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Abstract

Zero-shot text classification typically relies on
prompt engineering, but the inherent prompt
brittleness of large language models under-
mines its reliability. Minor changes in prompt
can cause significant discrepancies in model
performance. We attribute this prompt brit-
tleness largely to the narrow focus on next-
token probabilities in existing methods. To
address this, we propose Placeholding Parallel
Prediction (P3 ), a novel approach that pre-
dicts token probabilities across multiple posi-
tions and simulates comprehensive sampling of
generation paths in a single run of a language
model. Experiments show improved accuracy
and up to 98% reduction in the standard devia-
tion across prompts, boosting robustness. Even
without a prompt, P3 maintains comparable
performance, reducing the need for prompt en-
gineering.

1 Introduction

Zero-shot text classification (Radford et al., 2019;
Hu et al., 2021; Wei et al., 2022; Wang et al., 2023b;
Liu et al., 2023; Yang et al., 2023) is among the
most challenging applications of pre-trained large
language models (LLMs) (Brown et al., 2020; Tou-
vron et al., 2023; Anthropic, 2024), as it aims to cat-
egorize text without additional data. In this context,
prompt engineering has become a widely adopted
approach to enhance accuracy. However, language
models exhibit inherent prompt brittleness (Sclar
et al., 2023; Zamfirescu-Pereira et al., 2023; Zhou
et al., 2024a): their outputs are highly sensitive to
minor modifications in prompt wording or format
(as shown in Figure 1), leading to inconsistent per-
formance. This issue makes crafting effective and
reliable prompts difficult, particularly in zero-shot
scenarios where prior information is lacking.

While some efforts have attempted to mitigate
this issue through training (Tam et al., 2021), gen-
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Figure 1: An example of prompt brittleness. The prompt
“It is a _” yields a notably high score for “tree”, while “It
is an _” overwhelmingly favors “insect”. The percentage
scores are normalized for an arbitrary text unrelated to
any class T = “knows grammar.”

eral methods for the inference stage are rare. Cali-
bration (Zhao et al., 2021) is one of the few, but its
primary benefit lies in enhancing accuracy rather
than robustness, leaving the severe prompt brittle-
ness problem not sufficiently resolved.

In this paper, we present a new perspective.
We observe that current methods predominantly
rely on next-token prediction (Bengio et al., 2000;
Sutskever et al., 2014) to classify. We posit that this
sole reliance on the next token may contribute
to prompt brittleness, based on the following in-
tuitions: (1) Since the next token directly follows
the input, it would be inevitably impacted by the
prompt, whereas later tokens are likely less sensi-
tive1; (2) Language models may not immediately
provide the answer as the next token. Instead, they
often first generate non-discriminative words such
as “so”, “a”, or “very”, or engage in preliminary
reasoning2, which could hurt next-token perfor-
mance for certain prompts.

1The Markov assumption implies that nearby words (or
the preceding n-gram) have a stronger influence on predic-
tions (Shannon, 1948, 1951; Brown et al., 1992; Almutiri and
Nadeem, 2022).

2Some examples are in appendix A.1.
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Figure 2: Accuracies of plausible prompts using tokens at the first three positions. Each row corresponds to a
position: the • green dots represent the next token (the 0th position), and the • blue and • red dots represent the 1st
and 2nd tokens. Each dot denotes a prompt, and its horizontal coordinate indicates its performance.

Our experiments support our hypothesis. As il-
lustrated in Figure 2, the accuracies across different
prompts based on next-token prediction (•, green
dots) are highly dispersed. In contrast, the accura-
cies for later tokens (••, blue and red dots) are more
tightly clustered together and demonstrate better
overall performance. This suggests that subsequent
token predictions are more robust to prompt vari-
ations and have the potential to improve perfor-
mance.

However, to unlock the potential of subsequent
token predictions, we must address a key challenge:
current auto-regressive language models predict
only the next token3.

A naive solution is a token-by-token generation
strategy, but it explores only a single generation
path. Consequently, this strategy introduces error
propagation, controllability issues, dependency on
decoding algorithms, and randomness in generation
path selection, all of which can hurt robustness4.
In zero-shot natural language generation (NLG)
tasks, a popular method to enhance this strategy
is to sample multiple alternative generation paths
and ensemble the results (Wang et al., 2023b; Lin
et al., 2024; Zhang et al., 2024). Although ex-
tensive sampling could theoretically outperform
next-token predictions in zero-shot classification5,
the computation of repeatedly generating numer-

3An exception exists: one language model introduced by
Gloeckle et al. can predict up to four tokens, but is still
insufficient for our needs (more than ten tokens). Therefore,
this model is not included in our study.

4In practice, generation-based strategies typically under-
perform next-token prediction in classification tasks (Puri and
Catanzaro, 2019; Wei et al., 2021).

5If all possible generation paths were enumerated, token
probabilities for all positions could be calculated, encompass-
ing and exceeding the capabilities of next-token prediction.

ous tokens many times is overly costly. Thus, the
inefficiency stemming from token-by-token gen-
eration and path dependency limits our ability to
leverage subsequent-token predictions to overcome
prompt brittleness.

Figure 3: Next-Token Prediction versus Placeholding
Parallel Prediction. Our proposed P3 obtains multiple
token predictions in a single language model run.

To address this, we propose Placeholding Paral-
lel Prediction (P3 ), a novel and pluggable method.
P3 appends placeholder tokens at the end of the
input sequence to simulate comprehensive sam-
pling of generation paths, thereby enabling mul-
tiple token predictions simultaneously within one
model run. P3 introduces subsequent token pre-
dictions into zero-shot classification with high ef-
ficiency and without being affected by generation
path dependency. This offers an effective solution
to prompt brittleness. Through extensive exper-
iments on seven public benchmarks, we demon-
strate thatP3 significantly alleviates prompt brittle-
ness and surpasses SoTA accuracy. Notably, with
P3 , performance without any prompt instructions
matches that with crafted prompts, significantly
reducing the need for prompt engineering.
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Our contributions are as follows:

• We propose a new perspective: the narrow
focus on next-token prediction may be a key
contributor to prompt brittleness in zero-shot
classification.

• We introduce P3 , the first method to obtain
multiple subsequent token predictions for text
classification within a single language model
run. Our code is open-sourced.

• Extensive experiments demonstrate that P3

significantly reduces prompt brittleness and
outperforms SoTA accuracy. Notably, we
find that even without any prompt, the per-
formance is comparable to that with crafted
prompts, greatly reducing the reliance on
prompt engineering.

2 Related Work

2.1 Prompt Brittleness

Prompt brittleness has emerged as a significant
challenge in zero-shot classification (Krause et al.,
2020; Schick and Schütze, 2021). This brittleness
refers to the sensitivity of model performance to the
specific wording and structure of prompts, where
minor changes can lead to significant variations
in output quality (Zhou et al., 2024b). Training-
based solutions to address prompt brittleness often
rely on labeled or unlabeled data. For instance,
Logan IV et al. (2022) introduced strategies for
simplifying prompt engineering through finetun-
ing, but their methods require datasets for parame-
ter optimization. Similarly, Wang et al. (2023a,c)
leveraged contrastive self-training, which involves
iterative pseudo-labeling using generated data, but
this also depends on large amounts of unlabeled
data to work. Such methods are therefore impracti-
cal for zero-shot learning.

Consequently, few attempts have focused on mit-
igating prompt brittleness directly during the infer-
ence phase, where the model operates without any
further adjustments. Calibration methods (Zhao
et al., 2021) represent one of the few efforts in
this area. Zhao et al. propose calibration strate-
gies to normalize model outputs based on contex-
tual priors, improving consistency across different
prompts without requiring external data. Another
line of research aims to bypass prompt brittleness
by automatically generating task-specific prompts
(Pryzant et al., 2023; Gao et al., 2021; Holtzman

et al., 2021; Jiang et al., 2020). Rather than funda-
mentally addressing the brittleness problem, these
approaches serve as workarounds, sacrificing inter-
pretability and cross-task consistency.

2.2 Zero shot Text Classification

Since class labels typically possess clear semantics,
we can leverage the capabilities of language models
for zero-shot classification (Radford et al., 2021;
Zhou et al., 2023b).

Zero-shot text classification (Puri and Catanzaro,
2019; Brown et al., 2020; Liu et al., 2023) has
evolved from earlier approaches like embedding-
based semantic matching and natural language in-
ference (NLI). Embedding-based methods (Cer
et al., 2018; Reimers and Gurevych, 2019) suf-
fer from semantic ambiguity, as inputs with subtle
differences can receive similar embeddings. NLI-
based methods (Bowman et al., 2015; Ma et al.,
2021; Zhu et al., 2024) decompose a multi-class
problem into binary tasks, but this often results
in poor calibration across binary classifiers, with
inconsistent performance between classes.

Recent methods focus on next-token prediction
and generation-based techniques. In next-token
prediction, the model assigns a score based on
the generation probability of a class label token
(Zhao et al., 2021). Although efficient, this method
considers only a single token, limiting its capacity
(Feng et al., 2024). Generation-based methods, on
the other hand, prompt the model to generate text
and analyze label presence (Radford et al., 2019;
Brown et al., 2020; Wang et al., 2023b). While
these approaches can capture richer semantics, they
are constrained to one generation path at a time
and face controllability issues (Krause et al., 2020;
Ouyang et al., 2022).

Although these recent approaches address some
shortcomings of earlier methods, they remain in-
complete, as one focuses narrowly on a single to-
ken and the other only explores one possible output
path. This leaves room for improvements in achiev-
ing more comprehensive classification strategies.

3 Methodology

3.1 Background

Text classification seeks to assign the correct label
c⋆ to a given text t, with C = {c1, c2, . . . , ck} rep-
resenting the predefined set of candidate categories.
Current approaches to zero-shot text classification
rely on the assumption that the correct class label
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c⋆ or its corresponding tokens will exhibit higher
generation probabilities under the language model
than incorrect ones:

P (c⋆ | t) > P (c′ | t), ∀c′ ∈ C, c′ ̸= c⋆.

A language model LM predicts the generation
probability of the next token given an input se-
quence x. Specifically,

LM(x)xn = P (xn | (x0, x1, . . . , xn−1)),

where the input x is constructed by integrating the
given text t into a prompt template p(·):

x = (x0, x1, . . . , xn−1) = p(t).

The most commonly used approach is based
on next token prediction, which assumes that the
class probability P (c | t) is approximated by the
language model’s next token probability:

P (c | t) ≈ LM(x)xn=c.

Therefore, the class label is predicted by:

ĉ← argmax
c∈C
LM(x)xn=c.

An alternative approach based on generation
leverages the continuation capability of language
models to generate an output sequence:

x
LM−−→ ˆ(xn, xn+1, . . . , xn+m−1).

The class label is then directly determined by which
one appears in the generated sequence:

ĉ← {x̂n, x̂n+1, . . . , x̂n+m−1} ∩ C.

However, both methods remain incomplete:
next-token prediction focuses on a single token
position, while generation-based methods consider
only one instance among many possible generation
paths, limiting their robustness.

3.2 Placeholding Skipping Prediction (PSP)

Let the i-th output token be xn+i (where the next
token is the 0-th token). All possible generation
prefixes can be expressed as:

{(xn, xn+1, . . . , xn+i−1) | xj ∈ V, n ≤ j < n+ i} ,

where V denotes the vocabulary, and x represents
the known input.

The probability of each prefix is:

P (xn, xn+1, . . . , xn+i−1 | x) .

Given this prefix, the probability of xn+i = c is:

P (xn+i = c | x, xn+1, . . . , xn+i−1) .

Thus, the probability of the entire generation
path is:
P (xn, xn+1, . . . , xn+i = c | x)

= P (xn, xn+1, . . . , xn+i−1 | x)
× P (xn+i = c | x, xn+1, . . . , xn+i−1) .

Next, by enumerating all possible prefixes, the
overall probability for xn+i = c becomes:

P (xn+i = c | x)
=

∑

(xn,...,xn+i−1)
∈Vi

P (xn, xn+1, . . . , xn+i−1 | x)

× P (xn+i = c | x, xn, xn+1, . . . , xn+i−1) .

This is equivalent to:

P (xn+i = c | x)

= P


xn+i = c

∣∣∣∣∣∣
x, xn, xn+1, . . . , xn+i−1︸ ︷︷ ︸

unknown


 .

We approximate this as:

P (xn+i = c | x)

≈ P


xn+i = c

∣∣∣∣∣∣
x, <ph>, <ph>, . . . , <ph>︸ ︷︷ ︸

i times


 .

This can be rewritten using the language model
as:

P (xn+i = c | x)

≈ LM


x, <ph>, <ph>, . . . , <ph>︸ ︷︷ ︸

i times




xn+i=c

.

As shown in Figure 4(b), we append i place-
holder tokens, <ph>6, to the input sequence x

6In LLaMA2, we selected the unknown token <unk> as
the placeholder <ph>. This token originally signifies "un-
known", representing out-of-vocabulary (OOV) tokens, such
as unrecognized language or unreadable characters, which can
somewhat convey the intended meaning. Additionally, <unk>
offers two key advantages: (1) it has length, and (2) it carries
no semantic meaning.
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and feed this extended sequence into the language
model. This allows us to obtain the prediction for
the i-th subsequent token, formally expressed as:

PSP(x, i) = LM(x′),

where:

x′ = (x0, x1, . . . , xn−1, <ph>, <ph>, . . . , <ph>︸ ︷︷ ︸
i times

).

We refer to this approximation of the i-th token
prediction as Placeholding Skipping Prediction
(PSP).

3.3 Placeholding Parallel Prediction (P3 )
In practical implementation, LLMs employ a trans-
former architecture with blocks stacked in both
depth and sequence length, maintaining width-
aligned input and output. Transformers with uni-
directional attention produce an output for each
prefix of the input sequence x during inference:

transformer(x) =




LM(∅),

LM(x0),

LM(x0, x1),

. . . ,

LM(x0, x1, . . . , xn−1)




.

Figure 4: (a) Next-Token Prediction. (b) Placeholding
Skipping Prediction (PSP). (c) Placeholding Parallel
Prediction (P3 ). The small green rectangles indicate
the output tokens to be used, and the grey ones indicate
those not to be used. <ph> represents a placeholder
token.

This property supports tasks such as comput-
ing text likelihood and parallel training. As de-
picted in Figure 4(a), current classification methods
merely use the next-token prediction, LM(x) =
LM(x0, x1, . . . , xn−1), the last element of the
transformer output.

Appending a series of <ph> tokens (subject to
memory constraints) to the input sequence enables
the transformer to compute all prefixes automati-
cally:

transformer(x′)

=




LM(∅),

LM(x0),

LM(x0, x1),

. . . ,

LM(x0, x1, . . . , xn−1),

LM(x0, x1, . . . , xn−1, <ph>),

LM(x0, x1, . . . , xn−1, <ph>, <ph>),

. . .




,

where:

x′ = (x0, x1, . . . , xn−1, <ph>, <ph>, . . .).

As illustrated in Figure 4(c), extracting our desired
elements, which correspond to the next-token and
all subsequent tokens, we define:

P3 (x) =




LM(x0, x1, . . . , xn−1),

LM(x0, x1, . . . , xn−1, <ph>),

LM(x0, x1, . . . , xn−1, <ph>, <ph>),

. . .




=




LM(x),

PSP(x, 1),
PSP(x, 2),
. . .


 =




PSP(x, 0),
PSP(x, 1),
PSP(x, 2),
. . .


 .

By leveraging the transformer’s inherent capabil-
ity to handle multiple token predictions7 in a single
run, this approach significantly enhances efficiency.
We term this method P3 .

4 Experiment

4.1 Datasets, Models, and Prompts
We conducted extensive experiments on two large
language models and seven publicly available

7Note that our multi-token prediction does not generate a
specific sequence of tokens; rather, it produces a probability
distribution over the vocabulary for each token position.
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Dataset Gen 3w-SC NTP Cali1 Cali2 Cali3 Ours

IMDb
13B

acc (%)
– –

68.11 79.36 77.92 75.08 82.35 +14.24
std 0.1003 0.0899 0.0907 0.0962 0.0020 -98.05%

70B
acc (%) 47.92 53.13 61.60 71.23 71.82 68.99 75.86 +14.26

std 0.2053 0.3291 0.0729 0.0798 0.0749 0.0834 0.0721 -7.92%

AGnews
13B

acc (%)
– –

55.75 60.40 61.70 61.15 80.51 +24.76
std 0.1267 0.1361 0.1106 0.1053 0.0068 -94.64%

70B
acc (%) 58.59 50.88 48.24 49.37 50.38 49.62 80.14 +31.90

std 0.1180 0.3016 0.1544 0.1546 0.1398 0.1450 0.0329 -78.71%

DBpedia
13B

acc (%)
– –

64.39 56.52 61.91 60.04 64.47 +0.08
std 0.0965 0.2223 0.0922 0.0948 0.0052 -94.64%

70B
acc (%) 66.41 56.35 70.03 67.11 67.23 65.74 72.98 +2.95

std 0.0438 0.3288 0.0744 0.0694 0.0822 0.0865 0.0469 -36.92%

Amazon
13B

acc (%)
– –

65.35 77.37 78.03 78.62 81.62 +16.27
std 0.0986 0.1086 0.0886 0.0839 0.0065 -93.45%

70B
acc (%) 49.22 53.32 61.14 60.50 61.02 61.41 78.72 +17.58

std 0.1413 0.3315 0.0466 0.0766 0.0699 0.0772 0.0644 +38.39%

ISEAR
13B

acc (%)
– –

36.79 27.48 41.07 37.73 41.61 +4.82
std 0.0935 0.1771 0.0712 0.0960 0.0182 -80.51%

70B
acc (%) 24.09 25.88 36.90 40.59 33.30 37.17 43.22 +6.32

std 0.0208 0.1500 0.0935 0.0835 0.0716 0.0875 0.0653 -30.18%

SST-2
13B

acc (%)
– –

63.21 73.15 69.52 67.60 80.14 +16.92
std 0.0997 0.1145 0.0995 0.1131 0.0178 -82.17%

70B
acc (%) 43.49 47.85 57.30 66.64 66.98 60.57 71.07 +13.77

std 0.2419 0.3224 0.0612 0.1041 0.1007 0.0994 0.0843 +37.65%

Yahoo
13B

acc (%)
– –

41.90 34.94 45.12 45.48 50.50 +8.59
std 0.0967 0.1918 0.0797 0.0781 0.0073 -92.43%

70B
acc (%) 36.98 31.93 37.74 38.85 40.30 39.07 50.74 +13.00

std 0.0516 0.1931 0.1210 0.0980 0.1006 0.0844 0.0544 -55.03%

Avg
13B

acc (%)
– –

56.50 58.46 62.18 60.81 68.74 +12.24
std 0.1017 0.1486 0.0904 0.0953 0.0091 -91.05%

70B
acc (%) 46.67 45.62 53.28 56.33 55.78 54.65 67.53 +14.25

std 0.1175 0.2795 0.0899 0.0951 0.0914 0.0948 0.0600 -33.26%

Table 1: Results of accuracy and cross-prompt standard deviation (i.e., prompt brittleness) for each dataset. Gen
refers to a vanilla generative method, and 3w-SC denotes three-way self-consistency. NTP represents the vanilla
next-token prediction method, which serves as our baseline. Cali1, Cali2, and Cali3 correspond to calibration
methods using "N/A," an empty string, and "<unk>*5" as the calibration text, respectively. Avg represents the
average across datasets. For further details on hyperparameter settings, see appendix A.3. As shown, our method
significantly improves stability while achieving the highest accuracy.

datasets, using over 30 plausible prompts for each
dataset.

We employed seven publicly available text classi-
fication datasets: Amazon Review Polarity (Zhang
et al., 2015a), SST2 (Socher et al., 2013), and
IMDb (Maas et al., 2011) for sentiment classifi-

cation (binary labels: positive/negative) of product
and movie reviews; AGnews (Zhang et al., 2015b)
and DBpedia (Bizer et al., 2009) for topic classifi-
cation (four and fourteen categories, respectively)
of news articles and Wikipedia content; Yahoo An-
swers (Zhang et al., 2015b) comprises questions
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and answers classified into ten categories. ISEAR
(Scherer and Wallbott, 1994) consists of sentences
labeled with seven emotions for emotion classifi-
cation. To save time, we selected 10,000 random
instances from the IMDb, Amazon, DBpedia, and
Yahoo datasets for LLaMA2-70b, and from the
Amazon dataset for LLaMA2-13b.

The two models are LLaMA2-13b, with 13
billion parameters for efficient NLP tasks, and
LLaMA2-70b, with 70 billion parameters for more
complex tasks and broader context handling (Tou-
vron et al., 2023).

We employed a method similar to that of Gonen
et al. (2022) to generate prompts, using ChatGPT-
4 (OpenAI et al., 2024) to expand a set of seed
prompts. A comprehensive list of all prompts used
in our experiments is provided in the appendix A.9.

4.2 Comparison Methods
Our baseline method employs the straightforward
next-token prediction for classification. Addition-
ally, we implemented a calibration method (Zhao
et al., 2021) to compare its performance with sub-
sequent tokens. The calibration method adjusts the
conditional generation probability (classification
scores) of the next-token under different prompts
by introducing meaningless text inputs and per-
forming a single additional run of the model. This
approach achieves state-of-the-art performance in
zero-shot classification without requiring any man-
ually collected external information, knowledge,
or unlabeled data resources, thereby ensuring in-
terpretability. The calibration method’s enhance-
ments to zero-shot classification focus on two crit-
ical aspects: average accuracy and stability, both
of which are pivotal to our evaluation criteria. We
used three different meaningless strings for calibra-
tion to ensure a comprehensive comparison. We
also evaluated 256 samples per dataset using gen-
erative methods and three-way self-consistency to
demonstrate our efficiency.

4.3 Experimental Details
We conducted the experiments on two A6000
GPUs.

In our experiments, for each data sample and
prompt combination, we appended 512 additional
<ph> tokens8 to examine the effectiveness of our
method across a broad range. To demonstrate that
our approach is not reliant on this specific number,

8The use of so many <ph> tokens was initially intended to
ensure redundancy but turned out to be unnecessary.

we introduced the hyperparameter η to control the
range of tokens considered dynamically. Small η
values focus on tokens close to the next position,
while large η values consider tokens far down the
sequence. Specifically, when η = 0, the method is
equivalent to next-token prediction.

The two models exhibit behavior differences9,
prompting us to adapt our method accordingly. For
LLaMA2-13B, classification is based on the proba-
bility distribution of the token located at a position
proportional to the number of input tokens, deter-
mined by a slope of tan(η). We set η as the angle
and map it into the tangent space for smoother tran-
sitions and scaling. For LLaMA2-70b, we define
[0, η) as a fixed range to vote and apply calibration
to enhance the results.

5 Results Analysis

5.1 Overview

Aggregating results across seven datasets reveals
that our P3 method substantially improves effi-
ciency, robustness, and accuracy.

Dataset Number of Runs

Gen 3w-SC NTP P3

Amazon 30.75 92.26 1 1
IMDb 28.03 84.09 1 1
AGnews 46.98 140.94 1 1
DBpedia 36.09 108.27 1 1
Yahoo 34.52 103.55 1 1
SST-2 25.80 77.39 1 1
ISEAR 26.86 80.58 1 1

Table 2: The average number of output tokens used to
reach an answer (number of model runs). For outputs
exceeding 50 tokens without matching any of the op-
tions, the sequence is truncated at 50. Gen denotes the
vanilla generative approach, 3w-SC denotes 3-way self-
consistency, NTP denotes next-token prediction, and
P3 is ours.

Efficiency: Unlike generative approaches that
require sequential token-by-token predictions
through multiple model runs, P3 obtains multi-
ple token predictions simultaneously in a single
run. As evidenced in Table 2, P3 achieves time
complexity on par with direct next-token predic-
tion, ensuring high efficiency. As a trade-off for

9We discuss the findings of behavioral differences between
the two models in appendix A.5, but since they are orthogonal
to this study, we do not elaborate on them here.
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Figure 5: Average accuracy and average cross-prompt standard deviation (i.e., prompt brittleness) across seven
datasets of P3 . The horizontal axis represents the hyperparameter η, where η = 0 corresponds to the next-token
prediction results, and larger η values indicate consideration of more distant token positions. η > 0 shows higher
accuracy and lower standard deviation compared to next-token prediction.

multiple token prediction, P3 consumes slightly
more floating-point operations (FLOP) compared
to next-token prediction, as shown in Table 3.

Dataset 13B 70B

NTP P3 NTP P3

Amazon 2.82 3.05 14.26 14.91
IMDb 8.31 9.03 41.91 42.56
AGnews 1.62 1.75 8.20 8.85
DBpedia 2.16 2.33 10.94 11.59
Yahoo 3.67 3.98 18.56 19.21
SST-2 0.67 0.71 3.38 4.02
ISEAR 0.70 0.75 3.57 4.22

Table 3: Average numbers of FLOPs for next-token
prediction (NTP) and P3 on different datasets for 13B
and 70B models, all reported in Tflops, with η = 5. See
appendix A.6 for the estimation method and FLOPs for
different numbers of <ph> tokens.

Robustness and Accuracy: P3 significantly
reduces prompt brittleness and achieves better per-
formance.

Figure 5 illustrates that applying a unified hyper-
parameter η to all datasets, P3 consistently out-
performs next-token prediction (η = 0) in over-
all accuracy and robustness within a broad range
(0 < η < 60). Notably, the average cross-prompt
standard deviation (i.e., prompt brittleness) reaches
its minimum around η = 5 and stabilizes afterward,
with accuracy peaking around the same point. This
behavior implies that η ≈ 5 can serve as a nice
practical default setting when without task-specific
prior knowledge.

Our method adapts effectively to diverse specific

scenarios, and the results for individual datasets are
presented in Table 1. P3 achieves high accuracy
and robustness on the evaluated datasets, outper-
forming baseline and state-of-the-art approaches.
Especially on LLaMA2-13b, our method achieved
over 80% reduction in standard deviation on every
dataset, with an average reduction of 91%. For AG-
News, the LLaMA2-13b and LLaMA2-70b models
achieved 25% and 32% increases in accuracy, along
with 94% and 79% reductions in standard devia-
tion, respectively. On IMDb, the LLaMA2-13B
model not only improved accuracy by 14% but also
yielded a standard deviation of only 0.002 (with
a decrease over 98%), almost eliminating prompt
brittleness.

5.2 Performance without Prompt

Dataset 13B 70B

Crafted NoP Crafted NoP

IMDb 82.34 82.51 75.82 77.33
AGnews 80.52 80.26 80.15 79.85
Yahoo 50.47 51.06 50.84 48.04
Amazon 81.61 81.78 79.66 80.60
SST-2 80.13 80.45 71.23 65.28
DBpedia 64.50 63.52 72.98 72.96
ISEAR 41.61 41.66 43.23 42.66

Table 4: The average accuracy comparison between null
prompts (i.e., using no prompt) and crafted prompts.
Crafted represents crafted prompts, and NoP indicates
using no prompt.

Given the significant reduction in standard de-
viation, the differences between various prompts
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have been largely minimized, making the choice of
a specific prompt less critical. As shown in Table 4,
using a null prompt (i.e., without any prompt) for
zero-shot classification yields performance compa-
rable to that of crafted prompts. This demonstrates
thatP3 effectively mitigates prompt brittleness and
substantially reduces the reliance on prompt engi-
neering.

6 Disscusion

What is the motivation of prompt engineering?
The need for prompt engineering arises from the
prompt brittleness (or cross-prompt instability), as
not all prompts yield the same accuracy. Prompt en-
gineering would become unnecessary if all prompts
achieve consistent accuracy. Addressing the issue
of prompt brittleness would save significant costs
associated with prompt engineering, making it a
worthwhile research topic.
Is prompt engineering necessary in zero-shot
classification? We leverage the explicit seman-
tic information contained within the classification
labels to perform zero-shot classification. We as-
sign a sample to the label with which it has the
highest semantic alignment. We use the token gen-
eration probability as classification scores in zero-
shot classification. This approach assumes that if
the context is closely related to the semantics of
a certain class label, tokens associated with that
class will exhibit a higher co-occurrence proba-
bility compared to tokens related to other classes.
The purpose of adding a prompt is to guide the
model to generate class-related tokens as the next
token. These class-related tokens may not neces-
sarily appear at the next position but could emerge
later in the text. The misalignment between the
classification task and NLG, leading to the out-of-
distribution (OOD) problem, undermines zero-shot
performance by causing LLMs to generate non-
discriminative words before the relevant class la-
bels. Some studies, like Gonen et al. (2022) and
Zhou et al. (2023a), alleviate the OOD issue by
calculating prompt perplexity, but we address the
core principle directly. Once subsequent tokens
are predicted, the prompt’s influence reduces. Log-
ically, the text and the categories should suffice
for classification. However, next-token predictions
are often unstable, with accuracy fluctuations ex-
ceeding 10%, leading to the introduction of prompt
engineering. Subsequent token predictions are sig-
nificantly more stable and do not require such ad-

justments. As analyzed in Section 5.2, our P3

method allows for good classification scores with-
out the need for a prompt.
Why are zero-shot classification capabilities not
commonly used as an evaluation metric for large
language models? Theoretically, zero-shot clas-
sification is an excellent, fair, and direct evalua-
tion metric. However, the accuracy of next-token
zero-shot classification is heavily influenced by the
quality of the prompt. This reliance on prompt se-
lection makes zero-shot classification a less reliable
metric. Conversely, using the accuracy distribution
of subsequent tokens obtained by our proposed P3 ,
which is much more stable and less affected by the
prompt, provides a fairer and more reliable evalua-
tion metric.

7 Conclusion

Prompt brittleness is a critical challenge in zero-
shot classification, undermining the reliability and
consistency of language model outputs. In this
work, we proposed P3 , a novel method that intro-
duces subsequent token predictions within a single
model run to address this issue. Our extensive ex-
periments across seven public benchmarks demon-
strated that P3 significantly mitigates prompt brit-
tleness while achieving accuracy beyond the SoTA.
Notably, P3 performs equally well with or without
prompts, greatly reducing the reliance on prompt
engineering. These findings highlight P3 ’s po-
tential as an effective solution for robust zero-shot
classification, making classification more efficient
and reliable.

8 Limitation

In the paper, we discussed using existing tokens
as placeholders <ph>. Training soft tokens as
placeholders may be another solution. For auto-
regressive language models, this approach involves
training a soft token embedding of the ideal <ph>
with a corpus. The formal expression of this to-
ken’s properties is:

LM(x⊕ <ph>)y =
∑

v∈V
LM(x)v · LM(x⊕ v)y

where ⊕ denotes the concatenation of sequences.
Future work will focus on the behavior of tokens

generated by our P3 method across different types
of models and languages. Additionally, we plan to
train a language model inherently equipped with
<ph> tokens.
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A Appendix

A.1 LM Output Examples
Some examples of the language model’s greedy
output are in Table 5. As shown, the generation of
language models does not ensure that the next token
will produce the discriminative words necessary for
classification.

Input: My ACL paper is accepted. It is _
Output: a very good paper.

Input: My legs are broken. I am _
Output: in a lot of pain.

Input: I had my first job this year. It is _
Output: a part-time job at a local restaurant.

I am a waitress.
I like my job very much.

Table 5: Greedy output examples from LLaMa2-13B.
Blue text indicates non-discriminative expressions and
red text indicates discriminative words for target cate-
gories {positive, negative}.

A.2 Zero-Shot Classification: Worth Studying
Zero-shot text classification remains a crucial re-
search area, even as few-shot learning gains at-
tention. Few-shot learning cannot fully replace
zero-shot approaches, as it still relies on labeled
data, which is not always feasible in many practical
scenarios.

Broader Applicability and Fewer Constraints:
Zero-shot learning is more aligned with real-world
needs, especially when users cannot provide la-
beled examples, or when constructing even a sin-
gle example for complex inputs is impractical. In

contrast, few-shot learning assumes a shared distri-
bution between provided and test examples, which
is not always guaranteed.

Core Foundation for Research: Zero-shot
learning serves as a more fundamental base for
research, offering cleaner results without complex-
ities like sample selection or ordering seen in few-
shot studies, which can obscure core contributions.

Greater challenge and a benchmark for intrin-
sic model capabilities: Zero-shot classification di-
rectly tests the inherent capabilities of language
models, free from the influence of examples. Our
P3 method further enhances the reliability of zero-
shot evaluations by mitigating prompt instability,
making it a more stable and valuable metric.

A.3 Selected η

The hyperparameter η selections are in Table 6.

Dataset 13B 70B

IMDb 37 42
AGnews 59 497
Amazon 4 17
DBpedia 62 4
ISEAR 8 5
SST-2 6 7
Yahoo 65 4

Table 6: Hyperparameter settings for different datasets
and models.

A.4 Dataset Size
The size of datasets we used in the paper is shown
in Table 7.

IMDb 25000
AGnews 7600
Amazon 400000
DBpedia 70000
ISEAR 7666
SST-2 1821
Yahoo 60000

Table 7: The size of datasets.

A.5 Behavior Differences of Language Models
Although, as discussed in Section 5.1, the use of
the P3 method consistently yields benefits, the
classification performance of tokens at different
positions varies. In this regard, the 13B and 70B
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Figure 6: abcdefg: Accuracy heatmaps for each dataset on 13b. In each subplot, the x-axis represents the text
length lt (number of tokens in the text), and the y-axis represents the position of the token used for classification (0
represents the next-token). h shows the average accuracy of the IMDb dataset at different slopes k (with intercept
b = −10).

models exhibit different behaviors. Specifically, the
performance of the 13B model is not only position-
dependent but also influenced by the number of
input tokens, whereas the 70B model does not ex-
hibit this phenomenon.

As shown in Figure 6, the distribution of well-
performing (or poorly-performing) tokens in the
13B model follows a radial pattern, proportional to
the number of input tokens. In contrast, the perfor-
mance of tokens in the 70B model depends solely
on their position and is independent of the input
token length (exhibits vertical striping patterns).

In this paper, we treated it as an observed fact
and leveraged it as a characteristic of language
models. However, the exact underlying cause of
this difference is challenging to determine due to
the lack of transparency in LLaMA2’s training de-
tails. We hypothesize that this distinction might
arise from differences in the training process:

Stable positions in 70b: If the model underwent
direct instruction-tuning or RLHF (Reinforcement

Learning with Human Feedback) without distilla-
tion, the potential well-performing token positions
would likely remain stable. This is because, for
most classification tasks, answer lengths are con-
sistent regardless of input variation.

Length-dependent positions in 13b: If the model
underwent distillation from a larger model during
instruction-tuning or RLHF, it might have inherited
reasoning behaviors linked to input length, caus-
ing the observed correlation between input length
and potential well-performing token positions. We
would like to interpret this result as a possible con-
sequence of discrepancies in training processes and
parameter scales. While we have not confirmed this
hypothesis, we believe deeper exploration could
lead to a more rigorous explanation. Since this
behavior difference does not impact our primary
claims regarding the mitigation of prompt brittle-
ness, we treated it as an existing fact in our experi-
ments.

The two models exhibit behavior differences,
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prompting us to adapt our method accordingly. For
LLaMA2-13b, we observed a radial pattern in its
plot, prompting us to set η as the angle and use
a line with slope tan(η) as our final result. For
LLaMA2-70b, with a stable separability plot in-
dependent of input length, we define [0, η) as a
fixed range for voting and applying calibration to
enhance the results.

Furthermore, we found that using the votes of
all 513 tokens obtained via P3 method as pseudo-
labels also produces patterns similar to those of the
true labels. However, we did not pursue further
investigation into this matter.

Figure 7: Consistency plot with pseudo-labels, where
the pseudo-labels are determined by the voting results
of 513 tokens.

A.6 FLOPs Estimation for Transformer
Models

To estimate the FLOPs for the forward pass of a
Transformer model, we consider the main compu-
tational components: attention and feed-forward
networks (FFN).

For the attention mechanism, the input matri-
ces Q, K, and V (with dimensions (B, s, h)) go

through linear transformations to produce Wq, Wk,
and Wv:

QKV transformation FLOPs = 6Bsh2

Next, the attention matrix is computed by multi-
plying the query matrix Q with the transposed key
matrix KT , resulting in a matrix of size (s, s):

Attention matrix computation FLOPs = 2Bs2h

Then, the attention values are computed by multi-
plying the attention matrix with the value matrix
V :

Attention over values FLOPs = 2Bs2h

Finally, a linear projection is applied to the result-
ing matrix:

Post-attention linear projection FLOPs = 2Bsh2

For the FFN, where the input dimension h is trans-
formed to 4h and then back to h, the FLOPs for
this part are:

FFN FLOPs = 16Bsh2

The language model head performs a linear trans-
formation from the hidden size h to the vocabulary
size V , resulting in the following FLOPs:

LM head FLOPs = 2BshV

The total FLOPs per layer, considering attention
and FFN, is the sum of the components above:

FLOPs per layer = 24Bsh2 + 4Bs2h

Including the language model head, the total
FLOPs per step for the forward pass in a model
with l layers is:

Total FLOPs per step = l
(
24Bsh2 + 4Bs2h

)

+ 2BshV

Based on the formula, we also computed the case
using the selected ηs (Table 8), as well as the case
where all 512 placeholder tokens were used in our
experiments (Table 9).

As can be seen, the overall computational cost
is proportional to the number of tokens, indicat-
ing that our method does not impose a significant
overhead.
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Dataset 13B 70B

NTP P3 NTP P3

Amazon 2.82 3.00 14.26 16.47
IMDb 8.31 14.73 41.91 47.41
AGnews 1.62 4.31 8.20 73.32
DBpedia 2.16 6.24 10.94 11.46
Yahoo 3.67 11.78 18.56 19.08
SST-2 0.67 0.72 3.38 4.28
ISEAR 0.70 0.79 3.57 4.22

Table 8: Total Tflops calculation for the selected η.

Dataset 13B 70B

NTP P3 NTP P3

Amazon 2.82 16.17 14.26 81.48
IMDb 8.31 21.84 41.91 109.69
AGnews 1.62 14.94 8.20 75.30
DBpedia 2.16 15.50 10.94 78.09
Yahoo 3.67 17.06 18.56 85.87
SST-2 0.67 13.96 3.38 70.37
ISEAR 0.70 13.99 3.57 70.57

Table 9: Total Tflops calculation for use of all 512
placeholder tokens in the experiment.

A.7 About Multi-Token Class Names

A common challenge in zero-shot classification,
particularly when dealing with class names that
span multiple tokens, is how to calculate the class
score from the prediction of a single token. This
issue arises due to the way current language models
generate and calibrate token probabilities.

In typical zero-shot approaches based on token
generation probabilities, directly multiplying prob-
abilities for individual tokens within a sequence
often fails to yield reliable classification scores.
This problem is particularly pronounced when class
descriptions consist of multiple tokens. Some stud-
ies address this challenge by integrating external
resources, such as knowledge bases or validation
datasets, which can help identify relevant tokens or
synonyms associated with each class. For example,
one common method is to sum the probabilities of
all relevant tokens (e.g., "good" and "positive") to
compute a cumulative score. However, such meth-
ods often require extensive preprocessing, which
can limit their applicability in more dynamic or
real-time scenarios.

In this work, we focus on exploring the robust-
ness of subsequent token predictions. To ensure

consistency with previous research and simplify
the setup, we adopted the widely used practice of
mapping each class to a single token (e.g., "good"
for the positive class and "bad" for the negative
class), as seen in standard datasets.

An interesting aspect of our P3 method, how-
ever, is its ability to naturally handle multi-token
class names. By aggregating probabilities across
subsequent tokens, P3 can provide a more coher-
ent approach to multi-token class labels. Rather
than relying on the prediction of a single token, P3

aggregates predictions across tokens, enabling it to
better align with natural language. For instance, in
cases where tokens like "ppi" or "ness" are unlikely
to appear in the immediate context, P3 can still
effectively aggregate across related tokens, such as
"good" and "positive," to compute a more accurate
class score.

This approach presents an important advantage
over traditional methods, offering a more scalable
and flexible framework for zero-shot classification
tasks, particularly in scenarios involving complex
or multi-token class names.

A.8 Position Plot

Figure 8: Accuracy and cross-prompt standard deviation
for each dataset using predicted tokens at fixed positions
on 13b. The x-axis shows token position. Dots indicate
average accuracy and shaded areas represent standard
deviation.

A.9 Prompts used in the experiment.
To evaluate the effectiveness and robustness of our
Placeholding Parallel Prediction method, we con-
duct extensive experiments on seven datasets with
various kinds of prompts, including empty prompts.
The specific prompt settings for different datasets
are shown in Table 10-16.
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ID Template

1 title\ntext\nMy feedback to it is
2 title\ntext\nOverall, my feedback to it is
3 title\ntext\nAfter considering all aspects, my feedback to it is
4 title\ntext\nAfter considering all aspects, my viewpoint is
5 title\ntext\nReflecting on the above, my viewpoint is
6 title\ntext\nOverall, my perspective on it is
7 title\ntext\nOverall, my takeaway is
8 title\ntext\nIn summary, I would say
9 title\ntext\nConsidering the details provided, my emotional reaction is

10 title\ntext\nTaking into account the experience shared, my viewpoint is
11 title\ntext\nReflecting on the content, my emotional stance is
12 title\ntext\nGiven the information above, my perspective on it is
13 title\ntext\nAnalyzing the feedback, my emotional assessment is
14 title\ntext\nBased on the review, my overall sentiment impression is
15 title\ntext\nWeighing up the insights, my sentiment conclusion is
16 title\ntext\nAfter thoroughly considering the review, my sentiment perspective is
17 Text: title text\nSentiment:
18 Text: title text\nSentiment Analysis: The overall sentiment is
19 title\ntext\nAll in all, it was
20 title\ntext\nIn summary, it was
21 title\ntext\nIn essence, it was
22 title\ntext\nIn conclusion, it was
23 title\ntext\nTo sum up, it’s
24 title\ntext All in all
25 title\ntext Just
26 title\ntext It was
27 title\ntext It is
28 title\ntext That is
29 title\ntext That’s
30 title\ntext But it is
31 title\ntext

Table 10: Prompt list for Amazon Review Polarity dataset.

7109



ID Template

1 [text] My feedback to the film is
2 [text] Overall, my feedback to the film is
3 [text] After considering all aspects, my feedback to the film is
4 [text] After considering all aspects, my viewpoint is
5 [text] Reflecting on the above, my viewpoint is
6 [text] Overall, my perspective on the film is
7 [text] Overall, my takeaway is
8 [text] In summary, I would say
9 [text] I think it is

10 [text] Overall, I think it is
11 [text] Considering everything, my feedback is
12 [text] Considering everything, I think it is
13 [text] After thinking about it, my feedback is
14 [text] Overall, I see it as
15 [text] Taking all factors into account, my assessment of it is
16 [text] Considering the details provided, my emotional reaction is
17 [text] Taking into account the experience shared, my sentiment is
18 [text] Reflecting on the content, my emotional stance is
19 [text] Given the information above, my sentiment evaluation is
20 [text] Analyzing the feedback, my emotional assessment is
21 [text] Based on the review, my overall sentiment impression is
22 [text] Weighing up the insights, my sentiment conclusion is
23 [text] After thoroughly considering the review, my sentiment perspective is
24 Text: [text] Sentiment:
25 Text: [text] Sentiment Analysis: The overall sentiment is
26 [text] All in all, the film was
27 [text] In summary, the film was
28 [text] In essence, the film was
29 [text] In conclusion, the film was
30 [text] To sum up, the film was
31 [text] All in all
32 [text] Just
33 [text] It was
34 [text] It is
35 [text] That is
36 [text] That’s
37 [text] But it is
38 [text]

Table 11: Prompt list for IMDb dataset.
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ID Template

1 [text] My feedback to the film is
2 [text] Overall, my feedback to the film is
3 [text] After considering all aspects, my feedback to the film is
4 [text] After considering all aspects, my viewpoint is
5 [text] Reflecting on the above, my viewpoint is
6 [text] Overall, my perspective on the film is
7 [text] Overall, my takeaway is
8 [text] In summary, I would say
9 [text] I think it is

10 [text] Overall, I think it is
11 [text] Considering everything, my feedback is
12 [text] Considering everything, I think it is
13 [text] After thinking about it, my feedback is
14 [text] Overall, I see it as
15 [text] Taking all factors into account, my assessment of it is
16 [text] Considering the details provided, my emotional reaction is
17 [text] Taking into account the experience shared, my sentiment is
18 [text] Reflecting on the content, my emotional stance is
19 [text] Given the information above, my sentiment evaluation is
20 [text] Analyzing the feedback, my emotional assessment is
21 [text] Based on the review, my overall sentiment impression is
22 [text] Weighing up the insights, my sentiment conclusion is
23 [text] After thoroughly considering the review, my sentiment perspective is
24 Text: [text] Sentiment:
25 Text: [text] Sentiment Analysis: The overall sentiment is
26 [text] All in all, the film was
27 [text] In summary, the film was
28 [text] In essence, the film was
29 [text] In conclusion, the film was
30 [text] To sum up, the film was
31 [text] All in all
32 [text] Just
33 [text] It was
34 [text] It is
35 [text] That is
36 [text] That’s
37 [text] But it is
38 [text]

Table 12: Prompt list for SST-2 dataset.
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ID Template

1 [title] [text] This topic is about
2 [title] [text] The label that best describes this news article is
3 [title] [text] This piece of news is regarding
4 [title] [text] The news article is about
5 [title] [text] Central themes of this news piece encompass
6 [title] [text] The central theme of this article revolves around
7 [title] [text] It can be labeled as
8 [title] [text] Its category is
9 [title] [text] In this article, it talks about

10 [title] [text] The content is a kind of
11 [title] [text] I think the news can be classified as
12 [title] [text] I would classify it as
13 [title] [text] Based on the description, its category is
14 [title] [text] In this context, the content falls into the category of
15 Text: [title] [text] Category:
16 Text: [title] [text] Topic Classification: The overall topic is
17 [title] [text] All in all, it was
18 [title] [text] In summary, it was
19 [title] [text] In essence, it was
20 [title] [text] In conclusion, it was
21 [title] [text] To sum up, it’s
22 [title] [text] All in all
23 [title] [text] Just
24 [title] [text] It was
25 [title] [text] It is
26 [title] [text] That is
27 [title] [text] That’s
28 [title] [text] But it is
29 [title] [text]

Table 13: Prompt list for AGnews dataset.
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ID Template

1 [title] [text] The category of [title] is
2 [title] [text] The label that best describes [title] is
3 [title] [text] So, [title] is
4 [title] [text] In this sentence, [title] is
5 [title] [text] [title] is a kind of
6 [title] [text] [title] can be classified as
7 [title] [text] [title] is an example of
8 [title] [text] [title] belongs to
9 [title] [text] I think [title] is

10 [title] [text] I would classify [title] as
11 [title] [text] Based on the description, its category is
12 [title] [text] In this context, [title] falls into the category of
13 Text: [title] [text] Category:
14 Text: [title] [text] Topic Classification: The overall topic is
15 [title] [text] All in all, it is
16 [title] [text] In summary, it is
17 [title] [text] In essence, it is
18 [title] [text] In conclusion, it is
19 [title] [text] To sum up, it’s
20 [title] [text] All in all
21 [title] [text] Just
22 [title] [text] It was
23 [title] [text] It is
24 [title] [text] That is
25 [title] [text] That’s
26 [title] [text] But it is
27 [title] [text]

Table 14: Prompt list for DBpedia dataset.
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ID. Template

1 [title] [text] This topic is about
2 [title] [text] The label that best describes this question is
3 [title] [text] This issue is regarding
4 [title] [text] This discussion is about
5 [title] [text] This discussion is regarding
6 [title] [text] This issue is about
7 [title] [text] The label that best describes this issue is
8 [title] [text] I would classify this question as
9 [title] [text] It can be labeled as

10 [title] [text] Overall, The most fitting category for this issue is
11 [title] [text] The content is associated with
12 [title] [text] I think it belongs to
13 [title] [text] I would classify it as
14 [title] [text] This issue falls into the category of
15 Text: [title] [text] Category:
16 Text: [title] [text] Topic Classification: The overall topic is
17 [title] [text] All in all, it was
18 [title] [text] In summary, it was
19 [title] [text] In essence, it was
20 [title] [text] In conclusion, it was
21 [title] [text] To sum up, it’s
22 [title] [text] All in all
23 [title] [text] Just
24 [title] [text] It was
25 [title] [text] It is
26 [title] [text] That is
27 [title] [text] That’s
28 [title] [text] But it is
29 [title] [text]

Table 15: Prompt list for Yahoo dataset.
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ID Template

1 [text] In summary, I would say
2 [text] I think it is
3 [text] Overall, I think it is
4 [text] Considering everything, I think it is
5 [text] Overall, I see it as
6 [text] In summary, I would say
7 [text] I feel
8 [text] Overall, I feel
9 [text] Overall, my feeling towards it is

10 [text] This text expresses
11 [text] It is a feeling of
12 [text] The sentiment is
13 [text] It is
14 [text] This conveys a sense of
15 [text] I am
16 [text] The overall impression is
17 [text] From my perspective, it is
18 [text] In my view, the feeling is
19 [text] This passage makes me feel
20 [text] It seems to evoke a feeling of
21 [text] This text primarily conveys
22 [text] From this, I sense an emotion of
23 [text] It can be interpreted as expressing
24 [text] The underlying emotion seems to be
25 [text] This narrative elicits
26 [text] Feeling-wise, this comes across as
27 [text] This evokes
28 [text] The emotional tone here is
29 [text] This story is imbued with
30 [text] One could interpret this as
31 [text] This text leaves the impression of
32 Text: [text] Emotion:
33 Text: [text] Emotion Recognition: The overall emotion is
34 [text] All in all, it was
35 [text] In summary, it was
36 [text] In essence, it was
37 [text] In conclusion, it was
38 [text] To sum up, it was
39 [text] All in all
40 [text] Just
41 [text] It was
42 [text] It is
43 [text] That is
44 [text] That’s
45 [text] But it is
46 [text]

Table 16: Prompt list for ISEAR dataset.
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