of cluster-based features as determined
using the development set (the sets with 600 and
1,400 cluster labels) and obtained 90.2 precision,
89.8 recall and 90.0 f-score, a 13.8% reduction in
error over a strong baseline. Table 1 summarizes
our results on the test set. For comparison, we
also shows results published by Sagae and Tsujii
(2008), to our knowledge the highest f-score re-
ported for this test set, and Miyao and Tsujii
(2005), who first reported results on this data set.

4.1 Surface dependency parsing with clus-
ter-based features

The parser used in our experiments with HPSG
Treebank predicate-argument structures can as-
sign more than one head for a single word, but
when the parser is trained using only dependency
trees, it behaves in exactly the same way as a
parser based on Nivre’s arc-standard algorithm,
since it never sees examples of attach actions
during training. To see whether our clusters can
improve surface dependency parsing, and to al-
low for comparison of our results to a larger
body of research on surface dependency parsing,
we used dependency trees extracted from the
Penn Treebank using the Yamada and Matsu-
moto (2003) version of the Penn Treebank head-
percolation rules to train parsing models that
produce dependency trees. However, no tuning
of the features or metaparameters was per-
formed; the parser was trained as-is on depend-
ency trees.

We used the standard train, development and
test sets splits to train two models, as in our ex-
periments with predicate-argument dependen-
cies: a baseline that uses no cluster information,
and a model that uses two sets of clusters that
were found to improve results in the develop-
ment set. The unlabeled accuracy of our baseline
model on the test set is 89.96%, which is consid-
erably lower than the best current results. Koo et
al. (2008) report 90.84% for a first-order edge-
factored model, and 92.02% for a second-order
model (and as high as 93.16% with a second-
order model enriched with cluster features de-
rived from plain text). Using two sets of clus-
ters, one with 600 and one with 1,200 labels, ac-
curacy improves by 1.32%, to reach 91.28% (a
13.15% reduction in error compared to our base-
line). While still below the level of the strongest
results for this dataset, it is interesting to see that

 Precision Recall F-score
Baseline 88.7 88.2 88.4
Clusters 90.2 89.8 90.0
S & T 89.9 88.5 88.7
Miyao et al. 85.0 84.3 84.6

Table 1: Results obtained on the test set us-
ing our baseline model and our best cluster-
based features. The results in the bottom two
rows are from Sagae and Tsujii (2008) and
Miyao and Tsujii (2005).

Figure 4: Effect of cluster granularity on
labeled the precision and recall of predicate-
argument pairs in the development set. The
improvement in precision and recall between
the baseline (zero cluster labels, where no
cluster information is added) and 600 cluster
labels is statistically significant (p < 0.0005).

199

the improvement in accuracy over the baseline
observed for surface dependency trees is similar
to the improvement observed for predicate-
argument dependency graphs.

5 Related work

Many aspects of this research were inspired by
the recent work of Koo et al. (2008), who re-
ported impressive results on improving depend-
ency parsing accuracy using a second order
edge-factored model and word clusters derived
from plain text using the Brown et al. (1992) al-
gorithm. Our clustering approach is significantly
different, focusing on the use of parsed data to
produce strictly syntactic clusters. It is possible
that using both types of clusters may be benefi-
cial.

McClosky et al. (2006) used a large corpus of
parsed text to obtain improved parsing results
through self-training. A key difference in our
general framework is that it allows for a parser
with one type of syntactic representation to im-
prove the accuracy of a different parser with a
different type of formalism. In this regard, our
work is related to that of Sagae et al. (2007), who
used a stacking-like framework to allow a sur-
face dependency parser to improve an HPSG
parser. In that work, however, as in other work
that combines different parsers through stacking
(Martins et al., 2008; Nivre and McDonald,
2008) or voting (Henderson and Brill, 1999),
multiple parsers need to process new text at run-
time. In our approach for leveraging diverse
parsers, one of the parsers is used only to create a
parsed corpus from which we extract clusters of
words that have similar syntactic behaviors, and
only one parser is needed at run-time.

6 Conclusion

We have presented a novel approach for deriving
word clusters based on syntactic similarity, and
shown how these word clusters can be applied in
a transition-based dependency parser.

Our experiments focused on predicate-
argument structures extracted from the HPSG
Treebank, which demonstrates that the syntactic
clusters are effective in leveraging cross-
framework parser representations to improve
parsing accuracy. However, we expect that simi-
lar accuracy improvements can be obtained in
parsing using other frameworks and formalisms,
and possibly in other natural language processing
tasks.

Acknowledgments

The project or effort described here has been
sponsored by the U.S. Army Research, Devel-
opment, and Engineering Command (RDE-
COM). Statements and opinions expressed do
not necessarily reflect the position or the policy
of the United States Government, and no official
endorsement should be inferred.

References
Srinivas Bangalore and Aravind K. Joshi. 1999. Su-

pertagging: an approach to almost parsing. Compu-
tational Linguistics 25, 2 (Jun. 1999), 237-265.

Peter F. Brown, Vincent J. Della Pietra, Peter V.
deSouza, Jennifer C. Lai, and Robert L. Mercer.
1992. Class-Based n-gram Models of Natural Lan-
guage. Computational Linguistics, 18(4):467–479.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the First Meet-
ing of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), pages
132–139.

Charniak, E., Blaheta, D., Ge, N., Hall, K., Hale, J.,
and Johnson, M. (2000) BLLIP 1987-89 WSJ Cor-
pus Release 1. Philadelphia, PA: Linguistic Data
Consortium.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Michael Collins. 2002. Discriminative Training Me-
thods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In Pro-
ceedings of EMNLP, pages 1–8.

Yoav Freund and Robert E. Schapire. 1999. Large
Margin Classification Using the Perceptron Algo-
rithm. Machine Learning, 37(3):277–296.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
Labeling of Semantic Roles. Computational Lin-
guistics 28(3): 245-288.

Andrew Gordon and Reid Swanson. 2007. Generaliz-
ing semantic role annotations across syntactically
similar verbs. Proceedings of the 2007 meeting of
the Association for Computational Linguistics
(ACL-07), Prague, Czech Republic, June 23-30,
2007.

Johan Hall, Jens Nilsson, Joakim Nivre, Gulsen Ery-
igit, Beata Megyesi, Mattias Nilsson, and Markus
Saers. 2007. Single malt or blended? A study in
multilingual parser optimization. In Proceedings of
EMNLP-CoNLL.

James Henderson, Paola Merlo, G. Musillo, and Ivan
Titov. 2008. A latent variable model of synchro-
nous parsing for syntactic and semantic dependen-

200

cies. In Proceedings of the Shared Task of the Con-
ference on Computational Natural Language
Learning (CoNLL), pages 178-182. Manchester,
UK.

John Henderson and Eric Brill. 1999. Exploiting di-
versity in natural language processing: combining
parsers. In Proceedings of the Fourth Conference
on Empirical Methods in Natural Language Proc-
essing (EMNLP).

Terry Koo, Xavier Carreras and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies (ACL-08:HLT), pages
595-603.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 17th inter-
national Conference on Computational Linguistics
- Volume 2. Montreal, Quebec, Canada.

Mitchell P. Marcus, Mary A. Marcinkiewicz, Beatrice
Santorini. 1993. Building a large annotated corpus
of English: The Penn Treebank, Computational
Linguistics, 19(2), June 1993.

André F. T. Martins, Dipanjan Das, Noah A. Smith,
and Eric P. Xing. 2008. Stacking Dependency
Parsers. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
Waikiki, HI.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective Self-Training for Parsing. In
Proceedings of HLT-NAACL, pages 152–159.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of ACL, pages
91–98.

Scott Miller, Jethran Guinness and Alex Zamanian.
2004. Name Tagging withWord Clusters and Dis-
criminative Training. In Proceedings of HLT-
NAACL, pages 337–342.

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsu-
jii. 2004. Corpus-oriented grammar development
for acquiring a Head-driven Phrase Structure
Grammar from the Penn Treebank. In Proceedings
of the International Joint Conference on Natural
Language Processing (IJCNLP).

Miyao Yusuke and Jun'ichi Tsujii. 2005. Probabilistic
disambiguation models for wide-coverage HPSG
parsing. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics.

Joakim Nivre.2004. Incrementality in Deterministic
Dependency Parsing. In Incremental Parsing:
Bringing Engineering and Cognition Together
(Workshop at ACL-2004).

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proceed-
ings of CoNLL, pages 49–56.

Joakim Nivre. and Jens Nilsson. 2005. Pseudo-
Projective Dependency Parsing. In Proceedings of
the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 99-106.

Joakim Nivre, Johan Hall, Sandra Kubler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel, and
Deniz Yuret. 2007. The CoNLL 2007 shared task
on dependency parsing. In Proceedings of
EMNLP-CoNLL, pages 915-932.

Nivre, J. and McDonald, R. (2008) Integrating Graph-
Based and Transition-Based Dependency Parsers.
In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies (ACL-08: HLT), 950-958.

Martha Palmer, Dan Gildea and Paul Kingsbury.
2005. The Proposition Bank: A Corpus Annotated
with Semantic Roles. Computational Linguistics,
31:1.

Kenji Sagae and Alon Lavie. 2006. Parser combina-
tion by reparsing. In Proceedings of NAACL: Short
Papers, pages 129–132.

Kenji Sagae, Yusuke Miyao Jun’ichi and Tsujii. 2007.
HPSG Parsing with shallow dependency con-
straints. In Proceedings of the 44th Meeting of the
Association for Computational Linguistics.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce
dependency DAG parsing. In Proceedings of the
International Conference on Computational Lin-
guistics (COLING 2008).

Hiroyasu Yamada and Y. Matsumoto. 2003. Statisti-
cal Dependency Analysis With Support Vector
Machines. In Proceedings of the Eighth Interna-
tional Workshop on Parsing Technologies (IWPT),
pages 195–206.

201

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 202–205,
Paris, October 2009. c©2009 Association for Computational Linguistics

The chunk as the period of the functions length and frequency
of words on the syntagmatic axis

Jacques Vergne
GREYC - Université de Caen - France
Jacques.Vergne@info.unicaen.fr

Abstract

Chunking is segmenting a text into chunks,
sub-sentential segments, that Abney ap-
proximately defined as stress groups. Chunk-
ing usually uses monolingual resources, most
often exhaustive, sometimes partial : function
words and punctuations, which often mark
beginnings and ends of chunks. But, to ex-
tend this method to other languages, mono-
lingual resources have to be multiplied. We
present a new method : endogenous chunk-
ing, which uses no other resource than the
text to be segmented itself. The idea of this
method comes from Zipf : to make the least
communication effort, speakers are driven to
shorten frequent words. A chunk then can be
characterized as the period of the periodic
correlated functions length and frequency of
words on the syntagmatic axis. This original
method takes its advantage to be applied to a
great number of languages of alphabetic
script, with the same algorithm, without any
resource.

Introduction

Chunking is a frequent segmentation step in
many processing types : robust parsers, parsers
of linear complexity (Vergne, 2000), computing
stress groups and linking them in tts systems, to
compute macro-prosody (Vannier et al., 1999),
in automatic indexing, the chunk as another in-
dexed grain above the word in the grain hierar-
chy, and in sub-sentential alignment, the chunk
as an aligned grain.

The method we propose is based on the prop-
erties of the functions length and frequency of
words on the syntagmatic axis. These two func-
tions are correlated : integer, periodic, synchro-
nous, in phase opposition, and their period al-
lows to define the chunk. On a period, the length
function is non-decreasing, and the frequency
function is non-increasing. These concepts con-

tinue in Zipf's direction : minimizing the com-
munication effort drives the speaker to shorten
frequent words (Zipf, 1949). The length metrics
defined by Zipf is not the number of letters, but
the number of syllables or the number of pho-
nemes of the written form (Zipf, 1935); the met-
rics of our method is also the number of sylla-
bles, or more precisely the number of vowel nu-
clei, computable from the written form; this met-
rics takes its root into the oral origin of the
chunk. The word frequency is measured in the
segmented text.

This method of segmentation into chunks is
based on digital properties, and is valid on lan-
guages with alphabetic script. It is endogenous,
as it computes on the text to be segmented and
does not use any resource external to the parsed
text.

1 Structure model of the chunk accord-
ing to Abney and according to Déjean

The concept of chunk has been proposed by
Steve Abney (1991). It has been based on prop-
erties of speech : Abney defined the chunk as a
stress group. As speech is constrained by the vo-
cal system, we can see the chunk as a generic
concept on natural languages, a concept of lan-
guage. Hervé Déjean (1998) has proposed a
structure model for the chunk : beginnings and
ends of chunk (words or morphemes) around a
kernel (Déjean, 1998, page 117); our method
uses this model.

For instance, the written form "Commission"
has been found in the following chunks in the
same text :
 [Commission européenne]
 [la Commission]
 [la Commission européenne]
 [dans la Commission]

And here is the synthesis :
 [dans [la [Commission] européenne]
 [beginnings [kernel] ends]

202

2 Local deductions and their generali-
zation at text level

Properties of the chunk are used locally at occur-
rence level : an occurrence of a written form is
locally a beginning or an end of a chunk. An im-
portant question is to decide how to articulate
local deductions at occurrence level and their
global merging at text level.

We know that occurrences of the same written
form may be occurrences of more than one word,
in different contexts. For instance, "on" in Eng-
lish is the beginning of a chunk in "on the con-
trary", but it is the end of a chunk in "it is going
on". These two occurrences correspond to two
different words, which have different positions
and different contexts, and their local deductions
cannot be merged. So, we can merge local de-
ductions for occurrences of the same word. In
practice, we merge local deductions for occur-
rences of a written form if there is no beginning -
end contradiction.

We tried full merging, as if all occurrences
were of the same word. This solution remains
valid for monofocused short texts (some thou-
sands words). But, to be able to chunk longer
texts, we have chosen now the solution of a par-
tial generalization (see below in 4).

3 Two properties of a chunk

The algorithm exploits two properties of the
chunk.

3.1 Property 1 : the chunk is a constituent of
the virgulot

Hervé Déjean (1998) has defined the "entre-
ponctuations" as a constituent delimited by two
punctuations. Nadine Lucas (Lucas, 2001) has
proposed the term "virgulot", that we will use
now. We define the following constituent hierar-
chy : the text is constituted of virgulots, them-
selves constituted of chunks, themselves consti-
tuted of occurrences of written forms.

Property exploited by the algorithm :
- a written form attested at the beginning of a
virgulot is a beginning of a chunk,
- a written form attested at the end of a virgulot
is an end of a chunk.

Here are some instances of virgulots :
, in denen Aale leben ,
, bis die Bewirtschaftungspläne vorliegen .

. It also intends to explore measures ,
, before migrating upstream to spend most of
their lives .

, en las aguas centro-occidentales del Océano
Atlántico .
, donde transcurre la mayor parte de su vida .

. Lasciandosi trasportare dalla corrente e nuo-
tando ,
, dove si riproducono una sola volta e poi
muoiono .

First written forms of virgulots are beginnings
of chunks (prepositions, pronouns, …), and their
last written forms are ends of chunks (nouns,
verbs, adjectives, …).

3.2 Property 2 : the chunk is the period of the
correlated functions length and fre-
quency of words on the syntagmatic axis

We define two integer functions of words on the
syntagmatic axis (inside a virgulot) : their length,
defined as their number of syllables, and their
frequency in the text to be segmented.

Here is an instance of a virgulot :
 , would migrate from the rivers on their territories ,
length: 1 3 1 1 2 1 1 4
frequ.: 10 3 6 65 2 6 4 1

On the length function, we have the following
non-decreasing sequences : [1 3] [1 1 2] [1 1 4].

On the frequency function, we have the fol-
lowing non-increasing sequences : [10 3] [6] [65
2] [6 4 1].

For these two functions, a period corresponds
to a sequence; in other words, these sequences
give a way to segment; these 2 functions are syn-
chronous : sequences of both functions (nearly)
define the same periods; on a (synchronous) pe-
riod, both functions are in phase opposition : on a
period (which defines a chunk), the length func-
tion is non-decreasing, and the frequency func-
tion is non-increasing; the common properties of
these two functions allow us to call them corre-
lated; it is an other way to say that short words
are frequent and that long words are rare.

We notice, following Zipf (1949) in "Human
Behavior and the Principle of Least-Effort" that
writing and speech are an optimal compression;
it reminds the principles of file compression in
computer science : frequent data are short coded,
and rare data are long coded. Let us make an ob-
servation on the Zipf law, as it is known today :
this law makes a relation between frequency and
rows of words sorted by decreasing frequency; if
we knew only this law, we would forget length
of words; but Zipf proposed to consider length
and frequency together, in a correlated way, as
an optimization (the Least-Effort). As we use
length and frequency together, in a correlated
way, we go back to the origin of Zipf's concepts.

203

To compute word length from the written
form, length is defined as the number of sylla-
bles, i.e. the number of vowel nuclei (a sequence
of contiguous vowels corresponds to a vowel
nucleus, and to a length equal to 1). This calcula-
tion needs as input the vowels of the alphabet
(Latin or Greek). There is a particular case : is
the y vowel or consonant. The y is vowel in "sys-
tem" (length 2) and consonant in "rayon" (length
2); y is consonant by default; y is vowel at the
beginning or the end of a word, or alone (usually,
by, y); y is vowel between 2 consonants; these
rules are enough to process all cases for the 20
natural languages of the corpus. Acronyms (se-
quences of uppercases) have a length equal to
twice their numbers of letters (tendency to be in
the end of chunk). A number (sequence of fig-
ures) has a length equal to 1, whatever its num-
ber of figures (tendency to be in the beginning of
chunk).

4 An algorithm based on these proper-
ties

The frequency and the length of every written
form are computed.

For the property 1, based on the virgulot, the
text is processed, and occurrences of written
forms at the beginning or end of virgulot are
noted as beginning or end of chunk.

For the property 2, based on monotonous se-
quences, the text is processed, while noting bor-
ders between 2 monotonous sequences, that
gives for each border an end and a beginning of
chunk. A Boolean function "in the same se-
quence" returns whether 2 contiguous words are
in the same monotonous sequence (i.e. in the
same chunk). Four solutions are experimented :
on length only, on frequency only, on length
AND frequency (then shorter chunks), or on
length OR frequency (then longer chunks). Re-
sults are very comparable, because both func-
tions are strongly correlated1. For example, this
function, in "length OR frequency" mode, on
words i and i+1, to express the fact that these two
words are in the same sequence, has the follow-
ing form :
 words i and i+1 are not separators of virgulot
 AND

(length(i+1) ≥ length(i) OR
 frequency(i+1) ≤ frequency(i))

1 Using length alone allows, not using frequency, to

get a method usable on a very short text, as a
search engine query.

The generalization of local deductions is done
the following way : for all occurrences of a writ-
ten form, a synthesis of local deductions is done.
There are 8 cases : 2 properties, 4 cases for each
(2 Booleans : beginning, end). If all local deduc-
tions are compatible, they are merged, i.e. occur-
rences without any local deduction take the tag
of occurrences with the same local deduction :
either beginning or end of chunk.

Here is the trace of the process on our instance
of virgulot :

 virgul. sequ. general. result
 b e b e b e b e len. freq.
 [1,0] [1,0] [0,0] [2,0] 1 10 would
 [0,0] [0,1] [0,1] [0,2] 3 3 migrate

 [0,0] [1,0] [1,0] [2,0] 1 6 from
 [0,0] [0,0] [1,0] [1,0] 1 65 the
 [0,0] [0,1] [0,1] [0,2] 2 2 rivers

 [0,0] [1,0] [1,0] [2,0] 1 6 on
 [0,0] [0,0] [1,0] [1,0] 1 4 their
 [0,1] [0,1] [0,0] [0,2] 4 1 territories

From the first property (the first column of
Booleans), would is the beginning, and territo-
ries is the end of the virgulot, therefore begin-
ning and end of a chunk ([marks a beginning of
chunk,] marks an end of chunk) :
, [would migrate from the rivers on their territories],

The second property (the second column of
Booleans) which exploits the monotonous se-
quences, here in "length OR frequency" mode,
gives the following chunking :
 , [would migrate] [from the rivers]
 [on their territories] ,

The generalization of local deductions (the
third column of Booleans) adds the fact that the
and their are beginnings of a chunk elsewhere in
this text.

Then these three sources of deduction are
merged, and we obtain the following segmenta-
tion (the forth column) :
 , [would migrate] [from [the rivers]
 [on [their territories] ,

5 Some sentences segmented into
chunks

The validation corpus of the method is composed
of 12 press releases (about 1000 words each for
one language), every release is written into 6 to
20 languages, and of the part 1 of the "Treaty
establishing a Constitution for Europe" in 11
languages (about 10 000 words for one lan-
guage), from the website of the European Union
(http://europa.eu/).

204

The following sentences are extracted from
the release IP/05/1018 of 2005 (and processed in
"length OR frequency" mode) :

[Die Laichgründe] [der Aale] befinden] [sich
[im Sargassosee] [im mittleren Westatlantik] .

[Eels spawn] [in [the Sargasso Sea [in [the west-
ern central Atlantic] Ocean] .

[Las anguilas] desovan] [en [el Mar [de [los
Sargazos] , [en [las aguas] centro-occidentales]
[del Océano Atlántico] .

[La zone [de frai] [de l’anguille] [se situe [en
mer] [des Sargasses] , [dans [la partie centre-
ouest] [de l’océan Atlantique] .

[Le anguille] [si riproducono] [nel mar [dei
Sargassi] , [nell’Atlantico centro-occidentale] .

The following sentences are extracted from
the part 1 of the "Treaty establishing a Constitu-
tion for Europe" (and processed in "length OR
frequency" mode) :

[Die Union] steht allen europäischen] Staaten of-
fen] , [die [ihre Werte] achten] [und [sich ver-
pflichten] , [sie gemeinsam] [zu fördern] .
[The Union] [shall be open] [to [all [European
States] [which respect] [its values] [and [are
committed] [to promoting] them] together] .
[La Unión] [está abierta] [a todos] [los Esta-
dos] europeos] [que respeten] [sus valores] [y
[se comprometan] [a promoverlos] [en común] .
[L'Union [est ouverte] [à [tous [les États] euro-
péens] [qui respectent] [ses valeurs] [et [qui
s'engagent] [à [les promouvoir] [en commun] .
[L'Unione [è aperta] [a tutti] [gli Stati europei]
[che rispettano] [i suoi valori] [e [si impegna-
no] [a promuoverli congiuntamente] .

Conclusion

While characterizing the chunk in a purely digi-
tal way, from properties of length et frequency
functions of words on the syntagmatic axis, this
original method consists in calculations on the
text to segment; it has the advantage to be ap-
plied to a great number of languages, with the
same algorithm, without any monolingual re-
source : languages with alphabetic script, with a
written word which separates function words
from content words (it is not the case in Finnish),
and compatible with a structure model of the
chunk where function words generally are before
content words; the method is promising for the
22 languages of the European Community2.

2 See results on :

http://www.info.unicaen.fr/~jvergne/chunking_mu
ltilingue_endogene/

This method can be applied in automatic in-
dexing, for search-engines (as Exalead does, to
be able to output the most frequent terms associ-
ated to the documents of the answer), and in sub-
sentential alignment, to constraint the statistical
alignment (as in Similis, the alignment software
of Lingua et Machina, but this software uses
monolingual resources for every language). The
interesting feature of this method is not to need
any resource for a new language to process3.

As it is independent from specificities of each
language, this method is not "multilanguage",
neither "multi-monolanguage", but as it exploits
generic properties of natural languages, that is
properties of language, as an abstraction of natu-
ral languages, we could perhaps simply call it a
"linguistic" method.

References

Steven Abney. 1991. Parsing By Chunks. in
Principle-Based Parsing, 257-278, Kluwer
Academic Publishers.

Hervé Déjean. 1998. Concepts et algorithmes
pour la découverte des structures formelles
des langues. Thèse de doctorat de l'université
de Caen, France.

Nadine Lucas. 2001. Étude et modélisation de
l'explication dans les textes. Actes du Collo-
que "L'explication: enjeux cognitifs et com-
municationnels", Paris.

Gérald Vannier, Anne Lacheret-Dujour, Jacques
Vergne. 1999. Pauses location and duration
calculated with syntactic dependencies and
textual considerations for t.t.s. system. ICPhS
1999, San Francisco, USA, August 1999.

Jacques Vergne. 2000. Tutorial : Trends in Ro-
bust Parsing. Coling 2000.

George K. Zipf. 1935. The psychobiology of lan-
guage : An introduction to dynamic philology.
Boston, Mass., Houghton-Mifflin.

George K. Zipf. 1949. Human Behavior and the
Principle of Least-Effort. Addison-Wesley.

3 But a problem for this large scale multilingual

method is to evaluate the results on so many lan-
guages : we need a speaker for every language.
For the moment, it is done for German, English,
Spanish, French and Italian.

205

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 206–209,
Paris, October 2009. c©2009 Association for Computational Linguistics

Using a maximum entropy-based tagger to improve a very fast vine parser

Anders Søgaard
Center for Language Technology

University of Copenhagen
soegaard@hum.ku.dk

Jonas Kuhn
Dpt. of Linguistics

University of Potsdam
kuhn@ling.uni-potsdam.de

Abstract

In this short paper, an off-the-shelf maxi-
mum entropy-based POS-tagger is used as
a partial parser to improve the accuracy of
an extremely fast linear time dependency
parser that provides state-of-the-art results
in multilingual unlabeled POS sequence
parsing.

1 Introduction

The dependency parsing literature has grown in all
directions the past 10 years or so. Dependency
parsing is used in a wide variety of applications,
and many different parsing techniques have been
proposed.

Two dependency parsers have become more
popular than the rest, namely MSTParser (Mc-
Donald et al., 2005) and MaltParser (Nivre et
al., 2007). MSTParser is slightly more accu-
rate than MaltParser on most languages, especially
when dependencies are long and non-projective,
but MaltParser is theoretically more efficient as it
runs in linear time. Both are relatively slow in
terms of training (hours, sometimes days), and rel-
atively big models are queried in parsing.

MSTParser and MaltParser can be optimized for
speed in various ways,1 but the many applications
of dependency parsers today may turn model size
into a serious problem. MSTParser typically takes
about a minute to parse a small standard test suite,
say 2–300 sentences; the stand-alone version of
MaltParser may take 5–8 minutes. Such parsing
times are problematic in, say, a machine transla-
tion system where for each sentence pair multiple

1Recent work has optimized MaltParser considerably for
speed. Goldberg and Elhadad (2008) speed up the MaltParser
by a factor of 30 by simplifying the decision function for the
classifiers. Parsing is still considerably slower than withour
vine parser, i.e. a test suite is parsed in about 15–20 seconds,
whereas our vine parser parses a test suite in less than two
seconds.

target sentences are parsed (Charniak et al., 2003;
Galley and Manning, 2009). Since training takes
hours or days, researchers are also more reluctant
to experiment with new features, and it is very
likely that the features typically used in parsing
are suboptimal in, say, machine translation.

Conceptually simpler dependency parsers are
also easier to understand, which makes debugging,
cross-domain adaption or cross-language adapta-
tion a lot easier. Finally, state-of-the-art depen-
dency parsers may in fact be outperformed by sim-
pler systems on non-standard test languages with,
say, richer morphology or more flexible word or-
der.

Vine parsing is a parsing strategy that guaran-
tees fast parsing and smaller models, but the ac-
curacy of dependency-based vine parsers has been
non-competitive (Eisner and Smith, 2005; Dreyer
et al., 2006).

This paper shows how the accuracy of
dependency-based vine parsers can be improved
by 1–5% across six very different languages with
a very small cost in training time and practically
no cost in parsing time.

The main idea in our experiments is to use
a maximum entropy-based part-of-speech (POS)
tagger to identify roots and tokens whose heads
are immediately left or right of them. These are
tasks that a tagger can solve. You simply read
off a tagged text from the training, resp. test, sec-
tion of a treebank and replace all tags of roots,
i.e. tokens whose syntactic head is an artificial root
node, with a new tag ROOT. You then train on
the training section and apply your tagger on the
test section. The decisions made by the tagger
are then, subsequently, used as hard constraints by
your parser. When the parser then tries to find root
nodes, for instance, it is forced to use the roots as-
signed by the tagger. This strategy is meaningful
if the tagger has better precision for roots than the
parser. If it has better recall than the parser, the

206

parser may be forced to select roots only from the
set of potential roots assigned by the tagger. In our
experiments, only the first strategy was used (since
the tagger’s precision was typically better than its
recall).

The dependency parser used in our experiments
is very simple. It is based on the Chu-Liu-
Edmonds algorithm (Edmonds, 1967), which is
also used in the MSTParser (McDonald et al.,
2005), but it is informed only by a simple MLE
training procedure and omits cycle contraction in
parsing. This means that it produces cyclic graphs.
In the context of poor training, insisting on acyclic
output graphs often compromises accuracy by>
10%. On top of this parser, which is super fast but
often does not even outperform a simple structural
baseline, hard and soft constraints on dependency
length are learned discriminatively. The speed of
the parser allows us to repeatedly parse a tuning
section to optimize these constraints. In particular,
the tuning section (about 7500 tokens) is parsed
a fixed number of times for each POS/CPOS tag
to find the optimal dependency length constraint
when that tag is the tag of the head or dependent
word. In general, this discriminative training pro-
cedure takes about 10 minutes for an average-sized
treebank. The parser only produces unlabeled de-
pendency graphs and is still under development.
While accuracy is below state-of-the-art results,
our improved parser significantly outperforms a
default version of the MaltParser that is restricted
to POS tags only, on 5/6 languages(p ≤ 0.05),
and it significantly outperforms the baseline vine
parser on all languages.

2 Data

Our languages are chosen from different language
families. Arabic is a Semitic language, Czech is
Slavic, Dutch is Germanic, Italian is Romance,
Japanese is Japonic-Ryukyuan, and Turkish is
Uralic. All treebanks, except Italian, were also
used in the CONLL-X Shared Task (Buchholz and
Marsi, 2006). The Italian treebank is the law
section of the TUT Treebank used in the Evalita
2007 Dependency Parsing Challenge (Bosco et al.,
2000).

3 Experiments

The Python/C++ implementation of the maximum
entropy-based part-of-speech (POS) tagger first
described in Ratnaparkhi (1998) that comes with

the maximum entropy library in Zhang (2004) was
used to identify arcs to the root node and to tokens
immediately left or right of the dependent. This
was done by first extracting a tagged text from
each treebank with dependents of the root node as-
signed a special tag ROOT. Similarly, tagged texts
were extracted in which dependents of their im-
mediate left, resp. right neighbors, were assigned a
special tag. Our tagger was trained on the texts ex-
tracted from the training sections of the treebanks
and evaluated on the texts extracted from the test
sections. The number of gold standard, resp. pre-
dicted, ROOT/LEFT/RIGHT tags are presented in
Figure 1. Precision and f-score are also computed.
Note that since our parser uses information from
our tagger as hard constraints, i.e. it disregards
arcs to the root node or immediate neighborsnot
predicted by our tagger, precision is really what
is important, not f-score. Or more precisely, preci-
sion indicatesif our tagger is of any help to us, and
f-score tells us to what extent it may be of help.

4 Results

The results in Figure 2 show that using a maxi-
mum entropy-based POS tagger to identify roots
(ROOT), tokens with immediate left heads (LEFT)
and tokens with immediate (RIGHT) heads im-
proves the accuracy of a baseline vine parser
across the board for all languages measured in
terms of unlabeled attachment score (ULA), or de-
creases are insignificant (Czech and Turkish). For
all six languages, there is a combination of ROOT,
LEFT and RIGHT that significantly outperforms
the vine parser baseline. In 4/6 cases, absolute im-
provements are≥ 2%. The score for Dutch is im-
proved by> 4%. The extended vine parser is also
significantly better than the MaltParser restricted
to POS tags on 5/6 languages. MaltParser is prob-
ably better than the vine parser wrt. Japanese be-
cause average sentence length in this treebank is
very short (8.9); constraints on dependency length
do not really limit the search space.

In spite of the fact that our parser only uses POS
tags (except for the maximum entropy-based tag-
ger which considers both words and tags), scores
are now comparable to more mature dependency
parsers: ULA excl. punctuation for Arabic is
70.74 for Vine+ROOT+LEFT+RIGHT which is
better than six of the systems who participated in
the CONLL-X Shared Task and who had access to
all data in the treebank, i.e. tokens, lemmas, POS

207

Arabic Gold Predicted Precision F-score
ROOT 443 394 89.09 83.87
LEFT 3035 3180 84.28 86.24
RIGHT 313 196 82.14 63.26
Czech Gold Predicted Precision F-score
ROOT 737 649 85.36 79.94
LEFT 1485 1384 85.12 82.12
RIGHT 1288 1177 87.51 83.57
Dutch Gold Predicted Precision F-score
ROOT 522 360 74.44 60.77
LEFT 1734 1595 87.02 83.39
RIGHT 1300 1200 87.00 83.52
Italian Gold Predicted Precision F-score
ROOT 100 58 74.36 65.17
LEFT 1601 1640 90.30 91.39
RIGHT 192 129 84.87 74.14
Japanese Gold Predicted Precision F-score
ROOT 939 984 85.06 87.05
LEFT 1398 1382 97.76 97.19
RIGHT 2838 3016 92.27 95.08
Turkish Gold Predicted Precision F-score
ROOT 694 685 85.55 84.99
LEFT 750 699 91.70 88.47
RIGHT 3433 3416 84.19 83.98

Figure 1: Tag-specific evaluation of our tagger on the extracted texts.

Arabic Czech Dutch Italian Japanese Turkish
MaltParser 66.22 67.78 65.03 75.48 89.13 68.94
Vine 67.99 66.70 65.98 75.50 83.15 68.53
Vine+ROOT 68.68 66.65 66.21 78.06 83.82 68.45
Vine+ROOT+LEFT 69.68 68.14 68.05 77.14 84.64 68.37
Vine+RIGHT 68.50 67.38 68.18 78.55 84.17 69.87
Vine+ROOT+RIGHT 69.20 67.32 68.40 78.29 84.78 69.79
Vine+ROOT+LEFT+RIGHT 70.28 68.70 70.06 77.26 85.45 69.74

Figure 2: Labeled attachment scores (LASs) for MaltParser limited to POS tags, our baseline vine parser
(Vine) and our extensions of Vine. Best scores bold-faced.

208

tags, features and dependency relations; not just
the POS tags as in our case. In particular, our re-
sult is 2.28 better than Dreyer et al. (2006) who
also use soft and hard constraints on dependency
lengths. They extend the parsing algorithm in Eis-
ner and Smith (2005) to labeledk-best parsing and
use a reranker to find the best parse according to
predefined global features. ULA excl. punctuation
for Turkish is 67.06 which is better than six of the
shared task participants, incl. Dreyer et al. (2006)
(60.45).

The improvements come at an extremely low
cost. The POS tagger simply stores its decisions
in a very small table, typically 5–10 cells per sen-
tence, that is queried in no time in parsing. Pars-
ing a standard small test suite takes less than two
seconds, and the cost of the additional look-up is
too small to be measured. The training time of the
maximum entropy-based tagger is typically a mat-
ter of seconds or half a minute. Even running it on
the 1249k Prague Dependency Treebank (Czech)
is only a matter of minutes.

5 Conclusion and future work

Vine parsers are motivated by efficiency and ro-
bustness (Dreyer et al., 2006), which has become
more and more important over the last few years,
but none of the systems introduced in the liter-
ature provide competitive results in terms of ac-
curacy. Our experiments show how dependency-
based vine parsers can be significantly improved
by using a maximum entropy-based POS tagger
for initial partial parsing with almost no cost in
terms of training and parsing time.

Our choice of parser restricted us in a few re-
spects. Most importantly, our results are below
state-of-the-art results, and it is not clear if the
strategy scales to more accurate parsers. The strat-
egy of using a POS tagger to do partial parsing and
subsequently forward high precision decisions to
a parser only works on graph-based or constraint-
based dependency parsers where previous deci-
sions can be hardwired into candidate weight ma-
trices by setting weights to 0. It would be difficult
if at all possible to implement in history-based de-
pendency parsers such as MaltParser. Experiments
will be performed with the MSTParser soon.

Our parser also restricted us to considering un-
labeled dependency graphs. A POS tagger, how-
ever, can also be used to identify grammatical
functions (subjects, objects, . . .), for example,

which may be used to hardwire dependency rela-
tions into candidate weight matrices. POS taggers
may also be used to identify other dependency re-
lations or more fine-grained features that can im-
prove the accuracy of dependency parsers.

References

Cristina Bosco, Vincenzo Lombardo, Daniela Vassallo,
and Leonardo Lesmo. 2000. Building a treebank for
Italian. InLREC, pages 99–105, Athens, Greece.

Sabine Buchholz and Erwin Marsi. 2006. CONLL-X
shared task on multilingual dependency parsing. In
CONLL-X, pages 149–164, New York City, NY.

Eugene Charniak, Kevin Knight, and Kenji Yamada.
2003. Syntax-based language models for statistical
machine translation. InMT Summit IX, New Or-
leans, Louisiana.

Markus Dreyer, David A. Smith, and Noah A. Smith.
2006. Vine parsing and minimum risk reranking for
speed and precision. InCONLL-X, pages 201–205,
New York City, NY.

J. Edmonds. 1967. Optimum branchings.Journal
of Research of the National Bureau of Standards,
71:233–240.

Jason Eisner and Noah A. Smith. 2005. Parsing with
soft and hard constraints on dependency length. In
IWPT’05, pages 30–41, Vancouver, Canada.

Michel Galley and Cristopher Manning. 2009.
Quadratic time dependency parsing for machine
translation. InACL’09, Singapore, Singapore. To
appear.

Yoav Goldberg and Michael Elhadad. 2008.
splitSVM: fast, space-efficient, non-heuristic, poly-
nomial kernel computation for NLP applications. In
ACL’08, Short Papers, pages 237–240, Columbus,
Ohio.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. InHLT-EMNLP
2005, pages 523–530, Vancouver, British Columbia.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CONLL 2007 shared task on
dependency parsing. InEMNLP-CONLL’07, pages
915–932, Prague, Czech Republic.

Adwait Ratnaparkhi. 1998.Maximum entropy mod-
els for natural language ambiguity resolution. Ph.D.
thesis, University of Pennsylvania.

Le Zhang. 2004. Maximum entropy mod-
eling toolkit for Python and C++. Uni-
versity of Edinburgh. Available at home-
pages.inf.ed.ac.uk/lzhang10/maxenttoolkit.html.

209

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 210–213,
Paris, October 2009. c©2009 Association for Computational Linguistics

HPSG Supertagging: A Sequence Labeling View

Yao-zhong Zhang † Takuya Matsuzaki †

† Department of Computer Science, University of Tokyo
‡ School of Computer Science, University of Manchester

§National Centre for Text Mining, UK
{yaozhong.zhang, matuzaki, tsujii}@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii†‡§

Abstract

Supertagging is a widely used speed-up
technique for deep parsing. In another
aspect, supertagging has been exploited
in other NLP tasks than parsing for
utilizing the rich syntactic information
given by the supertags. However, the
performance of supertagger is still a
bottleneck for such applications. In this
paper, we investigated the relationship
between supertagging and parsing, not
just to speed up the deep parser; We
started from a sequence labeling view
of HPSG supertagging, examining how
well a supertagger can do when separated
from parsing. Comparison of two types
of supertagging model, point-wise model
and sequential model, showed that the
former model works competitively well
despite its simplicity, which indicates
the true dependency among supertag
assignments is far more complex than the
crude first-order approximation made in
the sequential model. We then analyzed
the limitation of separated supertagging
by using a CFG-filter. The results showed
that big gains could be acquired by resort-
ing to a light-weight parser.

1 Introduction

Supertagging is an important part of lexicalized
grammar parsing. A high performance supertag-
ger greatly reduces the load of a parser and ac-
celerates its speed. A supertag represents a lin-
guistic word category, which encodes syntactic be-
havior of the word. The concept of supertagging
was first proposed for lexicalized tree adjoining
grammar (LTAG) (Bangalore and Joshi, 1999) and
then extended to other lexicalized grammars, such

as combinatory categorial grammar (CCG) (Clark,
2002) and Head-driven phrase structure grammar
(HPSG) (Ninomiya et al., 2006). Recently, syn-
tactic information in supertags has been exploited
for NLP tasks besides parsing, such as NP chunk-
ing (Shen and Joshi, 2003), semantic role label-
ing (Chen and Rambow, 2003) and machine trans-
lation (Hassan et al., 2007). Supertagging serves
there as an implicit and convenient way to incor-
porate rich syntactic information in those tasks.

Improving the performance of supertagging can
thus benefit these two aspects: as a preproces-
sor for deep parsing and as an independent, al-
ternative technique for “almost” parsing. How-
ever, supertags are derived from a grammar and
thus have a strong connection to parsing. To fur-
ther improve the supertagging accuracy, the rela-
tion between supertagging and parsing is crucial.
With this motivation, we investigate how well a se-
quence labeling model can do when it is separated
from a parser, and to what extent the ignorance of
long distance dependencies in the sequence label-
ing formulation affects the supertagging results.

Specifically, we evaluated two different types
of supertagging model, point-wise model and se-
quential model, for HPSG supertagging. CFG-
filter was then used to empirically evaluate the
effect of long distance dependencies in supertag-
ging. The point-wise model achieved competitive
result of 92.53% accuracy on WSJ-HPSG tree-
bank with fast training speed, while the sequen-
tial model augmented with supertag edge features
did not give much further improvement over the
point-wise model. Big gains acquired by using
CFG-filter indicates that further improvement may
be achieved by resorting to a light-weight parser.

2 HPSG Supertags

HPSG (Pollard and Sag, 1994) is a kind of lexi-
calized grammar. In HPSG, many lexical entries
are used to express word-specific characteristics,

210

while only small amount of rule schemas are used
to describe general constructions. A supertag in
HPSG corresponds to a template of lexical entry.
For example, one possible supertag for “big” is
“[<ADJP>]N lxm”, which indicates that the syn-
tactic category of “big” is adjective and it modi-
fies a noun to its right. The number of supertags
is generally much larger than the number of labels
used in other sequence labeling tasks; Comparing
to 45 POS tags used in PennTreebank, the HPSG
grammar used in our experiments includes 2,308
supertags. Because of this, it is often very hard or
even impossible to apply computationary demand-
ing methods to HPSG supertagging.

3 Perceptron and Bayes Point Machine

Perceptron is an efficient online discriminative
training method. We used perceptron with weight-
averaging (Collins, 2002) as the basis of our su-
pertagging model. We also use perceptron-based
Bayes point machine (BPM) (Herbrich et al.,
2001) in some of the experiments. In short, a BPM
is an average of a number of averaged perceptrons’
weights. We use average of 10 averaged percep-
trons, each of which is trained on a different ran-
dom permutation of the training data.

3.1 Formulation

Here we follow the definition of Collins’ per-
ceptron to learn a mapping from the input space
(w, p) ∈ W × P to the supertag space s ∈ S. We
use function GEN(w,p) to indicate all candidates
given input (w, p). Feature function f maps a train-
ing sample (w, p, s) ∈W ×P ×S to a point in the
feature space Rd. To get feature weights α ∈ Rd

of feature function, we used the averaged percep-
tron training method described in (Collins, 2002),
and the average of its 10 different runs (i.e., BPM).
For decoding, given an input (w, p) and a vector
of feature weights α, we want to find an output s
which satisfies:

F (w, p) = argmax
s∈GEN(w, p)

α · f(w, p, s)

For the input (w, p), we treat it in two fash-
ions: one is (w, p) representing a single word
and a POS tag. Another is (w, p) representing
whole word and POS tags sequence. We call them
point-wise model and sequential model respec-
tively. Viterbi algorithm is used for decoding in
sequential model.

template type template
Word wi,wi−1,wi+1,

wi−1&wi, wi&wi+1

POS pi, pi−1, pi−2, pi+1,
pi+2, pi−1&pi, pi−2&pi−1,
pi−1&pi+1, pi&pi+1, pi+1&pi+2

Word-POS pi−1&wi, pi&wi, pi+1&wi

Supertag† si−1 , si−2&si−1

Substructure {ssi,1, ..., ssi,N}×Word
{ssi,1, ..., ssi,N}× POS
{ssi,1, ..., ssi,N}×Word-POS
{ssi−1,1, ..., ssi−1,N}×

{ssi,1, ..., ssi,N}†

Table 1: Feature templates for point-wise model
and sequential model. Templates with † are only
used by sequential model. ssi,j represents j-th
substructure of supertag at i. For briefness, si is
omitted for each template. “×” means set-product.
e.g., {a,b}×{A,B}={a&A,a&B,b&A,b&B}

3.2 Features

Feature templates are listed in Table 1. To make
the results comparable with previous work, we
adopt the same feature templates as Matsuzaki et.
al. (2007). For sequential model, supertag con-
texts are added to the features. Because of the
large number of supertags, those supertag edge
features could be very sparse. To alleviate this
sparseness, we extracted sub-structures from the
lexical template of each supertag, and use them for
making generalized node/edge features as shown
in Table 1. The sub-structures we used include
subcategorization frames (e.g., subject=NP, ob-
ject=NP PP), direction and category of modifiee
phrase (e.g., mod left=VP), voice and tense of a
verb (e.g., passive past).

3.3 CFG-filter

Long distance dependencies are also encoded in
supertags. For example, when a transitive verb
gets assigned a supertag that specifies it has a PP-
object, in most cases a preposition to its right must
be assigned an argument (not adjunct) supertag,
and vice versa. Such kind of long distance context
information might be important for supertag dis-
ambiguation, but is not easy to incorporate into a
sequence labeling model separated from a parser.

To examine the limitation of supertagging sep-
arated from a parser, we used CFG-filter as an ap-

211

Model Name Acc%
PW-AP 92.29
SEQ-AP 92.53

PW-AP+CFG 93.57
SEQ-AP+CFG 93.68

Table 2: Averaged 10-cross validation of averaged
perceptron on Section 02-21.

proximation of an HPSG parser. We firstly cre-
ated a CFG that approximates the original HPSG
grammar, using the iterative method by Kiefer
and Krieger (2000). Given the supertags as pre-
terminals, the approximating CFG was then used
for finding a maximally scored sequence of su-
pertags which satisfies most of the grammatical
constraints in the original HPSG grammar (Mat-
suzaki et al., 2007). By comparing the supertag-
ging results before and after CFG-filtering, we can
quantify how many errors are caused by ignorance
of the long-range dependencies in supertagger.

4 Experiments and Analysis

We conducted experiments on WSJ-HPSG tree-
bank corpus (Miyao, 2006), which was semi-
automatically converted from the WSJ portion of
PennTreebank. The number of training iterations
was set to 5 for all models. Gold-standard POS
tags are used as input. The performance is evalu-
ated by accuracy1 and speed of supertagging on an
AMD Opteron 2.4GHz server.

Table 2 shows the averaged results of 10-
fold cross-validation of averaged perceptron (AP)
models2 on section 02-21. We can see the dif-
ference between point-wise AP model and se-
quential AP model is small (0.24%). It becomes
even smaller after CFG-filtering (0.11%). Table
3 shows the supertagging accuracy on section 22
based on BPM. Although not statistically signif-
icantly different from previous ME model (Mat-
suzaki et al., 2007), point-wise model (PW-BPM)
achieved competitive result 92.53% with faster
training. In addition, 0.27% and 0.29% gains were
brought by using BPM from PW-AP (92.26%) and
PW-SEQ (92.54%) with P-values less than 0.05.

The improvement by using sequential mod-
els (PW-AP→SEQ-AP: 0.24%, PW-BPM→SEQ-
BPM: 0.3%, statistically significantly different),

1“UNK” supertags are ignored in evaluation as previous.
2For time limitation, cross validation for BPM was not

conducted.

Model Name Acc% Training/
Testing Time ‡

ME (Matsuzaki 07’) 92.45 ≈ 3h / 12s
PW-BPM 92.53 285s / 10s
SEQ-BPM 92.83 1721s / 13s
PW-BPM+SUB 92.68 1275s / 25s
SEQ-BPM+SUB 92.99 9468s / 107s
PW-BPM+CFG 93.60 285s / 78s
SEQ-BPM+CFG 93.70 1721s / 195s
PW-BPM+SUB+CFG 93.72 1275s / 170s
SEQ-BPM+SUB+CFG 93.88 9468s / 1011s

Table 3: Supertagging accuracy and training&
testing speed on section 22. (‡) Test time was cal-
culated on totally 1648 sentences.

compared to point-wise models, were not so large,
but the training time was around 6 times longer.
We think the reason is twofold. First, as previous
research showed, POS sequence is very informa-
tive in supertagging (Clark, 2004). A large amount
of local syntactic information can be captured in
POS tags of surrounding words, although a few
long-range dependencies are of course not. Sec-
ond, the number of supertags is large and the su-
pertag edge features used in sequential model are
inevitably suffered from data sparseness. To alle-
viate this, we extracted sub-structure from lexical
templates (i.e., lexical items corresponding to su-
pertags) to augment the supertag edge features, but
only got 0.16% improvement (SEQ-BPM+SUB).
Furthermore, we also got 0.15% gains with P-
value less than 0.05 by incorporating the sub-
structure features into point-wise model (PW-
BPM+SUB). We hence conclude that the contri-
bution of the first-order edge features is not large
in sequence modeling for HPSG supertagging.

As we explained in Section 3.3, sequence label-
ing models have inherent limitation in the ability
to capture long distance dependencies between su-
pertags. This kind of ambiguity could be easier to
solve in a parser. To examine this, we added CFG-
filter which works as an approximation of a full
HPSG parser, after the sequence labeling model.
As expected, there came big gains of 1.26% (from
PW-AP to PW-AP+CFG) and 1.15% (from PW-
BPM to PW-BPM+CFG). Even for the sequen-
tial model we also got 1.15% (from SEQ-AP to
SEQ-AP+CFG) and 0.87% (from SEQ-BPM to
SEQ-BPM+CFG) respectively. All these models
were statistically significantly different from orig-

212

inal ones.
We also gave error analysis on test results.

Comparing SEQ-AP with SEQ-AP+CFG, one of
the most frequent types of “correct supertag” by
the CFG-filter was for word “and”, wherein a su-
pertag for NP-coordination (“NP and NP”) was
corrected to one for VP-coordination (“VP and
VP” or “S and S”). It means the disambiguation
between the two coordination type is difficult for
supertaggers, presumably because they looks very
similar with a limited length of context since the
sequence of the NP-object of left conjunct, “and”,
the NP subject of right conjunct looks very similar
to a NP coordination. The different assignments
by SEQ-AP+CFG from SEQ-AP include 725 right
corrections, while it changes 298 correct predic-
tions by SEQ-AP to wrong assignments. One pos-
sible reason for some of “wrong correction” is re-
lated to the approximation of grammar. But this
gives clue that for supertagging task: just using
sequence labeling models is limited, and we can
resort to use some light-weight parser to handle
long distance dependencies.

Although some of the ambiguous supertags
could be left for deep parsing, like multi-tagging
technique (Clark, 2004), we also consider the
tasks where supertags can be used while conduct-
ing deep parsing is too computationally costly. Al-
ternatively, focusing on supertagging, we could
treat it as a sequence labeling task, while a conse-
quent light-weight parser is a disambiguator with
long distance constraint.

5 Conclusions

In this paper, through treating HPSG supertag-
ging in a sequence labeling way, we examined
the relationship between supertagging and parsing
from an angle. In experiment, even for sequential
models, CFG-filter gave much larger improvement
than one gained by switching from a point-wise
model to a sequential model. The accuracy im-
provement given by the CFG-filter suggests that
we could gain further improvement by combining
a supertagger with a light-weight parser.

Acknowledgments

Thanks to the anonymous reviewers for valuable
comments. The first author was partially sup-
ported by University of Tokyo Fellowship (UT-
Fellowship). This work was partially supported
by Grant-in-Aid for Specially Promoted Research

and Special Coordination Funds for Promoting
Science and Technology (MEXT, Japan).

References
Srinivas Bangalore and Aravind K. Joshi. 1999. Su-

pertagging: An approach to almost parsing. Com-
putational Linguistics, 25:237–265.

John Chen and Owen Rambow. 2003. Use of deep
linguistic features for the recognition and labeling
of semantic arguments. In Proceedings of EMNLP-
2003, pages 41–48.

Stephen Clark. 2002. Supertagging for combinatory
categorial grammar. In Proceedings of the 6th In-
ternational Workshop on Tree Adjoining Grammars
and Related Frameworks (TAG+ 6), pages 19–24.

Stephen Clark. 2004. The importance of supertagging
for wide-coverage ccg parsing. In Proceedings of
COLING-04, pages 282–288.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. pages 1–8.

Hany Hassan, Mary Hearne, and Andy Way. 2007. Su-
pertagged phrase-based statistical machine transla-
tion. In Proceedings of ACL 2007, pages 288–295.

Ralf Herbrich, Thore Graepel, and Colin Campbell.
2001. Bayes point machines. Journal of Machine
Learning Research, 1:245–279.

Bernd Kiefer and Hans-Ulrich Krieger. 2000. A
context-free approximation of head-driven phrase
structure grammar. In Proceedings of IWPT-2000,
pages 135–146.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsu-
jii. 2007. Efficient hpsg parsing with supertagging
and cfg-filtering. In Proceedings of IJCAI-07, pages
1671–1676.

Yusuke Miyao. 2006. From Linguistic Theory to Syn-
tactic Analysis: Corpus-Oriented Grammar Devel-
opment and Feature Forest Model. Ph.D. Disserta-
tion, The University of Tokyo.

Takashi Ninomiya, Yoshimasa Tsuruoka, Takuya Mat-
suzaki, and Yusuke Miyao. 2006. Extremely lex-
icalized models for accurate and fast hpsg parsing.
In Proceedings of EMNLP-2006, pages 155–163.

Carl Pollard and Ivan A. Sag. 1994. Head-driven
Phrase Structure Grammar. University of Chicago /
CSLI.

Libin Shen and Aravind K. Joshi. 2003. A snow based
supertagger with application to np chunking. In Pro-
ceedings of ACL 2003, pages 505–512.

213

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 214–217,
Paris, October 2009. c©2009 Association for Computational Linguistics

Smoothing fine-grained PCFG lexicons

Tejaswini Deoskar
ILLC

University of Amsterdam
t.deoskar@uva.nl

Mats Rooth
Dept. of Linguistics and CIS

Cornell University
mr249@cornell.edu

Khalil Sima’an
ILLC

University of Amsterdam
k.simaan@uva.nl

Abstract

We present an approach for smoothing
treebank-PCFG lexicons by interpolating
treebank lexical parameter estimates with
estimates obtained from unannotated data
via the Inside-outside algorithm. The
PCFG has complex lexical categories,
making relative-frequency estimates from
a treebank very sparse. This kind of
smoothing for complex lexical categories
results in improved parsing performance,
with a particular advantage in identify-
ing obligatory arguments subcategorized
by verbs unseen in the treebank.

1 Introduction

Lexical scarcity is a problem faced by all sta-
tistical NLP applications that depend on anno-
tated training data, including parsing. One way
of alleviating this problem is to supplement super-
vised models with lexical information from unla-
beled data. In this paper, we present an approach
for smoothing the lexicon of a treebank PCFG
with frequencies estimated from unannotated data
with Inside-outside estimation (Lari and Young,
1990). The PCFG is an unlexicalised PCFG, but
contains complex lexical categories (akin tosu-
pertags in LTAG (Bangalore and Joshi, 1999) or
CCG (Clark and Curran, 2004)) encoding struc-
tural preferences of words, like subcategorization.

The idea behind unlexicalised parsing is that the
syntax and lexicon of a language are largely inde-
pendent, being mediated by “selectional” proper-
ties of open-class words. This is the intuition be-
hind lexicalised formalisms like CCG: here lexical
categories are fine-grained and syntactic in nature.
Once a word is assigned a lexical category, the
word itself is not taken into consideration further
in the syntactic analysis. Fine-grained categories
imply that lexicons estimated from treebanks will

be extremely sparse, even for a language like En-
glish with a large treebank resource like the Penn
Treebank (PTB) (Marcus et al., 1993). Smoothing
a treebank lexicon with an external wide-coverage
lexicon is problematic due to their respective rep-
resentations being incompatible and without an
obvious mapping, assuming that the external lexi-
con is probabilistic to begin with. In this paper, we
start with a treebank PCFG with fine-grained lex-
ical categories andre-estimate its parameters on a
large corpus of unlabeled data. We then use re-
estimates of lexical parameters (i.e. pre-terminal
to terminal rule probabilities) to smooth the orig-
inal treebank lexical parameters by interpolation
between the two. Since the treebank PCFG itself is
used to propose analyses of new data, the mapping
problem is inherently taken care of. The smooth-
ing procedure takes into account the fact that unsu-
pervised estimation has benefits for unseen or low-
frequency lexical items, but the treebank relative-
frequency estimates are more reliable in the case
of high-frequency items.

2 Treebank PCFG

In order to have fine-grained and linguistic lexi-
cal categories (like CCG) within a simple formal-
ism with well-understood estimation methods, we
first build a PCFG containing such categories from
the PTB. The PCFG is unlexicalised (with lim-
ited lexicalization of certain function words, like
in Klein and Manning (2003)). It is created by
first transforming the PTB (Johnson, 1998) in an
appropriate way and then extracting a PCFG from
the transformed trees (Deoskar and Rooth, 2008).
All functional tags in the PTB (such as NP-SBJ,
PP-TMP, etc.) are maintained, as are all empty
categories, making long-distance dependencies re-
coverable. The PCFG is trained on the standard
training sections of the PTB and performs at the
state-of-the-art level for unlexicalised PCFGs, giv-
ing 86.6% f-score on Sec. 23.

214

VP

VB.np

add

NP

four more
Boeings

PP-TMP

by 1994

PP-CLR

to the
two units.

(a) An NP PP subcategorization frame marked on the
verb “add” asnp. Note that the arguments NP and PP-
CLR are part of the subcategorization frame and are
represented locally on the verb but the adjunct PP-
TMP is not.

VP

VBG.s.e.to

seeking

S.e.to

+E-NP+ VP.to

TO

to

VP

avoid..
(b) An S frame on the verb “seeking”: +E-
NP+ represents the empty subject of the
S. Note that structure internal to S is also
marked on the verb.

VP

Vb.sb

think

SBAR

+C+ S

the consumer
is right

(c) An SBAR frame: +C+ is the
empty complementizer.

Figure 1: Subcategorized structures are marked as featureson the verbal POS category.

An important feature of our PCFG is that pre-
terminal categories for open-class items like verbs,
nouns and adverbs are more complex than PTB
POS tags. They encode information about the
structure selected by the lexical item, in effect,
its subcategorization frame. A pre-terminal in our
PCFG consists of the standard PTB POS tag, fol-
lowed by a sequence of features incorporated into
it. Thus, each PTB POS tag can be considered to
be divided into multiple finer-grained “supertags”
by the incorporated features. These features en-
code the structure selected by the words. We fo-
cus on verbs in this paper, as they are important
structural determiners. A sequence of one or more
features forms the “subcategorization frame” of a
verb: three examples are shown in Figure 1. The
features are determined by a fully automated pro-
cess based on PTB tree structure and node labels.
There are 81 distinct subcategorization frames for
verbal categories. The process can be repeated for
other languages with a treebank annotated in the
PTB style which marks arguments like the PTB.

3 Unsupervised Re-estimation

Inside-outside (henceforth I-O) (Lari and Young,
1990), an instance of EM, is an iterative estima-
tion method for PCFGs that, given an initial model
and a corpus of unannotated data, produces mod-
els that assign increasingly higher likelihood to
the corpus at each iteration. I-O often leads to
sub-optimal grammars, being subject to the well-
known problem of local maxima, and dependence
on initial conditions (de Marcken, 1995) (although
there have been positive results using I-O as well,
for e.g. Beil et al. (1999)). More recently, Deoskar
(2008) re-estimated an unlexicalised PTB PCFG
using unlabeled Wall Street Journal data. They

compared models for which all PCFG parameters
were re-estimated from raw data to models for
which only lexical parameters were re-estimated,
and found that the latter had better parsing results.
While it is common to constrain EM either by
good initial conditions or by heuristic constraints,
their approach used syntactic parameters from a
treebank model to constrain re-estimation of lex-
ical parameters. Syntactic parameters are rela-
tively well-estimated from a treebank, not being as
sparse as lexical parameters. At each iteration, the
re-estimated lexicon was interpolated with a tree-
bank lexicon, ensuring that re-estimated lexicons
did not drift away from the treebank lexicon.

We follow their methodology of constrained
EM re-estimation. Using the PCFG with fine
lexical categories (as described in§2) as the ini-
tial model, we re-estimate its parameters from an
unannotated corpus. The lexical parameters of
the re-estimated PCFG form its probabilistic “lex-
icon”, containing the same fine-grained categories
as the original treebank PCFG. We use this re-
estimated “lexicon” to smooth the lexical proba-
bilities in the treebank PCFG.

4 Smoothing based on a POS tagger : the
initial model.

In order to use the treebank PCFG as an initial
model for unsupervised estimation, new words
from the unannotated training corpus must be in-
cluded in it – if not, parameter values for new
words will never be induced. Since the treebank
model contains no information regarding correct
feature sequences for unseen words, we assign all
possible sequences that have occurred in the tree-
bank model with the POS tag of the word. We
assign all possible sequences toseen words as

215

well – although the word is seen, the correct fea-
ture sequence for a structure in a training sentence
might still be unseen with that word. This is done
as follows: a standard POS-tagger (TreeTagger,
(Schmid, 1994)) is used to tag the unlabeled cor-
pus. A frequency tablecpos(w, τ) consisting of
words and POS-tags is extracted from the result-
ing corpus, wherew is the word andτ its POS
tag. The frequencycpos(w, τ) is split amongst all
possible feature sequencesι for that POS tag in
proportion to treebank marginalst(τ, ι) andt(τ)

cpos(w, τ, ι) =
t(τ, ι)
t(τ)

cpos(w, τ) (1)

Then the treebank frequencyt(w, τ, ι) and the
scaled corpus frequency are interpolated to get a
smoothed modeltpos. We useλ=0.001, giving a
small weight initially to the unlabeled corpus.
tpos(w, τ, ι) = (1− λ)t(w, τ, ι) + λcpos(w, τ, ι)

(2)
The first term will be zero for words unseen in the
treebank: their distribution in the smoothed model
will be the average treebank distribution over all
possible feature sequences for a POS tag. For
seen words, the treebank distribution over feature
sequence is largely maintained, but a small fre-
quency is assigned to unseen sequences.

5 Smoothing based on EM re-estimation

After each iterationi of I-O, the expected counts
cemi(w, τ, ι) under the model instance at itera-
tion (i − 1) are obtained. A smoothed treebank
lexicon temi is obtained by linearly interpolating
the smoothed treebank lexicontpos(w, τ, ι) and a
scaled re-estimated lexicon̄cemi(w, τ, ι).
temi(w, τ, ι) = (1−λ)tpos(w, τ, ι)+λc̄emi (w, τ, ι)

(3)
where0 < λ < 1. The termc̄emi(w, τ, ι) is ob-
tained by scaling the frequenciescemi(w, τ, ι) ob-
tained by I-O, ensuring that the treebank lexicon is
not swamped with the large training corpus1.

c̄emi(w, τ, ι) =
t(τ, ι)∑

w cemi(w, τ, ι)
cemi(w, τ, ι)

(4)
λ determines the relative weights given to the

treebank and re-estimated model for a word. Since
parameters of high-frequency words are likely
to be more accurate in the treebank model, we
parametrizeλ asλf according to the treebank fre-
quencyf = t(w, τ).

1Note that in Eq. 4, the ratio of the two terms involving
cemi is the conditional, lexical probabilityPemi(w|τ, ι).

6 Experiments

The treebank PCFG is trained on sections 0-22 of
the PTB, with 5000 sentences held-out for evalu-
ation. We conducted unsupervised estimation us-
ing Bitpar (Schmid, 2004) with unannotated Wall
Street Journal data of 4, 8 and 12 million words,
with sentence length<25 words. The treebank
and re-estimated models are interpolated withλ =
0.5 (in Eq. 3). We also parametrizeλ for treebank
frequency of words – optimizing over a develop-
ment set gives us the following values ofλf for
different ranges of treebank word frequencies.

if t(w, τ) <= 5 , λf = 0.5
if 5 < t(w, τ) <= 15 , λf = 0.25
if 15 < t(w, τ) <= 50 , λf = 0.05
if t(w, τ) > 50 , λf = 0.005

(5)

Evaluations are on held-out data from the PTB
by stripping all PTB annotation and obtaining
Viterbi parses with the parser Bitpar. In addition
to standardPARSEVAL measures, we also eval-
uate parses by another measure specific to sub-
categorization2: the POS-tag+feature sequence on
verbs in the Viterbi parse is compared against the
corresponding tag+feature sequence on the trans-
formed PTB gold tree, and errors are counted. The
tag-feature sequence correlates to the structure se-
lected by the verb, as exemplified in Fig. 1.

7 Results

There is a statistically significant improvement3

in labeled bracketing f-score on Sec. 23 when
the treebank lexicon is smoothed with an EM-re-
estimated lexicon. In Table 1,tt refers to the base-
line treebank model, smoothed using the POS-
tag smoothing method (from§4) on the test data
(Sec. 23) in order to incorporate new words from
the test data4. tpos refers to the initial model for
re-estimation, obtained by smoothed the treebank
model with the POS-tag smoothing method with
the large unannotated corpus (4 million words).
This model understandably does not improve over
tt for parsing Sec. 23.tem1,λ=0.5 is the model
obtained by smoothing with an EM-re-estimated
model with a constant interpolation factorλ =
0.5. This model gives a statistically significant im-
provement in f-score over bothtt and tpos. The
last modeltem1,λf

is obtained by smoothing with

2PARSEVAL measures are known to be insensitive to sub-
categorization (Carroll et al., 1998).

3A randomized version of a paired-sample t-test is used.
4This is always done before parsing test data.

216

tt tpos tem1,λ=0.5 tem1,λf

Recall 86.48 86.48 86.72 87.44
Precision 86.61 86.63 86.95 87.15
f-score 86.55 86.56 *86.83 *87.29

Table 1: Labeled bracketing F-score on section 23.

an interpolation factor as in Eq. 5 : this is the best
model with a statistically significant improvement
in f-score overtt, tpos andtem1,λ=0.5.

Since we expect that smoothing will be advanta-
geous for unseen or low-frequency words, we per-
form an evaluation targeted at identifying struc-
tures subcategorized by unseen verbs. Table 2
shows the error reduction in identifying subcat.
frames in Viterbi parses, of unseen verbs and also
of all verbs (seen and unseen) in the testset. A
breakup of error by frame type for unseen verbs is
also shown (here, only frames with>10 token oc-
currences in thetest data are shown). In all cases
(unseen verbs and all verbs) we see a substantial
error reduction. The error reduction improves with
larger amounts of unannotated training data.

8 Discussion and Conclusions

We have shown that lexicons re-estimated with I-
O can be used to smooth unlexicalised treebank
PCFGs, with a significant increase in f-score even
in the case of English with a large treebank re-
source. We expect this method to have more
impact for languages with a smaller treebank or
richer tag-set. An interesting aspect is the substan-
tial reduction in subcategorization error for un-
seen verbs for which no word-specific information
about subcategorization exists in the unsmoothed
or POS-tag-smoothed lexicon. The error reduction
in identifying subcat. frames implies that some
constituents (such as PPs) are not only attached
correctly but also identified correctly as arguments
(such as PP-CLR) rather than as adjuncts.

There have been previous attempts to use POS-
tagging technologies (such as HMM or maximum-
entropy based taggers) to enhance treebank-
trained grammars (Goldberg et al. (2009) for He-
brew, (Clark and Curran, 2004) for CCG). The re-
estimation method we use builds full parse-trees,
rather than use local features like taggers do, and
hence might have a benefit over such methods. An
interesting option would be to train a “supertag-
ger” on fine-grained tags from the PTB and to su-
pertag a large corpus to harvest lexical frequen-

Frame # tokens%Error%Error%Error

(test) tpos tem1 Reduc.

All unseen (4M words) 1258 33.47 22.81 31.84
All unseen (8M words) 1258 33.47 22.26 33.49
All unseen (12M words) 1258 33.47 21.86 34.68

transitive 662 23.87 18.73 21.52
intransitive 115 38.26 33.91 11.36
NP PP-CLR 121 34.71 32.23 7.14

PP-CLR 73 27.4 20.55 25
SBAR 124 12.1 12.1 0

S 12 83.33 58.33 30
NP NP 10 90 80 11.11
PRT NP 21 38.1 33.33 12.5

s.e.to (see Fig.1b) 50 16 12 25
NP PP-DIR 11 63.64 54.55 14.28

All verbs (4M) 11710 18.5 16.84 8.97

Table 2: Subcat. error for verbs in Viterbi parses.

cies. This would form another (possibly higher)
baseline for the I-O re-estimation approach pre-
sented here and is the focus of our future work.

References
S. Bangalore and A. K. Joshi. 1999. Supertagging: An Ap-

proach to Almost Parsing.Computational Linguistics,
25:237–265.

F. Beil, G. Carroll, D. Prescher, S. Riezler, and M. Rooth.
1999. Inside-outside estimation of a lexicalized PCFG for
German. InACL 37.

J. Carroll, G. Minnen, and E. Briscoe. 1998. Can subcate-
gorization probabilities help parsing. In6th ACL/SIGDAT
Workshop on Very Large Corpora.

S. Clark and J. R. Curran. 2004. The Importance of Supertag-
ging for Wide-Coverage CCG Parsing. In22nd COLING.

Carl de Marcken. 1995. On the unsupervised induction of
Phrase Structure grammars. InProceedings of the 3rd
Workshop on Very Large Corpora.

T. Deoskar. 2008. Re-estimation of Lexical Parameters for
Treebank PCFGs. In22nd COLING.

Tejaswini Deoskar and Mats Rooth. 2008. Induction of
Treebank-Aligned Lexical Resources. In6th LREC.

Y. Goldberg, R. Tsarfaty, M. Adler, and M. Elhadad. 2009.
Enhancing Unlexicalized Parsing Performance using a
Wide Coverage Lexicon, Fuzzy Tag-set Mapping, and
EM-HMM-based Lexical Probabilities. InEACL-09.

M. Johnson. 1998. PCFG models of linguistic tree represen-
tations.Computational Linguistics, 24(4).

D. Klein and C. Manning. 2003. Accurate unlexicalized pars-
ing. In ACL 41.

K. Lari and S. J. Young. 1990. The estimation of stochas-
tic context-free grammars using the Inside-Outside algo-
rithm. Computer Speech and Language, 4:35–56.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: The Penn
Treebank.Computational Linguistics, 19(2):313–330.

H. Schmid. 1994. Probabilistic Part-of-Speech Tagging Us-
ing Decision Trees. InInternational Conference on New
Methods in Language Processing.

H. Schmid. 2004. Efficient Parsing of Highly Ambiguous
CFGs with Bit Vectors. In20th COLING.

217

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 218–221,
Paris, October 2009. c©2009 Association for Computational Linguistics

Wide-coverage parsing of speech transcripts

Jeroen Geertzen
Research Centre for English & Applied Linguistics

University of Cambridge, UK
jg532@cam.ac.uk

Abstract

This paper discusses the performance
difference of wide-coverage parsers on
small-domain speech transcripts. Two
parsers (C&C CCG and RASP) are tested
on the speech transcripts of two different
domains (parent-child language, and pic-
ture descriptions).

The performance difference between
the domain-independent parsers and
two domain-trained parsers (MSTParser
and MEGRASP) is substantial, with a
difference of at least 30 percent point
in accuracy. Despite this gap, some of
the grammatical relations can still be
recovered reliably.

1 Introduction

Even though wide-coverage, domain-
independent1 parser systems may perform
sufficiently well for the task at hand, obtaining
highly accurate parses of sentences in a par-
ticular domain usually requires the parser to
be domain-trained. Training a parser requires
a sufficient amount of labelled data (a gold
standard), something that is only available for
very few domains. When accurate parses of
sentences in a new domain are desired, there
are several ways to proceed. Hand labelling all
data in the new domain is a consideration, but is
usually unfeasible as manual annotation is a costly
activity. Another possibility is to minimise the
amount of annotation effort required to achieve
good performance by resorting to semi-automatic
annotation or domain adaptation methods. In
any case, dedicated effort is still required to
obtain highly accurate parses, even with recent

1In this paper, the terms ‘wide-coverage’ and ’domain-
independent’ are used synonymously.

automated domain adaptation methods (Dredze
et al., 2007).

Work that requires parsing in a new domain as
basis of further study or as part of a larger nat-
ural language processing system usually involves
a domain-independent parser with the expectation
that parses are sufficiently accurate for the specific
purpose.2 For instance, Bos and Markert (2005)
use a wide-coverage CCG-parser (Clark and Cur-
ran, 2007) to generate semantic representations for
recognising textual entailment. Geertzen (2009)
uses a HPSG-based dependency parser (Bouma
et al., 2001) to obtain the semantic content of utter-
ances. And in the study of child language acqui-
sition, Buttery and Korhonen (2007) use RASP, a
wide-coverage dependency parser (Briscoe et al.,
2006), to look at lexical acquisition.

The goal of this paper is to give an indication
of wide-coverage, domain-independent parser per-
formance on specific domains. Additionally, the
study gives insight into RASP’s performance on
CHILDES, allowing to factor in parsing perfor-
mance in the syntax-based study of Buttery and
Korhonen (2007).

2 Parsing speech transcripts

Parsing performance of two domain-independent
parsers, C&C CCG en RASP, is evaluated on two
speech domains. The first domain, CHILDES, in-
volves parent-child interactions; the second do-
main, CCC, involves a picture description task.

2.1 Parsing systems

Two wide-coverage parser systems are used.
RASP (Briscoe et al., 2006) is a parsing system for

2Without gold standard there is no way of knowing how
well the parser component performs with respect to a de-
sired outcome of syntactic structure. This may not neces-
sarily be a problem, as parsing in such cases is paramount,
and application-based evaluation is preferable. Moreover, it
may be that using linguistically most desired parses does not
result in best application performance.

218

English that utilises a manually-developed gram-
mar and outputs grammatical dependency rela-
tions. The C&C CCG parser (Clark and Cur-
ran, 2007) is a parsing system that is based on
an automatically extracted grammar from CCG-
Bank and uses discriminative training. Both sys-
tems are able to output the exact set of dependency
relations, and in a comparison on a 560-sentence
test set used by Briscoe and Carroll (2006), Clark
and Curran (2007) report a micro-averagedF -
score of 81.14 for the CCG parser, and 76.29 for
RASP. 3 Both parsing systems utilise the Gram-
matical Relations (GR) annotation scheme pro-
posed by Carroll et al. (1998). This scheme is in-
tended to cater for parser evaluation, and extends
the dependency structure based method of eval-
uation proposed by Lin (1998). For the parent-
child interaction domain both parsing systems are
compared with two syntactic dependency parsers
that were specifically trained for CHILDES tran-
scripts: MEGRASP (Sagae et al., 2007) and MST-
parser (McDonald et al., 2005).

2.2 Speech phenomena

As CCC and CHILDES transcripts are describ-
ing spoken language, they contain various markers
that encode speech phenomena, particularly dis-
fluencies (e.g. filled pauses, partial words, false
starts, repetitions) and speech repairs (e.g. re-
tractions and corrections). Prior to parser eval-
uation, such disfluencies have been deleted from
the transcripts, which slightly improves parser per-
formance for all systems mentioned. Similar per-
formance improvements are also reported in stud-
ies that address the effect of deletion of repairs
and fillers on parsing (e.g. Charniak and Johnson
(2001); Lease and Johnson (2006)).

2.3 CHILDES data

The major part of the evaluation is based on
the parsing of parent-child interactions from the
CHILDES database (MacWhinney, 2000). A
large portion of CHILDES transcripts was recently
parsed with a domain-specific parser (Sagae et al.,
2007), allowing more reliable systematic studies
of syntactic development in child language acqui-
sition. Sagae et al. also released their gold stan-
dard data, allowing others to train and evaluate

3It should be remarked that such cross-formalism compar-
isons are difficult in nature. In this case, training data were
different (RASP is not tuned to newspaper text), and CCG
utilises a lexicalised parsing model where RASP does not.

other parser systems.
The gold standard data uses a GR scheme that

is based on that of Carroll et al. (1998) but that
differs in two respects: the scheme is extended
to suit the specific need of the child language re-
search community (cf. (Sagae et al., 2004)), and
the scheme does not extensively and explicitly use
the GR hierarchy.

To compare parsing performance, a mapping
from RASP GRs to CHILDES GRs was manu-
ally constructed, containing 75 rules that involve
the label and optional restrictions on the word or
POS-tag of the head or dependent.

3 Parser evaluation

3.1 Measures

System performance is reported with accuracy
measures for labelled and unlabelled dependen-
cies resulting from 15-fold cross-validation.4 The
performance on each grammatical relation is ex-
pressed by precision, recall, andF1-score. Punc-
tuation has been excluded.

3.2 CHILDES

The gold-standard used for evaluation is based on
15 (out of 20) files in the Eve section of the Brown
corpus. The annotations that are available were
made with the CHILDES GR scheme, for which
an inter-annotator percentage agreement of 96.5%
(N = 2) has been reported by Sagae et al. (2004).
From all manually annotated utterances initially
available, duplicates, those with less than three to-
kens (about 30% of all), and those with missing
or incomplete parses (1% of all) were removed,
resulting in a set of 14.137 sentences, comprising
93,594 tokens with 4.5 tokens per utterance on av-
erage.

The performance scores that are obtained when
the parsing systems are compared against the gold-
standard are listed in the upper part of Table 1.

As can be seen from the accuracy scores,
MEGRASP and the MSTParser perform with
more than 30 percent point accuracy considerably
better than the domain-independent parsers. How-
ever, the list of performance scores for each of
the grammatical relations in Table 2 shows that
some relations can be recovered with acceptable

4The exception being the MEGRASP, for which because
of computation problems the full gold standard was used (7%
larger than the other training sets), resulting in somewhat
higher scores than expected with cross-validation.

219

Table 1: Parsing accuracy scores.

CHILDES labelled unlabelled

RASP 60.1 69.2
CCG parser 39.1 66.5
MSTParser 93.8 95.4
MEGRASP 90.7 93.5

CCC labelled unlabelled

RASP 66.7 72.3
CCG parser 60.2 68.5

F1-scores, such as auxiliaries, determiners, sub-
jects, and objects of prepositions.5

3.3 CCC

The Cambridge Cookie-theft Corpus (CCC, TO
APPEAR, 2010) contains audio-recorded mono-
logues of 196 subjects that were asked to fully de-
scribe a scene in a picture. As a result, the domain
is small, but at the same time, sentence bound-
aries are difficult to indicate. From this corpus
of 5,628 intonational phrases, a small evaluation
set of 80 phrases has been manually annotated6

with GRs. The performance scores for each of the
parsers is listed in the lower part of Table 1. Accu-
racy scores are higher than those for CHILDES,
and the difference in labelled accuracy between
the domain-independent parsers is less than with
CHILDES. Due to space restrictions it is not pos-
sible to present performance on individual GRs,
but the GRs that are most reliably recovered are
similar to those mentioned in Section 3.2.

4 Considerations

In the work reported here, performance of domain-
independent parsers on narrow domains was cal-
culated for two domains. The availability of
more domain-specific datasets with manually su-
pervised GR annotations would allow a better gen-
eralisation of parser performance. Unfortunately,
datasets with manually verified annotations that
use the same set of syntactic dependencies are
rare.

The CHILDES figures show that the perfor-
mance difference between domain-independent

5MSTParser scores did not fit in the table, but largely
correspond in distributional characteristics, and are available
upon request.

6Not with multiple coders yet, but percentage agreement
for dependency annotation typically varies from 93-98%.

and domain-trained parsers is big. It should be
noted that these results are obtained from speech,
which is usually less syntactically well-formed
than written language. For the speech data anal-
ysed, RASP performs better than the CCG parser,
whereas Clark and Curran (2007) have shown that
the CCG parser outperforms RASP on written text.
To better explain this difference, it would be in-
sightful to compare the confusion matrices of GR
assignments. This would allow assessment on how
the domain-independent parser errors compare to
the domain-trained parser errors.

The mapping from RASP GRs to CHILDES
GRs that was constructed is exhaustive, but there
is still room for fine-tuning and more refined map-
pings, gaining up to about 2% accuracy by esti-
mate.

5 Conclusions and future work

This paper has provided performance scores of
wide-coverage parsers applied to narrow domain
spoken language transcripts to assess the perfor-
mance gap with domain-trained parsers. This gap
appears to be considerable (more than 30 percent
point for CHILDES), but a subset of GRs can still
be recovered with fair accuracy.

We have not yet dealt with comparing
domain-independent and domain-trained parser
errors, which may provide additional insight into
the strengths and weaknesses of wide-coverage
parsers for narrow use.

Acknowledgements

This work is supported by UK EPSRC Grant
EP/F030061/1.

References

Bos, J. and Markert, K. (2005). Recognising tex-
tual entailment with logical inference. InPro-
ceedings of the HLT and EMNLP conference,
pages 628–635.

Bouma, G., van Noord, G., and Malouf, R. (2001).
Alpino: Wide-coverage computational analysis
of dutch. In Proceedings of the CLIN 2000,
pages 45–59.

Briscoe, T. and Carroll, J. (2006). Evaluating the
accuracy of an unlexicalized statistical parser on
the PARC depbank. InProceedings of the COL-
ING/ACL on Main conference poster sessions,
pages 41–48.

220

Table 2: Performance scores of the parsing systems for major GRs. Some of the relations could not be
reliably be mapped, and are absent for the CCG parser.

RASP CCG parser MEGRASP
relation Prec Rec F1 Prec Rec F1 Prec Rec F1

aux 89.13 69.87 78.33 90.81 62.21 73.84 98.13 96.21 97.16
com 67.80 6.12 11.23 - - - 93.15 88.52 90.78
comp 22.73 64.18 33.57 24.53 53.66 33.67 80.00 84.72 82.29
coord 70.42 64.31 67.23 82.50 30.62 44.66 75.07 83.93 79.26
cpzr 74.67 20.97 32.75 - - - 90.16 85.77 87.91
det 90.34 89.38 89.86 60.88 82.54 70.07 96.38 97.27 96.82
jct 57.85 56.68 57.26 54.71 5.16 9.42 85.14 83.05 84.08
mod 63.04 76.93 69.29 16.89 47.43 24.91 90.00 90.63 90.32
obj 73.34 75.50 74.40 46.09 69.25 55.34 91.93 91.10 91.52
obj2 32.81 55.13 41.13 53.37 39.16 45.18 83.33 74.14 78.47
pobj 88.11 75.51 81.33 - - - 91.94 93.05 92.49
pred 54.77 48.94 51.69 64.60 15.55 25.07 90.21 91.08 90.65
quant 55.87 68.87 61.69 - - - 83.10 91.46 87.08
subj 74.53 67.58 70.89 66.94 66.11 66.52 94.68 95.01 94.84
xcomp 52.17 64.97 57.87 1.62 3.35 2.19 92.11 87.13 89.55
xmod 12.93 15.32 14.02 2.60 24.19 4.69 56.64 65.32 60.67

Briscoe, T., Carroll, J., and Watson, R. (2006). The
second release of the RASP system. InProceed-
ings of the COLING/ACL on Interactive presen-
tation sessions, pages 77–80.

Buttery, P. and Korhonen, A. (2007). I will
shoot your shopping down and you can shoot
all my tins—automatic lexical acquisition from
the CHILDES database. InProceedings of the
Workshop on Cognitive Aspects of Computa-
tional Language Acquisition, pages 33–40.

Carroll, J., Briscoe, T., and Sanfilippo, A. (1998).
Parser evaluation: a survey and a new proposal.
In Proceedings of the 1st LREC, pages 447–454.

Charniak, E. and Johnson, M. (2001). Edit de-
tection and parsing for transcribed speech. In
Proceedings of NAACL, pages 118–126.

Clark, S. and Curran, J. R. (2007). Wide-
coverage efficient statistical parsing with CCG
and log-linear models.Computational Linguis-
tics, 33(4):493–552.

Dredze, M., Blitzer, J., Pratim Talukdar, P.,
Ganchev, K., Graca, J. a., and Pereira, F. (2007).
Frustratingly hard domain adaptation for depen-
dency parsing. InProceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007,
pages 1051–1055.

Geertzen, J. (2009). Semantic interpretation of
Dutch spoken dialogue. InProceedings of the
Eight IWCS, pages 286–290.

Lease, M. and Johnson, M. (2006). Early deletion
of fillers in processing conversational speech. In
Proceedings of the HLT-NAACL, pages 73–76.

Lin, D. (1998). A dependency-based method
for evaluating broad-coverage parsers.Natural
Language Engineering, 4(2):97–114.

MacWhinney, B. (2000).The CHILDES project:
Tools for analyzing talk. Lawrence Erlbaum As-
sociates, Mahwah, NJ, USA, third edition.

McDonald, R., Crammer, K., and Pereira, F.
(2005). Online large-margin training of depen-
dency parsers. InProceedings of the 43rd An-
nual Meeting on ACL, pages 91–98.

Sagae, K., Davis, E., Lavie, A., MacWhinney,
B., and Wintner, S. (2007). High-accuracy an-
notation and parsing of CHILDES transcripts.
In Proceedings of the ACL-2007 workshop on
Cognitive Aspects of Computational Language
Acquisition.

Sagae, K., MacWhinney, B., and Lavie, A. (2004).
Adding syntactic annotations to transcripts of
parent-child dialogs. InIn Proceedings of the
Fourth LREC, pages 1815–1818.

221

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 222–225,
Paris, October 2009. c©2009 Association for Computational Linguistics

Interactive Predictive Parsing 1

Ricardo Sánchez-Śaez, Joan-Andreu Śanchez and Jośe-Miguel Bened́ı
Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Camı́ de Vera s/n, Valencia 46022 (Spain)
{rsanchez, jandreu, jbenedi}dsic.upv.es

Abstract

This paper introduces a formal framework
that presents a novel Interactive Predic-
tive Parsing schema which can be oper-
ated by a user, tightly integrated into the
system, to obtain error free trees. This
compares to the classical two-step schema
of manually post-editing the erroneus con-
stituents produced by the parsing system.
We have simulated interaction and cal-
culated evalaution metrics, which estab-
lished that an IPP system results in a high
amount of effort reduction for a manual
annotator compared to a two-step system.

1 Introduction

The aim of parsing is to obtain the linguistic in-
terpretation of sentences, that is, their underlying
syntactic structure. This task is one of the fun-
damental pieces needed by a computer to uns-
derstand language as used by humans, and has
many applications in Natural Language Process-
ing (Lease et al., 2006).

A wide array of parsing methods exist, in-
cluding those based on Probabilistic Context-Free
Grammars (PCFGs). (Charniak, 2000; Collins,
2003; Johnson, 1998; Klein and Manning, 2003;
Matsuzaki et al., 2005; Petrov and Klein, 2007).
The most impressive results are achieved by sub-
tree reranking systems, as shown in the semi-
supervised method of (McClosky et al., 2006),
or the forest reranking approximation of (Huang,
2008) in which packed parse forests (compact
structures that contain many possible tree deriva-
tions) are used.

These state-of-the-art parsers provide trees of
excelent quality. However, perfect results are vir-

1Work supported by the MIPRCV “Consolider Inge-
nio 2010” (CSD2007-00018), iTransDoc (TIN2006-15694-
CO2-01) and Prometeo (PROMETEO/2009/014) reserach
projects, and the FPU fellowship AP2006-01363.

tually never achieved. If the need of one-hundred-
percent error free trees arises, the supervision of a
user that post-edits and corrects the errors is un-
avoidable.

Error free trees are needed in many tasks such as
handwritten mathematical expressions recognition
(Yamamoto et al., 2006), or creation of new gold
standard treebanks (Delaclergerie et al., 2008)).
For example, in the creation of the Penn Tree-
bank grammar, a basic two-stage setup was em-
ployed: a rudimentary parsing system providad a
skeletal syntactic representation, which then was
manually corrected by human annotators (Marcus
et al., 1993).

In this paper, we introduce a new formal frame-
work that tightly integrates the user within the
parsing system itself, rather than keeping him iso-
lated from the automatic tools used in a classi-
cal two-step approach. This approach introduces
the user into the parsing system, and we will call
it “interactive predictive parsing”, or simply IPP.
An IPP system is interactive because the user is in
continuous contact with the parsing process, send-
ing and receiving feedback. An IPP system is also
predictive because it reacts to the user corrections:
it predicts and suggest new parse trees taking into
account the new gold knowledge received from
the user. Interactive predictive methods have been
studied and successfully used in fields like Auto-
matic Text Recognition (Toselli et al., 2008) and
Statistical Machine Translation (Barrachina et al.,
2009; Vidal et al., 2006) to ease the work of tran-
scriptor and translators.

Assessment of the amount of effort saved by the
IPP system will be measured by automatically cal-
culated metrics.

2 Interactive Predictive Parsing

A tree t, associated to a stringx1|x|, is composed
by substructures that are usually referred as con-
stituents or edges. A constituentcA

ij is a span de-

222

fined by a nonterminal symbol (or syntactic tag)A
that covers the substringxij .

Assume that using a given probabilistic context-
free grammarG as the model, the parser analyzes
the input sentencex = x1 . . . x|x| and produces
the parse treêt

t̂ = arg max
t∈T

pG(t|x), (1)

wherepG(t|x) is the probability of parse treet
given the input stringx using modelG, andT is
the set of all possible parse trees forx.

In an interactive predictive scenario, after ob-
taining the (probably incorrect) best treet̂, the user
is able to modify the edgescA

ij that are incorrect.
The system reacts to each of the corrections intro-
duced by the human by proposing a newt̂′ that
takes into account the corrected edge. The order
in which incorrect constituents are reviewed deter-
mines the amount of effort reduction given by the
degree of correctness of the subsequent proposed
trees.

There exist several ways in which a human ana-
lyzes a sentende. A top-to-bottom may be consid-
ered natural way of proceeding, and we follow this
approach in this work. This way, when a higher
level constituent is corrected, possible erroneous
constituents at lower levels are expectedly auto-
matically recalculated.

The introduced IPP interaction process is sim-
ilar to the ones already established in Computer-
Assisted Text Recognition and Computer-Assisted
Translation1.

Within the IPP framework, the user reviews the
constituents contained in the tree to assess their
correctness. When the user find an incorrect edge
he modifies it, setting the correct label and span.
This action implicitly validates a subtree that is
composed by the corrected edge plus all its ances-
tor edges, which we will call the validated prefix
treetp. When the user replaces the constituentcA

ij

with the correct onec′Aij , the validated prefix tree
is:

tp(c′Aij) = {cB
mn : m ≤ i, n ≥ j

d(cB
mn) ≥ d(c′Aij)}

(2)

with d(cD
pq) being the depth of constituentcD

pq.

1In these fields, the user reads the sentence from left to
right. When the user finds and corrects an erroneus word, he
is implicitly validating the prefix sentence up to that word.
The remaining suffix sentence is recalculated by the system
taking into account the validated prefix sentece.

When a constituent correction is performed, the
prefix treetp(c′Aij) is fixed and a new treêt′ that
takes into account the prefix is proposed

t̂′ = arg max
t∈T

pG(t|x, tp(c′Aij)). (3)

Given that we are working with context-free
grammars, the only subtree that effectively needs
to be recalcuted is the one starting from the par-
ent of the corrected edge. Let the corrected edge
bec′Aij and its parentcD

st, then the following tree is
proposed

t̂′ = arg max
t∈T

pG(t|x, tp) = (t̂ \ t̂Dst) ∪ t̂′
D
st , (4)

with

t̂′
D

st = arg max
tDst∈Tst

pG(tDst|xmn, c′Aij) . (5)

Expression (4) represents the newly proposed
tree t̂′, which consists of original proposed tree
t̂ minus the subpart of the original proposed tree
t̂Dst (whose root is the parent of the corrected edge

cD
st) plus the newly calculated subtreêt′

D

st (whose
root is also the parent of the corrected constituent
cD
st, but also takes into account the corrected one

as shown in Expression (5)).
In Figure 1 we show an example that intends to

clarify the interactive predictive process. First, the
system provides a proposed parse tree (Fig. 1.a).
Then the user, which has in his mind the correct
reference tree, notices that it has two wrong con-
stituents (cX

23 andcZ
44) (Fig. 1.b), and choses to re-

placecX
23 by cB

22 (Fig. 1.c). Here,cB
22 corresponds

to c′Aij from expressions (3) and (5).
As the user does this correction, the system au-

tomatically validates the correct prefix: all the an-
cestors of the modified constituent (dashed line in
the figure,tp(c′Aij) from expression (2)). The sys-
tem also invalidates the subtrees related to the cor-
rected constituent (dotted line line in the figure,t̂Dst
from expression (4)).

Finally, the system automatically predicts a new

subtree (̂t′
D
st from expression (4)) (Fig. 1.d). No-

tice howcZ
34 changes its span andcD

44 is introduced
which provides the correct reference parse.

Within the example shown in Figure 1, the user
would obtain the gold tree with just one correction,
rather than the three operations needed on a two-
step system (one deletion, one substitution and one
insertion).

223

S

B Z

Y

ba c d

A

DC

(a) Reference tree

S

ba c d

A

CB

X

Y

Z

(b) Iteration 0:
Proposed out-
put tree 1

S

ba c d

A

CB

X Z 42
3 4

Y

(c) Iteration 0: Er-
roneus constituents

S

ba c d

A

B 2
2 ?

? ?

Y

(d) Iteration 1:
User corrected
constituent

S

B Z

Y

ba c d

A

DC

3
4

(e) Iteration 1:
Proposed output
tree 2

Figure 1: Synthetic example of user interaction with the IPPsystem.

3 IPP Evaluation

The objective of the experimentation presented
here is to evaluate the amount of effort saved for
the user using the IPP system, compared to the ef-
fort required to manually correct the trees without
the use of an interactive system. In this section, we
define a standard automatic evaluation protocol,
akin to the ones used in Computer-Aided Trans-
lation and Computer Aided Text Recognition.

In the absence of testing of an interactive sys-
tem with real users, the gold reference trees were
used to simulate system interaction by a human
corrector. In order to do this, the constituents in
the proposed tree were automatically reviewed in a
preorder manner2. In each step, the constituent in
the proposed tree was compared to the correspond-
ing one in the reference tree: if the constituent was
equivalent no action was taken. When one incor-
rect constituent was found in the proposed tree, it
was replaced by the correct one from the reference
tree. This precise step simulated what a human su-
pervisor would do, that is, to type the correct con-
stituent in place of the erroneus one.

The system then performed the predictive step
(i.e. recalculation of subtrees related to the cor-
rected constituent). We kept a correction count,
which was incremented by one after each predic-
tive step.

3.1 Evaluation metrics

For evaluation, first we report a metric represent-
ing the amount of human correcting work needed
to obtain the gold tree in a classical two-step pro-
cess (i.e. the number of operations needed to post-
edit the proposed tree in orther to obtain the gold

2Interaction in this ordered manner guaranteed that the
evaluation protocol only needed to modify the labelA and
the end pointj of a given edgecA

ij , while i remained valid
given the modifications of previous constituents.

one). We then compare this value to a metric that
measures the amount of effort needed to obtain
the gold tree with the human interacting within the
presented IPP system.

Parsing quality is generally assessed by the clas-
sical evaluation metrics, precission, recall and F-
measure. We defined the following metric that
measures the amount of effort needed in order to
post-edit a proposed tree and obtain the gold ref-
erence parse tree, akin to the Word Error Rate
used in Statistical Machine Translation and related
fields:
• Tree Constituent Error Rate (TCER): Min-

imum number of constituent substitution,
deletion and insertion operations needed to
convert the proposed parse tree into the corre-
sponding gold reference tree, divided by the
total number of constituents in the reference
tree3.

The TCER is in fact strongly related to the F-
measure: the higher the F-measure is, the lower
TCER will be.

Finally, the relevant evaluation metric that as-
sessed the IPP system performance represents the
amount effort that the operator would have to
spend using the system in order to obtain the gold
tree, and is directly comparable to the TCER:
• Tree Constituent Action Rate (TCAC): Num-

ber of constituent corrections performed us-
ing the IPP system to obtain the reference
tree, divided by the total number of con-
stituents in the reference tree.

4 Experimental results

An IPP system was implemented over the classical
CYK-Viterbi algorithm. Experimentation was run

3Edit distance is calcualted over the ordered set of tree
constituents. This is an approximation of the edit distance
between trees.

224

over the Penn Tree bank: sections 2 to 21 were
used to obtain a vanilla Penn Treebank Grammar;
test set was the whole section 23.

We obtained several binarized versions of the
train grammar for use with the CYK. The Chom-
sky Normal Form (CNF) transformation method
from the NLTK4 was used to obtain several right-
factored binary grammars of different sizes5.

A basic schema was introduced for parsing sen-
tences with out-of-vocabulary words: when an
input word could not be derived by any of the
preterminals in the vanilla treebank grammar, a
very small probability for that word was uniformly
added to all of the preterminals.

Results for the metrics discussed on section 3.1
for different markovizations of the train grammar
can be seen in Table 1. We observe that the perc-
etage of corrections needed using the IPP system
is much lower than the rate of needed corrections
just post-editing the proposed trees: from 42% to
46% in effort reduction by the human supervisor.

These results clearly show that an interactive
predictive system can relieve manual annotators of
a lot of burden in their task.

Note that the presented experiments were done
using parsing models that perform far from the lat-
estF1 results; their intention was to assess the util-
ity of the IPP schema. Expected relative reduc-
tions with IPP systems incorporating state-of-the-
art parsers would not be so large.

PCFG
Baseline IPP

RelRed
F1 TCER TCAC

h=0, v=1 0.67 0.40 0.22 45%
h=0, v=2 0.68 0.39 0.21 46%
h=0, v=3 0.70 0.38 0.22 42%

Table 1: Results for the test set:F1 and TCER
for the baseline system; TCAC for the IPP system;
relative reduction beteween TCER and TCAC.

5 Conclusions

We have introduced a novel Interactive Predictive
Parsing framewrok which can be operated by a
user to obtain error free trees. We have simulated
interaction with this system and calculated evalau-
tion metrics, which established that an IPP system
results in a high amount of effort reduction for a
manual annotator compared to a two-step system.

4http://nltk.sourceforge.net/
5This method implements the vertical (v value) and hori-

zontal (h value) markovizations (Klein and Manning, 2003).

Near term future work includes applying the
IPP scenario to state-of-the-art reranking and pars-
ing systems, as well as in the development of adap-
tative parsing systems

References

Barrachina, Sergio, Oliver Bender, Francisco Casacu-
berta, Jorge Civera, Elsa Cubel, Shahram Khadivi,
Antonio Lagarda, Hermann Ney, Jess Toms, En-
rique Vidal, Juan-Miguel Vilar. 2009.Statistical ap-
proaches to computer-assisted translation. In Com-
putational Linguistics, 35(1) 3-28.

Charniak, Eugene. 2000. A maximum-entropy-
inspired parser. In NAACL ’00, 132-139.

Collins, Michael. 2003.Head-driven statistical mod-
els for natural language parsing. In Computational
Linguistics, 29(4):589-637.

De la Clergerie,́Eric, Olivier Hamon, Djamel Mostefa,
Christelle Ayache, Patrick Paroubek and Anne Vil-
nat. 2008.PASSAGE: from French Parser Evalua-
tion to Large Sized Treebank. In LREC’08.

Huang, Liang. 2008.Forest reranking: discriminative
parsing with non-local features. In ACL ’08.

Johnson, Mark. 1998.PCFG models of linguistic
tree representation. In Computational Linguistics,
24:613-632.

Klein, Dan and Chistopher D. Manning. 2003.Accu-
rate Unlexicalized Parsing. In ACL ’03, 423-430.

Lease, Matthew, Eugene Charniak, Mark Johnson and
David McClosky. 2006.A look at parsing and its
applications. In National Conference on Artificial
Intelligence, vol. 21-II, 1642-1645.

Marcus, Mitchell P., Mary Ann Marcinkiewicz and
Beatrice Santorini. 1995.Building a Large Anno-
tated Corpus of English: The Penn Treebank. Com-
putational Linguistics 19(2), 313-330.

Matsuzaki, Takuya, Yasuke Miyao and Jun’ichi Tsujii.
2005.Probabilistic CFG with latent annotations. In
ACL ’05, 75-82.

McClosky, David, Eugene Charniak and Mark John-
son. 2006. Effective self-training for parsing. In
HLT-NAACL ’06

Petrov, Slav and Dan Klein. 2007.Improved inference
for unlexicalized parsing. In NAACL-HLT ’07.

Toselli, Alejandro, Verónica Romero and Enrique Vi-
dal. 2008.Computer Assisted Transcription of Text
Images and Multimodal Interaction. In MLMI ’08.

Vidal, Enrique, Francisco Casacuberta, Luis Ro-
driguez, Jorge Civera and Carlos D. Martnez Hinare-
jos. 2006. Computer-assisted translation using
speech recognition. In IEEE Trans. on Audio,
Speech, and Language Processing, 14(3), 941-951.

Yamamoto, Ryo, Shinji Sako, Takuya Nishimoto and
Shigeki Sagayama. 2006.On-line recognition
of handwritten mathematical expressions based on
stroke-based stochastic context-free grammar. In
10th International Workshop on Frontiers in Hand-
writing Recognition.

225

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 226–229,
Paris, October 2009. c©2009 Association for Computational Linguistics

Using Treebanking Discriminants as Parse Disambiguation Features

Md. Faisal Mahbub Chowdhury† and Yi Zhang‡ and Valia Kordoni‡
†Dept of Computational Linguistics, Saarland University

‡Dept of Computational Linguistics, Saarland University and DFKI GmbH, Germany
{chowd,yzhang,kordoni}@coli.uni-sb.de

Abstract
This paper presents a novel approach of in-
corporating fine-grained treebanking deci-
sions made by human annotators as dis-
criminative features for automatic parse
disambiguation. To our best knowledge,
this is the first work that exploits treebank-
ing decisions for this task. The advan-
tage of this approach is that use of human
judgements is made. The paper presents
comparative analyses of the performance
of discriminative models built using tree-
banking decisions and state-of-the-art fea-
tures. We also highlight how differently
these features scale when these models are
tested on out-of-domain data. We show
that, features extracted using treebanking
decisions are more efficient, informative
and robust compared to traditional fea-
tures.

1 Introduction

State-of-the-art parse disambiguation models are
trained on treebanks, which are either fully hand-
annotated or manually disambiguated from the
parse forest produced by the parser. While most
of the hand-annotated treebanks contain only gold
trees, treebanks constructed from parser outputs
include both preferred and non-preferred analy-
ses. Some treebanking environments (such as
the SRI Cambridge TreeBanker (Carter, 1997) or
[incr tsdb()] (Oepen, 2001)) even record
the treebanking decisions (see section 2) that the
annotators take during manual annotation. These
treebanking decisions are, usually, stored in the
database/log files and used later for dynamic prop-
agation if a newer version of the grammar on the
same corpus is available (Oepen et al., 2002). But
until now, to our best knowledge, no research has
been reported on exploiting these decisions for
building a parse disambiguation model.

Previous research has adopted two approaches
to use treebanks for disambiguation models. One
approach, known as generative, uses only the gold
parse trees (Ersan and Charniak, 1995; Charniak,
2000). The other approach, known as discrimi-
native, uses both preferred trees and non-preferred
trees (Johnson et al., 1999; Toutanova et al., 2005).
In this latter approach, features such as local con-
figurations (i.e., local sub-trees), grandparents, n-
grams, etc., are extracted from all the trees and
are utilized to build the model. Neither of the ap-
proaches considers cognitive aspects of treebank-
ing, i.e. the fine-grained decision-making process
of the human annotators.

In this paper, we present our ongoing study of
using treebanking decisions for building a parse
disambiguation model. We present comparative
analyses among the features extracted using tree-
banking decisions and the state-of-the-art feature
types. We highlight how differently these features
scale when they are tested on out-of-domain data.
Our results demonstrate that features extracted us-
ing treebanking decisions are more efficient, in-
formative and robust, despite the total number of
these features being much less than that of the tra-
ditional feature types.

The rest of this paper is organised as follows
— section 2 presents some motivation along with
definition of treebanking decisions. Section 3 de-
scribes the feature extraction templates that have
been used for treebanking decisions. Section 4 ex-
plains the experimental data, results and analyses.
Section 5 concludes the paper with an outline of
our future research.

2 Treebanking decisions

One of the defining characteristics of Redwoods-
style treebanks1 (Oepen et al., 2002) is that the
candidate trees are constructed automatically by

1More details available in http://redwoods.stanford.edu.

226

D1 SUBJH the dog || barks
D2 HSPEC the || dog barks
D3 FRAG_NP the dog barks
D4 HSPEC the || dog
D5 NOUN_N_CMPND dog || barks

.
D6 PLUR_NOUN_ORULE barks
D7 v_-_le barks
D8 n_-_mc_le barks

Figure 1: Example forest and discriminants

the grammar, and then manually disambiguated by
human annotators. In doing so, linguistically rich
annotation is built efficiently with minimum man-
ual labor. In order to further improve the manual
disambiguation efficiency, systems like [incr
tsdb()] computes the difference between can-
didate analyses. Instead of looking at the huge
parse forest, the treebank annotators select or re-
ject the features that distinguish between different
parses, until only one parse remains. The number
of decisions for each sentence is normally around
log2(n) where n is the total number of candidate
trees. For a sentence with 5000 candidate read-
ings, only about 12 treebanking decisions are re-
quired for a complete disambiguation. A similar
method was also proposed in (Carter, 1997).

Formally, a feature that distinguishes between
different parses is called a discriminant. For
Redwoods-style treebanks, this is usually ex-
tracted from the syntactic derivation tree of the
Head-driven Phrase Structure Grammar (HPSG)
analyses. Figure 1 shows a set of example dis-
criminants based on the two candidate trees.

A choice (acceptance or rejection, either manu-
ally annotated or inferred by the system) made on
a discriminant is called a decision. In the above
example, suppose the annotator decides to accept
the binary structure the dog || barks as a subject-
head construction and assigns a value yes to dis-
criminant D1, the remaining discriminants will
also receive inferred values by deduction (no for
D2, no for D3, yes for D4, etc). These decisions
are stored and used for dynamic evolution of the
treebank along with the grammar development.

Treebank decisions (especially those made by
annotators) are of particular interest to our study

of parse disambiguation. The decisions record the
fine-grained human judgements in the manual dis-
ambiguation process. This is different from the
traditional use of treebanks to build parse selec-
tion models, where a marked gold tree is picked
from the parse forest without concerning detailed
selection steps. Recent study on double annotated
treebanks (Kordoni and Zhang, 2009) shows that
annotators tend to start with the decisions with the
most certainty, and delay the “hard” decisions as
much as possible. As the decision process goes,
many of the “hard” discriminants will receive an
inferred value from the certain decisions. This
greedy approach helps to guarantee high inter-
annotator agreement. Concerning the statistical
parse selection models, the discriminative nature
of these treebanking decisions suggests that they
are highly effective features, and if properly used,
they will contribute to an efficient disambiguation
model.

3 Treebanking Decisions as
Discriminative Disambiguation
Features

We use three types of feature templates for tree-
banking decisions for feature extraction. We refer
to the features extracted using these templates as
TDF (Treebanking Decision Feature) in the rest of
this paper. The feature templates are

T1: discriminant + lexical types of the yield

T2: discriminant + rule(left-child)2 + rule(right-child)

T3: instances of T2 + rule(parent) + rule(siblings)

TDFs of T1, T2 and T3 in combination are re-
ferred to as TDFC or TDFs with context. For
example in Figure 1, instance of T1 for the
discriminant D4 is “HSPEC3 + le_type(the)4 +
le_type(dog)"; instance of T2 is “HSPEC + rule(
DET) + rule(N) "; and instance of T3 is “HSPEC +
rule(DET) + rule(N) + rule(S) + rule(VP)".

A TDF represents partial information about the
right parse tree (as most usual features). But in
some way, it also indicates that it was a point of
a decision (point of ambiguity with respect to the
underlying pre-processing grammar), hence carry-
ing some extra bit of information. TDFs allow to

2rule(X) represents the HPSG rule, applied on X, ex-
tracted from the corresponding derivation tree.

3HSPEC is the head-specifier rule in HPSG
4le_type(X) denotes the abstract lexical type of word X

inside the grammar.

227

omit certain details inside the features by encod-
ing useful purposes of relationships between lexi-
cal types of the words and their distant grandpar-
ents without considering nodes in the intermediate
levels (allowing some kind of underspecification).
In contrast, state-of-the-art feature types contain
all the nodes in the corresponding branches of
the tree. While they encode ancestor information
(through grandparenting), but they ignore siblings.
TDFs include siblings along with ancestor. Unlike
traditional features, which are generated from all
possible matches (which is huge) of feature types
followed by some frequency cut-offs, the selection
of TDFs is directly restricted by the small num-
ber of treebanking decisions themselves and ex-
haustive search is not needed. It should be noted
that, we do not use treebanking decisions made for
the parse forest of one sentence to extract features
from the parse forest of another sentence. That is
why, the number of TDFs is much smaller than
that of traditional features. This also ensures that
TDFs are highly correlated to the corresponding
constructions and corresponding sentences from
where they are extracted.

4 Experiment

4.1 Data

We use a collection of 8593 English sentences
from the LOGON corpus (Oepen et al., 2004) for
our experiment. 874 of them are kept as test items
and the remaining 7719 items are used for train-
ing. The sentences have an average length of 14.68
and average number of 203.26 readings per sen-
tence. The out-of-domain data are a set of 531
English Wikipedia sentences from WeScience cor-
pus (Ytrestøl et al., 2009).

Previous studies (Toutanova et al., 2005; Os-
borne and Baldridge, 2004) have reported rela-
tively high exact match accuracy with earlier ver-
sions of ERG (Flickinger, 2000) on datasets with
very short sentences. With much higher structural
ambiguities in LOGON and WeScience sentences,
the overall disambiguation accuracy drops signifi-
cantly.

4.2 Experimental setup and evaluation
measures

The goal of our experiments is to compare var-
ious types of features (with TDF) in terms of
efficiency, informativeness, and robustness. To
compare among the feature types, we build log-

linear training models (Johnson et al., 1999) for
parse selection (which is standard for unification-
based grammars) for TDFC, local configurations,
n-grams and active edges5. For each model, we
calculate the following evaluation metrics —

• Exact (match) accuracy: it is simply the percentage
of times that the top-ranked analysis for each test sen-
tences is identical with the gold analysis of the same
sentence.

• 5-best (match) accuracy: it is the percentage of times
that the five top-ranked analyses for each of the sen-
tences contain the gold analysis.

• Feature Hit Count (FHC): it is the total number of oc-
currences of the features (of a particular feature type)
inside all the syntactic analyses for all the test sen-
tences. So, for example, if a feature (of a particular
feature type) is observed 100 times, then these 100 oc-
currences are added to the total FHC.

• Feature Type Hit Count (FTHC): it is the total num-
ber of distinct features (of the corresponding feature
type) observed inside the syntactic analyses of all the
test sentences.

While exact and 5-best match measures show
relative informativeness and robustness of the fea-
ture types, FHC and FTHC provide a more com-
prehensive picture of relative efficiencies.

4.3 Results and discussion

As we can see in Table 1, local configurations
achieve highest accuracy among the traditional
feature types. They also use higher number of fea-
tures (almost 2.7 millions). TDFC do better than
both n-grams and active edges, even with a lower
number of features. Though, local configurations
gain more accuracy than TDFC, but they do so at
a cost of 50 times higher number of features. This
indicates that features extracted using treebanking
decisions are more informative.

For out-of-domain data (Table 1), there is a big
drop of accuracy for local configurations. Active
edges and TDFC also have some accuracy drop.
Surprisingly, n-grams do better with our out-of-
domain data than in-domain, but still that accuracy
is close to that of TDFC. Note that n-grams have
8 times higher number of features than TDFC.
Hence, according to these results, TDFC are more
robust, for out-of-domain data, than local config-
urations and active edges, and almost as good as
n-grams.

5Active edges correspond to the branches (i.e. one daugh-
ter in turn) of the local sub-trees.

228

Feature Total 5-best accuracy 5-best accuracy Exact accuracy Exact accuracy
template features (in-domain) (out-of-domain) (in-domain) (out-of-domain)

n-gram 438,844 68.19% 62.71% 41.30% 42.37%

local configuration 2,735,486 75.51% 64.22% 50.69% 44.44%

active edges 89,807 68.99% 61.77% 41.88% 39.92%

TDFC 53,362 70.94% 62.71% 43.59% 41.05%

Table 1: Accuracies obtained on both in-domain and out-of-domain data using n-grams (n=4), local
configurations (with grandparenting level 3), active edges and TDFC.

Feature FHC FTHC Active
template features
n-gram 18,245,558 32,425 7.39%

local config. 62,060,610 357,150 13.06%

active edges 22,902,404 27,540 30.67%

TDFC 21,719,698 17,818 33.39%

Table 2: FHC and FTHC calculated for in-domain
data.

The most important aspect of TDFC is that they
are more efficient than their traditional counter-
parts (Table 2). They have significantly higher
number of active features (FTHC

TotalFeature#) than n-
grams and local configurations.

5 Future work

The results of the experiments described in this pa-
per indicate a good prospect for utilizing treebank-
ing decisions, although, we think that the types of
feature templates that we are using for them are
not yet fully conveying cognitive knowledge of the
annotators, in which we are specifically interested
in. For instance, we expect to model human dis-
ambiguation process more accurately by focusing
only on human annotators’ decisions (instead of
only inferred decisions). Such a model will not
only improve the performance of the parsing sys-
tem at hand, but can also be applied interactively
in treebanking projects to achieve better annota-
tion speed (e.g., by ranking the promising discrim-
inants higher to help annotators make correct de-
cisions). Future experiments will also investigate
whether any pattern of discriminant selection by
the humans can be learnt from these decisions.

References
David Carter. 1997. The treebanker: A tool for supervised

training of parsed corpora. In Proceedings of the Work-
shop on Computational Environments for Grammar De-
velopment and Linguistic Engineering, Madrid, Spain.

Eugene Charniak. 2000. A maximum entropy-based parser.
In Proceedings of the 1st Annual Meeting of the North
American Chapter of Association for Computational Lin-
guistics (NAACL 2000), pages 132–139, Seattle, USA.

Murat Ersan and Eugene Charniak. 1995. A statistical syn-
tactic disambiguation program and what it learns. pages
146–159.

Dan Flickinger. 2000. On building a more efficient grammar
by exploiting types. 6(1):15–28.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,
and Stefan Riezler. 1999. Estimators for stochastic
unifcation-based grammars. In Proceedings of the 37th
Annual Meeting of the Association for Computational Lin-
guistics (ACL 1999), pages 535–541, Maryland, USA.

Valia Kordoni and Yi Zhang. 2009. Annotating wall street
journal texts using a hand-crafted deep linguistic gram-
mar. In Proceedings of The Third Linguistic Annotation
Workshop (LAW III), Singapore.

Stephan Oepen, Kristina Toutanova, Stuart Shieber, Christo-
pher Manning, Dan Flickinger, and Thorsten Brants.
2002. The LinGO Redwoods treebank: motivation and
preliminary applications. In Proceedings of COLING
2002: The 17th International Conference on Computa-
tional Linguistics: Project Notes, Taipei, Taiwan.

Stephan Oepen, Helge Dyvik, Jan Tore Lønning, Erik Vell-
dal, Dorothee Beermann, John Carroll, Dan Flickinger,
Lars Hellan, Janne Bondi Johannessen, Paul Meurer, Tor-
bjørn Nordgård, and Victoria Rosén. 2004. Som å kapp-
ete med trollet? towards mrs-based norwegian-english
machine translation. In Proceedings of the 10th Interna-
tional Conference on Theoretical and Methodological Is-
sues in Machine Translation, pages 11–20, MD, USA.

Stephan Oepen. 2001. [incr tsdb()] — competence and
performance laboratory. User manual. Technical report,
Computational Linguistics, Saarland University, Saar-
brücken, Germany.

Miles Osborne and Jason Baldridge. 2004. Ensemble-based
active learning for parse selection. In HLT-NAACL 2004:
Main Proceedings, pages 89–96, Boston, USA.

Kristina Toutanova, Christoper D. Manning, Dan Flickinger,
and Stephan Oepen. 2005. Stochastic HPSG parse selec-
tion using the Redwoods corpus. Journal of Research on
Language and Computation, 3(1):83–105.

Gisle Ytrestøl, Stephan Oepen, and Daniel Flickinger. 2009.
Extracting and annotating wikipedia sub-domains. In Pro-
ceedings of the 7th International Workshop on Treebanks
and Linguistic Theories, pages 185–197, Groningen, the
Netherlands.

229

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 230–233,
Paris, October 2009. c©2009 Association for Computational Linguistics

Heuristic search in a cognitive model of human parsing

John T. Hale
Cornell University
217 Morrill Hall

Ithaca, New York 14853
jthale@cornell.edu

Abstract

We present a cognitive process model
of human sentence comprehension based
on generalized left-corner parsing. A
search heuristic based upon previously-
parsed corpora derives garden path effects,
garden path paradoxes, and the local co-
herence effect.

1 Introduction

One of the most interesting applications of pars-
ing technology has, for some researchers, been
psycholinguistic models (Kay, 2005). Algorith-
mic models of language use have led in the past
to a variety of cognitive insights (Kaplan, 1972;
Marcus, 1980; Thibadeau et al., 1982; Pereira,
1985; Pulman, 1986; Johnson, 1989; Stabler,
1994). However they are challenged by a veritable
tidal wave of new data collected during the 1990s
and 2000s. Work during this later period reveals
phenomena, such as the local coherence effect dis-
cussed in section 5, that have yet to be truly inte-
grated into any particular theoretical framework.

This short paper presents a parsing system in-
tended to serve as a model of the syntactic part
of human sentence comprehension. Such a model
helps make sense of sentence-difficulty data from
self-paced reading, eye-tracking and other behav-
ioral studies. It also sketches a relationship be-
tween calculations carried out in the course of
automated syntactic analysis and the inferences
about linguistic structure taking place in our minds
during ordinary sentence-understanding.

Section 2 defines the model itself, highlight-
ing its relationship to generalized left-corner pars-
ing. Sections 3–5 apply this model to three contro-
versial phenomena that are well-established in the
psycholinguistics literature. Section 6 concludes.

2 Architecture of the model

2.1 Problem states and Operators

We model the human sentence comprehen-
sion mechanism as search within a prob-
lem space (Newell and Simon, 1972). We as-
sume that all (incremental) parser states have
a (partial) grammatical interpretation (Chomsky,
1965, 9). In this paper, the grammatical inter-
pretation employs context-free grammar. An in-
ventory of operators carries the model from one
point in the problem space to another. In the in-
terest of simplicity, we place no bound on the
number of problem states the model can explore.
However, we do acknowledge with Johnson-Laird
(1983) and Resnik (1992) a pressure to minimize
memory consumption internal to a problem state.
The model’s within-problem state memory usage
should reflect human acceptability judgments with
embedded sentences. These considerations moti-
vate a generalized left-corner (GLC) parsing strat-
egy (Demers, 1977) whose stack consumption is
maximal on just the center-embedded examples
that are so difficult for people to understand. To
reflect the argument/adjunct distinction (Tutun-
jian and Boland, 2008) we adopt a mixed strat-
egy that is bottom-up for optional postmodifiers
but left-corner everywhere else. Leaving the arc-
eager/arc-standard decision (Abney and Johnson,
1991) to the control policy allows four possible
operators, schematized in Table 1.

2.2 Informed Search

Informed search differs from uninformed search
procedures such as depth-first and breadth-first
by making use of heuristic knowledge about the
search domain. The strategy is to choose for ex-
pansion the node whose cost is lowest (Barr and
Feigenbaum, 1981, 61). In A∗ search (Hart et al.,
1968) this cost is divided up into a sum consisting
of the known cost to reach a search node and an

230

shift a word W project a rule LHS → Trigger
↑

announce
point

Rest

scan the sought word W
project and match the sought parent LHS using
the rule LHS → Trigger

↑
announce

point

Rest

Table 1: Four schema define the operators

stack n E[steps] standard error
[VP] S [TOP] 55790 44.936 0.1572
S [TOP] 53991 10.542 0.0986
[NP] S [TOP] 43635 33.092 0.1633
NP [TOP] 38844 55.791 0.2126
NP [S] S [TOP] 34415 47.132 0.2122
[S] S [TOP] 33578 52.800 0.2195
[PP] S [TOP] 30693 34.454 0.1915
IN [PP] S [TOP] 27272 32.379 0.2031
DT [NP] S [TOP] 22375 34.478 0.2306
[AUX] [VP] S [TOP] 16447 46.536 0.2863
VBD [VP] S [TOP] 16224 43.057 0.2826
VB [VP] S [TOP] 13548 40.404 0.3074
the [NP] S [TOP] 12507 34.120 0.3046
NP [NP] S [TOP] 12092 43.821 0.3269
DT [TOP] 10440 66.452 0.3907

Table 2: Popular left-corner parser states. Stacks
grow to the left. The categories are as described in
Table 3 of Marcus et al. (1993).

estimate of the costs involved in finishing search
from that node. In this work, rather than relying
on the guarantee provided by the A∗ theorem, we
examine the exploration pattern that results from
an inadmissable completion cost estimator. The
choice of estimator is Hypothesis 1.

Hypothesis 1 Search in parsing is informed by an
estimate of the expected number of steps to com-
pletion, given previous experience.

Table 2 writes out the expected number of
steps to completion (E[steps]) for a selection of
problem states binned together according to their
grammatical interpretation. Categories enclosed
in square brackets are predicted top-down whereas
unbracketed have been found bottom-up. These
states are some of the most popular states vis-
ited during a simulation of parsing the Brown cor-
pus (Kučera and Francis, 1967; Marcus et al.,
1993) according to the mixed strategy introduced
above in subsection 2.1. The quantity E[steps]
serves in what follows as the completion cost esti-
mate in A∗ search.

3 Garden pathing

Any model of human sentence comprehension
should address the garden path effect. The con-

trast between 1a and 1b is an example of this phe-
nomenon.

(1) a. while Mary was mending a sock fell on the floor
b. while Mary was mending, a sock fell on the floor

The control condition 1b includes a comma which,
in spoken language, would be expressed as a
prosodic break (Carroll and Slowiaczek, 1991;
Speer et al., 1996).

Figure 1 shows the search space explored in
the experimental condition 1a. In this picture,
ovals represent problem states. The number in-
side the oval encodes the vistation order. Arcs be-
tween ovals represent operator applications. The
path (14, 22, 23, 24, 25, 29, 27) is the garden path
which builds a grammatical interpretation where a
sock is attached as a direct object of the verb mend.
The grey line highlights the order in which A∗

search considers this path. At state 21 after shift-
ing sock, experience with the Brown corpus sug-
gests reconsidering the garden path.

Whereas the model examines 45 search nodes
during the analysis of the temporarily ambiguous
item 1a, it dispatches the unambiguous item 1b af-
ter only 40 nodes despite that sentence having an
additional token (the comma). Garden paths, on
this view, are sequences of parser states explored
only in a temporarily ambiguous item.

4 Garden pathing counterexamples

Purely structural attachment preferences like
Right Association (Kimball, 1973) and Mini-
mal Attachment (Frazier and Fodor, 1978; Pereira,
1985) are threatened by paradoxical counterexam-
ples such as 2 from Gibson (1991, 22) where no
fixed principle yields correct predictions across
both examples.

(2) a. I gave her earrings on her birthday .
b. I gave her earrings to another girl .

A parser guided by Hypothesis 1 interleaves the
garden path attachment and the globally-correct
attachment in both cases, resulting in a search that

231

12

10

43

42

41

32

36

37

45

35

4

1

38

39

40

31

33

29

20

16

15

27

26

24

17

18

9

19

28

34

14

8

23

13

11

2

6

44

22

3

5

25

21

30

7

0

Figure 1: Heavy line is the globally-correct path

is strictly committed to neither analysis. In 2a,
32% of discovered states represent the globally-
incorrect attachment of her. In 2b, 27% of states
represent the globally-incorrect attachment of her
to give as a one-word direct object. The para-
dox for purely structural attachment heuristics is
dissolved by the observation that neither pathway
fully achieves priority over the other.

5 Local Coherence

Tabor et al. (2004) discovered1 a processing dif-
ficulty phenomenon called “local coherence.”
Among the stimuli they considered, the locally-
coherent condition is 3a where the substring the
player tossed a frisbee could be analyzed as a sen-
tence, if considered in isolation.

(3) a. The coach smiled at the player tossed a frisbee by
the opposing team.

b. The coach smiled at the player thrown a frisbee
by the opposing team

c. The coach smiled at the player who was tossed a
frisbee by the opposing team.

d. The coach smiled at the player who was thrown a
frisbee by the opposing team.

Tabor and colleagues observe an interaction be-
tween the degree of morphological ambiguity of
the embedded verb (tossed or thrown) and the
presence or absence of the relative-clause initial
words who was. These two factors are known as
±ambiguity and ±reduction, respectively. If the
human parser were making full use of the gram-
mar, its operation would reflect the impossibility
of continuing the coach smiled at... with a sen-
tence. The ungrammaticality of a sentence in this
left context would preclude any analysis of the
player as a subject of active voice toss. But greater
reading times observed on the ambiguous tossed
as compared to the unambiguous thrown suggest
contrariwise that this grammatical deduction is not
made uniformly based on the left context.

Table 3 shows how an informed parser’s step
counts, when guided by Hypothesis 1, derive
Tabor et al.’s observed pattern. The cell pre-
dicted to be hardest is the local coherence,
shaded gray. The degree of worsening due to rel-
ative clause reduction is greater in +ambiguous
than in −ambiguous. This derives the observed
interaction.

1Konieczny and Müller (2006) documents a closely re-
lated form of local coherence in German.

232

+ambiguous −ambiguous
+reduced 119 84

−reduced 67 53

Table 3: Count of states examined

6 Conclusion

When informed by experience with the Brown
corpus, the parsing system described in this pa-
per exhibits a pattern of “time-sharing” perfor-
mance that corresponds to human behavioral diffi-
culty in three controversial cases. The built-in el-
ements — context-free grammar, generalized left-
corner parsing and the A∗-type cost function —
are together adequate to address a range of com-
prehension difficulty phenomena without impos-
ing an a priori memory limit. The contribution is
an algorithmic-level account of the cognitive pro-
cesses involved in perceiving syntactic structure.

References
Steven Abney and Mark Johnson. 1991. Memory require-

ments and local ambiguities of parsing strategies. Journal
of Psycholinguistic Research, 20(3):233–249.

Avron Barr and Edward A. Feigenbaum, editors. 1981. The
Handbook of Artificial Intelligence. William Kaufmann.

Patrick J. Carroll and Maria L. Slowiaczek. 1991. Modes and
modules: multiple pathways to the language processor.
In Jay L. Garfield, editor, Modularity in Knowledge Rep-
resentation and Natural Language Understanding, pages
221–247. MIT Press.

Noam Chomsky. 1965. Aspects of the Theory of Syntax.
MIT Press.

Alan J. Demers. 1977. Generalized left corner parsing. In
Conference Report of the 4th annual association for com-
puting machinery symposium on Principles of Program-
ming Languages, pages 170–181.

Lyn Frazier and Janet Dean Fodor. 1978. The sausage ma-
chine: a new two-stage parsing model. Cognition, 6:291–
325.

Edward Gibson. 1991. A Computational Theory of Human
Linguistic Processing: Memory Limitations and Process-
ing Breakdown. Ph.D. thesis, Carnegie Mellon University.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A
formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions of systems science and cy-
bernetics, ssc-4(2):100–107.

Philip N. Johnson-Laird. 1983. Mental Models. Cambridge
University Press.

Mark Johnson. 1989. Parsing as deduction: the use of knowl-
edge of language. Journal of Psycholinguistic Research,
18(1):105–128.

Ronald M. Kaplan. 1972. Augmented transition networks as
psychological models of sentence comprehension. Artifi-
cial Intelligence, 3:77–100.

Martin Kay. 2005. A life of language. Computational Lin-
guistics, 31(4):425–438.

John P. Kimball. 1973. Seven principles of surface structure
parsing in natural language. Cognition, 2:15–48.

Lars Konieczny and Daniel Müller. 2006. Local coherences
in sentence processing. CUNY Conference on Human
Sentence Processing.

Henry Kučera and W. Nelson Francis. 1967. Computational
Analysis of Present-day American English. Brown Uni-
versity Press.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank. Computational Linguis-
tics, 19.

Mitchell P. Marcus. 1980. A theory of syntactic recognition
for natural language. MIT Press.

Allen Newell and Herbert A. Simon. 1972. Human Problem
Solving. Prentice-Hall, Englewood Cliffs, New Jersey.

Fernando Pereira. 1985. A new characterization of attach-
ment preference. In David Dowty, Lauri Karttunen, and
Arnold Zwicky, editors, Natural Language Parsing: Psy-
chological, Computational and Theoretical Perspectives,
ACL Studies in Natural Language Processing, pages 307–
319. Cambridge University Press.

Steven G. Pulman. 1986. Grammars, parsers, and mem-
ory limitations. Language and Cognitive Processes,
1(3):197–2256.

Philip Resnik. 1992. Left-corner parsing and psychologi-
cal plausibility. In Proceedings of the Fourteenth Interna-
tional Conference on Computational Linguistics, Nantes,
France.

Shari R. Speer, Margaret M. Kjelgaard, and Kathryn M. Do-
broth. 1996. The influence of prosodic structure on
the resolution of temporary syntactic closure ambiguities.
Journal of Psycholinguistic Research, 25(2):249–271.

Edward Stabler. 1994. The finite connectivity of lin-
guistic structure. In Charles Clifton, Lyn Frazier, and
Keith Rayner, editors, Perspectives on Sentence Process-
ing, pages 303–336. Lawrence Erlbaum.

Whitney Tabor, Bruno Galantuccia, and Daniel Richardson.
2004. Effects of merely local syntactic coherence on
sentence processing. Journal of Memory and Language,
50(4):355–370.

Robert Thibadeau, Marcel A. Just, and Patricia Carpenter.
1982. A model of the time course and content of read-
ing. Cognitive Science, 6:157–203.

D. Tutunjian and J.E. Boland. 2008. Do We Need a Distinc-
tion between Arguments and Adjuncts? Evidence from
Psycholinguistic Studies of Comprehension. Language
and Linguistics Compass, 2(4):631–646.

233

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 234–237,
Paris, October 2009. c©2009 Association for Computational Linguistics

Dependency Parsing with Energy-based Reinforcement Learning

Lidan Zhang
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong
lzhang@cs.hku.hk

Kwok Ping Chan
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong
kpchan@cs.hku.hk

Abstract
We present a model which integrates
dependency parsing with reinforcement
learning based on Markov decision pro-
cess. At each time step, a transition is
picked up to construct the dependency tree
in terms of the long-run reward. The op-
timal policy for choosing transitions can
be found with the SARSA algorithm. In
SARSA, an approximation of the state-
action function can be obtained by calcu-
lating the negative free energies for the
Restricted Boltzmann Machine. The ex-
perimental results on CoNLL-X multilin-
gual data show that the proposed model
achieves comparable results with the cur-
rent state-of-the-art methods.

1 Introduction

Dependency parsing, an important task, can be
used to facilitate some natural language applica-
tions. Given a sentence, dependency parsing is
to find an acyclic labeled directed tree, projective
or non-projective.The label of each edge gives the
syntactic relationship between two words.

Data-driven dependency parsers can be catego-
rized into graph-based and transition-based mod-
els. Both of these two models have their advan-
tages as well as drawbacks. As discussed in (Mc-
Donald and Satta, 2007), transition-based mod-
els use local training and greedy inference algo-
rithms, with a rich feature set, whereas they might
lead to error propagation. In contrast, graph-based
models are globally trained coupled with exact in-
ference algorithms, whereas their features are re-
stricted to a limited number of graph arcs. Nivre
and McDonald (2008) presented a successful at-
tempt to integrate these two models by exploiting
their complementary strengths.

There are other researches on improving the
individual model with a novel framework. For

example, Daumé et al. (2006) applied a greedy
search to transition-based model, which was ad-
justed by the resulting errors. Motivated by his
work, our transition-based model is expected to
overcome local dependencies by using a long-term
desirability introduced by reinforcement learning
(RL). We rely on a “global” policy to guide each
action selection for a particular state during pars-
ing. This policy considers not only the current
configuration but also a few of look-ahead steps.
Thus it yields an optimal action from the long-
term goal. For example, an action might return
a high value even if it produces a low immediate
reward, because its following state-actions might
yield high rewards. The reverse also holds true.
Finally we formulate the parsing problem with the
Markov Decision Process (MDP) for the dynamic
settings.

The reminder of this paper is organized as fol-
lows: Section 2 describes the transition-based de-
pendency parsing. Section 3 presents the proposed
reinforcement learning model. Section 4 gives the
experimental results. Finally, Section 5 concludes
the paper.

2 Transition-based Dependency Parsing

In this paper, we focus on the transition-based
dependency parsing in a shift-reduce frame-
work (Kübler et al., 2009). Given a sentence
x = w0, w1, ..., wn, its dependency tree is con-
structed by a sequence of transitions. The data
structures include a stack S to store partially pro-
cessed words and a queue I to record the remain-
ing input words and the partial labeled dependency
structure constructed by the previous transitions.
Four permissible transitions are considered: Re-
duce: pops word wi from the stack; Shift: pushes
the next input wj onto the stack; Left-Arcr: adds
a labeled dependency arc r from the next input wj

to the top of the stack wi, then pops word wi from
the stack; Right-Arcr: adds a dependency arc r

234

S
1

A
1

r
1

S
2

A
2

r
2

S
t

A
t

r
t

S
t+1

A
t+1

r
t+1

A
t

S
t

H
t

t

is
t

ja

t

kh

t

ikw
t

jkv

t

Figure 1: The MDP with factored states and actions. Left: The general network. Right: Detailed network
with one hidden layer at time t. Visible variables (states and actions) are shaded. Clear circles represent
hidden variables.

from the top of the stack wi to the next input wj ,
and pushes word wj onto the stack.

Starting from the empty stack and initializing
the queue I as the input words, the parser termi-
nates when the queue I is empty. The optimal
transition (or say, action/decision A) in each step
is conditioned on the current configuration c of
the parser. For non-projective cases, preprocess-
ing and postprocessing are applied.

3 Reinforcement Learning

3.1 General Framework
We begin with looking at the general framework to
integrate RL into the transition-based dependency
model. In this paper, we reformulate the depen-
dency parsing as Markov Decision Process (MDP,
(S,A, T , r)) where:

• S is the set of states.

• A is the set of possible actions.

• T is the transition function, T : S ×A → S.
we denote the transition probability Pij(a) =
P (st+1 = j|st = i, At = a).

• r is the reward function by executing action
a in a certain state, which is denoted as ri(a).

As aforesaid, the key task of dependency pars-
ing is to select the optimal action to be performed
based on the current state. Given the expected im-
mediate reward r, the optimal policy (π : S 7→ A)
is to maximize the long-term expected reward as
follows:

Rt =
∞∑

k=0

γkrt+k (1)

Given a policy π, state-action function Qπ(i, a)
can be defined as the expected accumulative re-
ward received by taking action a in state s. It takes

the following form:

Qπ(i, a) = Eπ[
∞∑

k=0

γkrt+k|st = i, at = a]

=
∑

j

Pij(a)[ri(a) + γ
∑

b

π(j, b)Qπ(j, b)]

(2)

Here π(j, b) is the probability of picking up action
b in state j, γ ∈ [0, 1] is a discount factor to con-
trol the involvement of further actions. According
to the Bellman equation, the state-action function
can be updated iteratively with equation(2).

Given the state-action function, a greedy policy
can be found by maximizing over possible actions:

π′ = arg max
a

Qπ(i, a) (3)

In the following, we will discuss how to com-
pute the state-action function Q by investigating
the free energy in RBM.

3.2 Restricted Boltzmann Machine
3.2.1 Free Energy
Figure 1 shows the general framework of our
model. At each time step t, there is no connections
between nodes within the same layer. In the net-
work, “visible” variables include both states and
actions (V = S∪A). The visible layer is fully con-
nected to a “hidden” layer, which can be regarded
as a Restricted Boltzmann Machine (RBM).

In our model, both states and actions are fac-
tored. They are consisted of a sets of discrete vari-
ables (Sallans and Hinton, 2004). The stochas-
tic energy of the network can be computed by
the conductivities between visible and hidden vari-
ables.

E(s, a, h) = −
∑

i,k

wiksihk −
∑

j,k

µjkajhk (4)

235

The above energy determine their equilibrium
probabilities via the Boltzmann distribution:

P (s, a, h) =
exp(−E(s, a, h))∑

s′,a′,h′ exp(−E(s′, a′, h′))
(5)

By marginalizing out the hidden variables, we
can obtain the “equilibrium free energy” of s and
a, which can be expressed as an expected energy
minus an entropy:

F (s,a)=−∑k(
∑

i(wiksi〈hk〉)+
∑

j(µjkaj〈hk〉))

+
∑

k〈hk〉 log〈hk〉+(1−〈hk〉) log(1−〈hk〉)
(6)

where 〈hk〉 is the expected value of variable hk:

〈hk〉 = σ(
∑

i,k

wiksi +
∑

j,k

µjkaj) (7)

where σ = 1/(1 + e−x) is a sigmoid function.
As is proved in (Sallans and Hinton, 2004), the

value of a state-action function can be approxi-
mated by the negative free energy of the network:

Q(s, a) ≈ −F (s, a) (8)

3.2.2 Parameter Learning
The parameters of the network can be updated by
the SARSA (State-Action-Reward-State-Action)
algorithm. The inputs of the SARSA algorithm
are the state-action pairs of the two neighboring
slices. Then the error can be computed as:

E(st, at) = [rt+γQ(st+1, tt+1)]−Q(st, at) (9)

Suppose the state-action function is parameter-
ized by θ. The update equation for the parameter
is:

4θ ∝ E(st, at)∇θQ(st, at) (10)

Back to our model, the parameters θ = (w, u)
are given by:

∆wik ∝(rt+γQ(st+1,at+1)−Q(st,at))st
i〈hk〉

∆ujk ∝(rt+γQ(st+1,at+1)−Q(st,at))at
j〈hk〉

(11)

Leemon (1993) showed that the above update
rules can work well in practice even though there
is no proof of convergence in theory. In addition,
in dependency parsing task, the possible action
number is small (=4). Our experimental results
also showed that the learning rule can converge in
practice.

3.3 Action Selection
After training, we use the softmax rules to select
the optimal action for a given state. The probabil-
ity of an action is given by Boltzmann distribution:

P (a|s) ≈ eQ(s,a)/τ

Z
(12)

Here Z is an normalization factor. τ is a pos-
itive number called the temperature. High tem-
perature means the actions are evenly distributed.
Low temperature case a great variety in selection
probability. In the limit as τ → 0, softmax action
selection becomes greedy action selection.

4 Experiments

4.1 Settings
We use the CoNLL-X (Buchholz and Marsi,
2006) distribution data from seven different lan-
guages (Arabic, Bulgarian, Dutch, Portuguese,
Slovene, Spanish and Swedish). These treebanks
varied in sizes from 29,000 to 207,000 tokens. The
cut-off frequency for training data is 20, which
means we ignores any attribute (FORM, LEMMA,
POS or FEATS) occurred less than 20. Further-
more we randomly selected 10 percent of train-
ing data to construct the validation set. Test sets
are about equal for all languages. Since our algo-
rithm only deals with projective cases, we use pro-
jectivization/deprojectivization method for train-
ing and testing data.

For fair comparison, we use the exactly same
feature set as Nivre et al. (2006), which is com-
prised of a variety of features extracted from the
stack, the queue and the partially built dependency
graph.

In our experiment, the immediate reward value
is defined as the Hamming Loss between partial
tree and expected tree, which counts the number
of places that the partial output ŷ differs from the
true output y:

∑T
i=1 1[yi 6= ŷi].

As shown in Figure 1, we compute the state-
action function using a feed-forward neural net-
work with one hidden layer. The number of hid-
den variables is set to match the variable number in
the visible layer (i.e. total number of state and ac-
tion variables). The parameters of the network are
modified by SARSA algorithm according to equa-
tion 2. Finally, 10-width beam search is employed
for all languages, during testing.

There are other parameters in our experiments,
which can be tuned using search. For simplicity,

236

Ar Bu Du Po Sl Sp Sw

LAS
Our 63.24 88.89 79.06 87.54 72.44 82.79 87.20

Nivre 66.71 87.41 78.59 87.60 70.30 81.29 84.58

UAS
Our 75.30 92.88 83.14 91.34 80.06 86.18 91.84

Nivre 77.51 91.72 81.35 91.22 78.72 84.67 89.50

Table 1: Comparison of dependency accuracy with Nivre

the learning rate was exponentially decreased form
0.1 to 0.01 in the course of each epoch. In ideal
cases, the discount factor should be set to 1. In our
experiments, discount factor is fixed to 0.6 consid-
ering the computational burden in long sentence.
The study of the this parameter is still left for fu-
ture work. Finally, the inverse temperature linearly
increased from 0 to 2.

4.2 Results
The performance of our model is evaluated by
the official attachment score, including labeled
(LAS=the percentage of tokens with the correct
head and label) and unlabeled (UAS=the percent-
age of tokens with the correct head). Punctuation
tokens were excluded from scoring.

The result comparison between our system and
Nivre’s transition-based system is shown in Ta-
ble 11. From the table, we can see that the pro-
posed model outperformed the Nivre’s score in all
languages except Arabic. In Arabic, our results are
worse than Nivre, with about 3.5% performance
reduction in LAS measure and 2.2% in UAS. Most
of our errors occur in POSTAGS with N (16%
head errors and 31% dep errors) and P (47% head
errors and 8% dep errors), which is probably due
to the flexible usage of those two tags in Ara-
bic. The best performance of our model happens
in Swedish. The LAS improves from 84.58% to
87.20%, whereas UAS improves from 89.5% to
91.84%. The reason might be that the long depen-
dent relationship is not popular in Swedish. Fi-
nally, we believe the performance will be further
improved by carefully tuning parameters or broad-
ening the beam search width.

5 Conclusions

In this paper we proposed a dependency parsing
based on reinforcement learning. The parser uses
a policy to select the optimal transition in each
parsing stage. The policy is learned from RL in

1The performance of other systems can be accessed from
http://nextens.uvt.nl/∼conll

terms of the long-term reward. Tentative experi-
mental evaluations show that the introduction of
RL is feasible for some NLP applications. Finally,
there are a lot of future work, including the hierar-
chical model and parameter selections.

References
Sabine Buchholz and Erwin Marsi. 2006. Conll-

x shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 149–164, New York City, June. Association
for Computational Linguistics.

Hal Daumé III, John Langford, and Daniel Marcu.
2006. Searn in practice.

Leemon C. Baird III and A. Harry. Klopf. 1993. Rein-
forcement learning with high-dimensional, contin-
uous actions. Technical Report WL–TR-93-1147,
Wright-Patterson Air Force Base Ohio: Wright Lab-
oratory.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Calif, Morgan & Clay-
pool publishers, US.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency
parsing. In Proceedings of the Tenth International
Conference on Parsing Technologies, pages 121–
132, Prague, Czech Republic, June. Association for
Computational Linguistics.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proceedings of ACL-08: HLT, pages
950–958, Columbus, Ohio, June. Association for
Computational Linguistics.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen
Eryiǧit, and Svetoslav Marinov. 2006. Labeled
pseudo-projective dependency parsing with support
vector machines. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learn-
ing (CoNLL-X), pages 221–225, New York City,
June. Association for Computational Linguistics.

Brian Sallans and Geoffrey E. Hinton. 2004. Rein-
forcement learning with factored states and actions.
Journal of Machine Learning Research, 5:1063–
1088.

237

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 238–241,
Paris, October 2009. c©2009 Association for Computational Linguistics

A generative re-ranking model for dependency parsing

Federico Sangati, Willem Zuidema and Rens Bod
Institute for Logic, Language and Computation

University of Amsterdam
Science Park 904, 1098 XH Amsterdam, The Netherlands
{f.sangati,zuidema,rens.bod}@uva.nl

Abstract

We propose a framework for dependency
parsing based on a combination of dis-
criminative and generative models. We
use a discriminative model to obtain a k-
best list of candidate parses, and subse-
quently rerank those candidates using a
generative model. We show how this ap-
proach allows us to evaluate a variety of
generative models, without needing differ-
ent parser implementations. Moreover, we
present empirical results that show a small
improvement over state-of-the-art depen-
dency parsing of English sentences.

1 Introduction

Probabilistic generative dependency models de-
fine probability distributions over all valid depen-
dency structures, and thus provide a useful inter-
mediate representation that can be used for many
NLP tasks including parsing and language mod-
eling. In recent evaluations of supervised de-
pendency parsing, however, generative approaches
are consistently outperformed by discriminative
models (Buchholz et al., 2006; Nivre et al.,
2007), which treat the task of assigning the cor-
rect structure to a given sentence as a classifica-
tion task. In this category we include both transi-
tion based (Nivre and Hall , 2005) and graph based
parsers (McDonald, 2006).

In this paper, we explore a reranking approach
that combines a generative and a discrimative
model and tries to retain the strengths of both.
The idea of combining these two types of models
through re-ranking is not new, although it has been
mostly explored in constituency parsing (Collins
et al., 2002). This earlier work, however, used the
generative model in the first step, and trained the
discriminative model over its k-best candidates. In
this paper we reverse the usual order of the two

models, by employing a generative model to re-
score the k-best candidates provided by a discrim-
inative model. Moreover, the generative model of
the second phase uses frequency counts from the
training set but is not trained on the k-best parses
of the discriminative model.

The main motivation for our approach is that
it allows for efficiently evaluating many gener-
ative models, differing from one another on (i)
the choice of the linguistic units that are gener-
ated (words, pairs of words, word graphs), (ii) the
generation process (Markov process, top-down,
bottom-up), and (iii) the features that are consid-
ered to build the event space (postags/words, dis-
tance). Although efficient algorithms exist to cal-
culate parse forests (Eisner, 1996a), each choice
gives rise to different parser instantiations.

1.1 A generative model for re-ranking

In our re-ranking perspective, all the generative
model has to do is to compute the probability of
k pre-generated structures, and select the one with
maximum probability. In a generative model, ev-
ery structure can be decomposed into a series of
independent events, each mapped to a correspond-
ing conditioning event. As an example, if a gener-
ative model chooses D as the right dependent of a
certain word H , conditioned uniquely on their rel-
ative position, we can define the event as D is the
right dependent of H , and the conditioning event
as H has a right dependent.

As a preprocessing step, every sentence struc-
ture in the training corpus is decomposed into a se-
ries of independent events, with their correspond-
ing conditioning events. During this process, our
model updates two tables containing the frequency
of events and their conditioning counterparts.

In the re-ranking phase, a given candidate struc-
ture can be decomposed into independent events
(e1, e2, . . . , en) and corresponding conditioning
events (c1, c2, . . . , cn) as in the training phase.

238

The probability of the structure can then be cal-
culated as

n∏

i=1

f(ei)
f(ci)

(1)

where f(x) returns the frequency of x previously
stored in the tables.

It is important to stress the point that the only
specificity each generative model introduces is in
the way sentence structures are decomposed into
events; provided a generic representation for the
(conditioning) event space, both training phase
and probability calculation of candidate structures
can be implemented independently from the spe-
cific generative model, through the implementa-
tion of generic tables of (conditioning) events.

In this way the probabilities of candidate struc-
tures are exact probabilities, and do not suf-
fer from possible approximation techniques that
parsers often utilize (i.e., pruning). On the other
hand the most probable parse is selected from the
set of the k candidates generated by the discrimi-
native model, and it will equal with the most prob-
able parse among all possible structures, only for
sufficiently high k.

2 MST discriminative model

In order to generate a set of k-candidate struc-
tures for every test sentence, we use a state-of-
the-art discriminative model (McDonald, 2006).
This model treats every dependency structure as
a set of word-dependent relations, each described
by a high dimensional feature representation. For
instance, if in a certain sentence word i is the
head of word j, v(i, j) is the vector describing
all the features of such relation (i.e., labels of the
two words, their postag, and other information
including words in between them, and ancestral
nodes). During the training phase the model learns
a weight vector w which is then used to find the
best dependency structure y for a given test sen-
tence x. The score that needs to be maximized is
defined as

∑
(i,j)∈y w ·v(i, j), and the best candi-

date is called the maximum spanning tree (MST).
Assuming we have the weight vector and we

only consider projective dependency structures,
the search space can be efficiently computed by
using a dynamic algorithm on a compact repre-
sentation of the parse forest (Eisner, 1996a). The
training phase is more complex; for details we re-
fer to (McDonald, 2006). Roughly, the model em-

ploys a large-margin classifier which iterates over
the structures of the training corpus, and updates
the weight vector w trying to keep the score of the
correct structure above the scores of the incorrect
ones by an amount which is proportional to how
much they differ in accuracy.

3 Generative model

3.1 Eisner model

As a generative framework we have chosen to use
a variation of model C in (Eisner, 1996a). In
this approach nodes are generated recursively in
a top-down manner starting from the special sym-
bol EOS (end of sentence). At any given node, left
and right children are generated as two separate
Markov sequences of nodes1, each conditioned on
ancestral and sibling information (which, for now,
we will simply refer to as context).

One of the relevant variations with respect to
the original model is that in our version the direc-
tion of the Markov chain sequence is strictly left
to right, instead of the usual inside outwards.

More formally, given a dependency structure T ,
and any of its node N , the probability of generat-
ing the fragment T (N) of the dependency struc-
ture rooted in N is defined as:

P (T (N)) =
L∏

l=1

P (N2l)|context) · P (T (N2l))

×
R∏

r=1

P (N3r)|context) · P (T (N3r)) (2)

where L and R are the number of left and right
children of N in T (L,R > 0), N2l is the left
daughter of N at position l in T (analogously for
right daughters). The probability of the entire de-
pendency structure T is computed as P (T (EOS)).

In order to illustrate how a dependency struc-
ture can be decomposed into events, we present
in table 1 the list of events and the correspond-
ing conditioning events extracted from the depen-
dency structure illustrated in figure 1. In this sim-
ple example, each node is identified with its word,
and the context is composed of the direction with
respect to the head node, the head node, and the
previously chosen daughter (or NONE if it is the
first). While during the training phase the event
tables are updated with these events, in the test
phase they are looked-up to compute the structure
probability, as in equation 1.

1Every sequence ends with the special symbol EOC.

239

N
Obama

V
won

D
the

J
presidential

N
election

EOS

Figure 1: Dependency tree of the sentence
“Obama won the presidential election”.

3.2 Model extension

In equation 2 we have generically defined the
probability of choosing a daughter D based on
specific features associated with D and the con-
text in which it occurs. In our implementation,
this probability is instantiated as in equation 3.
The specific features associated with D are: the
distance2 dist(H,D) between D and its head H ,
the flag term(D) which specifies whether D has
more dependents, and the lexical and postag repre-
sentation of D. The context in which D occurs is
defined by features of the head node H , the previ-
ously chosen sister S, the grandparent G, and the
direction dir (left or right).

Equation 3 is factorized in four terms, each em-
ploying an appropriate backoff reduction list re-
ported in descending priority3.

P (D|context) = (3)

P (dist(H,D), term(D), word(D), tag(D)|H,S,G, dir) =
P (tag(D)|H,S,G, dir)

reduction list:

wt(H), wt(S), wt(G), dir
wt(H), wt(S), t(G), dir{
wt(H), t(S), t(G), dir
t(H), wt(S), t(G), dir

t(H), t(S), t(G), dir

× P (word(D)|tag(D), H, S,G, dir)

reduction list:
wt(H), t(S), dir
t(H), t(S), dir

× P (term(D)|word(D), tag(D), H, S,G, dir)

reduction list:
tag(D), wt(H), t(S), dir
tag(D), t(H), t(S), dir

× P (dist(P,D)|term(D), word(D), tag(D), H, S,G, dir)

reduction list:
word(D), tag(D), t(H), t(S), dir
tag(D), t(H), t(S), dir

2In our implementation distance values are grouped in 4
categories: 1, 2, 3− 6, 7−∞.

3In the reduction lists, wt(N) stands for the string in-
corporating both the postag and the word of N , and t(N)
stands for its postag. This second reduction is never applied
to closed class words. All the notation and backoff parame-
ters are identical to (Eisner, 1996b), and are not reported here
for reasons of space.

4The counts are extracted from a two-sentence corpus
which also includes “Obama lost the election.”

Events Freq. Conditioning Events Freq.
won L EOS NONE 1 L EOS NONE 2
EOC L EOS won 1 L EOS won 1
EOC R EOS NONE 2 R EOS NONE 2
Obama L won NONE 1 L won NONE 1
EOC L won Obama 1 L won Obama 1
election R won NONE 1 R won NONE 1
EOC R won election 1 R won election 1
EOC L Obama NONE 2 L Obama NONE 2
EOC R Obama NONE 2 R Obama NONE 2
the L election NONE 2 L election NONE 2
presidential L election the 1 L election the 2
EOC L election presidential 1 L election presidential 1
EOC R election NONE 2 R election NONE 2
EOC L the NONE 2 L the NONE 2
EOC R the NONE 2 R the NONE 2
EOC L presidential NONE 1 L presidential NONE 1
EOC R presidential NONE 1 R presidential NONE 1

Table 1: Events occurring when generating the de-
pendency structure in figure 1, for the event space
(dependent | direction, head, sister). According to
the reported frequency counts4, the structure has a
associated probability of 1/4.

4 Results

In our investigation, we have tested our model
on the Wall Street Journal corpus (Marcus et al.,
1993) with sentences up to 40 words in length,
converted to dependency structures. Although
several algorithms exist to perform such a conver-
sion (Sangati and Zuidema, 2008), we have fol-
lowed the scheme in (Collins, 1999). Section 2-21
was used as training, and section 22 as test set.
The MST discriminative parser was provided with
the correct postags of the words in the test set, and
it was run in second-order5 and projective mode.
Results are reported in table 2, as unlabeled attach-
ment score (UAS). The MST dependency parser
obtains very high results when employed alone
(92.58%), and generates a list of k-best-candidates
which can potentially achieve much better results
(an oracle would score above 95% when selecting
from the first 5-best, and above 99% from the first
1000-best). The decrease in performance of the
generative model, as the number of the candidate
increases, suggests that its performance would be
lower than a discriminative model if used alone.
On the other hand, our generative model is able to
select better candidates than the MST parser, when
their number is limited to a few dozens, yielding a
maximum accuracy for k = 7 where it improves
accuracy on the discriminative model by a 0.51%
(around 7% error reduction).

5The features of every dependency relation include infor-
mation about the previously chosen sister of the dependent.

240

k-best Oracle best Oracle worst Reranked
1 92.58 92.58 92.58
2 94.22 88.66 92.89
3 95.05 87.04 93.02
4 95.51 85.82 93.02
5 95.78 84.96 93.02
6 96.02 84.20 93.06
7 96.23 83.62 93.09
8 96.40 83.06 93.02
9 96.54 82.57 92.97
10 96.64 82.21 92.96
100 98.48 73.30 92.32
1000 99.34 64.86 91.47

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

1 2 3 4 5 6 7 8 9 10 100 1000

Oracle-Best

Reranked

MST

Figure 2: UAS accuracy of the MST discriminative and re-ranking parser on section 22 of the WSJ.
Oracle best: always choosing the best result in the k-best, Oracle worst: always choosing the worst,
Reranked: choosing the most probable candidate according to the generative model.

5 Conclusions

We have presented a general framework for depen-
dency parsing based on a combination of discrim-
inative and generative models. We have used this
framework to evaluate and compare several gener-
ative models, including those of Eisner (1996) and
some of their variations. Consistently with earlier
results, none of these models performs better than
the discriminative baseline when used alone. We
have presented an instantiation of this framework
in which our newly defined generative model leads
to an improvement of the state-of-the-art parsing
results, when provided with a limited number of
best candidates. This result suggests that discrim-
inative and generative model are complementary:
the discriminative model is very accurate to filter
out “bad” candidates, while the generative model
is able to further refine the selection among the
few best candidates. In our set-up it is now pos-
sible to efficiently evaluate many other generative
models and identify the most promising ones for
further investigation. And even though we cur-
rently still need the input from a discriminative
model, our promising results show that pessimism
about the prospects of probabilistic generative de-
pendency models is premature.

Acknowledgments We gratefully acknowledge
funding by the Netherlands Organization for
Scientific Research (NWO): FS and RB are
funded through a Vici-grant “Integrating Cogni-
tion” (277.70.006) to RB, and WZ through a Veni-
grant “Discovering Grammar” (639.021.612) of
NWO. We also thank 3 anonymous reviewers for
useful comments.

References
S. Buchholz, and E. Marsi. 2006. CoNLL-X Shared

Task on Multilingual Dependency Parsing. In Proc.
of the 10th CoNLL Conference, pp. 149–164.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

M. Collins, N. Duffy, and F. Park. 2002. New Ranking
Algorithms for Parsing and Tagging: Kernels over
Discrete Structures, and the Voted Perceptron. In In
Proceedings of the ACL 2002, pp. 263–270.

J. Eisner. 1996a. Three New Probabilistic Models for
Dependency Parsing: An Exploration. In Proc. of
the 16th International Conference on Computational
Linguistics (COLING-96), pp. 340–345.

J. Eisner. 1996b. An Empirical Comparison of Proba-
bility Models for Dependency Grammar. Technical
Report number IRCS-96-11, Univ. of Pennsylvania.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz.
1993. Building a large annotated corpus of English:
The Penn Treebank. In Computational Linguistics,
19(2), pp. 313–330.

R. McDonald. 2006. Discriminative Learning and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

J. Nivre and J. Hall. 2005. MaltParser: A Language-
Independent System for Data-Driven Dependency
Parsing. In Proc. of the Fourth Workshop on Tree-
banks and Linguistic Theories, pp. 137–148.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son,S. Riedel, and D. Yuret. 2007. The CONLL
2007 shared task on dependency parsing. In Proc.
of the CoNLL 2007 Shared Task Session, pp. 915–
932.

F. Sangati and W. Zuidema. 2008. Unsupervised
Methods for Head Assignments. In Proc. of the
EACL 2009 Conference, pp. 701–709.

241

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 242–253,
Paris, October 2009. c©2009 Association for Computational Linguistics

Dependency Constraints for Lexical Disambiguation

Guillaume Bonfante
LORIA INPL

guillaume.bonfante@loria.fr

Bruno Guillaume
LORIA INRIA

bruno.guillaume@loria.fr

Mathieu Morey
LORIA Nancy-Université
mathieu.morey@loria.fr

Abstract
We propose a generic method to per-
form lexical disambiguation in lexicalized
grammatical formalisms. It relies on de-
pendency constraints between words. The
soundness of the method is due to invariant
properties of the parsing in a given gram-
mar that can be computed statically from
the grammar.

1 Introduction

In this work, we propose a method of lexical dis-
ambiguation based on the notion of dependencies.

In modern linguistics, Lucien Tesnière devel-
oped a formal and sophisticated theory with de-
pendencies (Tesnière, 1959). Nowadays, many
current grammatical formalisms rely more or less
explicitly on the notion of dependencies between
words. The most straightforward examples are
formalisms in the Dependency Grammars family
but it is also true of the phrase structure based for-
malisms which consider that words introduce in-
complete syntactic structures which must be com-
pleted by other words. This idea is at the core of
Categorial Grammars (CG) (Lambek, 1958) and
all its trends such as Abstract Categorial Gram-
mars (ACG) (de Groote, 2001) or Combinatory
Categorial Grammars (CCG) (Steedman, 2000),
being mostly encoded in their type system. De-
pendencies in CG were studied in (Moortgat and
Morrill, 1991) and for CCG in (Clark et al.,
2002; Koller and Kuhlmann, 2009). Other for-
malisms can be viewed as modeling and using
dependencies, such as Tree Adjoining Grammars
(TAG) (Joshi, 1987) with their substitution and ad-
junction operations. Dependencies for TAG were
studied in (Joshi and Rambow, 2003). More re-
cently, Marchand et al. (2009) showed that it is
also possible to extract a dependency structure
from a syntactic analysis in Interaction Grammars
(IG) (Guillaume and Perrier, 2008).

Another much more recent concept of polarity
can be used in grammatical formalisms to express
that words introduce incomplete syntactic struc-
tures. IG directly use polarities to describe these
structures but it is also possible to use polarities
in other formalisms in order to make explicit the
more or less implicit notion of incomplete struc-
tures: for instance, in CG (Lamarche, 2008) or in
TAG (Kahane, 2006; Bonfante et al., 2004; Gar-
dent and Kow, 2005). On this regard, Marchand
et al. (2009) exhibited a direct link between polar-
ities and dependencies. This encourages us to say
that in many respects dependencies and polarities
are two sides of the same coin.

The aim of this paper is to show that dependen-
cies can be used to express constraints on the tag-
gings of a sentence and hence these dependency
constraints can be used to partially disambiguate
the words of a sentence. We will see that, in prac-
tice, using the link between dependencies and po-
larities, these dependency constraints can be com-
puted directly from polarized structures.

Exploiting the dependencies encoded in lexical
entries to perform disambiguation is the intuition
behind supertagging (Bangalore and Joshi, 1999),
a method introduced for LTAG and successfully
applied since then to CCG (Clark and Curran,
2004) and HPSG (Ninomiya et al., 2006). These
approaches select the most likely lexical entry (en-
tries) for each word, based on Hidden Markov
Models or Maximum Entropy Models. Like the
work done by Boullier (2003), our method is not
based on statistics nor heuristics, but on a neces-
sary condition of the deep parsing. Consequently,
we accept to have more than one lexical tagging
for a sentence, as long as we can ensure to have
the good ones (when they exist!). This property is
particulary useful to ensure that the deep parsing
will not fail because of an error at the disambigua-
tion step.

In wide-coverage lexicalized grammars, a word

242

typically has about 10 corresponding lexical de-
scriptions, which implies that for a short sentence
of 10 words, we get 1010 possible taggings. It is
not reasonable to treat them individually. To avoid
this, it is convenient to use an automaton to rep-
resent the set of all paths. This automaton has lin-
ear size with regard to the initial lexical ambiguity.
The idea of using automata is not new. In partic-
ular, methods based on Hidden Markov Models
(HMM) use such a technique for part-of-speech
tagging (Kupiec, 1992; Merialdo, 1994). Using
automata, we benefit from dynamic programming
procedures, and consequently from an exponential
temporal and space speed up.

2 Abstract Grammatical Framework

Our filtering method is applicable to any lexical-
ized grammatical formalism which exhibits some
basic properties. In this section we establish these
properties and define from them the notion of Ab-
stract Grammatical Framework (AGF).

Formally, an Abstract Grammatical Frame-
work is an n-tuple (V, S,G,anc,F,p,dep)
where:

• V is the vocabulary: a finite set of words of
the modeled natural language;

• S is the set of syntactic structures used by
the formalism;

• G ⊂ S is the grammar: the finite set of initial
syntactic structures; a finite list [t1, . . . , tn] of
elements of G is called a lexical tagging;

• anc : G → V maps initial syntactic struc-
tures to their anchors;

• F ⊂ S is the set of final syntactic structures
that the parsing process builds (for instance
trees);

• p is the parsing function from lexical tag-
gings to finite subsets of F;

• dep is the dependency function which maps
a couple composed of a lexical tagging and a
final syntactic structure to dependency struc-
tures.

Note that the anc function implies that the
grammar is lexicalized: each initial structure in G

is associated to an element of V. Note also that no
particular property is required on the dependency

structures that are obtained with the dep function,
they can be non-projective for instance.

We call lexicon the function (written `) from V

to subsets of G defined by:

`(w) = {t ∈ G | anc(t) = w}.

We will say that a lexical tagging L =
[t1, . . . , tn] is a lexical tagging of the sentence
[anc(t1), . . . ,anc(tn)].

The final structures in p (L) ⊂ F are called the
parsing solutions of L.

Henceforth, in our examples, we will consider
the ambiguous French sentence (1).

(1) “La belle ferme la porte”

Example 1 We consider the following toy AGF,
suited for parsing our sentence:

• V = { “la”, “belle”, “ferme”, “porte” };

• the grammar G is given in the table be-
low: each × corresponds to an element in
G, written with the category and the French
word as subscript. For instance, the French
word “porte” can be either a common noun
(“door”) or a transitive verb (“hangs”);
hence G contains the 2 elements CNporte and
TrVporte .

la belle ferme porte
Det ×
LAdj × ×
RAdj × ×
CN × × × ×
Clit ×
TrV × ×
IntrV ×

In our example, categories stand for, respec-
tively: determiner, left adjective, right adjec-
tive, common noun, clitic pronoun, transitive
verb and intransitive verb.

With respect to our lexicon, for sentence (1),
there are 3 × 3 × 5 × 3 × 2 = 270 lexical tag-
gings.

The parsing function p is such that 3 lexical
taggings have one solution and the 267 remaining
ones have no solution; we do not need to precise
the final structures, so we only give the English
translation as the result of the parsing function:

243

• p([Detla , CNbelle , TrVferme , Detla , CNporte]) =
{“The nice girl closes the door”}

• p([Detla , LAdjbelle , CNferme , Clitla , TrVporte]) =
{“The nice farm hangs it”}

• p([Detla , CNbelle , RAdjferme , Clitla , TrVporte]) =
{“The firm nice girl hangs it”}

3 The Companionship Principle

We have stated in the previous section the frame-
work and the definitions required to describe our
principle.

3.1 Potential Companion
We say that u ∈ G is a companion of t ∈ G if
anc(t) and anc(u) are linked by a dependency
in dep(L,m) for some lexical tagging L which
contains t and u and some m ∈ p(L). The subset
of elements of G that are companions of t is called
the potential companion set of t.

The Companionship Principle says that if a lex-
ical tagging contains some t but no potential com-
panion of t, then it can be removed.

In what follows, we will generalize a bit this
idea in two ways. First, the same t can be implied
in more than one kind of dependency and hence it
can have several different companion sets with re-
spect to the different kinds of dependencies. Sec-
ondly, it can be the case that some companion t
has to be on the right (resp. on the left) to fulfill its
duty. These generalizations are done through the
notion of atomic constraints defined below.

3.2 Atomic constraints
We say that a pair (L,R) of subsets of G is an
atomic constraint for an initial structure t ∈ G

if for each lexical tagging L = [t1, . . . , tn] such
that p(L) 6= ∅ and t = ti for some i then:

• either there is some j < i such that tj ∈ L,

• or there is some j > i such that tj ∈ R.

In other words, (L,R) lists the potential com-
panions of t, respectively on the left and on the
right.

A system of constraints for a grammar G is a
function C which associates a finite set of atomic
constraints to each element of G.

The Companionship Principle is an immedi-
ate consequence of the definition of atomic con-
straints. It can be stated as the necessary condi-
tion:

The Companionship Principle
If a lexical tagging [t1, . . . , tn] has a solution
then for all i and for all atomic constraints
(L,R) ∈ C(ti)

• {t1, . . . , ti−1} ∩ L 6= ∅

• or {ti+1, . . . , tn} ∩ R 6= ∅.

Example 2 Often, constraints can be expressed
independently of the anchors. In our example, we
use the category to refer to the subset of G of struc-
tures defined with this category: LAdj for instance
refers to the subset {LAdjbelle , LAdjferme}.

We complete the example of the previous section
with the following constraints1:

Ê t ∈ CN⇒ (Det, ∅) ∈ C(t)
Ë t ∈ LAdj⇒ (∅, CN) ∈ C(t)
Ì t ∈ RAdj⇒ (CN, ∅) ∈ C(t)
Í t ∈ Det⇒ (∅, CN) ∈ C(t)
Î t ∈ Det⇒ (TrV, TrV ∪ IntrV) ∈ C(t)
Ï t ∈ TrV⇒ (Clit, Det) ∈ C(t)
Ð t ∈ TrV⇒ (Det, ∅) ∈ C(t)
Ñ t ∈ IntrV⇒ (Det, ∅) ∈ C(t)
Ò t ∈ Clit⇒ (∅, TrV) ∈ C(t)

The two constraints Í and Î for instance ex-
press that every determiner is implied in two de-
pendencies. First, it must find a common noun on
its right to build a noun phrase. Second, the noun
phrase has to be used in a verbal construction.

Now, let us consider the lexical tagging:
[Detla , LAdjbelle , TrVferme , Clitla , CNporte] and
the constraint Ò (a clitic is waiting for a transitive
verb on its right). This constraint is not fulfilled
by the tagging so this tagging has no solution.

3.3 The “Companionship Principle”
language

Actually, a lexical tagging is an element of the
formal language G∗ and we can consider the fol-
lowing three languages. First, G∗ itself. Second,
the set C ⊆ G∗ corresponds to the lexical tag-
gings which can be parsed. The aim of lexical
disambiguation is then to exhibit for each sen-
tence [w1, . . . , wn] all the lexical taggings that are
within C. Third, the Companionship Principle de-
fines the language P of lexical taggings which ver-
ify this Principle. P squeezes between the two lat-

1These constraints are relative to our toy grammar and are
not linguistically valid in a larger context.

244

ter sets C ⊆ P ⊆ G∗. Remarkably, the language
P can be described as a regular language. Since C
is presumably not a regular language (at least for
natural languages!), P is a better regular approxi-
mation than the trivial G∗.

Let us consider one lexical entry t and an atomic
constraint (L,R) ∈ C(t). Then, the set of lexical
taggings verifying this constraint can be described
as

Lt:(L,R) = {(({L)∗t({R)∗)

where { denotes the complement of a set.
Since P is defined as the lexical taggings verify-

ing all constraints, P is a regular language defined
by :

P =
⋂

(L,R)∈C(t)

Lt:(L,R)

From the Companionship Principle, we derive
a lexical disambiguation Principle which simply
tests tagging candidates with P . Notice that P can
be statically computed (at least, in theory) from
the grammar itself.

Example 3 For instance, for our example gram-
mar, this automaton is given in the figure 1 where
c=Clit, n=CN, d=Det, i=IntrV, l=LAdj, r=RAdj
and t=TrV.

A rough approximation of the size of the au-
tomaton corresponding to P can be easily com-
puted. Since each automaton Lt:(L,R) has 4 states,
P has at most 4m states where m is the num-
ber of atomic constraints. For instance, the gram-
mar used in the experiments contains more than
one atomic constraint for each lexical entry, and
m > |G| > 106. Computing P by brute-force is
then intractable.

4 Implementation of the Companionship
Principle with automata

In this section we show how to use the Compan-
ionship Principle for disambiguation. Actually, we
propose two implementations based on the princi-
ple, an exact one and an approximate one. The
latter is really fast and can be used as a first step
before applying the first one.

4.1 Automaton to represent sets of lexical
taggings

The number of lexical taggings grows exponen-
tially with the length of sentences. To avoid that,
we represent sets of lexical taggings as the sets of
paths of some acyclic automata where transitions

are labeled by elements of G . We call such an
automaton a lexical taggings automaton (LTA).
Generally speaking, such automata save a lot of
space. For instance, given a sentence [w1, . . . , wn]
the number of lexical taggings to consider at the
beginning of the parsing process is Π1≤i≤n|`(wi)|.
This set of taggings can be efficiently represented
as the set of paths of the automaton with n + 1
states s0, . . . , sn and with a transition from si−1

to si with the label t for each t ∈ `(wi). This
automaton has

∑
1≤i≤n |`(wi)| transitions.

Example 4 With the data of the previous exam-
ples, we have the initial automaton:

0 1

Det

CN

Clit

2

LAdj

RAdj

CN

3

TrV

IntrV

LAdj

RAdj

CN

4

Det

CN

Clit

5
CN

TrV

To improve readability, only the categories are
given on the edges, while the French words can be
inferred from the position in the automaton.

4.2 Exact Companionship Principle (ECP)
Suppose we have a LTA A for a sentence
[w1, . . . , wn]. For each transition t and for each
atomic constraint in (L,R) ∈ C(t), we construct
an automaton At,L,R in the following way.

Each state s of At,L,R is labeled with a triple
composed of a state of the automaton A and
two booleans. The intended meaning of the first
boolean is to say that each path reaching this
state passes through the transition t. The second
boolean means that the atomic constraint (L,R) is
necessarily fulfilled.

The initial state is labeled (s0, F, F) where s0 is
the initial state of A and other states are labeled as
follows: if s u−→ s′ in A then, in At,L,R, we have:

1. (s, F, b) u−→ (s′, T, b) if u = t

2. (s, F, b) u−→ (s′, F, T) if u ∈ L

3. (s, F, b) u−→ (s′, F, b) if u /∈ L

4. (s, T, b) u−→ (s′, T, T) if u ∈ R

5. (s, T, b) u−→ (s′, T, b) if u /∈ R

where b ∈ {T, F}.

245

0

4c

5
d

6
l

1

{i,n,r}

7

c

8

d

9

l

10

t
2

{i,n,r,t}

c
11{d,l}

3

{i,n,r}

c

t

12

{d,l}

{c,l}

14

d

{d,l}

13
i

c

15

t

16

n

c

d

l

t{c,i,n,r}

17

{d,l}

{d,l,r}

i

t

n

c

n
d

{i,l,r}

t

c

{i,l,n,r,t}

d

20

c

n

{d,i,l,r,t}

c

nt

{d,i,l,r}

c

nd

{i,l}

c

t

n

{c,d,i,l}

18
t

n

{i,l,t}

19

c

22
d

i

c

{d,l}
t

{n,r}

n

t

{c,d,i,l,r}

n

c

{d,i,l,t}

d

{c,i,l}n

21

t

d

{c,i,l,n,r}

23

t

d

c
{i,l,t}

n

n

c

t

{d,i,l}

d

c
{i,l,n,r,t}

Figure 1: The P language for G

It is then routine to show that, for each state la-
beled (s, b1, b2):

• b1 is T iff all paths from the initial state to s
contain the transition t;

• b2 is T iff for all paths p reaching this state,
either there is some u ∈ L or p goes through
t and there is some u ∈ R. In other words,
the constraint is fulfilled.

In conclusion, a path ending with (sf , T, F) with
sf a final state of A is built with transitions 1, 3
and 5 only and hence contains t but no transition
able to fulfill the constraint. The final states are:

• (sf , F, b): each path ending here does not
contain the edge t and thus the constraint
does not apply here,

• (sf , T, T) each path ending here contains the
edge t but it contains also either a transition
2 or 4, so the constraint is fulfilled by these
paths.

The size of these automata is easily bounded by
4n where n is the size of A. Using a slightly more
intricated presentation, we built automata of size
2n.

Example 5 We give below the automaton A for
the atomic constraint Ñ (an intransitive verb is
waiting for a determiner on its left):

0,F,F

1,F,T

Det

1,F,F

CN

Clit

2,F,T
LAdj

RAdj

CN

2,F,F

LAdj

RAdj

CN

3,F,T

LAdj

RAdj

CN

TrV

3,T,T

IntrV

3,F,F

LAdj

RAdj

CN

TrV

3,T,F

IntrV

4,F,T

Det

CN

Clit

4,F,F

Det

CN

Clit

4,T,T

Det

CN

Clit

4,T,F

Det

CN

Clit

5,F,T

CN

TrV

5,F,F
CN

TrV

5,T,T
CN

TrV

5,T,F
CN

TrV

The dotted part of the graph corresponds to the
part of the automaton that can be safely removed.
After minimization, we finally obtain:

0

1
Det

1'

CN

Clit

2

LAdj

RAdj

CN

2'

LAdj

RAdj

CN

3

LAdj

RAdj

CN

TrV

IntrV

LAdj

RAdj

CN

TrV

4

Det

CN

Clit

5
CN

TrV

This automaton contains 234 paths (36 lexical
taggings are removed by this constraint).

For each transition t of the lexical taggings au-
tomaton and for each constraint (L,R) ∈ C(t),
we construct the atomic constraint automaton
At,L,R. The intersection of these automata rep-
resents all the possible lexical taggings of the sen-
tence which respect the Companionship Principle.

246

That is, we output :

ACP =
⋂

1≤i≤n, t∈A;(L,R)∈C(t)

At,L,R

It can be shown that the automaton is the same
as the one obtained by intersection with the au-
tomaton of the language defined in 3.3:

ACP = A ∩ P

Example 6 In our example, the intersection of
the 9 automata built for the atomic constraints is
given below:

0 1
Det

2
LAdj

2

CN

3a

CN 3b

TrV

3c
IntrV

CN

RAdj

TrV

3dIntrV 4
Clit

4'
Det

CN

Clit

CN
5TrV

CN

This automaton has 8 paths: there are 8 lexical
taggings which fulfill every constraint.

4.3 Approximation: the Quick
Companionship Principle (QCP)

The issue with the previous algorithm is that it in-
volves a large number of automata (actuallyO(n))
where n is the size of the input sentence. Each
of these automata has size O(n). The theoreti-
cal complexity of the intersection is then O(nn).
Sometimes, we face the exponential. So, let
us provide an algorithm which approximates the
Principle. The idea is to consider at the same time
all the paths that contain some transition.

We consider a LTA A. We write ≺A the prece-
dence relation on transitions in an automaton A.
We define lA(t) = {u ∈ G, u ≺A t} and rA(t) =
{u ∈ G, t ≺A u}.

For each transition s t−→ s′ and each constraint
(L,R) ∈ C(t), if lA(t) ∩ L = ∅ and rA(t) ∩ R =
∅, then none of the lexical taggings which use the
transition t has a solution and the transition t can
be safely removed from the automaton.

This can be computed by a double-for loop: for
each atomic constraint of each transition, verify
that either the left context or the right context of
the transition contains some structure to solve the
constraint. Observe that the cost of this algorithm
is O(n2), where n is the size of the input automa-
ton.

Note that one must iterate this algorithm until a
fixpoint is reached. Indeed, removing a transition

which serves as a potential companion breaks the
verification. Nevertheless, since for each step be-
fore the fixpoint is reached, we remove at least one
transition, we iterate the double-for at most O(n)
times. The complexity of the whole algorithm is
thenO(n3). In practice, we have observed that the
complexity is closer to O(n2): only 2 or 3 loops
are enough to reach the fixpoint.

Example 7 If we apply the QCP to the automaton
of Example 4, in the first step, only the transition
0 CN−→ 1 is removed by applying the atomic con-
straint Ê. In the next step, the transition 1

RAdj−−−→ 2
is removed by applying the atomic constraint Ì.
The fixpoint is reached and the output automaton
(with 120 paths) is:

0 1
Det

Clit

2
LAdj

CN

3

LAdj

RAdj

CN

TrV

IntrV

4

Det

CN

Clit

5
CN

TrV

5 The Generalized Companionship
Principle

In practice, of course, we have to face the problem
of the computation of the constraints. In a large
coverage grammar, the size of G is too big to com-
pute all the constraints in advance. However, as
we have seen in example 2 we can identify sub-
sets of G that have the same constraints; the same
way, we can use these subsets to give a more con-
cise presentation of the L and R sets of the atomic
constraints. This motivates us to define a General-
ized Principle which is stated on a quotient set of
G.

5.1 Generalized atomic constraints
Let U be a set of subsets of G that are a partition
of G. For t ∈ G, we write t the subset of U which
contains t.

We say that a pair (L,R) of subsets of U is a
generalized atomic constraint for u ∈ U if for
each lexical tagging L = [t1, . . . , tn] such that
p(L) 6= ∅ and u = ti for some i then:

• either there is some j < i such that tj ∈ L,

• or there is some j > i such that tj ∈ R.

A system of generalized constraints for a par-
tition U of a grammar G is a function C which asso-

247

ciates a finite set of generalized atomic constraints
to each element of U.

5.2 The Generalized Principle
The Generalized Companionship Principle is then
an immediate consequence of the previous defini-
tion and can be stated as the necessary condition:

The Generalized Companionship Principle
If a lexical tagging [t1, . . . , tn] has a solution
then for all i and for all generalized atomic con-
straints (L,R) ∈ C(ti)

• {t1, . . . , ti−1} ∩ L 6= ∅

• or {ti+1, . . . , tn} ∩ R 6= ∅.

Example 8 The constraints given in example 2
are in fact generalized atomic constraints on the
set (recall that we write LAdj for the 2 elements
set {LAdjbelle , LAdjferme}):

U = {Det, LAdj, RAdj, CN, Clit, TrV, IntrV}.

Then the constraints are expressed on |U| = 7 el-
ements and not on |G| = 13.

A generalized atomic constraint on U can, of
course, be expressed as a set of atomic constraints
on G: let u ∈ U and t ∈ G such that t = u

(L,R) ∈ C(u) =⇒
(⋃

L∈L

L,
⋃

R∈R

R

)
∈ C(t)

5.3 Implementation of lexicalized grammars
In implementations of large coverage linguistic re-
sources, it is very common to have, first, the de-
scription of the set of “different” structures needed
to describe the modeled natural language and then
an anchoring mechanism that explains how words
of the lexicon are linked to these structures. We
call unanchored grammar the set U of differ-
ent structures (not yet related to words) that are
needed to describe the grammar. In this context,
the lexicon is split in two parts:

• a function ` from V to subsets of U,

• an anchoring function α which builds the
grammar elements from a word w ∈ V and
an unanchored structure u ∈ `(w); we sup-
pose that α verifies that anc(α(w, u)) = w.

In applications, we suppose that U, ` and α are
given. In this context, we define the grammar as
the codomain of the anchoring function:

G =
⋃

w∈V,u∈`(w)

α(w, u)

Now, we can define generalized constraints on
the unanchored grammar, which are independent
of the lexicon and can be computed statically for a
given unanchored grammar.

6 Application to Interaction Grammars

In this section, we apply the Companionship Prin-
ciple to the Interaction Grammars formalism. We
first give a short and simplified description of IG
and an example to illustrate them at work; we re-
fer the reader to (Guillaume and Perrier, 2008) for
a complete and detailed presentation.

6.1 Interaction Grammars
We illustrate some of the important features on
the French sentence (2). In this sentence, “la”
is an object clitic pronoun which is placed before
the verb whereas the canonical place for the (non-
clitic) object is on the right of the verb.

(2) “Jean la demande.” [John asks for it]

The set F of final structures, used as output of
the parsing process, contains ordered trees called
parse trees (PT). An example of a PT for the sen-
tence (2) is given in Figure 2. A PT for a sentence
contains the words of the sentence or the empty
word ε in its leaves (the left-right order of the tree
leaves follows the left-right order of words in the
input sentence). The internal nodes of a PT repre-
sent the constituents of the sentence. The morpho-
syntactic properties of these constituents are de-
scribed with feature structures (only the category
is shown in the figure).

As IG use the Model-Theoretic Syntax (MTS)
framework, a PT is defined as the model of a set
of constraints. Constraints are defined at the word
level: words are associated to a set of constraints
formally described as a polarized tree descrip-
tion (PTD). A PTD is a set of nodes provided with
relations between these nodes. The three PTDs
used to build the model above are given in Fig-
ure 3. The relations used in the PTDs are: imme-
diate dominance (lines) and immediate sisterhood
(arrows). Nodes represent syntactic constituents

248

A2-A3

=S

B1-B3

=NP
C2-C3

=V
D2-D3

=NP

Jean
E2

=Cl
F2-F3

=V ε

la demande

Figure 2: The PT of sentence (2)

and relations express structural dependencies be-
tween these constituents.

Moreover, nodes carry a polarity: the set of po-
larities is {+,−,=,∼}. A + (resp.−) polarity
represents an available (resp. needed) resource, a
∼ polarity describes a node which is unsaturated.
Each + must be associated to exactly one − (and
vice versa) and each ∼ must be associated to at
least another polarity.

B1

+NP

Jean

A2

~S

C2

~V
D2

+NP

E2

=Cl
F2

~V ε

la

A3

=S

B3

-NP
C3

=V
D3

-NP

F3

=V

demande

Figure 3: PTDs for the sentence (2)

Now, we define a PT to be a model of a set of
PTDs if there is a surjective function I from nodes
of the PTDs to nodes of the PT such that:

• relations in the PTDs are realized in the PT:
if M is a daughter (resp. immediate sister)
of N in some PTD then I(M) is a daughter
(resp. immediate sister) of I(N);

• each node N in the PT is saturated: the
composition of the polarities of the nodes in
I−1(N) with the associative and commuta-
tive rule given in Table 4 is =;

• the feature structure of a node N in the PT is
the unification of the feature structures of the
nodes in I−1(N).

One of the strong points of IG is the flexibility
given by the MTS approach: PTDs can be partially
superposed to produce the final tree (whereas su-
perposition is limited in usual CG or in TAG for
instance). In our example, the four grey nodes
in the PTD which contains “la” are superposed
to the four grey nodes in the PTD which contains
“demande” to produce the four grey nodes in the
model.

∼ − + =
∼ ∼ − + =
− − =
+ + =
= =

Figure 4: Polarity composition

In order to give an idea of the full IG system,
we briefly give here the main differences between
our presentation and the full system.

• Dominance relations can be underspecified:
for instance a PTD can impose a node to be an
ancestor of another one without constraining
the length of the path in the model. This is
mainly used to model unbounded extraction.

• Sisterhood relations can also be underspeci-
fied: when the order on subconstituents is not
total, it can be modeled without using several
PTDs.

• Polarities are attached to features rather than
nodes: it sometimes gives more freedom
to the grammar writer when the same con-
stituent plays a role in different constructions.

• Feature values can be shared between several
nodes: once again, this is a way to factorize
the unanchored grammar.

The application of the Companionship Princi-
ple is described on the reduced IG but it can
be straightforwardly extended to full IG with
unessential technical details.

Following the notation given in 5.3, an IG is
made of:

• A finite set V of words;

• A finite set U of unanchored PTDs (without
any word attached to them);

• A lexicon function ` from V to subsets of U.

249

When t ∈ `(w), we can construct the anchored
PTD α(w, u). Technically, in each unanchored
PTD u, a place is marked to be the anchor, i.e.
to be replaced by the word during the anchoring
process. Moreover, the anchoring process can also
be used to refine some features. The fact that
the feature can be refined gives more flexibility
and more compactness to the unanchored gram-
mar construction. In the French IG grammar, the
same unanchored PTD can be used for masculine
or feminine common nouns and the gender is spec-
ified during the anchoring to produce distinct an-
chored PTDs for masculine and feminine nouns. G

is defined by:

G =
⋃

w∈V,u∈`(w)

α(w, u)

The parsing solutions of a lexical tagging is the
set of PTs that are models of the list of PTDs de-
scribed by the lexical tagging:

p(L) = {m ∈ F | m is a model of L}

With the definitions of this section, an IG is a
special case of AGF as defined in section 2.

6.2 Companionship Principle for IG
In order to apply the Companionship Principle, we
have to explain how the generalized atomic con-
straints are built for a given grammar. One way
is to look at dependency structures but in IG po-
larities are built in and then we can read the de-
pendency information we need directly on polari-
ties. A requirement to build a model is the satura-
tion of all the polarities. This requirement can be
expressed using atomic constraints. Each time a
PTD contains an unsaturated polarity +, − or ∼,
we have to find some other compatible dual po-
larity somewhere else in the grammar to saturate
it.

From the general MTS definition of IG above,
we can define a step by step process to build mod-
els of a lexical tagging. The idea is to build in-
crementally the interpretation function I with the
atomic operation of node merging. In this atomic
operation, we choose two nodes and make the hy-
pothesis that they have the same image through I

and hence that they can be identified.
Now, suppose that the unanchored PTD u con-

tains some unsaturated polarity p. We can use the
atomic operation of node merging to test if the

unanchored PTD u′ can be used to saturate the po-
larity p. Let L (resp R) be the set of PTDs that
can be used on the left (resp. on the right) of u
to saturate p, then (L,R) is a generalized atomic
constraint in C(u).

7 Companionship Principle for other
formalisms

As we said in the introduction, many current gram-
matical formalisms can more or less directly be
used to generate dependency structures and hence
are candidate for disambiguation with the Com-
panionship Principle. With IG, we have seen that
dependencies are strongly related to polarities: de-
pendency constraints in IG are built with the polar-
ity system.

We give below two short examples of polarity
use to define atomic constraints on TAG and on
CG. We use, as for IG, the polarity view of depen-
dencies to describe how the constraints are built.

7.1 Tree Adjoining Grammars
Feature-based Tree Adjoining Grammars (here-
after FTAG) (Joshi, 1987) are a unification based
version of Tree Adjoining Grammars. An FTAG
consists of a set of elementary trees and of two
tree composition operations: substitution and ad-
junction. There are two kinds of trees: auxiliary
and initial. Substitution inserts a tree t with root
r onto a leaf node l of another tree t′ under the
condition that l is marked as a place for substitu-
tion and l and r have compatible feature structures.
Adjunction inserts an auxiliary tree t into a tree t′

by splitting a node n of t′ under the condition that
the feature structures of the root and foot nodes of
t are compatible with the top and bottom ones of
n.

Getting the generalized atomic constraints and
the model building procedure for lexical tagging
is extremely similar to what was previously de-
scribed for IG if we extend the polarization pro-
cedure which was described in (Gardent and Kow,
2005) to do polarity based filtering in FTAG. The
idea is that for each initial tree t, its root of cate-
gory C is marked as having the polarity +C, and
its substitution nodes of category S are marked as
having the polarity −S. A first constraint set con-
tains trees t′ whose root is polarized +S and such
that feature structures are unifiable. A second con-
straint set contains trees t′′ which have a leaf that
is polarized −C. We can extend this procedure to

250

auxiliary trees: each auxiliary tree t of category A
needs to be inserted in a node of category A of an-
other tree t′. This gives us a constraint in the spirit
of the ∼ polarity in IG: C(t) contains all the trees
t′ in which t could be inserted2.

7.2 Categorial Grammars
In their type system, Categorial Grammars en-
code linearity constraints and dependencies be-
tween constituents. For example, a transitive verb
is typed NP\S/NP , meaning that it waits for a
subject NP on its left and an object NP on its
right. This type can be straightforwardly decom-
posed as two −NP and one +S polarities. Then
again, getting the generalized atomic constraints
is immediate and in the same spirit as what was
described for IG.

7.3 Non-lexicalized formalisms
The lexicalization condition stated in section 2
excludes non-lexicalized formalisms like LFG or
HPSG. Nothing actually prevents our method
from being applied to these, but adding non-
lexicalized combinators requires to complexify the
formal account of the method. Adapting our
method to HPSG would result in a generaliza-
tion and unification of some of the techniques de-
scribed in (Kiefer et al., 1999).

8 Experimental results

8.1 Setup
The experiments are performed using a French IG
grammar on a set of 31 000 sentences taken from
the newspaper Le Monde.

The French grammar we consider (Perrier,
2007) contains |U| = 2 088 unanchored trees.
It covers 88% of the grammatical sentences and
rejects 85% of the ungrammatical ones on the
TSNLP (Lehmann et al., 1996) corpus.

The constraints have been computed on the
unanchored grammar as explained in section 5:
each tree contains several polarities and therefore
several atomic constraints. Overall, the grammar
contains 20 627 atomic constraints. It takes 2 days
to compute the set of constraints and the results
can be stored in a constraints file of 10MB. Of
course, an atomic constraint is more interesting
when the sizes of L and R are small. In our gram-
mar, 50% of the constraints set (either R or L)

2Note that in the adjunction case, the constraint is not ori-
ented and then L= R.

contain at most 40 elements and 80% of these sets
contain at most 200 elements over 2 088.

We give in figure 5 the number of sentences of
each length in the corpus we consider.

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

nu
m
be

r 
of
 s
en

te
nc
es
 

sentence length (number of words) 

Figure 5: number of sentences of each length

8.2 Results
Two preliminary comments need to be made on
the treatment of the results.

First, as we observed above, the number n
of lexical taggings is a priori exponential in the
length of the sentence. We thus consider its log.
Moreover, because we use a raw corpus, some
sentences are considered as ungrammatical by the
grammar; in this case it may happen that the dis-
ambiguation method removes all taggings. In or-
der to avoid undefined values when n = 0, we in
fact consider log10(1 + n).

Second, as expected, the ECP method is more
time consuming and for some sentences the time
and/or memory required is problematic. To be able
to apply the ECP to a large number of sentences,
we have used it after another filtering method
based on polarities and described in (Bonfante et
al., 2004).

Thus, for each sentence we have computed 3
different filters, each one finer than the previous:

• QCP the Quick Companionship Principle;

• QCP+POL QCP followed by a filtering tech-
nique based on polarity counting;

• QCP+POL+ECP the Exact Companionship
Principle applied to the previous filter.

Figure 6 displays the mean computation time
for each length: it confirms that the ECP is more
time consuming and goes up to 5s for our long sen-
tences.

251

Finally, we report the number of lexical tag-
gings that each method returns. Figure 7 displays
the mean value of log10(1 + n) where n is either
the initial number of lexical taggings or the num-
ber of lexical taggings left by the filter.

0.01 

0.1 

1 

10 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

!
m
es
 (i
n 
s)
 

sentence length (number of words) 

QCP 

QCP+POL 

QCP+POL+ECP 

Figure 6: mean execution time (in s)

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

6  7  8  9  10  11  12  13  14  15  16  17  18  19 

Lo
g 
(1
+n

) 

sentence length (number of words) 

QCP 

QCP+POL 

QCP+POL+ECP 

Ini6al 

Figure 7: number of taggings (initial and after the
3 disambiguation methods)

We can observe that the slope of the lines cor-
responds to the mean word ambiguity: if the
mean ambiguity is a then the number of taggings
for a sentence of length n is about an and then
log(an) = n · log(a). As a consequence, the mean
ambiguity can be read as 10s where s is the slope
in the last figure.

An illustration is given in figure 8 which ex-
hibits the mean word ambiguity for sentences of
length 16.

init QCP QCP+POL QCP+POL+ECP
6.13 3.41 1.93 1.41

Figure 8: mean word ambiguity for sentences of
length 16

9 Conclusion

We have presented a disambiguation method
based on dependency constraints which allows to

filter out many wrong lexical taggings before en-
tering the deep parsing. As this method relies on
the computation of static constraints on the lin-
guistic data and not on a statistical model, we can
be sure that we will never remove any correct lex-
ical tagging. Moreover, we manage to apply our
methods to an interesting set of data and prove that
it is efficient for a large coverage grammar and not
only for a toy grammar.

These results are also an encouragement to de-
velop further this kind of disambiguation methods.
In the near future, we would like to explore some
improvements.

First, we have seen that our principle cannot be
computed on the whole grammar and that in its im-
plementation we consider unanchored structures.
We would like to explore the possibility of com-
puting finer constraints (relative to the full gram-
mar) on the fly for each sentence. We believe that
this can eliminate some more taggings before en-
tering the deep parsing.

Concerning the ECP, as we have seen, there is a
kind of interplay between the efficiency of the fil-
tering and the time of the computation. We would
like to explore the possibility to define some in-
termediate way between QCP and ECP either by
using approximate automata or using the ECP but
only on a subset of elements where it is known to
be efficient.

Another challenging method we would like to
investigate is to use the Companionship Principle
not only as a disambiguation method but as a guide
for the deep parsing. Actually, we have observed
for at least 20% of the words that dependencies are
completely determined by the filtering methods. If
deep parsing can be adapted to use this observation
(this is the case for IG), this can be of great help.

Finally, we can improve the filtering using both
worlds: the Companionship Principle and the po-
larity counting method. Two different constraints
cannot be fulfilled by the same potential compan-
ion: this may allow to discover some more lexical
taggings that can be safely removed.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments and suggestions.

252

References
Srinivas Bangalore and Aravind K. Joshi. 1999. Su-

pertagging: an approach to almost parsing. Comput.
Linguist., 25(2):237–265.

G. Bonfante, B. Guillaume, and G. Perrier. 2004.
Polarization and abstraction of grammatical for-
malisms as methods for lexical disambiguation. In
CoLing 2004, pages 303–309, Genève, Switzerland.

P. Boullier. 2003. Supertagging : A non-statistical
parsing-based approach. In Pro- ceedings of the
8th International Workshop on Parsing Technologies
(IWPT 03), pages 55–65, Nancy, France.

Stephen Clark and James R. Curran. 2004. The impor-
tance of supertagging for wide-coverage CCG pars-
ing. In COLING ’04: Proceedings of the 20th in-
ternational conference on Computational Linguis-
tics, page 282, Morristown, NJ, USA. Association
for Computational Linguistics.

S. Clark, J. Hockenmaier, and M. Steedman. 2002.
Building Deep Dependency Structures with a Wide-
Coverage CCG Parser. In Proceedings of ACL’02,
pages 327–334, Philadephia, PA.

Ph. de Groote. 2001. Towards abstract categorial
grammars. In Association for Computational Lin-
guistics, 39th Annual Meeting and 10th Conference
of the European Chapter, Proceedings of the Confer-
ence, pages 148–155.

C. Gardent and E. Kow. 2005. Generating and se-
lecting grammatical paraphrases. Proceedings of the
ENLG, Aug.

B. Guillaume and G. Perrier. 2008. Interaction Gram-
mars. Research Report RR-6621, INRIA.

A. Joshi and O. Rambow. 2003. A Formalism for De-
pendency Grammar Based on Tree Adjoining Gram-
mar. In Proceedings of the Conference on Meaning-
Text Theory.

A. Joshi. 1987. An Introduction to Tree Adjoining
Grammars. Mathematics of Language.

S. Kahane. 2006. Polarized unification grammar. In
Proceedings of Coling-ACL’02, Sydney.

Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and
Rob Malouf. 1999. A bag of useful techniques for
efficient and robust parsing. In Proceedings of the
37th annual meeting of the Association for Compu-
tational Linguistics on Computational Linguistics,
pages 473–480, Morristown, NJ, USA. Association
for Computational Linguistics.

A. Koller and M. Kuhlmann. 2009. Dependency
trees and the strong generative capacity of CCG. In
EACL’ 2009, Athens, Greece.

J. Kupiec. 1992. Robust Part-of-Speech Tagging Us-
ing a Hidden Markov Model. Computer Speech and
Language, 6(3):225–242.

F. Lamarche. 2008. Proof Nets for Intuitionistic Linear
Logic: Essential Nets. Technical report, INRIA.

J. Lambek. 1958. The mathematics of sentence struc-
ture. American mathematical monthly, pages 154–
170.

S. Lehmann, S. Oepen, S. Regnier-Prost, K. Netter,
V. Lux, J. Klein, K. Falkedal, F. Fouvry, D. Esti-
val, E. Dauphin, H. Compagnion, J. Baur, L. Balkan,
and D. Arnold. 1996. TSNLP: Test Suites for Nat-
ural Language Processing. In Proceedings of the
16th conference on Computational linguistics, pages
711–716.

J. Marchand, B. Guillaume, and G. Perrier. 2009.
Analyse en dépendances à l’aide des grammaires
d’interaction. In Actes de TALN 09, Senlis, France.

B. Merialdo. 1994. Tagging English Text with a Prob-
abilistic Model. Computational linguistics, 20:155–
157.

M. Moortgat and G. Morrill. 1991. Heads and phrases.
Type calculus for dependency and constituent struc-
ture. In Journal of Language, Logic and Informa-
tion.

Takashi Ninomiya, Takuya Matsuzaki, Yoshimasa Tsu-
ruoka, Yusuke Miyao, and Jun’ichi Tsujii. 2006.
Extremely lexicalized models for accurate and fast
HPSG parsing. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing, pages 155–163, Sydney, Australia, July.
Association for Computational Linguistics.

G. Perrier. 2007. A French Interaction Grammar. In
RANLP 2007, pages 463–467, Borovets Bulgarie.

M. Steedman. 2000. The Syntactic Process. MIT
Press.

L. Tesnière. 1959. Éléments de syntaxe structurale.
Klinksieck.

253

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 254–265,
Paris, October 2009. c©2009 Association for Computational Linguistics

Parsing Directed Acyclic Graphs
with Range Concatenation Grammars

Pierre Boullier and Benôıt Sagot
Alpage, INRIA Paris-Rocquencourt & Université Paris 7

Domaine de Voluceau — Rocquencourt, BP 105 — 78153 Le ChesnayCedex, France
{Pierre.Boullier,Benoit.Sagot}@inria.fr

Abstract

Range Concatenation Grammars (RCGs)
are a syntactic formalism which possesses
many attractive properties. It is more pow-
erful than Linear Context-Free Rewriting
Systems, though this power is not reached
to the detriment of efficiency since its sen-
tences can always be parsed in polynomial
time. If the input, instead of a string, is a
Directed Acyclic Graph (DAG), onlysim-
ple RCGs can still be parsed in polyno-
mial time. For non-linear RCGs, this poly-
nomial parsing time cannot be guaranteed
anymore. In this paper, we show how the
standard parsing algorithm can be adapted
for parsing DAGs with RCGs, both in the
linear (simple) and in the non-linear case.

1 Introduction

The Range Concatenation Grammar (RCG)
formalism has been introduced by Boullier ten
years ago. A complete definition can be
found in (Boullier, 2004), together with some
of its formal properties and a parsing algorithm
(qualified here of standard) which runs in
polynomial time. In this paper we shall only
consider the positive version of RCGs which
will be abbreviated as PRCG.1 PRCGs are
very attractive since they are more powerful
than the Linear Context-Free Rewriting Systems
(LCFRSs) by (Vijay-Shanker et al., 1987). In fact
LCFRSs are equivalent to simple PRCGs which
are a subclass of PRCGs. Many Mildly Context-
Sensitive (MCS) formalisms, including Tree
Adjoining Grammars (TAGs) and various kinds
of Multi-Component TAGs, have already been

1Negative RCGs do not add formal power since both
versions exactly cover the classPTIME of languages
recognizable in deterministic polynomial time (see (Boullier,
2004) for an indirect proof and (Bertsch and Nederhof, 2001)
for a direct proof).

translated into their simple PRCG counterpart in
order to get an efficient parser for free (see for
example (Barthélemy et al., 2001)).

However, in many Natural Language Process-
ing applications, the most suitable input for a
parser is not a sequence of words (forms, ter-
minal symbols), but a more complex representa-
tion, usually defined as a Direct Acyclic Graph
(DAG), which correspond to finite regular lan-
guages, for taking into account various kinds of
ambiguities. Such ambiguities may come, among
others, from the output of speech recognition sys-
tems, from lexical ambiguities (and in particular
from tokenization ambiguities), or from a non-
deterministic spelling correction module.

Yet, it has been shown by (Bertsch and
Nederhof, 2001) that parsing of regular languages
(and therefore of DAGs) using simple PRCGs is
polynomial. In the same paper, it is also proven
that parsing of finite regular languages (the DAG
case) using arbitrary RCGs is NP-complete.

This papers aims at showing how these
complexity results can be made concrete in a
parser, by extending a standard RCG parsing
algorithm so as to handle input DAGs. We
will first recall both some basic definitions and
their notations. Afterwards we will see, with a
slight modification of the notion of ranges, how
it is possible to use the standard PRCG parsing
algorithm to get in polynomial time a parse forest
with a DAG as input.2 However, the resulting
parse forest is valid only for simple PRCGs. In
the non-linear case, and consistently with the
complexity results mentioned above, we show that
the resulting parse forest needs further processing
for filtering out inconsistent parses, which may
need an exponential time. The proposed filtering
algorithm allows for parsing DAGs in practice
with any PRCG, including non-linear ones.

2The notion of parse forest is reminiscent of the work
of (Lang, 1994).

254

2 Basic notions and notations

2.1 Positive Range Concatenation Grammars

A positive range concatenation grammar(PRCG)
G = (N,T, V, P, S) is a 5-tuple in which:

• T and V are disjoint alphabets ofterminal
symbolsandvariable symbolsrespectively.

• N is a non-empty finite set ofpredicatesof
fixed arity (also calledfan-out). We write
k = arity(A) if the arity of the predicateA is
k. A predicateA with its argumentsis noted
A(~α) with a vector notation such that|~α| = k
and~α[j] is its jth argument. An argument is a
string in(V ∪ T)∗.

• S is a distinguished predicate called thestart
predicate(or axiom) of arity 1.

• P is a finite set ofclauses. A clause c
is a rewriting rule of the formA0(~α0) →
A1(~α1) . . . Ar(~αr) where r, r ≥ 0 is its
rank, A0(~α0) is its left-hand sideor LHS,
andA1(~α1) . . . Ar(~αr) its right-hand sideor
RHS. By definitionc[i] = Ai(~αi), 0 ≤ i ≤ r
whereAi is a predicate and~αi its arguments;
we notec[i][j] its jth argument;c[i][j] is of
the formX1 . . . Xnij (the Xk ’s are terminal
or variable symbols), whilec[i][j][k], 0 ≤
k ≤ nij is apositionwithin c[i][j].

For a given clausec, and one of its predicates
c[i] a subargumentis defined as a substring of an
argumentc[i][j] of the predicatec[i]. It is denoted
by a pair of positions(c[i][j][k], c[i][j][k′]), with
k ≤ k′.

Let w = a1 . . . an be an input string inT ∗,
each occurrence of a substringal+1 . . . au is a pair
of positions(w[l], w[u]) s.t. 0 ≤ l ≤ u ≤ n
called arange and noted〈l..u〉w or 〈l..u〉 when
w is implicit. In the range〈l..u〉, l is its lower
bound while u is its upper bound. If l = u,
the range〈l..u〉 is an empty range, it spans an
empty substring. Ifρ1 = 〈l1..u1〉, . . . and
ρm = 〈lm..um〉 are ranges, theconcatenationof
ρ1, . . . ,ρm notedρ1 . . . ρm is the rangeρ = 〈l..u〉
if and only if we haveui = li+1, 1 ≤ i < m,
l = l1 andu = um.

If c = A0(~α0) → A1(~α1) . . . Ar(~αr) is a
clause, each of its sub-
arguments(c[i][j][k], c[i][j][k′]) may take a range
ρ = 〈l..u〉 as value: we say that it isinstantiated

by ρ. However, the instantiation of a subargument
is subjected to the following constraints.

• If the subargument is the empty string (i.e.,
k = k′), ρ is an empty range.

• If the subargument is a terminal symbol (i.e.,
k + 1 = k′ and Xk′ ∈ T), ρ is such that
l + 1 = u andau = Xk′ . Note that several
occurrences of the same terminal symbol
may be instantiated by different ranges.

• If the subargument is a variable symbol
(i.e., k + 1 = k′ and Xk′ ∈ V),
any occurrence(c[i′][j′][m], c[i′][j′][m′]) of
Xk′ is instantiated byρ. Thus, each
occurrence of the same variable symbol must
be instantiated by the same range.

• If the subargument is the stringXk+1 . . . Xk′ ,
ρ is its instantiation if and only if we have
ρ = ρk+1 . . . ρk′ in which ρk+1, . . . , ρk′ are
respectively the instantiations ofXk+1, . . . ,
Xk′ .

If in c we replace each argument by its
instantiation, we get aninstantiated clausenoted
A0(~ρ0) → A1(~ρ1) . . . Ar(~ρr) in which each
Ai(~ρi) is aninstantiated predicate.

A binary relation calledderiveand noted⇒
G,w

is

defined on strings of instantiated predicates. IfΓ1

and Γ2 are strings of instantiated predicates, we
have

Γ1 A0(~ρ0) Γ2 ⇒
G,w

Γ1 A1(~ρ1) . . . Am(~ρm) Γ2

if and only if A0(~ρ0) → A1(~ρ1) . . . Am(~ρm) is an
instantiated clause.

The (string) languageof a PRCGG is the

set L(G) = {w | S(〈0..|w|〉w) +⇒
G,w

ε}. In

other words, an input stringw ∈ T ∗, |w| =
n is a sentenceof G if and only there exists a
complete derivationwhich starts fromS(〈0..n〉)
(the instantiation of the start predicate on the
whole input text) and leads to the empty string
(of instantiated predicates). Theparse forestof w
is the CFG whose axiom isS(〈0..n〉) and whose
productions are the instantiated clauses used in all
complete derivations.3

We say that the arity of a PRCG isk, and we
call it ak-PRCG, if and only ifk is the maximum

3Note that this parse forest has no terminal symbols (its
language is the empty string).

255

arity of its predicates (k = maxA∈N arity(A)).
We say that ak-PRCG issimple, we have a simple
k-PRCG, if and only if each of its clause is

• non-combinatorial: the arguments of its RHS
predicates are single variables;

• non-erasing: each variable which occur in
its LHS (resp. RHS) also occurs in its RHS
(resp. LHS);

• linear: there are no variables which occur
more than once in its LHS and in its RHS.

The subclass of simple PRCGs is of importance
since it is MCS and is the one equivalent to
LCFRSs.

2.2 Finite Automata

A non-deterministic finite automaton(NFA) is
the 5-tupleA = (Q,Σ, δ, q0, F) where Q is a
non empty finite set ofstates, Σ is a finite set
of terminal symbols, δ is the ternarytransition
relation δ = {(qi, t, qj)|qi, qj ∈ Q∧ t ∈ Σ∪{ε}},
q0 is a distinguished element ofQ called theinitial
stateandF is a subset ofQ whose elements are
calledfinal states. The size ofA, noted|A|, is its
number of states (|A| = |Q|).

We define the ternary relationδ∗ onQ×Σ∗×Q
as the smallest set s.t.δ∗ = {(q, ε, q) | q ∈ Q} ∪
{(q1, xt, q3) | (q1, x, q2) ∈ δ∗ ∧ (q2, t, q3) ∈ δ}. If
(q, x, q′) ∈ δ∗, we say thatx is apath betweenq
andq′. If q = q0 andq′ ∈ F , x is acomplete path.

The languageL(A) defined(generated, recog-
nized, accepted) by the NFAA is the set of all its
complete paths.

We say that a NFA isemptyif and only if its
language is empty. Two NFAs areequivalentif
and only if they define the same language. A
NFA is ε-free if and only if its transition relation
does not contain a transition of the form(q1, ε, q2).
Every NFA can be transformed into an equivalent
ε-free NFA (this classical result and those recalled
below can be found, e.g., in (Hopcroft and Ullman,
1979)).

As usual, a NFA is drawn with the following
conventions: a transition(q1, t, q2) is an arrow
labelled t from state q1 to stateq2 which are
printed with a surrounded circle. Final states are
doubly circled while the initial state has a single
unconnected, unlabelled input arrow.

A deterministic finite automaton(DFA) is a
NFA in which the transition relationδ is a

transition function, δ : Q × Σ → Q. In
other words, there are noε-transitions and if
(q1, t, q2) ∈ δ, t 6= ε and ∄(q1, t, q

′
2) ∈ δ with

q′2 6= q2. Each NFA can be transformed by
the subset constructioninto an equivalent DFA.
Moreover, each DFA can be transformed by a
minimization algorithminto an equivalent DFA
which isminimal(i.e., there is no other equivalent
DFA with fewer states).

2.3 Directed acyclic graphs

Formally, a directed acyclic graph (DAG)D =
(Q,Σ, δ, q0, F) is an NFA for which there exists
a strict order relation< on Q such that(p, t, q) ∈
δ ⇒ p < q. Without loss of generality we may
assume that< is a total order.

Of course, as NFAs, DAGs can be transformed
into equivalent deterministic or minimal DAGs.

3 DAGs and PRCGs

A DAG D is recognized(accepted) by a PRCG
G if and only if L(D) ∩ L(G) 6= ∅. A trivial
way to solve this recognition (or parsing) problem
is to extract the complete paths ofL(D) (which
are in finite number) one by one and to parse
each such string with a standard PRCG parser, the
(complete) parse forest forD being the union of
each individual forest.4 However since DAGs may
define an exponential number of strings w.r.t. its
own size,5 the previous operation would take an
exponential time in the size ofD, and the parse
forest would also have an exponential size.

The purpose of this paper is to show that
it is possible to directly parse a DAG (without
any unfolding) by sharing identical computations.
This sharing may lead to a polynomial parse time
for an exponential number of sentences, but, in
some cases, the parse time remains exponential.

3.1 DAGs and Ranges

In many NLP applications the source text cannot
be considered as a sequence of terminal symbols,
but rather as a finite set of finite strings. As

4These forests do not share any production (instantiated
clause) since ranges in a particular forest are all related
to the corresponding source stringw (i.e., are all of the
form 〈i..j〉w). To be more precise the union operation on
individual forests must be completed in adding productions
which connect the new (super) axiom (sayS′) with each root
and which are, for eachw of the formS′ → S(〈0..|w|〉w).

5For example the language(a|b)n, n > 0 which contains
2n strings can be defined by a minimal DAG whose size is
n + 1.

256

mentioned in th introduction, this non-unique
string could be used to encode not-yet-solved
ambiguities in the input. DAGs are a convenient
way to represent these finite sets of strings by
factorizing their common parts (thanks to the
minimization algorithm).

In order to use DAGs as inputs for PRCG
parsing we will perform two generalizations.

The first one follows. Letw = t1 . . . tn be a
string in some alphabetΣ and letQ = {qi | 0 ≤
i ≤ n} be a set ofn + 1 boundswith a total order
relation<, we haveq0 < q1 < . . . < qn. The
sequenceπ = q0t1q1t2q2 . . . tnqn ∈ Q×(Σ×Q)n

is called abounded stringwhichspellsw. A range
is a pair of bounds(qi, qj) with qi < qj noted
〈pi..pj〉π and any triple of the form(qi−1tiqi)
is called a transition. All the notions around
PRCGs defined in Section 2.1 easily generalize
from strings to bounded strings. It is also the case
for the standard parsing algorithm of (Boullier,
2004).

Now the next step is to move from bounded
strings to DAGs. LetD = (Q,Σ, δ, q0, F) be a
DAG. A string x ∈ Σ∗ s.t. we have(q1, x, q2) ∈
δ∗ is called apathbetweenq1 andq2 and a string
π = qt1q1 . . . tpqp ∈ Q × (Σ ∪ {ε} × Q)∗ is a
bounded pathand we say thatπ spellst1t2 . . . tp.
A path x from q0 to f ∈ F is a complete path
and a bounded path of the formq0t1 . . . tnf with
f ∈ F is a complete bounded path. In the
context of a DAGD, a range is a pair of states
(qi, qj) with qi < qj noted 〈qi..qj〉D. A range
〈qi..qj〉D is valid if and only if there exists a
path from qi to qj in D. Of course, any range
〈p..q〉D defines its associated sub-DAGD〈p..q〉 =
(Q〈p..q〉,Σ〈p..q〉, δ〈p..q〉, p, {q}) as follows. Its
transition relation isδ〈p..q〉 = {(r, t, s) | (r, t, s) ∈
δ ∧ (p, x′, r), (s, x′′, q) ∈ δ∗}. If δ〈p..q〉 = ∅
(i.e., there is no path betweenp andq), D〈p..q〉 is
the empty DAG, otherwiseQ〈p..q〉 (resp. Σ〈p..q〉)
are the states (resp. terminal symbols) of the
transitions ofδ〈p..q〉. With this new definition of
ranges, the notions of instantiation and derivation
easily generalize from bounded strings to DAGs.

The language of a PRCGG for a DAG

D is defined by
•
L (G,D) =

⋃
f∈F {x |

S(〈q0..f〉D) +⇒
G,D

ε}. Let x ∈ L(D), it is not very

difficult to show that ifx ∈ L(G) then we have

x ∈
•
L (G,D). However, the converse is not true

(see Example 1), a sentence ofL(D)∩
•
L (G,D)

may not be inL(G). To put it differently, if we
use the standard RCG parser, with the ranges of
a DAG, we produce the shared parse-forest for

the language
•
L (G,D) which is a superset of

L(D) ∩ L(G).

However, if G is a simple PRCG, we have

the equalityL(G) =
⋃

D is a DAG
•
L (G,D).

Note that the subclass of simple PRCGs is of
importance since it is MCS and it is the one
equivalent to LCFRSs. The informal reason of
the equality is the following. If an instantiated
predicate Ai(~ρi) succeeds in some RHS, this
means that each of its ranges~ρi[j] = 〈k..l〉D has
been recognized as being a component ofAi, more
precisely their exists a path fromk to l in D which
is a component ofAi. The range〈k..l〉D selects
in D a setδ〈k..l〉D of transitions (the transitions
used in the bounded paths fromk to l). Because
of the linearity ofG, there is no other range in that
RHS which selects a transition inδ〈k..l〉D . Thus
the bounded paths selected by all the ranges of that
RHS are disjoints. In other words, any occurrence
of a valid instantiated range〈i..j〉D selects a set of
paths which is a subset ofL(D〈i..j〉).

Now, if we consider a non-linear PRCG, in
some of its clauses, there is a variable, sayX,
which has several occurrences in its RHS (if we
consider a top-down non-linearity). Now assume
that for some input DAGD, an instantiation of
that clause is a component of some complete
derivation. Let〈p..q〉D be the instantiation ofX
in that instantiated clause. The fact that a predicate
in whichX occurs succeeds means that there exist
paths fromp to q in D〈p..q〉. The same thing stands
for all the other occurrences ofX but nothing
force these paths to be identical or not.

Example 1.

Let us take an example which will be used
throughout the paper. It is a non-linear 1-PRCG
which defines the languageanbncn, n ≥ 0 as
the intersection of the two languagesa∗bncn and
anbnc∗. Each of these languages is respectively
defined by the predicatesa∗bncn andanbnc∗; the
start predicate isanbncn.

257

1

2

3

4

a b

b c

Figure 1: Input DAG associated withab|bc.

anbncn(X) → a∗bncn(X) anbnc∗(X)

a∗bncn(aX) → a∗bncn(X)
a∗bncn(X) → bncn(X)
bncn(bXc) → bncn(X)
bncn(ε) → ε

anbnc∗(Xc) → anbnc∗(X)
anbnc∗(X) → anbn(X)
anbn(aXb) → anbn(X)
anbn(ε) → ε

If we use this PRCG to parse the DAG of
Figure 1 which defines the language{ab, bc},
we (erroneously) get the non-empty parse for-
est of Figure 2 though neitherab nor bc is in
anbncn.6 It is not difficult to see that the problem
comes from the non-linear instantiated variable
X〈1..4〉 in the start node, and more precisely from
the actual (wrong) meaning of the three differ-
ent occurrences ofX〈1..4〉 in anbncn(X〈1..4〉) →
a∗bncn(X〈1..4〉) anbnc∗(X〈1..4〉). The first occur-
rence in its RHS says that there exists a path in
the input DAG from state1 to state4 which is an
a∗bncn. The second occurrence says that there
exists a path from state1 to state4 which is an
anbnc∗. While the LHS occurrence (wrongly) says
that there exists a path from state1 to state4 which
is ananbncn. However, if the twoX〈1..4〉’s in the
RHS had selected common paths (this is not pos-
sible here) between1 and4, a valid interpretation
could have been proposed.

With this example, we see that the difficulty of
DAG parsing only arises with non-linear PRCGs.

If we consider linear PRCGs, the sub-class of
the PRCGs which is equivalent to LCFRSs, the

6In this forest oval nodes denote different instantiated
predicates, while its associated instantiated clauses are
presented as its daughter(s) and are denoted by square nodes.
The LHS of each instantiated clause shows the instantiation
of its LHS symbols. The RHS is the corresponding sequence
of instantiated predicates. The number of daughters of each
square node is the number of its RHS instantiated predicates.

standard algorithm works perfectly well with input
DAGs, since a valid instantiation of an argument
of a predicate in a clause by some range〈p..q〉
means that there exists (at least) one path between
p andq which is recognized.

The paper will now concentrate on non-linear
PRCGs, and will present a new valid parsing
algorithm and study its complexities (in space and
time).

In order to simplify the presentation we
introduce this algorithm as a post-processing pass
which will work on the shared parse-forest output
by the (slightly modified) standard algorithm
which accepts DAGs as input.

3.2 Parsing DAGs with non-linear PRCGs

The standard parsing algorithm of (Boullier, 2004)
working on a stringw can be sketched as follows.
It uses a single memoized boolean function
predicate(A, ~ρ) whereA is a predicate and~ρ is a
vector of ranges whose dimension isarity(A). The
initial call to that function has the formpredicate
(S, 〈0..|w|〉). Its purpose is, for eachA0-clause, to
instantiate each of its symbols in a consistant way.
For example if we assume that theith argument of
the LHS of the currentA0-clause isα′

iXaY α′′
i and

that theith component of~ρ0 is the range〈pi..qi〉 an
instantiation ofX, a anY by the ranges〈pX ..qX〉,
〈pa..qa〉 and 〈pY ..qY 〉 is such that we havepi ≤
pX ≤ qX = pa < qa = pa + 1 = pY ≤ qY ≤ qi

andw = w′aw′′ with |w′| = pa. Since the PRCG
is non bottom-up erasing, the instantiation of all
the LHS symbols implies that all the arguments
of the RHS predicatesAi are also instantiated and
gathered into the vector of ranges~ρi. Now, for
eachi (1 ≤ i ≤ |RHS|), we can callpredicate
(Ai, ~ρi). If all these calls succeed, the instantiated
clause can be stored as a component of the shared
parse forest.7

In the case of a DAGD = (Q,Σ, δ, q0, F) as
input, there are two slight modifications, the ini-
tial call is changed by the conjunctive callpred-
icate(S, 〈q0..f1〉) ∨ . . .∨ predicate(S, 〈q0..f|F |〉)
with fi ∈ F 8 and the terminal symbola can be in-
stantiated by the range〈pa..qa〉D only if (pa, a, qa)

7Note that such an instantiated clause could be
unreachable from the (future) instantiated start symbol which
will be the axiom of the shared forest considered as a CFG.

8Technically, each of these calls produces a forest. These
individual forests may share subparts but their roots are all
different. In order to have a true forest, we introduce a
new root, thesuper-rootwhose daughters are the individual
forests.

258

anbncn
〈1..4〉

anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉

a∗bncn
〈1..4〉

a∗bncn(X〈1..4〉) → bncn
〈1..4〉

anbnc∗〈1..4〉

anbnc∗(X〈1..4〉) → anbn
〈1..4〉

bncn
〈1..4〉

bncn(b〈1..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

anbn
〈1..4〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..4〉) → anbn
〈2..2〉

bncn
〈3..3〉

bncn(ε〈3..3〉) → ε

anbn
〈2..2〉

anbn(ε〈2..2〉) → ε

Figure 2: Parse forest for the input DAGab|bc.

is a transition inδ. The variable symbolX can
be instantiated by the range〈pX ..qX〉D only if
〈pX ..qX〉D is valid.

3.3 Forest Filtering

We assume here that for a given PRCGG we
have built the parse forest of an input DAGD as
explained above and that each instantiated clause
of that forest contains the range〈pX ..qX〉D of
each of its instantiated symbolsX. We have seen
in Example 1 that this parse forest is valid ifG is
linear but may well be unvalid ifG is non-linear.
In that latter case, this happens because the range
〈pX ..qX〉D of each instantiation of the non-linear
variableX selects the whole sub-DAGD〈pX ..qX〉
while each instantiation should only select a sub-
language ofL(D〈pX ..qX〉). For each occurrence of
X in the LHS or RHS of a non-linear clause, its
sub-languages could of course be different from
the others. In fact, we are interested in their
intersections: If their intersections are non empty,
this is the language which will be associated with
〈pX ..qX〉D, otherwise, if their intersections are
empty, then the instantiation of the considered
clause fails and must thus be removed from the
forest. Of course, we will consider that the
language (a finite number of strings) associated
with each occurrence of each instantiated symbol
is represented by a DAG.

The idea of the forest filtering algorithm
is to first compute the DAGs associated with
each argument of each instantiated predicate
during a bottom-up walk. These DAGs are
calleddecorations. This processing will perform
DAG compositions (including intersections, as
suggested above), and will erase clauses in which
empty intersections occur. If the DAG associated
with the single argument of the super-root is
empty, then parsing failed.

Otherwise, a top-down walk is launched
(see below), which may also erase non-valid
instantiated clauses. If necessary, the algorithm
is completed by a classical CFG algorithm which
erase non productive and unreachable symbols
leaving areducedgrammar/forest.

In order to simplify our presentation we will
assume that the PRCGs are non-combinatorial
and bottom-up non-erasing. However, we
can note that the following algorithm can be
generalized in order to handle combinatorial
PRCGs and in particular with overlapping
arguments.9 Moreover, we will assume that the
forest is non cyclic (or equivalently that all cycles
have previously been removed).10

9For example the non-linear combinatorial clause
A(XY Z) → B(XY) B(Y Z) has overlapping arguments.

10By a classical algorithm from the CFG technology.

259

3.3.1 The Bottom-Up Walk

For this principle algorithm, we assume that for
each instantiated clause in the forest, a DAG
will be associated with each occurrence of each
instantiated symbol. More precisely, for a given
instantiatedA0-clause, the DAGs associated with
the RHS symbol occurrences are composed (see
below) to build up DAGs which will be associated
with each argument of its LHS predicate. For each
LHS argument, this composition is directed by the
sequence of symbols in the argument itself.

The forest is walked bottom-up starting from its
leaves. The constraint being that an instantiated
clause is visited if and only if all its RHS
instantiated predicates have already all been
visited (computed). This constraint can be
satisfied for any non-cyclic forest.

To be more precise, consider an instantiation
cρ = A0(~ρ0) → A1(~ρ1) . . . Ap(~ρp) of the clause
c = A0(~α0) → A1(~α1) . . . Am(~αm), we perform
the following sequence:

1. If the clause is not top-down linear (i.e.,
there exist multiple occurrences of the same
variables in its RHS arguments), for such
variable X let the range〈pX ..qX〉 be its
instantiation (by definition, all occurrences
are instantiated by the same range), we
perform the intersection of the DAGs
associated with each instantiated predicate
argumentX. If one intersection results in
an empty DAG, the instantiated clause is
removed from the forest. Otherwise, we
perform the following steps.

2. If a RHS variableY is linear, it occurs once in
thejth argument of predicateAi. We perform
a brand new copy of the DAG associated with
thejth argument of the instantiation ofAi.

3. At that moment, all instantiated variables
which occur incρ are associated with a DAG.
For each occurrence of a terminal symbolt
in the LHS arguments we associate a (new)
DAG whose only transition is(p, t, q) where
p andq are brand new states with, of course,
p < q.

4. Here, all symbols (terminals or variables) are
associated with disjoints DAGs. For each
LHS argument ~α0[i] = Xi

1 . . . Xi
j . . . Xi

pi
,

we associate a new DAG which is the

concatenation of the DAGs associated with
the symbolsXi

1, . . . ,Xi
j , . . . andXi

pi
.

5. Here each LHS argument ofcρ is associated
with a non empty DAG, we then report
the individual contribution ofcρ into the
(already computed) DAGs associated with
the arguments of its LHSA0(~ρ0). The DAG
associated with theith argument ofA0(~ρ0) is
the union (or a copy if it is the first time) of its
previous DAG value with the DAG associated
with theith argument of the LHS ofcρ.

This bottom-up walk ends on the super-root with a
final decoration sayR. In fact, during this bottom-
up walk, we have computed the intersection of the
languages defined by the input DAG and by the
PRCG (i.e., we haveL(R) = L(D) ∩ L(G)).

Example 2.

1 2 3 4
a

b

b c

b

Figure 3: Input DAG associated withabc|ab|bc.

With the PRCG of Example 1 and the input
DAG of Figure 3, we get the parse forest of
Figure 4 whose transitions are decorated by the
DAGs computed by the bottom-up algorithm.11

The crucial point to note here is the intersection
which
is performed between{abc, bc} and {abc, ab} on

anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉 . The

non-empty set{abc} is the final result assigned to
the instantiated start symbol. Since this result is
non empty, it shows that the input DAGD is rec-
ognized byG. More precisely, this shows that the
sub-language ofD which is recognized byG is
{abc}.

However, as shown in the previous example, the
(undecorated) parse forest is not the forest built
for the DAGL(D) ∩ L(G) since it may contain
non-valid parts (e.g., the transitions labelled{bc}
or {ab} in our example). In order to get the

11For readability reasons these DAGs are represented by
their languages (i.e., set of strings). Bottom-up transitions
from instantiated clauses to instantiated predicates reflects
the computations performed by that instantiated clause
while bottom-up transitions from instantiated predicatesto
instantiated clauses are the union of the DAGs entering that
instantiated predicate.

260

anbncn
〈1..4〉

anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉

a∗bncn
〈1..4〉

a∗bncn(X〈1..4〉) → bncn
〈1..4〉

a∗bncn(a〈1..2〉 X〈2..4〉) → a∗bncn
〈2..4〉

anbnc∗〈1..4〉

anbnc∗(X〈1..4〉) → anbn
〈1..4〉

anbnc∗(X〈1..3〉 c〈3..4〉) → anbnc∗〈1..3〉

bncn
〈1..4〉

bncn(b〈2..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

a∗bncn
〈2..4〉

a∗bncn(X〈2..4〉) → bncn
〈2..4〉

anbn
〈1..4〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..4〉) → anbn
〈2..2〉

anbnc∗〈1..3〉

anbnc∗(X〈1..3〉) → anbn
〈1..3〉

bncn
〈3..3〉

bncn(ε〈3..3〉) → ε

bncn
〈2..4〉

bncn(b〈2..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

anbn
〈2..2〉

anbn(ε〈2..2〉) → ε

anbn
〈1..3〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..3〉) → anbn
〈2..2〉

{abc}

{abc, bc} {abc, ab}

{bc}

{abc}

{ab}

{abc}

{bc} {abc} {ab} {abc}

{bc} {bc} {ab} {ab}

{ε}

{bc}

{ε}

{ab}

{ε}

{bc}

{ε}

{ab}

{ε} {ε}

Figure 4: Bottom-up decorated parse forest for the input DAGabc|ab|bc.

261

right forest (i.e., to get a PRCG parser — not
a recognizer — which accepts a DAG as input)
we need to perform another walk on the previous
decorated forest.

3.3.2 The Top-Down Walk

The idea of the top-down walk on the parse
forest decorated by the bottom-up walk is to
(re)compute all the previous decorations starting
from the bottom-up decoration associated with
the instantiated start predicate. It is to be noted
that (the language defined by) each top-down
decoration is a subset of its bottom-up counterpart.
However, when a top-down decoration becomes
empty, the corresponding subtree must be erased
from the forest. If the bottom-up walk succeeds,
we are sure that the top-down walk will not
result in an empty forest. Moreover, if we
perform a new bottom-up walk on this reduced
forest, the new bottom-up decorations will denote
the same language as their top-down decorations
counterpart.

The forest is walked top-down starting from
the super-root. The constraint being that an
instantiatedA(~ρ)-clause is visited if and only if all
the occurrences ofA(~ρ) occurring in the RHS of
instantiated clauses have all already been visited.
This constraint can be satisfied for any non-cyclic
forest.

Initially, we assume that each argument of each
instantiated predicate has an empty decoration,
except for the argument of the super-root which is
decorated by the DAGR computed by the bottom-
up pass.

Now, assume that a top-down decoration has
been (fully) computed for each argument of
the instantiated predicateA0(~ρ0). For each
instantiated clause of the formcρ = A0(~ρ0) →
A1(~ρ1) . . . Ai(~ρi) . . . Am(~ρm), we perform the
following sequence:12

1. We perform the intersection of the top-down
decoration of each argument ofA0(~ρ0) with
the decoration computed by the bottom-up
pass for the same argument of the LHS
predicate ofcρ. If the result is empty,cρ is
erased from the forest.

2. For each LHS argument, the previous results
are dispatched over the symbols of this

12The decoration of each argument ofAi(~ρi) is either
initially empty or has already been partially computed.

argument.13 Thus, each instantiated LHS
symbol occurrence is decorated by its own
DAG. If the considered clause has several
occurrences of the same variable in the LHS
arguments (i.e., is bottom-up non-linear),
we perform the intersection of these DAGs
in order to leave a single decoration per
instantiated variable. If an intersection results
in an empty DAG, the current clause is erased
from the forest.

3. The LHS instantiated variable decorations
are propagated to the RHS arguments. This
propagation may result in DAG concatena-
tions when a RHS argument is made up of
several variables (i.e., is combinatorial).

4. At last, we associate to each argument
of Ai(~ρi) a new decoration which is
computed as the union of its previous top-
down decoration with the decoration just
computed.

Example 3. When we apply the previous al-
gorithm to the bottom-up parse forest of Exam-
ple 2, we get the top-down parse forest of Fig-
ure 5. In this parse forest, erased parts are
laid out in light gray. The more noticable points
w.r.t. the bottom-up forest are the decorations be-

tween anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉

and its RHS predicates a∗bncn
〈1..4〉 and

anbnc∗〈1..4〉 which are changed both to{abc}

instead of{abc, bc} and {abc, ab}. These two
changes induce the indicated erasings.

13Assume that~ρ0[k] = 〈p..q〉D, that the decoration DAG
associated with thekth argument ofA0(~ρ0) is D′

〈p..q〉 =

(Q′
〈p..q〉, Σ〈p..q〉, δ

′
〈p..q〉, p

′, F ′
〈p..q〉) (we haveL(D′

〈p..q〉) ⊆
L(D〈p..q〉)) and that~α0[k] = α1

kXα2
k and that〈i..j〉D is the

instantiation of the symbolX in cρ. Our goal is to extract
from D′

〈p..q〉 the decoration DAGD′
〈i..j〉 associated with

that instantiated occurrence ofX. This computation can be
helped if we maintain, associated with each decoration DAG
a function, sayd, which maps each state of the decoration
DAG to a set of states (bounds) of the input DAGD. If, as we
have assumed,D is minimal, each set of states is a singleton,
we can writed(p′) = p, d(f ′) = q for all f ′ ∈ F ′

〈p..q〉
and more generallyd(i′) ∈ Q if i′ ∈ Q′. Let I ′ = {i′ |
i′ ∈ Q′

〈p..q〉 ∧ d(i′) = i} andJ ′ = {j′ | j′ ∈ Q′
〈p..q〉 ∧

d(j′) = j}. The decoration DAGD′
〈i..j〉 is such that

L(D′
〈i..j〉) =

S
i′∈I′,j′∈J′{x | x is a path fromi′ to j′}.

Of course, together with the construction ofD′
〈i..j〉, its

associated functiond must also be built.

262

anbncn
〈1..4〉

anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉

a∗bncn
〈1..4〉

a∗bncn(X〈1..4〉) → bncn
〈1..4〉

a∗bncn(a〈1..2〉 X〈2..4〉) → a∗bncn
〈2..4〉

anbnc∗〈1..4〉

anbnc∗(X〈1..4〉) → anbn
〈1..4〉

anbnc∗(X〈1..3〉 c〈3..4〉) → anbnc∗〈1..3〉

bncn
〈1..4〉

bncn(b〈2..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

a∗bncn
〈2..4〉

a∗bncn(X〈2..4〉) → bncn
〈2..4〉

anbn
〈1..4〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..4〉) → anbn
〈2..2〉

anbnc∗〈1..3〉

anbnc∗(X〈1..3〉) → anbn
〈1..3〉

bncn
〈3..3〉

bncn(ε〈3..3〉) → ε

bncn
〈2..4〉

bncn(b〈2..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

anbn
〈2..2〉

anbn(ε〈2..2〉) → ε

anbn
〈1..3〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..3〉) → anbn
〈2..2〉

{abc}

{abc} {abc}

∅

{abc}

∅

{abc}

∅ {abc} ∅ {abc}

∅ {bc} ∅ {ab}

∅

{bc}

∅

{ab}

{ε}

{bc}

{ε}

{ab}

{ε} {ε}

Figure 5: Top-down decorated parse forest for the input DAGabc|ab|bc.

263

3.4 Time and Space Complexities

In this Section we study the time and size
complexities of the forest filtering algorithm.

Let us consider the sub-DAGD〈p..q〉 of the
minimal input DAG D and consider any (finite)
regular languageL ⊆ L(D〈p..q〉), and letDL be
the minimal DAG s.t.L(DL) = L. We show, on
an example, that|DL|may be an exponential w.r.t.
|D〈p..q〉|.

Consider, for a givenh > 0, the language
(a|b)h. We know that this language can be
represented by the minimal DAG withh+1 states
of Figure 6.

Assume that h = 2k and consider the
sub-language L2k of (a|b)2k (nested well-
parenthesized strings) which is defined by

1. L2 = {aa, bb} ;

2. k > 1, L2k = {axa, bxb | x ∈ L2k−2},

It is not difficult to see that the DAG in Figure 7
definesL2k and is minimal, but its size2k+2 − 2
is an exponential in the size2k + 1 of the minimal
DAG for the language(a|b)2k.

This results shows that, there exist cases in
which some minimal DAGsD′ that define sub-
languages of minimal DAGsD may have a
exponential size (i.e.,|D′| = O(2|D|). In other
words, when, during the bottom-up or top-down
walk, we compute union of DAGs, we may fall
on these pathologic DAGs that will induce a
combinatorial explosion in both time and space.

3.5 Implementation Issues

Of course, many improvements may be brought
to the previous principle algorithms in practical
implementations. Let us cite two of them. First it
is possible to restrict the number of DAG copies:
a DAG copy is not useful if it is the last reference
to that DAG.

We shall here devel the second point on a little
more: if an argument of a predicate is never
used in ant non-linearity, it is only a waste of
time to compute its decoration. We say thatAk,
the kth argument of the predicateA is a non-
linear predicate argumentif there exists a clause
c in which A occurs in the RHS and whose
kth argument has at least one common variable
another argumentBh of some predicateB of
the RHS (if B = A, then of coursek and h
must be different). It is clear thatBh is then

non-linear as well. It is not difficult to see that
decorations needs only to be computed if they are
associated with a non-linear predicate argument. It
is possible to compute those non-linear predicate
arguments statically (when building the parser)
when the PRCG is defined within a single module.
However, if the PRCG is given in several modules,
this full static computation is no longer possible.
The non-linear predicate arguments must thus
be identified at parse time, when the whole
grammar is available. This rather trivial algorithm
will not be described here, but it should be
noted that it is worth doing since in practice it
prevents decoration computations which can take
an exponential time.

4 Conclusion

In this paper we have shown how PRCGs can
handle DAGs as an input. If we consider the linear
PRCG, the one equivalent to LCFRS, the parsing
time remains polynomial. Moreover, input DAGs
necessitate only rather cosmetic modifications in
the standard parser.

In the non-linear case, the standard parser may
produce illegal parses in its output shared parse
forest. It may even produce a (non-empty) shared
parse forest though no sentences of the input DAG
are in the language defined by our non-linear
PRCG. We have proposed a method which uses
the (slightly modified) standard parser but prunes,
within extra passes, its output forest and leaves all
and only valid parses. During these extra bottom-
up and top-down walks, this pruning involves
the computation of finite languages by means of
concatenation, union and intersection operations.
The sentences of these finite languages are always
substrings of the words of the input DAGD.
We choose to represent these intermediate finite
languages by DAGs instead of sets of strings
because the size of a DAG is, at worst, of the same
order as the size of a set of strings but it could, in
some cases, be exponentially smaller.

However, the time taken by this extra pruning
pass cannot be guaranteed to be polynomial,
as expected from previously known complexity
results (Bertsch and Nederhof, 2001). We have
shown an example in which pruning takes an
exponential time and space in the size ofD. The
deep reason comes from the fact that ifL is a
finite (regular) language defined by some minimal
DAG D, there are cases where a sub-language of

264

0 1 2 h− 1 h

a

b

a

b

a

b

Figure 6: Input DAG associated with the language(a|b)h, h > 0.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.

.

.

.

.

.

.

.

.

.

.

.

2k+2 − 4

2k+2 − 3

2k+2 − 2

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Figure 7: DAG associated with the language of nested well-parenthesized strings of length2k.

L may require to be defined by a DAG whose size
is an exponential in the size ofD. Of course this
combinatorial explosion is not a fatality, and we
may wonder whether, in the particular case of NLP
it will practically occur?

References

Franois Barthélemy, Pierre Boullier, Philippe De-
schamp, and́Eric de la Clergerie. 2001. Guided
parsing of range concatenation languages. InPro-
ceedings of the 39th Annual Meeting of the Associ-
ation for Comput. Linguist. (ACL’01), pages 42–49,
University of Toulouse, France.

Eberhard Bertsch and Mark-Jan Nederhof. 2001. On
the complexity of some extensions of rcg parsing. In
Proceedings of IWPT’01, Beijing, China.

Pierre Boullier, 2004. New Developments in Pars-
ing Technology, volume 23 of Text, Speech and
Language Technology, chapter Range Concatena-
tion Grammars, pages 269–289. Kluwer Academic
Publishers, H. Bunt, J. Carroll, and G. Satta edition.

Jeffrey D. Hopcroft and John E. Ullman. 1979.
Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Mass.

Bernard Lang. 1994. Recognition can be harder than
parsing. Computational Intelligence, 10(4):486–
494.

K. Vijay-Shanker, David Weir, and Aravind K.
Joshi. 1987. Characterizing structural descriptions
produced by various grammatical formalisms. In
Proceedings of the 25th Meeting of the Association
for Comput. Linguist. (ACL’87), pages 104–111,
Stanford University, CA.

265

Author Index

Benedı́, José-Miguel, 222
Bengoetxea, Kepa, 142
Bharati, Akshar, 77
Bod, Rens, 238
Bonfante, Guillaume, 242
Boullier, Pierre, 117, 254
Bryl, Anton, 146

Candito, Marie, 138, 150
Chan, Kwok Ping, 234
Chowdhury, Md. Faisal Mahbub, 226
Clark, Stephen, 162
Crabbé, Benoı̂t, 138, 150

Deoskar, Tejaswini, 214

Elhadad, Michael, 129

Foster, Jennifer, 176
Foth, Kilian A., 99

Ganslandt, Sebastian, 37
Geertzen, Jeroen, 218
Gildea, Daniel, 89
Gojenola, Koldo, 142
Goldberg, Yoav, 129
Gordon, Andrew S., 192
Graham, Yvette, 146
Guillaume, Bruno, 242

Hale, John, 230
Hall, Johan, 49, 73
Hara, Tadayoshi, 180
Husain, Samar, 77

Jiang, Wenbin, 25
Jörwall, Jakob, 37

Kallmeyer, Laura, 61, 69
Kawahara, Daisuke, 108
Khmylko, Lidia, 99
Kordoni, Valia, 226
Kuhlmann, Marco, 73
Kuhn, Jonas, 206
Kurohashi, Sadao, 108

Le Roux, Joseph, 65
Liu, Qun, 25
Löwe, Welf, 49

Maier, Wolfgang, 61, 69
Maletti, Andreas, 1
Matsuzaki, Takuya, 210
Menzel, Wolfgang, 99
Misra, Dipti, 77
Miyao, Yusuke, 180
Morey, Mathieu, 242

Nasr, Alexis, 117
Nederhof, Mark-Jan, 13
Nilsson, Jens, 49
Nivre, Joakim, 29, 49, 73
Nugues, Pierre, 37

Post, Matt, 89
Prost, Jean-Philippe, 172

Rehbein, Ines, 134
Rooth, Mats, 214

Saers, Markus, 29
Sagae, Kenji, 81, 192
Sagot, Benoı̂t, 117, 254
Sánchez, Joan-Andreu, 222
Sánchez-Sáez, Ricardo, 222
Sangal, Rajeev, 77
Sangati, Federico, 238
Satta, Giorgio, 1, 69
Seddah, Djamé, 150
Søgaard, Anders, 33, 206
Sima’an, Khalil, 214

Tsujii, Jun’ichi, 85, 180, 210

Uematsu, Sumire, 85

Van Genabith, Josef, 146
Vergne, Jacques, 202
Versley, Yannick, 134

Wagner, Joachim, 176
Wu, Dekai, 29, 33

267

Zhang, Lidan, 234
Zhang, Yao-zhong, 210
Zhang, Yi, 226
Zhang, Yue, 162
Zuidema, Willem, 238

	Conference Program
	Invited Talks
	Parsing Algorithms based on Tree Automata
	Weighted parsing of trees
	Automatic Adaptation of Annotation Standards for Dependency Parsing ? Using Projected Treebank as Source Corpus
	Learning Stochastic Bracketing Inversion Transduction Grammars with a Cubic Time Biparsing Algorithm
	Empirical lower bounds on translation unit error rate for the full class of inversion transduction grammars
	Predictive Text Entry using Syntax and Semantics
	Parsing Formal Languages using Natural Language Parsing Techniques
	An Incremental Earley Parser for Simple Range Concatenation Grammar
	Deductive Parsing in Interaction Grammars
	Synchronous Rewriting in Treebanks
	An Improved Oracle for Dependency Parsing with Online Reordering
	Two stage constraint based hybrid approach to free word order language dependency parsing
	Analysis of Discourse Structure with Syntactic Dependencies and Data-Driven Shift-Reduce Parsing
	Evaluating Contribution of Deep Syntactic Information to Shallow Semantic Analysis
	Weight Pushing and Binarization for Fixed-Grammar Parsing
	Co-Parsing with Competitive Models
	Capturing Consistency between Intra-clause and Inter-clause Relations in Knowledge-rich Dependency and Case Structure Analysis
	Constructing parse forests that include exactly the n-best PCFG trees
	Hebrew Dependency Parsing: Initial Results
	Scalable Discriminative Parsing for German
	Improving generative statistical parsing with semi-supervised word clustering
	Application of feature propagation to dependency parsing
	Guessing the Grammatical Function of a Non-Root F-Structure in LFG
	Cross parser evaluation : a French Treebanks study
	Transition-Based Parsing of the Chinese Treebank using a Global Discriminative Model
	Grammar Error Detection with Best Approximated Parse
	The effect of correcting grammatical errors on parse probabilities
	Effective Analysis of Causes and Inter-dependencies of Parsing Errors
	Clustering Words by Syntactic Similarity improves Dependency Parsing of Predicate-argument Structures
	The chunk as the period of the functions length and frequency of words on the syntagmatic axis
	Using a maximum entropy-based tagger to improve a very fast vine parser
	HPSG Supertagging: A Sequence Labeling View
	Smoothing fine-grained PCFG lexicons
	Wide-coverage parsing of speech transcripts
	Interactive Predictive Parsing
	Using Treebanking Discriminants as Parse Disambiguation Features
	Heuristic search in a cognitive model of human parsing
	Dependency Parsing with Energy-based Reinforcement Learning
	A generative re-ranking model for dependency parsing
	Dependency Constraints for Lexical Disambiguation
	Parsing Directed Acyclic Graphs with Range Concatenation Grammars

