Temporal-Aware Soft Prompt Tuning for Automatic Text Dating

Hai Wang, Yuzhi Liang, Han Ren


Abstract
This paper presents Temporal-aware Soft Prompt Tuning (TASPT), a novel approach for automatic text dating. Unlike existing methods, which often overlook the evolution of word meanings in texts spanning long periods, TASPT incorporates the unique characteristics of historical texts. It introduces a temporal-aware text representation that dynamically captures both semantic variance and invariance. This representation is combined with a soft prompt, enabling efficient parameter tuning for automatic text dating. Experiments show that TASPT outperforms all existing methods on two diachronic datasets: the Twenty-Four Histories and the Royal Society Corpus.
Anthology ID:
2025.naacl-long.200
Volume:
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Month:
April
Year:
2025
Address:
Albuquerque, New Mexico
Editors:
Luis Chiruzzo, Alan Ritter, Lu Wang
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
3975–3987
Language:
URL:
https://preview.aclanthology.org/Author-Pages-WenzhengZhang-ZhengyanShi-ShuYang/2025.naacl-long.200/
DOI:
10.18653/v1/2025.naacl-long.200
Bibkey:
Cite (ACL):
Hai Wang, Yuzhi Liang, and Han Ren. 2025. Temporal-Aware Soft Prompt Tuning for Automatic Text Dating. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 3975–3987, Albuquerque, New Mexico. Association for Computational Linguistics.
Cite (Informal):
Temporal-Aware Soft Prompt Tuning for Automatic Text Dating (Wang et al., NAACL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/Author-Pages-WenzhengZhang-ZhengyanShi-ShuYang/2025.naacl-long.200.pdf