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Abstract

Given a query table, how can we effectively
discover multi-key joinable tables on the web?
Searching and discovering such joinable tables
is critical to data analysts and data scientists for
reporting, establishing correlations and training
machine learning models. Existing joinable ta-
ble search methods have mostly focused on sin-
gle key (unary) joins, where a single column is
the join key. However, these methods are inef-
fective when dealing with join keys composed
of multiple columns (n-ary joins), which are
prevalent on web table corpora. In this paper,
we introduce POLYJOIN, which finds multi-key
semantically-joinable tables on the web, given
a query table. POLYJOIN employs a multi-key
encoder and a novel self-supervised training
method to generate the representations of mul-
tiple join keys, preserving the alignment across
multiple columns. POLYJOIN outperforms the
state-of-the-art methods by 2.89% and 3.67%
with respect to MAP@30 and R@30 on two
real-world benchmarks, respectively.

1 Introduction

Tabular data is one of the most ubiquitous data
formats in data lakes. The ability to combine multi-
ple tabular datasets enables users to gain insights,
identify correlations, and detect patterns that may
not be evident when examining individual tabular
datasets in isolation (Brickley et al., 2019; Jin et al.,
2022; Schlichtkrull et al., 2021). The first step to-
wards combining datasets in a data lake is joinable
table search (Zhu et al., 2019). Given a table as a
query, the objective of joinable table search is to
find all tables in a data lake that can be joined with
the query table. Joinable table search improves
data accessibility and understanding across mul-
tiple sources, benefiting tabular data-driven NLP
downstream tasks, such as table question answering
(Nan et al., 2022; Pal et al., 2023), table fact verifi-

*Work done during an internship at Amazon Web Services.

Figure 1: Joinable table search on Open Data.

cation (Zhang et al., 2020; Chen et al., 2019) and
table information extraction (Wang et al., 2021a).

In Figure 1, the two tables at the top can be
joined in two ways: 1) using a single key join
between the unary key “Country” and “CNTY”
columns in the same figure, or 2) using a multi-key
join between the n-ary keys (“Country”, “City”)
and (“CNTY”, “CY”) columns. Note that the data in-
stance “United States” and “USA” cannot form
an exact join result due to a string mismatch. How-
ever, they are semantically equivalent and could be
joined with a semantic join.

As seen in Table 1, although exact joinable table
search has been tackled in the recent years with
JOSIE (Zhu et al., 2019) (exact unary joins) and
MATE (Esmailoghli et al., 2022) (exact multi-key
joins), it becomes increasingly important to lever-
age language models (LMs) to discovery semanti-
cally joinable tables. Specifically, PEXESO (Dong
et al., 2021) and DeepJoin (Dong et al., 2022b)
make use of embeddings (e.g., BERT (Devlin et al.,
2019)) to capture semantic unary joins between
tables. Yet, these methods can produce false pos-
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Table 1: Join methods and their applicability in different
scenarios. Multi-Key Joins Semantic Joins

JOSIE (Zhu et al., 2019) ✗ ✗

PEXESO (Dong et al., 2021) ✗ ✓

DeepJoin (Dong et al., 2022b) ✗ ✓

MATE (Esmailoghli et al., 2022) ✓ ✗

POLYJOIN ✓ ✓

itive matches (e.g., repeated entries like “United
States, Birmingham” and “Spain, Madrid”).

This paper is the first to address the problem of
semantic multi-key joinable table search. As seen
in Figure 1, these joins are required in order to ob-
tain correct join results in case of inconsistent real
world data. Semantic multi-key joins pose addi-
tional challenges. First, semantic representations
of n-ary join keys need to be effectively encoded
to preserve the alignment across these join keys.
Secondly, there is a lack of labeled data for train-
ing and evaluating semantic multi-key join models
(Zhu et al., 2019; Esmailoghli et al., 2022).

Approach. In this paper, we propose POLYJOIN,
a novel representation learning method for seman-
tic multi-key joinable table search. Given a query
table, POLYJOIN retrieves the top-𝑘 tables with the
highest semantic n-ary joinable scores from a data
lake. POLYJOIN is equipped with a multi-key en-
coder that generates the embeddings of n-ary join
keys using the column content as well as column
metadata (Section 3.1). POLYJOIN adopts self-
supervision signals within and across tables for the
model training, as opposed to relying on ground
truth labels (Section 3.2). POLYJOIN adopts hier-
archical contrastive learning technique to further
enhance POLYJOIN’s semantic understanding of n-
ary join keys (Section 3.3). To evaluate POLYJOIN,
we contribute two benchmarks based on Open Data
and Kaggle datasets. The original tables are infused
with real-world data inconsistencies, and are used
to fabricate multi-key joinable tables alongside the
corresponding semantic join labels (Section 4).

POLYJOIN demonstrates clear advantages in ap-
plications such as table question answering (QA)
and data-to-text generation. In complex table QA,
POLYJOIN enables reasoning across semantically
joinable tables to generate a more accurate an-
swer (Chen et al., 2020). Similarly, in data-to-
text generation, POLYJOIN leverages contextual
information from joinable tables to create more
insightful textual descriptions. By synthesizing
data from multiple semantically connected tables,
POLYJOIN provides a richer narrative.

POLYJOIN has the following desirable proper-
ties. 1) General: POLYJOIN is the first method to
tackle the problem of semantic multi-key joinable
table search in data lakes, using self-supervised
learning without the need for labeled data. 2) Pow-
erful: POLYJOIN introduces a hierarchical con-
trastive learning technique to enhance POLYJOIN’s
semantic representations of multi-key joins, pre-
serving the alignment across these join keys. 3)
Reproducible: We construct two evaluation bench-
marks with real-world noise, enabling realistic eval-
uation. 4) Effective: POLYJOIN outperforms state-
of-the-art baselines on real-world benchmarks by
2.89% and 3.67% in MAP@30 and R@30.

2 Problem Definition
Semantic multi-key joinability. Given a candi-
date table 𝑇𝐷 from a data lake and a query table 𝑇𝑄,
we denote the column set of table 𝑇𝐷 as C𝐷 and the
column set of table 𝑇𝑄 as C𝑄. The join keys of ta-
ble 𝑇𝐷 and 𝑇𝑄 are composed of multiple keys (i.e.,
𝑛-ary join keys), which we denote as K𝐷 ⊂ C𝐷
and K𝑄 ⊂ C𝑄. Note that only if |K𝐷 | = |K𝑄 | = 𝑛,
the two tables are likely to be semantic 𝑛-ary join-
able. For table 𝑇𝐷 , we can obtain a sub-table by
extracting only those keys in K𝐷 , and we denote
all rows in this sub-table as R𝐷 , likewise for the
row set R𝑄. Then the semantic multi-key (𝑛-ary)
joinability score 𝚥 between 𝑇𝐷 and 𝑇𝑄 is defined
as: 𝚥 (𝑇𝐷 , 𝑇𝑄) = | R𝑚𝑎𝑡𝑐ℎ |

| R𝑄 | , where R𝑚𝑎𝑡𝑐ℎ = {𝑥 |
𝑥 ∈ R𝑄 ∧ ∃𝑦 ∈ R𝐷 s.t. 𝑔𝑠𝑒 (𝑥, 𝑦) = 1} and 𝑔𝑠𝑒 is
a function that returns 1 if the two rows 𝑥 & 𝑦 are
semantically equivalent or returns 0 otherwise.

Semantic multi-key joinable table search.
Given a set of data lake tables T , a query table
𝑇𝑄 and a value 𝑘 , the goal is to return the top-𝑘
tables from T sorted by their joinability score 𝚥
with 𝑇𝑄. 𝑇𝑄 and top-𝑘 tables have 𝑛-ary join keys.

3 POLYJOIN’s Approach

As motivated in Section 1, semantic multi-key join-
able table search needs to address two key chal-
lenges: 1) effectively learn semantic representa-
tions of multiple keys together within a table by
extracting information at the cell level, in order
to determine whether a joinable relation exists be-
tween two tables, and 2) multi-key joinable table
search is often executed over domain-specific and
proprietary data lakes. There is a lack of labeled
data. Ideally, a method must be designed to be
unsupervised and without any manual annotation.
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Input <Key, Key Description> Pairs
Country | Spain | United States | Chile | Russia | Spain

This column lists the name of the country.
City | Madrid | Birmingham | Santiago | Moscow | Santiago

This column lists the name of the city.…

[CLS] Country : Spain , United States , Chile , Russia , Spain
[CLS] This column lists the name of the country.

Pre-trained Large Language Model

Contextualized Multi-Key Encoder
[CLS] Representation

Multi-Key Encoder 𝒇𝜽
(for key)

Key-wise and Centroid-wise Contrastive Learning

Momentum Multi-Key 
Encoder 𝒇𝜽!

(for key description)

Momentum 
Update

Key-wise loss ℒ𝒌𝒆𝒚
+

Centroid-wise loss ℒ𝒄𝒆𝒏𝒕

Back Propagation

…

N×

N× Adaptive Hierarchical Clustering

𝑯

𝑯!

𝑪𝑯! ,

Figure 2: Overview of POLYJOIN.

We propose a representation learning method
POLYJOIN, which leverages self-supervised sig-
nals from column level metadata within and across
tables. As shown in Figure 2, we hypothesize that
the semantic representations of n-ary keys should
align with their descriptions (in metadata). For in-
stance, the description of the column “Country:
Spain, United States, ...” can be perfectly de-
scribed by “This column lists the country
names”. Second, multi-key joinable columns
across tables tend to describe similar semantic
types, such as Address, Person or Time. These
columns should have similar representations in the
semantic space. Therefore, we employ a hierarchi-
cal clustering approach to discover latent semantic
clusters and hierarchical contrastive learning to ex-
tract self-supervised signals within these clusters.
We detail the specific modules in POLYJOIN.

3.1 Contextualized Multi-Key Encoder
The contextualized multi-key encoder extracts
the column representations from their cell values
and obtains semantic representations of multiple
columns within a table by concatenating their rep-
resentations. We leverage pre-trained language
model, BERT (Devlin et al., 2019), to effectively
encode the semantic representations of columns
and their corresponding descriptions. As depicted
in Figure 2, we serialize columns C (|C| = 𝑁)
with their cells, adhering to the schema proposed in
Devlin et al. (2019) and using the reserved [𝐶𝐿𝑆]
token to represent the semantic representation of all
cells and column descriptions S in given columns:

C =
[[𝐶𝐿𝑆], 𝐶1, [𝑆𝐸𝑃], 𝐶2, · · · , 𝐶𝑁 , [𝑆𝐸𝑃]

]
,

S =
[[𝐶𝐿𝑆], 𝑆1, [𝑆𝐸𝑃], 𝑆2, · · · , 𝑆𝑁 , [𝑆𝐸𝑃]

]
,
(1)

where 𝐶𝑖 denotes the 𝑖-th serialized column and 𝑆𝑖
denotes the corresponding column description.

We denote the multi-key encoder as
𝑓𝜃 (C, [𝐶𝐿𝑆]𝑁 ) and 𝑓𝜃 ′ (S, [𝐶𝐿𝑆]𝑁 ), in which 𝑁
signifies the number of columns. The encoder

produces a fixed-length representation hC ∈ Rℎ𝑅

and h′S ∈ Rℎ𝑅 , where ℎ𝑅 = 768 symbolizes the
dimension of the [𝐶𝐿𝑆] embedding using BERT.
We randomly select 𝑁 columns from a table and
feed them to the multi-key encoder. Consequently,
we generate a variety of semantic representations
of different column combinations within a table,
preserving the alignment across multiple columns.

3.2 Adaptive Hierarchical Clustering
We often observe a hierarchical nature in columns
and their descriptions across different tables, as
these tables in a data lake are usually organized
into hierarchies1. For instance, the column descrip-
tions can be 1) the number of years, 2) the number
of weeks in a given year and 3) the start date of the
reporting week. These descriptions reveal the time
hierarchy with different levels: Year, Year/Week
and Year/Week/Day. Consequently, we expect that
a clustering method can identify hierarchical clus-
ter centroid representatives in a top-down manner.
Conventional clustering methods such as 𝑘-means
(MacQueen, 1967) aggregate data points into a
pre-determined number of clusters, but these tech-
niques fail to harness the hierarchical information
in a dataset and require preset the number of clus-
ters. Hence, in this paper, we utilize adaptive hi-
erarchical clustering, which has the following ad-
vantages: 1) it treats all feature points as potential
centroids and extracts underlying hierarchical clus-
ter structures through their mutual similarities and
2) prior knowledge of either the actual number of
target clusters or their distributions is not necessary.

The adaptive hierarchical clustering (Frey and
Dueck, 2007) exchanges real-valued messages be-
tween points until a high-quality set of centroids
and their corresponding clusters are generated. The
similarity 𝑠𝑖 𝑗 of h′𝑖 and h′𝑗 is the distance between
these two points and denotes the suitability of 𝑗
serving as the clustering centroid of 𝑖 with 𝑎𝑖 𝑗 , and

1https://tinyurl.com/bdh6zmy6, https://tinyurl.
com/9kcyppdn, https://tinyurl.com/yc65sjc2

386

https://tinyurl.com/bdh6zmy6
https://tinyurl.com/9kcyppdn
https://tinyurl.com/9kcyppdn
https://tinyurl.com/yc65sjc2


indicates the appropriateness of 𝑖 selecting 𝑗 as its
clustering centroid with 𝑏𝑖 𝑗 :

𝑠𝑖 𝑗 = −
h′𝑖 − h′𝑗

2
, (2)

𝑎𝑖 𝑗 = 𝑠𝑖 𝑗 −max
𝑗′≠ 𝑗

(
𝑠𝑖 𝑗′ + 𝑏𝑖 𝑗′

)
, (3)

𝑏𝑖 𝑗 =




∑
𝑖′≠𝑖 max

(
0, 𝑎𝑖′ 𝑗

)
, 𝑗 = 𝑖

min

[
0, 𝑎 𝑗 𝑗 +

∑
𝑖′∉{𝑖, 𝑗 }

max
(
0, 𝑎𝑖′ 𝑗

) ]
, 𝑗 ≠ 𝑖

(4)
where 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 are updated through nested iter-
ations until convergence. Then, we aim to find a
series of 𝐿 continuous clustering layers to reveal
more fine-grained semantics in the column descrip-
tions. In other words, the points to be clustered at
the 𝑙-th layer are closer to the corresponding clus-
ter centroid of the layer 𝑙 − 1. We use a parameter,
min(𝑠𝑖 𝑗) + median(𝑠𝑖 𝑗 )−min(𝑠𝑖 𝑗 )

𝐿−1 · (𝑙 − 1), 𝑙 ∈ [1, 𝐿],
to obtain the 𝑙-th layer clustering results, where a
larger value leads to a greater number of clusters
(Moiane and Machado, 2018).

3.3 Hierarchical Contrastive Learning Loss
Given a table comprising 𝑁 columns and their cor-
responding descriptions, the contextualized multi-
key encoder generates their semantic representa-
tions. We presume that the columns and their de-
scriptions share similar representations in the se-
mantic space, and utilize column-level contrastive
learning to extract self-supervised signals:

Lkey =
𝑁∑︁
𝑖=1
− log

exp(h𝑖 · h′𝑖/𝜏)∑𝐽
𝑗=1 exp(h𝑖 · h′𝑗/𝜏)

, (5)

where h𝑖 and h′𝑖 are the representations of the 𝑖-th
column and its description, and h′𝑗 encompasses
one positive description and 𝐽 − 1 negative descrip-
tions from other columns. 𝜏 is a temperature hyper-
parameter (Wu et al., 2018).

Furthermore, as described in Section 3.2, differ-
ent columns could potentially share similar seman-
tics at different levels. Different columns cannot
be simply regarded as negative examples through
column-level contrastive learning. Hence, we intro-
duce contrastive learning at the level of hierarchical
centroids:

Lcent=−
𝑁∑︁
𝑖=1

1
𝐿

𝐿∑︁
𝑙=1

log
exp(h𝑖 · e𝑙𝑗/𝜏)∑𝑐𝑙
𝑚 exp(h𝑖 · e𝑙𝑚/𝜏)

, (6)

where 𝑗 ∈ [1, 𝑐𝑙], e𝑙𝑗 is the centroid corresponding
to the 𝑗-th column at the 𝑙-th level, and 𝑚 indicates

all the centroids from 1 to 𝑐𝑙 at the 𝑙-th level. Given
that we have explicitly constrained h𝑖 and e𝑙𝑗 to the
approximate representation space, the temperature
hyper-parameter 𝜏 adopted in Eq. 5 can be shared
here. Note that, during the training process, the
column’s representation h𝑖 will be updated in each
batch, but all the centroids will only be updated
after the entire epoch is over. In essence, our ob-
jective is referred to as Hierarchical Contrastive
Learning Loss LOverall:

LOverall = 𝛼 · Lkey + 𝛽 · Lcent, (7)

where 𝛼 and 𝛽 represent the weights of the two
losses. For simplicity, we set 𝛼 = 𝛽 = 1. To main-
tain centroid invariance and to prevent representa-
tion offset problems in column descriptions during
the period, we need to smoothly update the multi-
key encoder’s parameters to ensure a relatively sta-
ble column description space (He et al., 2020). In
practice, we have constructed two encoders: 𝑓𝜃 and
𝑓𝜃 ′ , both are instances of the multi-key encoder. 𝑓𝜃
is used to obtain the column representation and 𝑓𝜃 ′

is used to obtain the representation of the column
description. 𝜃 is updated through LOverall, while 𝜃′

is the moving average of the updated 𝜃′.
After we update the encoder 𝑓𝜃 using LOverall,

the momentum encoder 𝑓𝜃 ′ can advance each
epoch in the following way:

𝜃′ ← 𝑧 · 𝜃′ + (1 − 𝑧) · 𝜃, (8)

where 𝑧 ∈ [0, 1) is a coefficient. The momentum
update allows 𝜃′ to evolve more smoothly than 𝜃,
particularly when 𝑧 approaches 1.

Once the multi-key encoder 𝑓𝜃 is trained, we
use it to calculate the semantic joinability scores
between a query table 𝑇𝑄 and a data lake table
𝑇𝐷 . Following the definition in Section 2, we adopt
multi-key encoder 𝑓𝜃 to encode each column inK𝑄
and K𝐷 . Given a row 𝑥 ∈ R𝑄 and 𝑦 ∈ R𝐷 , we ob-
tain the embedding of each cell in 𝑥 and 𝑦 using 𝑓𝜃 ,
and then concatenate these embeddings to obtain
the row embeddings h𝑥 and h𝑦 . To calculate the se-
mantic multi-key joinability score 𝚥, we define the
function 𝑔𝑠𝑒 as 𝑔𝑠𝑒 (𝑥, 𝑦) = I

(
Cosine(h𝑥 , h𝑦) > 𝛼

)
,

where I is the indicator function and 𝛼 is a thresh-
old hyper-parameter (𝛼 = 0.5 in practice) used in
the cosine similarity.

4 Evaluation Benchmark Construction

One critical challenge in evaluating multi-key join-
able table search methods is the lack of openly
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Figure 3: The construction process of semantic multi-key joinable table search evaluation benchmarks.

available datasets with joinable table ground truth.
Existing benchmarks (Esmailoghli et al., 2022) suf-
fer from either lack of multi-key joinable tables or
inadequate representation of real-world challenges
such as noisy and missing data. In this paper, we
create two benchmarks for semantic multi-key join-
able table search. Following previous works (Dong
et al., 2021; Esmailoghli et al., 2022), we use NYC
Open Data2 and Kaggle datasets3 to construct these
benchmarks, consisting of query tables and the
corresponding gold semantic n-ary joinable tables.
Figure 3 shows the construction process.
① Base table selection. We carefully choose the
base tables from both NYC Open Data and Kag-
gle datasets to generate both query and data lake
tables. For NYC Open Data, we first rank all tables
based on their popularity and select top-30 base
tables with 1) more than 4000 rows, 2) more than
5 text columns and 3) more than 5 distinctive col-
umn names. These tables ensure that the resulting
benchmark contains large tables with a large num-
ber of joinable candidates. For Kaggle dataset, we
leverage 14 base tables used in MATE (Esmailoghli
et al., 2022). For each base table, the columns with
the highest number of distinct values are chosen
as the n-ary join keys (Dong et al., 2021). These
tables also guarantee a large number of joinable
candidates in the resulting benchmark.
② Table horizontal split. Each base table is hori-
zontally split into three partitions with equal num-
ber of rows, yielding three new tables: table_top,
table_middle and table_bottom. Consequently,
the resulting tables have identical schema but do
not share many instances.
③ Random sub-table generation. For each
table_top/middle/bottom, we generate 10 sub-
tables by randomly selecting 10/20/.../100% of the

2https://opendata.cityofnewyork.us/
3https://www.kaggle.com/datasets

Rows (Table) Columns (Table) Words (Cell)

MAX MIN Avg. MAX MIN Avg. MAX MIN Avg.

Open Data based Evaluation Benchmark

50 5 27.5 49 7 17.6 170 1 2.7

Kaggle dataset based Evaluation Benchmark

50 2 26.8 82 2 19.4 244 1 1.6

Table 2: The statistics of the evaluation benchmarks.

rows, creating joins among these sub-tables.
④ Table augmentation with noise. We further
augment each of the 10 sub-tables into 4 tables
with varying real-world noise settings: 1) no noise
in column names and values, 2) noise in column
names, 3) noise in column values and 4) noise in
both column names and values. Therefore, all 40 ta-
bles generated from table_top/middle/bottom
contain real-world noise. We present a detailed
noise description in Appendix A.
⑤ Row shuffling and column removal. To make
the multi-key joinable table search more challeng-
ing, we shuffle the rows in a table and randomly
remove certain non-key columns as well. This also
guarantees joinability among the 40 tables within
each table_top/middle/bottom source and non-
joinability across different sources.
⑥ Data lake and query tables creation. Out of
the 120 fabricated tables per base table, 15 tables
(5 from each table_top/middle/bottom) are ran-
domly selected as query tables. The remaining 105
tables constitute the data lake tables. Each query
table will have 35 gold semantic joinable tables.
Hence, the NYC Open Data benchmark consists of
3150 data lake tables and 450 query tables, respec-
tively. The Kaggle benchmark consists of 1610
data lake tables and 70 query tables, respectively.

To ensure a comprehensive assessment of seman-
tic multi-key joinable table search, we adopted the
setting from (Esmailoghli et al., 2022), in which the
number of join keys 𝑁 does not exceed 4. Hence
we set 𝑁 = 2, 3, 4 to obtain the corresponding eval-
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uation benchmarks by repeating steps ② – ⑤. Even
though the gold multi-key joinable tables are au-
tomatically generated during the benchmark con-
struction process, we also manually confirm poten-
tial false negatives in the test set. We provide the
detailed statistics of the evaluation benchmarks in
Table 2. Using these two benchmarks, we evaluate
POLYJOIN’s multi-key joinable table search capac-
ity and provide a robust measure of POLYJOIN.

5 Experimental Evaluation

5.1 Experimental Setups

Training dataset. We randomly select 3,000 base
tables from NYC Open Data as our training set.
Note that these tables are not used as part of our
experimental evaluation. The training set does not
contain label information for semantic multi-key
joinable tables. Among these 3,000 tables, a total of
18,824 columns have descriptions, with an average
of 12.6 words per column description. First we
randomly select 𝑁 columns from each tables with
𝑁 varying from 2 to 4. Then we combine them as
the inputs to the multi-key encoder to obtain the
representations of multiple columns and the ones
of their descriptions.
Experimental protocol and hyper-parameter
settings. We initialized the multi-key encoder
with BERT-Base, BERT-Large (Devlin et al., 2019)
and RoBERTa-Large (Liu et al., 2019). We used
AdamW (Loshchilov and Hutter, 2017) to optimize
the loss. The encoder was trained for 20 epochs
with a learning rate of 1𝑒−5. During the adaptive
hierarchical clustering stage, we set the numbers
of layers 𝐿 to 3 and the maximum number of itera-
tions to find a clustering centroid to 200, ensuring
that the algorithm can stop in time. We set the tem-
perature 𝜏 = 0.05 and the momentum parameter
𝑧 = 0.9. We adopted 𝐽 = 512 to balance the quan-
tity of negative samples and the performance of the
hierarchical clustering loss optimization.
Evaluation metrics. For evaluation metrics, fol-
lowing previous works (Bogatu et al., 2020; Dong
et al., 2022b), we use the Mean Average Precision
at 𝐾 (MAP@𝐾) and Recall at 𝐾 (R@𝐾) to evaluate
the effectiveness of the top-𝐾 multi-key joinable
table search results. Please note that MAP@𝐾 is
the average value of Precision at 𝑘 (P@𝑘), where
𝑘 = 1, 2, · · · , 𝐾. We adopt the 𝐾 = 30. More
metric details are provided in Appendix B.
Baseline methods. We compare POLYJOINwith
two class of approaches. The first class of methods

are designed for joinable table search. Although
they do not specifically target semantic multi-key
joinable table search, these models can still pro-
duce embeddings for single-key joins. We employ
the semantic multi-key joinability score defined in
Section 2 based on the generated embeddings and
evaluate the tables that appear in all joinable results
(Esmailoghli et al., 2022). The methods in this first
category include PEXESO+ (Dong et al., 2021),
MATE (Esmailoghli et al., 2022), and DeepJoin+
(Dong et al., 2022b)4.

The second class of methods use pre-training
on the semantics of table cells, thereby obtaining
improved semantic column representations. Here,
we include TaBERT (Yin et al., 2020), TABBIE
(Iida et al., 2021), TUTA (Wang et al., 2021b),
TURL (Deng et al., 2022) and TableFormer (Yang
et al., 2022). For a detailed description of these
baseline models, please refer to the Appendix C.

5.2 Results and Analysis

Overall performance. Table 3 shows results
for 2-4 multi-key joinable table search over two
benchmarks. Our proposed POLYJOIN method
consistently surpasses all baseline models in both
MAP@30 and R@30, with a significant differ-
ence confirmed by the Student’s T-test (𝑝 < 0.05).
Specifically, against the formerly top-performing
baseline model, TableFormer, POLYJOIN gains a
2.89% and 3.67% improvement in MAP@30 and
R@30 respectively. Despite our adjustments to the
baseline models for joinable table search to address
semantic multi-key joins, they still underperform,
notably below other baseline models pretrained
on tabular datasets. This holds especially true for
the exact n-ary joinable baseline model, MATE,
which performs 19.48% worse than POLYJOIN on
average. This suggests that in data lakes with un-
reliable and noisy data, exact-match search isn’t
robust to semantic discrepancies like acronyms,
abbreviations, typos and colloquial terms, lead-
ing to a substantial drop in performance. An in-
teresting observation is that employing a larger
parameter-based multi-key encoder, like BERT-
Large (Devlin et al., 2019) and RoBERTa-Large
(Liu et al., 2019), POLYJOIN leads to further perfor-
mance boosts. For instance, POLYJOINBERT-Large

and POLYJOINRoBERTa-Large sees average improve-
ments of 0.94% and 1.17% in MAP@30 and R@30
across all benchmark settings, respectively.

4The + sign indicates that a method uses our semantic
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Methods
NYC Open Data based Benchmark Kaggle based Benchmark

2-ary 3-ary 4-ary 2-ary 3-ary 4-ary

MAP@30 R@30 MAP@30 R@30 MAP@30 R@30 MAP@30 R@30 MAP@30 R@30 MAP@30 R@30

PEXESO+ 61.42 35.63 56.63 32.18 53.26 27.55 65.37 38.42 58.92 32.55 62.01 34.50
MATE 60.71 34.95 54.93 30.69 46.14 24.89 60.52 34.68 53.05 28.89 55.56 31.30
DeepJoin+ 67.10 39.39 67.48 39.16 64.28 36.85 78.18 45.70 78.33 46.36 74.89 42.84

TaBERT 67.62 40.39 68.55 39.58 64.69 36.72 79.03 46.14 78.98 46.95 75.44 43.50
TABBIE 67.76 40.26 68.42 39.63 64.83 37.09 78.44 45.91 78.62 46.70 75.12 43.24
TUTA 67.05 39.82 68.13 38.97 64.25 36.74 78.91 46.08 78.38 46.88 75.35 43.58
TURL 68.32 41.02 69.22 40.03 65.18 37.50 79.76 47.10 79.60 47.38 76.48 44.98
TableFormer 69.04 41.85 70.10 40.89 66.42 38.13 80.57 48.29 81.55 49.03 77.85 47.02

POLYJOINBERT-Base 71.13±0.8 44.39±0.6 71.91±0.7 44.01±0.3 69.55±1.0 42.88±0.5 82.59±0.7 51.81±0.4 85.77±0.9 54.49±0.7 81.92±0.7 49.66±0.4

w/o n-ary training 68.27±1.6 40.22±2.2 69.18±1.4 39.87±1.8 65.89±1.7 37.92±2.4 79.96±1.8 47.31±1.4 79.75±2.0 47.87±1.6 76.89±1.3 45.11±1.8

w/o Lcent 69.82±0.9 41.56±0.7 70.48±0.6 41.93±0.6 67.03±1.2 39.55±0.8 80.53±1.3 48.92±0.8 81.73±0.7 49.29±0.9 78.87±0.6 46.67±0.7

Re. Description 70.76±0.8 44.10±0.6 71.15±0.7 43.27±0.9 68.87±0.6 42.46±0.7 82.21±0.8 51.08±1.1 85.08±0.5 53.87±0.8 81.08±0.7 48.89±0.7

POLYJOINBERT-Large 72.47±0.7 45.46±0.5 72.74±0.6 44.83±0.8 70.62±0.8 43.79±0.6 83.51±0.7 52.70±0.9 86.62±0.8 55.23±0.6 82.91±0.7 50.53±0.7

POLYJOINRoBERTa-Large 72.79±1.2 45.52±0.6 73.20±1.0 45.03±0.7 70.88±1.0 43.91±0.6 83.72±0.9 52.88±1.3 86.90±1.2 55.41±0.9 83.25±1.5 50.69±0.8

Table 3: MAP@30 and R@30 comparisons (%). Results of POLYJOIN are averaged over five runs.

Figure 4: POLYJOIN achieves better cluster separation for the multi-key representations on Kaggle benchmark.

Ablation study. We perform ablation tests
to ascertain the efficacy of each component in
POLYJOIN. We consider several POLYJOIN vari-
ants. POLYJOIN w/o n-ary training omits 2-4 ary
keys’ unsupervised training data during the train-
ing phase, only taking unary keys’ training data
into account. This leads to POLYJOIN’s loss of
self-supervised signals for multi-key alignment.
POLYJOIN w/o Lcent discards the centroid-wise
loss during training, solely utilizing the key-wise
loss, hence neglecting hierarchical clustering sig-
nals. As per Table 3, both n-ary training and Lcent
positively influence POLYJOIN’s performance, con-
tributing 4.32% and 2.81% improvements in aver-
age of MAP@30 and R@30, respectively. This un-
derscores that unearthing potential hierarchical re-
lations and alignments among multi-keys can equip
POLYJOIN with superior contextualized multi-key
representations, thus boosting the performance of
joinable table search. Moreover, an intriguing ex-
periment involving column description substitution
was conducted. Column descriptors were gath-
ered from Open Data and Kaggle datasets. We use
ChatGPT to generate column descriptions when
they are not provided. The details on using Chat-
GPT for column description generation can be
found in Appendix D. Table 3 illustrates that the
usage of ChatGPT-generated column descriptions

multi-key joinability score.

(POLYJOIN Re. Description) delivers results nearly
akin to those of POLYJOIN, with a minor disparity
of 0.39% in average MAP@30 and R@30. While
using a larger base encoder like BERT-Large or
RoBERTa-Large naturally boosts performance, our
framework’s hierarchical clustering component pro-
vides complementary gains. Table 3 shows that
BERT-Large improves MAP@30 and R@30 by an
average of 1.00% and 0.88%, respectively, com-
pared to BERT-Base. This suggests that hierarchi-
cal clustering and contrastive learning can enhance
the strengths of larger encoders, adding unique ad-
vantages to POLYJOIN.

Visualizing multi-key representations. We use
t-SNE (Maaten and Hinton, 2008) to visualize the
multi-key representation space reduced from Rℎ𝑅

dimensions. We randomly selected five base ta-
bles from the NYC Open Data and obtained the
multi-key representations. Figure 4 shows the visu-
alization results of multi-key representations, with
their base tables serving as the ground-truth colors.
We can see that the POLYJOIN w/o n-ary train-
ing is unable to assign meaningful semantics to the
multi-key representations from different base tables
due to the absence of multi-key data in training.
The absence of hierarchical contrastive loss makes
POLYJOIN w/o Lcent incapable of assigning high
confidence to semantic features in different clusters,
resulting in a loose distribution. This phenomenon
is also in the clustering results where TableFormer
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Semantic 2-ary Joinable (Left: NYC Open Data; Right: Kaggle) 

Semantic 3-ary Joinable (Left: NYC Open Data; Right: Kaggle) 

Semantic 4-ary Joinable (Left: NYC Open Data; Right: Kaggle) 
Figure 5: Precision and recall curves on benchmarks.

serves as the multi-key encoder. POLYJOIN ef-
fectively utilizes both multi-key data training and
multi-key hierarchical structure, thereby achiev-
ing dense, clearly delineated cluster results, and a
strong semantic representation capability.
Precision vs. Recall. We plot the precision-recall
trade-off curve in Figure 5 and observe that as
the search threshold decreases, the increase in re-
call leads to a faster drop in precision. On both
benchmarks, POLYJOIN outperforms the baseline
model, especially when the threshold decreases;
and POLYJOIN can minimize the drop in precision
as the recall increases. An interesting finding is that
for exact n-ary joinable search baseline, MATE,
when the threshold drops, it can hardly find the cor-
rect joinable tables in case of real-world settings.

Table 4: Performance comparison on the LakeBench’s
OpenData and OpenData Large.

Methods OpenData OpenData Large

MAP@30 R@30 MAP@30 R@30

MATE 31.2% 18.7% 28.8% 16.9 %
TABLEFormer 80.1% 38.2% 79.5% 36.9%

POLYJOIN 85.2% 41.1% 84.7% 40.7%

Generalizability of POLYJOIN. We leveraged
the LakeBench’s OpenData and OpenData Large
benchmarks (Deng et al., 2024) with a 3-ary set-
ting to further showcase the generalizability of
POLYJOIN. These datasets include diverse and
complex real-world data scenarios, providing a ro-
bust foundation for assessing the adaptability of

joinable table search models in a multi-attribute
context. Our results, detailed in Table 4, indicate
that POLYJOIN consistently surpasses both MATE
and TableFormer on both benchmarks. This con-
firms POLYJOIN’s robustness and generalizability
in handling complex data lakes in real-world set-
tings, demonstrating its ability to adapt effectively
to unseen and intricate data.

6 Related Work

Joinable table search. Identifying tabular datasets
in data lakes is crucial for data scientists (Yu et al.,
2020; Cheng et al., 2022; Dong et al., 2022a). Join-
able table search is an essential task of tabular data
discovery. Existing methods for finding joinable
tables focus on either unary joins, ineffective and
slow in the existence of n-ary keys (Zhu et al.,
2019; Esmailoghli et al., 2022), or syntactic n-
ary joins, disregarding substantial real-world noise
(Dong et al., 2021, 2022b). Both approaches lead
to potential inaccuracies or missed joinable tables.
POLYJOIN is an enhanced method for semantic
multi-key joinable table search, leveraging multi-
key contextual information to boost accuracy.
Self-supervised learning in NLP. Self-supervised
learning has been proven effective in NLP appli-
cations (Jaiswal et al., 2020; Rani et al., 2023),
such as NLU (Hu et al., 2020; Bansal et al.,
2020) and QA systems (Banerjee and Baral, 2020;
Wilf et al., 2023). This paradigm reduces the
dependency on labeled data and saves the time-
consuming and labor-intensive data annotation pro-
cess. Contrastive learning is a commonly used
self-supervised learning methods that aims to gen-
erate self-supervised signals by pushing semanti-
cally similar samples closer in the data represen-
tation space (Cui et al., 2020; Huang et al., 2022).
POLYJOIN applies contrastive learning to lever-
age the hierarchical structure within columns to
uncover richer multi-key intra-table information.

7 Conclusions
In this paper, we introduce POLYJOIN to effec-
tively identify multi-key joinable tables in data
lakes. POLYJOIN uses a multi-key encoder with a
self-supervised training to generate representations
of n-ary join keys while preserving the alignment
across multiple keys. It also uses a hierarchical
contrastive learning to enhance its understanding
of semantically joinable tables. POLYJOIN outper-
forms the SOTA by 2.89% and 3.67% in MAP@30
and R@30 on two benchmarks, respectively.
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8 Limitations

Our limitations can be analyzed from two differ-
ent aspects: technical constraints and application-
based constraints: 1) On the technical front, our
present experiments are limited to BERT-Base,
BERT-Large, and RoBERTa-Large as foundational
encoders. Adopting larger language models such
as LLaMA5 and Falcon6 has not been feasible due
to the resource constraints at our disposal. 2) In
terms of applications, the data employed in our
experiments are sourced from NYC Open Data
and Kaggle datasets. Beyond the open data, cer-
tain domain-specific data, such as those in finance,
healthcare and energy, are yet to be incorporated.
Additionally, we have exclusively focused on tab-
ular data in English, thus expanding our method
to support multi-lingual tabular data is a potential
avenue for future research.
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A Detailed Real-world Noise for Column
Names and Column Values

Inspired by previous work (Koutras et al., 2021),
we summarize real-world noise based on column
names and column values.

Real-world noise in column values. For text
columns, we include the following 4 types of noise.

① Characters can be replaced with those adjacent
characters on the keyboard. For instance, the word
“keyboard” might be changed to “keybiard”.

② Adjacent keyboard characters can be ran-
domly added to a string. For example, “keyboard”
could become “keeyboard”.

③ Characters might be randomly removed from
a string. As an example, “keyboard” might turn
into “keybard”.

④ Adjacent characters in a string can be in-
correctly repeated, changing from “keyboard” to
“keyyboard”.

We also introduce 2 kinds of noise to numeric
columns.

① The numeral might be expressed in scientific
notation. For example, 15000 could be represented
as 1.5e4.

② The numerical value may be altered in a ran-
dom fashion according to the distribution of val-
ues in the column (with changes to mean and vari-
ance, followed by random data sampling). As such,
15000 might be changed to 16000.

Real-world noise in column names. We intro-
duce the following 5 types of noise to column
names.

① Column names could be attached with its table
name. For example, the column “flight_origin”
from the table “airline_data” could be changed
to “airline_data_flight_origin”.

② Column names could be abbreviated by ran-
domly retaining 25%-50% prefix of each word seg-
ment. For instance, “flight_origin” might be
abbreviated to “fl_orig”.

③ Vowels might be dropped from the column
names. In this case, “flight_origin” could be-
come “flght_rgn”.

④ A synonym substitution could occur, if avail-
able. For instance, “flight_origin” might be-
come “flight_departure”.

⑤ Column names might be abbreviated into
acronyms. For example, “flight_origin” could
be shortened to “fo”.

B Evaluation Metrics

We utilize the Mean Average Precision at 𝐾
(MAP@𝐾) and Recall at 𝐾 (R@𝐾) to gauge the
efficacy of the top-𝐾 table results retrieved through
the search method. Note that MAP@𝐾 represents
the mean value of Precision at 𝑘 (P@𝑘), where 𝑘
ranges from 1 through 𝐾 . Formally, given a query
table 𝑄 and a collection of data lake tables T , we
denote T𝑄 as the set of semantic n-ary joinable
tables, based on the known ground truth, and T ′𝑄
as the set of top-𝐾 semantic n-ary joinable tables
returned by the searching method. The calculations
for P@𝐾 and R@𝐾 are as follows:

𝑃@𝐾 =
T𝑄 ∩ T ′𝑄
T ′𝑄

, 𝑅@𝐾 =
T𝑄 ∩ T ′𝑄
T𝑄 (9)

Note that perfect R@𝐾 is not possible when the
ground truth contains less than 𝐾 joinable tables.
We define the Mean Average Precision MAP@𝐾
as:

𝑀𝐴𝑃@𝐾 =
1
𝐾

𝐾∑︁
𝑘=1

𝑃@𝑘 (10)

C Detailed Descriptions of Baseline
Models

We compare POLYJOIN against base models in two
categories. The models in the first category employ
a range of column features including column repre-
sentations to calculate the joinability score between
a pair tables.

① PEXESO (Dong et al., 2021) is a framework
for discovering unary joinable tables in data lakes.
It efficiently finds such tables via a block-and-
verify method, utilizing pivot-based filtering and
partitioning techniques. It outperforms equi-joins
and other similarity-based approaches.

② MATE (Esmailoghli et al., 2022) is a table dis-
covery system utilizing a unique hash-based index
for exact n-ary join discovery, employing a space-
efficient super key and a filtering layer with Xash,
a hash function for efficient table pruning.

③ DeepJoin (Dong et al., 2022b) is an
embedding-based retrieval model for unary join-
able table discovery. It leverages a pre-trained
language model, supports equi-joins and seman-
tic joins, and employs a scalable, log-time nearest
neighbor search algorithm.

Both PEXESO+ and DeepJoin+ in Section 5
use the semantic unary join methods from PEX-
ESO and DeepJoin to acquire unary joinable ta-
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bles, respectively. Moreover, we collect all join-
able columns by connecting the representations
of multiple keys, and they have also utilized our
evaluation method to obtain scores for multi-key
joinable tables.

The secondary category employs unlabeled ta-
bles for self-guided pre-training, delivering notable
outcomes in table comprehension tasks as base en-
coders for deducing the table joinability score:

④ TaBERT (Yin et al., 2020), a pretrained lan-
guage model, concurrently learns representations
for tables, both fully and semi-structured, and ver-
bal language phrases. TaBERT is trained on a com-
prehensive corpus comprising 26 million tables and
their corresponding English contexts.

⑤ TABBIE (Iida et al., 2021) establishes a sim-
ple pretraining target, namely corrupt cell identifi-
cation, that solely learns from tabular data, setting
a benchmark for table-centric tasks. TABBIE, in
contrast to other methods, provides embeddings
for all table substructures such as cells, rows, and
columns. Additionally, it requires significantly less
computational power for training.

⑥ TUTA (Wang et al., 2021b) uses a unified pre-
training architecture for understanding generally
structured tables. TUTA augments transformers
with three structure-aware techniques to leverage
spatial, hierarchical and semantic information for
table understanding.

⑦ TURL (Deng et al., 2022) presents a model
using a pre-training/finetuning framework on web
tables with relational data. It acquires deep contex-
tualized representations, deploys a structure-aware
Transformer encoder and uses a Masked Entity Re-
covery objective during pre-training.

⑧ TableFormer (Yang et al., 2022) introduces
a structure-aware table-text encoding architecture
where learnable attention biases are used to extract
tabular structural biases comprehensively.

Although additional models might be available
in this category, we choose the most representa-
tive state-of-the-art ones to compare against in this
paper.

D LLM-based Column Description
Generation

The column descriptions in data lakes might be
domain-specific and not always at hand. Thus, we
attempt to employ ChatGPT7 for the generation
of column descriptions, enabling POLYJOIN to be

7https://chat.openai.com/

Below is a table with 18 columns, please summarize what each column is 
about: 
INCIDENT_KEY OCCUR_DATE OCCUR_TIME BORO PRECINCT 
JURISDICTION_CODE LOCATION_DESC STATISTICAL_MURDER_FLAG 
PERP_AGE_GROUP PERP_SEX PERP_RACE VIC_AGE_GROUP 
VIC_SEX VIC_RACE X_COORD_CD Y_COORD_CD Latitude Longitude 
23957539 08/20/2006 04:41:00 BROOKLYN 67 0  FALSE UNKNOWN U 
UNKNOWN 18-24 M BLACK 998032 175598 40.64865 -73.9503 ……

This table provide information about criminal incidents in New York 
City. Here’s a summary of what each column represents:

INCIDENT_KEY: Unique identifier for each incident.

OCCUR_DATE: Date when the incident occurred. (MM/DD/YYYY) 

OCCUR_TIME: Time when the incident occurred. (24-hour format) 

BORO: Borough of the incident (Brooklyn, Bronx, Manhattan, Queens, 
or Staten Island.) ………

Official column descriptions from NYC Open Data
Field Name Description

INCIDENT_KEY Randomly generated persistent ID for each incident.
OCCUR_DATE Exact data of shooting incident.
OCCUR_TIME Exact time of shooting incident.

BORO Borough where the shooting incident occurred.
……

Figure 6: The process of using ChatGPT to automati-
cally generate descriptions for columns.
applied to any other domain-specific tabular data
without the need for further manual annotations.
As depicted in Figure 6, ChatGPT is capable of
producing column descriptions virtually identical
to the supplied ones.
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