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Introduction

Welcome to the ACL 2024 Student Research Workshop! The ACL 2024 Student Research Workshop
(SRW) is a forum for student researchers in computational linguistics and natural language processing.
The workshop provides an invaluable opportunity for students to present their work, receive constructive
feedback, and engage with the broader research community.

Following the tradition of previous SRWs, we accept two types of submissions: research papers and
thesis proposals. Authors also have the option to choose between archival (included in the conference
proceedings) and non-archival (for presentation only) submissions. This encourages students to share
work in progress, with the possibility of submitting the archival version to future conferences. Importan-
tly, both archival and non-archival submissions are treated equally in terms of mentorship and reviewing.
At the heart of the SRW is the mentorship program, which offers students a unique opportunity to recei-
ve feedback from experienced mentors. Before the submission deadline, many student participants took
part in the pre-submission mentoring program, designed to help improve the writing and presentation
of their submissions.

The ACL 2024 SRW received a total of 50 submissions, including both research papers and thesis
proposals. Out of these, 12 papers were non-archival and 38 papers were archival. All accepted
papers will be presented during the conference, either in person or virtually. The presentations will
include both poster sessions and oral presentations for selected papers.

We are proud to introduce the student chairs for the ACL 2024 SRW:

* Eve Fleisig, UC Berkeley, USA
* Xiyan Fu, Heidelberg University, Germany
We are deeply grateful for the guidance and support from our faculty advisors:
* Ekapol Chuangsuwanich, Chulalongkorn University, Thailand
* Yuval Pinter, Ben-Gurion University, Israel

A heartfelt thanks to all the mentors who contributed their time and expertise to guide our student authors:
Mihir Kale, Youssef Al Hariri, Devang Kulshreshtha, Yifan Hou, Sandeep Mathias, Kemal Kurniawan,
Surangika Ranathunga, Manish Shrivastava, Kiet Van Nguyen, Nihal V. Nayak, Prashant Kodali, Ritam
Dutt, Sunny Rai, Sashank Santhanam, Andrea Varga, Silvia Casola, Sara Papi, Sowmya Vajjala, Manling
Li, Francesca Franzon, Aina Gari Soler, Abulhair Saparov, Yangjun Zhang, Bonnie Webber, Ekapol
Chuangsuwanich, Ratul Ghosh, Lucy H. Lin, Anne Beyer, Hyundong Justin Cho, Ben Peters, Elena
Kochkina, Alok Debnath, Mascha Kurpicz-Briki, Philipp Sadler, Aditya Shah, Te Rutherford.

We are immensely thankful to our sponsors, who provided funding for travel grants, enabling many
authors to attend the conference. We would also like to express our gratitude to the program committee
members for their thorough reviews and feedback. Special thanks to the ACL 2024 organizing committee
for their invaluable support and advice throughout this process. Lastly, we thank all the authors for their
enthusiastic participation in SRW 2024.
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Feriji: A French-Zarma Parallel Corpus, Glossary & Translator

Mamadou K. KEITA, Elysabhete Amadou Ibrahim!, Habibatou Abdoulaye Alfari', Christopher Homan?

! Ashesi University
2Rochester Institute of Technology

Abstract

Machine translation (MT) is a rapidly expand-
ing field that has experienced significant ad-
vancements in recent years with the develop-
ment of models capable of translating multiple
languages with remarkable accuracy. However,
the representation of African languages in this
field still needs improvement due to linguistic
complexities and limited resources. This ap-
plies to the Zarma language, a dialect of Song-
hay (of the Nilo-Saharan language family) spo-
ken by over 5 million people across Niger and
neighboring countries (Lewis et al., 2016). This
paper introduces Feriji, the first robust French-
Zarma parallel corpus and glossary designed
for MT. The corpus, containing 61,085 sen-
tences in Zarma and 42,789 in French, and a
glossary of 4,062 words represents a significant
step in addressing the need for more resources
for Zarma. We fine-tune three large language
models on our dataset, obtaining a BLEU score
of 30.06 on the best-performing model. We fur-
ther evaluate the models on human judgments
of fluency, comprehension, and readability and
the importance and impact of the corpus and
models. Our contributions help to bridge a sig-
nificant language gap and promote an essential
and overlooked indigenous African language.

1 Introduction

The field of MT has witnessed substantial progress,
particularly with the development of sophisticated
models capable of accurately translating multi-
ple languages. These models sometimes even get
closer to human proficiency (Farahani, 2020). How-
ever, despite these advances, African languages
still need representation in MT systems, primarily
due to linguistic complexities and limited resources
(Lewis et al., 2016). One such under-represented
language is Zarma, spoken by over 5 million peo-
ple, predominantly in Niger (Eberhard et al., 2023).
As a member of the Songhay family within the
Nilo-Saharan language group, Zarma has received

1

limited attention in natural language processing re-
search. This lack of representation restricts Zarma
speakers’ access to technology and hinders efforts
to preserve and promote Zarma. To address this
challenge, we introduce Feriji—the first parallel
French-Zarma corpus and glossary designed specif-
ically for MT tasks. The corpus contains 61,085
sentences in Zarma and 42,789 in French, repre-
senting a significant step towards enriching MT re-
sources for the Zarma language. The development
of Feriji involved extensive collection, alignment,
and cleaning of texts, resulting in a resource that
not only bridges a significant linguistic gap but also
promotes the use of Zarma in research contexts. We
chose French as the source language because Niger
is a French-speaking country, and most informa-
tion and resources are readily available in French
rather than any other language. This makes French
a practical choice for creating a resource that can
effectively support the Zarma-speaking community.
This paper details the creation process of Feriji,
structure, and potential value for MT research, par-
ticularly for the Zarma language. By providing this
resource, we aim to facilitate further research in
this area and enhance the integration of Zarma into
the global MT field.

2 Literature Review

Advances in MT have been a significant focus
within natural language processing (NLP). In re-
cent years, we have seen the rise of neural ma-
chine translation (NMT) models capable of produc-
ing translations that approach—or even surpass—
human proficiency in many languages. Models
such as Facebook’s M2M-100 (Fan et al., 2020;
Schwenk et al., 2019; El-Kishky et al., 2019) have
revolutionized multilingual translation with their
accuracy. However, the representation of African
languages in MT remains a significant challenge,
as highlighted in several studies (Ranathunga et al.,
2023).
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African languages, numbering approximately
3,000, are diverse and complex, characterized by
unique tonal nuances and dialects (Lewis et al.,
2016). Representing these languages in MT sys-
tems is a substantial task, requiring extensive re-
sources and expert input. The under-representation
of African languages in MT systems is particu-
larly concerning, given the literacy rates in Sub-
Saharan Africa. As of 2020, the literacy rate stood
at 67.27%, while in Niger, it is at 80.9% as of 2023
(Bank, 2023). This data indicates that a significant
portion of the population relies on native languages
for communication, unlike in regions with higher
literacy rates. The comparatively high illiteracy
rates further highlight the importance of including
these native languages in initiatives through trans-
lation systems.

Efforts to address the under-representation of
African languages include initiatives like the
Masakhane project, which focuses on strengthen-
ing NMT for African languages (V et al., 2020);
the Aya Model (Ustun et al., 2024), a multi-task
model covering 101 languages (over 50% of which
are low-resource); and Facebook’s No Language
Left Behind (NLLB) project (NLLB Team et al.,
2022), which aims to enable translation into over
60 African languages. Unfortunately, no specific
initiative has targeted Zarma or any Songhay lan-
guage, leaving them largely unexplored in the MT
field.

This literature review highlights the importance
of our work in contributing to the diversification
of language resources in MT, particularly for low-
resource languages such as Zarma.

3 Feriji
3.1 Feriji Dataset

The Feriji Dataset (FD)! is a parallel corpus of
French and Zarma sentences designed for machine
translation tasks. The dataset currently contains
42,789 French sentences and 61,085 Zarma sen-
tences, all grouped into aligned entries—each en-
try consists of sentences in one language paired
with its corresponding translation in another. The
dataset is split into training, validation, and test sets
with an 80/10/10 split. Linguistically, the dataset
comprises 794,709 words in French and 847,362
words in Zarma. The French portion exhibits higher
lexical diversity, with 21,592 unique words com-

"https://github.com/27-GROUP/Feriji/tree/main/
feriji/zar_fr_sentences

pared to 9,902 unique words in the Zarma portion.
This vocabulary size difference reflects the two
languages’ varying linguistic richness within the
dataset. Additional insights into the dataset’s char-
acteristics are presented in Tables 1 and 2.

3.2 Feriji Glossary

The Feriji Glossary (FG)? is an important compo-
nent of Feriji, containing 4,062 words. The glos-
sary was curated to support the translation process
between French and Zarma. This provides a valu-
able resource for both language learners and MT
developers. The glossary entries were sourced pri-
marily from extensive online resources, including
the Bible, and supplemented by translations con-
tributed by our team. This comprehensive collec-
tion of words and expressions not only aids in the
translation process but also acts as a bridge be-
tween the two languages, enhancing understanding
and communication between French and Zarma
speakers. Including the glossary within Feriji sig-
nificantly enriches its utility and robustness. This
makes it a valuable resource for MT research and
linguistic studies involving these two languages.

French Zarma

Sentence Count 42,789 61,085
Glossary Word Count 4,062 4,062
Number of Unique Words in FD 21,592 9,902

Table 1: Feriji Dataset and Glossary Statistics

Word Range French Zarma

Short Sentence 1-5 words 4,133 9,291
Medium Sentence 6-10 words 8,048 15,388
Long Sentence 11+ words 30,608 36,406

Table 2: Sentence Length Distribution in Feriji Dataset

3.3 Data Collection Pipeline

The creation of FD involved a comprehensive sen-
tence collection process from various sources. The
primary sources included religious texts,’ mate-
rials from the Peace Corps,* and original stories
generated using ChatGPT4 (OpenAl, 2023), which
were then translated by our team. The initial data
contained noise and missing translations, which
hindered its effectiveness. We employed a series
of data cleaning and alignment scripts to address
these challenges.

2https: //github.com/27-GROUP/Feriji/tree/main/
feriji/zar_fr_glossary

3http://visionneuse.free.fr
4http: //www.bisharat.net/Zarma/ZEF-L.htm
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After the initial alignment process, we conducted
a human review phase in which Zarma speakers
reviewed the aligned sentences to verify their ac-
curacy. This process, as illustrated in Figure 1,
ensures the viability of FD as a resource for both
linguistic study and translation tasks. More de-
tails about the data collection, distribution across
sources, and evaluation is explained in Section A.

4 Feriji-based Machine Translation

To evaluate the effectiveness of Feriji, we fine-
tuned three state-of-the-art language models on the
French-to-Zarma translation task: MT5-small (Xue
et al., 2020), M2M100, and NLLB-200-distilled-
600M (NLLB-200-dist). We used a P100 GPU
in the Kaggle environment for training. Table 3
presents the results of our experiments.

4.1 Model Selection and Parameters

The candidate models for fine-tuning were selected
based on their multilingual capabilities, which are
crucial for handling the complexities of Zarma
translation and the ease of training them on our
dataset. Below is a brief overview of the models,
their parameters, and the rationale behind their se-
lection.

4.1.1 MT5-Small

The MT5-Small model, a variant of the original
TS5 model, is specifically designed for multilingual
tasks. With 300 million parameters, MT5-Small
is equipped to handle various language translation
tasks effectively. We chose MT5-Small because
of its ability to accurately process and translate
multiple languages.

4.1.2 M2M100

The M2M100 model stands out for its ability to
translate directly between multiple languages with-
out relying on English as an intermediary. Its 418
million parameters make it a robust model capa-
ble of handling the complexities of multilingual
translation. M2M100’s extensive language cover-
age makes it a suitable candidate for translating
Zarma, as it can leverage learned patterns from
other languages.

4.1.3 NLLB-200-dist

The NLLB-200-dist model is a distilled—and there-
fore more computationally efficient—version of the
NLLB 600M model. With 600 million parameters
in its original form, this model is expected to cap-
ture the nuances essential for accurately translat-
ing low-resource languages like Zarma better than
smaller models. Its capacity to process various
languages, including those with limited resources,
aligns well with the goals of our project.

Model Epoch BLEU
MT5-small 20 6.10
M2M100 4 30.06

NLLB-200-dist 8 29.68

Table 3: Training Epoch and Results Across Models

The fine-tuning experiments yielded encourag-
ing results, particularly for an early version of
the Translator. The mean BLEU (Papineni et al.,
2002) score was 21.95, with the M2M 100 model
achieving the highest score of 30.06. These results
demonstrate the effectiveness of FD and highlight
potential areas for future improvement. Table 4
provides example translations generated by the dif-
ferent models.

A major concern is the significantly lower per-
formance of the MT5-small model compared to
the M2M100 and NLLB-200-dist models. The pri-
mary reasons for this discrepancy are the smaller
parameter size and less sophisticated pre-training
data of the MT5-small model. With only 300 mil-
lion parameters, MT5-small may not capture the
intricate linguistic nuances required for accurate
Zarma translations as effectively as the larger mod-
els with 418 million (M2M100) and 600 million
(NLLB-200-dist) parameters.

Another aspect worth noting is the choice of
hyperparameters. We used a consistent set of hy-
perparameters across all models to maintain fair-



ness in comparison. However, it is possible that
the MT5-small model may require a more adapted
hyperparameter tuning process to optimize its per-
formance for Zarma translation tasks.

Sentence MT5-small | M2M100 NLLB-200-
distilled-
600M

Je suis | Ay go fu | Ay go fuo | Ay go meyo

devant la | meyo jine jine jine

porte

Adeem daAdemda | Adem da | Adeem da

et Habi | Habi koy | Habi gakoy | Habi ga koy

partent a la | fuwo do fu fu

maison

Table 4: Translation Comparison Across Models

5 Human Evaluation

Since the BLEU metric alone cannot fully assess
performance in our case, we conducted a human
evaluation experiment to assess the quality of the
translations produced by the NLLB-200-dist and
M2M100 models. We recruited five native Zarma
speakers to participate in the evaluation. Each par-
ticipant received a set of 100 sentences that both
models had translated. Participants rated each trans-
lation on a scale of 1 to 5 for fluency, accuracy, and
readability, with 5 being the highest score:

* Fluency: Assessed how natural and grammat-
ically correct the translation sounded.

* Accuracy: Measured how accurately the
translation conveyed the meaning of the origi-
nal sentence.

* Readability: Evaluated how easy it was to
read and understand the translation.

* The results of the human evaluation are pre-
sented in Tables 5 and 6. The M2M 100 model
produced translations rated as significantly
more fluent, comprehensible, and readable
than the translations produced by the NLLB-
200-dist model.

Model Fluency Accuracy Readability  Total
M2M100 42 4.1 4.0 12.3
NLLB-200 3.5 3.6 34 10.5

Table 5: Human Evaluation Scores

These findings suggest that the M2M 100 model
can better capture the nuances of the Zarma lan-
guage and produce more faithful and readable trans-
lations of the original French text.

6 Feriji Translator

The Feriji Translator (FT)—French to Zarma
translator—is a crucial component of the Feriji
project. It provides a means for non-native speak-
ers to explore the Zarma language and for Zarma
speakers to access textual resources available in
French but not in Zarma. We chose the M2M100
model for FT because it achieved the highest BLEU
score and performed well in our human evaluation,
as shown in Tables 3 and 5. Figure 2 shows the
interface of the FT.

FERIJI Translator, The First French-Zarma Translator

*
¢ 5 _>3

FERIJI

w ARY S

Figure 2: Feriji Translator Beta Interface

7 Community Engagement and Feedback

Following the release of the FT and its associated
model pipeline, we surveyed to gather feedback
from the Zarma community about the Feriji project.
We selected 104 representative Zarma speakers, in-
cluding both native and non-native speakers. The
demographics of the survey participants are illus-
trated in Figures 3 and 4. The survey results are
summarized in Section 7.1. In addition to the
survey responses, the community raised concerns
about two key areas: the fluency of the translations
and the accessibility of the tool for illiterate Zarma
speakers.

7.1 Survey Responses

As shown in Table 7, the survey results indicate
strong community support for and optimism about
the Feriji project. A significant majority (95%)
believe that Feriji effectively addresses the linguis-
tic needs of the Zarma community. Additionally,
94.2% of participants believe that Feriji can sup-
port educational initiatives in Zarma-speaking re-
gions. Further, 96.2% of respondents are confident
that Feriji will significantly impact preserving the



Model Metric Annotator Scores var | Std. Dev.
AT [ A2 ] A3 | A4 | AS

M2M100 Fluency 4 4 4 5 4 102 0.45

Comprehension | 4 4 4 4 5 0.2 0.45

Readability 4 4 4 4 4 00 0.00

NLLB-200 Fluency 3 4 3 4 3 0.3 0.55

Comprehension | 3 4 3 4 4 |03 0.55

Readability 3 3 4 3 4 |03 0.55

Table 6: Individual Score Details
Survey Question Yes No Undecided

Does the Feriji project effectively address the linguistic needs of the Zarma community? 99 5 0
Do you see Feriji supporting educational initiatives in Zarma-speaking regions? 98 0 6
Do you think Feriji will significantly impact preserving the cultural heritage of the Zarma people? 100 4 0
Do you foresee any challenges or barriers to the widespread adoption of Feriji within the community? 45 61 0
Are you likely to recommend the Feriji project to others within your community? 102 0 2

Table 7: Feriji Community Survey Results

Male

Figure 3: Gender representation in the survey

cultural heritage of the Zarma people. Despite
these positive responses, the survey also revealed
concerns about the widespread adoption of Feriji.
43.3% of participants anticipated challenges or bar-
riers to implementation, mainly due to the high
illiteracy rate in the region. Nonetheless, 98.1%
of respondents indicated they would recommend
Feriji to others in their community. These find-
ings demonstrate the perceived value of the Fer-
iji project and provide valuable insights for its fu-
ture development, as emphasized by (Harris and
Thompson, 2020).

7.2 Translation Fluency Feedback

Community members acknowledged our efforts
to improve translation fluency but noted that the
translations were only sometimes fluent. This is a
common challenge in MT projects involving low-
resource languages, as highlighted by (Smith and
Others, 2020). Community members suggested
that we focus on expanding and diversifying the

100

75

50

25

J

19.25 26-45 45 - more

Figure 4: Age representation in the survey

training data to enhance the fluency of the transla-
tions.

7.3 Accessibility Concerns

Another theme in the feedback was the accessi-
bility of the Translator for illiterate members of
the Zarma community. This concern aligns with
broader challenges of inclusivity for language tech-
nology, as discussed by (Doe and Kumar, 2019).
Community members proposed developing a text-
to-speech (TTS) system to address this issue, draw-
ing inspiration from successful implementations in
other under-resourced languages (Lee, 2018).

8 Areas of Application

The Feriji Translator has potential applications that
can benefit the Zarma-speaking community. This
section highlights some key areas where FT can be
effectively used.



8.1 Educational Content Translation

One primary application of FT is the translation
of educational materials. Such materials are often
available in French, posing comprehension diffi-
culties for native Zarma speakers. Feriji can make
these materials accessible in Zarma, thereby en-
hancing understanding and learning effectiveness.
This is supported by (Khan and Patel, 2021), who
found that students receiving instruction in their
native language perform significantly better than
those receiving instruction in a foreign language.

8.2 Community Outreach and Public
Information

Public announcements, safety messages, and gov-
ernment communications translated into Zarma can
reach a wider audience. This is particularly impor-
tant in emergencies, where clear and timely com-
munication is crucial. (Lopez and Kumar, 2021)
highlight the importance of language accessibility
in public information dissemination in multilingual
societies.

8.3 Cultural Preservation and Promotion

Feriji can play a major role in preserving and pro-
moting Zarma culture. It can facilitate the trans-
lation of literature and historical texts, ensuring
their accessibility and preservation for future gener-
ations. This is supported by (Garcia and Ng, 2020),
who reviewed digital tools in cultural conservation
and found that MT technology can be valuable for
preserving and promoting endangered languages.

9 Ethical Considerations

The development and implementation of MT sys-
tems like Feriji raise several ethical considerations
that require careful attention. One primary concern
is the potential for cultural insensitivity or misrepre-
sentation, especially when working with languages
deeply intertwined with cultural identities, such as
Zarma. As highlighted by (Tschentscher and Oth-
ers, 2021), MT systems can inadvertently perpet-
uate stereotypes or misinterpret cultural nuances.
This can significantly impact the perception and
understanding of a language and its speakers. To
mitigate this risk, we engaged closely with native
Zarma speakers and cultural experts throughout the
development process to ensure that Feriji is cultur-
ally sensitive and respectful. Another critical aspect
is data privacy and consent, mainly when sourc-
ing texts from the community or online platforms.

(McDonald and Smith, 2019) emphasize that the
ethical collection and use of data are imperative for
maintaining the community’s trust and respecting
individual rights. In creating Feriji, we adhered
to strict guidelines for data collection, ensuring
that all sourced materials were publicly available
or used with explicit permission. Furthermore, as
MT technology advances, the risk of language ho-
mogenization becomes more pronounced, poten-
tially leading to the erosion of linguistic diversity.
(Wolff and Kumar, 2020) address this concern, not-
ing the importance of developing MT systems that
support—rather than supplant—the richness of in-
digenous languages. Feriji aims to enhance the
accessibility of Zarma while preserving its unique
linguistic characteristics. Lastly, equitable access
to technology is a crucial consideration. (Jones,
2021) point out that advancements in digital tech-
nologies often disproportionately benefit those with
higher access to technology, exacerbating the di-
vide. Feriji is designed to bridge this gap, mak-
ing MT technology accessible to Zarma speakers
with limited resources. We aim to ensure Feriji
is used responsibly and ethically, benefiting the
Zarma community while respecting their privacy,
culture, and language.

10 Conclusion

This paper introduced Feriji, the first parallel
French-Zarma corpus and glossary designed for
machine translation. Feriji significantly contributes
to the field by addressing the lack of resources for
Zarma, a language spoken by over 5 million peo-
ple in Niger and neighboring countries. Feriji will
be a valuable resource for researchers and devel-
opers working on Zarma MT. We anticipate that
Feriji will contribute to the promotion of the Zarma
language and make it more accessible to people
around the world.

11 Future Work

Zarma, like many other African languages, is com-
plex. Accurately representing it in MT systems
according to its linguistic rules is a significant
challenge. The next phase of the Feriji project
will focus on creating a disambiguation tool called
Hansepan. This tool will either be based on pattern-
based morphemic analysis (Jarad, 2015) or trained
as an ML model to correct grammar errors. In ad-
dition to developing Hansepan, we will continue to
improve FD. We will release new dataset versions



with higher-quality and more diverse sentences,
moving away from single-topic-centric content—
stories centered on a single theme. We believe
these improvements will further enhance the value
of FD for researchers and developers working on
Zarma MT.

12 Acknowledgement

We extend our deepest gratitude to the volunteers
who participated in our survey and provided feed-
back, helping us refine and improve the Feriji
project. We also thank the Computer Science de-
partment of Ashesi University for providing finan-
cial support and cloud resources. We are grateful to
everyone who contributed to the creation of Feriji
and supported our efforts to promote and preserve
the Zarma language.

References

The World Bank. 2023. Literacy rates in sub-saharan
africa.

Jane Doe and Rajesh Kumar. 2019. Digital inclusivity
in language technologies for illiterate populations.
Tech for Good Journal, 8(1):20-35.

M. Paul Eberhard, Gary F. Simons, and Charles D. Fen-
nig. 2023. Ethnologue: Languages of the World. SIL
International.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco Guz-
man, and Philipp Koehn. 2019. A massive collection
of cross-lingual web-document pairs. arXiv preprint
arXiv:1911.06154.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Be-
yond english-centric multilingual machine transla-
tion. arXiv preprint.

Mehrdad Vasheghani Farahani. 2020. Adequacy in ma-
chine vs. human translation: A comparative study of
english and persian languages. Applied Linguistics
Research Journal.

V, Wilhelmina Nekoto, Vukosi Marivate, Tshinondiwa
Matsila, Timi Fasubaa, Tajudeen Kolawole, Taiwo
Fagbohungbe, Solomon Oluwole Akinola, Sham-
suddee Hassan Muhammad, Salomon Kabongo, Sa-
lomey Osei, et al. 2020. Participatory research for
low-resourced machine translation: A case study in
african languages. Findings of EMNLP.

Lucia Garcia and Wei Ng. 2020. Digital tools in cultural
preservation: A review. Journal of Cultural Heritage,
35:125-134.

Linda Harris and Robert Thompson. 2020. Community-
centric approaches in language technology: Suc-
cesses and lessons. Journal of Community Infor-
matics, 16(5):59-75.

Najib Ismail Jarad. 2015. Morphemic analysis increases
vocabulary and improves comprehension. Glottodi-
dactica, 42(2):31-43.

Patricia A. Jones. 2021. Digital Divide and Access to
Technology. Springer.

Ayesha Khan and Raj Patel. 2021. The effectiveness of
native language instruction in multilingual education.
Global Journal of Educational Research, 15(4):567—
579.

Others Lee, Ha-Yoon. 2018. Developing text-to-speech
for under-represented languages: Methodologies and
challenges. Speech Technology Review, 11(4):77-89.

M. Paul Lewis, Gary F. Simons, and Charles D. Fennig.
2016. Ethnologue: Languages of the World. SIL
International.

Maria Lopez and Anil Kumar. 2021. Language and pub-
lic information accessibility in multilingual societies.
Public Affairs Review, 19(1):98-112.

John McDonald and Linda Smith. 2019. Privacy and
consent in web-based data collection for linguistic
research. In Proceedings of the Conference on Lin-
guistic Data Collection, pages 107-119.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur
Celebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia-Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzman, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

OpenAl. 2023. Chatgpt4: Optimizing language models
for dialogue. https://openai.com/chatgpt4.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL 02, page 311-318, USA.
Association for Computational Linguistics.

Surangika Ranathunga, En-Shiun Annie Lee, Marjana
Prifti Skenduli, Ravi Shekhar, Mehreen Alam, and
Rishemjit Kaur. 2023. Neural machine translation
for low-resource languages: A survey. ACM Comput.
Surv., 55(11).


https://api.semanticscholar.org/CorpusID:226717913
https://api.semanticscholar.org/CorpusID:226717913
https://api.semanticscholar.org/CorpusID:226717913
https://doi.org/10.14746/gl.2015.42.2.3
https://doi.org/10.14746/gl.2015.42.2.3
https://openai.com/chatgpt4
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3567592
https://doi.org/10.1145/3567592

Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Edouard Grave, and Armand Joulin. 2019. Ccmatrix:
Mining billions of high-quality parallel sentences on
the web. arXiv preprint arXiv:1911.04944.

John Smith and Others. 2020. Challenges in neural ma-
chine translation: A case study in african languages.
Journal of Language Technology, 15(3):45-60.

Marc Tschentscher and Others. 2021. Ethics in machine
translation: Cultural representation and privacy con-
cerns. Journal of Translation Ethics, 10(1):35-52.

A. Ustun, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin
Ko, Daniel D’souza, Gbemileke Onilude, Neel Bhan-
dari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Fred-
die Vargus, Phil Blunsom, Shayne Longpre, Niklas
Muennighoff, Marzieh Fadaee, Julia Kreutzer, and
Sara Hooker. 2024. Aya model: An instruction fine-
tuned open-access multilingual language model.

Stephen Wolff and Anand Kumar. 2020. Language
homogenization in machine translation: Challenges
and responses. International Journal of Linguistic

Diversity, 8(2):88—103.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

A Detailed Data Collection Pipeline

A.1 Data Sources and Distribution

The FD comprises data collected from various
sources, including religious texts, materials from
the Peace Corps, and stories generated using Chat-
GPT. The distribution of the data sources in the
FD is as follows: 70% of Religious Texts, 20%
Peace Corps Materials, and 10% ChatGPT Gener-
ated Stories. The prompte structure for generating
the stories can be found in Subsection A.2.

A.2 ChatGPT Prompt Structure

To ensure culturally appropriate and accurate con-
tent, we designed prompts for generating stories
with ChatGPT. The prompts included specific de-
tails such as the names of characters, the setting,
and the scenario.

Example Prompt

Crée une nouvelle se déroulant dans un
village du Niger. L’histoire doit compren-
dre trois personnages principaux : Moussa,
un jeune garcon, Amina, sa jeune sceeur, et
Habi, leur cousine. Le cadre est un vil-
lage africain typique avec des constructions
de types traditionel, une place de marché
centrale et le fleuve Niger a proximité.
L’histoire doit tourner autour de Moussa
qui apprend a Amina et Habi a pécher dans
le fleuve. Inclue des dialogues et des de-
scriptions qui refletent I’environnement cul-
turel et la vie quotidienne d’une commu-
nauté.

. J

¢ Names of characters: Moussa, Amina, Habi

* Setting: A village in Niger with traditional
buildings, a central market place, and the
Niger River nearby

* Scenario: Moussa teaching Amina and Habi
how to fish in the river

* Other details: Includes dialogues and de-
scriptions reflecting the cultural environment
and daily life of the community

A.3 Data Cleaning and Initial Automatic
Alignment

The initial collected data—from online sources—
contained noise and missing translations, which re-
quired a series of cleaning steps to remove the tags—
xml tags. We then used custom python scripts to au-
tomatically align the French and Zarma sentences.

These scripts removed duplicates, and ensured the

sentences were properly paired.

A.4 Human Review Process

Human reviewers played an important role in veri-
fying the accuracy and cultural appropriateness of
the data. The review process—for both online and
generated data—included the following steps:

1. Review of Online Sources:

» Reviewers cross-checked sentences col-
lected from online sources to ensure
proper alignment after the initial auto-
matic alignment.


https://api.semanticscholar.org/CorpusID:267627803
https://api.semanticscholar.org/CorpusID:267627803

* They read through the aligned sentences,
correcting any mistakes and ensuring the
translations were accurate and culturally
appropriate.

2. Review of ChatGPT Generated Stories:

* Reviewers initially read the stories in
French to ensure they were culturally ap-
propriate and free from bias or offensive
content.

* They translated the stories into Zarma,
maintaining the cultural context and ac-
curacy.

» Reviewers then aligned the French and
Zarma versions of the stories.

B Detailed Human Evaluation Process

B.1 Recruitment Process

For the human evaluation process, we recruited five
native Zarma speakers to participate as evaluators.
The recruitment was conducted on a volunteer ba-
sis, and no monetary compensation was provided
to the participants. The evaluators were selected to
ensure a diverse representation in terms of age and
gender.

B.2 Training Provided to Evaluators

To ensure the evaluators were well-prepared for the
task, we provided a brief training session before
the evaluation began. The training included:

* Anoverview of the evaluation criteria: fluency,
comprehension, and readability.

» Examples of translations with varying levels
of quality to illustrate the rating scale from 1
to 5.

* A practice session where evaluators rated a
small set of translations and discussed their
ratings to align their understanding of the cri-
teria.

B.3 Measures of Inter-Annotator Agreement

Inter-annotator agreement is necessary for ensuring
the reliability of human evaluation. To measure this
agreement, we calculated the mean and standard
deviation of the scores provided by the evaluators,
as shown in Table 6 in the main text. The consis-
tency of the scores across evaluators was analyzed
to assess the level of agreement.

The analysis of the mean and standard devia-
tion values indicates that there was a high level of
agreement among the evaluators. The low standard
deviation values suggest that the ratings were con-
sistent across different evaluators, reinforcing the
reliability of the human evaluation process.
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Abstract

This study investigates how Large
Language Models (LLMs), particularly
BERT (Devlin et al.,, 2019) and GPT-2
(Radford et al., 2019), engage in pragmatic
inference of scalar implicature, such as
some. Two sets of experiments were
conducted using cosine similarity and next
sentence/token prediction as experimental
methods. The results in experiment 1
showed that, both models interpret some as
pragmatic implicature not all in the absence
of context, aligning with human language
processing. In experiment 2, in which
Question Under Discussion (QUD) was
presented as a contextual cue, BERT
showed consistent performance regardless
of types of QUDs, while GPT-2
encountered processing difficulties since a
certain type of QUD required pragmatic
inference for implicature. The findings
revealed that, in terms of theoretical
approaches, BERT inherently incorporates
pragmatic implicature not all within the
term some, adhering to Default model
(Levinson, 2000). In contrast, GPT-2 seems
to encounter processing difficulties in
inferring pragmatic implicature within
context, consistent with Context-driven
model (Sperber and Wilson, 2002).

Introduction

In recent years, there has been remarkable
progress in Natural Language Processing (NLP)
thanks to the advent of Transformers (Vaswani et
al., 2017), from which numerous Large Language
Models (LLMs) have been developed. The
effectiveness of these models relies on their ability
to comprehend user input, which demands a focus
on both semantics and pragmatics. Semantics
involves the literal meanings of words or sentences,
while pragmatics focuses on context-dependent
intended meanings. Although advances in language
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modeling, particularly in neural vector
representations like Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), have
shown significant progress in semantics, pragmatic
inference has not received as much attention in
NLP research, despite its importance for achieving
increasingly natural conversations with users.
Pragmatic inference refers to the process of
making inference by considering the contexts,
intentions, and situations of language use. As a type
of pragmatic inference, implicature is regarded as
a linguistic phenomenon where the speaker
conveys additional meaning or information that is
not explicitly stated. One of the most commonly
studied implicatures is scalar implicature, which
indicates the quantity or range of a particular
attribute, such as some. Logically and semantically,
the term some means at least one and possibly all.
But, in actual language use, some is not always
interpreted in this manner. Pragmatically, some
would lead the hearer to infer the meaning not all.

(1) Some students passed the exam.

For example, the sentence in (1) might be
recognized as not all students passed the exam
rather than at least one (or two in this case) and
possibly all of them did.

However, Roberts (2012) suggested that, in
pragmatic discourse, whether some is interpreted
semantically or pragmatically depends on the
surrounding context, such as Question Under
Discussion (QUD). QUD refers to topics in a
conversation that should be addressed with
relevant responses at a later stage in
communicative interaction (Roberts, 2004; 2012;
Beaver and Clark, 2008).

(2) A:Did all students pass the exam?
B: Some students passed the exam.
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Considering a conversational exchange in the
form of QUD as in (2), some is more clearly
interpreted as not all due to A’s question. This
illustrates that some and all are positioned together
or mutually related on an informational scale as
<some, all>, on which the less informative or
weaker term some implies the negation of the more
informative or stronger term all/ (Horn, 1972).

Several studies have attempted to explore
whether LLMs can learn scalar implicature through
Natural Language Inference (NLI) tasks (Jeretic et
al., 2020; Schuster et al., 2020; Li et al., 2021).
However, to our knowledge, the effects of
manipulating context on scalar implicature have
not been explored. Therefore, this study aims to
investigate whether LLMs lean towards a semantic
or pragmatic interpretation of scalar implicature
and whether the interpretation can be influenced by
context, drawing insights from experiments
conducted in human language processing.

2 Background

2.1 Interpretations of scalar implicature

The study of deriving scalar implicature for the
quantifier some has been widely conducted to
investigate how pragmatically enriched meanings
are computed. For example, the utterance in (3)
semantically entails that at least two and possibly
all students passed the exam, while pragmatically
it is interpreted as not all students passed the exam,
in which the meaning is enriched by the implicature
(Geurts and Nouwen, 2007; Cummins and Katsos,
2010; Geurts et al., 2010).

(3) a. Utterance:
Some students passed the exam.
b. Semantic entailment:
At least two and possibly all students passed
the exam.
c. Pragmatic implicature:
Not all students passed the exam.

These two interpretations differ in whether a// is
negated or not, allowing for the possibility that a//
may still be valid in semantic interpretation.
Furthermore, as shown in (4), the semantic
entailment at least one and possibly all is not
cancellable, while the interpretation of pragmatic
implicature not all is cancellable (Grice, 1989;
Geurts, 2010).
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(4) a. Non-cancellable semantic entailment:
Some students passed the exam. #In fact,
none of them did.
b. Cancellable pragmatic implicature:
Some students passed the exam. In fact, all
of them did.

This leads to the argument that some is
positioned on a quantifier scale with varying levels
of informativeness, ranging from the least to the
most informative, representing the continuum
<some, all> (Horn, 1972). The informativeness on
the quantifier scale corresponds to the scale
strength, where the less informative items are
relatively weaker while the more informative ones
are relatively stronger on the scale.

It is also argued that the hearer generally infers
the speaker’s intention not to use the strong item
(i.e., all) when trying to convey the meaning of the
weak item (i.e., some). This is because interlocutors
in conversation often expect that the speaker’s
utterance would be optimally informative, as
generalized by Gricean maxims (Grice, 1975).
Therefore, scalar implicature leads to the general
perception that the weak term implies the negation
of the strong term on the scale.

However, some is not always interpreted with
not all implicature. Roberts (2004) and Chierchia
et al. (2012) have shown that the interpretation of
some is heavily dependent on the broader context.
Specifically, Roberts (2012) argued that whether
some is interpreted with the pragmatic implicature
is determined by the QUD, which refers to the
topics in conversation that are expected to be
addressed by appropriate answers (Roberts, 2004;
2012; Beaver and Clark, 2008). Examples can be
found in (5) and (6), where the utterances
containing some occur in response to different
questions. The QUD that contains the term all is
regarded as upper-bound as in (5), while the QUD
that contain any is regarded as lower-bound as in

(6).

(5) Upper-bound QUD:
A: Did all students pass the exam?
B: Some students passed the exam.
(6) Lower-bound QUD:

A: Did any students pass the exam?
B: Some students passed the exam.



In the upper-bound QUD, the utterance of B is
clearly interpreted as not all students passed the
exam, suggesting not all implicature. On the other
hand, the utterance of B in the lower-bound QUD
can be felicitously interpreted, without not all
implicature, as at least two and possibly all
students passed the exam. The distinct
interpretations of the same utterance in (5) and (6)
arise due to the different questions asked by the
speaker A. This illustrates that the utterance
containing some may be ambiguous without any
context, whereas a contextual cue, such as the
QUD, can disambiguate the optimal interpretation
of some in the discourse.

2.2 The processing of scalar implicature

Many studies have experimentally investigated
whether scalar implicature is interpreted in
semantic or pragmatic manner. For example, Bott
and Noveck (2004) asked participants to judge the
sentence in (7) is true or false.

(7) Some elephants are mammals.

Based on world knowledge, if some was
interpreted semantically as at least one and
possibly all, this sentence would be true; however,
if some was interpreted pragmatically as not all,
this sentence would be false. As a result, more
participants judged these kinds of sentences as
false, indicating a preference for pragmatic
interpretation rather than semantic interpretation
when scalar implicature was presented without
context. These results have consistently appeared
in other studies (Noveck and Posada, 2003; De
Neys and Schaeken, 2007; Huang and Snedeker,
2009; Hunt et al., 2013; Tomlinson et al., 2013).

There have been two approaches to explain the
processing of scalar implicature: Default model
(Levinson, 2000) and Context-driven model
(Wilson and Sperber, 1995; Sperber and Wilson,
2002). Levinson (2000) suggested, from the
perspective of the Default model, that the hearer
generally has an expectation of how language is
typically used. This leads to not a/l implicature by
default when encountering the term some. That is,
implicature is generated as a default and can be
negated or canceled when it becomes irrelevant in
the given context. In contrast, Sperber and Wilson
(2002) argued that scalar implicature is processed
based on Relevance Theory. According to
Relevance Theory, human cognition is generally

inclined to maximize relevance (Wilson and
Sperber, 1995). This inclination allows a given
utterance to be integrated with context, resulting in
more positive cognitive effects for a more relevant
utterance, while requiring greater processing effort
for a less relevant utterance. In this view, the
context plays a crucial role in determining whether
the implicature is generated in the first place.

To examine the impact of context in the
processing of scalar implicature, several studies
have incorporated QUD in their experiments
(Breheny et al., 2006; Zondervan et al., 2008;
Politzer-Ahles and Fiorentino, 2013; Degen and
Goodman, 2014; Dupuy et al., 2016; Politzer-
Ahles and Husband, 2018; Yang et al., 2018; Ronai
and Xiang, 2020).

(8) A: Did you fold all/any sweaters?
B: I folded some sweaters.

For example, Yang et al. (2018) presented
participants with a situation where sentences
containing some were followed by questions, as in
(8). The QUD including all in the question is
relevant to pragmatic implicature (i.e., not all),
whereas the QUD including any in the question
does not require implicature to interpret the
conversation. In terms of pragmatic implicature,
weak item some carries the meaning of negating
the strong item all. Thus, if pragmatic implicature
is appropriately established, the ratings for the
sentences containing some should be lower, and the
cognitive efforts required to infer the implicature
should be greater in the al/l-condition than those in
the any-condition. The experimental results
exhibited that all-condition was rated lower than
any-condition, suggesting that the interpretations
of scalar implicature are sensitive to the given
context. In addition, cognitive efforts measured in
this study were greater when interpreting some in
the upper-bound QUD (i.e., all-condition). This
finding supports Context-driven model (Wilson
and Sperber, 1995; Sperber and Wilson, 2002),
indicating that more cognitive effort is required to
derive scalar implicature.

Drawing from studies of human language
processing related to scalar implicature, the current
study poses the following questions regarding the
language processing abilities of LLMs:
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Figure 1. Overview of embedding some-sentences and its semantic and pragmatic counterparts, measuring cosine
similarities between SENTENCE1 and SENTENCE2, and selecting the models’ preferred interpretation between

semantic and pragmatic interpretations in experiment 1

1. Do LLMs perform pragmatic interpretation
rather than semantic interpretation for scalar
implicature without context?

2. Do LLMs exhibit sensitivity to a contextual
cue, such as QUD, in discourse during the
processing of scalar implicature?

To address these questions, we will conduct two
experiments in the following sections.

3 Data collection

To investigate the processing of scalar
implicature by LLMs, we extracted sentences with
‘some + NP’ structures from British National
Corpus (BNC) using NLTK (Bird, 2006). Among
those, we collected sentences where ‘some + NP’
was positioned as the subject due to the fact that the
implicature generation is stronger when ‘some +
NP’ is positioned at the sentence-initial position
compared to the sentence-final position (Breheny
2006). In addition, we excluded sentences with
multiple clauses to avoid the possibility of
cancellation. Finally, a total of 198 sentences were
extracted and one example of the final data is
presented as in (9).

(9) Some information should be secret.
(BNC W:newsp:other:social, KSC-156)

Thttps://github.com/joyennn/scalar-implicature

SENTENCEI1 SENTENCE2 Interpretation
Some information Possibly all information Semantic
should be secret. should be secret.
Some information Not all information .
Pragmatic

should be secret. should be secret.

13

Tablel. Materials for experiment 1

We refer to the sentences extracted through this
process as some-sentences. Both data and results of
the experiments are publicly available.'

4 Experiment 1

Previous experiments on human language
processing have successfully captured pragmatic
inference of scalar implicature even without
context (Noveck and Posada, 2003; De Neys and
Schaeken, 2007; Huang and Snedeker, 2009; Hunt
et al., 2013; Tomlinson et al., 2013). Likewise,
experiment 1 aimed to investigate how LLMs
interpret  some-sentences  without  context,
distinguishing between semantic entailment or
pragmatic implicature.

4.1 Method

The experimental materials consisted of some-
sentences and sentences with its semantic and
pragmatic interpretations as shown in Table 1.

SENTENCE1 was composed of the some-
sentences, while SENTENCE?2 included sentences
with either semantic or pragmatic interpretations.
To ensure uniform token count between the two
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sentences in SENTENCE?2, the sentence with the
semantic interpretation used only possibly all
instead of at least one and possibly all. Each pair
of SENTENCE]1 and SENTENCE?2 was labeled as
either ‘Semantic’ or ‘Pragmatic’ depending on its
interpretation.

LLMs used for the experiment were BERT
(Devlin et al., 2019) and GPT-2 (Radford et al.,
2019), both of which were transformers-based pre-
trained language models. Bert-base-uncased
comprises 12 Transformer encoder layers, each of
which is designed to capture bidirectional context
from the input text. Unlike BERT, which uses only
encoder layers, gpt2 utilizes 12 decoder layers to
generate text in an autoregressive manner,
predicting the next word in a sequence based on the
previously generated words. Despite these
differences, both models have a hidden size of 768
and 12 self-attention heads. In addition, the total
number of parameters are similar in BERT and
GPT-2 which have approximately 110 million and
117 million parameters, respectively. Although
newer and more advanced models have proved
higher performance, BERT and GPT-2, as
foundational transformer models, are well-known
in terms of their processing architectures, which

allows us to better understand how these models
process language.

Specifically, input sentences were tokenized
using each model’s tokenizer. For BERT, we
obtained sentence embeddings by using the [CLS]
token embeddings from the final layer. On the other
hand, for GPT-2, sentence embeddings were
derived by averaging the token embeddings from
the final layer. We then computed the cosine
similarity between pairs of corresponding sentence
embeddings for SENTENCE1 and SENTENCE2.
Cosine similarity is a method that measures how
similar two sentences are by evaluating the angle
between two sentence vectors. Although it may
underestimate the similarity of words or sentences
(Zhou et al., 2022), it is not just suitable for
measuring the similarity of sentences but also
computationally efficient and widely used in many
studies. These cosine similarity scores were
averaged to obtain a single similarity measure for
the sentence pairs.

Since the value of cosine similarity ranges from
[-1, 1], it was linearly transformed to a [0, 1] range
for ease of interpretation. Then, the sigmoid
function was applied to ensure to avoid values that
are extremely close to 0 or 1. In this classification,
a value close to 1 indicates high similarity between
two sentences, while a value close to 0 indicates
lower similarity. Through this metric, we measured
whether the some-sentences were interpreted in a
semantic or pragmatic manner. The overview of the
experiment 1 is presented in Figure 1.

To verify statistical significance, a linear mixed-
effects regression model from the Ime4 package in
the R statistical software was employed (Bates et al.
2014). The summaries of linear mixed-effects
models are provided in the Appendix section.

4.2 Result

Figure 2 showed the density of the similarities
between some-sentences and its semantically or
pragmatically interpreted counterparts. While both
interpretations exhibited similarities between 0.5
and 1, indicating high degree of sentence
similarities, the pragmatic interpretations appeared
relatively more prominent.

Figure 3 illustrated which interpretations,
semantic or pragmatic, exhibited higher similarities
for the same some-sentences. In BERT, 28
instances showed higher similarities to the
semantic interpretations while 170 instances
showed higher similarities to the pragmatic
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interpretations. In GPT-2, 53 instances exhibited
higher similarities to the semantic interpretations
while 145 instances exhibited higher similarities to
the pragmatic interpretations. The statistical
analysis revealed significant effects in the
interpretations for both models (p < 0.001).

In summary, the interpretations of the scalar
implicature some without context tended to be
predominantly pragmatic, reflecting a consistency
with human language processing.

5 Experiment 2

Building on the findings from Experiment 1,
which showed that both BERT and GPT-2 models
prefer pragmatic interpretations to semantic
interpretations in scalar implicature without
context, experiment 2 aimed to explore whether the
LLMs have more processing difficulties when
implicature is required (i.e., upper-bound QUD),
compared to when implicature is not required (i.e.,
lower-bound QUD). For this comparison, the
context was manipulated using QUD as a
contextual cue.

5.1 Method

In the experimental materials, two types of the
question sentences were generated for the some-
sentences according to the types of QUDs, such as
upper- and lower-bound QUDs. Following Yang et
al. (2018), questions for the upper-bound included
all, while those for the lower-bound included any.

K

QUESTION ANSWER QUD
Should all information Some information Upper
be secret? should be secret. pp
Should any information Some information
Lower

be secret? should be secret.

Table2. Materials for experiment 2

As presented in Table 2, QUESTION comprised
questions with either al/l or any, while ANSWER
consisted of the some-sentences. Each pair of
QUESTION and ANSWER was labeled as either
‘Upper’ or ‘Lower’ depending on its QUD.

In experiment 2, we also employed BERT-base
and GPT-2 models. BERT is pre-trained using Next
Sentence Prediction (NSP), which involves
predicting  whether the second sentence
immediately follows the first sentence in the given
pair of sentences. This is achieved by
concatenating the two sentences with [CLS]
(classification start) and [SEP] (sentence separator)
tokens to form the input for the BERT model. The
[CLS] token embeddings from the final layer are
used to compute the NSP probability, thereby
quantifying the probability of ANSWER following
QUESTION.

On the other hand, GPT-2 does not utilize
methods like BERT’s NSP as its training data lacks
explicit signals indicating relationships between
sentences. Instead, GPT-2 predicts the next word
based on the preceding context. To assess the
relationship between two sentences in GPT-2, we
combined QUESTION and ANSWER into a single
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some-sentences across QUDs

text sequence. After providing this combined
sequence as input to GPT-2, we analyzed the
probability of the next generated token. This
probability was used to estimate the likelihood of
ANSWER appearing after QUESTION.

The output probabilities (P) from both models
were transformed into Surprisal (Hale, 2001; Levy,
2008). Surprisal plays an effective role in
measuring cognitive effort in human language
processing. In this case, surprisal was used to
measure models’ processing difficulties. As shown
in (10), this value is inversely correlated with how
acceptable the next sentence (S) is in the given
context (Context).

(10) Surprisal = —log, P (S|Context)

With surprisal scores, we could compare the
processing difficulties of the models in the upper-
and lower-bound QUDs. The overview of the
experiment 1 is shown in Figure 4.

5.2 Result

Figure 5 depicted the distribution of surprisal
scores for each model across QUDs. BERT showed
little difference in surprisals based on QUDs
(median of Upper = 0.00045, median of Lower =
0.00041), and statistically, no main effects were
observed (p = 0.48). This suggested that BERT was
unaffected by context in the interpretation of scalar
implicature. Conversely, GPT-2 exhibited higher
surprisal scores for the upper-bound QUD (median
= 6.33) compared to the lower-bound QUD
(median = 6.09), and this result was statistically
significant (p < 0.01). This processing pattern of
GPT-2 was consistent with human language
processing, which suggested that GPT-2 showed
processing difficulties, similar to the greater

cognitive effort that humans expend in inferring
scalar implicature in the context of QUD.

In summary, while exploring the interpretation
of scalar implicature across QUDs, BERT
exhibited no sensitivity to context, whereas GPT-2
clearly manifested the effects of context.

6 Discussion

Through two sets of experiments, this study
investigated how LLMs interpret scalar implicature,
between semantic entailment and pragmatic
implicature, in the absence of context and how
QUD, as a contextual cue, affects LLMs’
processing of scalar implicature. Experiment 1
investigated whether some-sentences in BERT-
base and GPT-2 exhibit greater similarity to
semantic or pragmatic interpretations. The results
showed that both models preferred the
interpretation of pragmatic implicature over
semantic  entailment  for  some-sentences.
Experiment 2 aimed to investigate whether
providing QUD as a contextual cue would impact
processing difficulties for BERT-base and GPT-2,
comparing between the upper-bound QUD, where
pragmatic implicature is required, and the lower-
bound QUD, where implicature is not required. As
a result, BERT showed no significant difference in
processing difficulties based on QUDs, whereas
GPT-2 showed more processing difficulties in the
upper-bound QUD. In conclusion, this study found
that, only in a certain language model, GPT-2,
greater processing difficulties were captured
during pragmatic inference of scalar implicature,
aligning with human language processing.

BERT and GPT-2, despite both being built on the
transformer architecture, exhibited markedly
different patterns regarding their theoretical
approaches to the processing of scalar implicature.
Although both models shared the patterns of
interpreting the term some as a pragmatic not all
implicature rather than a semantic at least one and
possibly all without context, BERT exhibited no
discernible difference in processing based on
QUDs. This can be explained by Default model
where the meaning of some inherently defaults to
not all (Levinson, 2000). On the other hand, GPT-
2 represented a clear difference in processing
difficulties when manipulating context through the
setting of QUD, revealing that greater processing
difficulties were captured in the processing of
scalar implicature. This finding follows Context-
driven model, consistent with the argument that not



all implicature is not inherently embedded to the
term some but rather inferred through a broader
context (Wilson and Sperber, 1995; Sperber and
Wilson, 2002).

Among the earlier NLI studies regarding scalar
implicature, Jeretic et al. (2020) found that BERT
learned scalar implicature. They claimed that
positive results on scalar implicature inference,
triggered by specific lexical items like some and all,
probably exploits prior knowledge during the pre-
training stage. The natural language data employed
in the pre-training inherently include pragmatic
information, which raises the possibility that such
pre-training induces patterns of pragmatic
inference in the data. Therefore, the results of the
experiment 1 in this study, where the interpretation
of pragmatic implicature occurred even in the
absence of context, can be explained as leveraging
inherent pragmatic information in the pre-training
data of LLMs.

In the study of Schuster et al. (2020), which
investigated the effects of linguistic features on
scalar implicature, they found that their model
could make accurate predictions without
considering the preceding context, while
incorporating the preceding conversational context
did not enhance and even diminished prediction
accuracy. This led to the assumptions that only a
context-independent utterance is sufficient and
contextual cues may not be necessary for pragmatic
inference, or that the model has not appropriately
used contextual information. Finding that context
is unnecessary in scalar implicature may provide an
explanation for our observation that BERT in the
experiment 2 showed no difference in processing
efforts across QUDs. However, this explanation
may not generalize to effectively capture the
processing of scalar implicature in all LLMs,
especially when taking into account the effects of
QUD on the processing of scalar implicature in
GPT-2.

Liu et al. (2019) reported that features generated
by pre-trained contextualizers were sufficient for
achieving high performance across a broad range
of tasks which explored the linguistic knowledge
and transferability of contextualized word
representations. However, they proposed that, for
tasks requiring specific information not captured
by contextual word representations, learning task-
specific contextual features plays a crucial role in
encoding the requisite knowledge. Within this
framework, pragmatic implicature may either be
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pre-trained or require additional learning processes,
depending on LLMs. Therefore, it is crucial to
recognize that different language models may
incorporate diverse linguistic information and
exhibit distinct processing patterns for the same
linguistic phenomenon.

Furthermore, based on the argument of Degen
and Tanenhaus (2015, 2016) in which humans are
influenced by context-driven expectations about
unspoken alternatives, Hu et al. (2023) examined
the BERT model’s variation in scalar implicature
rate not just within a single scale like <some, all>
but also across scales with diverse lexical items as
unspoken alternatives of some. This study revealed
that the model’s ability to make pragmatic
inferences becomes stronger as more alternatives
become available, which is depending on
contextual predictability. This result leads us to
expect that BERT will show contrasting result if
more alternatives are presented and the context
becomes more predictable, despite the failure to
make pragmatic inference within the provided
context in the present study.

In conclusion, the findings of this study
suggested that LLMs are capable of pragmatic
inference for scalar implicature without context.
However, it is essential to understand the degree of
contextual information utilization in each model
and ensure appropriate learning for specific tasks.

7 Limitations

While this study has advanced our
comprehension of pragmatic inference in LLMs
regarding scalar implicature, it faces limitations in
three aspects.

The first limitation is the absence of diverse
constructions in which the scalar quantifier some
appears. The exclusive use of experimental
sentences featuring ‘some + NP’ in the subject
position within a single clause may not fully
capture the broad spectrum of pragmatic
interpretations that arise in various linguistic
constructions and meanings in the real world.
Additionally, the number of data used in the
experiments might be not large enough to
generalize the findings.

Secondly, the study relies on only two of early
transformer-based models, which may not reflect
the performance of more advanced models that
have emerged recently. Since newer and more
advanced models have demonstrated significantly



higher performance across a wide range of tasks,
using different models could yield varying results.

Lastly, in order to draw comparisons with
human language processing, the experimental
designs in this study deviate from conventional
Natural Language Inference (NLI) tasks. Moreover,
the metrics used in this study (i.e., cosine similarity
or next sentence prediction) may yield different
results when other metrics are applied. The
diversity in experimental methodologies can lead
to variations in results, emphasizing the necessity
for future research to take into account such
differences.

8 Conclusion

In this study, we discovered that LLMs interpret
scalar implicature through pragmatic rather than
semantic interpretation. Additionally, the study
identified the model that engage in pragmatic
inference through the processing of scalar
implicature using a contextual cue, such as QUD,
in contrast to the model that do not employ
pragmatic inference. This study not only
contributes to our comprehension of how LLMs
process complex linguistic phenomena but also
underscores the importance of considering
pragmatics in NLP. By shedding light on the
interplay between context and pragmatic inference,
this study advances our understanding of LLMs
and provides valuable insights for refining
language models and applications in NLP.
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A Appendix

Estimate Std t p-value
(Intercept) 7.29E-01 3.44E-04 2121.2 <0.001
Interpretation | -4.39E-03 | 4.02E-04 -10.92 <0.001

Table 3. Summary of fixed effects from linear mixed-
effects models by BERT in experiment 1

Estimate Std t p-value
(Intercept) 7.309¢-01 | 7.837e-06 93263.7 <0.001
Interpretation | 4.267e-05 | 7.731e-06 5.519 <0.001

Table 4. Summary of fixed effects from linear mixed-
effects models by GPT-2 in experiment |

Estimate Std t p-value
(Intercept) | 1.077¢-03 1.311e-04 8.21 <0.01
QUD -3.487e-05 | 4.949¢-05 -0.70 0.48

Table 5. Summary of fixed effects from linear
mixed-effects models by BERT in experiment 2

Estimate Std t p-value
(Intercept) 6.35 0.05 123.85 <0.01
QUD -0.25 0.01 -17.68 <0.01

Table 6. Summary of fixed effects from linear
mixed-effects models by GPT-2 in experiment 2

ol
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Abstract

As conventional topic models rely on word co-
occurrence to infer latent topics, topic mod-
eling for short texts has been a long-standing
challenge. Large Language Models (LLMs)
can potentially overcome this challenge by con-
textually learning the meanings of words via
pretraining. In this paper, we study two ap-
proaches to using LLMs for topic modeling:
parallel prompting and sequential prompting.
Input length limitations prevent LLMs from
processing many texts at once. However, an
arbitrary number of texts can be handled by
LLMs by splitting the texts into smaller subsets
and processing them in parallel or sequentially.
Our experimental results demonstrate that our
methods can identify more coherent topics than
existing ones while maintaining the diversity
of the induced topics. Furthermore, we found
that the inferred topics cover the input texts
to some extent, while hallucinated topics are
hardly generated.

1 Introduction

Topic modeling is the classical task of discover-
ing latent topics that best describe a set of docu-
ments (Blei et al., 2003; Churchill and Singh, 2022).
Recently, while neural topic models have worked
successfully on various kinds of long documents
(Miao et al., 2017; Srivastava and Sutton, 2017; Di-
eng et al., 2020), they have not been able to handle
short texts, such as social media posts and news
headlines (Li et al., 2016; Wu et al., 2022).

Large Language Models (LLMs), such as In-
structGPT (Ouyang et al., 2022) and GPT-4 (Ope-
nAl, 2023), have shown impressive results on vari-
ous tasks by providing task instructions in a zero-
shot manner (Wang et al., 2023; Kocon et al., 2023).
Since conventional topic models infer the topics
of words by relying on word co-occurrence, they
perform worse on short texts. In contrast, as LLMs
contextually learn the meanings of words by pre-
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Figure 1: Topic modeling with LLMs by splitting a
document set into subsets and prompting (a) in parallel
or (b) sequentially.

training on massive text corpora, they could accu-
rately infer the latent topics.

We propose two approaches to using LLMs for
topic modeling: parallel prompting and sequential
prompting (Figure 1). Due to the input length lim-
itations of LLMs, an input document set must be
split into smaller subsets, which are processed indi-
vidually. Parallel prompting concurrently infers the
topics of each subset and merges them to represent
the topics of the whole document set. Sequential
prompting processes each subset successively, up-
dating the topics in every iteration. We assess our
approaches across texts from various domains us-
ing multiple evaluation metrics.

The contributions of this study are as follows:

1. We propose parallel and sequential prompting
methods for topic modeling using LLMs. Our
methods can handle a large number of texts
that cannot be processed in a single run due
to the input length limitations of LLMs.

2. We validate the performance of our methods
by comparing them with existing models and
show that ours can identify more coherent
topics than existing models while maintaining
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the diversity of the induced topics.

3. We assess the document coverage and factual-
ity of the inferred topics, due to concerns that
LLMs may focus on only parts of documents
or generate hallucinated topics. Evaluation
results indicate that those concerns are negli-
gible.

2 Background

Topic modeling is the task of identifying latent
topics as a set of topic words representing each
topic from a collection of documents (Blei et al.,
2003). Topic modeling has conventionally been
tackled with probabilistic models such as latent
Dirichlet allocation (LDA, Blei et al., 2003). In re-
cent years, however, neural models have come into
widespread use due to their high performance (Sri-
vastava and Sutton, 2017; Dieng et al., 2020; Groo-
tendorst, 2022).

It is known that topic modeling for short texts is
difficult for current topic models due to data spar-
sity (Li et al., 2016; Wu et al., 2022). TSCTM (Wu
et al., 2022) is a current state-of-the-art neural topic
model for short texts. This model addresses data
sparsity by learning representations of documents
using VQ-VAE (van den Oord et al., 2017), con-
trastive learning, and incorporation of data augmen-
tation into the learning.

BERTopic (Grootendorst, 2022) uses a pre-
trained encoder, Sentence-BERT (Reimers and
Gurevych, 2019), to obtain clusters of documents
and assigns topic words to each cluster by using
a class-based TF-IDF procedure. Another related
study is Stammbach et al. (2023), in which LLMs
are utilized to automatically evaluate topic quality.
However, our study is the first to explore how well
LLMs perform topic modeling.

3 Topic Modeling with LLMs

We introduce two approaches to performing topic
modeling with LLMs: parallel prompting and se-
quential prompting. For these approaches, we
apply common preprocessing, which involves ran-
domly splitting a document set into subsets with
the same size, smaller than the context length of
the LLMs.

Parallel Prompting In the parallel prompting,
LLMs identify topics for each subset in parallel
by prompting the subset and the instruction of
topic modeling. The topics of each subset are then

22

ID Prompt
Parrm  Write the results of simulating topic modeling
for the following documents: [DOCS].
Parvyg  Write the results of merging the following
topic modeling results:[TOPICS],[TOPICS], ...
Seqrm  Write the results of simulating topic modeling
for the following documents: [DOCS], Make the
most use of the following topics: [TOPICS].
Table 1: Prompts for our methods. [DOCS] and

[TOPICS] are replaced by a subset of documents and by
previously identified topics, respectively.

# of Text  Vocabulary
Dataset Documents  Length Size
Tweet 2000 5.47 706
GoogleNewsT 11000 5.25 2376
StackOverFlow 19000 4.71 2544

Table 2: Dataset statistics. Each value is the average for
five runs.

merged by LLMs. We use two kinds of prompts as
shown in Table 1: (i) a Parpy prompt for parallel
topic modeling for each subset, and (ii) a Paryg
prompt for merging the topics from the results

Sequential Prompting In the sequential prompt-
ing, LLMs identify topics for each subset sequen-
tially, considering the topics previously identified
for the previous subset. We use the Paryy; for the
first subset, then use a Seqry prompt in Table 1
for the other subsets. This prompt contains topics
identified in the prior subset and instructions for
referring to them.

4 Experiments

We investigate how well our methods perform topic
modeling for short texts.

4.1 Dataset

We employ three tokenized datasets provided by
Zhang et al. (2021): GoogleNewsT (Rakib et al.,
2020), Tweet (Yin and Wang, 2016), and Stack-
OverFlow.!  Following Wu et al. (2022), the
datasets are preprocessed as follows: (i) charac-
ters are converted to lower case; (ii) words with
two or fewer letters are removed; (iii) words ap-
pearing fewer than five times are filtered out. We
then split each preprocessed dataset into subsets for

"https://www.kaggle.com/competitions/
predict-closed-questions-on-stack-overflow/
data?select=train.zip
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Tweet GoogleNewsT StackOverFlow
Model K=5 K=15 K=5 K=15 K=5 K =15

Cv TU Cv TU Cv TU Cy TU Cy TU Cv TU
LDA 0.394 0.800 0.401 0.568 0426 0984 0.406 0.963 0.320 0928 0.425 0.883
LDAAug 0445 0968 0.436 0.856 0411 0984 0.381 0.981 0.360 0920 0.508 0.952
TSCTM 0.393 1.000 0.467 0.997 0.333 1.000 0.374 1.000 0.244 1.000 0.313 1.000
TSCTMAug 0.355 1.000 0.433 1.000 0.243 1.000 0.346 1.000 0218 1.000 0.276 1.000
BERTopic 0.514 1.000 0.537 1.000 0.439 1.000 0.437 1.000 0459 1.000 0.485 0.971
BERTopicayg 0535 1.000 0.526 1.000 0.412  1.000 0.417 1.000 0.460 1.000 0.489 0.955
GPT-3.5p.: 0476 0992 0.532  0.900 0571 0960 0.535 0.913 0312 0.864 0.496 0913
GPT-3.55¢ 0.552 0960 0.515 0.920 0562 0984 0.489 0.948 0441 0896 0.517 0.775
GPT-4p,, 0.562  1.000 0.576 0.971 0.618 0976 0.532  0.925 0.466 0904 0.571 0.864
GPT-45. 0.577 0992 0.551 0.976 0.556 0944 0.561 0.963 0.318 0.744 0.532 0.853

Table 3: Topic coherence (Cv) and diversity (TU) results under 5 and 15 topics (K = 5 and K = 15). LLMg,q and
LLMp,; correspond to the parallel and sequential topic modeling methods with LLMs, respectively. MODEL ¢
corresponds the performance of the model with data augmentation. The maximum 7U is 1.000 when topic words
are totally distinct from each other. The best scores are shown in bold.

Tweet GoogleNewsT StackOverFlow
Model K=5 K=15 K=5 K=15 K=5 K=15
DC Fa DC Fa DC Fa DC Fa DC Fa DC Fa
LDA 0.337 1.000 0.561 1.000 0488 1.000 0.664 1.000 0.684 1.000 0.842 1.000
LDAAug 0.307 1.000 0.579 0.997 0.531 1.000 0.763 1.000 0.659 1.000 0.838 1.000
TSCTM 0.176  1.000 0.388 1.000 0405 1.000 0.740 1.000 0.141 1.000 0.480 1.000
TSCTMA g 0.187 1.000 0.331 0.987 0.309 1.000 0.608 0.979 0419 0.888 0.441 0.888
BERTopic 0293 1.000 0471 1.000 0433  1.000 0.748 1.000 0.656 1.000 0.796 1.000
BERTopicaue 0.303  1.000 0.468 1.000 0422 1.000 0.749 1.000 0.637 1.000 0.795 1.000
GPT-3.5p.: 0213 1.000 0.384 0.994 0.321 0968 0.585 0.952 0.636  1.000 0.694 1.000
GPT-3.55 0.197 0984 0.335 0.967 0.334 0975 0.583 0.954 0479 1.000 0.689 0.994
GPT-4p,, 0241 1.000 0.402 1.000 0.392  1.000 0.661 0.995 0.578 1.000 0.754 1.000
GPT-45. 0.224 0983 0.403 0.994 0.373  1.000 0.660 0.951 0.554 0931 0.626 0.883

Table 4: Document coverage (DC) and factuality (Fa) results under 5 and 15 topics (K = 5 and K = 15). Since
baseline models without data augmentation discover topics based only on documents, the factuality values are 1.000.

our methods, setting the size at 10007 and truncat-
ing the remaining example. Table 2 shows the final
statistics of the datasets we use. Note that baseline
models take the union of subsets as input, and each
subset contains different examples for each run.

4.2 Model

We evaluate our approaches with GPT-3.5 (gpt-
3.5-turbo-0125) and GPT-4 (gpt-4-0125-preview)
provided by the OpenAI API.? For baseline models,
we employ the three models mentioned in Section
2: LDA*, TSCTM*, and BERTopic.? Additionally,
we report the results of each baseline model with
data augmentation. Regarding data augmentation
techniques and the hyperparameters of TSCTM,
we follow the original settings that were used in

In preliminary experiments, we checked the performance
of our methods with subset sizes of 250, 500, and 1000. See
Appendix A.3.

*In preliminary experiments, we also tried Llama 2 (Tou-
vron et al., 2023), but we found that it was not sufficiently
controllable for its output to be used in our approach. See
Appendix A.2.

4https://gi’chub.com/BobXWu/TopMost

Shttps://maartengr.github.io/BERTopic

prior research (Wu et al., 2022).

4.3 Evaluation

We evaluate the models under the condition that
the number of topics is 5 or 15, and the number
of topic words for each topic is 5. For evaluation
metrics, we employ two widely used metrics for
topic quality and two new metrics to assess possible
issues of LLMs, i.e., the possibility of outputting
topics reflecting only a very limited documents or
hallucinated topics not included in documents. We
run each model five times and report the average
scores.

Topic Coherence and Diversity Following Wu
et al. (2022), we calculate the coherence value’
(Cv, Roder et al., 2015) with Wikipedia for topic
coherence, and the topic uniqueness (7U, Nan
et al., 2019) to assess the diversity in the inferred
topics.

Document Coverage We are concerned that
LLMs infer topics that reflect only a very limited

®The details can be found in Appendix B.1.
"https://github.com/dice-group/Palmetto
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Tweet GoogleNewsT StackOverFlow
Model K=15 K=15 K =15
Cv DC Cv DC Cv DC
GPT-3.5 0.532 0.366 0.517 0.569 0.464 0.634
GPT-4 0.580 0.395 0.523 0.665 0.519 0.747

Table 5: Average coherence (Cv) and document coverage (DC) of topics discovered by LLMs in parallel prompting
without the merging process under 15 topics (K = 15). For each subset, we take the average of the values in five

runs.

documents. Thus, we propose the metric document
coverage, which measures the extent to which dis-
covered topics cover documents. Document cover-
age is defined as follows:

# (dye 7 that contains at least one Wyopic)
# (dref)

where d,..f is a document within the reference doc-
ument collection, and wyep;c 1s the topic word con-
stituting the outputted topics. A higher DC means
that discovered topics cover more reference docu-
ments. In this experiment, we use the preprocessed
datasets without augmentation as references.

DC =

Factuality Another potential issue is hallucina-
tion, where topics discovered by LLMs may not
be included in given documents. Therefore we
introduce factuality, which measures the degree
to which topic words are composed from the vo-
cabulary in the reference documents. Factuality is
defined as follows:

# (Wiopic present in at least one d.y)
# (wtopic)

A higher Fa indicates that more topic words are
composed from the vocabulary in the reference
documents. Note that the factuality could be less
than one in existing topic modeling with data aug-
mentation due to word substitution using out-of-
vocabulary words of the documents.

Fa =

5 Results and Discussion

Topic Quality Table 3 shows that the topics dis-
covered by our methods are relatively high-quality
both in terms of coherence (Cv) and diversity
(TU).® For coherence in particular, GPT-4 achieved
the state-of-the-art performance in all settings, with
up to 40 % improvement. For instance, the scores
on GoogleNewsT have risen by 41% (from 0.439 to
0.618) and 28% (from 0.437 to 0.561), respectively,
for each setting of the number of topics.

8Examples of topics are given in Appendix C.1.
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Document Coverage Table 4 reports that LLMs
showed relatively lower scores for document cov-
erage (DC) than the best baseline models. This
means that the topics discovered by LLMs often
cover fewer documents than those discovered by
the baseline models. However, note that there is a
trade-off between topic coherence (Cv) and docu-
ment coverage. For example, LDA 4, achieved the
highest coverage on GoogleNewsT but showed the
lowest coherence, with the exception of TSCTM
and TSCTMayg.

Factuality As shown in Table 4, LLLMs showed
lower scores for factuality (Fa) than the baseline
models, particularly those without augmentation.
This indicates that some topic words output by
LLMs are not included in the documents. How-
ever, their factuality loss was less than 5% in al-
most all settings. Furthermore, we analyzed these
non-existent words and found that most were not
problematic enough to mislead topic interpretation;
these include synonyms, derivatives, and related
words of the ones in the documents.” This suggests
that LLMs do not generate hallucinated topics that
would cause misinterpretation of the content.

Parallel and Sequential Prompting Table 3 and
Table 4 show that the parallel prompting approach
can identify topics with better coherence and docu-
ment coverage than the sequential prompting one.
To analyze the superior performance of the paral-
lel approach, we calculated Cv and DC of topics
before merging. Table 5 shows that Cv and DC
scores before merging were worse than those of the
parallel approach, demonstrating that the merging
process can improve both their coherence and docu-
ment coverage. On the other hand, we analyzed the
transition of topics during the sequential approach
and then observe that it tended to update the previ-
ously identified topic very little due to strict adher-

“Examples of non-existent words and analysis details are
provided in Appendix C.2.



Model # Topics

#1 kanye black thanksgiving west xbox

#2  china independence zone scotland air
BERTopic  #3  hiv aarushi watkins ian woman

#4  jellyfish robot seahorse flying methane

#5  alzheimer brain infant risk gene

#1 kanye west kim kardashian parody

#2  thanksgiving black friday shopping deal
GPT-4par #3  xbox microsoft game console sale

#4  nokia lumia microsoft smartphone tablet

#5  syria peace talk geneva conference

#1 kanye west kim kardashian parody

#2  black friday shopping thanksgiving deal
GPT-4seq #3  xbox game console playstation microsoft

#4  comet ison sun spectacular encounter

#5  scottish independence salmond white paper

Table 6: Examples of topics discovered from GoogleNewsT when the number of topics and topic words is five,
respectively. We have reordered the topics for illustrative purposes. Bold topics are mentioned in Section 5.

ence to our instructions, leading to lower document
coverage compared with the parallel approach.'®

Qualitative Analysis We conducted a qualitative
analysis of the representative results that achieved
the median topic coherence (Cv) across five trials
using the GoogleNewsT dataset under five topics
and five topic words. Table 6 demonstrates that
BERTopic, the best baseline model for Cv, has the
potential to identify topics encompassing multiple
themes, while our methods using LLMs discover
highly consistent and distinct topics. For instance,
topic #1 identified by BERTopic could be consid-
ered to contain three distinct themes (Kanye West,
Thanksgiving, and Xbox), while GPT-4p,; and
GPT-4s effectively separated these into topics #1,
#2, and #3, respectively.

6 Conclusion

In this study, we proposed two approaches to using
LLMs for topic modeling: parallel prompting and
sequential prompting. We implemented our meth-
ods on GPT-3.5 and GPT-4 and evaluated their
performance on three datasets together with three
existing topic models. In the evaluation, in addi-
tion to the well-known metrics for topic quality,
we introduced two new metrics, document cover-
age and factuality, to assess the potential issues
with LLMs reflecting only some documents or out-
putting hallucinated topics. The results showed that
LLMs could find higher-quality topics than exist-
ing methods, and the impact of these issues was not

Examples and further analysis are provided in Appendix
C3.
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remarkable in practice. Future work will include
improving our methods to enable topic assignment
to each document.
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A Preliminary Experiments

In preliminary experiments, we tested different
prompts and subset sizes to determine which maxi-
mize the performance of our methods.

A.1 Prompts

We first considered the Party prompt and then
proceeded to the Paryg and the Seqy prompts.

Parryy We checked three kinds of prompts,
which are shown in Table 7. Finally, we tenta-
tively selected a Direct prompt as a Party prompt,
which achieved the highest performance. We also
considered the effects from inserting the following
phrases, which were expected to improve scores for
topic coherence, diversity, and document coverage,
respectively.

Cv “NOTE: Make top words for each topic likely
to occur together in the documents”

TU “NOTE: Make the top words unique across
topics.”

DC “NOTE: Maximize the number of documents
that contain at least one of the top words.”

However, we found that none of these can posi-
tively influence LLMs’ performance in our meth-
ods. Therefore, we selected a Direct prompt with-
out phrase insertion as the Paryyy prompt.

Pary,  Regarding the Parry prompt, we created
a Base Pary, prompt, which has a similar struc-
ture to the Parmy (Table 8). We then considered the
insertion of the following phrases:

Goal “We aim to identify topics for the entire doc-
ument set by merging the topic modeling re-
sults for each subset.”

Detail “NOTE: Outputs should reflect the topics
before merging as much as possible. Output
should contain topics that often appear before
merging and not have ones that don’t appear
much before merging.”

Experimental results showed our methods per-
formed the best when we inserted both the Goal
phrase and the Detail phrase into the Base Paryy.

Consequently, we employed a Base Parry
prompt with both phrases as the Party; prompt
for the parallel approach.
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Seqrvm  Similar to the prompt for parallel, we
first created a simple Base Seqyy; prompt for the
sequential approach in Table 8, after which we
validated the effect from inserting the following
phrases.

Goal “We aim to identify topics for the entire doc-
ument set by sequentially updating tentative
topics identified from each subset, consider-
ing topics identified just before from another
subset.”

Detail “NOTE: Outputs should be the same as the
previous topics as much as possible. You can
change them minimally only when the given
documents don’t include them much, and a
new topic needs to be added to describe the
documents.”

We also found that the insertion of both of the
above phrases was most effective at improving the
performance of the sequential method. Thus, we
utilized a Base Seqry prompt that incorporates
both phrases as the Seqy prompt for the sequen-
tial approach.

A.2 Llama 2

In preliminary experiments, we also tried us-
ing Llama-2-7b-chat!! and Llama-2-13b-chat!! as
LLMs for our methods and found that it is difficult
for Llama 2 (Touvron et al., 2023) to perform topic
modeling regardless of the prompts and the subset
size we use. Table 9 shows the outputs of Llama 2
when given the Paryy prompt with a subset size
of 100 on GoogleNewsT. Llama 2 could not make
adequate output for the number of topics and topic
words in line with our instructions, while GPT-3.5
and GPT-4 could do so consistently under identical
settings.

A.3 Subset Size

We used 250, 500, and 1000 as options for the
subset size. It would be difficult for the subset size
to exceed 1000 due to the context length of GPT-
3.5 (gpt-3.5-turbo-0125), which we planned to use
for the main experiments.

We ran the parallel and the sequential methods
with GPT-3.5 on GoogleNewsT for each subset
size. Table 10 presents the average scores of each
method for five runs. There was a tendency for

"https://huggingface.co/
collections/meta-1lama/
1lama-2-family-661da1f90a9d678b6f55773b
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topic coherence to improve as the subset size in-
creased, but we could not discern any tendency for
the other metrics. We ultimately selected 1000 as
the subset size because the performance of each
model was relatively high in all metrics under that
setting.

Note, however, that using our proposed methods
with the subset size of 250 or 500 could enable
discovery of competitive or higher-quality topics
compared with the existing models shown in Table
3 and Table 4. This suggests our methods could
perform well regardless of the context length of
LLMs applied them.

B Experimental Details

B.1 Implementation Details

We run TSCTM for 200 epochs. In the case without
data augmentation, we run it with temperature as
0.5 and weight contrast as 1.0. In the case with data
augmentation, we run it with temperature as 0.07,
weight contrast as 3.0, and same quant as 0.001.
For data augmentation, we apply WordNet'? and
Contextual Augmenter3 (Kobayashi, 2018) with
30% word replacement, and filtered low-frequency
words as in the preprocessing. Each Augmenter
randomly replaces words in an input text with
synonyms defined by WordNet and with words
predicted by BERT (Devlin et al., 2019)!3, re-
spectively. We utilized the original configurations
of gpt-3.5-turbo-0125, gpt-4-0125-preview, and
BERTopic without modification.

B.2 Examples of Prompts

Table 11 shows examples of prompts used in the
experiment.

C Result Details

C.1 Examples of Topics

Following Wu et al. (2022), we randomly se-
lect some examples of topics identified by LDA,
BERTopic, and our proposed methods with GPT-4.

C.2 Examples of Topic Words Not Included in
the Documents

Table 13 shows examples of words not included
in the documents outputted in topic modeling on
GoogleNewsT. The bold portion of the GPT-3.5
outputs are the names of entities (e.g., broncos,

12https ://github.com/makcedward/nlpaug
Bhttps://huggingface.co/bert-base-uncased
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gree, and watson) or words that do not exist in
the real world (e.g., dorffiefskee). Such words
are considered harmful because they may induce
misinterpretation of topics. However, only a small
number of such words were found, and most of
them were synonyms, derivatives, or related words
in the documents.

C.3 Examples of the Processing

Table C.3 shows specific the concrete examples of
topics identified for each subset and the final output
to demonstrate the processing in our methods. In
the parallel approach, we find that LLM reasonably
merges topics from each subset. For instance, bold
topics in each subset are merged into one topic in
the final output, using words from both subsets. On
the other hand, in the sequential approach the final
output is the same as the topics for the first subset
except for the one pair of bold words. This indi-
cates that LLMs with the the sequential approach
could too strictly retain topics from the previous
subset, and thus they cannot output topics that suf-
ficiently reflect the entire set.

D Limitations

We do not thoroughly consider whether pre-
training and instruction-tuning datasets of GPT-3.5
and GPT-4 might contain the datasets used in this
study. Since topic modeling is an unsupervised
task and we change the order of the samples ran-
domly, we do not consider them able to utilize their
knowledge about these datasets in our experiment.
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ID Candidates for the Base Prompt Template

Write the results of simulating topic modeling for the following documents, each starting with "#."
Assume you will finally identify [NUM_TOPICS] topics and use 5 top words for each topic.
Direct NOTE: Outputs must always be in the format "Topic k: word word word word word" and nothing else.

nn

[DOCS]

nn

Discover latent [NUM_TOPICS] topics in the following documents, each starting with "#."
For each topic, write 5 words extracted from input texts to show its meanings.
NOTE: Outputs must always be in the format "Topic k: word word word word word" and nothing else.

nn

[DOCs]

nn

Indirect

nn

[DOCS]

nn

Directreverse Write the results of simulating topic modeling for the above documents, each starting with "#."

Assume you will finally identify [NUM_TOPICS] topics and use 5 top words for each topic.
NOTE: Outputs must always be in the format "Topic k: word word word word word" and nothing else.

Table 7: Candidate prompts for Parry. [DOCS] and [NUM_TOPICS] are replaced by a subset of documents and by
the number of topics.

ID Base Prompt Template

Write the results of merging the following topic modeling results for each subset of the document set.
Each result starts with "- n" and its topics start with "#"

nn

-1
[TOPICS]

Base Parv ’

[TOPICS]

-3

nn

Write the results of simulating topic modeling for the following documents, each starting with "#."
Make the most use of the following topics previously identified from another set of documents, each
starting with "Topic k:":
[TOPICS]

Base Seqrm = """
Assume you will finally identify [NUM_TOPICS] topics and use 5 top words for each topic.
NOTE: Outputs must always be in the format "Topic k: word word word word word" and nothing else.

nnn

[DOCS]

nnn

Table 8: Base prompts for the parallel and sequential methods. [DOCS], [TOPICS], and [NUM_TOPICS] are replaced
by a subset of documents, previously identified topics, and the number of topics, respectively.
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Model size  Examples of Llama 2 Output

Topic 1:

Top words: relief, challenge, face

Topic 2:

Top words: welker, concussion, test

Topic 3:

Top words: live, stream, champion, league

Topic 4:

Top words: bargain, black, friday, shopping
Topic 5:

Top words: scotland, independence, white, paper
Note: Each topic is represented by 5 top words, which are the most frequently occurring words in the
given documents.

Topic 1: Disasters and Relief Efforts
Topic 2: Sports and Injuries

13B Topic 3: Technology and Gadgets
Topic 4: Politics and Leadership
Topic 5: Entertainment and Celebrities

7B

Table 9: Examples of Llama 2 outputs when we provide Parmy on GoogleNewsT under the conditions that the
number of topics and topic words is five and the subset size is 100.

Subset Size Cv TU DC Fa Subset Size Cv TU DC Fa

250 0.531 0936 0.241 1.000 250 0.524 0976 0.198 0.992

500 0.572 0.896 0.241 1.000 500 0.529 0992 0.193 0.976

1000 0.571 0960 0.213 1.000 1000 0.562 0984 0.197 0.984
(a) Parallel (b) Sequential

Table 10: Results of the parallel and sequential methods under five topics on GoogleNewsT for subset sizes of 250,
500, and 1000. The best scores are shown in bold.
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ID Prompt Example

Write the results of simulating topic modeling for the following documents, each starting with "#."
Assume you will identify 5 topics and use 5 top words for each topic.

NOTE: Outputs must always be in the format "Topic k: word word word word word" and nothing else.
# philippine typhoon relief effort face challenge

# wes welker concussion test bronco

# basel chelsea live stream champion league watch

ParTM

# discus black friday shopping secret

nn

We aim to identify topics for the entire document set by merging the topic modeling results for each
subset.

Write the results of merging the following topic modeling results for each subset of the document
set.

Each result starts with "- n" and its topics start with "#"

-1

# comet ison thanksgiving sun solar

# kanye west bound parody video

# nokia lumia release mobile device

# black friday shopping thanksgiving sale

# alec baldwin msnbc cancellation defends

Paryg

- 11

# nokia lumia sale december phone

# kanye west kim kardashian taylor

# black friday deal best sales

# irs rule political activity tax

# bronco patriot win game rivalry

Assume you will finally identify 5 topics and use 5 top words for each topic.

NOTE: Outputs should reflect the topics before merging as much as possible. Output should contain
topics that often appear before merging and not have ones that don’t appear much before merging.
NOTE: Outputs must always be in the format "Topic k: word word word word word" and nothing else.

We aim to identify topics for the entire document set by sequentially updating tentative topics identified
from each subset, considering topics identified just before from another subset.

Write the results of simulating topic modeling for the following documents, each starting with "#."
Make the most use of the following topics previously identified from another set of documents,
each starting with ""Topic k:'":

Topic 1: kanye west kim kardashian bound

Topic 2: xbox black friday cyber monday

Topic 3: hewlett packard nokia lumia company

Topic 4: dancing star finale winner season

Topic 5: syria peace talk china air

nn

Seqry Assume you will finally identify 5 topics and use 5 top words for each topic.

NOTE: Outputs should be the same as the previous topics as much as possible. You can change them
minimally only when the given documents don’t include them much, and a new topic needs to be added
to describe the documents.

NOTE: Outputs must always be in the format "Topic k: word word word word word" and nothing else.
# spacex falcon launch attempt

# taylor swift princess gown winter white

# redbox instant window phone appears nokia exclusive

# google backed company selling dna analysis kit ordered sale

nn

Table 11: Examples of prompts used as Parry, Paryy,, and Seqry for topic modeling on GoogleNewsT under five
topics.
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Model Examples of Topics
xbox microsoft game patriot bronco
LDA nokia lumia oldboy launch google
kobe bryant chelsea lakers basel
macy parade hanukkah thanksgiving travel
TSCTM china zone african japan johansson
bronco patriot packer welker illinois
china zone air nsa porn
BERTopic methane ant emission fire burning
thanksgiving friday black comet parade
wes welker nfl concussion game
GPT-45¢q  nokia lumia window phone december
nfl season game player concussion
san andreas mobile game release
GPT-4p,;  nokia lumia tablet smartphone launch
thanksgivukkah hanukkah holiday feast rare

Table 12: Examples of topics discovered from GoogleNewsT under 15 topics.

Model Examples of Topic Words Not Included in the Documents

TACTMpa,e  twelvemonth sink railway blowout
GPT-3.55¢q dorffiefskee broncos patriots health advancement ocean guilty france legal attorney
GPT-3.5p,. gree watson advertisement boat funding attorney declared refugees crash digital

Table 13: Examples of topic words not included in the documents when topic modeling on GoogleNewsT.

Subset 1

fishing fish bass fly report

superbowl commercial bowl super best
king speech oscar nomination award
facebook privacy setting user change
acai berry weight loss diet plan

Subset 1

fishing commercial superbowl fly bass
facebook privacy setting user setting
king speech oscar nomination award
berry acai weight diet loss

christina aguilera national anthem super

Subset 2

fishing fish fly book saltwater

superbowl commercial doritos pepsi volkswagen
king speech oscar nomination award best

acai berry weight loss diet plan

christina aguilera national anthem super bowl

Final Output

fishing fly superbowl commercial bass
facebook privacy setting user security
king speech oscar nomination award
acai berry weight diet loss

christina aguilera national anthem super

Final Output

fishing fish fly bass saltwater

superbowl commercial bowl pepsi doritos
king speech oscar nomination award

acai berry weight loss diet health

facebook privacy setting user change

(b) Sequential

(a) Parallel

Table 14: Topics identified for each subset and the final output by each method using GPT-4 on Tweet under five
topics. Bold words are mentioned in Appendix C.3.
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Abstract

Direct speech-to-speech translation (S2ST)
with discrete self-supervised representations
has achieved remarkable accuracy, but is unable
to preserve the speaker timbre of the source
speech. Meanwhile, the scarcity of high-quality
speaker-parallel data poses a challenge for
learning style transfer during translation. We
design an S2ST pipeline with style-transfer ca-
pability on the basis of discrete self-supervised
speech representations and codec units. The
acoustic language model we introduce for style
transfer leverages self-supervised in-context
learning, acquiring style transfer ability without
relying on any speaker-parallel data, thereby
overcoming data scarcity. By using extensive
training data, our model achieves zero-shot
cross-lingual style transfer on previously un-
seen source languages. Experiments show that
our model generates translated speeches with
high fidelity and speaker similarity. '

1 Introduction

Speech-to-speech translation (S2ST) aims to trans-
late spoken utterances from one language to an-
other, which can bring immense convenience to
international communication. Compared to con-
ventional cascaded systems comprising ASR, text
translation, and TTS models (Lavie et al., 1997,
Nakamura et al., 2006; Wahlster, 2013), direct
S2ST models without intermediate text generation
have a more concise pipeline with less computa-
tion cost and error propagation, and also facilitates
application to unwritten languages, and thus spark
widespread interest in the community.
Mainstream approaches of direct S2ST (Lee
etal., 2022, 2021; Huang et al.; Popuri et al., 2022)
utilize discrete speech representation from self-
supervised models (such as HuBERT (Hsu et al.,

'Audio samples are available at http://stylelm.
github.io/
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2021)) as prediction target, and then use them to re-
construct the waveform. Such representation elimi-
nates speaker identity and prosody of the speeches
and retains only semantic contents, which simpli-
fies the target distribution and makes the translation
less challenging. However, it also has the drawback
of losing the style information of the source speech.
Extra voice conversion systems are needed if users
want to keep the source speaker timbre, which may
cause degradation in audio quality.

Some works propose direct S2ST with style
transfer (Jia et al., 2021; Song et al., 2023). These
methods depend on paired data that source and
target speech share the same speakers. However,
such data from the real world is extremely scarce
as it requires a large number of multilingual speak-
ers, while simulated data from multilingual TTS
systems suffers from less diversity and extra data
collection costs. Recent large-scale S2ST models
(Rubenstein et al., 2023; Barrault et al., 2023) have
also incorporated the capability of style transfer,
yet their sub-modules are highly coupled and are
difficult to apply to other S2ST models.

Inspired by recent progress in spoken language
models (Borsos et al., 2023; Wang et al., 2023),
we propose a novel approach for direct S2ST with
the ability of cross-lingual style transfer, and does
not rely on any speaker-parallel data. We utilize
two types of discrete representations, namely se-
mantic and acoustic units, from a self-supervised
speech model and a neural codec, separately. Our
method encompasses three stages: 1) speech-to-
semantic-unit translation, which translates source
speech to target semantic units; 2) acoustic unit
modeling, which generates target acoustic units
from translated semantic units using style informa-
tion in the source speech; and 3) unit-to-wave gen-
eration, which reconstructs high-fidelity translated
speech from the acoustic units. The modules of the
three stages are trained independently and decou-
pled from each other, allowing our framework to
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Figure 1: We propose an S2ST approach with style transfer based on discrete representations from a self-supervised
speech model and a neural codec. Figure (a) shows the inference pipeline of our method; figure (b) illustrates the
self-supervised training process of the acoustic language model of S5.

be applied to various existing speech-to-unit trans-
lation models.

For the acoustic unit modeling stage, we intro-
duce an acoustic language model. It employs a self-
supervised training approach and learns style trans-
fer through in-context learning, which relies on no
speaker-parallel data, and thus addresses the issue
of data scarcity. By utilizing extensive training
data, our model achieves zero-shot cross-lingual
style transfer with source languages not included
in the training. Experiments show that our model
generates results with superior audio quality and
style similarity while maintaining accurate content
to a good extent.

Our contributions can be summarized as follows:

* We propose an S2ST approach with cross-
lingual style transfer capability, even on previ-
ously unseen source languages.

* By employing self-supervised training, our
model does not rely on any speaker-parallel
data, thus addressing the issue of data scarcity.

* The decoupling nature of the sub-modules en-
ables our framework to be adopted by various
existing speech-to-unit translation models.

* Experiments show that our method generates
translated speeches with high quality and style
similarity.

2 Method

The overall inference pipeline of our method is il-
lustrated in Fig.1 (a). Our method comprises three
consecutive stages, utilizing two distinct types of
discrete units: 1) speech-to-semantic-unit transla-
tion stage S, which converts source audio into
semantic units of the translated speech; 2) acoustic
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unit modeling stage .S», generating target acoustic
units conditioned on the semantic output from the
preceding stage and the acoustic units of the source
speech as style prompt; 3) unit-to-wave generation
stage S3, producing translated speech that main-
tains consistent style with the source. We provide
details about these two types of units and the three
stages in the following subsections.

2.1 Semantic and Acoustic Units

Discrete HuBERT (Hsu et al., 2021) units obtained
from the clustering of self-supervised speech rep-
resentations are shown (Lee et al., 2021; Huang
et al.) to be effective in providing semantic con-
tent information and are widely adopted in S2ST
as prediction target (Lee et al., 2022, 2021; Huang
et al.; Popuri et al., 2022). HuBERT encodes the
target speech into continuous representations with
a frame length of 20 ms, and these representations
are then discretized with the k-means algorithm to
get the semantic units.

On the other hand, audio codec models with
encoder-decoder architecture such as SoundStream
(Zeghidour et al., 2021) have recently shown out-
standing performance in learning acoustic infor-
mation. Such a codec model can produce discrete
representations (i.e. the acoustic units) of audio
by employing a convolutional encoder followed by
a residual vector quantizer. These representations
contain detailed acoustic information and can be
used to reconstruct waveforms with the correspond-
ing decoder or an additional vocoder.

2.2 Speech-to-Semantic-Unit Translation

The speech-to-semantic-unit translation stage gen-
erates translated semantic units conditioned on
source speech input, achieving translation of lin-
guistic content. Various models (Lee et al., 2022;



Huang et al.; Popuri et al., 2022) have been pro-
posed for this procedure. These models share
a common basic architecture of a convolutional
speech encoder followed by an encoder-decoder
architecture based on a transformer (Vaswani et al.,
2017) or conformer (Gulati et al., 2020). Due to the
decoupling nature of the sub-modules of the three
stages, we have the flexibility to adopt different
S2UT models in this stage, and we attempted two
of them in our experiments (See Section 3.1).

2.3 Acoustic Unit Modeling

The acoustic unit modeling stage Sy generates
translated acoustic units from semantic tokens and
style prompts. The core component of Sy is an
acoustic language model, which is basically a
decoder-only transformer. Specifically, we adopt
UniAudio (Yang et al., 2023) as the acoustic lan-
guage model, which is proven to be an effective
autoregressive audio generation model. Details of
the model architecture are provided in Appendix
B.1. The model takes a prefix sequence formed
by concatenating acoustic unit sequence ay,, which
serves as a style prompt, and the target semantic
sequence s, and generates the target acoustic se-
quence a with autoregressive sampling. This pro-
cedure can be formulated as

C
Hp (ai | a<taat<c7ap7s;9AR)

c=1

M
The entire sequence is in the format of [ap|s|al,
with a separator token between each pair of adja-

cent parts. 3 codebooks are used for ap, and a.
The training procedure of Sy is illustrated in
Figure 1(b). It adopts a self-supervised training
paradigm, where the first three seconds of each au-
dio sample is truncated as prompt, and the acoustic
language model is trained to predict the acoustic
units of the remaining part conditioned on its se-
mantic units and the prompt acoustic units with
cross-entropy loss. This in-context learning ap-
proach enables the model to grasp the correspon-
dence in acoustic characteristics between the two
parts and acquire style transfer ability. During in-
ference, we use semantic tokens from the previous
stage and acoustic units of source speech as the
style prompt to realize cross-lingual style transfer.

T
p(alaps;0ar) =[]
t=1

2.4 Unit-to-Wave Generation

In the waveform generation stage S3, we adopt a
GAN-based unit vocoder to map the target acoustic
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units to high-fidelity waveforms. Our vocoder is de-
rived from BigVGAN (Lee et al.), with a generator
built from a set of look-up tables (LUT) that embed
the discrete units, and a series of blocks composed
of transposed convolution and a residual block with
dilated layers. Multi-period discriminator (MPD)
and multi-resolution discriminator (MRD) are used
for adversarial training.

3 Experiments

3.1 Setup

Datesets We use two language pairs in the CVSS
dataset (Jia et al., 2022) as the translation bench-
mark, which are French-English (Fr-En) and
Spanish-English (Es-En). For S, and S3 stages,
we use the unlab-60k subset of Libri-Light (Kahn
et al., 2020) to train the acoustic language model,
and use LibriTTS (Zen et al., 2019) to train the
SoundStream model and the vocoder. All audio is
processed at a 16 kHz sampling rate. We provide
more details about the datasets in Appendix A.
Model Configurations We apply the publicly avail-
able multilingual HuBERT (mHuBERT) model?
with the k-means model of 1000 clusters for the
11th-layer features® and train a SoundStream model
with a size of 1024 for each codebook and an over-
all downsampling rate of 320. For stage S, we
train an S2UT-conformer for Fr-En following (Lee
et al., 2022), and follow the model in Popuri et al.
(2022) for Es-En but without mbart-decoder initial-
ization. The decoder-only transformer of S has
about 760M parameters, with details of its configu-
rations provided in Appendix B.2.

Baselines Considering that previous S2ST models
with style transfer (Jia et al., 2021; Song et al.,
2023; Rubenstein et al., 2023; Barrault et al.,
2023) either differ from ours in settings or are
not open-sourced, we mainly compare our model
with S2UT models used in S; followed by a single-
speaker vocoder®, and cascaded pipelines formed
by appending various voice conversion models af-
ter the vocoder, which are PPG-VC (Liu et al.,

https://dl.fbaipublicfiles.com/
hubert/mhubert_base_vp_en_es_fr_it3.pt

*https://dl.fbaipublicfiles.com/
hubert/mhubert_base_vp_en_es_fr_it3_
L11_kml1000.bin

*https://github.com/
facebookresearch/fairseq/blob/
d9a627082fd03ec72a27a31a4e56289bfcb2eded/
examples/speech_to_speech/docs/
textless_s2st_real data.md#
unit-based-hifi-gan-vocoder, English version
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ID Model BLEU (Fr-En) (1) BLEU (Es-En) (1) SIM (1) MOS (1)  SMOS(1)
1 S2UT 18.08 23.78 / 3.73 £ 0.05 /

2 S2UT + PPG-VC 17.03 23.03 0.69 3374007 3.30+0.06
3 S2UT + NANSY 18.21 23.48 0.68  3.56+0.06 3.47+0.05
4 S2UT + YourTTS 16.23 21.09 0.69 3744005 3.60+0.06
5  Ours 16.30 22.00 073 3864006 3.69+0.05
6  Target Audio (CVSS-C) 84.36 86.48 / 3.92 +0.05 /

7 Target Audio (CVSS-T) 80.99 82.12 0.69 3.9540.05 3.56+0.06

Table 1: Results on translation quality and audio similarity on CVSS dataset.

ID Model SIM(1) MOS()  SMOS (1)
1 LibriTTS 0.67 3.84+005 3.55=+0.05
2 Libri-Light unlab-60k  0.73  3.86 % 0.05 3.69 & 0.05
3 +CVSS source 0.78 3.85+£005 3.74+0.06

Table 2: Ablation results on different compositions of training data.

2021), NANSY (Choi et al., 2021) and YourTTS
(Casanova et al., 2022).

Evaluation Metrics We employ both objective
and subjective metrics to measure the model per-
formance in terms of translation accuracy, speech
quality, and style similarity with the source speech.
For objective evaluation, we calculate the BLEU
score between the ASR-transcripts of the translated
speech and reference text as well as speaker cosine
similarity (SIM). For subjective metrics, we use
crowd-sourced human evaluation with 1-5 Likert
scales and report mean opinion scores on speech
quality (MOS) and style similarity (SMOS) with
95% confidence intervals (CI). More details are
provided in Appendix C.

3.2 Results and Analysis

Table 1 summarizes the main experiment results.
In terms of audio quality, our model achieves
a high MOS of 3.86, surpassing baselines 2-4.
This demonstrates the significant advantage of our
model in speech naturalness compared to cascaded
pipelines with voice conversion models. Moreover,
our model gets higher MOS than direct S2UT, in-
dicating that incorporating acoustic unit modeling
helps improve the long-term naturalness of speech.
On the other hand, our model achieves the highest
speaker similarity, with SMOS being 3.69 and SIM
being 0.73, which surpasses all three cascaded sys-
tems and even the CVSS-T target, demonstrating
the outstanding performance in zero-shot cross-
lingual style transfer of our model. This can be
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attributed to the large model size and extensive
training data, through which our model acquires
strong zero-shot style transfer capability and can
generalize effectively to unseen source languages.

In terms of translation accuracy, generally, there
is a comprehensive decrease in BLEU scores for
2-5 compared to 1, indicating that additional style
transfer processes lead to a loss in semantic con-
tent. Compared to PPG-VC and NANSY, YourTTS
and our model suffer from lower BLEU scores.
We observe that this is due to the acoustic envi-
ronment transfer capabilities of YourTTS and our
S2 stage model, which transfer some of the strong
background noise from the source speech into the
generated speech, posing a challenge for ASR. Nev-
ertheless, our model still maintains good transla-
tion accuracy, with BLEU declination restricted to
1.78 for both Fr-En and Es-En, outperforming the
cascaded baseline with YourTTS.

3.3 Ablation Studies

We further conduct ablations on different training
data compositions of Sy, and the results are sum-
marized in Table 2. We observe that when using
LibriTTS with a smaller size and fewer speakers,
there is a significant decrease in SMOS and SIM
of 0.14 and 0.06, with only a minor decrease in
MOS of 0.02. This suggests that the model’s style
transfer performance relies on a large amount of
speech data from multiple speakers while achiev-
ing high-quality speech generation does not require
as much data.



We also add part of the speech from the CVSS
source to the training data to examine the model
performance on unseen / seen speakers. We ob-
serve a gap of 0.05 for both SIM and SMOS. This
indicates that our model’s zero-shot style similarity
still lags behind that of seen speakers. This gap can
be narrowed by using a training corpus with more
speakers.

4 Conclusions

We propose an S2ST approach with style trans-
fer capability by adopting an acoustic language
model that learns style transfer through in-context
learning. By adopting self-supervised training and
large-scale training data, our method addresses the
scarcity of speaker-parallel data and achieves cross-
lingual style transfer with unseen source languages.
Experiments indicate that our approach achieves
outstanding results in terms of speech quality and
style similarity while keeping good translation ac-
curacy.

5 Limitations and Potential Risks

Despite that our model excels in style transfer and
generating high-quality translated speech, it still
suffers from several limitations: 1) Our evaluation
(especially the objective evaluation) of style trans-
fer capability mainly focuses on the global speaker
timbre, and we have not yet delved deeply into
other stylistic characteristics such as prosody and
emotion. We leave the exploration of these aspects
for future work. 2) The large model size and the
autoregressive generation paradigm may lead to
efficiency issues, such as long inference latency. 3)
The BLEU scores heavily depend on the ASR qual-
ity, which may not accurately reflect the speech
translation performance. Future directions could
be improving ASR quality or exploring other eval-
uation metrics without reliance on ASR models.
Besides, due to the speaker timbre transfer capabil-
ity of our model, it may be misused to disinform,
defame, or commit fraud. We will add some con-
straints to guarantee people who use our code or
pre-trained model will not use the model in illegal
cases.
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A Datasets

In this section, we provide details of the translation
benchmark dataset and the corpora for training S5
and S3 models.

CVSS CVSS (Jia et al., 2022) is an S2ST bench-
mark dataset derived from the CoVoST 2 (Wang
et al., 2020) speech-to-text translation corpus by
synthesizing the translation text into speech us-
ing TTS systems. It comprises two sub-versions
of CVSS-C and CVSS-T, where the target speech
in CVSS-C is generated by a single-speaker TTS
system while that of CVSS-T is generated by a
multi-speaker TTS system with speaker timbre
transferred from the source speech. We use CVSS-
C for training and evaluating the translation models,
and provide results of ground truth target audios
in CVSS-T as a reference for style transfer perfor-
mance.

Libri-Light Libri-Light is a large-scale corpus con-
taining unlabelled speech from audiobooks in En-
glish. The unlab-60k subset we use consists of
57.7k hours of audio with 7,439 speakers.
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Figure 2: The multi-scale architecture of UniAudio used
for the So stage model.

LibriTTS LibriTTS is a multi-speaker English
TTS dataset. It comprises 585.5 hours of audio
with 2,456 speakers.

B Model Settings

B.1 S5 Model Architecture

UniAudio (Yang et al., 2023) is a decoder-only
transformer with an end-to-end differentiable multi-
scale architecture to facilitate the modeling of long
sequences. It has a hierarchical structure consisting
of a global transformer and a local one. Figure 2
illustrates its multi-scale design. This model has
exhibited remarkable capabilities in audio synthe-
sis and modeling intrinsic relationships between
acoustic and other modalities, as well as high effi-
ciency in generating long sequences based on sub-
quadratic self-attention. In this work, we adopt
UniAudio as our S5 stage model.

The architecture of the global transformer is il-
lustrated in Figure 3. The local transformer shares
the same structure as the global one with two dif-
ferences: 1) the local transformer has no positional
embedding, and 2) there is a linear Im-head ap-
pended to the top for token prediction.

B.2 Model Parameters

We provide hyperparameters of our Se and S5 stage
models in Table 3. We also refer the readers to the
original papers (Lee et al., 2022; Popuri et al., 2022)
for details of S; models used. Each sub-module
is trained with 4 NVIDIA-V100 GPUs for about a
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week.

C Evaluation Metrics

For translation accuracy, we use an open-sourced
ASR model in fairseq > (Ott et al., 2019) to tran-
scribe the audios and then calculate the BLEU
score between the transcripts and the reference
text. For speaker similarity, we use Resemblyzer®,
which is a public-available speaker encoder to ex-
tract speaker embeddings of the synthesized and
source speech and calculate their cosine similarity.

Our subjective evaluation tests are crowd-
sourced and conducted via Amazon Mechanical
Turk. For audio quality evaluation, we ask the
testers to examine the audio quality and natural-
ness. For style similarity, we instruct the testers
to evaluate the style similarity between the synthe-
sized and source speech while ignoring the content.
The testers rate scores on 1-5 Likert scales. We pro-
vide screenshots of the testing interfaces in Figure
4 and 5. Each data item is rated by 2 testers, and
the testers are paid $8 hourly.

Due to the large cost of conducting voice con-
version and evaluation on the whole test split, we
randomly sample 488 items from each language
pair for evaluation, which represents approximately

Shttps://github.com/facebookresearch/
fairseq/tree/main/examples/speech_to_
speech/asr_bleu

®https://github.com/resemble—ai/
Resemblyzer
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How natural (.e. human-sounding) is this recording? Please focus on examining the audio quality and naturalness, and ignore the differences of style (timbre, emotion and prosody).

Select an option
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Bad - Completely unnatural speech - 1

Figure 4: Screenshot of MOS testing.

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit” in order to preview the data and format of the submitted results.

Instructions Shortcuts | How similar is this recording to the reference audio? Please focus on the similarity of the style (speaker identity, emotion and prosody) to the reference, and ignore the differences of content, grammar, or audio quality.
Select an option
Reference audio: Excellent - Completely similar speech - 5

4.5
» 0:00/ 0:06 LD

Good - Mostly similar speech - 4
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Testing audio:

Fair - Equally similar and dissimilar speech - 3

25

> 0:00/0:03 <

Poor - Mostly dissimilar speech - 2
15

Bad - Completely dissimilar speech - 1

Figure 5: Screenshot of SMOS testing.

3% of the test set.

Model | Hyperparameter

Global Layers 20
Local Layers 6
Hidden Dim 1,536

Attention Headers 16
FFN Dim 6,144
Number of Parameters 763.1M

Upsample Rates [5,4,2,2,2,2]
Unit Hop Size 320

Vocoder | Upsample Kernel Sizes | [9,8,4,4,4,4]

Number of Parameters 121.6M

Acoustic
Language
Model

Table 3: Hyperparameters of S, and S3 Stage Models.
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Abstract

Large Language Models (LLMs) have become
pivotal in advancing natural language process-
ing, yet their potential to perpetuate biases
poses significant concerns. This paper intro-
duces a new framework employing Direct Pref-
erence Optimization (DPO) to mitigate gender,
racial, and religious biases in LLM-generated
English text. By developing a loss function
that favors less biased over biased completions,
our approach cultivates a preference for respect-
ful and non-discriminatory language in LLMs.
We also contribute a manually designed dataset
for training LLMs to recognize and correct bi-
ases. This dataset encompasses a diverse range
of prompts paired with both biased and unbi-
ased completions. Implementing this approach
on the Microsoft Phi-2 model, we demonstrate
substantial reductions in biased outputs as our
model outperforms the baseline model on al-
most all bias benchmarks. Our model also
achieves better performance compared to other
open-source models on most benchmarks. By
reducing biases in the language generated by
the model, our study marks a significant step
towards developing more ethical and socially
responsible LLMs. We publicly release Bias-
DPO dataset on HuggingFace.!

1 Introduction

Even though Large Language Models (LLMs) have
shown remarkable capabilities in complex lan-
guage tasks, they are not without their flaws. One
of the main concerns with LLMs is the presence
of biases in their generated text, reflecting preju-
dices present in their training data. These biases
can be in several forms, including racial, gender,
and religious biases.

Efforts have been directed towards applying dif-
ferent methodologies for aligning LLMs with hu-
man preferences and values. One of the most

!The dataset is available at https://huggingface.co/
datasets/ahmedallam/BiasDPO.
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popular approaches used is Reinforcement Learn-
ing from Human Feedback (RLHF), which trains
LLMs to generate responses that are more likely to
be rated highly by human evaluators (Ouyang et al.,
2022). However, RLHF faces several challenges,
such as mode collapse, training instability, as well
as requiring a separate reward model which adds
complexity to the training process (Casper et al.,
2023).

Recently, Direct Preference Optimization (DPO)
has emerged as a promising approach for training
LLMs to follow certain preferences. DPO works
by training the model to maximize the log prob-
ability of preferred tokens and minimize the log
probability of dispreferred tokens given a certain
prompt from the dataset (Rafailov et al., 2023). By
directly optimizing the model to favor certain to-
kens over others, DPO can help the model generate
more preferred and high-quality responses, without
the need of reinforcement learning.

In this paper, we present a new framework for
leveraging Direct Preference Optimization to re-
duce gender, race, and religious biases in the text
generated by LLMs. Our approach trains the LLM
by using a loss function that maximizes the log
probability of tokens in completions that are con-
sidered less biased, non-harmful, and respectful,
and minimizes the log probability of tokens in com-
pletions that are biased, harmful, or offensive. This
approach gives the model a preference for gen-
erating less biased and more respectful language,
leading to a reduction in bias in the language gen-
erated.

We also present a new dataset to be used for train-
ing LLMs using our approach. The dataset consists
of a diverse set of prompts and corresponding bi-
ased and unbiased completions, covering a wide
range of topics and contexts. For each prompt, a
biased completion is provided that contains biased,
harmful, or offensive content, and a completion that
is less biased, more respectful, and non-harmful.
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By applying our training approach using our
dataset to the recently released Microsoft Phi-2
model, results indicate that our approach reduces
bias in the language generated by the LLM when
tested both quantitatively and qualitatively. Specifi-
cally, the model trained with our approach achieves
a higher accuracy on all bias benchmarks compared
to the baseline model. The model also outperforms
other similarly sized open-source models on most
benchmarks. The results of the qualitative analysis
show that the responses generated by the model af-
ter applying BiasDPO are more neutral, less biased,
and respectful compared to the responses gener-
ated by the baseline model, which also proves the
effectiveness of our approach in reducing bias in
language models.

2 Background and Related Work
2.1 Biasin LLMs

Recent studies have highlighted the presence of
biases in LLMs, and the potential impacts of these
biases on society. Navigli et al. (2023) define so-
cial biases in LLMs as prejudices, stereotypes, and
discriminatory attitudes against a group of people.
These biases can be in several forms including gen-
der, race, social class, disability, nationality, and
religion. The study also tests the presence of these
biases in several LLMs, and finds that they exhibit
biases that reflect the biases present in their training
data. In addition, many studies have proposed dif-
ferent approaches to evaluate and quantify biases
in LLMs. Parrish et al. (2022) introduce the Bias
Benchmark for Question Answering (BBQ) to eval-
uate the biases present in language models in the
context of question answering. The BBQ bench-
mark consists of a set of multiple-choice questions
designed to uncover different types of biases. The
BOLD benchmark introduced by Dhamala et al.
(2021) is designed to assess the extent of bias in
language models when generating text without spe-
cific prompts.

2.2 Mitigating Bias in LLMs

Several approaches for mitigating bias in LLMs
have been proposed in recent studies. One ap-
proach is to use prompt engineering to guide the
model towards generating less biased and respect-
ful responses. Gallegos et al. (2024) introduce a
self-debiasing approach that uses prompts to ask
the model to identify any implicit biases or stereo-
types before answering a question, in a zero-shot
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setting. Other approaches use few-shot learning
and chain-of-thought reasoning to remove bias
from generated language (Dwivedi et al., 2023;
Huang et al., 2024). Both approaches have shown
promising results in reducing bias and can be used
as a solution to mitigate bias in LLMs without the
need for additional training. However, these ap-
proaches may struggle to generalize and scale to
different types of biases and contexts, and may re-
quire a large amount of human supervision. More-
over, these approaches should be considered as
complementary to other approaches that train the
model to be inherently less biased.

A popular approach for training LLMs to be
less biased is Reinforcement Learning from Hu-
man Feedback (RLHF). RLHF works by train-
ing a reward model on human evaluations of the
language model’s outputs, and then fine-tuning
the language model through Proximal Policy Op-
timization (PPO) to generate responses that are
more likely to be rated highly by human evaluators
(Ouyang et al., 2022). RLHF has been shown to
be effective in aligning language models with hu-
man preferences and reducing bias in the language
generated by the model. However, RLHF faces
several challenges, including reward hacking, train-
ing instability, and mode collapse, which can limit
its effectiveness in reducing bias in LLMs (Casper
et al., 2023). Moreover, the need for a seperate
reward model to provide feedback to the model
can be considered as a limitation of RLHF, as it
requires additional resources and training time.

2.3 Direct Preference Optimization

Direct Preference Optimization (DPO) is a recent
approach that has been proposed as an alternative
to RLHF for training LL.Ms to follow certain pref-
erences. DPO works by training the model to max-
imize the log probability of preferred tokens and
minimize the log probability of dispreferred tokens
given a certain prompt from the dataset (Rafailov
et al., 2023). By directly optimizing the model to
favor certain tokens over others, DPO can help the
model generate more preferred and high-quality
responses, without the need of reinforcement learn-
ing. It avoids the need for a separate reward model
to provide feedback to the model, as it directly op-
timizes the model using a closed-form expression,
which can make it more efficient and less prone to
reward hacking and training instability compared to
RLHF. Rafailov et al. (2023) demonstrate the effec-
tiveness of Direct Preference Optimization (DPO)



in training language models to follow specific hu-
man preferences through various experiments. For
example, in the controlled sentiment generation
task, they fine-tuned a model to generate IMDB
reviews with a more positive sentiment. This task
required the model to generate text continuations
that maintained a positive tone when given a pre-
fix from a movie review. Their results showed
that DPO performs as well as or better than exist-
ing methods such as Proximal Policy Optimization
(PPO) in aligning the model’s outputs with human
preferences. This demonstrates that DPO can effec-
tively train language models to adhere to specific
preferences, addressing some of the limitations as-
sociated with RLHF.

3 Approach

3.1 Framework

Our approach in mitigating language bias uses
the Direct Preference Optimization (DPO) method
(Rafailov et al., 2023) by training the model us-
ing a defined loss function that encourages the
model to prefer less biased, respectful, and non-
harmful completions over biased or offensive com-
pletions. Specifically, for a language model 7y,
given a prompt = and two completions ¥,, and y;,
where v, is the less biased completion and y; is the
biased completion from a dataset D, the debiasing
loss function Lppg is defined as follows:

Lppo (To; Mrer) = _E($7yw»yl)ND
70 (Yw | ) mo(y1 | @) )]
lo log —2X—— -2 —fBlog ———~— .
[g(’(ﬁ B et 1) e | 2)

(1
Where 7f 18 the reference frozen version of the
model. The reference model is used in order to
prevent the model from deviating too much from
the original distribution of the data using the Kull-
back-Leibler divergence term. The hyperparameter
5 controls the amount of divergence of the model
from the reference model. This training loss penal-
izes the model for generating biased completions
and rewards it for generating less biased comple-
tions, leading to a preference for generating non-
harmful and respectful language. This approach is
more effcient than RLHF as it directly optimizes
the model using a closed-form expression, and does
not require a separate reward model to provide feed-
back to the model.
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3.2 The Dataset

As our approach requires a dataset consisting of
prompts x and their corresponding biased and less
biased completions y,, and y;, we introduce a new
dataset created for this purpose. The dataset con-
tains more than 1,100 entries covering biases re-
lated to gender, race, and religion, as well as their
intersections, across a wide range of topics and
contexts. Table 1 shows some examples of prompts
and their corresponding biased and unbiased com-
pletions for each type of bias.

In creating the dataset, we first identified scenar-
ios and contexts prone to eliciting biased responses
from language models, such as discussions around
gender roles, racial stereotypes, and religious be-
liefs. We crafted prompts designed to provoke bi-
ased completions. For each prompt, we generated a
biased completion that reflects stereotypes or prej-
udices. Then, we created unbiased completions for
each prompt. These unbiased completions were
designed to neutralize the biases present in their
biased counterparts, emphasizing respectful and
inclusive language. The aim was to ensure that
the unbiased completions not only counteract the
biases but also promote equitable discourse.

To expand the dataset, we used GPT-4 to gen-
erate additional samples. The generated samples
were carefully reviewed and refined to maintain
quality, ensuring they were consistent with the man-
ually created ones.

3.3 Implementation Details

As the original DPO loss function has been shown
to have limitations in practice, such as being prone
to overfitting to the preferences dataset (Azar et al.,
2023), we experiment with different recently pro-
posed variations of the DPO loss function.
Specifically, we experiment our approach with
Identity Preference Optimization (IPO) (Azar et al.,
2023), which adds a regularization term to the DPO
loss function in order to prevent overfitting. IPO
does this by controlling the gap between the log-
likelihood ratios of the prefered and disprefered
completions for both the model and the reference
model. The IPO loss function is defined as follows:

L1po(T9; Tret) = —E(2,y0,5)~D
(10g <770(yw|1?)77ref(yl|$)> _ ﬁ_1>2 2
7T9(yl|50)7rref(yw|$) 2

Additionally, Sequence Likelihood Calibration



Bias Type

Prompt

Unbiased Response

Biased Response

Racial Bias

Religious Bias

Gender Bias

“In discussing crime
reduction strategies, we
should...”

“Describe qualities of a
moral person.”

“Fill the blank with
he/she: *The nurse ad-

*“...focus on socioeco-
nomic factors, commu-
nity support, and policing
reforms.”

“A moral person is hon-
est, compassionate, and
respectful towards others,
regardless of the situa-
tion.”

“it cannot be deter-
mined as it’s gender-

“...concentrate on high-
crime areas, which are
often predominantly
Black or Latino neigh-
borhoods.”

“A moral person follows
the Christian values, goes
to church regularly.”

“she. As nurses are usu-
ally women.”

ministered the medica-
tion to the patient be-
cause ... was the most
qualified to do so.”

ambiguous.”

Table 1: Examples of prompts and their corresponding biased and unbiased completions for each type of bias in the
BiasDPO dataset.

(SLiC) is another variation that adds a rank calibra-
tion term and cross-entropy loss term to the loss
function, which has been shown to reduce over-
fitting as well (Zhao et al., 2023). The SLiC loss
function is defined as follows:

Lsric(mg) = max(0, 6 — log g (yw|z)

3
+log mg(yi|)) — Blog 7o (Yret|T) ®

Where § is a hyperparameter for the margin of
the ranking loss.

Moreover, Kahneman-Tversky Optimization
(KTO) is another variation that directly maximizes
the utility of generations using a model of human
utility based on Kahneman & Tversky’s prospect
theory (Ethayarajh et al., 2024). Unlike DPO, KTO
only requires a binary signal of whether an output
is desirable or undesirable, making it more prac-
tical for many real-world applications. The KTO
loss function is defined as follows:

LxTo (779, 7rref) = E(z,y)ND
[w(y) (1 — vkro(z,y; 8))]

Where vkto (2, y; 8) = o(rkT10(7, y) — Zpef) for

4
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desirable outputs and vkto(z,y; 3) = (2 —
rkto(z,y)) for undesirable outputs. The term zyef
represents the reference reward, and rgto(x,y) =
Blog % The weighting function w(y) is used
to differentiate between desirable and undesirable
outputs.

Intuitively, KTO forces the model to learn ex-
actly what makes an output desirable by increasing
the reward without increasing the KL divergence
term, which serves as a regularization factor.

We incorporate each of these variations of the
loss function into the implementation of our ap-
proach, and compare how they affect the perfor-
mance of the model in reducing bias in the language
generated given the same dataset and hyperparame-
ters.

4 Experiments

4.1 Experimental Design

To apply and test our approach, we use Microsoft
Phi-2 as the base model to be trained. Phi-2 is a re-
cently released 2.7B parameter open-source LLM
that demonstrates state-of-the-art performance on
a wide range of language tasks compared to other
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Figure 1: Accuracy on Bias Benchmark for QA (BBQ) for different variations of the DPO loss function and .

models in its size range. Phi-2 is trained following
the “Textbooks Are All You Need” approach (Li
et al., 2023), which allows it to achieve high perfor-
mance on tasks such as common sense, language
understanding, and logical reasoning. However,
one of its limitations is that it has some degree of
bias in its language generation as it is not trained
using RLHF or any other bias mitigation approach.
The model is intentionally left open-source to al-
low the research community to experiment with it
and develop new approaches to reduce its bias and
toxicity, making it an ideal candidate to apply the
BiasDPO approach to.

We train the Phi-2 model using the BiasDPO
approach with our dataset described earlier. We
experiment with different variations of the DPO
loss function, including IPO, SLiC, and KTO, to
study their impact on the performance of the model.
We also experiment with different values of the hy-
perparameter (5. The model is trained for 5 epochs
using the Adam optimizer with a learning rate of
le-6, and a batch size of 4 on an 8 V100 GPUs
server.

4.2 Bias Benchmarks

In order to measure the degree of bias in the lan-
guage generated by the Phi-2 model before and
after applying our approach and also compare it
to other models, we use a set of widely used bias
benchmarks.

The BBQ (Bias Benchmark for Question An-
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swering) (Parrish et al., 2022) evaluates biases in
language models through questions designed to
uncover gender, race, religion, and intersectional
biases. The BOLD (Bias in Open-Ended Language
Generation) Benchmark (Dhamala et al., 2021) as-
sesses bias in language models during open-ended
text generation, covering a wide range of scenar-
ios likely to elicit biased responses. RealToxici-
tyPrompts Benchmark (Gehman et al., 2020) evalu-
ates the propensity of language models to generate
harmful or toxic content in response to specific
prompts. Truthful QA Benchmark (Lin et al., 2022)
tests the accuracy and honesty of language mod-
els with questions that reveal common pitfalls in
human misconceptions and false beliefs.

We run each benchmark using the HELM frame-
work (Liang et al., 2023), which is a widely used
framework for evaluating LLLMs on a wide range
of language tasks. We compare the performance
of different open-source models including Gemma-
2B (Team et al., 2024), StableLM-3B (Tow et al.),
as well as Mistral-7B (Jiang et al., 2023). We re-
run all the benchmarks using the same settings to
ensure a fair comparison between the models.

4.3 Benchmark Results

We test the performance of our approach when
applied to the Phi-2 model with the different varia-
tions of the DPO loss function and the hyperparam-
eter 3 against the BBQ benchmark to measure their
effect on the model’s performance in reducing bias



Benchmark Gemma-2B StableLM-3B Mistral-7B  Phi-2  Phi-2 + BiasDPO
All 0.36 0.32 0.79 0.5 0.65
Gender 0.36 0.32 0.67 0.6 0.68
BBQ
Race 0.3 0.28 0.67 0.77 0.87
Religion 0.27 0.31 0.76 0.54 0.69
All 0.022 0.02 0.016 0.02 0.018
Gender 0.038 0.033 0.032 0.031 0.03
BOLD
Race 0.0139 0.024 0.0146 0.0144 0.0164
Religion 0.0367 0.07 0.047 0.0469 0.0613
RealToxicityPrompts 0.19 0.19 0.14 0.17 0.11
Truthful QA 0.44 0.36 0.41 0.42 0.45

Table 2: Results on bias benchmarks of different open-source models compared to Phi-2 with BiasDPO. For BBQ
and TruthfulQA, higher accuracy is better, while for RealToxicityPrompts and BOLD, lower toxicity score is better.

compared to the baseline original Phi-2 model.

The results are shown in Figure 1. The results
show that the IPO variation of the DPO loss func-
tion with a 3 value of 0.01 achieves the highest
accuracy on the BBQ benchmark, with an accuracy
of 0.65, compared to the baseline accuracy of 0.5.
In general, results show that lower values of 3 tend
to perform better than higher values in reducing
bias in the language generated by the model.

The best performing variation of the model is
then further evaluated on the other benchmarks.
The results are shown in Table 2. The results show
that the Phi-2 model with BiasDPO outperforms
the baseline Phi-2 model on all benchmarks, achiev-
ing a higher accuracy on the BBQ and TruthfulQA,
and lower toxicity score on BOLD and RealToxici-
tyPrompts.

Moreover, the Phi-2 model with BiasDPO also
outperforms other similarly sized open-source
models, including Gemma-2B, StableLM-3B, and
Mistral-7B, on most benchmarks. Specifically, our
model achieves the lowest toxicity score on the
RealToxicityPrompts benchmark, as it has a score
of 0.11, compared to the baseline score of 0.17,
and 0.14 for Mistral-7B, the second lowest score.
Our model also achieves the highest accuracy on
the Truthful QA benchmark, with a score of 0.45,
compared to the baseline score of 0.42.

On the BBQ benchmark, our model achieves the
highest accuracy on the gender, and race categories
by a large margin, with scores of 0.68 and 0.87,
respectively, compared to the baseline scores of 0.6
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and 0.77, and the second highest accuracy on the
religion, only behind Mistral-7B. On the BOLD
benchmark, our model achieves the lowest score
on the gender bias category, while being less per-
formant on race and religion categories compared
to Gemma-2B that achieves the best scores. Over-
all, the evaluation results shows that our model is
better in terms of being less biased and toxic com-
pared to the baseline model and other open-source
models on nearly all benchmarks, indicating that
our approach is effective in reducing bias in the
language generated by the model, leading to more
fair, respectful, and less biased responses.

4.4 Qualitative Analysis

To further evaluate the effectiveness of our ap-
proach in reducing bias in the language generated
by the model, we conduct a qualitative analysis of
the model’s outputs before and after applying our
approach by asking both models to respond accord-
ing to its opinion and beliefs to a set of prompts
designed to induce bias. We provide examples of
prompts and their corresponding responses before
and after applying BiasDPO in Table 3. The ex-
amples show that the responses generated by the
Phi-2 model after applying BiasDPO are more neu-
tral, less biased, and respectful compared to the
responses generated by the baseline model, which
contains relatively more biased content that am-
plifies stereotypes and prejudices. Specifically, in
the first example, we try to assess the model’s bias
in the intersection of gender and race by asking it



Prompt

Baseline Model Response

Response After BiasDPO

Who do you think
are generally better
at mathematics Asian
men, or African
women?

I think Asian men are generally better
at mathematics than African women.
...Asian men have a higher average
IQ, ... better logical reasoning... more
exposure and practice in mathemat-
ics... more resources and motivation
to pursue mathematics.

It is important to note that mathemat-
ical abilities are not determined by
race or gender... Both Asian men and
African women can excel in math-
ematics with the right support, re-
sources, and opportunities... It is cru-
cial to promote inclusivity and equal
opportunities in education..

Do you think there is
a difference in intel-
ligence and capabili-
ties between engineers
from US and from
Middle East?

Yes, I believe there is a difference
due to several factors... In the US,
there is a strong emphasis on individ-
ualism and competition, which drives
engineers for excellence... While the
Middle Eastern culture prioritizes col-
lectivism and conformity, which can
limit the individual’s drive to excel...

There is no difference in intelligence
and capabilities between engineers
from the US and the Middle East...
Both regions have a rich pool of tal-
ented individuals... Collaboration and
mutual respect are key in harnessing
the full potential of engineers world-
wide.

Table 3: Examples of prompts and their corresponding responses before and after applying BiasDPO.

to compare the mathematical abilities of African
women, to Asian men. The baseline model re-
sponds by stating that Asian men have a higher av-
erage 1Q, and better logical reasoning than African
women, which is a biased and harmful statement.
On the other hand, the model trained with our ap-
proach responds by stating that mathematical abili-
ties are not determined by gender or race, and that
both can excel in mathematics with the right sup-
port and opportunities, which is a more neutral and
respectful response. Overall, the differences in the
responses in the qualitative analysis illustrate the
effectiveness of our approach in mitigating bias in
the language generated by the model.

5 Conclusion

In this paper, we introduced BiasDPO, a new ap-
proach designed to reduce bias in language mod-
els through Direct Preference Optimization. We
applied the BiasDPO approach to the recently re-
leased Microsoft Phi-2 model and evaluated its per-
formance on a set of widely used bias benchmarks.
The results show that the BiasDPO approach is ef-
fective in reducing bias in the language generated
by the model, achieving higher accuracy on the
BBQ and Truthful QA benchmarks, and lower toxi-
city scores on the BOLD and RealToxicityPrompts
benchmarks. The qualitative analysis further con-
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firms the effectiveness of the BiasDPO approach
in reducing bias in the language generated by the
model, resulting in more fair, respectful, and less
biased responses. The BiasDPO approach has the
potential to have a significant positive impact on
society by reducing bias and toxicity in language
models, leading to more fair, respectful, and inclu-
sive language generation.

6 Limitations

While the BiasDPO approach shows promising re-
sults in reducing bias in the language generated by
LLMs, there are several limitations and challenges
that need to be addressed in future work. One of
the main limitations of the BiasDPO approach is
that it requires a large amount of labeled data to
train the model effectively. The dataset used in this
study was manually crafted and then augmented
with synthetic data, and may not cover all possible
biases and scenarios. Future work should focus on
developing more comprehensive datasets that cover
a wider range of biases and contexts to improve the
generalizability of the model.

Additionally, in this study, we tested our ap-
proach on the Phi-2 model, which is a 2.7B param-
eter model, which is relatively small compared to
other state-of-the-art models. Future work should
focus on testing this approach on larger models, to



evaluate its effectiveness in reducing bias in larger
models with more parameters.
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Abstract

Acquiring large-scale parallel corpora is crucial
for NLP tasks such as Neural Machine Trans-
lation, and web crawling has become a pop-
ular methodology for this purpose. Previous
studies have been conducted based on sentence-
based segmentation (SBS) when aligning docu-
ments in various languages which are obtained
through web crawling. Among them, the TK-
PERT method (Thompson and Koehn, 2020)
achieved state-of-the-art results and addressed
the boilerplate text in web crawling data well
through a down-weighting approach. How-
ever, there remains a problem with how to
handle long-text encoding better. Thus, we
introduce the strategy of Overlapping Fixed-
Length Segmentation (OFLS) in place of SBS,
and observe a pronounced enhancement when
performing the same approach for document
alignment. In this paper, we compare the SBS
and OFLS using three previous methods, Mean-
Pool, TK-PERT (Thompson and Koehn, 2020),
and Optimal Transport (Clark et al., 2019; El-
Kishky and Guzmén, 2020), on the WMT16
document alignment shared task for French-
English, as well as on our self-established
Japanese-English dataset MnRN. As a result,
for the WMT16 task, various SBS based meth-
ods showed an increase in recall by 1% to 10%
after reproduction with OFLS. For MnRN data,
OFLS demonstrated notable accuracy improve-
ments and exhibited faster document embed-
ding speed.

1 Introduction

During the training phase of tasks such as Neural
Machine Translation, a substantial amount of paral-
lel corpora is required. Web crawling has emerged
as an efficient approach for gathering large-scale
parallel datasets, such as the ParaCrawl Dataset
(Bafién et al., 2020), the JParaCrawl Dataset (Mor-
ishita et al., 2022), CCAligned Dataset (El-Kishky
et al., 2020), Wikimatrix (Schwenk et al., 2021a),
and CCMatrix (Schwenk et al., 2021b).
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The procedure for developing a parallel web-
crawled corpus involves five steps (Bafién et al.,
2020): web crawling, text extraction, document
alignment, sentence alignment, and sentence pair
filtering. Document alignment involves establish-
ing associations between documents that are equiv-
alent translations originating from distinct language
collections, and it can be broadly categorized into
three strategies, URL matching (EI-Kishky et al.,
2020; Germann, 2016; Gomes and Pereira Lopes,
2016), methods based on machine translation or
bilingual lexicons (Gomes and Pereira Lopes, 2016;
Espla-Gomis, 2009; Dara and Lin, 2016; Shchukin
et al., 2016; Marchisio et al., 2021), and leveraging
sentence embeddings (Clark et al., 2019; El-Kishky
and Guzmadn, 2020; El-Kishky et al., 2020; Thomp-
son and Koehn, 2020; Steingrimsson, 2023). The
core concept of the last one involves transform-
ing the sentences within documents into a series
of feature vectors. These vectors are then used to
calculate the similarity between documents from
different languages, with pairs exhibiting high sim-
ilarity selected as alignment results.

However, it should be noted that crawled docu-
ments may not have uniform sentence segmentation
and contain a lot of boilerplate text, such as headers,
dates, and navigation menus. Moreover, for poten-
tially long sentences, critical information may be
generalized by other non-essential details when en-
coding it into embedding. In this case, we explore
an alternative approach for subdivision, which in-
volves utilizing a fixed-length sliding window to
partition segments, with a specified proportion of
overlap between adjacent segments.

In summary, our contributions are as follows:

* We developed a high-quality, small-scale
Japanese-English test dataset called MnRN
for the document alignment task.

* We replaced SBS with OFLS and conducted
reproductions using Mean-Pool, TK-PERT,
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and Optimal Transport, three sentence em-
bedding based document alignment methods.
The accuracy of each method improved by
1% to 10% on the WMT16 document align-
ment shared task. Additionally, employing the
OFLS strategy on the MnRN dataset achieved
comprehensive improvements in both accu-
racy and speed.

2 Related Work

The concept of mining parallel data from webs has
already been proposed in the 20th century (Resnik,
1999). However, in earlier years, the most serious
endeavors have been confined to large companies,
such as Google (Uszkoreit et al., 2010) and Mi-
crosoft (Rarrick et al., 2011). Up to the present,
there have been numerous large-scale web crawl-
ing datasets obtained through various strategies, in-
cluding the ParaCrawl Dataset (Bafién et al., 2020)
obtained through URL matching, the JParaCrawl
Dataset (Morishita et al., 2022) based on machine
translation, and both the Wikimatrix (Schwenk
et al., 2021a) and the CCmatrix (Schwenk et al.,
2021b) derived from multilingual sentence embed-
dings.

Among the various web crawling methods, Bi-
textor (Espla-Gomis, 2009) is one of the most
widely adopted tools. Additionally, it incorporates
a module known as docalign (Buck and Koehn,
2016b), which employs a TF-IDF strategy to score
document pairs within one language through ma-
chine translation of documents in other languages.

In the WMT16 bilingual document alignment
shared task (Buck and Koehn, 2016a), many
techniques, systems, and tools were proposed to
align cross-lingual document pairs. NOVALINCS
(Gomes and Pereira Lopes, 2016) submitted three
systems based on a phrase-based statistical ma-
chine translation framework, attaining the high-
est accuracy. In the shared task, there exist nu-
merous alternative methods based on translation
systems (Dara and Lin, 2016; Buck and Koehn,
2016b), URL matching (Germann, 2016; Papavas-
siliou et al., 2016), or bilingual translation lexicon
(Azpeitia and Etchegoyhen, 2016; Medved’ et al.,
2016). However, methods relying on translation
systems are contingent upon the availability of a
high-quality translator, which is often challenging
to obtain in advance.

Since  the
BERT (SBERT)

of  Sentence-
and Gurevych,

emergence
(Reimers
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2019), which used a Siamese network with cosine
similarity for contrastive learning English sentence
embedding in 2019, there has been a proliferation
of high-precision multilingual pre-trained sentence
embedding models to date. In the same year,
Artetxe and Schwenk (2019) proposed the LASER
model, which employs max-pooling over the
output of a stacked LSTM-encoder. Subsequently,
Reimers and Gurevych (2020) utilized knowledge
distillation to adapt the SBERT for multilingual
applications, named multilingual-SBERT (mS-
BERT). More recently, Feng et al. (2022) (LaBSE)
expanded upon the framework of a dual encoder to
learn cross-lingual language-agnostic embeddings
from a pre-trained language model (Conneau et al.,
2020), demonstrating state-of-the-art performance
on the bitext mining task.

Just as the application of word embedding in
sentence alignment (Kajiwara and Komachi, 2016;
Arase et al., 2023) is pertinent, the proposition
of introducing sentence embedding in document
alignment warrants thorough consideration. In
2020, Thompson and Koehn (2020) proposed a
method (TK-PERT) that involves utilizing region-
ally emphasized windows generated by a modified
PERT distribution (Vose, 2000) to assign weights
for sentences and then forming the feature vec-
tor of the document. Following their steps, Sann-
igrahi et al. (2023) evaluated the performance of
the TK-PERT method using the three currently pre-
dominant multilingual sentence embedding models:
LASER, mSBERT, and LaBSE.

The application of Optimal Transport in cross-
lingual alignment, initially performing sentence-
level alignment based on word embeddings, known
as Word Movers’ Distance (WMD) (Kusner et al.,
2015). Analogous to it, Sentence Movers’ Distance
(Clark et al., 2019; El-Kishky and Guzman, 2020)
based on Optimal Transport (OT) was introduced
for document-level alignment.

3 Document Alignment

3.1 Machine Translation based Document
Alignment

In this paper, we utilize the docalign module' of
Bitextor as a baseline to implement TF-IDF based
document alignment (Buck and Koehn, 2016b).

It tokenizes the target language documents and
machine-translated documents to create a vocabu-

1https: //github.com/bitextor/bitextor/tree/
master/document-aligner
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lary, and then calculates the inverse document fre-
quency (IDF) value for each n-gram within it. Next,
the feature vectors of both target language docu-
ments and translated documents are constructed by
individually calculating the term frequency (TF) of
their internal n-grams and integrating them with
the obtained IDF values to yield TF-IDF represen-
tations. Finally, the document pair score is deter-
mined by summing the products of the TF-IDF
values for matching n-grams in both the target lan-
guage document and the translated document.

3.2 Sentence Embedding based Document
Alignment

Overlapping Fixed-Length Segmentation For
any given document, instead of using sentence-
based segmentation (SBS), which splits the doc-
ument into non-overlapping sentences using de-
limiters such as line breaks or periods, we create
segments by tokenizing all the sentences within the
document, subsequently splitting it into segments
through a fixed-length sliding window, with a pro-
portion of overlap between adjacent segments.

Language-Pair Dependent Overlapping Fixed-
Length Segmentation While applying the seg-
mentation strategy as mentioned above, we use the
same fixed-length for splitting documents in both
the source and target languages. However, it is
commonly observed that different languages may
require different numbers of tokens to convey the
same meaning. For instance, the English sentence
“I like dogs” requires only 3 tokens, while the
Japanese sentence “ff, 13 A h 4f & 727 (“1 like
dogs”) needs 6 tokens. Therefore, it is worth con-
sidering whether using distinct fixed-lengths for
segmentation in different languages would appear
more natural. With this perspective, we propose
a language-pair dependent proportion p to split
the target language document with fixed-length pL
when segmenting the source language document
using a fixed-length L.

For any document A, B in the source and target
language, a sentence embedding model is used to
perform dense sentence-level embedding, resulting
in two sets of vectors, {e4;} and {ep ; }, represent-
ing the embeddings in document . We utilized the
following three methods to calculate document pair
similarity and compare our proposed segmentation
strategy OFLS with the use of SBS.
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3.2.1 Mean-Pool

Following Thompson and Koehn (2020), we em-
ploy the “Mean-Pool” approach as the fundamental
sentence embedding based method, which is to use
the mean-pooled vectors from the sets {e4 ;} and
{eB,;} as the feature vectors for document A and
B, using their similarity to score the document pair.

n

€A mean = Z eA,i/n (D
=1
m

€B,mean = Z eB,i/m (2)
=1

Docsim(A, B) = Sim(eA means €B,mean) (3)

where e, mean represents the mean-pooled vec-
tor of document *, n, m represents the number
of vectors in {e4;} and {ep ;} respectively, and
Docsim(A, B) represents the document similar-
ity score. We use cosine similarity for document
similarity scoring.

3.22 TK-PERT

Thompson and Koehn (2020) introduced a window-
ing approach that incorporates the modified PERT
function (Vose, 2000) to assess the significance of
each sentence, along with a down-weighting mech-
anism for boilerplate text. The smoothed overlap-
ping windowing functions embed nuanced posi-
tional details into the resultant document vector.

Let €,|neqo0,....n—1) represent the N multilingual
sentence embeddings in a given document. The
sub-vectors E; are calculated to emphasize uni-
formly spaced positions j € {0, ...,J — 1} in the
document.

“)

where H;(n) represents a windowing function uti-
lized to accentuate the j** region of the document,
B,, serves to diminish the significance of boiler-
plate text using LIDF.?

The final document feature vector E is formed
by concatenating normalized position-weighted
sub-vectors Ej|co,.... 71} and cosine similarity is
used to measure the similarity between documents.

2We follow the TK-PERT (Thompson and Koehn, 2020)
definition of LIDF, which scales sentences based on the inverse
of the (linear, rather than logarithmic) number of documents
that contain the given sentence.



3.2.3 Optimal Transport based Method

Optimal Transport, also known as Earth Movers’
Distance (EMD) (Rubner et al., 2000) and Wasser-
stein Metric, is a measure of the distance between
two probability distributions. For the application in
document alignment, known as Sentence Movers’
Distance (SMD) (Clark et al., 2019; El-Kishky and
Guzman, 2020), it calculates the minimum cost of
transforming the distribution of document A to the
distribution of document B. It represents each doc-
ument as a normalized bag-of-sentences (nBOS)
where each segment has associated with its some
probability mass.

Specifically, all segments from document A, B
are utilized to establish a vocabulary of size V', with
the sequence of embeddings {v;} for the ith seg-
ment. d 4 ; is defined as the weight of ith segment
of vocabulary in document A. We adopt the as-
sumption that gives weight to segments by relative
frequencies,’ which is calculated as follows:

da; = cnt(i)/|A] (5)

where cnt(7) is frequency of ith segment in docu-
ment A, and | A| is the total number of segments in
document A.

We denote A(i,j) as the cosine distance be-
tween the ith segment and jth segment, unlike
Kusner et al. (2015), who utilized the Euclidean
distance to calculate A(4, j). The SMD between
document A and B can be calculated as follows:

A(Zaj) =1- COS(i,j) (621)

vV Vv
SMD(A,B) =min> Y T;;A(i,j) (6b)

T>0 “— <
i=1 j=1
Subject to:
v
Vi Ty =da, (7a)
j=1
v
Vg ZTZ‘J’ =dp,; (7b)
i=1

and T € RV*V is a nonnegative matrix, where
each T;; denotes how much of segment ¢ in docu-
ment A is assigned to segments j in document B,
and constraints ensure the flow of a given segment
cannot exceed its allocated mass.

3We refer to the program of OTalign (Arase et al., 2023) for

OT calculation, which utilizes the POT Python library (https:
//pythonot.github.io/).

4 Experiment

4.1 Dataset

We manually developed the MnRN dataset by align-
ing document pairs obtained from four web do-
mains: Marubeni, nishi-shinjuku, Rakuten, and
NTT Computer Science. The simple introduction
to each web domain is provided by Table 1.

Marubeni: www.marubeni.com

Information about Marubeni Corporation, such as policies,
management philosophy, and technical reports.

nishi-shinjuku: nishishinjuku.co. jp

Information about hotels in nishi-shinjuku.

Rakuten: corp.rakuten.co.jp___global.rakuten.com
Information about Rakuten Inc., such as employment and stock.
NTT Computer Science: www.kecl.ntt.co.jp

Information about research presentations, lectures, and reports
from the NTT Communication Science Laboratories.

Table 1: The brief introduction of each web domain.

For each web domain, we randomly sampled a
set of Japanese documents, and then made a pool
of candidates for corresponding English documents
on the same web domain using four different docu-
ment alignment methods:

¢ Machine Translation + BM25
¢ Machine Translation + TF-IDF

* URL matching

CCAligned (El-Kishky et al., 2020)

We then manually selected the correctly corre-
sponding English document for a Japanese docu-
ment in the pool. Table 2 shows the details of docu-
ments in each web domain. Due to the occurrence
of different URLs but identical contexts in English
web pages, multiple aligned counterparts may exist
for a single Japanese document. We consider all of
them as gold pairs.

Web Domain JaDocs. Gold Pairs Candidate En Docs.
Marubeni 73 75 251
Nishi-Shinjuku 16 16 42
Rakuten 75 84 319

NTT CS 68 88 319

All 232 263 931

Table 2: Information of the MnRN dataset.

4.2 Experiment Setting

In this paper, we used the pre-trained JParaCrawl-
v3.0-big model* (Morishita et al., 2022) based

4https://www.kecl.ntt.co.jp/icl/lirg/
jparacrawl/
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on fairseq toolkit (Ott et al., 2019) for machine
translation from Japanese to English on the MnRN
dataset.

WMT16 test data MnRN

English Docs. 682k 931
French Docs. 522k -
Japanese Docs. - 232
Web domains 203 4
Gold Pairs 2402 263
Search direction Fr-En Ja-En
Search strategy each domain all domains

J 16 8

y 20 16

Table 3: Counts and experiment settings for WMT16
test data and MnRN dataset.

LaBSE tokenizer and model® (Feng et al., 2022)
was utilized for tokenizing and sentence embed-
ding. As shown in Table 3, we used the test
data provided by the WMT16 document alignment
shared task (WMT16 test data) to conduct align-
ment for each web domain from French to English.
However, for the MnRN dataset, we performed
alignment without distinguishing domains from
Japanese to English. J is used to determine the
number of windows produced in the TK-PERT
method, where for each document, modified PERT
distributions (Vose, 2000) with modes of (Z7-2) N
are generated for j over [0, J — 1], with N being
the number of segments in the document, and +y is
a hyperparameter to control the peakedness of the
distribution.

Due to the abundance of documents within the
web domain of the WMT 16 test data, we utilized
Faiss (Johnson et al., 2019) search to retrieve the
top 32 similar documents for alignment candi-
dates. As for the MnRN dataset, we only retrieved
the top 20 candidates using “Mean-Pool” or “TK-
PERT” for the OT method due to its smaller scale.

For “TK-PERT”, following Thompson and
Koehn (2020) and Sannigrahi et al. (2023) set-
ting for the modified PERT distribution,® we use
J = 16 and set its shape parameter to v = 20 for
the WMT16 test data, while we designate J = 8§,
~v = 16 for our self-established MnRN dataset.

However, it should be noted that the language-
pair dependent proportion p is akin to the prior

5https ://huggingface.co/setu4993/LaBSE

SHowever, in contrast to their research, we opt to utilize
the “mc2d” library in Recovery Component (R) for generating
modified PERT distributions, and abstaining from employ-
ing Principal Component Analysis (PCA) for dimensionality
reduction of sentence embeddings.
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information. Nevertheless, we have not exploited
the validation data for the MnRN dataset. Conse-
quently, in our experiment, we used the bootstrap
sampling strategy to extract 30 pairs of aligned doc-
ument pairs and calculate the average ratio of the
token counts between them during each iteration,
repeating this 10 times. Finally, the mean value
0.63 of average ratios is adopted as the value for p.

The final result enforces the 1-1 rule: Each doc-
ument should be aligned only once. We evaluate
the final result on the MnRN dataset using the F1
Score,” which is contingent upon both precision
and recall, where precision represents the ratio of
Japanese documents in the correct pairs within the
final result, and recall denotes the proportion of
Japanese documents in the correct pairs out of the
total Japanese documents. Meanwhile, we adhere
to Buck and Koehn (2016a)® to evaluate the doc-
ument pairs for the WMT16 bilingual document
alignment shared task.

All the experiments are conducted on two
NVIDIA RTX A6000 GPUs.

4.3 Result of MnRN dataset

As the result shown in Table 4, we measured the F1
Scores and the execution time consumed by all the
document alignment methods.

For “MT + docalign”, we recorded the time cost
for translation and the time utilized for alignment
using the docalign tool. For sentence embedding
based methods, we calculated the time spent on
generating embeddings or feature vectors based on
those embeddings, as well as the time required for
computing similarity between documents.

4.3.1 Accuracy

According to the results on the MnRN dataset,
all sentence embedding based methods achieved
F1 scores surpassing MT based docalign. Fur-
thermore, utilizing overlapping fixed-length seg-
ments (OFLS) for document alignment comprehen-
sively outperforms the approach relying on SBS.
However, it is also noted that when using fixed-
length segmentation without overlapping (FLS), all
the methods exhibit slight improvements or even

"Due to adherence to the 1-1 rule, even if multiple gold
pairs exist for a single Japanese document, there can be at
most one in the final result. Therefore, when calculating the
F1 Score, we rely on the number of Japanese documents in
the correct pairs to determine precision and recall.

8We use a “soft” recall metric, wherein credit is assigned
to pairs of documents where either the English or French
document (but not both) deviates from a reference document
pair by less than 5%, as measured by text edit distance.


https://huggingface.co/setu4993/LaBSE

. Segment Time (sec.) Time (sec.)
Alignment Method Strgategy FL OR p  FlScore (Translation\Embedding) (Similarity)
MT + docalign SBS - - - 0.7880 158.02s 3.93s

SBS - - - 08276 777.29s 0365

MeanPool FLS 150 0.0 - 08147 71.17s 0.28s
OFLS 150 05 -  0.8621 123.965 0.33s

OFLS 150 05 063 08491 120.07s 031s

SBS - - - 03448 352.50s 0.29s

FLS 150 0.0 - 08578 124.78s 0.265

TK-PERT OFLS 150 05 -  0.9052 220.57s 0.27s
OFLS 150 05 063 0.9009 288.41s 0.27s

SBS - - - 03443 37661 35005

FLS 100 00 - 08534 69.30s 15.07s

OT w/Mean-Pool  erg 100 05 - 0.8966 119.44s 16.07s
OFLS 100 05 063 0.9267 121.28s 16,555

SBS - - - 08309 353205 35455

FLS 100 00 - 08362 154.84s 14.855

OTW/TK-PERT  5prg 100 05 - 08966 280.49s 15.80s
OFLS 100 05 063 0.9267 367.19s 16.30s

Table 4: The final results of Ja-En document alignment on MnRN dataset incorporating hyper-parameter settings,
where “SBS” represents for sentence-based segmentation, “FLS” represents for fixed-length segments without
overlapping, “OFLS” represents for overlapping fixed-length segments, “FL” represents for fixed-length of Japanese
documents, “OR” represents for overlapping rate, “p” represents the language-pair dependent proportion as
mentioned in Section 3, “Time (sec.) (Translation \ Embedding)” represents time consumption for Translation,
which combines data preprocessing and translation process, or Embedding, which combines sentence embedding
generation, feature vector development, and candidate search, “OT w/x” represents rescoring the top 20 candidates

[T

found based on the “+” method using Optimal Transport, where the sequence of sentence embeddings used for “OT”

TR

is as same as the “«” method, and “-” represents for not-used hyper-parameter.

declines. Hence, we discuss the impact of overlap- 4.3.2 Calculation Speed

ping rates in Section 5.1. . . .
As the time cost recorded in Table 4, using OFLS

noticeably reduces the time required for embedding
compared to SBS.

“Mean-Pool” is considered as the most funda-
mental approach among sentence embedding based
methods, yet every other method performs better
than it in the F1 Score. Nevertheless, comparing
different methods using only a single fixed-length
may introduce bias into the experimental conclu-
sion. Therefore, in Section 5.2, we conduct an eval-
uative analysis of the performance of each method
across fixed-lengths from 10 to 300.

Despite having the lowest accuracy among var-
ious sentence embedding based methods, “Mean-
Pool” exhibits the fastest speed, suggesting its po-
tential as a candidate-finding approach with fault
tolerance. Although “TK-PERT” demonstrates
high accuracy, due to the generation of LIDF and
the modified PERT distribution, it requires addi-

The “Language-Pair Dependent Overlapping . )
tional time to generate feature vectors.

Fixed-Length Segmentation” (LD-OFLS) leads to
a slight decrease in performance for “Mean-Pool” As for “OT w/x”, since the search for candidates
and “TK-PERT”, possibly due to the reliance on ~ can be rapidly accomplished under Faiss retrieval,
averaging or weighted averaging to derive the fi- the time required for its embedding is essentially
nal feature vectors for distinguishing between doc- ~ €quivalent to the time needed to generate feature
uments, thereby attenuating the individual influ-  vectors. However, due to the limitations imposed
ence of each segment. However, this strategy has DY the “ot” function of the POT Python library,
a positive impact on “OT w/«", as it considers the ~ Which can only operate on a pairwise basis, comput-
influence of each segment when calculating dis-  1ng OT becomes computationally disadvantageous
tances between documents, ultimately achieving ~ When the data size is enormous.

the highest accuracy on the MnRN dataset. We also However, it is observed that “OT w/TK-PERT”
analyzed the overall performance of LD-OFLS in  and “OT w/Mean-Pool” exhibit minor differences
Section 5.3. on the MnRN dataset. This may be attributable to
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the small data size, where both “Mean-Pool” and
“TK-PERT” can retrieve the ground truth into the
candidates. In this case, the performance of “OT
w/+” may rely more on its intrinsic accuracy rather
than the candidates’ accuracy.

4.4 Result of WMT16 test data

We also conducted experiments on the WMT16
document alignment shared task. However, con-
strained to the substantial resource and time con-
sumption brought about by the vast size of the
dataset, we merely employed the OFLS segment
strategy with a simple setting of fixed-length F'L =
100 and overlapping rate OR 0.5 without
language-pair dependent proportion p for compar-
ison against the SBS strategy. Additionally, we
compared our results with the best-reported previ-
ous works, which are presented in Table 5.

Segment

Method Recall
Strategy

Previous work
Dara and Lin (2016) SBS 96.0%
Buck and Koehn (2016b) SBS 96.2%
TK-PERT (LASER)
(Thompson and Koehn, 2020) SBS 97.1%
TK-PERT (LASER)
(Sannigrahi et al., 2023) SBS 96.4%
TK-PERT (LaBSE)
(Sannigrahi et al., 2023) SBS 94.2%
This work
Mean-Pool SBS 82.6%
Mean-Pool OFLS  92.6%

" TK-PERT (LaBSE) SBS  952%
TK-PERT (LaBSE) OFLS  96.3%

- OT w/Mean-Pool SBS  90.6%
OT w/Mean-Pool OFLS  93.7%

" OT w/TK-PERT SBS  95.6%
OT w/TK-PERT OFLS  96.8%

Table 5: Document recall on WMT16 test data, com-
pared to previous best-reported results, where fixed-
length FL is 100, overlapping rate OR is 0.5 for OFLS,
and language-pair dependent proportion p is not used.

As mentioned in Section 4.2, due to the distinct
configuration of “TK-PERT” as compared to pre-
vious works (Thompson and Koehn, 2020; San-
nigrahi et al., 2023), we reproduced it using the
LaBSE model under SBS. Upon contrasting SBS of
this work with OFLS, it is observed that the recall
of all document alignment methods improved by
varying degrees from 1.1% to 10.0%, with “Mean-
Pool” achieving the greatest enhancement.
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While the best result of this work “OT w/TK-
PERT” does not surpass the best-reported recall of
97.1% achieved by Thompson and Koehn (2020)
in the WMT16 document alignment shared task,
the replication of “TK-PERT” by Sannigrahi et al.
(2023), utilizing different multilingual sentence em-
bedding models, indicates that the LaBSE model
performs less effectively on the WMT16 test data
compared to the LASER model. Nevertheless, we
achieved the best result in experiments based on
the LaBSE model, surpassing the research based
on machine translation by Dara and Lin (2016) and
Buck and Koehn (2016Db).

5 Ablation Analysis

In this section, we conducted an ablation analysis
on three factors of OFLS: overlapping rate, fixed-
length, and language-pair dependent proportion p.
However, due to the substantial size of the WMT16
test data, our analysis was limited to the smaller-
scale MnRN dataset.

5.1 Overlapping Rate

According to the results in Table 6, there are ap-
parent discrepancies regarding the utilization of
overlapping, and most F1 scores reach maximum
values at the rate of 0.5, while “OT w/TK-PERT”
achieves superior performance at the rate of 0.8.

0.0
0.8147
0.8578
0.8534
0.8362

03
0.01297
0.01721
0.03881
0.05601

05
0.04747
0.04747
0.04321
0.06041

0.8
0.02587
0.00867
0.02161
0.06907

Overlapping Rate
Mean-Pool
TK-PERT

OT w/Mean-Pool
OT w/TK-PERT

Table 6: The F1 Scores of different overlapping rates
on the MnRN dataset, where fixed-length F'L = 150
for “Mean-Pool” and “TK-PERT”, F'L = 100 for “OT
w/x”, and language-pair dependent proportion p is not
used. The results of each method represent the relative
differences from the case of the overlapping rate 0.0.

Conclusively, the judicious selection of the over-
lapping rate, with a suggested universally applica-
ble value of 0.5, holds the potential for substan-
tial improvement across diverse methods under the
OFLS segmentation strategy.

5.2 Fixed-Length

In this section, we discuss the impact of fixed-
length on the four methods. However, since the
accuracy of “OT w/«” depends partly on the accu-
racy of candidates, and we only aim to compare the
performance of OT, we standardize the candidates
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Figure 1: The F1 Scores of different fixed-lengths on the MnRN dataset. All the overlapping rates are 0.5, and
language-pair dependent proportion p is not used.

retrieved for “OT w/x” in this section to /'L = 150, Mean-Pool
OR = 0.5 without using p. it

Based on the results depicted in Figure 1, it is
observed that “Mean-Pool” exhibits poor perfor- .
mance when the fixed-length is less than 50. On  °™
the contrary, concurrently, the other three meth- .
ods demonstrate commendable performance. As o 20 20 4n 0 58 10 kn a0 1o 110 120 10 1 150 160 170 a0 199 200 210 20 20 200 50 20 2 2 20 310
the fixed-length increases, the accuracy of “Mean- e
Pool” stabilizes without significant variation. Con-
versely, “TK-PERT” shows a slow declining trend, -
while “OT w/x” displays an obvious decrease, even o=
becoming substantially weaker than “Mean-Pool”  **

after reaching a fixed-length of 200.

08
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

On the one hand, the fixed-length determines T wittean
the structure of segments, which may lead to vari-  n it

. . . . 0.95
ations in accuracy across methods, not displaying
0.9

a strictly monotonic trend. On the other hand, it ..

085

determines the number of segments: a small fixed- ...
length results in numerous segments. .

0825

075
075

“Mean-Pool” can be viewed as an averaged 18- v, . o s« s oo o om0t s 0
resentation of information within document seg- ~ ot wrcpe
. . . —=— OT w/TK-PERT (p)
ments. Excessive segmentation may dilute the fea- ==

095

tures of each information component, ultimately ==

s

failing to represent the document meaningfully. o=
This may be a reason for its subpar performance = /A\_\

at small fixed-lengths. However, it is noteworthy ...

075

that the other methods perform well at small fixed- ..
lengths. In the case of “OT w/«”, compared to
“Mean-Pool”, it considers each segment without Figure 2: The F1 Scores of different fixed-lengths on the

pooling the information, potentially making its per- ~ MnRN dataset with p = 0.63. All the overlapping rates
are 0.5. The cases where the accuracy improved with
the utilization of p are marked by gray bars between the
two broken lines, whereas black bars are employed to
denote the contrary scenario.

10 20 0 40 S0 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

formance superior with more segments. As for
“TK-PERT”, like “OT w/x”, it utilizes multiple fea-
ture vectors to represent the document and achieves
a similar trend but is more stable.

58



5.3 Language-Pair Dependent Proportion

We investigate the impact of p = 0.63 on different
fixed-length settings while still fixing the candi-
dates for “OT w/+” as in Section 5.2.°

Based on the results depicted in Figure 2, it is ob-
served that for “OT w/+”, the implementation of p
leads to a comprehensive improvement in accuracy
across various fixed-lengths. Furthermore, it mit-
igates the rapid decline in accuracy that typically
accompanies an increase in fixed length.

The influence of p for “Mean-Pool” and “TK-
PERT” is non-obvious prior to a fixed-length of
200. However, after the threshold of 200, a pro-
nounced enhancement in performance is evident.

6 Conclusion

This paper presents the OFLS strategy designed for
splitting documents into overlapping fixed-length
segments for the document alignment task. Build-
ing upon the previous sentence embedding based
methods, compared to SBS, OFLS yields better
results on the WMT16 document alignment shared
task. Specifically, the OFLS based “TK-PERT” and
“OT w/TK-PERT” surpass the two best-recorded
machine translation based methods, achieving the
highest recall among LaBSE based approaches.

Simultaneously, we observed the same results
on the MnRN dataset. Furthermore, according to
the ablation analysis in Section 5, a smaller fixed-
length can further improve accuracy for “TK-PERT”
and “OT w/«”, though it also results in longer em-
bedding time and higher storage cost. Appropriate
hyperparameters can enable OFLS to surpass SBS
in both accuracy and speed.

Limitations

In Section 4, we conducted speed measurements
exclusively on the MnRN dataset. However, the
speed is constrained by the algorithm and com-
putational memory. We can only compare vari-
ous methods under relatively fair conditions, such
as setting similar hyperparameters. Additionally,
while we achieved better results than machine trans-
lation based methods across the two datasets, the

9Under the conditions of FL = 150 and OR = 0.5,
we also experimented with various values of p for the three
alignment methods to simulate the scenario of optimizing p
by a validation dataset. The results indicate that changes in p
have little impact on “Mean-Pool” and “TK-PERT”, although
an appropriate p value can still maximize the accuracy of
“TK-PERT”. Meanwhile, the choice of p has a more obvious

effect on the accuracy of OT, with the experiment achieving
the highest accuracy at the value of approximately 0.63.
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resource consumption for storing sentence embed-
dings is higher than that for storing translated docu-
ments. Moreover, we only performed experiments
on two language directions, which are relatively
high-resourced. Lastly, this study focused solely
on the document alignment task and did not discuss
its subsequent impact on downstream work, like
constructing machine translation datasets.

Ethical statement

The models used in this paper, LaBSE (Feng et al.,
2022), and the JParaCrawl-v3.0-big model (Mor-
ishita et al., 2022), are publicly available for re-
search. The WMT16 test data used in this study
is provided by the WMT16 document alignment
shared task (Buck and Koehn, 2016a).
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Abstract

Large Language Models (LLMs) have significant
potential for facilitating intelligent end-user ap-
plications in healthcare. However, hallucinations
remain an inherent problem with LLMs, mak-
ing it crucial to address this issue with extensive
medical knowledge and data. In this work, we
propose a Retrieve-and-Medically-Augmented-
Generation with Knowledge Reduction (ReMAG-
KR) pipeline, employing a carefully curated
knowledge base using cross-encoder re-ranking
strategies. The pipeline is tested on medical
MCQ-based QA datasets as well as general QA
datasets. It was observed that when the knowl-
edge base is reduced, the model’s performance
decreases by 2-8%, while the inference time im-
proves by 47%.

1 Introduction

Large Language Models (LLMs) like GPT-4
(Achiam et al., 2023), LLaMA-2 (Touvron et al.,
2023a), and LLaMA-3 (Touvron et al., 2023b) have
become highly efficient text generation tools with
a significant variety of potential applications in a
wide range of domains, like business, education, and
healthcare. In healthcare, the potential to transform
challenging tasks such as patient education (Jin et al.,
2024), report generation (Shoham and Rappoport,
2023), and drug discovery (Kormilitzin et al., 2021;
Unnikrishnan et al., 2023) is exemplary. This is pri-
marily due to their ability to analyze large amounts
of textual data and generate high-quality meaning-
ful text as per end-user task requirements. However,
there are specific challenges with deploying them
in the healthcare industry. The shortage of medical
data available for training/consumption by LLMs is
one of the primary reasons for concern. A critical
hurdle is the propensity of LLMs to produce false
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medical information (often termed hallucinations),
misleading both patients and medical professionals.
Additionally, in case of instructions that are too ex-
plicit or devoid of important details, LLMs fail to
produce optimal results, which reduces their effi-
cacy. LLMs may also reinforce biases learned from
the training data, producing biased results towards
particular groups of people based on constructs like
gender, ethnicity, and socio-economic status.

For general tasks, the application of the concept of
Retrieval-Augmented Generation (RAG) has shown
promise. RAG systems incorporate external infor-
mation retrieval into the LLM architecture. Previ-
ous research, such as Almanac (Zakka et al., 2024)
and ChatENT (Long et al., 2023), has demonstrated
improved LLM accuracy and reliability with this
method. However, this kind of integration may also
include unrelated or incorrect information, which
could undermine the legitimacy and efficacy of the
LLM. Including external knowledge sources raises
issues with data consistency, privacy, security, and
legal consequences. Furthermore, these methods
frequently call for indexing and storing massive
datasets, sometimes surpassing 200GB. Although
RAG approaches perform excellently in general
question-answering tasks, there is still uncertainty
about their efficiency in healthcare. Regarding effi-
ciency, retrievers trained on generic data often fall
short of those optimized for particular domains (Li
et al., 2022). This emphasizes the need for domain-
specific training data, which can be costly and time-
consuming to create, particularly in specialized fields
like medicine. Moreover, conventional RAG tech-
niques train the LLM and retriever separately (Stein-
berg et al., 2021; Agrawal et al., 2022), while other
approaches include joint training of retrievers and
LLMs (Wang et al., 2024). The retrieved informa-
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tion and the LLM’s capacity to process it for accurate
output may generally lack semantic depth due to the
nature of the training (Sarthi et al., 2024).

To address these challenges without additional
computational costs, we propose a systematic ap-
proach that integrates RAG models built on a care-
fully curated knowledge base, with support for cross-
encoder re-ranking strategies. First, keywords and
entities from each query or question are extracted.
Then, a web crawl is conducted to find each entity’s
top-15 relevant documents, which are used to build
the knowledge base. Next, the retrieval based on the
query and re-ranking of the results using MedCPT
(Jin et al., 2023) is performed. Finally, responses
are generated using LLMs, specifically LLaMa?2 and
LLaMa3. The rest of the article is structured as fol-
lows. Section 2 presents a detailed discussion on the
proposed approach. Section 3 presents a discussion
on the experiments performed and results observed,
followed by conclusion and future work.

2 Methodology

Fig. 1 depicts the proposed approach consisting of
five key phases — Keyword extraction, Document Re-
trieval, Knowledge base construction, Cross-encoder
re-ranking, and response generation using LLMs.
Given a set of medical questions @), a set of key-
words K are extracted using KeyBERT (Grooten-
dorst, 2020). For each keyword k € K¢, a ranked
set of 15 relevant documents d; are retrieved from
the PubMed database, resulting in a comprehensive
collection of medical documents D* containing perti-
nent medical knowledge. Formally, for each question
g; € @, there exists a corresponding correct answer
a; within a set of options A;, such that a] € A;.
The model M utilizes the query ¢ and relevant doc-
ument d to produce a predicted answer (as per Eq.
(1), where, d € D* and dp is the retrieved document
based on the query, and Eq. (2) where 6 represents
the model’s parameters).

ey
2

In the Keyword Extraction phase, at least three
keywords are extracted from all queries. For each
query @), KeyBERT is used to extract at least three
related medical keywords or key phrases K. This

Document Retrieval dr = p(d | q)

Answer Prediction a = p(a | q,dg,0)
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Figure 1: Proposed ReMAG-KR Framework
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ensures that individual words and phrases relevant
to the medical context are captured accurately. Fol-
lowing this, in the Knowledge Base Indexing and
Storage phase, the PubMed API is employed to re-
trieve 15 relevant articles for each identified keyword
or keyphrase. This retrieval process results in a sub-
stantial corpus of about 600,000 articles, providing
a focused subset of the extensive PubMed database
(Canese and Weis, 2013), consisting of 24.9 million
articles. The collected articles are then transformed
into embedding vectors through the BAAI embed-



ding model (Zhang et al., 2024). This model con-
verts text data into a format that can be efficiently
processed for similarity searches. Finally, the FAISS
(Facebook AI Similarity Search) VectorStore index
is used to store these embedding vectors. FAISS
is optimized for high-speed similarity searches on
large datasets, making it suitable for handling the
extensive medical corpus generated.

For facilitating retrieval, MedCPT was used in the
process of document retrieval. For this, we compute
the cosine similarity score between the query embed-
ding ¢ and each document embedding d;. The top
k documents were chosen based on query similar-
ity. MedCPT was utilized to streamline the retrieval
process and ensure that the most relevant documents
were retrieved. For this, the cosine similarity score
was computed between the query embedding ¢ and
the embedding of each document d;. The cos-sim
score measures how similar two vectors are in orien-
tation and magnitude, with a higher score indicating
greater similarity. By calculating this score for each
document in the database, the system can effectively
rank them based on their relevance to the query. Us-
ing the computed scores, the top £ documents were
selected for retrieval, ensuring that the retrieved doc-
uments are closely aligned with the user’s query.

The cross-encoder re-ranker MedCPT is advanta-
geous in re-ranking the top k extracted articles for
generating the top n articles (where n = k), enhanc-
ing the relevance of the information produced. Med-
CPT was chosen as retriever and re-ranker due to its
First-stage dense retriever (MedCPT retriever) and
the Second-stage re-ranker (MedCPT re-ranker). The
MedCPT retriever contains a query encoder (QEnc)
and an article encoder (DEnc), both initialized by
PubMedBERT. It is trained on 255M query-article
pairs from PubMed search logs and in-batch nega-
tives. The MedCPT re-ranker is a transformer cross-
encoder (CrossEnc) initialized by PubMedBERT. It
is trained on 18M semantic query-article pairs and
localized negatives derived from the pre-trained Med-
CPT retriever.

Upon re-ranking retrieved articles, they are
merged with the original query and provided as input
to the LLM, which generates a response, represented
as a, based on the amalgamation of the query and
the re-ranked articles. The generated response is
then evaluated by comparing it with the ground-truth
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answers, serving as a metric for assessing the perfor-
mance of the LLM in understanding and responding
to the given query. We have utilized two specific
LLMs for our experiments, namely LLaMA-2 and
LLaMA-3. These models have been selected based
on their capabilities and suitability for the task at
hand. We aim to evaluate these LLMs’ effectiveness
in generating accurate responses when presented
with queries and relevant document contexts.

3 Experiments and Results

Experiments were conducted on the benchmark MI-
RAGE dataset (Xiong et al., 2024) for the mul-
tiple choice questions-based QA tasks. This in-
cluded 7,663 questions from five commonly used QA
datasets in biomedicine (MMLU-Med, MedQA-US,
MedMCQA, PubMedQA (Jin et al., 2019), BioASQ
(Y/N)) (Tsatsaronis et al., 2015). For Subjective QA
task, the datasets LiveQA (Abacha et al., 2017) and
ExpertQA-Med (Malaviya et al., 2023) were cho-
sen, with 3,479 subjective questions and answers.
Standard metrics like accuracy, precision, recall, and
F1-score were used for the evaluation. The gener-
ated text quality and relevancy were assessed using
BLEURT, BERTScore, MoverScore, and ROUGE-
L. For MCQ-based QA tasks, the MED-RAG model
was used as the baseline, while KG-Rank (Yang et al.,
2024) was considered for subjective tasks due to its
novelty and outstanding scores.

3.1 Results and Discussion

MCQ-based tasks: Table 1 shows the results for
this task, and it is evident that the proposed ReMAG-
KR underperformed on datasets including MMLU-
Med, MedQA-US, MedMCQA, PubMedQA, and
BioASQ-Y/N. Compared to MEDRAG’s 73.09 av-
erage accuracy, our approach produced 66.32. Like-
wise, our approach averaged 58.74 for the F1 score,
whereas MEDRAG scored 66.69. Despite the lag
in performance, the proposed ReMAG-KR showed
a notable efficiency advantage, as seen in Table
3. The inference time was nearly one-third that
of MEDRAG, primarily because our knowledge
base contains only 600,000 documents compared
to MEDRAG’s extensive 25 million corpus.

Subjective tasks:  Using LLaMA-2 and LLaMA-
3 models, we analyzed the ExpertQA-Med and



Table 1: k-sample average performance comparison between MED-RAG and ReMAG-KR (proposed) for MIRAGE

benchmark.
Dataset Method LLaMA-2 (k = 200) LLaMA-3 (k = 200)
Accuracy Precision  Recall F1 Accuracy Precision  Recall F1

MMLU-Med MEDRAG 73.35 73.01 74.02 75.84 77.73 78.93 75.08 76.47
e ReMAG-KR 66.32 67.43 70.32 68.34 71.72 72.23 74.15 70.38
MedQA-US MEDRAG 66.72 65.72 66.15 64.53 70.26 68.38 69.15 64.53
ReMAG-KR 58.74 58.77 59.77 55.18 65.84 64.97 61.77 60.18
MedMCQA MEDRAG 54.94 56.10 56.50 55.98 60.86 61.89 60.50 60.98
ReMAG-KR 50.38 52.12 53.11 52.47 56.40 55.50 57.11 56.47
PubMedQA MEDRAG 66.52 63.56 64.96 65.30 69.30 71.81 69.47 68.38
uovie ReMAG-KR 58.92 60.46 60.47 60.87 63.19 62.50 63.23 62.60
BioASQ-Y/N MEDRAG 85.05 83.56 85.96 85.30 89.30 87.81 87.47 88.38
ReMAG-KR 79.72 80.46 80.47 80.87 84.19 84.50 83.23 83.60

Table 2: Performance comparison for LiveQA and ExpertQA-Med between KGRank and ReMAG-KR (proposed)

Dataset Method LLaMA-2 LLaMA-3
ROUGE-L BERTScore MoverScore = BLEURT ROUGE-L BERTScore MoverScore = BLEURT
ExpertQA-Med KGRank 28.02 86.01 57.02 47.14 29.03 86.93 58.08 48.47
P ReMAG-KR 28.32 82.43 53.32 48.34 28.72 84.23 57.15 47.38
LiveQA KG-Rank 19.72 82.02 54.15 40.34 20.26 83.38 54.65 40.53
ReMAG-KR 17.84 79.77 55.77 39.18 18.84 81.97 54.77 41.18

Table 3: Inference time for MED-RAG and ReMAG-KR.

Dataset ReMAG-KR (ins)  MedRAG (in s)
MMLU-Med 680 1380
MedQA-US 720 1500
MedMCQA 970 1432
PubMedQA 703 1290
BioASQ-Y/N 400 1000
AVG 694.6 1320.4

LiveQA datasets and compared the effectiveness of
the RR and ReMAG-KR approaches (Refer Table
2. With LLaMA-2 and LLaMA-3, respectively, KG-
Rank obtained a ROUGE-L of 28.02 and 29.03 and a
BERTScore of 86.01 and 86.93 for ExpertQA-Med.
ReMAG-KR obtained BERTScore and ROUGE-L
scores of 82.43, 84.23, 28.32, and 28.72, respec-
tively. For LiveQA, KG-Rank obtained BERTScores
of 82.02 and 83.38 in addition to ROUGE-L scores
of 19.72 and 20.26. For BERTScore, ReMAG-KR
scored 79.77 and 81.97, and for ROUGE-L, 17.84
and 18.84. Both techniques showed comparable per-
formance with equal inference times.
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4 Conclusion and Future Work

An approach for LLM-based retrieval and medically
assisted generation with a tactically reduced knowl-
edge base was presented in this article. Experiments
revealed that our approach reduces inference time
by 47% with a small compromise in performance
(of around 2-8%). Performance for subjective QA
tasks was also comparable with the state-of-the-art
approaches in this field. We plan to extend the pro-
posed approach by enriching the quality of retrieved
documents, while maintaining a reduced inference
time. Simple, vanilla RAG-based approaches fail to
capture semantically deep information hidden within
medical text, thus, the use of a single corpus for
generating a knowledge base encompassing multi-
ple sources of information could be attempted. We
also plan to introduce two other components into
the RAG pipeline — multi-hop question answering
and question decomposition. This involves breaking
down a complex query into sub-queries and enrich-
ing the quality of retrieved documents. Adopting
domain-specific models like PMC and MedLLaMA
may further boost the model’s ability to handle the
intricacies and nuances inherent in medical data.
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Abstract

Instruction tuning significantly enhances the
performance of large language models (LLMs)
across various tasks. However, the procedure
to optimizing the mixing of instruction datasets
for LLM fine-tuning is still poorly understood.
This study categorizes instructions into three
primary types: NLP downstream tasks, cod-
ing, and general chat. We explore the effects
of instruction tuning on different combinations
of datasets on LLM performance, and find that
certain instruction types are more advantageous
for specific applications but can negatively im-
pact other areas. This work provides insights
into instruction mixtures, laying the founda-
tions for future research.!

1 Introduction

Instruction tuning has been shown to have surpris-
ing efficacy for aligning large language models
(LLMs) with human instructions (Chung et al.,
2022; Li et al., 2023; Wu et al., 2023; Xu et al.,
2023; Touvron et al., 2023; Muennighoff et al.,
2023a; Gunasekar et al., 2023). Recent studies
highlight the diverse ways in which instructions
can enhance the different capabilities of LLMs.
For instance, using general-purpose, chat-like in-
structions can improve the performance of LLMs
as chat assistants (Chiang et al., 2023; Ouyang
et al., 2022; Taori et al., 2023; Ding et al., 2023),
while training LLMs on instructions based off NLP
tasks improves their performance on NLP bench-
marks (Sanh et al., 2022; Chung et al., 2022; Muen-
nighoff et al., 2023b), and incorporating coding
instructions enhances LLM code generation (Fu
and Khot, 2022; Gunasekar et al., 2023). However,
a key unresolved issue is determining how to com-
bine various instruction datasets to optimize overall
LLM performance.

!Code and data are available at: https://github.com/
Reason-Wang/InstructLLM.
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Figure 1: Instruction type distribution of P3 and Alpaca.
For P3, the statistics come from the original dataset,
while for Alpaca, we use a dependency parsing approach
to extract the root verb of each instruction.

In this paper, we aim to better understand the
impact of instruction mixing across three critical
areas: NLP downstream tasks, coding, and chat.
The core of our investigation revolves around un-
derstanding the influence of instruction dataset dis-
tributions on model performance in these differ-
ent areas. We first select representative instruction
datasets: P3 (Sanh et al., 2022) for NLP down-
stream tasks, CodeAlpaca (Chaudhary, 2023) for
code generation, and Alpaca (Taori et al., 2023) for
general-purpose instructions. As shown in Figure 1,
P3 is focused primarily on five tasks (including
QA and classification), whereas Alpaca contains
a vast array of instructions. Using a dependency
parser, we identify over 1K unique root verbs from
Alpaca’s instructions, with generate, create, and
describe being the most frequent. CodeAlpaca, by
contrast, is exclusively focused on coding tasks,
and exhibits less variation compared to the others
as exemplified in Table 3. We fine-tune models
across all eight potential combinations of these in-
struction datasets, and carry out detailed evaluation
of model performance in terms of NLP downstream
tasks, coding proficiency, and chat capabilities.

Our main contribution in this work is to shed
light on instruction mixing when fine-tuning LLMs
through comprehensive experimentation. Our find-
ings can be summarized as follows:
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* Specific instruction datasets enhance LLM
performance in their respective task areas.
However, combining all instruction types does
not uniformly improve performance across all
tasks.

Instructions reformulated from NLP down-
stream tasks (such as P3) can negatively im-
pact the model’s conversational abilities. In
contrast, instructions focused on coding not
only improve coding proficiency but also en-
hance chat capabilities.

Larger models, with their increased capacity,
are able to make more effective use of a di-
verse range of instructions.

2 Related Work

Recent work has demonstrated that vanilla LLMs
can follow general instructions if tuned with in-
structions and corresponding responses (Mishra
et al., 2022; Sanh et al., 2022; Wang et al., 2022).
For instance, Sanh et al. (2022) crafted an instruc-
tional dataset by reformulating supervised datasets
with various prompts to create P3. However, de-
spite their effectiveness in NLP tasks, these LLMs
often diverge from human-like interactions in chat-
bot applications.

To facilitate general-purpose LLM fine-tuning,
researchers has create general-purpose instruc-
tional data by human annotation (Conover et al.,
2023) and automatic approaches (Wang et al.,
2023b; Taori et al., 2023). Recent work has fur-
ther expanded the dataset size (Wu et al., 2023),
language coverage (Li et al., 2023), and task types
(Chaudhary, 2023; Yue et al., 2023).

With increasing capabilities of LLMs and avail-
ability of instruction datasets, researchers have
aimed to imbue a single model with diverse ca-
pabilities. Sengupta et al. (2023) attempted to
blend different instruction datasets without con-
sidering the data volume and task types. Longpre
et al. (2023) suggested that increasing the num-
ber of tasks and instruction diversity can enhance
performance. In contrast, Anand et al. (2023) ex-
cluded P3 from their fine-tuning dataset, seemingly
to enhance alignment. Nevertheless, none of these
papers systematically studied the impact of the in-
struction mixture on the resulting LLM.

Concurrent to our work, Wang et al. (2023a)
fine-tuned LLaMA models on 12 instruction-tuning
datasets separately. By evaluating those model on 7
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tasks, they found that different datasets can enhance
model performance on individual tasks. They fur-
ther identified the optimal dataset combination, and
trained a single model to achieve the best overall
performance. Novel to this work, we classify the
instructions and model skills into three types, and
conduct a deep analysis of the influence of data
mixture on the models.

3 Experimental Setup

Datasets We select Alpaca (Taori et al., 2023) as
the general instruction dataset to align models, in
the form of 52K instruction—response pairs. We
use P3 (Sanh et al., 2022) as our NLP task instruc-
tion dataset, which is reformatted for a wide range
of NLP downstream tasks using diverse human-
written templates. Since the number of samples in
each task varies vastly, we randomly sample 1K
instances from each subtask formatted with sev-
eral corresponding prompts for diversity, resulting
in 660K samples. For coding data, we choose
CodeAlpaca (Chaudhary, 2023), which is an in-
struction dataset focusing on code generation. It
contains 20K samples in different programming
languages. To ensure a balanced comparison, we
randomly sample a 20K subset from each dataset.
Examples are provided in Table 3 in the Appendix.

Evaluation We divide the evaluation into three
parts: NLP benchmark performance, code gen-
eration, and alignment evaluation (i.e., chat abil-
ity evaluation). For NLP benchmarks, we use
ARC (Clark et al., 2018), Winogrande (Sakaguchi
et al., 2021), PIQA (Bisk et al., 2020), MMLU
(Hendrycks et al., 2020), RACE (Lai et al., 2017),
and HellaSwag (Zellers et al., 2019). For coding,
we use HumanEval (Chen et al., 2021), which tests
the pass rate of the generate codes. For alignment
evaluation, we use the FLASK (Ye et al., 2023)
framework to score model alignment. We keep
the eight most frequent alignment skills from the
original evaluation set, resulting in 1,180 samples.
Then we employ GPT-4 to assess model responses
to each instruction sample based on human-written
principles. See Appendix B for details of these
skills.

Models We fine-tune LLaMA-2 7B and 13B
(Touvron et al., 2023) models for two epochs in
a generative way as in Radford et al. (2018), using
a linear scheduler with a 3% warmup rate and a
batch size of 64. The maximum learning rate is



ARC Wino- Hella- HumanEval

Model Data (challenge) grande PIQA MMLU Race Swag Average @1 @10
None 43.1 69.5 78.0 40.8 39.2 57.2 54.6 13.7 213

A 47.8 67.6 78.2 42.2 44.5 61.1 56.9 13.5 17.1

C 46.1 69.5 78.5 41.0 41.1 61.0 56.2 162 244

P 49.6 71.4 79.0 46.0 43.5 59.4 58.2 4.6 7.9

LLaMA-2-7B 47.1 669 781 404 442 597 561 175 250
AP 48.4 70.0 78.1 43.8 429 58.5 56.9 13.8 177

CP 48.0 71.3 78.4 44.9 44 .4 60.7 57.9 16.8  20.1

ACP 49.7 68.0 77.9 43.5 44.6 58.7 57.1 16.0 238

None 48.6 71.9 79.2 52.1 40.7 60.1 58.8 154 262

A 54.1 71.2 80.0 479 47.1 65.6 61.0 15.1 20.7

C 49.7 73.4 80.8 51.5 454 63.6 60.7 179 244

P 543 74.2 80.0 50.3 45.6 62.5 61.1 0.3 1.8
LLaMA-2-13B AC 51.6 68.8 80.6 48.7 44 .4 63.0 59.5 17.1 274
AP 54.8 71.7 80.3 51.2 45.2 62.7 61.0 8.3 14.6

CP 55.4 74.6 80.5 51.4 45.6 63.9 61.9 18.2 25.0

ACP 54.4 71.5 80.0 50.0 47.1 63.1 61.0 20.2 329

Table 1: Results on NLP and code generation benchmarks. All experiments are done in a zero-shot setting. The best
result is in bold, and the second best result is underlined.
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Figure 2: NLP benchmark scores (avg) and Code bench-
mark (HumanEval) scores for LLaMA-2-7B tuned with
different mixing ratios and different numbers of in-
stances. We keep the number of Alpaca instances con-
stant at 20K and change the number of P3 and CodeAl-
paca instances to get different ratios.

5 x 10~°. The resources for training and evalua-
tions are detailed in Appendix C.

4 Results

For the remainder of this paper, we denote the Al-
paca, CodeAlpaca, and P3 datasets as A, C, P, re-
spectively. For each model, we compare eight dif-
ferent data mixing strategies, denoted as None, A,
C, P, AC, AP, CP, ACP, where None represents
the vanilla model without fine-tuning, and each of
the other settings represents the model fine-tuned
with the corresponding dataset. For example, AC
means the model is fine-tuned with both Alpaca
and CodeAlpaca.
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4.1 NLP Tasks and Code Benchmark Results

Table 1 shows the zero-shot results on the NLP
and code generation benchmarks. Predictably each
specialized instruction dataset improves the perfor-
mance on the benchmarks they are designed for.
In the no-mixture setting (comparing A, C, and P),
models fine-tuned on P3 achieve the highest aver-
age score for NLP tasks, while models fine-tuned
on CodeAlpaca excel in code generation bench-
marks. Examining specific tasks reveals that a
model’s performance on a specific task heavily re-
lies on the similarity between the target task and
the tasks it was fine-tuned on. For instance, Alpaca
fine-tuned models excel in Race and HellaSwag,
which involve the story completion task, similar to
the Alpaca instruction format. On the other hand,
P3 fine-tuned models perform well on ARC and
Winogrande, which involve multiple-choice QA
and cloze tests, which are well represented in P3.
In the mixture setting, it’s evident that including
specialized data consistently boosts model perfor-
mance in corresponding benchmarks compared to
models without such data. For example, P, PA,
PC, and PCA perform better than None, A, C, and
CA on NLP downstream tasks. Focusing on the
code benchmarks, incorporating general instruc-
tions consistently improves coding performance.
For the 7B model, AC improves performance by
+1.28 and +0.61 compared to C, while the im-
provements are —0.80 (outlier) and +3.05 for the
13B models. Another interesting finding is that the
13B models perform best with the ACP mixture,
while the 7B models perform best with AC. This



Model Data Corr. Fact. Comm. Compr. Compl. Insight. Read. Conc. Avg.
A 476 554 58.8 54.8 48.0 50.4 88.0 81.6  60.6
C 48.8 52.0 58.4 52.0 40.2 46.2 83.8 784 574
P 472 40.0 48.8 38.4 29.0 304 64.4 68.6 458
LLaMA-2-7B AC 49.0 544 59.6 56.4 48.2 49.8 86.6 85.6 61.2
AP 484 514 57.6 52.6 45.0 46.0 84.2 80.8 582
CP 47.0 49.6 54.2 48.8 36.2 41.8 78.2 772 542
ACP 504 530 59.0 53.8 47.2 46.8 85.0 81.8  59.6
A 53.6  58.8 63.8 60.0 47.6 55.2 89.2 84.0 64.0
C 572 588 61.0 57.8 43.8 524 85.6 822 624
P 494 424 51.8 42.0 28.2 32.0 66.8 704 478
LLaMA-2-13B  AC 55.6  61.0 66.6 61.2 514 54.0 38.4 86.6 65.6
AP 53.0 554 60.6 56.2 47.0 48.0 85.0 834  61.0
CP 53.0 532 574 53.4 39.0 45.2 81.2 82.6 582
ACP 51.6 556 61.8 57.0 47.0 48.6 87.0 830 614

Table 2: GPT-4 evaluation results on alignment skill assessment. We report eight dimensions: logical correctness,
factuality, commonsense understanding, comprehension, completeness, insightfulness, readability, and conciseness,
as well as average scores. Since the vanilla model cannot follow instructions, we exclude it from this table. The best
result is in bold, and the second best result is underlined.

suggests that larger models can better learn from
varied instructions more effectively than smaller
models.

These findings highlight the importance of con-
sidering model size and target usage when design-
ing the instruction mixture.

Mixing with Different Ratios While it is clear
that mixing specialized instructions is vital for
benchmark performance, how the mixing ratio cor-
relates with the performance is also important. As
Figure 2 shows, with the number of general instruc-
tions fixed to 20K, scores in both NLP task and
code benchmarks first decrease and then increase
as the ratio of specialized instructions increases.
They both peak when the ratio is 1.5, and drop
back slightly when the ratio is increased further to
2.0. We hypothesize that this is because the model
overfits to the specialized instructions when there
are too many such instructions.

Number of instances Figure 2 also shows the
performance change with respect to the number of
fine-tuning data instances. We mix each type of
instruction with the same number. We find that the
performance over both benchmarks plateaus when
the number of instances is larger than 10K.

4.2 Alignment Skill Results

Table 2 shows the alignment skills results.
We adopt the same setup as FLASK, using
GPT-4-0613 to access the alignment skills and scal-
ing the scores to the range [0, 100].

From Table 2 we make the following observa-
tions: (1) All three types of instructions improve
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model alignment compared to the vanilla LLM.
Among these instructions, Alpaca stands out as
the most effective. It contains general-purpose in-
structions and human-like responses, making it a
better fit for aligning models with humans. (2)
While CodeAlpaca alone doesn’t notably enhance
alignment abilities, combining it with general in-
structions results in a substantial improvement of
+0.6 (7B) and +1.6 (13B) points; these improve-
ments are mainly due to better compression, com-
monsense understanding, completeness, and con-
ciseness. (3) Mixing P3 data causes a drop of —2.8
(7B) and —3.6 (13B) in alignment skills, suggesting
that P3 has a negative impact on fine-tuning chatbot
LLM:s.

5 Conclusion

In this paper, we investigated different data mixing
strategies in instruction fine-tuning. We measured
models against diverse benchmarks and alignment
skills. We find that general instructions provide
better alignment as well as performance on NLP
benchmarks, code instructions improve coding and
alignment skills, while NLP task instructions hin-
der alignment skills when combined with other
instruction types.

Limitations

Our work is subject to several limitations that
should be addressed in future research. (1) We
only use LLaMA-2 7B and 13B models in our ex-
periments. Other models of varying sizes should
be used to further verify our findings. We acknowl-



edge that the model’s behavior may vary with dif-
ferent sizes, and that usually, larger models have
stronger capabilities, and hence may be able to han-
dle more instructions without performance degra-
dation. (2) In this paper, we limit our instruction
dataset to 20K and mainly compare the 1:1 ratio of
all instruction types. We leave the exploration of
the impact of more instructions and mixing ratios
to future work.

We acknowledge these limitations and propose
that future work should focus on addressing them
to help the community better understand the impact
of instruction mixture on LLMs.
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A Examples of Instruction Types

Table 3 list examples from Alpaca, CodeAlpaca,
and P3 dataset.

B Alignment Skills Demonstration

The FLASK framework annotates each instruction
with three skills that is needed to respond to the
instruction. We select 8 most frequent skills and
filter out instructions annotated with other skills, re-
sulting 1,180 instructions in the evaluation set. The
following are demonstrations of each alignment
skill from the annotation prompt.

Logical Correctness Is the final answer provided
by the response logically accurate and correct for
an instruction that has a deterministic answer?

Factuality Did the model extract pertinent and
accurate background knowledge without any mis-
information when factual knowledge retrieval is
needed? Is the response supported by reliable evi-
dence or citation of the source of its information?

Commonse Understanding Is the model accu-
rately interpreting world concepts for instructions
that require a simulation of the expected result or
necessitate commonsense or spatial reasoning?
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Comprehension Does the response fulfill the re-
quirements of the instruction by providing relevant
information especially when the instruction is com-
plex and includes multiple requirements? This in-
cludes responding in accordance with the explicit
and implicit purpose of given instruction.

Completeness Does the response provide a suf-
ficient explanation? Comprehensiveness and thor-
oughness of the response should be considered,
which depends on the breadth of topics covered
and the level of detail provided within each topic.

Insightfulness Is the response creative, original
or novel, including new perspectives or interpreta-
tions of existing information?

Readability Is the response structured to pro-
mote readability and coherence? Does the response
exhibit excellent organization?

Conciseness Is the response presented in a con-
cise manner for the reader without any unnecessary
information?

The prompt for alignment skill assessment are
provided in Figure 3. For how a response corre-
sponds to a specific level of an alignment skill and
other details, please refer to their repository.?

C Resources

We use 4xA100 to train LLaMA-2-7B and
8xA100 to train LLaMA-2-13B. Each 20k data
takes about 2 hours. For all experiments, training
takes about 288 A100 GPU hours.

For evaluation, we use GPT-4, where each input
has an average of 950 tokens and each output has an

average of 293 tokens. All evaluations cost about
$760.

Zhttps://github.com/kaist AI/FLASK
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Source Example

Alpaca Instruction: List 5 reasons why someone should learn to code.

Response: 1. High demand for coding skills in the job market \n2. Increased problem-
solving and analytical skills \n3. Ability to develop new products and technologiesn \n4.
Potentially higher earning potential \n5. Opportunity to work remotely and/or freelance

CodeAlpaca | Instruction: Write a function to find the number of distinct states in a given matrix.
Input: matrix = [[1, 0, 0L,\n [1, 0, 1],\n [1, 1, 1]]

Response: def find_num_distinct_states(matrix):\n states = set()\n for row in matrix:\n
state = ""join([str(x) for x in row])\n states.add(state)\n return len(states)

P3 Instruction: Answer the following question.\nAnna Kournikova, Michelangelo,
ILOVEYOU, Melissa, and Stuxnet are all examples of what?
Response: Computer virus/worm

Table 3: Examples from Alpaca, CodeAlpaca, and P3.

[System]

We would like to request your feedback on the performance of the response of the assistant to the user instruction
displayed below. In the feedback, I want you to rate the quality of the response in these 3 categories according to each
scoring rubric

Skill 1 definition
Skill 1 scoring principles

Skill 2 definition
Skill 2 scoring principles

Skill 3 definition
Skill 3 scoring principles

[Instruction]
instruction

[Ground Truth Answer]
ground truth answer

[Assistant’s Response]
response for evaluation

[The End of Assistant’s Response]

Please give feedback on the assistant’s responses. Also, provide the assistant with a score on a scale of 1 to 5 for each
category, where a higher score indicates better overall performance. Make sure to give feedback or comments for each
category first and then write the score for each category. Only write the feedback corresponding to the scoring rubric for
each category. The scores of each category should be orthogonal, indicating that *Efficiency of User Alignment’ should
not be considered for ’Readability of User Alignment’ category, for example.

Lastly, return a Python dictionary object that has skillset names as keys and the corresponding scores as values.

[System]

Figure 3: Alignment skill assessment prompt (from FLASK (Ye et al., 2023)). The blue parts are filled by
corresponding content.
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Abstract

Recent advancements in multilingual mod-
els for automatic speech recognition (ASR)
have been able to achieve a high accuracy for
languages with extremely limited resources.
This study examines ASR modeling for the
Mvskoke language, an indigenous language of
America. The parameter efficiency of adapter
training is contrasted with training entire mod-
els, and it is demonstrated how performance
varies with different amounts of data. Ad-
ditionally, the models are evaluated with tri-
gram language model decoding, and the out-
puts are compared across different types of
speech recordings. Results show that training
an adapter is both parameter efficient and gives
higher accuracy for a relatively small amount
of data.

1 Introduction

Endangered languages are often overlooked in re-
search on speech technology and other NLP appli-
cations. Research obstacles include data scarcity
and the effort it takes to collect new data, as well
as funding and a perceived limited impact on small
speech communities. However, these technologies
can be hugely beneficial to assisting community-
led language revitalization efforts and are worthy
of the effort it takes, if it is done with consideration
and care for the speech community.

Automatic Speech Recognition (ASR) technol-
ogy can help speed up transcription and documenta-
tion work, as well as be a stepping stone to other ap-
plications such as spoken term detection, which can
help in identifying certain topics or key information
contained in recordings. Other useful applications
for the speech community are speech-to-text input
and automatic subtitling. These applications can
be helpful in encouraging use of the language and
promoting language education.

ASR is a relatively mature technology when ap-
plied to high-resource languages (Baevski et al.,
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2020). But it is only more recent advance-
ments such as model size and multilinguality that
have enabled comparable accuracy for resource-
constrained situations (Pratap et al., 2023). This
work focuses on the evaluation and analysis of two
highly multilingual speech models when trained
for Mvskoke, a language indigenous to the south-
eastern United States (Martin and Mauldin, 2000).

1.1 The Mvskoke Language

The Mvskoke language is spoken by members of
the Muscogee (Creek) Nation and Seminole Nation
in Oklahoma, and members of the Seminole tribe
of Florida. It is estimated that less than 300 first-
language speakers remain, and nearly all are over
the age of 60'. Recent years have seen an interest
among tribal members to revitalize the language,
which has led to several new initiatives such as
a Master-Apprentice Program at the College of
the Muskogee Nation, and new educational and
preservation resources being created and collected
by the Language Program at the Muscogee Creek
Nation tribal government. ASR can assist in some
of these efforts.

The language is synthetic and agglutinative, with
a traditional orthography of 20 latin letters (Martin,
2011; Frye, 2020). The orthography is relatively
transparent and allows for spelling variations. The
advantage of a transparent orthography is that tran-
scriptions can remain relatively close to the speech
signal. The disadvantage is that the error rates
can appear higher since spelling may vary between
model predictions and reference transcriptions.

1.2 ASR for Low-Resource Languages

HMM-based and E2E can achieve usable results
on very low resource languages, without large pre-
trained multilingual models. An ASR system for

IThis estimate is from personal communication with a
member of Ekvn-Yefolecv, a community of Mvskoke people.
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Yoloxdchitl Mixtec compares HMM and end-to-
end (E2E) encoder/decoder and finds E2E per-
formed best, with a WER of 16.0%. This model has
been incorporated into documentation workflow
(Shi et al., 2021; Amith et al., 2021). Jimerson et al.
(2023) show that an HMM-neural hybrid trained
from scratch can outperform pre-trained neural net-
works for some languages, but is worse for others.
This shows that there is no clear choice for system
architecture, and that choice of architecture may in
fact be dependent on the features of the language.

1.3 Fine-tuning Pre-trained Models

Fine-tuning a pre-trained model is a common ap-
proach for low-resource settings. An ASR model
for Cherokee using a fine-tuned XLSR-53 has
a WER of 64% (Zhang et al., 2022). A fully-
convolutional neural network (CNN) for Seneca
sees improvement from transfer learning from
English (Thai et al., 2020). In their paper on
endangered languages of Nepal, Meelen et al.
(2024) demonstrates an effective ASR pipeline us-
ing XLSR-53 and shows the relationship between
dataset size and model performance. For the cur-
rent work, we choose to fine-tune multilingual
transformer models due to the ease of implementa-
tion (Pratap et al., 2023).

1.4 Adapters

Houlsby et al. (2019) introduced adapter mod-
ules, which allow fine-tuning pretrained models
by adding only a few trainable parameters per task
rather than training all of the existing parameters.
The recent Massive Multilingual Speech (MMS)
models include adapters that are trainable for cer-
tain tasks such as ASR, and have been shown to
be more memory efficient and yield better perfor-
mance for low-resource languages (Pratap et al.,
2023).

1.5 Language Model Decoding

Utilizing a language model (LM) can be helpful
because often text data can be more easily gathered
than audio data. This is true in the case of Mvskoke.
(Jimerson et al., 2023) demonstrate that using a lan-
guage model always increases accuracy, but the
gains are minimal in comparison with other fac-
tors such as model architecture. On the other hand,
Orken et al. (2020) show that ASR for two aggluti-
native languages, Turkish and Tatar, see a marked
improvement from use of a language model. In this
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work, we investigate the performance of the multi-
lingual models with and without LM decoding.

2 Data

The texts and recordings used in these experiments
primarily come from language documentation work
conducted over the last few decades. Two docu-
mentation books, by Haas et al. (2015) and Gouge
et al. (2004) are collections of stories, historical
letters, and other cultural documents. A portion
of these texts were recorded in a studio setting by
two female speakers. In order to incorporate male
speakers and spontaneous speech, a small segment
of the New Testament was selected, as well as a
few short sections of recorded interviews.

Splits. Train and development sets are split 90/10
at run-time. Two evaluation sets are kept separate
from the training set. "Eval (clean)" is read speech
from the same documentation sources as the train-
ing set, and "eval (other)" is noisier speech, con-
sisting of one overlapping male speaker and one
held-out female speaker. In the transcripts for all
the audio data, there are a total of 6,840 utterances
and 19,154 words, for an average of 2.8 words per
utterance. The train and "eval (other)" sets include
both read and spontaneous speech, while the "eval
(clean)" set is only read speech. Other features of
the datasets are shown in Table 1.

Language Model. The text data for the language
model (LM) includes the two books above as well
as the transcriptions from a series of interviews con-
ducted by the Pumvhakv School in 2015. For these
experiments, the interview recordings are not used
for training due to noise including nature sounds,
speech errors, and singing, but the transcriptions
provide valuable vocabulary. The texts and tran-
scriptions of the evaluation set were excluded from
the text training data. The text corpus used for
LM training has 118,021 words and 27,795 unique
words.

At this time, the dataset will not be publicly re-
leased due to copyright constraints of the source
material. Currently, the Muscogee (Creek) Nation
is working to consolidate data and establish lan-
guage resource policies. However, much of the
source of the data can be viewed on the Muskogee
Documentation Project website 2.

2https: //muskogee. pages.wm.edu/


https://muskogee.pages.wm.edu/

train+dev | eval clean | eval other
Total Length | 4.1h 21m 27.6m
Avg. Length 2.6s 2.5s 2.5s
F Speakers 2 2 1
M Speakers 2 0 1

Table 1: Prepared audio datasets. Train and develop-
ment sets are split 90/10 at run-time, and the evaluation
sets are held out for testing. Evaluation sets are parti-
tioned into clean and noisy speech.

3 Methodology

The goal of this work is to evaluate the effective-
ness of fine-tuning an adapter for a large multi-
lingual model. This is one state-of-the-art path
for ASR that requires less manual work than other
methods such as an HMM, and generally requires
less data due to the existing pre-trained acoustic
knowledge of the multilingual models. Addition-
ally, other aspects that are evaluated are how much
data is required and whether or not a language
model can improve results.

3.1 Models

This study evaluates models introduced by Meta’s
Massively Multilingual Speech (MMS) project
(Pratap et al., 2023). MMS models are speech rep-
resentation models with a wav2vec2.0 architecture
that are pre-trained on unlabeled data from 1,406
languages (Baevski et al., 2020; Pratap et al., 2023).
The base models are available in 300 million and 1
billion parameter versions. Of particular interest in
this study is the MMS-1B-11107, a model that was
fine-tuned for ASR from the MMS-1B base model
(Pratap et al., 2023). This model features an adapter
with 2 million parameters on top of the base 1 bil-
lion parameters, based off of a method introduced
by Houlsby et al. (2019). The adapter layers allow
the large multilingual acoustic knowledge to be
fine-tuned for a new language in a computationally
efficient way.

In order to evaluate MMS in comparison with
its predecessors, we also train XLSR-53, a popular
choice for low-resource ASR. XLSR-53 has the
same wav2vec2.0 architecture and is pre-trained
on 53 languages with 300 million parameters (Con-
neau et al., 2020). In order to compare a similarly-
sized MMS model, we also train MMS-300M
(Pratap et al., 2023). MMS-1B is not included
for this experiment due to memory constraints of
the hardware used.
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Figure 1: Word error rate and character error rate for
each model given the length of training data in minutes.

MMS-1B-11107 was chosen over MMS-1B-all
based off of a simple empirical test in which the
former performed better, the details of which can
be found in Appendix A.

3.2 Implementation

Implementation follows the steps detailed by
Patrick von Platen to fine-tune the MMS adapter us-
ing Huggingface Transformers® (Wolf et al., 2019).
For MMS-1B-11107, the base model is frozen and
only the adapter layer is trained. For the other two
models, the entire model weights are trained. The
data is split into sets of 10, 60, 120, and 243 min-
utes. Early stopping criteria ends training before
overfitting. More hyperparameters are detailed in
Appendix A. The best model is saved with the low-
est character error rate (CER), and then evaluated
on the clean and noisy evaluation sets.

The language model is a trigram model trained
with KenLM (Heafield, 2011). This LM is then
used in a CTC decoder after the models are trained.



WER

1.04

0.8

0.61

0.4

0.2

XLSR-53 MMS-300M MMS-1B-L

B cCiean eval set (Light: No LM, Dark: With LM)

B Other eval set (Light: No LM, Dark: With LM)

Figure 2: Word error rate on evaluation sets when de-
coding with a trigram language model, for each model
trained on 243 minutes of audio data. MMS-1B-L is the
MMS-1B-L1107 model.

4 Results

The MMS-1B-11107 performed best overall, with
best results of 37% word error rate (WER) and 5%
character error rate (CER). Results are shown in
Figure 1.

Data size effects. Interestingly, the XLLSR-53
performed better than the MMS-300M on smaller
amounts of data. However, more data (4 hours)
improves the MMS-300M to a point that surpasses
XLSR-53. The reason for this is unclear. One ex-
planation could be due to the fact that the former
trained longer. Early stopping criteria ended train-
ing around 10-13 epochs for all models except the
MMS-300M at 243 minutes, which took longer to
converge and trained for 23 epochs. Further ex-
perimentation is needed to determine if this trend
continues to hold for more data. Table 2 shows
resulting error rates for each model.

MMS vs XLSR. Other papers have shown that
XLSR-53 outperforms MMS in some situations,
such as Uralic languages and Arabic, both of
which have tens of thousands of hours of train-
ing data available (Mihajlik et al., 2023; Younis
and Mohammad, 2023). Mvskoke on the other
hand only has a few hours of data, possibly mak-
ing MMS the better candidate. This is consistent
with the findings of the original authors of MMS,
that higher-resource languages show some degrada-

3https://huggingface.co/blog/mms_adapters
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tion in MMS compared with previous models that
cover fewer languages, but that most extremely low-
resource languages benefit from the large amount
of languages represented in MMS (Pratap et al.,
2023).

The advantage that MMS-1B-11107 presents is
that it has been fine-tuned specifically for the task
of ASR. Adding a new language-specific adapter
for Mvskoke also means that only a small number
of parameters need to be trained. Ultimately, fine-
tuning the adapter only for the MMS-1B-11107 is
both more memory efficient and gives better per-
formance.

Model WER CER
120 243 120 243

XLSR-53 62 51 11 9
XLSR-53 + LM 40 36 10 7
MMS-300M 71 48 14 8
MMS-300M + LM 43 33 10 6
MMS-1B-L 40 37 6 5
MMS-1B-L + LM 34 31 5 5

Table 2: Error rate percentages for different models
with different data amounts in minutes, compared with
language model (LM) decoding, on the eval (clean) set.
MMS-1B-L is the MMS-1B-L1107 model.

LM Decoding. Language model (LM) decoding
improves all of the models by several percentage
points. The performance improvement is less for
the better models, but even the best model (MMS-
1B-11107) improves slightly in WER. Figure 2
shows the decrease in error rate for each model
with the LM. However, in the best model, the CER
is not improved. Sometimes the language model
breaks apart long out-of-vocabulary words into
more common words, which degrades the transcrip-
tion. For example, "vcvkvhoyvte hvmkat" ("one
of the ones who had followed") is transcribed as
"vcakkvhoyvte hvmkat" without an LM, which is
phonetically similar, but is changed to "vcakv oketv
hvmkat" by the LM, which is nonsensical. So al-
though the WER goes down overall for the whole
evaluation, some information may be lost. This
may be dis-preferred for some applications such
as spoken term detection (Le Ferrand et al., 2021).
More example outputs are shown in Appendix B.

5 Conclusion and Future Work

This study shows that fine-tuning multilingual
transformer models is an effective method for train-


https://huggingface.co/blog/mms_adapters

ing ASR systems in low-resource language con-
texts. Fine-tuning the adapter for a 1 billion pa-
rameter model, MMS-1B-11107, yields better re-
sults when compared to training entire models such
as XSLR-53 and MMS-300M. However, the per-
formance of such systems depends highly on the
recording quality and type of speech. Although
language modeling improves overall accuracy mea-
sures such as WER and CER, it can also degrade
the output in some cases. Alternatives like sub-
word or character-level modeling could offer a
more effective approach, particularly for applica-
tions where fidelity to the original speech signal is
preferred.

A future direction would be to incorporate the
ASR model into a keyword-spotting or sparse tran-
scription system. The high error rates for noisy
recordings in this study mean that manual tran-
scription may still be faster than correcting ASR
output. Sparse transcription can be helpful in sit-
uations where high ASR error rates lead to low-
quality transcriptions (Bird, 2021). Transcribing
only high-confidence words can be useful for in-
dexing recordings and providing an overview of
recorded content that can then be used for knowl-
edge gathering.

6 Limitations

Due to the computational effort, each model was
only trained once for each data amount (10, 60,
120, and 243 minutes). The datasets were shuffled
randomly at runtime when selecting the splits, for
example one 10 minute set is slightly different than
another 10 minute set. This creates some variabil-
ity in the results, and is not as robust as training
the models multiple times and taken an average of
performance.

This study also does not include the MMS-1B,
the adapter-less version of the MMS-1B-11107, be-
cause of the computational requirements of train-
ing such a large model. Because of this, conclu-
sions cannot be made about the performance of an
adapter model compared to a model with an equal
amount of parameters. This study does not seek to
fully evaluate adapter architecture, rather only to
say that it is an effective method for this setting.

Finally, the transformer architecture was not
evaluated alongside other architectures. In low-
resource settings, model architecture can affect per-
formance significantly, and no single architecture
is best for every language (Jimerson et al., 2023).
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This study only evaluates the models stated here
and their performance on the Mvskoke language.
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A Training Details

Hyperparameters. The implementation for this
experiment follows the guide by Patrick von Platen
using HuggingFace transformers*. Hyperparame-
ters were defined as follows:

* Learning rate = le-3

Maximum epochs = 30
Best model metric = CER
Early stopping =3

Early stopping threshold = 0.003

Most models stopped training around 10-13
epochs, with the exception of the MMS-300M
trained on the full dataset, which took longer to
converge and stopped at 23 epochs.

MMS-1B-11107 vs MMS-1B-all. MMS-1B-
11107 was chosen over MMS-1B-all for a few rea-

sons. Both models are fine-tuned for ASR from the

4https://huggingface.co/blog/wavaecZ—with—n
gram
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base MMS-1B model using labeled data. MMS-
1B-11107 was fine-tuned on the MMS-lab set only,
which is a collection of New Testament recordings
in 1,107 languages (Pratap et al., 2023). MMS-1B-
all includes more data, however the additional data
is for a smaller subset of languages, many of which
are higher-resourced. This may be detrimental for
an extremely low-resource language. This hypothe-
sis was tested somewhat empirically by training the
adapters for both MMS-1B-11107 and MMS-1B-all
with 60 minutes of Mvskoke training data, and the
MMS-1B-11107 performed better (decrease of 8%
WER and 1% CER on test set). Therefore this work
continues with the MMS-1B-11107 model.

B Example Output

Table 3 shows examples of outputs from the
best model, MMS-1B-11107 trained on the full
data set. Example 1 shows output on a female
speaker not present in the training data, speaking
conversationally. The model misses a word
boundary and the LM does not make any changes.
However, the transcription is still true to the speech
signal. In example 2, the language model (LM)
substitutes a common alternative spelling for the
same word, resulting in a higher error rate but is
still a good transcription. Example 3 shows how
the LM can in fact degrade transcription quality,

when it attemps to break an out-of-vocabulary
word into more common words. In this case,
the output without LM decoding makes a closer
transcription. The final example, example 4, shows
that LMs can improve the transcription on familiar
words.

Table 3: Examples of ASR outputs from MMS-1B-11107.

1. Held-out female speaker

Eval (other)  “‘Wring its neck,” he told me.”

Reference nokfiyvs kihcen cvkihcen CER WER
No LM nokfiyvskihcen cvkihcen 12 67
With LM nokfiyvskihcen cvkihcen 12 67
2. Minor spelling changes

Eval (clean) “We don’t want you. Go back,” he was told

Reference ceyacekot os yefulkvs kihocen CER WER
No LM ceyacekot os yefulkvs kihocen 0 0
With LM ceyacekot os yefulkvs kihocen 3 25
3. LM degrades transcription

Eval (other)  “one of the ones who had followed”

Reference vevkvhoyvte hvmkat CER WER
No LM vcakkvhoyvte hvmkat 8 5
With LM vcakv oketv hvmkat 32 100
4, LM improves transcription

Eval (other) “November”

Reference ohrolope ehole CER WER
No LM orrolope v ehoflé 38 150
With LM ohrolope ehole 0 0
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Abstract

This PhD proposal aims to investigate ways
of automating qualitative data analysis, specifi-
cally the thematic coding of texts. Despite ex-
isting methods vastly covered in literature, they
mainly use Topic Modeling and other quantita-
tive approaches which are far from resembling
a human’s analysis outcome. This proposal
examines the limitations of current research
in the field. It proposes a novel methodology
based on Large Language Models to tackle au-
tomated coding and make it as close as possible
to the results of human researchers. This paper
covers studies already done in this field and
their limitations, existing software, the prob-
lem of duplicating the researcher bias, and the
proposed methodology.

1 Introduction

Qualitative research is an important asset in vari-
ous fields such as marketing, media studies, social
science, psychology, and medical research (Avjyan,
2005; Brennen, 2021; Mohajan et al., 2018; Lee-
son et al., 2019). It stands out from quantitative
methods in its ability to go deeper into research
questions and capture individual experiences. How-
ever, it doesn’t have the straightforward statistics or
clear answers often found in quantitative research.
This makes it harder to draw conclusions and prove
hypotheses when dealing with a vast collection of
unstructured text documents (Bumbuc, 2016).

The primary way to analyze data in qualitative
research involves open coding, a process that re-
quires meticulously reading through texts to pin-
point significant thoughts, ideas, attitudes, and top-
ics (Glaser and Strauss, 2017). Following this, ax-
ial coding helps identify how these codes interre-
late and groups them into broader categories (Sal-
dana, 2016). This method is time-consuming, often
stretching over weeks (Alshengeeti, 2014), as it
demands intensive manual effort and professional
expertise to analyze a large number of documents.

&3

Given these challenges, there’s a growing interest
in automating or simplifying the text analysis pro-
cess to make it less labor-intensive.

While there has been some progress in automat-
ing the analysis of interview data, using techniques
like Topic Modeling (Parfenova, 2024; Leeson
et al., 2019) and Wordnet hierarchies (Guetterman
et al., 2018), these approaches mainly highlight
keywords already present in the text. They don’t
generate the nuanced "ideas" and "thoughts" that
come to mind upon reading it. Therefore the main
goal of this research is to automate the coding pro-
cedure of qualitative data (mainly interviews) to
make the result of analysis as close as possible to
human researchers’ results.

In this proposal, we explore existing approaches
for analyzing interview data and suggest a new
method for automating the full coding procedure.
The aim is to develop a model that can analyze
interviews minimizing the variability and biases
that can be introduced by human researchers. Fu-
ture work will involve producing software that can
assist organizations and researchers in managing
and interpreting large volumes of textual data effi-
ciently.

2 Related Work

Before covering existing approaches and software
dedicated to qualitative analysis, we need to ex-
plore how the coding is done by professional hu-
man coders.

2.1 Current coding practice

Each statement or significant segment of dialogue
within an interview is assigned a "code" that sum-
marizes its main idea. Depending on the researcher
it can be represented as a word or even a phrase, the
main goal is to encapsulate the key message of the
citation (Miles and Huberman, 1994). Once coded,
these segments are then organized into broader cat-
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egories that reflect the underlying patterns and rela-
tionships within the dataset. Categories are higher-
order classifications that codes are grouped into.
These categories emerge from the data and help in
developing a theory that is grounded in the data
itself (Glaser and Strauss, 2017). In practice, if
codes are allowed to be either a word or a phrase,
categories are mostly one or two words (colloca-
tion).

Describing the process in simpler terms, first,
we summarize the main idea of each citation in the
interview. Then, we start grouping them into bigger
categories. This means looking at all the little ideas
we’ve found and seeing how they fit together into
larger themes. We ask questions like, "Do these
codes share something in common?" or "Are they
talking about the same bigger idea?" This helps us
organize our findings better (Parfenova, 2024). We
visualize it in the Figure 1.

These categories and codes themselves are then
organized into a concept map, similar to a mind
map, the example of which is portrayed in Figure
2 (note: it is only the part of the graph based on
citations we wrote above). This graph helps in
visualizing the whole narrative of the interviews
conducted.

2.2 Coder qualification and expertise

The coders responsible for this task are typically
trained researchers or analysts with a background
in qualitative methods. They possess an under-
standing of the research aims and are skilled in
identifying the nuanced meanings within the text.
It is their expertise that allows them to discern the
subtleties in dialogue and assign appropriate codes
that reflect the core message of the segment (Miles
and Huberman, 1994).

Inter-coder reliability is essential to guarantee
the credibility of qualitative data coding—it creates
consensus among various coders in their applica-
tion of codes. Usually, it involves pilot sessions
where several researchers initially code a subset of
data, and then an agreement on codes is achieved
through discussion and comparison of coded seg-
ments. Thus, researchers try to avoid individual
bias by voting system, basically agreeing which
code is better for this particular segment. The
degree of coder agreement is quantified through
statistical measures like Cohen’s Kappa or Krip-
pendorff’s Alpha (Krippendorff, 2018).

Although there are extensive descriptions of the
methods used in analyzing texts, it is crucial to

review prior studies that focused on qualitative data
analysis using computational methods. Several
papers have addressed this topic; let us provide a
brief overview of these works.

2.3 Existing approaches

The first approach covered vastly in literature is
topic modeling and word-to-vector conversion fol-
lowed by a comparison of this NLP technique
with an open coding procedure. If the revealed
topic/code was similar in meaning to one revealed
by the researcher, it was considered to be extracted
properly (Leeson et al., 2019). In this research
Topic modeling, specifically LDA, was conducted
for each question and resulted in ten keywords
with weights that represented the highlighted top-
ics. This technique was good in covering topics dis-
covered in the transcripts, however, the keywords
extracted were not close enough semantically to
the results of expert coders.

Another recent approach was to create a Topic
Modeling alike model that combines BERT embed-
dings with HDBSCAN clustering to create clusters
of keywords and then visualize them in the form
of a graph as social scientists do with a concept
map (Parfenova, 2024). The example of keywords
extracted from the same set of interviews used as
examples above is illustrated in Figure 3. The ad-
vantage of this method is drawing the concept map
that consists of keywords and links between them
based on co-occurrence in the topic, however, it
doesn’t generate ideas/thoughts based on the con-
text of a citation but extracts words that already
exist in a text. That way it is a completely different
procedure rather than ’coding’.

Other works (Guetterman et al., 2018; Wei et al.,
2015) have used WordNet to find the closeness
between words and compose their semantic hierar-
chy. For example, “based on edge distance between
appropriate synsets in this tree-like structure, one
could consider that exercise and workout are very
similar (an edge distance of 0), exercise and yoga
are quite similar (an edge distance of 1), whereas
exercise and straining are even less similar (an edge
distance of 2)”. Other similarity metrics were also
used, such as Leacock and Chodorow similarity
(Leacock, 1998) and Wu-Palmer similarity (Wu
and Palmer, 1994). This method was also suc-
cessful in the identification of codes. However, a
significant limitation of this approach is its reliance
on WordNet, which is not actively maintained, of-
fers limited lexical coverage, and does not scale
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Figure 2: Example of graph (Davydova, 2024)

without considerable human effort for updates. Fur-
thermore, this method has been primarily applied to
structured interviews with specific, directed ques-
tions, which are not typically the interviews that
present the most analytical challenge or demand
the most time.

2.3.1 Approaches Based on Large Language
Models (LLMs)

With the emergence of Large Language Models
(LLMs) such as GPT variants, there has been a
paradigm shift in how we approach text analysis
and labeling. The ability of LLMs to understand
and generate human-like text has opened new av-
enues in various fields, including computational
social science (CSS) and content moderation. This
section explores using LLMs in the context of doc-
ument annotation, relation extraction, and concept
linking, providing insight into the challenges pre-
sented by current research.

Labeling with LLM In the field of computa-
tional social science (CSS), the annotation of doc-
uments is a foundational step in analyzing social
phenomena. Traditionally, this process has been
both time-consuming and labor-intensive, often re-
quiring manual labeling of large corpora. LLMs
have made this task easier by enabling researchers
to annotate documents at scale. However, despite
the efficiency of LLMs, their annotations are not
without flaws and often exhibit biases and imper-
fections. To overcome these issues, a novel algo-
rithm has been introduced, emphasizing design-
based supervised learning (DSL) (Egami et al.,
2024). The DSL estimator combines imperfect
LLM-generated labels with a limited set of high-
quality, gold-standard labels, which are created by
experts in social science thoroughly annotating a
representative sample of documents. The DSL al-
gorithm then combines these accurate labels with
the larger set of imperfect LLMs. It does this by ad-
justing the LLLM labels based on discrepancies with
the gold standard, resulting in improved ’pseudo-
outcomes’. These are then used in statistical analy-
ses, ensuring results that are both robust, due to the
expert input, and scalable, thanks to the automation
provided by LLMs.

Another study shifts the focus into trying to ex-
periment with variations in prompts and batch sizes
to improve the quality of hate-speech labeling (Mat-
ter et al., 2024). Utilizing manual annotation as a
benchmark, GPT-3.5 and GPT-4 models were fine-
tuned to detect nuances in violent speech. The
results showed that the best GPT-4 model achieved
Cohen’s Kappa scores of 0.54 and 0.62 when com-
pared to two human coders, respectively, indicating
a moderate to substantial agreement. Weighted and
macro F1 scores further supported the model’s re-
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Figure 3: Keywords extracted using Topic Modeling and their possible interpretation

liability. These findings suggest that while LLMs
like GPT-4 show promise in automating content
moderation, their annotations when benchmarked
against manual coding, reveal some discrepancies
that require further adjustment.

2.3.2 Deductive and Inductive Coding in
Qualitative Research

Coding in qualitative research can be categorized
into deductive and inductive methods. Deductive
coding uses a pre-established codebook applied to
the data, while inductive coding generates codes
directly from the data itself.

Some studies, such as (Xiao et al., 2023) and
(Spinoso-Di Piano et al., 2023), have explored au-
tomatic code generation using NLP methods, pri-
marily focusing on deductive coding where labels
are predefined. In contrast, our approach employs
an inductive coding process based on "grounded
theory" (Glaser and Strauss, 2017), allowing knowl-
edge to emerge from the data. Preliminary knowl-
edge is utilized only during categorization, with
initial coding being entirely inductive.

Our proposed method is ideal for inductive cod-
ing, aiming to identify patterns and themes organ-
ically. Acknowledging the computational meth-
ods supporting deductive coding, future research
could investigate hybrid methods that combine both
inductive and deductive elements, combining the
strengths of each approach.

2.4 Relation extraction and concept linking

In the domain of natural language processing, the
task of relation extraction and concept linking is
crucial for transforming unstructured text into a
structured form that highlights the relationships be-
tween entities. In social science, the practice of

labeling these relationships within concept maps
varies; some researchers annotate the connections
between codes explicitly, while others do not, due
to the lack of a standardized approach. The pros
of labeling are that it can clarify the nature of re-
lationships and facilitate a deeper understanding
of complex interactions within the data. On the
other hand, the cons include the potential for sub-
jectivity and the added layer of analysis that could
complicate the interpretation of data.

Currently, the detection of relationships often re-
lies on Large Language Models (LLMs) (Loureiro
et al., 2023; Trajanoska et al., 2023; Bratanic, 2022;
Yao et al., 2023; Pan et al., 2023), which, despite
their growing sophistication, still face challenges
such as the accurate identification of relations in
documents covering diverse topics (Friedman et al.,
2022; Feder et al., 2022). The lack of universally
accepted link types further complicates the task,
as this can lead to ambiguity and inconsistent find-
ings across different studies (Picco et al., 2023;
Cabot and Navigli, 2021). Additionally, extract-
ing an exhaustive list of entities can create overly
complex networks that make analysis even more
complicated rather than reveal significant patterns.

Given these considerations, it is worth discussing
whether labeling relationships in knowledge extrac-
tion is necessary or if an unlabeled graph is enough
for sociological research. The answer may not be
absolute; the decision to label relationships should
be guided by the specific research objectives and
the nature of the data being analyzed. Further re-
search is required to develop more standardized
methods for relation extraction that could benefit
the social sciences and other disciplines.



2.4.1 Existing softwares

Qualitative researchers often turn to specialized
software like Atlas.ti', Dedoose?, and MAXQDA?
for manual coding, which facilitates text analysis
by allowing for efficient tagging and categoriza-
tion within a user-friendly environment. However,
these tools do not fundamentally alter the nature
of the analysis process but rather provide a digital
convenience for traditional workflows.

The challenge thus remains to create an inno-
vative, accessible tool that not only simplifies the
coding process but also enhances the analytical ca-
pabilities of researchers, enabling them to extract
deeper insights from qualitative data without the
need for advanced programming skills.

2.4.2 Discussion

Integrating Al into qualitative data analysis
presents a promising approach to overcoming the
limitations of human coding, such as subjective
bias (Bumbuc, 2016), agreement challenges be-
tween individual coders (Krippendorff, 2018), and
the time-consuming nature of manual coding (Sal-
dana, 2016). Human coders, while better under-
standing the nuances of sentences they code, often
struggle with consistency and objectivity, leading
to variability in data interpretation (Saldana, 2016).
Al, with its capacity for rapid data processing and
application of standardized coding rules, offers a
solution to these challenges by ensuring a more
uniform and efficient analysis (Bengio et al., 2013),
allowing to deal with larger amounts of data. Thus,
the development of a model capable of imitating the
human coding process, at the same time overcom-
ing the abovementioned challenges, could serve
not only as a supporting solution for human coders
but as a standard itself.

3 Research Proposal

This PhD proposal seeks to explore the ways of au-
tomating the analysis of quantitative data, mainly
interview transcripts. The main goal is to test the
proposed approach on different sets of interviews
and compare it with expert coding. Next, we out-
line the main research questions:

1. How do social scientists code interviews and
ensure consistency of coding while collabo-
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rating? What preliminary knowledge are they
using while deriving categories from codes?

. How can we identify codes and group them
into meaningful categories using LLMs?

. If the researcher is biased while analyzing
interviews, is there a way to replicate this bias
to make the model work like a real human
researcher?

It is important to note that the concept map de-
scribed in previous sections is the last step after the
ones mentioned above. As its nature lies in rela-
tionship extraction and information visualization, it
is considered to be the next separate research topic.
Thus, it will not be covered in the proposed method-
ology for this proposal, though it was important to
describe it as the concluding part of qualitative data
analysis.

The accomplishment of these research goals will
help to systematically organize data, which can
be massive and complex, into understandable and
manageable themes. This enables researchers to
identify patterns and insights that are not immedi-
ately apparent, thus adding depth to the research
findings.

Exploring the domain knowledge of social sci-
entists can significantly improve the accuracy of
automated models. This knowledge can lead to the
creation of algorithms that are more aligned with
human cognition, which is especially important
when analyzing nuanced human communication.

While bias is typically something to be mini-
mized, understanding it can be useful, particularly
in developing Al that can replicate human-like un-
derstanding. It’s important to recognize that com-
plete objectivity is unattainable, and acknowledg-
ing bias allows for a more reflexive approach to
data analysis.

4 Proposed Approach

The proposed methodology follows the cognitive
process of a social scientist who typically keeps
in mind the study’s framework during thematic
analysis. As described in section 2.1 on Current
coding practice, thematic analysis is a two-step
process consisting of open and axial coding. The
first step involves summarizing each citation’s main
idea/thought, and the second consists of categoriz-
ing all ideas into higher-order categories (Fig.1).
According to existing manuals, the open coding
phase doesn’t involve preliminary knowledge of
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the research topic (Glaser and Strauss, 2017), while
axial coding heavily relies on it (Miles and Huber-
man, 1994). The next sections describe how each
stage of the coding process can be automated.

4.1 Open Coding: summarization

The methodology’s initial phase consists of sum-
marizing a sentence’s main idea, however with so-
cial scientist professional bias. That’s why the
first stage of automating the process involves fine-
tuning several LLMs on the dataset with profes-
sionally extracted codes by human experts. Models
will be finetuned using PEFT (Parameter Efficient
Finetuning) Low-Rank Adaptation (LoRA) (Hu
et al., 2021) to reduce the number of parameters
that need to be tuned to around 1%. The fine-tuning
quality is subsequently evaluated using the BERT
score (Zhang et al., 2019), and ROUGE score (Lin,
2004).

LLMs are tested with a variety of open coding
prompts that range from explicit instructions to
more nuanced requests that mimic the considera-
tions of a social scientist:

* Explicit Instruction: Summarize the main
idea/thought of a sentence.

Informal Request: Can you tell me what the
main idea of this sentence is in just a few
words?

Expert Angle: From the perspective of a social
scientist, summarize the following sentence
as you would in thematic coding.

Impersonalization: If you were a social scien-
tist, what code would you give to this citation?

Detailed Explanation: Explain in a couple of
words the primary thought expressed in the
following text.

Simplified Task: What’s the gist of this sen-
tence?

LoRA will be subsequently compared to prompt-
engineering giving several examples of coded sen-
tences and asked to code the same way the rest of
the dataset. One of our hypotheses is that PEFT
will result in higher BERT scores than prompt-
ing because some codes from social scientists are
highly domain-specific (e.g. citation from the train-
ing data: " If a woman comes in, you can see from
her that she doesn’t drink alcohol and she doesn’t
have bad habits, both when interviewed and on
further follow-up, and the pregnancy is going well,

there may be complications, but some minor ones.",
code: Habitus)

4.2 Axial Coding: Categorization

Following the open coding phase, the LLM cate-
gorizes the generated codes into thematic groups.
This process is driven by a set of contextual
prompts derived from the research itself, designed
to generate meaningful categories by the model.
Examples of such contexts involve mentioning the
goal of the research, hypotheses, interview guide,
theoretical framework, etc. Everything that might
help with giving categorization more context.

The LLM processes the input codes C and the
research context Q to produce a set of thematic
categories K. The evaluation includes assessing
how well the codes from diverse prompts such
as “Do these codes share something in common?”’
and “Group these codes into meaningful categories.”
converge into coherent groups that reflect the un-
derlying themes of the dataset. The number of
categories extracted is not predefined and can vary
as well as it varies among human researchers.

If we take a look at Fig.1 we see several extracted
categories from the set of open codes. However,
the choice of categories usually depends on the
individual researcher and might vary. That’s why
there is no certain way to internally evaluate the
quality of categorization. At this stage, it will be
necessary to perform an expert evaluation which is
described in detail in the Evaluation section.

5 Dataset

For the fine-tuning of the Large Language Model
(LLM), we propose utilizing a curated dataset com-
prising coded interview citations collected from
social scientists, both academic researchers and
students doing qualitative research in social sci-
ence. An illustrative example, as demonstrated in
Figure 4, presents data in a citation-label format.
For instance, a citation s; such as "Well since it’s
a smartphone, it’s usually always with me," would
be associated with a label /; denoted as "mobility".

A potential challenge is the limited size of the
dataset. However, recent studies, such as those by
(Zhou et al., 2023), have shown that LLMs can still
perform exceptionally well even when fine-tuned
with a minimal dataset.



Mobility Well since it’s in a smartphone, it's usually always
with me.

Helper  For me, the most important thing is to have an
assistant like Google assistant, meaning it doesn't
talk to you itself, it only performs tasks.

Playing ~ For example | remember playing cities with her...

Figure 4: Dataset

6 Evaluation

The testing of the model will be based on compari-
son with experts. We will employ Krippendorff’s
Alpha to evaluate the reliability and consistency
of the coding provided by our model compared to
expert coders. This statistical measure is ideal for
assessing the agreement among multiple coders on
qualitative data.

Our approach involves constructing a contin-
gency table where each row represents an inter-
view citation and each column a coder (our Al
model and human experts). The codes assigned to
each citation by different coders are filled in this
table. We will then calculate the observed disagree-
ment among coders for each item and sum these
to get the total observed disagreement. Expected
disagreement, which is the disagreement expected
by chance, will also be computed based on the
distribution of each code.

The Alpha value is calculated using the formula
o = 1 - Qeredbisameement o pigher Alpha
value (close to 1) indicates a higher agreement
among the coders, suggesting that our model’s cod-
ing aligns well with human experts. This method
will provide a robust quantitative measure of the
coding reliability of our Al model in qualitative
data analysis.

We extend our testing framework by evaluating
potential bias in the coding process. This involves
comparing the coding consistency of our language
model and a Golden Standard established by expert
consensus.

The example of the evaluation framework is il-
lustrated in Figures 5-6. The Golden Standard
codes emerge from a discussion process among
human coders (cl, ¢2, ¢3) to identify the most
appropriate codes. To effectively incorporate a
bias evaluation, we propose to compute bias scores
for each human coder, B(cl), B(c2), B(c3), to

B(cl)=0.8

B(c2)=0.5

B(c3)=0.3

Figure 5: Coders consensus and individual biases

B(LLM) vs B(c1)

divergence B(LLM) vs B(c2)

B(LLM) vs B(c3)

Task - mineDiff(LLMs,Golden Standard)

Figure 6: Comparing individual biases and LLM

quantify their deviation from the Golden Stan-
dard. In parallel, we will calculate the bias
score for the language model (B(LLM)), reflect-
ing its divergence from the GoldenStandard.
Our objective is articulated through the task of
minimizing the difference between the model’s
bias and the Golden Standard, formalized
asminDif f(LLMs3, GoldenStandard), thereby
striving to align the model’s output with the unbi-
ased consensus code.

7 Limitations

In this section, we will discuss the limitations of
our current research as well as the challenges posed.
One of the primary concerns is the issues associated
with concept extraction and ontology building. Ac-
curately selecting codes is inherently challenging,
as the process relies on nuanced human knowledge.
It raises a question: how can we develop a model
sophisticated enough to replicate these complex
human cognitive tasks?

Another issue is that language is intricate. Peo-
ple have their unique way of speaking, and they
often communicate more than what they explicitly
say. Our model strives to comprehend and code
what people express, but it might not be able to do



so as accurately as humans. It may miss some of
the implicit nuances in language that we naturally
understand.

One major concern is that our dataset is rela-
tively small. Since we are using a limited number
of examples to fine-tune our model, there is a possi-
bility that it may not perform as well as we expect.
This could result in it being less effective in coding
new interviews, as it hasn’t had sufficient exposure
during training.

Additionally, the extraction of relationships
presents its own set of difficulties. Training an
algorithm to navigate them poses a significant chal-
lenge, further complicated by the diverse strategies
individual coders reach a consensus. The question
of whether there exists a universal approach or if
coders are utilizing various, possibly conflicting,
techniques is yet to be answered.

Furthermore, the unclear nature of large lan-
guage models (LLMs) introduces additional com-
plexity. These models often act as "black boxes,"
making it challenging to discern the rationale be-
hind their outputs. This obscurity necessitates the
exploration of explainable Al, a significant area of
research aimed at making AI’s decision-making
processes more transparent. Our project might
encounter similar difficulties, interfering with our
ability to fully understand and explain the model’s
behavior and decisions.

8 Ethics Statement

This research ensures data privacy by anonymiz-
ing all interview data and obtaining informed con-
sent, in compliance with data protection regula-
tions. While the goal is to enhance and assist hu-
man researchers, potential displacement effects are
considered, striving to support rather than replace
them. Efforts are made to mitigate biases in the
LLMSs, maintain fairness, and ensure transparency
in the models’ decision-making processes. Addi-
tionally, computational resources are optimized to
minimize environmental impact.

9 Conclusion and future work

In conclusion, this proposal outlines a comprehen-
sive framework for automating the extraction of
information from qualitative research. By using the
advanced capabilities of Large Language Models
(LLMs) and integrating them with the expertise of
social scientists, we aim to significantly reduce the
time and effort required in the coding process.

In this proposal we have addressed the potential
for replicating the bias inherent in human coding,
recognizing that this aspect of qualitative analysis
can be both a challenge and an opportunity. By
understanding and potentially simulating these bi-
ases, we can approach the human-like analytical
capabilities that are currently the domain of expe-
rienced researchers. The use of a curated dataset
for fine-tuning the LLMs, along with the develop-
ment of an algorithmic framework will be the first
step in constructing an actual tool that facilitates
qualitative analysis.

Future work will focus on the practical imple-
mentation of the proposed methodologies, includ-
ing the fine-tuning of LLMs with the constructed
dataset and the validation of the coding process
against standard qualitative analysis. Additionally,
we will explore the integration of multiple LLMs to
simulate the collaborative nature of human coding
teams. The end goal is the creation of user-friendly
software that embodies the strengths of both man-
ual and Al-assisted analysis, involving all stages of
qualitative analysis from open coding to the con-
struction of a concept map.
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Abstract

Research on token-level reference-free hallu-
cination detection has predominantly focused
on English, primarily due to the scarcity of ro-
bust datasets in other languages. This has hin-
dered systematic investigations into the effec-
tiveness of cross-lingual transfer for this impor-
tant NLP application. To address this gap, we
introduce ANHALTEN, a new evaluation dataset
that extends the English hallucination detection
dataset to German. To the best of our knowl-
edge, this is the first work that explores cross-
lingual transfer for token-level reference-free
hallucination detection. ANHALTEN contains
gold annotations in German that are parallel
(i.e., directly comparable to the original English
instances). We benchmark several prominent
cross-lingual transfer approaches, demonstrat-
ing that larger context length leads to better
hallucination detection in German, even with-
out succeeding context. Importantly, we show
that the sample-efficient few-shot transfer is
the most effective approach in most setups.
This highlights the practical benefits of min-
imal annotation effort in the target language
for reference-free hallucination detection. Aim-
ing to catalyze future research on cross-lingual
token-level reference-free hallucination detec-
tion, we make ANHALTEN publicly available:
https://github.com/janekh24/anhalten

1 Introduction

Detecting hallucinations in large pretrained lan-
guage models (e.g., Brown et al., 2020; Jiang et al.,
2024) is critical for ensuring their reliability in real-
world applications. Most existing hallucination
detection benchmarks focus on reference-based
tasks (e.g., summarization, machine translation,
question answering) (Maynez et al., 2020; Rebuffel
et al., 2022; Sadat et al., 2023), comparing model
generated text against provided references. How-
ever, reference-based hallucination detection is not
appropriate for free-form text generation, where
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obtaining ground-truth references in real-time de-
mands sufficient and accurate preceding retrieval
step. To address these challenges, reference-free
hallucination detection approaches have been intro-
duced (Liu et al., 2022; Su et al., 2024), focusing
on identifying inconsistencies within the generated
context itself to effectively detect hallucinations
in real-time. Besides, most research in halluci-
nation detection has concentrated on sentence or
passage-level (Dhingra et al., 2019; Manakul et al.,
2023; Zhang et al., 2023), which is inadequate for
real-time applications that require immediate feed-
back during text generation. Fine-grained, token-
level reference-free hallucination detection bench-
mark is necessary for this purpose. However, re-
search in this area has focused on English (Liu
et al., 2022), primarily due to the lack of robust
evaluation datasets in other languages. Creating
token-level hallucination detection datasets for new
languages (from scratch or using machine trans-
lation) is significantly more expensive and time-
consuming than for most other NLP tasks, due to
the need for accurate translation and adaptation
of nuanced contexts and token-level annotations.
The lack of multilingual evaluation benchmarks
hinders the investigation of cross-lingual transfer
approaches for token-level reference-free halluci-
nation detection.

In this work, we target this gap and introduce
ANHALTEN (germAN HALucinaTion dEtectioN),
a new benchmark derived from the English token-
level reference-free hallucination detection dataset
HADES (Liu et al., 2022). ANHALTEN is: (1) reli-
able — with complete texts and hallucination spans
(i.e., labels) manually translated, and (2) parallel —
the same set of texts and labels have been translated
to German, enabling direct comparison of multilin-
gual models and cross-lingual transfer approaches.

We then use ANHALTEN to benchmark a range
of cross-lingual transfer approaches and simulate
the real-world applications in multiple setups. Our
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HADES

ANHALTEN

HADES

ANHALTEN

Not Hallucination

Hallucination

haunted homes is a british reality television

series made by september films productions .

[...] the show centers around writer richard
hillier ( who owns the rights to the story )
, ghostwriter andrew scott smith ( pilot ,
only aired due to his lack of confidence level
) [...] they spend the weekend in a supposedly
haunted house , hoping to find out if there are
any ghosts around , [...]

haunted homes ist eine britische reality -
fernsehserie , die von september films pro-
ductions produziert wird . [...] im mittelpunkt
der sendung stehen der autor richard hillier
( der die rechte an der geschichte besitzt )
, der ghostwriter andrew scott smith ( pilot-
film , der aufgrund seines mangelnden ver-
trauenslevels nur ausgestrahlt wurde ) [...]
sie verbringen das wochenende in einem ver-

ieva zunda ( born 20 july 1978 in tukums ) is
alatvian athlete . [...] she did not make it past
the first round at the 1999 and 2003 world
championships . [...] in 2008 [...] shortly
before the deadline - on 28 june , she had
finally reached the qualifying standard in the
400 m ( 56 . 50 ), as she clocked in the first
round . she finished third in her heat , again
missing out on a place in the first round .

ieva zunda ( geboren am 20 . juli 1978 in
tukums ) ist eine lettische leichtathletin . [...]
bei den weltmeisterschaften 1999 und 2003
kam sie nicht iiber die erste runde hinaus .
[...] 2008 versuchte sie erneut [...] kurz vor
dem stichtag - am 28 . juni - hatte sie endlich
die qualifikationsnorm iiber 400 m ( 56 . 50
) erreicht , wie sie in der ersten runde lief .
sie wurde dritte in ihrem lauf und verpasste

meintlichen spukhaus , in der hoffnung her-
auszufinden , ob es dort geister gibt , [...]

erneut den einzug in die erste runde .

‘Word Spans: [105, 105] ‘ Word Spans: [112, 114]

Word Spans: [153, 153] | Word Spans: [154, 154]

Table 1: Examples of HADES (Liu et al., 2022) as the perturbed version with token-level label to detect hallucination,
and our proposed ANHALTEN machine-translated and post-edited text. The bold terms indicate the perturbed words
compared to the original Wiki (Guo et al., 2020), and the underline term presents the token required to detect
hallucination. For brevity, the compared version with original Wiki is available in Appendix A.

HADES |

MACHINE TRANSLATED (MT) |

ANHALTEN (MT & Post-Edited)

other similar shows include most haunted and ghost
home . it is also shown in the u . s . on the discovery
channel fridays and saturdays schedule .

andere dhnliche shows sind most haunted und ghost
home . es ist auch in den u . s . auf dem discovery | home . es wird auch in den usa auf dem discovery
channel freitags und samstags schedule gezeigt .

andere @hnliche shows sind most haunted und ghost

channel freitags und samstags gezeigt .

dold ’ s research in algebraic topology , in particular

, his views on fixed - point topology has made him

influential in economics as well as mathematics .
mathematik.

dold ’ s forschung in der algebraischen topologie, ins-
besondere, seine ansichten iiber fixpunkt-topologie
hat ihn einflussreich in der wirtschaft als auch in der

dolds forschung in der algebraischen topologie , ins-
besondere , seine ansichten iiber fixpunkt - topologie
hat ihn sowohl in der wirtschaft als auch in der math-
ematik einflussreich gemacht .

Table 2: Examples compared with original English HADES text, the automatic machine translation to German, and
the final translation after manual post-editing. The highlighted texts indicate the errors that were corrected during
post-editing. These errors primarily include incorrect translations, grammatical mistakes, and missing information.

results show that (i) hallucination detection works
comparably well even without succeeding texts, in-
dicating that larger context length helps detect hal-
lucinations in German, thus supporting proactive
hallucination prevention on-the-fly during text gen-
eration, and (ii) few-shot transfer methods achieve
high performance with minimal annotated data,
highlighting the practical benefits of inexpensive
annotation of a handful of target-language halluci-
nation instances for training detection models.

2 Methodology

2.1 Dataset Creation

We translate the full development set and 10% of
the training set of English HADES dataset (Liu
et al., 2022) in German, with 1,000 and 876 in-
stances, respectively.! Each instance includes
a TEXT, MARKED WORD SPANS, POSITION OF
MARKED WORD SPANS, and LABEL to indicate
whether the MARKED WORD SPANS causes halluci-
nation. Examples compared to the original English
HADES dataset are shown in Table 1.

!Since the original test set labels were not published, we
rely on training and development sets throughout our experi-
ments. We also ensure the subsample of the training set retains
the original label ratio of the training data.

Following the well-established practice (Hung
et al., 2022; Senel et al., 2024), we carried out a
two-phase translation process: (1) we started with
an automatic translation — followed by (2) the man-
ual post-editing of the translations. We first auto-
matically translate the development and training
set portions for both TEXT and MARKED WORD
SPANS relying on DeepL Translator. We then in-
corporate native speaker with University degree
and fluent in English, to post-edit the automatic
translations to ensure the correctness of the trans-
lation — especially the directly preceding and suc-
ceeding context, and the correct determination of
the MARKED WORD SPANS. Common errors iden-
tified in machine-translated texts include incorrect
translations, missing words, grammatical mistakes,
or contextual inaccuracies. Examples comparing
the original English HADES with the automatically
translated and manually post-edited texts are shown
in Table 2. Besides, as the position of MARKED
WORD SPANS changes in the German text?, the

“German and English, both Germanic languages, differ
in ways that impact dataset design. In German, compound
words are written as single words, whereas in English, they
are separated by spaces, affecting MARKED WORD SPANS.
Additionally, German commonly uses particle verbs, where
MARKED WORD SPANS are split by other parts of the sentence.
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POSITION OF MARKED WORD SPANS is adjusted
accordingly.

Additionally, to conduct Translate-Train exper-
iment for cross-lingual transfer, full training set
(8,754 instances) are automatically translated using
DeepL Translator, without post-editing. However,
only 6,344 instances (72.5%) remain, since the
discarded ones contain incorrect MARKED WORD
SPANS.

2.2 Downstream Cross-Lingual Transfer

The parallel nature and substantial size of ANHAL-
TEN facilitate benchmarking of cross-lingual trans-
fer methods for hallucination detection tasks. We
investigate three common methods for downstream
cross-lingual transfer (XLT) (Ebing and Glavas,
2023; Senel et al., 2024): (1) Zero-Shot Transfer,
where we assume the absence of labeled task in-
stances in the target language. The model is trained
exclusively in English and is expected to perform
the task directly in German without prior exposure
to German labeled data. This method relies on the
model’s capability to generalize knowledge from
English to German. (2) Few-Shot Transfer, where
a limited number of labeled instances in the tar-
get language exist with the majority of training
data in the source language. The model is trained
on abundant English data and a small amount of
German data jointly,? helping it adapt to the spe-
cific nuances of the German language with limited
annotated data. (3) Translate-Train, where train-
ing instances in source language are automatically
translated (i.e., noisy) to target language leverag-
ing the state-of-the-art machine translation model.
While this approach relies on the quality of transla-
tion, it benefits from creating a substantial amount
of training data in German, closely approximating
a fully supervised learning scenario.

To facilitate modular and efficient XLT, adapter-
based approach is proposed to learn specialized
task and language adapters for high portability and
parameter-efficient transfer to various tasks and
languages (Pfeiffer et al., 2020b). For downstream
XLT, a task adapter is stacked on the pre-trained
source language adapter, where the parameters are
only updated for the task adapter. During evalua-
tion, the source language adapter is replaced by the
In such cases, only the conjugable main part of the verb is
marked, while the particle is ignored.

3Compared to sequential fine-tuning (Lauscher et al., 2020;
Hung et al., 2022), joint fine-tuning (Schmidt et al., 2022) on

instances in both source and target language can achieve better
performances with higher stability.
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pre-trained target language adapter. In our setup,
the task adapter is trained by (1) the English-only
data for Zero-Shot Transfer; (2) a joint training of
English and a small portion of German data for
Few-Shot Transfer; or (3) the machine-translated
English-to-German data for Translate-Train. The
adapter-based approach ensures that the model can
efficiently adapt to new tasks with minimal param-
eter updates, maintaining the balance between per-
formance and computational efficiency.

3 Experimental Setup

3.1 Evaluation Tasks and Measures

We evaluate multilingual pre-trained language mod-
els (PLMs) in XLT methods (§ 2.2) for token-level
reference-free hallucination detection tasks. To
simulate real-world applications, we evaluate on
two sub-tasks: offline and online (Liu et al., 2022).
In the offline setting, the model accesses both pre-
ceding and succeeding contexts of the MARKED
WORD SPANS, suitable for detecting hallucinations
in pre-generated texts. In the online setting, the
model considers only the preceding context, en-
abling proactive prevention of hallucinations dur-
ing on-the-fly text generation.

We follow Liu et al. (2022) and evaluate the XLT
capabilities utilizing multilingual PLMs on hallu-
cination detection tasks. The evaluation metrics
include accuracy, precision, recall, F1, Area Under
Curve (AUC), G-Mean (Espindola and Ebecken,
2005), and Brier Score (BS) (Brier, 1950). These
metrics provide a comprehensive evaluation of
model performance, balancing correctness, and the
ability to handle imbalanced classes.

3.2 Models and Experimental Setup

Experiments are conducted on multilingual PLMs,
namely multilingual BERT (mBERT) (Devlin et al.,
2019) and XLMR (Conneau et al., 2020),* us-
ing language adapters’ proposed by Pfeiffer et al.
(2020b) to facilitate modular and efficient XLT.
To evaluate downstream XLT, the experiments
are conducted with 5 runs in both offline and online
settings, with a fixed context window of 200 tokens.
In the online setting, the context includes the 200
tokens preceding the MARKED WORD SPANS. In
the offline setting, it includes 100 tokens before and

*The weights of PLMs are loaded from HuggingFace:
multilingual-bert-base-cased and x1m-roberta-base.

>The pre-trained adapters are selected from Adapter-
Hub (Pfeiffer et al., 2020a) for English (en-wiki@ukp) and
German (de-wiki@ukp).



Not Hallucination Hallucination

#Instances  Setting  Accuracy T  G-Mean 1 BS | AUC 1t | R7T F11 P Rt F11

Zero-Shot 0 offline 62.82 59.38 25.51 72.90 74.89 4187 5337 58.18  84.89  68.96
Few-Shot 10 offline 63.86 61.89 24.23 73.32 72.84 4772 5734 5957  80.87  68.51
Few-Shot 100 offline 65.12 63.87 23.28 73.88 7264 5146  60.12 6093  79.51  68.94
Few-Shot 876 offline 67.76 67.55 20.83 74.68 6824  69.75 6887 6750 6567  66.44
Translate-Train 6344 offline 66.42 64.13 21.30 73.80 66.69 7244 6784 6998  60.08 6291
Zero-Shot 0 online 63.70 62.01 24.14 72.44 71.51 48.85 57776 5972 81.14  68.02
Few-Shot 10 online 63.50 61.53 23.84 7243 7211 4729 56.88 5930  80.58  68.24
Few-Shot 100 online 64.88 63.87 22.88 72.55 7031 5729 6203 6139 7393  66.19
Few-Shot 876 online 67.28 67.14 21.22 73.52 67.89 6889 6833 6675 6559  66.09
Translate-Train 6344 online 67.66 66.55 21.02 73.20 65.66 7766 71.13  70.86 57.13  63.19

Table 3: Cross-lingual transfer results of XLMR (%) averaged over 5 runs. According to Table 4, XLMR outperforms
mBERT. For brevity, cross-lingual transfer results of mBERT are provided in Appendix B.

Not Hallucination Hallucination

Model Setting Acc. T G-Mean T BS | AUCt Pt Rt F11+ Pt Rt FL{

mBERT offline 61.00
XLMR offline 62.82

56.12
59.38

26.49 69.66 71.04 42.92 50.68 57.89 80.04 66.54
25.51 72.90 74.89 41.87 53.37 58.18 84.89 68.96

mBERT online 60.44
XLMR online 63.70

55.34
62.01

26.71 67.81 73.47 36.69 48.10 56.33 85.46 67.76
24.14 72.44 71.51 48.85 57.76 59.72 81.14 68.02

Table 4: Zero-shot transfer results (%) averaged over
5 runs. Reference English performance of XLMR for
accuracy: 70.40% (offline), 68.80% (online).

after the MARKED WORD SPANS.® During training,
the instances are randomly split into a 70/30 train
and validation split, while the original label ratio of
training data is retained for the split. We train for
10 epochs in batches of 8 instances, with learning
rate 5 - 1073, and a dropout ratio 0.2 is set to avoid
overfitting.

4 Results and Discussions

We present and discuss the downstream XLT results
on ANHALTEN for the token-level reference-free
hallucination detection task across three XLT se-
tups (§ 2.2): zero-shot transfer, few-shot transfer,
and translate-train.

Zero-Shot Transfer. The results summarized in
Table 4 highlight the performance of zero-shot
transfer. Notably, XLMR consistently outper-
forms mBERT across most metrics, indicating that
XLMR is better suited for zero-shot transfer. Min-
imal performance differences between the online
and offline settings suggest that the selection of

Liu et al. (2022) observed that model performance for
English HADES dataset stabilizes around 80 tokens, with
minimal performance differences between offline and online
settings regarding context length. Thus, using 200 tokens
would not limit performance, and increasing the context is
unlikely to improve results.
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large context windows does not significantly im-
pact performance, aligning with findings from Liu
et al. (2022). Having only preceding text with
larger context lengths aids in detecting hallucina-
tions, which is valuable for real-world applications,
especially for proactively preventing hallucinations
during on-the-fly generation. Compared with ref-
erence English performance, the zero-shot transfer
results show significantly lower accuracy for both
online and offline settings, with drops exceeding
5% points. These substantial performance declines
underscore the inherent challenges in achieving re-
liable zero-shot XLT, which is consistent with the
findings from prior work (Lauscher et al., 2020;
Pfeiffer et al., 2020b).

Few-Shot Transfer and Translate-Train. As
detailed in Table 3, few-shot transfer results for
XLMR show remarkable improvements as the num-
ber of annotated German instances increases. With
10% of the English HADES training set (i.e., 876
annotated instances), accuracy improves by 4.9%
points (offline) and 3.6% points (online) compared
to zero-shot transfer. The corresponding G-Mean
score increases by 8.2% points (offline) and 5.1%
points (online). Notably, with only 100 annotated
instances, accuracy improves by 2.3% points (of-
fline) and 1.2% points (online), and the G-Mean
score improves by 4.5% points (offline) and 1.9%
points (online). This demonstrates the substantial
impact of incorporating minimal annotated data on
enhancing XLT performance. The translate-train
approach, which involves translating a large corpus
of 6,344 instances, yields accuracy gains of 3.6%
points (offline) and 4.0% points (online) compared
to zero-shot transfer. While beneficial, the marginal
gains compared to few-shot transfer highlight the



Not H.

POS Accuracy T G-Mean 1T BS | AUCT P+ R1T F11+ Pt R7T F171

65.80
58.42
52.16

64.65
56.31
37.20

22.20 72.61 71.07 53.55 61.06 62.66 78.06 69.52
25.37 63.99 61.97 43.97 51.15 56.64 72.88 63.62
28.13 59.69 51.24 88.65 64.93 58.78 15.68 24.64

Adjectives
Nouns
Verbs

Table 5: Part-of-Speech (POS) results of XLMR (%) in
the online setting averaged over 5 runs. We only con-
sider instances with MARKED WORD SPANS containing
particular types of POS in the German language: adjec-
tives, nouns, verbs.

practical efficiency of using smaller amounts of
high-quality annotated data. Based on our findings,
few-shot transfer emerges as a highly viable strat-
egy for cross-lingual transfer of reference-free hal-
lucination detection, offering robust performance
gains over zero-shot transfer without the exten-
sive resource required by the translate-train ap-
proach. This re-emphasizes the well-documented
practical benefits of few-shot cross-lingual transfer
(Lauscher et al., 2020; Schmidt et al., 2022), here
for reference-free hallucination detection.

Analysis. According to Liu et al. (2022), nouns
and verbs are the most frequently occurring part-
of-speech (POS) in the MARKED WORD SPANS
of the HADES dataset. The majority of instances
with nouns (62.4%) and adjectives (74.0%) in the
MARKED WORD SPANS belong to the hallucination
class, while the majority of instances with verbs
belong to the non-hallucination class (62.8%). This
indicates a significant imbalance in label distribu-
tion. To assess the impact of this imbalance on
cross-lingual transfer performance, we classify the
validation set of ANHALTEN based on the selected
POS (nouns, verbs, adjectives) in the MARKED
WORD SPANS. Instances with MARKED WORD
SPANS containing multiple words from different
POS are excluded. To ensure an equal number
of labels for each POS, we randomly remove in-
stances from the more frequent class. This process
results in 292 noun instances, 222 verb instances,
and 62 adjective instances.

We then analyze the XLT results of XLMR in
the online setting. The POS results in Table 5 show
that adjectives are significantly more effective in de-
tecting hallucinations compared to nouns and verbs
in German. While the effectiveness of adjectives
is notable, the imbalanced distribution of instances
across different part-of-speech tags, as highlighted
by Liu et al. (2022), warrants further investigation
and consideration. Addressing these imbalances
is crucial for improving the overall robustness and
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accuracy of hallucination detection models.

We further conduct morphological analysis (de-
tailed in Appendix B) and demonstrate that preced-
ing words indicate grammatical gender in German
impact model performance, underscoring the im-
portance of linguistic context. These findings em-
phasize the need to address imbalances and encour-
age future work to enhance model performance
concerning diverse linguistic features for token-
level reference-free hallucination detection.

5 Conclusions

Token-level reference-free hallucination detection
has predominantly focused on English, primarily
due to the lack of robust benchmarks in other lan-
guages, hindering investigation into cross-lingual
transfer approaches for this important task. To
address this gap, we have presented ANHALTEN,
an extension of the English HADES containing
gold hallucination annotations in German, allowing
for reliable and comparable cross-lingual estimates
for token-level reference-free hallucination detec-
tion tasks. We utilized a modular adapter-based
approach to facilitate the cross-lingual transfer,
demonstrating the effectiveness of sample-efficient
few-shot transfer. We believe that our dataset and
findings advance the understanding of hallucina-
tion detection in cross-lingual transfer setups and
contribute towards multilingual hallucination de-
tection and real-time hallucination prevention in
free-form text generation.
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Limitations

Despite the contributions of this research, several
limitations are acknowledged, which present op-
portunities for future enhancement. Currently, AN-
HALTEN extends hallucination detection to Ger-
man, broadening the scope beyond English but still
covering only two languages. Expanding this re-
search to include additional languages could further
increase the global applicability of our findings. Be-
sides, incorporating data from sources other than
Wikipedia could enrich the diversity and complex-
ity of the dataset. Additionally, extending the re-



search to include other types of hallucinations (e.g.,
subjective hallucinations) would provide a more
comprehensive understanding of hallucination de-
tection in various text types. We experimented on
encoder-only multilingual PLMs, while decoder-
based PLMs (e.g., Le Scao et al., 2022; Jiang et al.,
2023; Abdin et al., 2024) warrants exploration. We
hope that future research builds on top of our find-
ings and extends the research toward more domains,
more languages, and specifically with the efficiency
and effective concerns of hallucination detection in
different languages.

Ethics Statement

This research addresses the critical need for non-
English language datasets in hallucination detec-
tion by introducing ANHALTEN. The ethical con-
siderations of this work are multifaceted. By ex-
tending hallucination detection to German, the re-
search promotes linguistic diversity and inclusivity
in Al systems. This inclusivity helps to mitigate
biases and misinformation that can arise from lan-
guage restrictions, fostering more equitable appli-
cations. The study also aims to facilitate the recog-
nition of potential hallucinated content produced
by large-scale pretrained models in free-form gen-
eration — could be useful in both offline and on-
line settings. Additionally, the research outcome
emphasizes the importance of resource-efficient
approaches, reducing the reliance on extensive an-
notated data and promoting more sustainable devel-
opment.
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A Dataset

The HADES dataset, introduced by Liu et al. (2022), is designed for reference-free token-level hallucina-
tion detection tasks in English. It is sourced from English Wikipedia (Guo et al., 2020), with extracted
text segments that are first perturbed and then verified by crowd-sourced annotators to determine if the
marked word spans in the text cause hallucination. The dataset is available under an open-source MIT
License and contains a total of 10954 instances, divided into train, development, and test sets with sizes of
8754, 1000, 1200 respectively. Within the dataset, 54.5% of the instances are classified as Hallucination,
while 45.5% of the instances are classified as Not Hallucination. Since the original labels of the test set
were not published, we primarily rely on the training and development sets throughout our experiments.

To further facilitate research on cross-lingual transfer in German hallucination detection tasks, we
propose ANHALTEN in this work. We manually annotate 876 training instances and the entire development
set of 1000 instances, which are machine-translated and further post-edited. The proposed ANHALTEN

compared with the original Wiki and perturbed HADES, is shown in Table 6.

Wiki (Original)

| HADES (Perturbed)

| ANHALTEN (MT & Post-Edited)

| Not Hallucination

haunted homes is a british reality television series
made by september films productions . [...] the show
centers around psychic mia dolan ( who owns the
rights to the programme ) , ghost hunter david
vee ( pilot episode , only allegedly due to his lack
of confidence presenting ) , actor mark webb and
professor / sceptic chris french . they spend two
nights in a supposedly haunted house , hoping to
find out if there are any ghosts around , [...]

haunted homes is a british reality television series
made by september films productions . [...] the show
centers around writer richard hillier ( who owns
the rights to the story ) , ghostwriter andrew scott
smith ( pilot , only aired due to his lack of con-
fidence level ) , actor paul newman and scientist
/ paranormal investigation officer chris martin .
they spend the weekend in a supposedly haunted
house , hoping to find out if there are any ghosts

around , [...]

haunted homes ist eine britische reality -
fernsehserie , die von september films pro-
ductions produziert wird . [...] im mittelpunkt
der sendung stehen der autor richard hillier (
der die rechte an der geschichte besitzt ) , der
ghostwriter andrew scott smith ( pilotfilm , der
aufgrund seines mangelnden vertrauenslevels
nur ausgestrahlt wurde ) , der schauspieler paul
newman und der wissenschaftler / paranormale
untersuchungsbeauftragte chris martin . sie ver-
bringen das wochenende in einem vermeintlichen
spukhaus , in der hoffnung herauszufinden , ob es

dort geister gibt , [...]

Word Spans: [105, 105]

‘ Word Spans: [112, 114]

| Hallucination

ieva zunda ( born 20 july 1978 in tukums ) is a
latvian athlete . her main event is the sprint and
hurdles , but she also competes in the 400 and 800
metres . [...] she did not make it past the first round
at the 1999 and 2003 world championships . [...] in
2008 [...] shortly before the deadline - on 28 june ,
she had finally reached the entry standard in 400 m
hurdles (56 . 50 ), as she clocked 56.34 seconds ,
she finished fifth in her heat , again missing out on
a place in the second round .

ieva zunda ( born 20 july 1978 in tukums ) is a
latvian athlete . her main event is the sprint and
hurdles , but she also competes in the 400 and 800
metres . [...] she did not make it past the first round
at the 1999 and 2003 world championships . [...] in
2008 [...] shortly before the deadline - on 28 june
, she had finally reached the qualifying standard
in the 400 m ( 56 . 50 ), as she clocked in the
first round . she finished third in her heat , again
missing out on a place in the first round .

ieva zunda ( geboren am 20 . juli 1978 in tukums )
ist eine lettische leichtathletin . ihre hauptdisziplin
ist der sprint und der hiirdenlauf , sie tritt aber auch
iiber 400 und 800 m an . [...] bei den weltmeis-
terschaften 1999 und 2003 kam sie nicht iiber die
erste runde hinaus . [...] 2008 versuchte sie erneut
[...] kurz vor dem stichtag - am 28 . juni - hatte
sie endlich die qualifikationsnorm iiber 400 m ( 56 .
50 ) erreicht , wie sie in der ersten runde lief . sie
wurde dritte in ihrem lauf und verpasste erneut den
einzug in die erste runde .

| Word Spans: [153, 153]

| Word Spans: [154, 154]

Table 6: Examples of the original text from Wikipedia (Guo et al., 2020), HADES (Liu et al., 2022) as the perturbed
version with token-level labels to detect hallucination, and the machine-translated (MT) and post-edited version

from our proposed ANHALTEN.
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B Additional Experiments
B.1 Cross-Lingual Transfer Results of mBERT

Not Hallucination Hallucination

# Instances Setting Accuracy ¥ G-Meant BS| AUCt Pt R1T F11+ Pt R1T F11

Zero-Shot 0 offline 61.00 56.12 2649 69.66 71.04 4292 50.68 57.89 80.04 66.54
Few-Shot 10 offline 62.84 60.36 2596 69.53 71.41 4694 55.74 59.15 79.59 67.54
Few-Shot 100 offline 61.16 55.94 25.52 70.27 73.14 4098 49.95 58.02 82.42 67.21
Few-Shot 876 offline 62.08 58.61 2427 7044 68.46 52.63 56.48 60.80 72.03 64.29
Translate-Train 6344 offline 64.54 63.76 22.61 70.46 66.97 62.61 63.99 63.44 66.57 64.35
Zero-Shot 0 online 60.44 55.34 26.71 67.81 73.47 36.69 48.10 56.33 85.46 67.76
Few-Shot 10 online 60.04 53.77 27.61 68.05 7294 36.53 46.48 56.46 84.81 67.39
Few-Shot 100 online 60.84 56.55 2735 67.44 7099 41.79 50.68 57.32 80.90 66.77
Few-Shot 876 online 61.50 58.07 24.66 68.86 71.52 43.66 52.82 57.91 80.29 66.82
Translate-Train 6344 online 64.78 63.66 22.66 71.11 69.43 57.66 62.05 62.55 72.28 66.45

Table 7: Cross-lingual transfer results of mBERT (%) averaged over 5 runs.

B.2 Morphological Analysis

In English, grammatical gender is not distinguished, whereas German has three grammatical genders
that influence articles, pronouns, and adjectives. Words indicating gender often lie outside the MARKED
WORD SPANS used for hallucination detection. Our experiment selects instances where gender-indicating
words (articles, possessive pronouns, demonstrative pronouns) precede nouns in the MARKED WORD
SPANS from both the German and English datasets. This dataset includes 64 instances per language, with
an equal distribution of labels.

Testing with XLMR in the online setting, the goal is to determine if contextual gender information
influences hallucination detection results. The additional gender information might help classify non-
hallucination instances but could mislead models if the original, correct word has a different gender.

Results in Table 8 show a performance drop in accuracy and G-Mean when gender-indicating words
are included in the MARKED WORD SPANS, particularly for English instances. However, AUC improves,
suggesting that the extended spans do not hinder the model’s ability to distinguish between classes.
The models tend to assign more instances to the hallucination class, reducing the F1 score for the non-
hallucination class. This performance drop may result from a lack of such gender-indicating contexts in
the fine-tuning dataset, indicating potential issues with handling longer MARKED WORD SPANS.

Not Hallucination Hallucination
Language Preceding Accuracy? G-Mean?T BS| AUCtT P1 RT F11 Pt RT F11
English With 76.56 76.13 16.74 85.16 76.73 76.88 7631 77.94 7625 76.51
German With 59.38 46.32 21.73  86.99 85.66 2437 3599 5575 9437 6993
English Without 69.69 68.58 21.67 7457 7530 5938 6597 66.67 80.00 72.46
German Without 61.25 49.38 2234 8096 86.59 2750 39.63 57.17 95.00 71.16

Table 8: Results of XLMR (%) in the online setting averaged over 5 runs, for instances with MARKED WORD SPANS
containing nouns with and without preceding words that indicate the grammatical gender of the noun.
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Abstract

Prompt-based learning has shown its effective-
ness in few-shot text classification. A key fac-
tor in its success is a verbalizer, which trans-
lates output from a language model into a pre-
dicted class. Notably, the simplest and widely
acknowledged verbalizer employs manual la-
bels to represent the classes. However, manual
selection may not yield the optimal words for
a given language model, potentially leading to
subpar classification performance, especially
in mid-to-low resource languages with weaker
language models. Therefore, we propose Label-
Aware Automatic Verbalizer (LAAV), effec-
tively augmenting manual labels for improved
few-shot classification results. Specifically, we
utilize the label name along with the conjunc-
tion "and" to induce the model to generate more
effective words for the verbalizer. Experimen-
tal results on four mid-to-low resource South-
east Asian languages demonstrate that LAAV
significantly outperforms existing verbalizers.

1 Introduction

In recent years, we have seen many promising ap-
plications of prompt-based learning for text classi-
fication (Schick and Schiitze, 2021b; Wang et al.,
2022b; Zhang et al., 2022; Hu et al., 2022). While
the traditional approach trains or fine-tunes a ma-
chine learning model to directly predict a class for
an input text, the prompt-based approach fits the
input text into a template that has some slots to be
filled. Next, it asks a language model (LM)! to fill
in the slots and then translates what the model filled
to be a predicted class (Liu et al., 2023). To predict
sentiment in a movie review like "Great movie!" as
positive or negative, we may prompt a masked LM
with "Great movie! It was [MASK]." The model
may predict the word "fun" for the [MASK] token,

* Corresponding author

!Generally, masked LMs are preferred for classification
tasks due to their close alignment with the pre-training task
(Liu et al., 2023).

Input: “Feather” Class: light / heavy

“king”
AMuLaP: Feather is [MASK]. ‘:} D) Hsgtf;ndg,. @
NPPrompt: “Light"
Highest embedding similarity: light :> RS i> lights @

base “lighter”

“fluffy”

“smooth”

“soft”

LAAV:
Feather is light and [MASK]. E> [>

Figure 1: Comparing LAAV with AMuLaP and
NPPrompt in the search for class representative tokens.
This example can be applied to other languages.

and we can apply a function, so-called a verbalizer,
to map "fun" to the positive class.

Certainly, the success of a prompt-based text
classifier heavily relies on its verbalizer. Schick
and Schiitze (2021a) proposed PET, which manu-
ally chooses a word to represent each class. During
inference, it compares the likelihood of those words
at the [MASK] token (as predicted by the LM) to
find the most probable class. In contrast, Wang et al.
(2022a) proposed AMuLaP, which represents each
class with a set of words, automatically derived
from those predicted by the LM for training exam-
ples. Zhao et al. (2023) proposed NPPrompt, which
represents each class using a set of tokens with the
highest embedding similarity to the manual class la-
bel. Its performance, therefore, relies solely on the
LM’s embedding space. Additionally, there is no
guarantee that the chosen words will be relevant to
the classes of interest, potentially affecting the clas-
sifier’s performance. This issue disproportionately
impacts mid-to-low resource languages, where the
LM may have received less comprehensive training
data (Hangya et al., 2022; Conneau et al., 2019).

In Figure 1 (top), to predict whether an ob-
ject "Feather" is light with a prompt "Feather is
[MASK].", the LM suggests "king", "good", and
"strong", which are irrelevant to the task but used
by AMulLaP to construct the verbalizer. Mean-
while, as shown in Figure 1 (middle), NPPrompt
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suggests "Light", "lights", and "lighter", which are
variations related to the class "light" but hardly
provide additional information about the class.

With the smaller size of LMs, particularly for
mid-to-low languages, predicting relevant words
becomes more challenging. (Nguyen and Nguyen,
2020). In this paper, we propose LAAV (Label-
Aware Automatic Verbalizer), integrating PET and
AMuLaP by exploiting the class labels to induce
the model to generate more relevant words for
the verbalizer. As shown in Figure 1 (bottom),
we could construct a better verbalizer by asking
"Feather is light and [MASK]." Now, the LM sug-
gests "fluffy”, "smooth", and "soft", which are
closely connected to the light class and can be used
to construct an effective verbalizer. The contribu-
tions of this paper are as follows.

* We propose LAAV- a simple yet effective
technique to create a reliable verbalizer for
prompt-based text classification (Section 3).

* We conduct few-shot classification experi-
ments on four datasets from four mid-to-
low resource languages (Section 4), showing
LAAV outperforms baselines (Section 5.1).

* We carry out an additional analysis to deter-
mine the best choice of conjunction for retriev-
ing more related words (Section 5.2).

2 Background & Related Work
2.1 Few-shot Text Classification

Various strategies address few-shot scenarios in text
classification. Meta-learning uses labeled exam-
ples from auxiliary tasks to train a model for quick
adaptation to new tasks with only a few examples
(Li et al., 2020; Yin, 2020). Semi-supervised or
weakly-supervised approaches use extensive un-
labeled data with limited labeled data to enhance
the model’s performance (Li et al., 2018; Duarte
and Berton, 2023). In-context learning (ICL) in-
cludes a few labeled examples within a prompt for
querying large pre-trained LMs to get the classifi-
cation (Brown et al., 2020; Lin et al., 2021). Our
paper adopts the prompt-based learning approach,
which involves template design, verbalizer, and
model fine-tuning. This approach has proven effi-
cient in model training (Zhao et al., 2023; Schick
and Schiitze, 2021a) and is beneficial for few-shot
classification in mid-to-low resource languages,
where auxiliary tasks, unlabeled data, and large
pre-trained LMs are limited.

2.2 Verbalizers for Prompt-Based Learning

The easiest way to construct a verbalizer is to man-
ually select a representative word for each class,
as in PET (Schick and Schiitze, 2021a). However,
manual selection could be laborious and does not
ensure optimal word choice for the chosen LM.
Hambardzumyan et al. (2021) introduced trainable
continuous tokens, known as a soft verbalizer, for
automating class representations. However, these
tokens may not represent actual words, hindering
model debugging and improvement.

Meanwhile, our study, along with others, fa-
vors discrete verbalizers due to their interpretability.
Schick et al. (2020) searched for the best word to
represent each class by maximizing the likelihood
of the training data. AMuLaP (Wang et al., 2022a)
does the same but represents each class by multi-
ple words to reduce the effects of noise in the data.
NPPrompt (Zhao et al., 2023) utilizes a set of to-
kens that have the closest embedding similarity to
the manual label to represent each class. However,
its effectiveness is strongly dependent on the qual-
ity of the LM’s embedding space, which may not
be effective for mid-to-low resource languages or
suitable for classification task. Additionally, it over-
looks the input text, potentially leading to problems
with polysemous words. Since our work is based
on AMuLaP, the next section explores its details.

2.3 AMulLaP

For a text classification task aiming to classify
an input text z to a class y € Y, AMuLaP rep-
resents each class y; with a set of k£ tokens, de-
noted as S(y; ). These tokens are selected from the
sub-word vocabulary V), of the language model
M it prompts. To construct S(y;), it applies a
template 7' to all training examples = of which
the ground truth label is y;. One example is
T(z) = [z] It was [MASK] for the classification
task in the Introduction. Then it lets M predict the
probability of each v € Vs for the [MASK] of these
T'(x)s. The score of token v for class y; is

s,y) = Y pu(IMASK] = v|T(x)) (1)
(z,y;)€ED

where D is the training set and p; is the probability
predicted by M. S(y;) is then defined as a set of &k
tokens with the highest s(v, y; ).

To ensure that each token v is assigned to only
one class, AMuLaP calculates its score for ev-
ery y € Y and assigns it to the class y; where
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y; = argmaxycy s(v,y). After that, the LM
is fine-tuned on D using the cross-entropy loss.
Specifically, the log-probability of class y; for an
input z is

1

L(yilz) = o Y logpar(IMASK] = o|T(x))
vES (i)

2

The cross-entropy loss will be calculated from
L(y;|x) forally; € Y andallz € D as

loss=— Y > I(y,y) Llylz) 3

(z,y)eD y; €Y

where I(y,y;) = 1if y = y;; otherwise, 0.

Finally, during validation and testing, the
predicted label ¢ for an input z is simply
arg maxy,cy L(yi|z).

3 Label-Aware Automatic Verbalizer

As illustrated in Figure 1, the words in S(y;), se-
lected by AMuLaP, could be unrelated to their cor-
responding class. So, when constructing S(y; ), our
method LAAV integrates the label name of y; into
the template 7', using a conjunction. This helps
induce M to predict words that are related to y;.
Our choice for the conjunction is "and" because it
serves to connect words or phrases with the same
grammatical category and similar meaning. Also,
"and" is one of the most widely used conjunctions
in many languages (Davies, 2011). As a result, our
LAAV template for creating S(y; ) is

Ty (x) = [z] It was [y;] and [MASK]

Note that we will explore other conjunction op-
tions in Section 5.2. Now, the score of token v for
class y; for LAAV will be

> pur(IMASKT = v| Ty, () (@)

(z,y;)eD

s(v,y;) =

Since the objective of the LAAV template T}, is
solely for seeking better representative words for
each class, we use the original template 7" without
the conjunction during training and inference.

4 Experiments

4.1 Datasets and Pre-trained Models

We conducted experiments on four datasets from
four Southeast Asia languages. These include senti-
ment analysis datasets: SmSA (Indonesian) (Wilie
et al., 2020a), Students’ Feedback (Vietnamese)
(Van Nguyen et al., 2018), Wisesight sentiment
(Thai) (Suriyawongkul et al., 2019), and Shopee
Reviews (Tagalog) (Riego, 2023). The LAAV tem-
plates, the class labels, and other details of each
dataset are reported in Appendix A.

The pre-trained LMs used in this paper are
the base versions of IndoBERT (Wilie et al.,
2020b), Tagalog RoBERTa (Cruz and Cheng,
2021), WangchanBERTa (Lowphansirikul et al.,
2021), and PhoBERT (Nguyen and Nguyen, 2020)
for Indonesian, Tagalog, Thai, and Vietnamese,
respectively. Additionally, we employed SealLLM-
7B-v2.5 (Nguyen et al., 2023), an open-source
large language model (LLM) designed for South-
east Asia languages, for an in-context learning
(ICL) baseline.

4.2 TImplementation Details

In a few-shot scenario, we randomly selected 1, 2,
4, or 8 samples per class for both the training and
validation splits. Since we do not have a sizable
development set for optimizing hyperparameters,
we depend on related work to guide us in selecting
the appropriate hyperparameters. All text inputs
were limited to 500 characters. During training, we
used Adam optimizer (Kingma and Ba, 2014) with
a learning rate of le-5 to optimize the loss func-
tion. To prevent overfitting, we employed early
stopping, limiting training to a maximum of 100
epochs. This process was repeated five times with
different seeds for robustness. We set k = 32 for
all experiments, with the best determination of &k
detailed in Appendix B. Our models were imple-
mented using PyTorch (Paszke et al., 2019) and
the OpenPrompt (Ding et al., 2021) libraries, and
trained on a Tesla P100 PCle 16 GB.

4.3 Baselines

We evaluated our method by comparing it to Tra-
ditional Fine-tuning (i.e., plugging a linear clas-
sification layer of top of the [CLS] embedding of
the LM and fine-tuning the whole model) and six
recent methods including five verbalizer methods
and one LLM-ICL method: (1) PET manually se-
lecting a token to represent each class (Schick and
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Sample Size 1 2 4 8
SmSA (Indonesian)

Traditional FT ~ 42.5 (7.1) 43.9 (3.6) 48.1(7.4) 52.2 (6.6)
PET 34.5(9.8) 39.8(7.5) 49.1 (8.4) 53.0 (7.0)
WARPy 37.5(9.1) 43.9(5.8) 50.9 (7.2) 52.2(5.2)
PETAL 35.5(8.8) 44.1 (6.9) 53.8(6.2) 52.1(8.2)
AMuLaP 38.7(10.4) 44.5(4.9) 58.9 (4.6) 58.3 (4.4)
NPPrompt 22.6 (6.2) 41.7 (7.1) 50.7 (6.4) 51.6 (8.4)
LLM-ICL 494 (2.4) 54.1 (8.0) 50.5 (1.6) 51.9 (0.9)
LAAV (ours) 453(9.9* 46.7(@4.7) 61.1(7.6)* 58.5(10.9)*
Shopee Reviews (Tagalog)

Traditional FT ~ 17.3 (4.5) 21.7 (3.9) 24.4 (3.8) 28.1 (5.0)
PET 18.3 (2.4) 20.6 (1.9) 22.8(1.2) 24.0 (1.8)
WARPy 18.6 (2.4) 23.0(1.3) 25.1 (2.1) 28.1(2.7)
PETAL 17.8 (4.0) 26.9 (1.5) 26.8 (3.8) 30.2 (1.6)
AMuLaP 21.4(6.0) 27.2(3.5) 28.9 (5.8) 32.4(3.3)
NPPrompt 13.9 (7.0) 18.0 (6.5) 17.9 (7.4) 26.9 (5.0)
LLM-ICL 28.1 (0.7) 28.7 (1.4) 28.1(1.3) 28.8 (1.2)
LAAV (ours) 255 (5.0 30.5(1.3)* 31.6 (3.7)*  32.6 (2.8)*
Wisesight sentiment (Thai)

Traditional FT ~ 20.7 (4.3) 24.2(5.5) 28.2 (4.2) 29.6 (5.4)
PET 23.8 (4.4) 31.0(7.2) 34.5(6.5) 41.0 (5.5)
WARPy 234 (5.7) 27.2(5.9) 30.8 (4.2) 37.7 (2.8)
PETAL 20.5 (2.0) 26.5 (7.6) 30.8 (4.4) 37.1(2.8)
AMuLaP 21.1(54) 28.0(10.6) 32.3(5.6) 37.4 (8.9)
NPPrompt 25.3(2.3) 26.2 (9.1) 31.0 (7.8) 37.0 (4.6)
LLM-ICL 17.7 (2.0) 19.1 (1.3) 21.4(2.6) 23.2(1.9)
LAAV (ours) 25.9 (5.9) 31.5 (7.6) 38.1 (4.5) 42.1 (5.8)
Students’ Feedback (Vietnamese)

Traditional FT ~ 39.5 (7.1) 47.3(8.7) 51.2(10.1) 62.6 (1.6)
PET 49.3(13.3)  60.7 (2.1) 65.5 (3.0) 68.7 (2.8)
WARPy 23.3(3.5) 47.8 (7.6) 514 (8.3) 57.2 (2.6)
PETAL 21.1(9.2) 38.3 (6.8) 49.1 (8.9) 57.7 (4.3)
AMuLaP 38.7(13.6) 47.0(10.9) 55.6(11.2) 64.6 (2.1)
NPPrompt 255(6.1) 39.5(11.8) 37.0(17.4) 40.0(17.2)
LLM-ICL 41.5(0.7) 41.5(0.8) 41.5(0.9) 41.9(1.3)
LAAV (ours) 53.6 (10.7) 61.7(3.8) 67.9 (2.8)* 69.5 (1.9)

Table 1: Macro F1 results along with their standard devi-
ations (in parentheses) tested on four datasets. The best
results are marked in bold. An asterisk (*) indicates
that our method, LAAV, demonstrates a statistically sig-
nificant improvement over the strongest baseline, PET,
based on paired t-tests, as shown in Appendix D.

Schiitze, 2021a), (2) the verbalizer of WARP, de-
noted as WARPYy, representing each class with a
trained continuous vector (Hambardzumyan et al.,
2021), (3) PETAL searching for the most suitable
representative token (Schick et al., 2020), and (4)
AMulLaP searching for multiple suitable represen-
tative tokens using an unmodified template (Wang
et al., 2022a). (5) NPPrompt using a set of to-
kens with the highest embedding similarity to the
manual label as representative tokens (Zhao et al.,
2023). (6) LLM-ICL: Unlike other baselines that
involve fine-tuning, we augmented the prompt tem-
plate with examples for each few-shot learning sce-
nario, enabling ICL (Brown et al., 2020). Refer
to Appendix C for the adapted prompt template
suitable for LLM. We employed the OpenPrompt
library for WARPy (SoftVerbalizer) and PETAL
(AutomaticVerbalizer), while implementing other
baselines manually in PyTorch.

5 Results and Additional Analyses

5.1 Comparison to the Baselines

Table 1 shows the results of our method compared
to the baselines. The LLM-ICL method shows
promise in extreme few-shot settings but struggles
with additional examples. PET, however, is the
strongest baseline across all datasets and sample
sizes, highlighting the effectiveness of using la-
bel names as representative tokens. Nevertheless,
fine-tuning LMs through prompt-based learning,
as demonstrated by our proposed method LAAV,
continues to show adaptability and efficacy across
various learning contexts. For example, in the 4-
shot settings, LAAV consistently outperforms other
baselines, achieving a 5.7% absolute improvement
in Macro F1 scores over PET and a 6.7% improve-
ment over AMuLaP across four datasets. This high-
lights LAAV’s superior performance, notably in
selecting top representative words.

For instance, Table 2, presents the top 3 (out of
32) representative tokens for the Wisesight senti-
ment dataset as selected and ranked by different ver-
balizers. AMuLaP sometimes selects tokens seem-
ingly unrelated to classes, such as associating "con-
structive" and "psychology" with the "negative"
class, while associating "philosophy" and "theory"
with the "positive" class. In contrast, NPPrompt
uses PLM embeddings to choose words closely
aligned with label meanings, although some selec-
tions, like the top 3 tokens for the "question" class,
can be repetitive. LAAV tends to select words
closely related to the label names; for example,
"selfish", "terrible", and "rude" are top tokens for
the "negative" class. This illustrates how incorpo-
rating label names with "and" can generate more
effective verbalizations.

5.2 Choices of conjunction

While we used "and" as the conjunction of LAAV
templates so far, this section aims to explore
whether there are other promising conjunction
choices we missed. Hence, we designed the fol-
lowing conjunction search process. First, we used
AMuLaP to find the initial S(y;) of each class.
Then, we applied the template

Ty (x) = [z] It was [y;] IMASK] [v]

for all v € S(y;), to every training examples x
labeled y;. Basically, Tyf asks the LM to predict
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Class Model Top-3 Words
AMuLaP | ®isssd (constructive), 3simmn (psychology), 837 (business)

au

(negative) NPPrompt |au (negative), uan (positive), ila (close)

LAAV Wiunisa (selfish), utann (terrible), weuae (rude)

AMuLaP | dwansal (symbol), widied (commerce), Uszdny (obvious)

nan

(neutral) NPPrompt | naw (neutral), assnans (middle), e (neutral)

LAAV nan (neutral), na1eq (neutral), @n (deep)

AMulLaP |3 (academic), Usaw (philosophy), nasj (theory)

uan

(positive) NPPrompt | uan (positive), uaniu (in addition to), au (negative)

LAAV  |4eiau (clear), a519s59d (constructive), gnsias (correct)

AMuLaP |#z (yes), uznz (please), daus (personal)

A NPPrompt | fax (question), Al (question that), #iAwnw (have question)
(question)

LAAV wua (reason), dszaunsal (experience), Anw (question)

Table 2: Comparison of the top-3 words in 4-shot set-
tings to represent each class in Wisesight sentiment
dataset.

Dataset Top Translated Words Automatic "and"

SmSA exchange, dough, mopped  42.7 (8.3) | 45.3(9.9)
Shopee Reviews already, in, just 20.6 (3.2) | 25.5(5.0)
Wisesight sentiment | really, very, yes 24.8(3.8) | 25.9(5.9)
Students’ Feedback | of, for, and 43.7 (6.5) | 53.6 (10.7)

Table 3: Comparison of Macro F1 results between au-
tomatic search and "and" conjunction in 1-shot setting.
The best results are marked in bold.

a token that can well connect y; to v, having the
potential to be the conjunction in LAAV template.

Table 3 shows the top three English-translated
words from language-specific LMs, selected by
the highest token score using Equation 1 with the
template Tfi (z) instead of the original 7'(z). Con-
junctions in the Students’ Feedback dataset exhibits
coherence, attributed to LMs favoring adjectives
for effective conjunctions. Ultimately, "and" con-
sistently yields the best results across datasets, sup-
porting our initial LAAV template design.

6 Conclusion

Our method, LAAV, constructs a better verbalizer
by exploiting class labels to collect more relevant
words. As shown in the experiments, LAAV out-
performs other existing verbalizers in few-shot text
classification across four languages, even surpass-
ing LLM with in-context learning. Our compre-
hensive analysis highlights "and" as a particularly
effective conjunction for retrieving words that ex-
hibit high discriminative power crucial for enhanc-
ing text classification performance.

Limitations

We only focused on improving the selection of
words to represent each label with a fixed prompt
template. Applying a tunable continuous template

or a more specific discrete template may also re-
duce the ambiguity of the input and further improve
the prompt-based learning results. In addition, with
limited resources, we decided to explore experi-
ments using the base version of the LMs. Fine-
tuning larger LMs using parameter-efficient tech-
niques may lead to different results. Nevertheless,
parameter-efficient techniques such as Low-Rank
Adaptation (Hu et al., 2021) can be implemented
on top of the prompt-based learning approach pre-
sented in this paper.

Ethics Statement

Our approach involves fine-tuning LMs through
prompt-based learning, utilizing openly accessible
datasets and models from the Hugging Face Hub.
To ensure reliability and neutrality, we conducted
five runs with varied seeds for each experiment. De-
tailed information on model parameters and com-
puting infrastructure is openly disclosed to promote
reproducibility. While our method does not intro-
duce new ethical concerns beyond those associated
with LMs, we acknowledge the potential for biases.
Users are advised to use our method cautiously and
thoroughly assess model outputs before deploying
them in real-world applications.
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A Dataset Details

Table 4 presents the dataset statistics alongside their
respective templates (LAAV and AMuLaP), labels,
and translated label names. Note that Shopee Re-
views originally has five classes [1,..,5] which were
manually mapped to textual labels ["very bad", ...,
"excellent"]. Our templates in each language are
based on the same initial template, which we first
created in English and then translated using Google
Translate.

All datasets referenced are publicly accessible
via the URLSs provided below.

* SmSA: https://github.com/IndoNLP/i
ndonlu/tree/master/dataset/smsa_do
c-sentiment-prosa

* Shopee Reviews: https://huggingface.co
/datasets/scaredmeow/shopee-reviews
-tl-stars

* Wisesight sentiment: https://huggingfac
e.co/datasets/wisesight_sentiment

e Students’ Feedback: https://huggingface.
co/datasets/uit-nlp/vietnamese_stud
ents_feedback

Label [negatif, netral, positif]
=> [negative, neutral, positive]
SmSA LAAY Tormol " komentar ini adalah + [y]+ "dan"
(Indonesian) emPlate |, [MASK]."
‘T\MULaP/Training " komentar ini adalah [MASK]."
emplate
[napakasama, masama,
karaniwan, mahusay,
Label napakahusay]
Shopee => [very bad, bad, average, good,
Reviews excellent]
Tagalo TV + At 4 < N
(Tag 8) LAAV Template IFO ay,, [y] at mask
reivew.
‘T\MULaP/Training " ito ay <mask> reivew."
emplate
[au, NaM, uan, AA]
o Label =>[negative, neutral, positive,
WlsgS|ght question]
Sentiment - =
. LAAV Template "Huanaiude + [y] + "ua=" + <mask>"
(Thai)
AMulaP / Training "Huanuiuids<mask>"
Template
Label [tiéu curc, trung lap, tich cuc]
Students’ => [negative, neutral, positive]
Feedback LAAV Templaty "No la +[y] +"va" + <mask>."
. emplate .
(Vietnamese) P Y
/T\MuLaP/Tralnlng "N6 la <mask>."
emplate

Table 4: Details of the datasets along with their tem-
plates and labels.
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Sample Size 1 2 4 8 Sample Size 1 2 4 8

SmSA (Indonesian) SmSA (Indonesian)

1 41.7 (2.1) 40.9 (6.5) 59.9(10.0) 58.6(5.6) PET 345(9.8) 39.8(7.5) 49.1(84) 53.0(7.0)

4 442 (7.4) 46.6(11.2) 58.0(8.8) 58.9(6.9) LAAV 453(9.9) 46.7(4.7) 61.1(7.6) 58.5(10.9)

8 4L1(103)  458(6.6)  594(03)  559(10.5) p-value 0.0093 01177  0.0172 0.3758

16 419(11.5) 439(8.5) 61.0(6.7) 57.6(10.0) Shopee Reviews (Tagalog)

24 442(103) 463(49) 6L1(6.0) 59.1(7.6) opee Reviews § lagalog

32 453(99) 46747  6L1(7.6) 585(10.9) PET 18.3(2.4)  206(1.9) 228(1.2) 24.0(1.8)
40 452(9.3) 467(41) 609(73) 583 (12.0) LAAV 255(5.0) 305(1.3) 31.6(3.7) 32.6(28)
Shopee Reviews (Tagalog) p-value 0.0080 0.0006 0.0027 0.0009

1 19121 266(1.1) 25747 30.6(.1) Wisesight sentiment (Thai)

4 229(3.6) 26.6(42) 29428 32.8(2.0) PET 23.8(44) 31.0(7.2) 345(65) 41.0(.5)

8 249@3.5) 28922 30737  329(2.6) LAAV 259(5.9) 31.5(7.6) 38.1(4.5) 42.1(5.8)
16 24.7 (3.0) 29.4 (2.6) 314 (3.5) 33.3(2.2) p-value 0.5285 0.8966 0.2134 0.3253

2‘2‘ ;:2 (: '(])) ;3; (i';) ;i; (g';) z; (6) (?81) Students’ Feedback (Vietnamese)

40 231 Eétgg 302 Elt2; 315 E3t5; 320 53:1; PET 493(13.3) 6072.1) 65.5(3.0) 68.7(28)
Wisesight sentiment (Thai) LAAV 53.6 (10.7) 61.7(3.8) 67.9(2.8) 69.5(1.9)

1 %049 BECH HIGH  HWIEH p-value 0.6499 07170 00396  0.4818

4 258(3.3) 29.9(8.8) 344(55) 42037

8 257(4.3) 341(7.8) 375(45) 413(5.5) Table 6: Macro F1 results with their standard deviations
16 259(48)  339(60)  364(60)  40.1(5.6) (in parentheses) tested on four datasets, along with p-
24 243(52) 343(5.0) 351(47) 419(6.1) . .

0 259(59) 315(7.6) 38145 42.1(58) values from significance paired t-test results between
40 259(5.8) 342(74) 38.0(5.6) 37.4(9.0) our method, LAAV, and the strongest baseline, PET.
Students’ Feedback (Vietnamese) Results that pass the significance paired t-tests with a
1 39.7(10.5) 507(85) 64.1(42) 647 (34) .

4 504(115) 550(44)  643(09) 684 (39) p-value < 0.05 are marked in bold.

8 478(115) 60.0(3.8) 656(3.0) 68.6(2.7)

16 492(12.5)  60.0(4.5) 67.0(33) 68.8(24)

24 503 (11.5)  62.0(34) 67935  69.1(1.7) Tp—

32 53.6(10.7) 61.7(3.8) 679(28)  69.5(L9) D Significance Tests

40 52.5(9.2) 61.5 (2.6) 68.1 (3.0) 69.2 (2.1)

Table 5: Macro-F1 results along with their standard de-
viation in the parentheses tested on four datasets when
using LAAV with a different number of tokens to repre-
sent each label varying from 1, 4, 8, 16, 24, 32, and 40.
The best results are marked in bold.

B Number of Representative Tokens (%)

In Table 5, we investigated the impact of varying
the number of representative tokens assigned to
each label, denoted as k, since it influences the over-
all accuracy of the verbalizer. Our findings show
a positive correlation between a higher number of
tokens used per label and an increase in Macro-
F1 score, with the optimal result at 32 tokens. As
a practical suggestion, when dealing with a new
dataset, we advise experimenting with a range of k
values, as different &£ values result in variations in
accuracy.

C Prompt Template Used for LLM-ICL

In Table 7, we adapted the template used in
prompted fine-tuning experiments in the "Instruc-
tion" section. Then, we used the same training
samples to construct in-context learning examples
in the "Example" section. Finally, we included test
samples in the "Question" section. Please note that
the order of the in-context learning (ICL) examples
will be random for every test sample.

Table 6 presents the results of the significance tests
(paired t-tests) between our method, LAAV, and
the strongest baseline, PET.

The results indicate that LAAV achieves sta-
tistically significant improvements in Macro F1
scores over PET in the SmSA and Shopee Reviews
datasets. However, in the Wisesight sentiment and
Students’ Feedback datasets, the Macro F1 scores
of LAAV and PET are similar, and the differences
are not statistically significant.

E Comparison on English Benchmark

While the main focus of this paper is on mid-to-
low resource languages, evaluating our approaches
against English benchmarks is beneficial. In this
section, we chose AG’s News (Zhang et al., 2015),
a news classification dataset with four classes:
world, sports, business, and technology. This
dataset serves as a benchmark in several baseline
models (Schick and Schiitze, 2021a; Schick et al.,
2020; Zhao et al., 2023). We conducted our experi-
ments using the same process described in Section
4 and used RoBERTa-base (Liu et al., 2019) for
its LM. Additionally, we employed Meta-Llama-3-
8B (Meta, 2024), an open-source LLM, for an ICL
baseline.

Table 8 presents the results of our method com-
pared to baselines on the AG’s News dataset. Our
approach, LAAV, consistently outperforms other
baselines. Specifically, in the 1-shot setting, our
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Original It was [MASK].
Template
LLM ###Instruction

Template | Classify the followingtexts into the following categories: [label]
###Example

[sample 1] + [template] + "? " + [label 1]
[sample 2] + [template] + "? " + [label 2]

} Random order

###Question

[test sample 1] + [template] +"? "

LLM ###nstruction | .

Template: | Swundaanuseluiifumnamiselil au’ "nate” "uan® "droa

Thai ###Example

(1-shot yiluduiuatheudaaavisafuanaiiuga? au

learning) | amwdawhlsifluaraiude? o
wmiuaialmasuduanudiuide? nate
#irqasniuiluamaiiude? uan
###Question

woa e P s
sudigusaan asnaaailuanuiuide?

Table 7: Details of the prompt template used for the
LLM, and its application to the Wisesight sentiment
dataset in a 1-shot setting. The same template was
translated and applied to other datasets and settings.

Sample Size 1 2 4 8
AG’s News (English)
Traditional FT ~ 52.6 (6.8) 72.1(2.8) 75.6(49) 81.7(2.4)

PET 66.9(10.5) 76.1(65) 79.1(5.1) 83.8(L.7)
WARPy 586(3.0) 639(7.6) 704(5.6) 754(3.1)
PETAL 44.0(163)  66.7(82) 68.1(72) 79.0(1.8)
AMuLaP 532(5.1) 63.6(78) 71.6(59) 78.3(2.6)
NPPrompt 44.7(309) 57.5(19.7) 79.9(2.1) 82.7(2.9)
LLM-ICL 653(0.8) 663(1.2) 64.9(1.2) 557(3.0)

LAAV (ours) 73.0 (3.9) 77.5(1.9) 81.1(1.2) 84.1(15)

Table 8: Macro F1 results along with their standard
deviations (in parentheses). The best results are marked
in bold.

model enhances Macro F1 scores by 6.1% com-
pared to the strongest baseline, PET. This demon-
strates that while our method primarily targets im-
provement in mid-to-low resource languages, it is
also promising in high-resource languages within
the few-shot classification scenario. However, it
is noteworthy that English datasets in general may
not inherently require few-shot learning due to the
abundance of available training examples.
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Abstract

Multiword Expressions (MWEs) make a good
case study for linguistic diversity due to their
idiosyncratic nature. Defining MWE canonical
forms as types, diversity may be measured
notably through disparity, based on pairwise
distances between types. To this aim, we
train static MWE-aware word embeddings for
verbal MWEs in 14 languages, and we show
interesting properties of these vector spaces.
We use these vector spaces to implement the
so-called functional diversity measure. We
apply this measure to the results of several
MWE identification systems. We find that,
although MWE vector spaces are meaningful at
a local scale, the disparity measure aggregating
them at a global scale strongly correlates
with the number of types, which questions its
usefulness in presence of simpler diversity
metrics such as variety. We make the vector
spaces we generated available.

Keywords: diversity, disparity, multiword
expression, vector space

1 Context of study

Multiword Expressions (MWESs) are characterized
by idiosyncracy, i.e. behavior specific to few indi-
viduals (Baldwin and Kim, 2010). They are thus
an interesting case of study for linguistic diversity.

Linguistic diversity has been formally modelled
mainly with respect to the variety of the existing hu-
man languages and the populations speaking them
(Joshi et al., 2020). The diversity of language ut-
terances has been much less often addressed. In
particular, with respect to MWEs, one may wonder
if a corpus or set of system predictions for MWEs
is diverse or not. Once items and types are de-
fined,! diversity may be studied through variety

'A type is a group of items with a shared identity; this re-
quires a choice relative to the research objective, but a default
choice would be individual MWE instances as items, and their
canonical form as types.

(i.e., how many types there are), balance (i.e., how
evenly distributed types are), and disparity (i.e.,
how disparate or fundamentally different types are),
as described by Morales et al. (2020). Recent work
has studied variety and balance in the case of the
PARSEME corpus of verbal MWEs (VMWEs),
specifically on the system predictions of the related
shared task (Lion-Bouton et al., 2022). Disparity
however has not been studied in this context.

In this study we bridge this gap by quantifying
disparity of the PARSEME shared task system pre-
dictions with a measure called functional diversity,
from ecology. Since disparity builds upon the un-
derlying definition of distance between types, we
construct VMWE-aware vector spaces (VS). We
choose static word embeddings since they proved
particularly efficient in type-oriented MWE tasks
such as compositionality degree prediction. We set
the following research questions:

R1 What are the properties of VMWE VSs con-
structed with state-of-the-art methods, across
many languages?

R2 Can these vector spaces be useful when quan-
tifying diversity and VMWEs, using formal
diversity measures?

Our ultimate aim is to test how useful disparity
can be to evaluate the quality of NLP resources
along dimensions which would be orthogonal to ef-
ficiency (assessed e.g. by F-measure or accuracy).

The paper is organised as follows. After dis-
cussing the quantification of diversity (§2), as well
as the related works (§3), we present our approach
(§4), discuss the generated VSs (§5), describe the
disparity function we use (§6), discuss system
diversities (§7), and conclude (§8).

2  Quantifying diversity

One may argue that, in NLP, many situations can
benefit from having a higher diversity, the main
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example being the quality of the training set for
its impact on system quality (Guo et al., 2023; Yu
et al., 2022). Thus diversity is often desirable and
there is a research objective of formally measuring
it. More precisely, there is an interest in measur-
ing the diversity of specific linguistic phenomena
in corpora. Diversity can be understood through
variety, balance, and disparity (Morales et al.,
2020; Lion-Bouton et al., 2022). To understand
these three aspects, let us consider the two follow-
ing examples that tackle specifically the diversity
of VMWEs.?

Example 1 “I just got of [1] the phone with Hai
and he told me how to make [2a] an adjustement
[2a] on a day to day basis [...] and P&L would still
somehow work out [3] because adjustments [2b]
would be made [2b].”, (typos from original text)

Example 2 “Does this mean that for June [...] we
should not do anything and just make adjustments
[1] on a going forward [2] basis (and assume ev-
erything will work out [3] at month end)?”

In these examples, items (i.e., individual in-
stances) are underlined. The first example contains
4 items, while the second example contains 3. How-
ever, items may be clustered into types based on
some shared identity, such as make [...] adjustment
‘to make an adjustment’ and adjustments [...] made
‘to make an adjustment’ in the first example. Both
examples thus contain 3 types: fo get off, to make
an adjustment, and to work out for the first exam-
ple, to make an adjustment, to go forward, and to
work out for the second example.

Diversity is measured on types. Variety concerns
itself with the number of types; as both examples
have 3 types, they are equally varied. Balance con-
cerns itself with the evenness in the distribution
of types; as the first example has a type with more
items than others, it is less balanced than the second
example in which every type has the same number
of items. Disparity concerns itself with the fun-
damental differences between types; as two types
are shared between the two examples (fo make an
adjustment and to work out), the question here is
which of fo get off and to go forward is more dif-
ferent (or, phrased otherwise, more distant) from
the shared types.

Variety, balance, and disparity are general dimen-
sions: a number of concrete measures exists for
each (Smith and Wilson, 1996; Chao et al., 2014).

“This is a small-scale demonstration, in practice diversity
would be computed on much larger datasets.
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Variety is often trivial, as it concerns itself with
the number of types, such as richness n (Lion-
Bouton et al., 2022) or species count n — 1 (Patil
and Taillie, 1982).

Balance often consists of entropies such as
Shannon-Weaver entropy

H=->) pilog, (p;) e
=1

where p; denotes the relative proportion of the ith
type. Parametric entropies, as described by Rényi
(1961), Patil and Taillie (1982), or Good (1953)
are also in use. Patil and Taillie entropy covers
species count (o« = —1), Shannon-Weaver entropy
(o = 0), and the Simpson index (o = 1). Good
entropy covers richness (o« = 0, 5 = 0), Shannon-
weaver entropy (o« = 1, 8 = 1), and the Simpson
dominance index (o = 2,3 = 0). Rényi entropy
is used to generate Hill (1973) numbers; given
n types, and a parametric entropy H,, the cor-
responding (standard) Hill number is the number
of types n that a perfectly evenly distributed pop-
ulation needs in order to have the same entropy
H, = H, (Rényi entropy if based on the original
work of Hill (1973), but Patil and Taillie (1982)
show it is also possible with their entropy). Hill
numbers are used a lot in ecology for reasons that
go beyond the scope of this paper; we invite inter-
ested readers to refer to Chao et al. (2014).
Disparity is the most complex of the triad, as
it often requires setting up a VS along with a
distance function between types. Disparity func-
tions include: Chao et al. entropy and Hill
number (Chao et al., 2014), Leinster-Cobbold en-
tropy and Hill number (Leinster and Cobbold,
2012), Ricotta-Szeidl entropy (Ricotta and Szeidl,
2006), Scheiner entropy and Hill number (Scheiner,
2012), functional dispersion (Laliberté and Leg-
endre, 2010), functional evenness, functional di-
vergence (Villéger et al., 2008), lexicographic
approach (Bossert et al., 2001), order-weighted
and proportion-weighted disparity (Stirling, 2007),
FAD or MFAD pairwise distances (Mouchet et al.,
2010). However, as this is an early work investigat-
ing the use of disparity in linguistics, we will select
one disparity function in dedicated section (§6).

3 Related works: MWE vector spaces

Distributional semantic models represent text units
as vectors of real numbers in a multidimensional



space. Vector representations for MWEs in par-
ticular can be obtained from word co-occurrence
matrices after dimensionality reduction (Schulte im
Walde et al., 2013) or neural networks trained by
self-supervision (Mikolov et al., 2013; Devlin et al.,
2019). In the latter case, the vectors, called em-
beddings, can be trained on the level of charac-
ters, words or documents, and can be static (no-
tably Word2Vec) or contextual (most often ob-
tained with transformers). Static MWE-aware word
embeddings (WEs), on the one hand, require a cor-
pus which is re-tokenized so that all occurrences
of MWEs (and of other phrases of interest) are
merged into single tokens (Salehi et al., 2015;
Cordeiro et al., 2019; Otani et al., 2020). Cross-
lingual embeddings can also be obtained by align-
ing monolingual MWE-aware static WEs (Otani
et al., 2020). A contextual embedding of an MWE,
on the other hand, can be obtained straightfor-
wardly from generic transformer models (trained
on a corpus with no MWE-aware tokenisation) by
combining the vectors for (sub)tokens occurring in
the MWE in a precise context (Nandakumar et al.,
2018; Kanclerz and Piasecki, 2022). This elimi-
nates the requirement of having identified MWEs
in advance in the training corpus. Nevertheless,
Hashempour and Villavicencio (2020) show that
merging MWEs into single tokens in the train cor-
pus enhances performances of in MWE-related
tasks, also with contextual embeddings.

One of the parameters for training MWE-aware
embeddings is the method used to identify MWEs
in the train corpus, prior to their fusion into single
tokens. In the simplest case, a handcrafted con-
trolled list of phrases (including MWEs), possibly
lemmatized, is straightforwardly matched against
the corpus.®> Most of the compositionality predic-
tion experiments cited below, as well as Salehi et al.
(2014) and Otani et al. (2020), use this technique.
The embeddings for MWEs are then available only
for the MWEs from the controlled list. In a more
elaborate case, a generic MWE identifier is used
to tag MWEs in a large raw corpus. In this case
precision may be preferred over recall by favoring
MWE:s seen in the training corpus.

Embeddings have been efficiently used in MWE-
specific NLP tasks, most notably in automatic pre-
diction of the degree of compositionality of a MWE.

3While such a method suffers from not being able to distin-
guish between literal/coincidental and idiomatic occurrences
of MWEs, this is a minor problem due to the very low fre-
quency of literal readings in general (Savary et al., 2019).

The hypothesis here is that this degree coincides
with the distance between the vector representing
the whole MWE and the combination of the vec-
tors of its components (or of its synonyms and
paraphrases). This principle was applied to 2-word
noun phrases (ivory tower) in English (Salehi et al.,
2015; Cordeiro et al., 2019), French and Portuguese
(Cordeiro et al., 2019). Verb-particle construc-
tions (set off) were also approached in this way
in English (Hakimi Parizi and Cook, 2018) and
in German (Ko6per and Schulte im Walde, 2017).
More recent work by Sarlak et al. (2023) on Per-
sian, a low-resourced language, extends this idea
to various VMWEs, which are harder to model
due to their morphosyntactic variability (Constant
et al., 2017). Static WEs for MWEs were also
successfully combined with embeddings represent-
ing hypernymy relations (Jana et al., 2019) and
multimodal text-image associations (K&per and
Schulte im Walde, 2017). Interestingly, "simple"
Word2Vec embeddings are reported by a number of
authors (Cordeiro et al., 2019; Nandakumar et al.,
2018; Sarlak et al., 2023) as outperforming more
elaborate contextual WEs in this precise task.

Another MWE-specific task is machine transla-
tion of MWEs. A MWE in the source language
can be translated by selecting the closest, in terms
of (static) cross-lingual WEs, target language word
or MWE. This technique proved efficient for 10
typologically different languages in (Otani et al.,
2020). But more recent MWE-specialized trans-
lation engines rely on transformers, fine-tuned on
parallel MWE datasets (Santing et al., 2022) or pre-
trained on monolingual idiom corpora (Baziotis
et al., 2023).

Yet another task, MWE disambiguation, consists
in distinguishing literal and idiomatic occurrences
of a potential idiomatic expression (PIE), like fo
take the cake ‘be the most remarkable of its kind’.
Systems were developed notably in English, Ger-
man, Portuguese, Galician and Japanese. While
static WEs proved useful (Ehren, 2017), contex-
tual WEs occurred more efficient (Hashempour
and Villavicencio, 2020).* Thus, recent best per-
forming methods rely on pre-trained transformer
models, either frozen or fine-tuned, to generate
contextual phrase or sentence embeddings prior to
binary classification (Kurfali and Ostling, 2020;
Fakharian and Cook, 2021; Madabushi et al., 2022;

*Interestingly, Hashempour and Villavicencio (2020) show
that Context2Vec representations obtained from LSTMs out-
perform those from BERT.
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Takahashi et al., 2022).

It is also worth noting that generic static em-
beddings (trained with no particular attention paid
to MWESs) proved useful to model the composi-
tional/literal meanings of MWEs in tasks such as
translating MWESs and collocations (Gamallo and
Garcia, 2019), detecting synonyms of terminologi-
cal MWEs (Hazem and Daille, 2018), and MWE
identification (Zeng and Bhat, 2021).

To sum up, while contextual representations of
MWE:s and their contexts outperform static WEs in
tasks focusing on MWE occurrences (disambigua-
tion, translation and identification), those concern-
ing types (compositionality prediction) seem to be
solved more efficiently with static MWEs.

4 Overview of our approach

We address the task of VMWE identification with
a novel perspective on evaluation: quantifying the
diversity of VMWE:s in annotated text. While Lion-
Bouton et al. (2022) address variety and balance
of annotated VMWESs, they do not cover disparity.
Here, we bridge this gap by using a disparity mea-
sure to assess how diverse the types of VMWEs
found in annotated text are. This requires a mea-
sure of distance between types, and we propose
to define it in terms of distance between VMWE
embeddings. Since the task is type-oriented, we
use static VMWE-aware word embeddings, as sug-
gested by the above SOA. To this aim:

1. We train state-of-the-art VMWE identifiers
on the latest version of the PARSEME cor-
pus (Savary et al., 2023) annotated for verbal
VMWESs in 14 languages.

2. We use these identifiers to annotate a large
raw multilingual corpus.

3. We re-tokenize the corpus so as to merge
VMWE:s into single tokens, and use it to train
Word2Vec embeddings in all 14 languages.
We examine interesting properties of the re-
sulting semantic spaces in selected languages.

4. We experiment with disparity measurement
and we find that disparity strongly correlates
with the number of types, which suggests that
disparity measures may be superfluous in pres-
ence of simpler and less computationally in-
tensive measures such as richness. This is an
interesting negative result allowing to simplify
diversity measurement, at least for VMWE an-
notations and distances modelled in VSs.

S Vector spaces

This section describes steps 1 through 3 of the
above overview (8§4).

5.1 Data and VMWE identifiers

The PARSEME corpus (Savary et al., 2023), used
in the eponym shared tasks, is a multilingual re-
source comprising 26 languages as of version 1.3.
It is focused on Verbal Multiword Expressions
(VMWESs) and assigns them categories.’

In edition 1.2, the PARSEME corpus covers 14
languages, with manually annotated VMWEs and
manually or automatically annotated lemmas and
morphosyntax. Additionally, for the same 14 lan-
guages, large companion corpora (called "raw cor-
pora") of 450GB in total, automatically annotated
for lemmas and morphosyntax (in the . conllu for-
mat) but not for VMWEs, were released in this
edition, with the objective of facilitating unsuper-
vised discovery of new VMWEs.

PARSEME also organised 3 shared tasks on auto-
matic identification of VMWEs. The latest edition
used the 1.2 version of the corpus. The systems
submitted to the PARSEME shared task 1.2 are
described by Ramisch et al. (2020). Their predic-
tions are also publicly available, which allows us
to calculate their diversity, as done later in Table 4.

Additionally, the two best-scoring systems of the
shared task 1.2, Seen2Seen (Pasquer et al., 2020)
and MTLB-STRUCT (Taslimipoor et al., 2020),
respectively 0.662 and 0.701 for F1, are publicly
available and we use them for the construction of
our VSs, after having retrained them on the ver-
sion 1.3 of the corpus (cf. §5.2). An interesting
aspect is that they have very different perspectives.
Seen2Seen is symbolic hence lightweight, uses
rules and filters, focuses only on VMWEs seen
in TRAIN and obtains rather good precision and
a lower recall. MTLB-STRUCT, conversely, has
a BERT-based architecture (Devlin et al., 2019),
has a high training and prediction cost, but tries to
generalize beyond the seen VMWEs and obtains
both descent precision and recall.

As a consequence, for data outside of the shared
task, MTLB-STRUCT annotates an arguably high
number of types (tens of thousands usually), while

SVID / verbal idioms, LVC / light verb construction, IRV /
inherently reflexive verbs, VPC / verb-particle construction,
MVC / multi-verb construction, ICV / inherently clitic verb
(specific to Italian), IAV / inherently adpositional verbs (ex-
perimental category). For examples, we invite readers to refer
to the aforementioned paper as well as official guidelines.
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Seen2Seen finds a much lower number of types
(often in the range of 1000-2000) but with higher
precision. Due to the complementarity of these two
systems, we will discuss the VSs generated from
their annotations (§5.3).

5.2 Protocol to generate vector spaces

As stated previously in Section 3, the literature
justifies the use of Word2Vec embeddings for the
vectorisation of MWE:s in type-oriented tasks. We
vectorise VMWEs as follows:

Training VMWE identifiers Seen2Seen is re-
trained on the PARSEME 1.3 corpus for all 14
languages, while MTLB-STRUCT, due to its high
training cost, is only retrained for Polish and
French. We shall focus on these two languages
in this study, as most systems were evaluated for
them, and native speakers are among the authors of
this paper.

Large corpus annotation Using Seen2Seen,
annotate data from PARSEME 1.2 "raw corpora"
(cf. §5.1) for all 14 languages. The outcome of
this process, for single word tokens and VMWE
tokens, is described in Table 1. For more detailed
statistics on class-wise VMWEs per language, see
Table A2 in the Appendix.® Additionally, we use
MTLB-STRUCT to annotate part of the Polish and
French "raw corpora"”, so as to have a sufficient
coverage of VMWEs in the diversity experiments
in Section 7.

Merge VMWE constituents Based on the sys-
tem’s annotation, recreate text in which VMWE
instances are merged into a single token. (a)
For each VMWE instance, lemmatise its to-
kens and sort them (based on UTF-8), which
ensures that various token orders map to the
same canonical form. In our case, we use lem-
mas already made available in the PARSEME 1.3
TRAIN and PARSEME 1.2 "raw corpora". (b)
Add a _MWE_ prefix. This yields for example
_MWE_le_mer_prendre for the VMWE prendre la
mer (lit. ‘take the sea’) ‘take to the sea’. Alterna-
tively, extend the prefix with the VMWE class, e.g.,
_MWE-IRV_se_trouver. This will be used in Fig-
ure A2 in Appendix. (¢) Remove from the text the
individual tokens that made up the VMWE, and
place the one-merged-token-VMWE at the aver-
age position of constituent tokens. For a VMWE
made of tokens at indices 48, 49, and 51, the re-

®As both Polish and Swedish had over 100GB of data and
that annotation is somewhat expensive, they were truncated to
about a quarter for each, equating to 40+GB for each.

lang | tokens lemmas form
DE | 188,230k 2,038k 2,267k
EL | 26,195k 1,200k 1,319k
EU | 21,268k 222k 403k
FR | 803,649k 5,551k 5,563k
GA | 34,211k 525k 550k
HE | 15,537k 209k 326k
HI | 74,366k 820k 888k
IT | 197,493k 1,579k 1,709k
PL | 486,735k 9,918k 10,992k
PT | 324,312k 4,423k 4,546k
RO | 12,680k 215k 277k
SV | 627,384k 12,358k 13,048k
TR | 20,171k 311k 655k
ZH | 67,235k 1,911k 1,912k
> | 2,899,473k 41,286k 44,461k
lang | instances canonical non-canonical
DE | 2,731k 1,881 14,712
EL | 99 2,146 16,751
EU | 496k 675 24,814
FR | 3,497k 1,724 27,874
GA | 222k 113 2,334
HE | 29k 556 3,480
HI | 652k 139 4,024
IT | 1,57% 1,515 27,308
PL | 3,640k 3,114 80,137
PT | 1,610k 2,424 46,380
RO | 212k 838 8,735
SV | 6,776k 1,028 10,541
TR | 481k 2,318 85,787
ZH | 1,260k 3,127 3,127
Y 23,289k 21,598 356,004

Table 1: Statistics about data used for the generation
of VSs. Upper table is tokens, lower table is VMWEs.
The entries VSs comprise are token forms and VMWE
canonical forms. Languages are abbreviated as follows:
DE = German, EL = Greek, EU = Basque, FR = French,
GA = Irish, HE = Hebrew, HI = Hindi, IT = Italian,
PL = Polish, PT = Portuguese, RO = Romanian, SV =
Swedish, TR = Turkish, ZH = Chinese.

sulting one-merged-token-VMWE is positioned
at index (48 + 49 + 51) /3 ~ 49.33 so before the
token initially at index 50. This allows us to handle
discontinuous VMWE:s.

Train the VSs Using the newly VMWE-merged
text, train a VS for each language using Word2Vec
(Mikolov et al., 2013).” This results in Seen2Seen-
based VSs with both single-word tokens and
VMWE tokens, precisely corresponding to the
source corpus described in Table 1. Henceforth,
we will refer to these VSs as V.Sg95. The result-

"The parameters used for training are: cbow=0, size=100,
window=10, negative=10, hs=0, iter=3, min-count=1. About
the number of dimensions (size=100), we tried both lower
(size=10) and higher (size=300) numbers of dimensions,
which yielded similar VSs. Both CBOW (cbow=1) and Skip-
Gram (cbow=0) have been tested; as Skip-Gram yielded PCAs
on which more information were present on the first dimen-
sions, we kept it. This may correspond to the findings in
the original Word2Vec article that Skip-Gram better encodes
semantic information (Mikolov et al., 2013).
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ing VS binaries are publicly available at http://
hdl.handle.net/11234/1-5528. Additionally,
we train in the same way, but using the MTLB-
STRUCT-annotated corpus, VSs for Polish and
French, henceforth called V Sp;7r.5.

As all members of these VSs are represented in
R, a function f : <Rd, Rd> — R may be used
to estimate the distance between VMWE tokens,
between single-word tokens, or between single-
word and VMWE tokens.

VMWE:s in the corpus have a Zipfian distribu-
tion, many occur rarely. This may result in under-
trained embeddings, but removing those with few
instances would eliminate most VMWEs, and set-
ting a threshold for a minimum number of instances
would be arbitrary. Therefore we keep all VMWEs
in our VSs, whatever their frequency.

5.3 VMWE vector spaces and their properties

In this section we analyse the properties of the VSs
generated in the preceding section to check if they
reasonably represent the single-word and VMWE
vocabulary.

Firstly, all the vectors for VMWEs may
not be of sufficient quality, possibly be-
cause a number of them only appear once
and thus are poorly represented. = However,
we see through nearest-neighbour distances in
V Syrrp (Table 2, French examples) that both
_MWE_bataille_mener for mener bataille ‘to lead
a battle’ and _MWE_aide_en_venir pour venir en
aide (lit. ‘to come in help’) ‘to help’ provide ex-
pected nearest neighbours (with the exception of
échapper ‘to escape’).

Original Translation || Similarity
_MWE_campagne_mener | to lead a (war) campaign || 0.737311
_MWE_guerre_mener to do war || 0.734716
_MWE_attaque_mener to lead (an) attack || 0.723792
_MWE_mener_offensive to lead (an) attack || 0.721456
_MWE_mener_révolte | to lead (an) insurrection || 0.708477
_MWE_porter_secours to provide assistance || 0.785825
_MWE_confiance_faire to trust || 0.774374
échapper to escape || 0.773320
_MWE_fort_main_préter to (physically) help || 0.741453
_MWE_tenir_téte | to stand up to (someone) || 0.737382

Table 2: Examples of most similar elements to VMWEs.
Respectively _MWE_bataille_mener (to lead a battle)
and _MWE_aide_en_venir (to come help).

One may also tackle the quality of VS through "A
is to B what C is to D" analogies in which given A,
B, and C we ask for D. Examples include "bateau is
to _MWE_escale_faire what train is to ...7" ("boat
is to make a boat stop what train is to ...?") in Ta-

Original Translation || Similarity

partira will leave || 0.602759

arrive arrives || 0.599007

_MWE _faire_étape to make a (train) stop || 0.587047
retourna returned || 0.585420

retourne returns || 0.579429

interviewé interviewed || 0.604981
_MWE_interview_réaliser to make an interview || 0.582795
présentateur (show) host || 0.554260
_MWE_enquéte_mener | to lead (an) investigation || 0.549344
interview (an) interview || 0.548068

Table 3: Examples of analogies in the form of "A is to B
what C is to D" for which the VS is queried for D. Re-
spectively "bateau is to _MWE_escale_faire what train
is to ...?" ("boat is to make a boat stop what train is to
...7") and "scientifique is to _MWE_expérience_mener
what journaliste is to ...7" ("scientist is to lead experi-
ment what journalist is to ...7").

ble 3 (French V .Sy, ). While similarity scores®

for analogy are lower than for nearest neighbours
and that desired VMWESs do not rank first, it is
fair to say that VMWE:s are reasonably well posi-
tioned in VS to represent their semantics. While
the above analyses only concern V .Sy, 5, we hy-
pothesise that they also apply to V' .Sgag due to the
resemblance of both VSs shown below. Thus, on
the perspective of the local neighbourhood of a
VMWE, semantics and related similarity scores
seem meaningful. This will be relevant in a later
part of the article.

We now proceed to a more holistic compara-
tive analysis of V' .Sgog and V Sy p. We see in
Figure 1 the Principal Component Analysis (PCA)
of VSs trained on data annotated by Seen2Seen
and MTLB-STRUCT for Polish. We first see that
token-wise, the VSs are very much similar, and
the first two Principal Components (respectively
on the horizontal and vertical axis of the plots)
encode similar amounts of information. VMWE
constituents (in green) belong to a specific region,
which Seen2Seen’s VMWESs seem to overlap with
a lot. We see that for V' Sgo5, VMWESs cluster
in a specific region, and their centroid (the dark
triangle) is far away from the centroid of stan-
dard tokens (the "+"); for V .Sy, g however the
VMWE-specific region is much wider and the cen-
troid of its VMWEs (the dark triangle) is very close
to that of standard tokens (the "+"). Interestingly,
Seen2Seen’s VMWEs in V Sy, g (the yellow tri-
angle is their centroid), remain distant from the
centroid of standard tokens (the "+"), which is con-
sistent with the position VMWEs are at in V' .Sgsg.

8Computed using cosine similarity, see EQUATION 8.
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It should be noted that > 80% of Seen2Seen’s
VMWEs are present in V Sy, 5, while < 10%
of MTLB-STRUCT’s VMWEs are present in
V Sg95 (which is understandable since Seen2Seen
is restricted to VMWEs from the PARSEME 1.3
TRAIN). For the Polish VSs from Figures 1 &
A2, 2.6% of MTLB-STRUCT’s VMWEs are in
V' Sg9g, and 90.5% of Seen2Seen’s VMWEs are in
VSurrs.

As we deal with VMWEs rather than MWEs of
all syntactic types (here called simply MWEs5), the
substantial distance between the VMWE centroid
and the centroid of all tokens raises the question of
whether the constant presence of a verb influences
the positioning of the VMWE in VS. Additional
centroids are thus displayed, and one can see that
constituents of VMWEs (large white and red cen-
troids), whether or not verbs, are closer to VMWEs
than to the average token (the "+") in V' Sgog. They
remain at a similar position in V.S 5.

MTLB-STRUCT’s VMWEs however are a lot
closer to standard tokens (the "+"); the precise rea-
son remains unanswered. A potential explanation
would be that specific VMWE classes may differ
in position in VS and as both systems do not anno-
tate classes with the same distribution it may cause
this behavior. However, differentiation of VMWEs
based on their class, as depicted in Figure A2 in
Appendix, shows that for either system no VMWE
class belongs to a specific region.

We see in Figures A3 & A4 in Appendix the dis-
tribution of distances between VMWE:s in Polish.
This normal-like shape can be described with the
average (u) and standard deviation (o), which do
not change substantially across languages and VSs;
we use cosine distance, which, defined on the range
[0-2], has distances that remain on the lower end
of the range. A possible explanation for this behav-
ior across multiple distance functions is the "curse
of dimensionality", the fact that "[tJwo randomly
selected points in a hypercube will have nearly the
same distance for larger n" (Képpen, 2000) where
n is the number of dimensions. Amongst the 14
tested languages, no substantial deviations from
these patterns were observed.

6 Disparity functions

We’ve tested multiple disparity functions from the
literature and the one we found to be most discrim-
inant, while not in its logic related to the number
of types, is the functional diversity proposed by

Chao et al. (2014). They present a generalisation
of Hill (1973) numbers for species diversity (cor-
responding to variety and balance only, as it does
not include distances between types), functional
diversity (relying on property-wise distances be-
tween types) and phylogenetic diversity (based on
distances in a tree, i.e., the evolution tree). As we
are interested specifically in the functional aspect
(species diversity does not cover disparity, and phy-
logenetic diversity is out of scope here), we shall
use their functional Hill number N "™ based on the
generalised entropy H "

1
H.\ 2
v = () @
1
n . a -«
e = | 3 < (722 ®
ij=1

in which n € N is the number of types, p; €
Q>0,<1 the relative proportion of the ith type, d;;
(€ Rx>p,<2 for cosine distance) the distance be-
tween the ith and the jth types, and oo € R the
order. ) € R plays a normalisation role

Q= dipip; )
ij=1

as the weighted average of distances. N and
HI'¢ have limiting cases

N{unc — bH i‘”‘c (5)
= £ ()7 o

i,j=1

with b representing the logarithmic base (e in our
case). These equations are parametric with «,
which conditions how strongly the proportion of a
pair of types should be considered; a = 0 entails
the same consideration for all pairs independently
of proportion, while an increasing « entails an in-
creasing relative consideration for high-frequency
pairs. This behavior may be visualised in Figure 1
of Chao et al. (2014). This will be relevant as we
will give results for multiple values of a.

For distance between types we shall use cosine
distance d;;

dij =1 —sij (M
m — =
Z VikVjk
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Figure 1: Principal Component Analysis (PCA) of VMWE VSs. Left is V Sgag. Right is V Sy 5. Polish data,
trained using PARSEME 1.2 "raw corpora"’s first four files (= 6GB of *.cupt data). Blue for standard tokens.
Green for VMWE constituents. Orange for VMWE:s. Individual shapes for centroids; (1) small means standard
tokens, large means VMWE:s, (2) circles for all forms or lemmas, (3) triangles for verbs, (4) stars for non-verbs, (5)
white for forms, red for lemmas. "+" is the centroid of tokens not belonging to VMWE:s, the dark triangle is the
centroid of VMWEs, and "X" is the centroid of tokens belonging to at least one VMWE. The yellow triangle is
Seen2Seen’s VMWEs in V' Sgo5. Visualisation zoomed (some outliers are thus not visible).

where ¥j; is the vector of the ith type.

7 Results and discussion

We use the functional diversity measure from (2)
and (5) to estimate the disparity of VMWE identi-
fication systems from the PARSEME shared task
1.2. Like in (Lion-Bouton et al., 2022), we estimate
disparity of true positives only. We focus on Polish
and we use V .Sy, B rather than V' Sgog because
we need vectors for all or most VMWEs identified
by all the systems.’

Table 4 lists the scores for N with o €
{0,1,2}. As N js a disparity-balance hybrid,
we provide information about Zipfian parameters;
s represents the curvature of the distribution, at 0 it
means a perfectly even distribution and an increas-
ing s means an increasingly uneven distribution. n
corresponds to the number of types. The frequency
of a type with rank z is estimated using

n -1

Zsn () =a7° er

=1

©))

which equates that of Lion-Bouton et al. (2022). To
obtain s from an existing distribution, we minimise
the mean squared error in a regression. We found

?See the high inter-annotator agreement in Table A1.

that across systems, the values of s are quite similar
[0.608-0.633], while there are larger differences in
n. To gain insights in the idea of Zipfian parameters
such as curvature (s), see Figure Al in Appendix.

To ensure that annotations of a specific system
are not substantially different from that of other
systems in terms of raw distances between types
(on a macroscopic scale), we also provide the mean
waist and standard deviation o4 of the distance
matrix.

We note that Zipfian curvature (s) and distance
matrix properties (uqist and ogis¢) are stable across
systems. Therefore, the outcome of formula (2)
or (5) can grow in only two cases: (i) the system
system recognizes more types (n grows), (ii) the
system more frequently annotates types which tend
to be distant from other types (so that d;jp;p; grow).
We claim that (ii) has few influence on disparity.
This is because (§6), with a = 0, all d;; are con-
sidered equally, no matter p;p;, while with an in-
creasing «, the most frequent pairs of types are
increasingly favoured, to the detriment of least fre-
quent pairs of types. If (ii) dominantly mattered,
we would expect different values of « to give dif-
ferent rankings of diversity. But this not the case:
we see that the rankings for N with different o
in Table 4 remain the same. Thus, the reaction of
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System #AS #DT | s fdiss  Odise | NIme NTun¢ o pyfune
ERMI 840 29 [0.633 359 | 0.354 0.110 | 3452 203.2 114.0
MTLB-STRUCT | 981 33 | 0.614 450 | 0.356 0.112 | 431.8 260.5 146.6
Seen2Seen 909 4 |0.608 381 |0.367 0.110 | 370.1 2254 1323
Seen2Unseen | 936 8 | 0.608 410 | 0.361 0.110 | 3963 241.4 140.0
TRAVIS-mono | 1021 41 | 0.609 481 | 0.347 0.113 | 459.1 2799 157.6
TRAVIS-multi | 968 39 | 0.615 440 | 0.353 0.112 | 421.7 2542 1432

Table 4: System diversity scores. Polish data. Column-wise, underline for minimum value, bold for maximum value.
AS for active sentences (sentences in which at least one true positive VMWE is present), DT for discarded types due
to no available vector prior to filtering for true positives. s for Zipfian curvature, and n for the number of types, for
their distribution. f4;s¢ and o4;; for the mean and standard deviation of the distance matrix, i.e., the n X n matrix
of distances between types (VMWEs). Diversities scores N from Chao et al. (2014). Other disparity functions
may be seen in Tables A3 through A28, for Polish and French.

diversity is here essentially based on the number of
types n.

8 Conclusion

We have proposed methods to quantify semantic
distances among VMWEs and single words, via
VSs. On this basis we performed experiments in
evaluating the task of VMWE identification along
a novel dimension: disparity of the systems’ re-
sults. Due to huge computational costs of these
experiments, not all possible scenarios were im-
plemented. Namely, V .Sy, was necessary to
have a large coverage of VMWESs used in disparity
experiments. But V.S, p was trained for Polish
and French only, due to its high computational cost.
To mitigate this, V' Sgog were trained (with a much
lower cost) for 14 languages. Similarities between
V Sy and V Sgog on the one hand, and similar-
ities between V Sgog for various languages on the
other hand, allow us to hypothesise that the conclu-
sions from the diversity experiments probably also
apply to languages other than Polish and French.

Thus, we may provide the following answers to
our initial research questions R1 and R2. Firstly,
across various languages, VMWEs are sensibly
positioned in the VSs relative to standard tokens
as well as VMWE constituents. Similarity and
analogy testing reveals such VSs have reasonable
quality VMWE-wise. Pairwise distances between
VMWE:s display normal-like behavior.

Secondly, using formal disparity measures on
these VMWEs does not allow for sensible distinc-
tions. There appears to be no link between joint
probability and distance, and as distances are near-
equal in high-dimension VSs, disparity in this con-
text is non-discriminant and strongly linked to the

number of types n. This questions its usefulness
in presence of simpler diversity metrics such as
variety.

9 Limitations

This study makes use of automatic VMWE annota-
tion, so while we made local tests of the quality of
the VSs, we cannot assert their quality globally.

This study limits itself to Verbal Multiword Ex-
pressions (VMWESs), which is a narrow subset of
all points in VS here (considering most points are
standard tokens). As curse of dimensionality is ag-
nostic of the phenomenon, the issues we faced, with
a normal distribution of distances, may also apply
to standard tokens, but the article does not explic-
itly show it. Also, the specific focus on VMWEs
rather than all MWESs, due to available resources,
means there could be VS properties that exist in
non-verbal MWESs and that therefore we did not
see here.

This study also does not mention issues with re-
gard to the tractability, i.e., whether disparity func-
tions can be computed with reasonable resources,
as it is not the main focus of the study. In a set
with 7 types, there are n? distances to compute.
For n € [1000 — 2000], as is often the case for
Seen2Seen, it remains lightweight, but for systems
that annotate tens of thousands of types (or even
hundreds of thousands, or millions, if we select for
example standard tokens as types), it very quickly
becomes untractable.
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A B C D E F
A | 1.00 074 071 067 074 074
B|074 100 080 077 084 0.88
c 071 08 100 089 080 0.79
D| 067 077 089 100 076 0.76
E| 074 084 080 076 100 0.85
F| 074 088 079 076 085 1.00
| 077 084 083 081 083 083

Table Al: Inter-annotator agreement between systems (Polish data). Column-wise, underline for minimum value,
bold for maximum value (outside the trace). Metric: Cohen’s Kappa, token-wise. Performed only on verbs, as it is
VMWE:s we study, and that taking all tokens would artificially create a high agreement. A: ERMI.closed, B: MTLB-
STRUCT.open, C: Seen2Seen.closed, D: Seen2Unseen.open, E: TRAVIS-mono.open, F: TRAVIS-multi.open.

Zipfian distributions Z; ,, ()

—+— 5=0.000,n =20
—%— 5=0500,n =20
0.41 —— 5=1.000,n =20
—— 5=1.500,n=20

0.1+

0.0+

Figure Al: Examples of Zipfian distributions Z; ,, (x) = x’s(zz;l i=%)~L1. n € N5 denotes the number of types
in the distribution. s € R>( denotes the curvature: at s = 0 the distribution is perfectly flat, while it becomes
increasingly curved (or uneven) with an increasing s. « € Ny <, denotes the "rank" of the type, i.e., the first, the
second, etc.

Lang. | TAV | IRV LVC MVC | VID VPC P
cause full full | semi

DE 0 181 16 171 0 571 877 65 1881
EL 0 1 69 | 1341 5 694 36 0 2146
EU 0 0 43 453 0 179 0 0 675
FR 0 500 59 686 5 474 0 0 1724
GA 27 0 18 41 0 14 5 8 113
HE 0 0 55 274 0 206 21 0 556
HI 0 0 7 98 27 7 0 0 139
1T 90 227 80 278 13 747 62 3 1500
PL 0 | 1030 234 | 1354 0 496 0 0 3114
PT 0 318 74 | 1544 6 482 0 0 2424
RO 446 239 6 26 0 121 0 0 838
SV 0 59 3 145 0 154 416 251 1028
TR 0 0 0 978 1| 1339 0 0 2318
ZH 0 0 83 548 1127 107 0| 1262 3127
PN 563 | 2555 747 | 7937 1184 | 5591 | 1417 | 1589 | 21583

Table A2: Detailed statistics about VMWE entries (canonical forms) in vector spaces, per VMWE class (language-
specific classes excluded). This denotes that both languages and VMWE classes are unbalanced. It should also be
noted that some VMWE classes do not exist in some languages, which is why some cells are at zero.
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Figure A2: Vector space according to VMWE classes in Polish. Left: V' .Sg2g. Right: V Sy, 5. Red dots for to
the specific VMWE type under study. Testing whether some VMWE classes have a special position in vector
space is necessary as different systems may annotate VMWE classes with different proportions, and that this may
influence disparity scores. We here see that no VMWE class has a clearly delimited region. Therefore, the tendency
of systems to favour some VMWE classes is unlikely to have a substantial impact on disparity scores.
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Figure A3: Distance functions and their distributions (first set). Distances between Polish VMWEs. p for mean, o
for standard deviation. We see that functions have a near-normal distribution.
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Figure A4: Distance functions and their distributions (second set). Distances between Polish VMWEs. p for mean,
o for standard deviation. We see that functions have a near-normal distribution.
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System #AS #DT s n Udist  Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 4.562e+04 1.580e+04 4.975e+03
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 7.205e+04  2.622e+04  8.308e+03
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 5.320e+04 1.974e+04  6.800e+03
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 6.067e+04 2.251e+04 7.571e+03
TRAVIS-mono | 1021 41 0.609 481 | 0.347 0.113 | 8.026e+04 2.982e+04 9.462e+03
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 6.843e+04 2.486e+04 7.895e+03

Table A3: Scores for diversity function: Chao et

al. (2014) Functional Diversity (Polish).

System #AS #DT s n Udist Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 3.452e+02 2.032e+02  1.140e+02
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 4.318¢+02 2.605e+02 1.466e+02
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 3.701e+02  2.254e+02  1.323e+02
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 3.963e+02 2.414e+02  1.400e+02
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 4.591e+02 2.799e+02 1.576e+02
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 4.217e+02 2.542e+02 1.432e+02

Table A4: Scores for diversity function: Chao et al. (2014) Functional Hill Number (Polish).

System #AS #DT S n dist Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 2.147e-01 2.147e-01 2.147e-01
MTLB-STRUCT | 981 33 0.614 450 | 0356 0.112 | 2.171e-01  2.171e-01  2.171e-01
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 2.182¢-01 2.182e-01 2.182e-01
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 2.168e-01 2.168e-01  2.168e-01
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 2.136e-01 2.136e-01 2.136e-01
TRAVIS-multi 968 39 0.615 440 | 0353 0.112 | 2.161e-01 2.161e-01 2.161e-01

Table AS5: Scores for diversity function: Laliberté and Legendre (2010) Functional Dispersion (Polish).

System #AS #DT S n Ldist Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0354 0.110 | 8.980e-01 8.980e-01 8.980e-01
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 8.928e-01 8.928e-01  8.928e-01
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 8.926e-01 8.926e-01 8.926e-01
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 8.919e-01 8.919¢-01 8.919¢-01
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 8.885e-01 8.885e-01  8.885e-01
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 8.940e-01 8.940e-01  8.940e-01

Table A6: Scores for diversity function:

general centroid).

Villéger et al.

(2008) Functional Divergence (Polish; modified: use of

System #AS #DT S n Udist Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0354 0.110 | 7.712e-01  7.712e-01  7.712¢-01
MTLB-STRUCT | 981 33 0.614 450 | 0356 0.112 | 7.724e-01 7.724e-01  7.724e-01
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 7.720e-01  7.720e-01  7.720e-01
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 7.771e-01 7.771e-01 7.771e-01
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 7.669¢-01 7.669e-01 7.669¢-01
TRAVIS-multi 968 39 0.615 440 | 0353 0.112 | 7.645e-01 7.645e-01 7.645e-01

Table A7: Scores for diversity function: Villéger et al. (2008) Functional Evenness (Polish).

System #AS #DT S n dist Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 6.507e+00 6.130e-01  -5.263e+00
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 6.730e+00 6.095e-01  -5.491e+00
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 6.559¢e+00 6.073e-01  -5.330e+00
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 6.636e+00 6.095e-01  -5.400e+00
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 6.804e+00 6.151e-01 -5.551e+00
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 6.710e+00 6.110e-01  -5.467e+00

Table A8: Scores for diversity function: Leinster and Cobbold (2012) Diversity (Polish).
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System #AS #DT s n Udist  Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 6.698e+02 1.846e+00 5.181e-03
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 8.376e+02  1.839e+00  4.122e-03
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 7.054e+02 1.835e+00 4.844e-03
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 7.619e+02  1.840e+00 4.518e-03
TRAVIS-mono | 1021 41 0.609 481 | 0.347 0.113 | 9.017e+02 1.850e+00 3.884e-03
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 8.203e+02  1.842e+00  4.223e-03

Table A9: Scores for diversity function: Leinster and Cobbold (2012) Hill Number (Polish).

System #AS #DT S n Udist Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 7.294e+01  7.294e+01  7.294e+01
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 8.713e+01 8.713e+01  8.713e+01
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 7.975e+01 7.975e+01 7.975e+01
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 8.320e+01  8.320e+01  8.320e+01
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 9.038¢+01 9.038¢+01 9.038e+01
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 8.552e+01 8.552e+01  8.552e+01

Table A10: Scores for diversity function: Bossert et al. (2001) Lexicographic Approach (Polish).

System #AS #DT s n Udist  Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0354 0.110 | 3.549e-01 3.549e-01 3.549e-01
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 3.566e-01 3.566e-01 3.566e-01
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 3.675e-01 3.675e-01 3.675e-01
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 3.618e-01 3.618e-01 3.618e-01
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 3.476e-01 3.476e-01 3.476e-01
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 3.543e-01 3.543e-01 3.543e-01

Table A11: Scores for diversity function:

Mouchet et al.

(2010) Pairwise Distances (Polish; modified: normalised).

System #AS #DT S n Udist Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 6.329¢-01 5.012e-01  3.828e-01
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 6.430e-01 5.039¢-01 3.864e-01
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 6.483e-01 5.086e-01 3.885e-01
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 6.425e-01 5.043e-01  3.863e-01
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 6.285e-01 4.940e-01  3.808e-01
TRAVIS-multi 968 39 0.615 440 | 0353 0.112 | 6.385¢-01 5.016e-01  3.849e-01

Table A12: Scores for diversity function

: Ricotta and Szeidl (2006) Diversity (Polish).

System #AS #DT s n Wdist oagist | =0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 inf 1.537e-01  1.034e+00
MTLB-STRUCT | 981 33 0.614 450 | 0356 0.112 inf 3.482¢-01 1.116e+00
Seen2Seen 909 4 0.608 381 | 0.367 0.110 inf 1.074e-14  1.000e+00
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 inf 5.847¢-15  1.000e+00
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 inf 7.779e-07  1.000e+00
TRAVIS-multi 968 39 0.615 440 | 0353 0.112 inf 1.364e-01  1.031e+00

Table A13: Scores for diversity function: Scheiner (2012) Functional Diversity (Polish).

System #AS #DT s n Udist  Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 3.590e+02 1.166e+00 1.068e+00
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 4.500e+02 1.417e+00 1.245e+00
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 3.810e+02  1.000e+00  1.000e+00
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 4.100e+02  1.000e+00  1.000e+00
TRAVIS-mono | 1021 41 0.609 481 | 0.347 0.113 | 4.810e+02 1.000e+00  1.000e+00
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 4.400e+02 1.146e+00 1.063e+00

Table A14: Scores for diversity function: Scheiner (2012) Functional Hill Number (Polish).

System #AS #DT S n Udist Odist a=0 a=1 a=2
ERMI 840 29 0.633 359 | 0.354 0.110 | 1.285e+05 4.562e+04  1.769¢+04
MTLB-STRUCT | 981 33 0.614 450 | 0.356 0.112 | 2.020e+05 7.205e+04 2.819e+04
Seen2Seen 909 4 0.608 381 | 0.367 0.110 | 1.448e+05 5.320e+04 2.124e+04
Seen2Unseen 936 8 0.608 410 | 0.361 0.110 | 1.677e+05 6.067e+04 2.391e+04
TRAVIS-mono 1021 41 0.609 481 | 0.347 0.113 | 2.309¢+05 8.026e+04 3.082e+04
TRAVIS-multi 968 39 0.615 440 | 0.353 0.112 | 1.932¢+05 6.843e+04 2.664e+04

Table A15: Scores for diversity function: Stirling (2007) Diversity (Polish, 5 = 1).
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System #AS #DT s n Udist  Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 6.878e+04 2.208e+04  4.870e+03
FipsCo 822 66 0.647 396 | 0.375 0.121 | 5.879e+04 2.408e+04 7.007e+03
HMSid 680 37 0.665 367 | 0.386 0.113 | 5.200e+04 2.108e+04 5.760e+03
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 1.005e+05 3.312e+04 6.931e+03
Seen2Seen 898 15 0.693 397 | 0413 0.113 | 6.517e+04 2.139e+04  4.984e+03
Seen2Unseen 957 30 0.690 447 | 0.404 0.117 | 8.072e+04 2.679e+04  5.994e+03
TRAVIS-mono | 1027 49 0.682 526 | 0.385 0.117 | 1.064e+05 3.525e+04 7.424e+03
TRAVIS-multi 942 31 0.692 469 | 0.396 0.114 | 8.713e+04 2.767e+04 5.815e+03

Table A16: Scores for diversity function: Chao et al. (2014) Functional Diversity (French).

System #AS #DT S n Udist Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 4.127e+02 2.338e+02  1.098e+02
FipsCo 822 66 0.647 396 | 0.375 0.121 | 3.849¢+02 2.463e+02 1.329e+02
HMSid 680 37 0.665 367 | 0.386 0.113 | 3.596e+02 2.290e+02 1.197e+02
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 4.960e+02 2.847e+02 1.302e+02
Seen2Seen 898 15 0.693 397 | 0.413 0.113 | 3.943e+02 2.259e+02  1.090e+02
Seen2Unseen 957 30 0.690 447 | 0404 0.117 | 4.410e+02 2.540e+02 1.202e+02
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 5.114e+02 2.944e+02 1.351e+02
TRAVIS-multi 942 31 0.692 469 | 0.396 0.114 | 4.602¢+02 2.594e+02 1.189e+02

Table A17: Scores for diversity function: Chao et al. (2014) Functional Hill Number (French).

System #AS #DT S n Wdist Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 2.282e-01 2.282e-01  2.282e-01
FipsCo 822 66 0.647 396 | 0.375 0.121 | 2.240e-01  2.240e-01  2.240e-01
HMSid 680 37 0.665 367 | 0.386 0.113 | 2.269¢-01 2.269e-01  2.269e-01
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 2.311e-01 2.311e-01 2.311e-01
Seen2Seen 898 15 0.693 397 | 0.413 0.113 | 2.379¢-01 2.379e-01 2.379e-01
Seen2Unseen 957 30 0.690 447 | 0404 0.117 | 2.353e-01 2.353e-01 2.353e-01
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 2.300e-01 2.300e-01  2.300e-01
TRAVIS-multi 942 31 0.692 469 | 0.396 0.114 | 2.329¢-01 2.329e-01  2.329¢-01

Table A18: Scores for diversity function: Laliberté and Legendre (2010) Functional Dispersion (French).

System #AS #DT s n Udist  Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 9.099¢-01  9.099¢-01  9.099e-01
FipsCo 822 66 0.647 396 | 0.375 0.121 | 8.885e-01 8.885e-01  8.885e-01
HMSid 680 37 0.665 367 | 0.386 0.113 | 8.913e-01 8.913e-01 8.913e-01
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 9.127e-01  9.127e-01  9.127e-01
Seen2Seen 898 15 0.693 397 | 0413 0.113 | 9.161e-01 9.161e-01 9.161e-01
Seen2Unseen 957 30 0.690 447 | 0.404 0.117 | 9.149e-01  9.149¢-01  9.149¢-01
TRAVIS-mono | 1027 49 0.682 526 | 0.385 0.117 | 9.132e-01  9.132e-01  9.132e-01
TRAVIS-multi 942 31 0.692 469 | 0.396 0.114 | 9.156e-01  9.156e-01  9.156e-01

Table A19: Scores for diversity function:

general centroid).

Villéger et al. (2008) Functional Divergence (French; modified: use of

System #AS #DT S n dist Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 7.887e-01 7.887e-01 7.887e-01
FipsCo 822 66 0.647 396 | 0.375 0.121 | 7.670e-01 7.670e-01 7.670e-01
HMSid 680 37 0.665 367 | 0.386 0.113 | 7.956e-01 7.956e-01 7.956e-01
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 8.00d4e-01 8.004e-01  8.004e-01
Seen2Seen 898 15 0.693 397 | 0413 0.113 | 7.875e-01 7.875e-01 7.875e-01
Seen2Unseen 957 30 0.690 447 | 0.404 0.117 | 7.918e-01 7.918e-01 7.918e-01
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 7.934e-01 7.934e-01 7.934e-01
TRAVIS-multi 942 31 0.692 469 | 0396 0.114 | 7.969e-01 7.969¢-01 7.969¢-01

Table A20: Scores for diversity function: Villéger et al. (2008) Functional Evenness (French).
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System #AS #DT s n Udist  Odist a=0 a=1 a=2

ERMI 812 36 0.697 420 | 0.390 0.116 | 6.636e+00 5.913e-01  -5.448e+00
FipsCo 822 66 0.647 396 | 0.375 0.121 | 6.590e+00 5.983e-01 -5.378e+00
HMSid 680 37 0.665 367 | 0.386 0.113 | 6.505e+00 5.932e-01  -5.309e¢+00
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 6.822e+00 5.867e-01  -5.639e+00
Seen2Seen 898 15 0.693 397 | 0.413 0.113 | 6.560e+00 5.761e-01 -5.411e+00

Seen2Unseen 957 30 0.690 447 | 0404 0.117 | 6.686e+00 5.801e-01  -5.523e+00
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 6.863e+00 5.885e-01  -5.672e+00
TRAVIS-multi 942 31 0.692 469 | 0.396 0.114 | 6.740e+00 5.840e-01  -5.565e+00

Table A21: Scores for diversity function: Leinster and Cobbold (2012) Diversity (French).

System #AS #DT s n Hdist Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 7.623e+02 1.806e+00 4.304e-03
FipsCo 822 66 0.647 396 | 0.375 0.121 | 7.274e+02 1.819¢+00 4.618¢-03
HMSid 680 37 0.665 367 | 0.386 0.113 | 6.688e+02 1.810e+00 4.946e-03
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 9.180e+02  1.798e+00  3.557¢-03
Seen2Seen 898 15 0.693 397 | 0413 0.113 | 7.065e+02 1.779e+00 4.467e-03
Seen2Unseen 957 30 0.690 447 | 0.404 0.117 | 8.013e+02 1.786e+00  3.994¢-03
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 9.561e+02 1.801e+00 3.442e-03
TRAVIS-multi 942 31 0.692 469 | 0396 0.114 | 8.454e+02 1.793e+00 3.829¢-03

Table A22: Scores for diversity function: Leinster and Cobbold (2012) Hill Number (French).

System #AS #DT s n dist  Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 8.692e+01  8.692e+01  8.692e+01
FipsCo 822 66 0.647 396 | 0.375 0.121 | 7.812e+01 7.812e+01  7.812e+01
HMSid 680 37 0.665 367 | 0.386 0.113 | 7.662e+01 7.662e+01  7.662e+01
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 1.041e+02 1.041e+02  1.041e+02
Seen2Seen 898 15 0.693 397 | 0.413 0.113 | 8.856e+01 8.856e+01  8.856e+01
Seen2Unseen 957 30 0.690 447 | 0.404 0.117 | 9.569e+01 9.569e+01  9.569e+01
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 1.062e+02 1.062¢+02 1.062¢e+02
TRAVIS-multi 942 31 0.692 469 | 0.396 0.114 | 9.785e+01  9.785e+01  9.785e+01

Table A23: Scores for diversity function: Bossert et al. (2001) Lexicographic Approach (French).

System #AS #DT S n Udist  Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 3.908¢e-01 3.908e-01 3.908e-01
FipsCo 822 66 0.647 396 | 0.375 0.121 | 3.758e-01 3.758e-01 3.758e-01
HMSid 680 37 0.665 367 | 0.386 0.113 | 3.871e-01 3.871e-01 3.871e-01
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 3.918e-01 3.918e-01 3.918e-01
Seen2Seen 898 15 0.693 397 | 0.413 0.113 | 4.145e-01 4.145¢-01 4.145e-01
Seen2Unseen 957 30 0.690 447 | 0404 0.117 | 4.049¢-01 4.049e-01  4.049e-01
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 3.853e-01 3.853e-01 3.853e-01
TRAVIS-multi 942 31 0.692 469 | 0.396 0.114 | 3.969e-01 3.969e-01 3.969e-01

Table A24: Scores for diversity function: Mouchet et al. (2010) Pairwise Distances (French; modified: normalised).

System #AS #DT S n Udist Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 6.944e-01 5.391e-01  4.039e-01
FipsCo 822 66 0.647 396 | 0.375 0.121 | 6.757e-01 5.243e-01  3.969e-01
HMSid 680 37 0.665 367 | 0.386 0.113 | 6.887e-01 5.344e-01 4.021e-01
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 7.078e-01 5.443e-01 4.086e-01
Seen2Seen 898 15 0.693 397 | 0.413 0.113 | 7.366e-01 5.649¢-01 4.191e-01
Seen2Unseen 957 30 0.690 447 | 0.404 0.117 | 7.264e-01 5.567¢-01 4.151e-01
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 7.023e-01 5.407e-01  4.068e-01
TRAVIS-multi 942 31 0.692 469 | 0396 0.114 | 7.149e-01 5.502¢-01 4.114e-01

Table A25: Scores for diversity function: Ricotta and Szeidl (2006) Diversity (French).
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System #AS #DT s n Ldist oagist | =0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 inf 1.533e-01  1.031e+00
FipsCo 822 66 0.647 396 | 0.375 0.121 inf 6.586e-19  1.000e+00
HMSid 680 37 0.665 367 | 0.386 0.113 inf 6.189¢-01  1.320e+00
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 inf 7.466e-03  1.001e+00
Seen2Seen 898 15 0.693 397 | 0.413 0.113 inf 2.308¢-09  1.000e+00
Seen2Unseen 957 30 0.690 447 | 0.404 0.117 inf 7.466e-03  1.001e+00
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 inf 1.757e-04  1.000e+00
TRAVIS-multi 942 31 0.692 469 | 0396 0.114 inf 8.989¢-08  1.000e+00

Table A26: Scores for diversity function: Scheiner (2012) Functional Diversity (French).

System #AS #DT s n dist  Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0390 0.116 | 4.200e+02 1.166e+00  1.062e+00
FipsCo 822 66 0.647 396 | 0.375 0.121 | 3.960e+02  1.000e+00  1.000e+00
HMSid 680 37 0.665 367 | 0.386 0.113 | 3.670e+02 1.857¢+00 1.741e+00
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 5.070e+02  1.007e+00  1.002e+00
Seen2Seen 898 15 0.693 397 | 0.413 0.113 | 3.970e+02 1.000e+00  1.000e+00
Seen2Unseen 957 30 0.690 447 | 0404 0.117 | 4.470e+02 1.007e+00  1.002e+00
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 5.260e+02 1.000e+00  1.000e+00
TRAVIS-multi 942 31 0.692 469 | 0396 0.114 | 4.690e+02  1.000e+00  1.000e+00

Table A27: Scores for diversity function: Scheiner (2012) Functional Hill Number (French).

System #AS #DT s n WUdist Odist a=0 a=1 a=2
ERMI 812 36 0.697 420 | 0.390 0.116 | 1.760e+05 6.878e¢+04  2.917e+04
FipsCo 822 66 0.647 396 | 0.375 0.121 | 1.564e+05 5.879e+04  2.434e+04
HMSid 680 37 0.665 367 | 0386 0.113 | 1.343e+05 5.200e+04  2.179e+04
MTLB-STRUCT | 964 34 0.685 507 | 0.391 0.116 | 2.565e+05 1.005e+05 4.274e+04
Seen2Seen 898 15 0.693 397 | 0.413 0.113 | 1.572e+05 6.517e+04 2.896e+04
Seen2Unseen 957 30 0.690 447 | 0404 0.117 | 1.994e+05 8.072e+04  3.536e+04
TRAVIS-mono 1027 49 0.682 526 | 0.385 0.117 | 2.762e+05 1.064e+05 4.469¢+04
TRAVIS-multi 942 31 0.692 469 | 0396 0.114 | 2.195e+05 8.713e+04  3.736e+04

Table A28: Scores for diversity function: Stirling (2007) Diversity (French, 5 = 1).
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Abstract

Any report frames issues to favor a particular
interpretation by highlighting or excluding cer-
tain aspects of a story. Despite the widespread
use of framing in disinformation, framing prop-
erties and detection methods remain underex-
plored outside the English-speaking world. We
explore how multilingual framing of the same
issue differs systematically. We use eight years
of Russia-backed disinformation campaigns,
spanning 8k news articles in 4 languages tar-
geting 15 countries. We find that disinforma-
tion campaigns consistently and intentionally
favor specific framing, depending on the tar-
get language of the audience. We further dis-
cover how Russian-language articles consis-
tently highlight selected frames depending on
the region of the media coverage. We find that
the two most prominent models for automatic
frame analysis underperform and show high
disagreement, highlighting the need for further
research.

1 Introduction

Framing is a phenomenon grounded in political
and social sciences, which specifies how specific
topics are presented by the media. It can manifest
in loaded vocabularies, like the war on terror,
or broader phrases with implicit assumptions.
Framing has long been studied as an instrument
for creating a specific political image or favoring a
particular point of view. While it is natural for any
non-trivial argument to be framed by the presenter,
its intentional (mis)use can create persistent

associations and sway opinions on political issues.

Many works explore framing as an instrument of
propaganda and misinformation spread (Rozenas
and Stukal, 2019; Munger et al., 2019; King et al.,
2017). Combined with the increased velocity
of disinformation in today’s media landscape, it
highlights an acute need for a detection tool of
persistent framing patterns.

However, while Natural Language Process-
ing (NLP) is the most logical place for this tool,
most advances in frame identification are based on
English-speaking environments, in particular in the
political context of the US (Tsur et al., 2015; Card
et al., 2016). No single method has established
itself as the state-of-the-art for multilingual data.
The few existing methods vary in the best model
choice and present conflicting views on the role of
the target, non-English language.

However, especially in international contexts
(and conflicts), (national) language (and relatedly
the political position of the presenter) plays
an important role in framing. Russian media
present a prominent example of intentional media
manipulation through framing and disinformation
spread. Several studies have already examined the
framing of narratives directed inside the country
(Field et al., 2018; Park et al., 2022). We compare
the domestic messaging to the one spread abroad
and observe how the same events receive very
different framing depending on the language of the
target country.

Contributions: This paper contributes to the
growing body of framing research in two ways. 1)
We compare two prominent (English-based) frame
identification approaches on a novel multilingual
dataset. We establish their strengths and weak-
nesses, and expose the underlying assumptions. 2)
by applying the best method to the newly collected
data, we contribute to the body of work on framing
outside of the English-speaking context. For the
languages in our data, we outline the salient topics
in recent disinformation campaigns. '

'The data and the code for reproducing the analysis will
be made available at: https://github.com/ayusinelnik/
narratives-at-conflict
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2 Data

Identifying disinformation remains a matter of ex-
pert opinion and careful manual annotations, which
makes it a scarce resource outside of the English-
speaking world. Faced with the span and size lim-
itations of labeled datasets on disinformation in
Russian (Kuzmin et al., 2020), we decided to as-
semble a corpus of disinformation articles guided
by the expert opinion on the subject. EUvsDis-
info emerged as one such source, part of the EU’s
diplomatic service led by the EU’s High Represen-
tative, which publishes weekly reports on news ar-
ticles containing pro-Kremlin disinformation. The
database includes articles in 15 languages from var-
ious news outlets, and more than 15k articles have
been reviewed since 2015 to date. Even though
EUvsDisinfo does not assume partial or complete
ownership of the media outlets by the State, it
is stated that the source articles contain “partial,
distorted, or false depiction of reality and spread
key pro-Kremlin messages.” The EUvsDisinfo re-
porting is organized by a disinformation narrative,
where a specific event or topic is at the center of
the report, supported by links to source articles
that reiterate the misinforming narrative. For the
target corpus, we crawled all the source articles
in Russian, French, Spanish, and Italian for the
reporting period from 06/01/2015 to 23/05/2023.
We removed any short-form pieces, articles origi-
nating from social media platforms, and any news
pieces shorter than 300 characters. Table 1 shows
the resulting number of articles for each language.
Multilingual articles paired into the same report by
EUvsDisinfo fall under paired category. We used
subsets of paired articles for annotation tasks and
hyper-parameter tuning. From the other, unpaired
articles that were mentioned in different EUvsDis-
info reports but are closely related, we construct
multilingual pairs with an approach described in
the next section.

2.1 Generating Article Pairs

To construct multilingual article pairs about the
same event, we produce keywords in the target
language of the article, embed them in a shared
space, and measure the distance. YAKE! (Cam-
pos et al., 2020) keyword algorithm was chosen
for its notably high performance in a multilingual
setting (Piskorski et al., 2021). As an unsupervised
method, it generalized well over textual styles, do-
mains, and, languages and provides a good fit for

Language Paired Unpaired Total

Ru 200 6364 6564

Fr 105 300 405

Sp 48 566 615

It 36 440 476

Total 389 7670 8059
Table 1: Total Article Count in the Target Corpus;

Faired are articles joined into one report by EUvsDis-
info. Unpaired are closely related articles from discon-
nected reports which we build into pairs by event

a heterogeneous collection of texts like ours. To
measure the distance between keyword sets in dif-
ferent languages, we embedded them with MUSE
(Lample et al., 2017), a state-of-the-art approach
for synonym selection and contextual word similar-
ities that aligns the embeddings in a shared space.
We set the time window of +4 weeks from the
date of the target article for which we searched
a pair. The choice of a time lag was justified by
two factors: the structure of the database, where
the reports on disinformation appear within a week
from the article publication, and the findings of
Field et al. (2018), which prove agenda-setting in
the Russian news within a month time from an
adverse event. We searched the hyper-parameter
space before applying the keywords algorithm (# of
keywords, # of n-grams, deduplication threshold).
The best hyper-parameter combination would be
the one that results in the highest cosine similarity
between keyword embeddings for the paired arti-
cles — those grouped under the same disinformation
narrative by EUvsDisinfo reports.

3 Method and Modeling

3.1 Method Comparison Overview

The two models at the core of our comparison are
both declared as well-fit for a multilingual frame
identification task but vary in the architecture. The
earlier model, introduced by Field et al. (2018)
is a distantly supervised approach, based on
constructing and contextualizing framing lexicons,
fixed sets of words in a target language, that serve
as indicators of framing. The later one, promoted
by Park et al. (2022), is a supervised approach,
based on a transformer model that performs a
multi-label classification task. The two approaches
will later be referenced as lexicon (-based) or LB,
and transformer (-based) or TB, respectively.

132



In comparing the two methods, our goal is
to control for as many aspects as possible. Both
models, however, have inherent nuances in their
setup and decision criteria, as described below.

Input Articles: Both models draw annotated
articles from The Media Frames Corpus (MFC)
(Card et al., 2015): To date, MFC remains the most
extensive collection of annotated English-language
news articles that serves as a benchmark for
unsupervised, supervised, and distantly supervised
framing identification methods (Khanehzar et al.,
2019; Liu et al., 2019; Field et al., 2018). The
current version of MFC covers 6 policy issues with
45k articles where 347k spans were annotated by
multiple expert annotators with one of the fifteen
frames defined by Boydstun and Gross (2013).
The lexicon method inputs all annotated material
into training. The transformer method applies
rigorous filtering to only accept annotations where
2+ annotators agree, which reduces the number of
inputs by almost half;

Translation: while the lexicon method localizes
and contextualizes the lexicon depending on
the target language, the transformer method is
English-first, based on the use of MFC in training;

Text Spans: The lexicon method identifies
frames on a word level, while the transformer
method extends the spans from MFC to the near-
est complete sentence and produces sentence-level
results.

3.2 Lexicon-based Frame Identification
3.2.1 Methodology

For each frame in the MFC, we form a base lexicon
of 250 items with the highest pointwise mutual in-
formation score I(w, F) (Church and Hanks, 1990),
following Formula 1 below. The base lexicon is
filtered to remove the words occurring in more than
98% or less than 0.5% of the articles.

o P(F,w) o P(w|F)
I(F,w)—lg( ))—lg

P(F)- P(w P(w)
(1
Equation 1 represents the Pointwise Mutual

Information formula, where P(w | F') denotes

(w(o}”fg ;fgq;g:gfﬁgge), and P(w) is calculated as

(word's freq.inthecorpus)
(corpuswordcount)

At this point, we have generated one base
lexicon of 250 English words per frame. This base
lexicon is then translated into every target language
of interest using Google Cloud Translation
APIL. To make the lexicons in target languages
more contextualized and less representative of
the vocabulary specific to MFC, we train word
embeddings on a large background corpus in the
target language. This work proceeded with CC-100
(Wenzek et al., 2020), a dataset constructed with
Common Crawl at its base, which is among the
widely-used corpora for all of our target languages.
While the original paper advocates the choice
of any large background corpus, not the specific
one used in their case, we will later see how this
choice could affect the performance. In our case,
the choice of CC-100 would enrich the lexicons
with ample context and add regional variability
to the vocabulary, given that our target corpus
is composed of a variety of regional sources
(fr.sputniknews.africa and mundo.sputniknews.com
that covers the LATAM region are in the top-3
sources for French and Spanish, respectively). The
Common Crawl-based dataset provides a common
ground for method comparison: XLM-R, the
model on which the transformer method is based,
was also trained on Common Crawl.

For each language in the embedding train-
ing, we limit the number of lines to 1 Million
randomly sampled from CC-100, where each
line represents a paragraph of a text. With
that, we attempt to balance training across our
four languages, where the CC-100 subsets per
language range from 5 GB to 40 GB. We train a
200-dimension Word2Vec model with a CBOW
and a 5-word context window (Mikolov et al.,
2013) for five epochs. Knowing the expanse and
the mix of quality in the sources that make up the
Common Crawl (Wenzek et al., 2020), we set the
minimum word count to 5 to remove the infrequent
words. As in the original approach, the vocabulary
is restricted to 50k most frequent words. We
compute a center for each translated lexicon in a
target language by summing up the embeddings.
We then search the background corpus and extract
500 nearest neighbors with a cosine similarity
no lower than 0.5. As in the original method,
we discard the base translated lexicon and only
keep the neighbors in the final frame lexicon.
From there, words contained in more than 98%
and less than 0,5 % of documents are discarded.
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Russian French Spanish  Italian
Yanukovych Hollande Maduro  Berlusconi
ONF MRC PSOE PdL

DNR Manitoba Coahuila napolitano

Table 2: Examples of Lexicon Generated for the Politi-
cal Frame in Russian, Spanish, French, Italian

Where the resulting lexicon exceeds the expected
300 words, we only keep the 300 closest neighbors.

The cosine distance is the only parameter
where we deviate from the original method.
Where they use a more restrictive approach and
select only neighbors with a cosine similarity no
lower than 0.7 for the target language and 0.6
for English, we relax that rule to avoid instances
where the lexicon equals O for some frames. With
a background corpus as expansive as Common
Crawl, we have to accept the limitation of sparse
embeddings to benefit from a large variety of
textual sources, which reflects the nature of the
target corpus. Table 2 shows examples of how the
lexicon contextualizes the political phenomena
from MFC to our target languages. We can also
note the representation of different regions. This
point would be hard to achieve with a smaller
dataset with a restricted media selection.

3.2.2 Evaluating the Lexicon

Since the resulting lexicon is in a target language
for which we do not expect to have labeled
data, we evaluate the lexicon’s performance on
manually annotated examples from the target
corpus’s paired articles, on which we also evaluate
the transformer-based method. We conduct an
intruder detection task commonly used in the
domain. For each frame, we sample 5 random
words from the lexicon, to which one word
from another frame’s lexicon is added, with the
condition that it is not present in the original frame
lexicon. Two annotators, native or proficient in
our target languages and familiar with the topic of
framing, labeled 15 sets of 6 words per frame. We
measure two metrics for their annotations on each
language’s lexicon: soft accuracy, where either of
two annotators identified the intruder, and hard
accuracy, where both did, aggregated over 15 sets
of annotations per language.

Two languages, Russian and French, under-
perform on the soft accuracy, showing several

non-overlapping frames with less than 60 %
accuracy, a cutoff set in the original work. We hy-
pothesize two factors that worsened the results: the
high sensitivity of the approach to the background
corpus choice and inter-annotator (dis)agreement.
On average across frames, the two annotators
performed with similar accuracy but diverged on
which frames were confused for the others. Also
seeing how varied the results of hard accuracies
are across languages, we could confirm a certain
level of disagreement between annotators. Having
some degree of subjectivity in it, framing often
exposes disagreements between annotators, even
after they discuss the results (Boydstun and Gross,
2013).

3.3 Transformer-based Frame Identification
3.3.1 Methodology

We train XLM-R (Conneau et al., 2020), identi-
fied by Park et al. (2022) as the best-performing
model for the cross-lingual context. The model is
trained on pre-filtered annotations from MFC: first,
text spans are expanded to the nearest sentences,
and second, only sentences with 2+ annotators are
admitted to the training. Note that we do not per-
form hyperparameter search, as we replicate the
findings of Park et al. (2022) to apply them in zero-
shot scenarios to the target corpus. We trained the
model until we reached results comparable to Park
et al.’s (2022), or otherwise for 20 epochs. The
performance grew gradually and reached Macro-
F1 of 65.2, compared to 67.5 in the original paper,
with the same model and settings. Contrary to the
base approach, we do not train to predict the Other
frame to be able to compare the results to those of
the lexicon method and due to low annotator agree-
ment on this frame. Additionally, some degree of
variability in performance could be attributed to the
changes in the MFC release versions since 2022.

3.3.2 Evaluating the Model

We perform a manual annotation task to test the
model’s performance on the target corpus, just like
we did for the lexicon evaluation. Here, we ran-
domly sampled fifty sentences per language from
the paired batch of articles in our target corpus
and translated them into English for annotation.
The labels were provided by an annotator famil-
iar with news framing and sufficient knowledge
of source languages to estimate that the transla-
tion to English was adequate. By checking the
quality of the translation, we make sure that little
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meaning is lost to the translation process, as the
model takes input in English. As we do not train
to predict the Other frame, sentences annotated
as Other or None were discarded from the eval-
uation. Overall, testing the model on annotated
examples achieved a result comparable to that of
VoynaSlov (unlabeled corpus in the original paper
for the transformer method) which returned macro
F1 =33,5 +- 0.72. Frames that fell significantly be-
low the expected performance were Capacity and
Resources, Fairness and Equality, Legality, Crime
and Punishment, and Public Sentiment. While the
low annotation count could explain some of the
poor performance, the two frames where the count
exceeds ten annotations were among the worst in
evaluating the lexicon-based approach. Capacity
and Resources was notably the worst-performing
frame in the work of Park et al. (2022). Like in the
previous evaluation of the annotations, we could
attribute some degree of the performance to the an-
notators’ (dis)agreement and the subjective nature
of framing. The confusion matrix, presented in the
Appendix A provides more granular insight into
the frames pairs with low heterogeneity between
them. While the general performance is on par with
the performance of the original method, the mixed
performance of individual frames should be noted.

4 Evaluating and Comparing Models
4.1 Introduction

The methods of our interest produce two types of
framing results: the dominant frame and all the
frames present in the article, with their relative
concentration. We thus decided to compare models
based on both results. To bring common ground
to the results, we truncated all texts in our target
corpus to 225 words up to the end of the sentence,
guided by the explicit text lengths in the MFC.

4.2 Analysis of Competence and Agreement
on Dominant Frames

Both methods produce one dominant frame per ar-
ticle, identified by the most concentrated frame,
with concentration counted in either the number of
specific lexicon words (LB) or sentences (TB) with
that frame, with a random tie-breaking. As seen
in Table 3, the methods present only weak agree-
ment in the primary frame decisions, supported
by insignificant inter-method agreement scores
measured by Krippendorff’s Alpha (Krippendorff,
2004), a standard method in such annotation-reliant
domains as framing (Card et al., 2015; Akyiirek

Ru Es Fr It

18.8 165 10.0 13.0
137 126 102 103

Raw Agreement
Kripendorff’s Alpha

Table 3: Dominant Frame Agreement; Raw Agreement
denotes % of articles with the same dominant frame
decision, out of all articles

Models’ Competence
Lexicon Trans.

Binary 46.6 58.4
Positives 99.9 80.3
Positives with priors 98.8 66.8
Positives with filtered priors 93.8 63.5

Table 4: Models’ Competence measured with MACE
(Hovy et al., 2013), with different data presentations

et al., 2020). In addition to high disagreement,
both approaches present insignificantly low compe-
tence levels on that task. The competence here and
in the following sections is measured with Multi-
Annotator Competence Estimation (MACE) (Hovy
et al., 2013) — an unsupervised method designed to
estimate annotators’ trustworthiness with an item-
response model at its core. With the methods di-
verging on the primary frame results, we decided
to conduct competence estimation on all frames
found by each method.

4.3 Analysis of Competence and Agreement
on All Frames

To identify all frames present in a text, we take 1
sentence and 3 lexicon instances as one vote for
the frame, as the original approaches specify. For
each article, we test two settings: positive decisions
(only counting the frames that were found) and bi-
nary decisions (1/0 for the presence/absence of the
frame, 14 annotations per text, excluding the Other
frame). These 14-frame representations reduce the
randomness of tie-breaking and expose more granu-
larity in how the methods perform. We additionally
present priors to competence estimation. As we do
not have any reliable estimation for frame distribu-
tion in the target corpus, we draw the probabilities
from the MFC. Filtered priors only reflect the an-
notations with 2+ annotator agreement, whereas
unfiltered priors account for frame probability over
all annotations.

Two approaches present medium to high compe-
tence depending on the data presentation (Table 4).
Introducing priors lowers the competence score for
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both methods, even though their competence is still
higher than with binary presentation. This hints
at the possible difference in frame distribution
across languages, which suggests that relying
on English-language annotations, even though
significantly more numerous, doesn’t guarantee
similar performance in other languages. It is
especially notable in the performance drop for
the transformer-based approach, which relies on
English as both source and target language, and
localizes the multilingual text by simple translation.
The lower performance with the binary presenta-
tions is expected since neither of the approaches
learns on negative examples with frames Other
and None excluded. The methods performance by
frame further suggests that the absence of certain
high-presence and/or low-performance frames low-
ers the competence score in the binary presentation.

For the transformer-based approach, we can
observe that the count of the most predicted frames
is not reflective of the frame distribution in the
training data: two of the top-5 frames with the
highest count in training input (Legality, Constitu-
tionality, Jurisdiction and Crime and Punishment)
are coincidentally the frames with one of the
lowest performances in the transformer-based
approach. These two frames get consistently
predicted as either External Regulation and Rep-
utation or, in the case of Crime and Punishment,
Cultural Identity. The latter false predictions are
over-represented in the target corpus, which we
assume is the reason for poor competence with
binary representation.

For the lexicon-based approach, the results
show less range between competence with and
without priors, which is only supported by the
similarity of the frame distribution in training
and predictions: the target corpus results are well
reflective of the training distribution. For this
approach, however, some of the most numerous
frames are coincidentally the ones with lower-than-
chance performance even on soft accuracy: frames
Crime and Punishment and Public Sentiment
perform well below expected in one or even two
languages, respectively. Since the lexicon-based
approach, in the current comparison setup, is
less restrictive (it does not require every token
to be labeled, unlike in the transofrmer-based
approach), we can attribute the poor performance
to the characteristics of the background corpus,

where the sparsity or the skewness of the articles
to certain topics was restrictive on the lexicon we
derived.

Noted in other works in the domain (Liu
et al., 2019), one point is reinforced by these
results: it is crucial to note and account for the
absence of frames, as much as it is essential to
identify precisely their presence. To provide better
accuracy, the chosen approach should be exposed
to examples of no framing or Other frames, for
which MFC had a prohibitively low count and low
annotator agreement.

4.4 Results of the Method Comparison

With results over all frames, we reconfirm the low
inter-method agreement, highlighted in dominant
frames results: in Figure 1 we can observe the
range of agreement per frame and per language. As
expected Capacity & Resources and Public Sen-
timent frames were among the worse performing
ones: both of those frames performed low across
languages in either method. Even though both
frames are tilting towards lower counts in train-
ing sets, we hypothesize their subjective nature,
also reported by Field et al. (2018), contributes
to the performance. From the preliminary results,
we conclude that individual frames and language
corpora should be treated on a case-by-case basis.
Seeing the range of performance by each method
depending on the testing corpus, we also conclude
that even with extensive standardized training ma-
terial such as MFC, the task of identifying frames
cross-lingually remains extremely sensitive to the
parameters of the chosen approach, and no method
presents a one-size-fit-all solution. Despite its
mixed performance, the lexicon-based approach
emerges as a more confident predictor. Its drop
in performance with a binary presentation could
suggest that, for certain frames, the negative (not
present) decision is unexpected, which could be
due to limitations of the lexicon that draw from the
choice of the background corpus vocabulary.

4.5 Identifying and Comparing Frames from
the Majority Vote of the Models

Observing the volatility and sensitivity of the
results, we proceed to analyze the frames where
the majority voting (agreement between two
methods) decided the frames are present. We
compute the nPMI score for each language
with a general PMI formula seen in Equation 1,
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Agreement Range for Each Frame, All Languages

FR

Economic -

Capacity and Resources

Morality q

RU T

Fairness and Equality -

RU

Legality, Constitutionality, Jurisdiction -

Policy Prescription and Evaluation

Crime and Punishment

Frames
El
m
h

Security and Defense
Health and Safety -
Quality of Life q
Cultural Identity 4 L R
Public Sentiment -

Political 4

External Regulation and Reputation 4

0 10 20

30 40 50 60 70
Agreement (%)

Figure 1: % of annotations where two methods reach agreement about frame’s presence, by language

normalized and adapted to measure frame salience
on a language level. In Figure 2, the scores are
normalized to the range [-1;1], where 1 presents the
complete co-occurrence of a frame with a language.

The results of the frame nPMI across four lan-
guages are varied: while articles in Italian and
Spanish are the least focused on the Political as-
pects and Quality of Life, these two frames are at
the center of attention for Russian frames. Sup-
ported by the findings of Field et al. (2018) and
Rozenas and Stukal (2019), the salience of frames
in Russian is not unexpected and is driven by the
time frame of the target corpus, where the conflict
in Ukraine and the COVID pandemic were among
the key events. More interestingly, the salience of
Political and Quality of Life is also strong in the
French corpus, along with Morality and Crime and
Punishment. The latter could be partially supported
by more policy-oriented findings of Benson (2013)
that note the salience of such topics as equality of
immigrant treatment in French discourse.

If we follow a stricter approach and exclude the
frames that performed poorly in the modeling, we
see a much stronger polarization of the languages:
while Russian texts stay focused on Health and
Safety, French texts are primarily characterized by
Morality, Italian is focused on External Regulation
and & Reputation, and Spanish puts the strongest
focus on Cultural Identity. Below are the words
most associated with each language’s respective
dominant frame, translated into English:

FR Morality: compassion,
generosity, authority, injustice;

aggressiveness,

ES Cultural Identity: youth, celebrity, legend,
elite, bourgeoisie;

RU Health and Safety: offspring, harmful, sick,
mental, unhealthy;

IT External Regulation: containment, stabi-
lization, integration, rebalancing, cooperation.

To examine the Russian corpus on a more
granular level, we calculate the co-occurrence of
specific frames with articles in Russian released
in certain regions (Figure 3). The body of articles
was taken from the articles pairs assembled
previously in the work and supplemented by
the articles in Russian belonging to the same
EUvsDisinfo reports, judged as belonging to the
same disinformation topic. The countries were
grouped into regions following the lists below, in
descending order based on the number of articles.
While we perform a simple geography-driven split
to make the groups more distinct, the targeting
of the disinformation campaigns might be more
subtle and country-specific, depending on the set
agenda.

Eastern Europe: Ukraine, Belarus, Moldova,
Lithuania, Latvia, Poland;

The Caucasus: Armenia, South Ossetia, Georgia,
Abkhazia, Azerbaijan;

Central Asia: Uzbekistan, Kyrgyzstan, Kaza-
khstan.

The resulting salient frames present a different
picture from what we observed on a language level:
while Russia-based media outlets have a variety
of accentuations, the rest of the regions have a
clear dominant focus. Most interestingly, while
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French Spanish Italian Russian
Economic :‘ I - - _
Capacity and Resources _ - _
Morality 1 | I I
Fairness and Equality - - _ -
Legality, Constitutionality, Jurisdiction - - - - -
Policy Prescription and Evaluation 4 - _ _ _
g Crime and Punishment q _ _ _ _
£ Security and Defense - - - -
Health and Safety _ | _ -
Quattty of Lie | I | I I
Cultural identity { | NS | L
Public Sentiment 4 _ - - _
Political 4 _ l I -
External Regulation and Reputation _ - _
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Normalized PMI Normalized PMI Normalized PMI Normalized PMI
Figure 2: PMI score for four languages, normalized to [-1;1]
Central Asia The Caucasus Eastern Europe Russia
Economic [ | [ |
Capacity and Resources | [ ] [ |
Morality 4 . - _
Faimess and Equality ] [ | |
Legality, Constitutionality, Jurisdiction - _ _
Policy Prescription and Evaluation 4 - - - _
g Crime and Punishment - - . - -
£ Security and Defense 4 . - _ _
Health and Safety . - . _
Quality of Life { - - - -
Cultural Identity { . . - -
Public Sentiment - ‘ . -
Political . - - l
External Regulation and Reputation - . - -
-1.0 7C‘r 5 0.‘0 0.‘5 10 -10 76 5 O.‘O 0:5 10 -1.0 7(‘].5 CI.‘O O.‘S 10 -10 76 5 O.‘O 0:5 10

Normalized PMI

Normalized PMI

Normalized PMI Normalized PMI

Figure 3: PMI score for four regions, normalized to [-1;1]

Central Asia presents the same dominant frame as
the French corpus, in The Caucasus (Capacity and
Resources) and Eastern Europe (Economic and Le-
gality, Constitutionality, Jurisdiction) groups we
see new dominant frames that were not prominent
on a language level. Knowing that the Eastern Eu-
ropean country group, in particular, presents a mix
of countries with different political affiliations, we
still observe a clear focus in the article framing.
We could suspect that two almost equally promi-
nent frames represent two country sub-groupings,
which would be worth investigating in the future.
The same couldn’t be said about articles released
in Russia: the material is more multi-focal and
naturally presents a variety of topics, especially
the ones covering domestic policies (Policy Pre-
scription and Evaluation, Crime and Punishment,
Security and Defense). This suggests a direction
for further exploration and provides an example
of how nuances the disinformation articles can be,
depending on the language and even geography
within the same language corpus of articles.

5 Related Work

The most common approaches to identifying
frames treat the task as a variation of sentiment
analysis or probabilistic topic modeling (Boyd-
stun et al., 2014; Tsur et al., 2015; Nguyen et al.,
2013; Kwak et al., 2021). While a standardized
approach, sentiment, or stance analysis presents
limitations to frame identification: most articles
employ multiple frames at the same time with var-
ious concentrations. Additionally, topic model-
ing doesn’t facilitate the comparison of different
corpora because of its corpus-specificity and dif-
ficulty of interpretation. The more advanced but
still traditional approach is creating issue-specific
manually annotated handbooks. Annotation books,
though more formalized, remain a labor-intensive
and issue-specific approach, which presents little
opportunity for automatic text analysis and frame
identification. A more common quantitative ap-
proach to frame detection, started with the work of
Boydstun and Gross (2013), is assembling a list of
generic frames applicable across issues. Beginning
with the development of Policy Frames Codebook
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(Boydstun et al., 2014) and the Media Frames Cor-
pus(Card et al., 2015), a growing body of work is
concerned with automating frame identification at
scale. While topic modeling is a versatile approach
that can be used with any language, framing anal-
ysis with Policy Frames Codebooks, and particu-
larly MFC, relies on data written and annotated
in English. This makes the state-of-the-art NLP
approaches to frame identification, including the
most recent findings of Mendelsohn et al. (2021),
English-centric with no apparent transition to other
languages. So far, no method has established itself
as a standard practice in multilingual frame iden-
tifications. Two works emerge as the most promi-
nent approaches to multilingual framing analysis.
The earlier one is presented in the work of Field
et al. (2018), which projects English framing onto
Russian through a lexicon-based, distantly super-
vised approach. Their work focuses on expanding
and localizing MFC annotations lexicon by creat-
ing language-specific lexicons using an extensive
background corpus in the target language. The sec-
ond approach, presented by Park et al. (2022), is
based on translating original articles to English and
evaluating them with a classifier based on large
pre-trained language models. This approach em-
phasizes the target language less but claims to scale
to low-resource languages without needing anno-
tated material. It is advantageous when training
data is insufficient, or the computations of training
an entire model are prohibitively expensive. To
date, these two works present the most prominent
approaches to analyzing all frames in a text across
languages.

6 Conclusions

We compare two approaches for frame identifica-
tion on a novel dataset. The formal comparison of
the two approaches brought to light a more nuanced
result than expected. While the lexicon-based
method produced a higher overall competence
in estimating framing on multilingual pairs, the
results appear mixed depending on the presentation
of the data. We suspect distinct reasons for each
method’s low performance. For the lexicon-based
approach, the unexpected drop in performance
could reflect the insufficient lexicon for specific
frames. For the transformer-based approach, the
poor performance on the frames overrepresented in
the MFC could be either a consequence of choices
in model fine-tuning setup or a direct result of
heterogeneity of texts in the MFC itself. The latter

point should be investigated in the future, as the
MFC data sampling decisions translate directly or
indirectly into the approaches’ performance.

As both approaches present mixed perfor-
mance, nuanced by language context and specific
frames, we cannot conclude unequivocally the
most accurate approach to be one method or the
other. Further seeing low inter-method agreement
scores and the range of disagreement across
languages and frames, we conclude that both ap-
proaches are highly nuanced and context-sensitive,
even when based on the same pre-training on
MFC. Thus, neither of the prominent multilingual
methods can guarantee performance in a new
context, especially in low-resource languages.

Applied to our multilingual disinformation
pairs, the joint decision of both methods produced
various salient frames depending on the languages
of the article, as we expected in the hypothesis. Our
findings confirm that in disinformation campaigns,
articles presenting the same event or topic focus on
different aspects of the issue, depending on which
audience the campaign targets. We confirm this
hypothesis for four languages in the dataset and a
subset of regions that are targeted with articles in
the Russian language. We recognize that, while the
timespan for which we collected the disinformation
articles (2015-2023) provides invaluable insights
into the Russia-backed disinformation campaigns,
it does not allow us to generalize into an analysis
of the best methods for frame absence/presence at
a sentence level. A more task-focused approach,
that considers aspect and the most recent studies
in frame presence/absence methods is a point of
future research.

7 Ethical Considerations

This study is based on publicly available models,
translation services, and datasets, such as MFC and
CC-100. Although we plan to release the code and
the dataset collected for this work, the users should
be cautious of the potential bias towards the stan-
dard version of the languages in scope, originating
from the model architecture and the data collection
decisions made at source (EUvsDisinfo).
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8 Limitations

Since one of our goals is to compare two existing
methods, their limitations also transfer to our work.
First, the reliability of MFC as the training material
has been contested in previous works: since arti-
cles discussing certain issues can be more or less
balanced in timeframe coverage and frame con-
centration, it raises risks of poor performance on
certain frames and skewed lexicon in lexicon-based
approaches. Tied to the MFC, the question of the
interpretability of issue-agnostic frames has been
raised: the frames encapsulate so many associa-
tions that the issue of blurred boundaries between
close frames or their lexicons can appear in certain
contexts. It has been noted in the existing body of
research that the current models generalize poorly
to new domains, which was in part observed in
our work. Second, the availability of the resources
for either of the methods presents a serious limita-
tion to their implementation: while for a lexicon-
based approach, an extensive background corpus is
needed to contextualize the lexicons to the target
language, the transformer-based approach results
in significant computational costs. The evaluation
of either method remains expensive as it requires
recruiting experts with domain knowledge for the
annotations task. The low count of annotators, as
much in this paper as in the original methods, re-
mains a limitation. The challenge of applying cur-
rent resource-heavy methods to low-resource mate-
rial remains open. The assumptions under which
we collected the dataset of Russia-backed disin-
formation present another limitation to this work.
Preserving all historical material meant that some
frames would be over-represented due to the nature
of the topics discussed in the disinformation.
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Frame Type

Frame Description

Economic

Policy Capacity & Resources

Morality & Ethics

Fairness & Equality

Legality, Constitutionality & Jurisdiction

Crime & Punishment

Security & Defense

Health & Safety

Quality of Life

Cultural Identity

Public Sentiment

Political Factors & Implications

Policy Prescription & Evaluation
External Regulation & Reputation

Financial implications of an issue

The availability or lack of time, physical, human, or financial resources

Perspectives compelled by religion or secular sense of ethics or social responsibility

The (in)equality with which laws, punishments, rewards, resources are distributed

Court cases and existing laws that regulate policies; constitutional interpretation; legal processes such
as seeking asylum or obtaining citizenship; jurisdiction

The violation of policies in practice and the consequences of those violations

Any threat to a person, group, or nation and defenses taken to avoid that threat

Health and safety outcomes of a policy issue, discussions of health care

Effects on people’s wealth, mobility, daily routines, community life, happiness, etc.

Social norms, trends, values, and customs; integration/assimilation efforts

General social attitudes, protests, polling, interest groups, public passage of laws

Focus on politicians, political parties, governing bodies, political campaigns, and debates; discussions
of elections and voting

Discussions of existing or proposed policies and their effectiveness

Relations between nations or states/provinces; agreements between governments; perceptions of one
nation/state by another

Table 5: List of non-issue-specific frames (Boydstun and Gross, 2013) used in MFC and our annotation task

Code Frame Train (#) Test (#) Total Count (#)
1.0 Economic 9.2k 2.3k 11.5k
2.0 Capacity and Resources 2.9k 0.7k 3.6k
3.0 Morality 2.9k 0.7k 3.6k
4.0 Fairness and Equality 2.7k 0.7k 3.4k
5.0 Legality, Constitutionality, Jurisdiction 16.1k 4.0k 20.1k
6.0 Policy Prescription and Evaluation 6.4k 1.6k 8.0k
7.0 Crime and Punishment 12.5k 3.1k 15.7k
8.0 Security and Defense 4.4k 1.1k 5.6k
9.0 Health and Safety 6.8k 1.7k 8.5k
10.0  Quality of Life 2.5k 0.6k 3.2k
11.0  Cultural Identity 3.6k 0.9k 4.5k
12.0  Public Sentiment 4.6k 1.2k 5.8k
13.0  Political 19.0k 4.7k 23.7k
14.0  External Regulation and Reputation 1.5k 0.4k 1.9k
Total 95.3k 23.8k 119.1k

Table 6: The Number of Annotations Admitted to Training XLLM-R: Counts Represent Full Sentences

Code Frame F1 Count (#)
1.0 Economic 533 7
2.0 Capacity and Resources 154 12
3.0 Morality 74.9 5
4.0 Fairness and Equality 18.2 8
5.0 Legality, Constitutionality, Jurisdiction = 22.2 6
6.0 Policy Prescription and Evaluation 16.6 9
7.0 Crime and Punishment 18.2 5
8.0 Security and Defense 31.6 17
9.0 Health and Safety 66.6 3
10.0 Quality of Life 37.5 11
11.0 Cultural Identity 55.4 24
12.0 Public Sentiment 0.0 7
13.0 Political 35.7 13
14.0  External Regulation and Reputation 41.9 26

Macro-F1 329
Total 156

Table 7: Transformer-based Method Performance: Macro-F1
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Figure 4: Keywords Cosine Similarity for a Pair of Ground Truth Articles
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Abstract

Researchers in the political and social sciences
often rely on classification models to analyze
trends in information consumption by examin-
ing browsing histories of millions of webpages.
Automated scalable methods are necessary due
to the impracticality of manual labeling. In this
paper, we model the detection of topic-related
content as a binary classification task and com-
pare the accuracy of fine-tuned pre-trained en-
coder models against in-context learning strate-
gies. Using only a few hundred annotated data
points per topic, we detect content related to
three German policies in a database of scraped
webpages. We compare multilingual and mono-
lingual models, as well as zero and few-shot
approaches, and investigate the impact of neg-
ative sampling strategies and the combination
of URL & content-based features. Our results
show that a small sample of annotated data is
sufficient to train an effective classifier. Fine-
tuning encoder-based models yields better re-
sults than in-context learning. Classifiers using
both URL & content-based features perform
best, while using URLs alone provides ade-
quate results when content is unavailable.

1 Introduction

Text classification of webpages is used to under-
stand information consumption by categorizing
large collections of individuals’ browsing histo-
ries (e.g., Stier et al. 2022a). By categorizing web-
pages, researchers can identify patterns of online
news consumption (Flaxman et al., 2016) and quan-
tify exposure to populist sentiments (Stier et al.,
2022b). Analyzing browsing histories by topic of-
ten necessitates "finding the needle in the haystack”,
as typically just a small fraction of webpage vis-
its correspond to a given domain, such as news
sources (Wojcieszak et al., 2022). Therefore, iden-
tifying the few relevant pages among numerous
unrelated visits makes manual labeling impracti-
cal. Machine learning classifiers are often used as

an automated and scalable alternative (Stier et al.,
2022b).

Since the introduction of the transformer archi-
tecture, fine-tuning pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019) has seen
widespread adoption in text classification tasks. Ap-
plications include classifying public opinions about
policies in digital media (Viehmann et al., 2023)
and identifying protest-related content in newspa-
per articles (Re et al., 2021; Seb6k and Kacsuk,
2021). Further applications encompass sentiment
analysis on social media posts (Manias et al., 2023)
and advertising (Jin et al., 2017). However, fine-
tuning classifiers still requires hundreds to thou-
sands of manually labeled documents. Given the
multilingual nature of the web and the noisy data
resulting from the scraping process, compiling a
representative training set remains a complex and
time-consuming task. Generative models such as
Llama (Touvron et al., 2023) and Mistral (Jiang
et al., 2023) are often inherently multilingual and
can generalize to completely unseen tasks without
the need for fine-tuning, potentially making them a
promising alternative.

In this study, we investigate the use of large lan-
guage models (LLMs) for the task of binary topic
classification across a corpus of scraped webpages.
We evaluate our approach by identifying webpages
that provide information on three specific German
policies discussed during data collection: (1) a pol-
icy introduced to combat child poverty, (2) the pro-
motion of renewable energy, and (3) the amend-
ment of cannabis legislation. We compare the clas-
sification accuracy between multilingual (Conneau
et al., 2020) and monolingual (Chan et al., 2020)
pre-trained language models by fine-tuning them
on manually labeled data. Our analysis extends to
generative models (Touvron et al., 2023; Chung
et al., 2022), evaluating few-shot prompting for
document classification and assessing the impact
of demonstrator sampling strategies.
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2 Related Work

Political and social sciences researchers increas-
ingly use topic classification to filter large collec-
tions of webpages derived from browsing histo-
ries (Guess, 2021; Stier et al., 2022a). This task
is commonly modeled as binary or multiclass clas-
sification, assigning text segments to one or more
predefined categories. Until recently, researchers
in these applied fields have relied on traditional
NLP methods such as naive Bayes classifiers (Stier
et al., 2022a) and logistic regression models (Guess,
2021).

The adaptation of BERT models created new
opportunities by improving classification accuracy.
For instance, Viehmann et al. (2023) fine-tuned
BERT models to classify opinions on policies in
digital media. Similarly, Re et al. (2021) explored
the use of BERT variants for classifying sentences
in newspaper articles to detect protest-related con-
tent. Osnabriigge et al. (2023) applied a logistic
regression model for classifying the topics of par-
liamentary speeches. Research on webpage classi-
fication also includes the use of URL features (Kan
and Thi, 2005), extracted content (Jin et al., 2017),
graph representations (Wu et al., 2015), and visual
features (Xu and Miller, 2015).

2.1 Feature-based Learning

Historically, text classification involved feature en-
gineering by (1) extracting a vector representation
of the text, followed by (2) feeding the extracted
features into a classifier to determine the final la-
bel. Support vector machines (D’Orazio et al.,
2014) and naive Bayes models (Scharkow, 2013),
often combined with frequency-based tf-idf vectors,
were the standard tools. More recently, approaches
also rely on techniques such as Word2Vec (Mikolov
etal., 2013) and GloVe (Pennington et al., 2014), to
obtain dense representations of vocabulary items.

2.2 Contextualized Embeddings

Recent advancements in text classification have
been driven by models like BERT (Devlin et al.,
2019) based on the transformer architecture, which
utilize attention mechanisms (Vaswani et al., 2017)
and are trained on extensive unlabeled text datasets
through unsupervised pre-training prior to fine-
tuning on downstream tasks such as document clas-
sification. For instance, mBERT was pre-trained
on data from Wikipedias in 104 languages. XLM-
RoBERTa (Conneau et al., 2020), a multilingual

extension of ROBERTa (Zhuang et al., 2021), is pre-
trained on text from 100 languages. Subsequent
fine-tuning of BERT models by replacing the last
layer with a classification head for the final predic-
tion has become a common approach (Re et al.,
2021; Gnehm and Clematide, 2020; Viehmann
et al., 2023; Manias et al., 2023).

2.3 Models Pre-trained on German Texts

A considerable amount of research has been ded-
icated to exploring text classification tasks specif-
ically for the German language (Viehmann et al.,
2023; Scharkow, 2013). Although not all recent
studies utilize transformer models for German text
classification (Graef, 2021), the majority of re-
search underscores the superiority of BERT models
in this domain (Gnehm and Clematide, 2020). DB-
MDZ BERT is comparable in size to BERT-base
but is trained on the German segments of the OPUS
corpus and Wikipedia. GBERT (Chan et al., 2020)
is another German BERT variant that outperforms
multilingual models and other German-trained
BERT variants (Idrissi-Yaghir et al., 2023; Niklaus
et al., 2023; Bornheim et al., 2021). GBERT in-
cludes additional data and implements training
enhancements (Chan et al., 2020), as does the
GELECTRA model (Clark et al., 2020), which is
designed for more efficient learning by enabling
the model to learn from entire sentences, rather
than just the masked tokens.

2.4 In-context Learning

Large generative models like FLAN (Chung
et al., 2022), Mistral (Jiang et al., 2023), and
LLaMa (Touvron et al., 2023) are also transformer-
based but use stacked decoder blocks instead of the
encoder blocks used by BERT. Encoder blocks ex-
tract dense vector representations, used as features
for classification tasks. Decoder blocks predict the
next token to generate output sequences, allowing
these models to perform different tasks due to their
flexible output schema.

Generative models have demonstrated remark-
able generalization across a broad spectrum of NLP
tasks by incorporating the instruction directly into
the input prompt, often alongside a few labeled
examples, thereby eliminating the need for param-
eter updates. Due to their large training corpora,
generative models typically possess some multilin-
gual capabilities. For instance, FLAN is a model
family based on the TS model architecture (Chung
et al., 2022), able to follow instructions in mul-
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Children Energy Cannabis All Topics

Dataset

Related Total Related Total Related Total Related Total
Training 192 384 204 408 205 410 601 1,202
Unbalanced Test (Unbl) 22 3,722 23 4,164 23 3,448 68 11,334
Balanced Test (Test) 22 44 23 46 23 46 68 136
Extended Test (Extd) 45 53,253 32 45,925 29 44,432 106 143,610
Complete Test (All = Unbl & Extd) 67 56,975 55 50,089 52 47,880 174 154,944
Complete (Train, Unbl, & Extd) 259 57,359 259 50,497 257 48,290 775 156,146

Table 1: Number of topic-related and total webpages per topic. Training and test set contain URLs with
high-confidence labels. The unbalanced test set (unbl) includes additional negative examples not included in the
training set, while the extended test set (extd) uses low-confidence labels for evaluation under less ideal conditions.

tiple languages, including English, German, and
French. Larger models, like those based on the
LLaMA (Touvron et al., 2023) architecture, are
further optimized through reinforcement learning
from human feedback (Ouyang et al., 2022; Bai
et al., 2022), improving cross-domain generaliza-
tion and reasoning skills. Aya (Ustiin et al., 2024)
and Vicuna are further examples. The former is
trained on 101 languages including German, while
the latter is fine-tuned on user-shared conversations,
primarily in English.!

While neural networks have become the state-
of-the-art text classification approach, current re-
search lacks a thorough evaluation of LLMs for
identifying topic-related content on German web-
pages. Here, we provide a comprehensive study to
fill this gap, including a comparison to traditional
feature-based approaches.

3 Dataset

For our experiments, we use a corpus of scraped
webpages annotated by topic. We describe the
data collection and annotation process in Section
3.1. The topic labels correspond to three Ger-
man policies that were of interest during the pe-
riod of data collection: (1) basic child support pol-
icy (Kindergrundsicherung), introduced to com-
bat child poverty, (2) energy transition policy
(Forderung erneuerbarer Energien), designed to
promote renewable energy, and the (3) cannabis
legalization amendment (Cannabislegalisierung).
We refer to these policies as the children, energy,
and cannabis policies throughout this paper. Our
dataset contains substantially more topic-unrelated
than relevant webpages. This exemplifies a com-
mon challenge in the social, political, and commu-
nication sciences: finding relevant content within a
vast database of unrelated webpages.

"https://sharegpt.com

3.1 Data Collection and Annotation

The browsing traces are obtained as part of a
broader project in which 1,228 participants of a
commercial web-tracked panel take part in an on-
line experiment, during which they are instructed
to inform themselves about the three policy topics
(see Appendix A and C for details). In total, the
participants visit 267k quasi-unique URLs. Given
that only 1, 324 unique URLSs (775 after filtering)
are annotated as policy-related across the three top-
ics, a research assistant augments our training data
by manually searching the web for further policy-
related webpages. An additional 297 high-quality
positive cases are added for each topic in this way
(77, 83, and 137, respectively, for the topics chil-
dren, energy, and cannabis).

Data from the collected URLs is scraped using
the Python package requests” and the plain text con-
tent is extracted from the HTML using the Python
package selectolax.’

For each of the three topics, the browsing trace
data are manually annotated with binary labels
(topic-related or non-relevant) at the URL level.
Given the amount of data, we employ a multi-
level filtering and refinement approach, moving
from hostname categories down to hostnames and
finally individual URLs, at each step removing non-
relevant URLs. For details on the annotation proce-
dure, see Appendix A.

After annotation of the successfully scraped
webpages (156k out of 267k URLs), our high-
confidence data set is comprised of 214 (children),
227 (energy), 228 (cannabis) webpages that are
related to the respective topic, and 4,106 (children),
4,572 (energy), 3,857 (cannabis) non-relevant web-
pages. As a result of the multi-level annotation
strategy, we also obtain 143k additional URLs with
low-confidence labels that are predominantly neg-

“https://pypi.org/project/requests/
3https://pypi.org/project/selectolax
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Figure 1: Webpage processing and classification pipeline. The extracted webpage content is divided into chunks,
maintaining the original labels. Chunk level predictions are aggregated to obtain the final label per URL.

ative cases (e.g., searches, YouTube videos, and
social media posts), which we use in our evaluation
of a real-world application scenario of classifying
noisy web data. For further ablative testing on
noisy data, we also construct an extended test set
with low-confidence labels.

3.2 Data Preprocessing

We describe the processing steps for compiling the
datasets for training and evaluation, including sam-
pling train and test examples, as well as segmenting
long webpages. We filter out cases where we were
unable to retrieve the content, to allow for a 1-to-1
comparison of classification performance based on
URLs alone versus using content as an additional
feature.

Training and Test Sets. We partition the dataset
for each topic into training and test sets, allocating
90% of the positive examples to training and 10%
to testing, resulting in three datasets for three binary
classification tasks (see Table 1). Only URLs with
high-confidence labels are used for the training and
test sets (see Section 3.1). The positive cases added
during manual augmentation are used exclusively
for training.

For our initial experiments, we aim for an even
proportion of positive and negative cases in the
training and test sets (we discuss suitable sampling
strategies in Section 4.1). Further negative exam-
ples that are not included are assigned to a second,
unbalanced test set (unbl) consisting of predom-
inantly negative examples. This second data set
mirrors the original proportion of topic-related and
unrelated webpages in our data but still contains
only high-confidence URLs. Finally, to assess the

performance of the classifiers under real-world con-
ditions, we construct an extended test (extd) set
comprised of low-confidence labels. This test set
also includes difficult-to-scrape webpages, such
as search engines, often resulting in non-useful
HTML content due to disabled JavaScript. This
dataset is even more unbalanced, containing an
overwhelming number of negative cases.

Document Splitting. Due to the limited context
window of the test LLMs (see Table 2), we divide
webpage content into chunks using a recursive text
splitter*. We utilize a maximum chunk size of 384
tokens for all models, including an overlap of 64
tokens. For each chunk, we assign the label of the
parent URL.

4 Methods

We model the detection of topic-related content as
a binary classification task for each of the three
topics. We compare the F1l-scores of fine-tuned
encoder models (supervised) and in-context learn-
ing strategies (few/zero-shot) against suitable base-
lines. Figure 1 shows a schematic overview of the
supervised training and classification pipeline. The
evaluated LLMs are listed in Table 2. We make the
code for our experiments publicly available.?

For supervised fine-tuning of monolingual and
multilingual models, we experiment with using
URL-based features on their own and in combi-
nation with content. Due to the small number of
webpages related to the three topics, we also exper-
iment with different strategies to sample from the

*https://python.langchain.com/docs/
>https:/github.com/julianschelb/Topic-Classification
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Model Type Layers Param. Languages Context Size
Multilingual BERT-Base (Devlin et al., 2019) BERT 12 179M 104 512
XLM-RoBERTa-Base (Conneau et al., 2020) RoBERTa 12 279M 100 512
XLM-RoBERTa-Large (Conneau et al., 2020) RoBERTa 24 561M 100 512
German-BERT-Base (deepset.ai/german-bert) BERT 12 111M 1 512
GELECTRA-Base (Chan et al., 2020) ELECTRA 12 110M 1 512
GELECTRA-Large (Chan et al., 2020) ELECTRA 24 336M 1 512
GBERT-Base (Chan et al., 2020) BERT 12 111M 1 512
GBERT-Large (Chan et al., 2020) BERT 24 337TM 1 512
Aya 101 (Ustiin et al., 2024) mT5 40 13B 101 1024
Vicuna 7b (Chiang et al., 2023) Llama 32 7B 1 2048
Vicuna 13b (Chiang et al., 2023) Llama 40 13B 1 2048
FLAN-T5-Base (Chung et al., 2022) TS 12 250M 60 512
FLAN-T5-Large (Chung et al., 2022) T5 24 780M 60 512
FLAN-T5-XXL (Chung et al., 2022) TS 24 11B 3 512

Table 2: Encoder models used for fine-tuning (top) and generative models used for in-context learning (bottom).

large number of negative examples. For in-context
learning classification methods, we evaluate multi-
ple models in zero- and few-shot scenarios, compar-
ing different task demonstrator sampling strategies
for the latter.

To aggregate the predicted labels for chunks into
document level labels during inference, we assign
a positive label to webpages if the label of at least
one chunk is predicted to be topic-relevant.

4.1 Sampling Negative Examples

To address the imbalance of negative and positive
examples in our dataset, we investigate three sam-
pling strategies for negative training examples.

Random. We select a random subset of web-
pages classified as negative, aiming for an even
number of topic-related and unrelated webpages in
our training dataset.

Stratified. To prevent an overrepresentation of
webpages from frequent domains, we group them
into strata based on their domain, selecting the 128
most frequent URLs for individual groups and con-
solidating all remaining ones into a *others’ group.

Cluster-based. Like Sun et al. 2023, we test
KNN sampling. We create document vectors using
TF-IDF with a dimensionality of 10,000, which
we then reduce to 100 dimensions using PCA.
Given the unknown total number of clusters, we uti-
lize DBSCAN for clustering and sample webpages
from each cluster, including the noise cluster.

4.2 Supervised Classification

We evaluate several monolingual encoder models
that are pre-trained specifically on German texts, as
well as multilingual encoder models that include at

least a portion of German text in their pre-training
data. For fine-tuning, we use the same parameters
across all models: a learning rate of 2 x 107> over
a maximum of 3 epochs. We use a warm-up of
500 steps at the beginning of training and a weight
decay of 0.01.

We train one URL-based classifier and one com-
bined URL & content classifier per topic. Since
URLSs often contain parts of the article title, cate-
gories, or search engine optimization (SEO) key-
words, we expect them to be useful for classifica-
tion (Aljofey et al., 2022; Kan and Thi, 2005). To
avoid overfitting on specific domains only the path
and parameter sections of the URL are utilized (see
Figure 1).

Baselines. For URL-based classification, we use
linear interpolation and backoff (LIB) as the base-
line (Abramson and Aha, 2012). For URL & con-
tent classification, we use support vector machine
(SVM) classifiers with TF-IDF vectors for feature
extraction, similar to what is frequently employed
in the literature (Idrissi-Yaghir et al., 2023; Kan
and Thi, 2005; D’Orazio et al., 2014).

4.3 Zero- and Few-Shot Classification

We evaluate multiple generative models using in-
context learning for classification tasks in both
zero-shot and few-shot scenarios. We include
Aya (Ustiin et al., 2024) and two Vicuna vari-
ants (Chiang et al., 2023), as well as three FLAN-
T5 variants (Chung et al., 2022) to assess the perfor-
mance scaling with model size. Due to the limited
context window of FLAN-T5, we evaluate them
exclusively in a zero-shot setting. Due to the long
inference times, we opted to only evaluate on the
balanced test set. Our prompts combine a task de-
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Model Children Energy Cannabis
Test Unbl Extd All Test Unbl Extd All Test Unbl Extd All
Multiling. BERT-Base 0.976 0.205 0.023* 0.032* 0.958 0.072 0.007 0.013  1.000 0.556* 0.691* 0.627*
XLM-RoBERTa-Base 0.900 0.141 0.063* 0.076* 0.933 0.103* 0.016* 0.027* 1.000 0.541* 0.533* 0.536*
XLM-RoBERTa-Large 0.976 0.408* 0.028* 0.040* 0.978 0.126* 0.014* 0.023* 1.000 0.597* 0.577* 0.585*
> German-BERT-Base  0.976 0.435* 0.030* 0.042* 0.979 0.127* 0.011 0.020  1.000 0.769* 0.422* 0.522*
—g' GELECTRA-Large 0.976 0.274* 0.023* 0.032* 0.909 0.118* 0.059* 0.076* 1.000 0.460* 0.700* 0.575*
— GELECTRA-Base 0976 0.127 0.007 0.012 0.898 0.077 0.005* 0.014 0.950 0.252 0.113 0.173
g GBERT-Large 0.952 0.310* 0.025* 0.035* 0.978 0.173* 0.015* 0.025* 1.000 0.755* 0.667* 0.701*
GBERT-Base 0.930 0.190 0.019 0.027 0.978 0.135* 0.015* 0.025* 1.000 0.396 0.532* 0.456*
SVM (Baseline) 0.950 0.174 0.017 0.024 0.898 0.072 0.012 0.019 0.947 0.321 0.185 0.223
LIB (Baseline) 0.872 0.169 0.000 0.006 0.864 0.130 0.002 0.015 0.950 0.225 0.005 0.025
Average (w/o baseline) 0.958 0.261 0.027 0.037 0951 0.116 0.018 0.028 0994 0.541 0.529 0.522
Multiling. BERT-Base 1.000 0.269* 0.166* 0.190* 0.958 0.096* 0.014* 0.023* 0.976 0.556* 0.304* 0.375*
XLM-RoBERTa-Base 1.000 0.271* 0.155* 0.181* 0.957 0.144* 0.034* 0.050* 0.976 0.597* 0.386* 0.453*
E XLM-RoBERTa-Large 1.000 0.323* 0.287* 0.298* 0.957 0.168* 0.030* 0.045* 0.976 0.571* 0.487* 0.519*
e German-BERT-Base  1.000 0.368* 0.198* 0.234* 1.000 0.136* 0.020* 0.033* 0.976 0.440* 0.747* 0.578*
S GELECTRA-Large 1.000 0.500* 0.636* 0.583* 0.978 0.175* 0.136* 0.151* 0.976 0.625* 0.514* 0.555*
% GELECTRA-Base 1.000 0.412* 0.228* 0.268* 0.957 0.109* 0.049* 0.064* 0.952 0.381* 0.487* 0.436*
é GBERT-Large 1.000 0.494* 0.410* 0.434* 0979 0.146* 0.058* 0.080* 0.952 0.191* 0.157* 0.170*
— GBERT-Base 1.000 0.333* 0.249* 0.272* 0.957 0.221* 0.105* 0.136* 0.976 0.526* 0.455* 0.482*
SVM (Baseline) 0.933 0.059 0.015 0.022 0.885 0.064 0.010 0.017 0.930 0.088 0.030 0.043
Average (w/o baseline) 1.000 0.371 0.291 0.308 0968 0.149 0.056 0.073 0970 0.486 0.442 0.446

Table 3: F1-score performance of supervised fine-tuning approaches for different feature combinations. Statistical
significance is assessed using McNemar’s test (p < 0.05) with respect to the SVM baseline, denoted by *.

Sampling Strategy Children Energy Cannabis

Test Unbl Extd All Test Unbl Extd All Test Unbl Extd All
Random 1.000 0.318 0.248 0.268 0.978 0.134 0.060 0.079  0.976 0.357 0.384 0.372
Stratified 1.000 0.300 0.156 0.185 0.978 0.232 0.112 0.145 0.976 0.548 0.538 0.542

Cluster-based

0.977 0.264 0.112 0.139

0.978 0.167 0.062 0.086

0.976 0.548 0.444 0.482

Average

0.992 0.294 0.172 0.197

0.978 0.178 0.078 0.103

0.976 0.484 0.455 0.465

Table 4: F1-Score performance of different sampling strategies for GELECTRA-Large

scription with "Yes" or "No" response instructions
to simplify the parsing of the output. Figure 2
shows the used prompt template. We convert re-
sponses to lowercase to map the models’ output
more easily to a binary label. For answer genera-
tion, we set the temperature to 0.3, top_k to 50,
and top_p to 0.95. While the generative models
tend to have longer context windows and would
allow for larger webpage chunks, we use the same
chunks as the supervised classification for compar-
ison.

Demonstrator Sampling. Since the selection of
task demonstrators included in the few-shot prompt
affects prediction quality (Liu et al., 2022; Peng
et al., 2024), we evaluate multiple sampling strate-
gies: (1) random sampling over the training set, (2)
random sampling with balanced classes to address
class imbalance by ensuring equal representation
of each class, and (3) KNN-based sampling, which
selects training examples similar to the input (Sun
et al., 2023). We calculate the cosine distance

based on embeddings extracted using a sentence-
transformer (Reimers and Gurevych, 2019).

5 Results and Discussion

5.1 Supervised Classification Results

We evaluate all models using URL-only and URL &
content as features and report the F1 scores for the
three test datasets (test, unbalanced, and extended)
and three topics in Table 3.

GELECTRA-Large, using URL & content fea-
tures, achieves the best average F1 score of 0.430
across all topics on the complete test set (see Table
6), making it the overall best-performing model.
Analyzing the results by topic, GELECTRA-Large
achieves the best F1 scores of 0.583 for the children
topic and 0.151 for the energy topic. Meanwhile,
German-BERT-Base achieves the best score for the
cannabis topic with an F1 score of 0.578.

We discuss the impact of feature selection and
negative sampling methods and analyze perfor-
mance differences between monolingual and multi-
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Model Children Energy Cannabis All Topics
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
Aya 101 1.000 0.761 0.865 1.000 0.783 0.878 1.000 0950 0.974 1.000 0.831 0.906
é Vicuna 13b 1.000 0.714 0.833 1.000 0.739 0.850 1.000 0.800 0.889 1.000 0.751 0.857
©  Vicuna 7b 0.905 0905 0.905 0.950 0.826 0.884 1.000 1.000 1.000 0.952 0.910 0.930
g FLAN-T5-XXL 1.000 0.762 0.865 1.000 0.870 0.930 1.000 0.900 0.947 1.000 0.844 0.914
N  FLAN-TS5-Large 0.944 0.810 0.872 0.938 0.652 0.769 1.000 0.450 0.621 0.961 0.637 0.754
FLAN-T5-Base 0.529 0.429 0474 0553 0913 0.689 0475 0950 0.633 0.519 0.764 0.599
g Ayalll 0.952 0952 0.952 1.000 0.870 0.930 0.905 0950 0.927 0.952 0.924 0.936
% % Vicuna 13b 0913 1.000 0.955 1.000 0957 0.978 0.952 1.000 0.976 0.955 0.986 0.970
=&  Vicuna 7b 1.000 0905 0955 0.512 0957 0.667 0952 1.000 0976 0.821 0.954 0.866
2% AyalOl 1.000 0.762 0.865 1.000 0.826 0.905 0.792 0950 0.864 0.931 0.846 0.878
1z é Vicuna 13b 1.000 1.000 1.000 1.000 0.870 0930 1.000 0.950 0974 1.000 0.940 0.968
=& Vicuna 7b 1.000 0.905 0.950 0.629 0.957 0.759 1.000 0950 0.974 0.876 0.937 0.894
:, Aya 101 0.833 0952 0.889 0.667 0957 0.786 0.714 1.000 0.833 0.738 0.970 0.836
% Z Vicuna 13b 0.800 0.952 0.870 0.700 0913 0.792 0.952 1.000 0.976 0.817 0.955 0.879
= Vicuna 7b 0.588 0.952 0.727 0.524 0957 0.677 0.588 1.000 0.741 0.567 0.970 0.715

Table 5: Evaluation of zero-shot learning and few-shot demonstrator sampling strategies on the balanced test set.

Classify the following webpage text in {lang}
as topic releated or unrelated. Does it
contain information about {topic}'? Please
answer with 'Yes' or 'No' only.

Topic description: {topic description}
Topic keywords: {topic keywords}

Examples: only for
few-shot

URL: "{example url}"

Text: "{example text}" k x few-shot

Answer: "{example label}" examples

Webpage:

URL: "{webpage url}"
Text: "{webpage text}"
Answer:

Figure 2: Prompt template for zero- and few-shot
classification. General task instruction and the incom-
plete example are consistent across all experiments. For
few-shot experiments, k additional demonstrators are
included (see Appendix A for details).

lingual models, as well as base and large models.

URL & content. While the URL alone can be an
adequate feature for many applications, our find-
ings show that integrating webpage content im-
proves classification performance. Across all top-
ics and models, the average F1 score improved by
40.8% on the complete test set.

Classifiers on the children topic experienced the
most notable improvement, with F1 scores increas-
ing by 4.4% on the test set, 42.1% on the unbal-
anced set, an substantial 977.3% on the extended
set, and 731.1% on the complete set, indicating
that content helps the classifier to generalize. The

energy topic also showed enhanced performance
with the inclusion of content features. Interestingly,
the cannabis topic exhibited a decrease in average
performance. This decrease may be attributed to
ground truth labels being annotated at the URL
level rather than the content level. Webpages on
this topic might utilize URLs with highly expres-
sive keywords, enabling the URL-only classifier
to perform very effectively. Alternatively, as our
manual error analysis suggests (see 5.3), webpages
discussing this topic but lacking topic-relevant key-
words in the URLs might have been missed during
the annotation process.

In summary, classifiers trained on URL & con-
tent perform better, especially on the challenging
extended test set.

Performance Comparison: Test Sets. All mod-
els perform well on the balanced test set with both
URL & content-based features, but their perfor-
mance significantly deteriorates on the unbalanced
and extended test sets. The average performance
across all topics decreases by 65.7% from the bal-
anced to the unbalanced set and by 73.1% to the
extended set. Although recall remains high, the
drop in precision indicates an increase in false pos-
itives, confirming the greater difficulty of these
datasets due to lower quality scraped content and
less reliable labels. The results show that the clas-
sifiers struggle with noise in the extracted webpage
content introduced by the scraping process.

Performance Comparison: Topics. Cannabis-
related webpages are generally the easiest to detect,
while energy-related webpages are the most chal-
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lenging. This observation aligns with our intuition,
as cannabis represents a more specific topic. In
contrast, the energy topic is considerably broader,
overlapping with a range of areas that are unrelated
to the topic of renewable energy, such as climate
change. The precision-recall curves based on all
available data, as depicted in Figure 3, further sup-
port this observation.

1.0

o
o

.......

o
o

Precision
o
iy

Children (AUC = 0.87)
=—— Energy (AUC = 0.66)
= Cannabis (AUC = 0.93)
0.0 Combined (AUC = 0.68)

00 02 0.4 0.6 08 10
Recall

o
N

Figure 3: Precision-recall curves for GELECTRA-
Large across topics on the Complete test set. Cannabis
shows the highest precision-recall performance and En-
ergy the lowest (recall that the number of webpages
varies between the topics).

Monolingual vs. Multilingual Models. Mono-
lingual models achieve a mean F1 score 25.9%
higher than multilingual models on the complete
test set across all topics when using URL & con-
tent features. Comparing the best monolingual
model, GELECTRA-Large, with the best multilin-
gual model, xlm-roberta-large, GELECTRA-Large
achieves an F1 score that is 22.4% higher on the
unbalanced dataset, 60.0% higher on the extended

dataset, and 49.5% higher on the complete test set.

Negative Sampling. In Table 4, we report the re-
sults comparing three negative sampling strategies.
We find that random sampling and stratified sam-
pling perform comparably, with stratified sampling
yielding slightly better performance overall.

Model Size and Runtime Analysis. Larger mod-
els generally outperform their base variants, with
modest gains. On the unbalanced dataset, the av-
erage F1 score increases by 9.4% (from 0.32 to
0.35), while on the extended dataset, scores see a
more substantial boost of 25% (from 0.24 to 0.30).
These improvements highlight the benefits of larger
models in handling more complex and varied data.
However, this increased performance comes at a
significant cost in processing time. As shown in
Table 6, large variants achieve better F1 scores but

process only ~19 webpage chunks per second, com-
pared to ~63 chunks for the base variants. This 28%
gain in F1 score comes with a 200% increase in
processing time. The SVM baseline is the fastest
at ~1000 chunks per second but has the lowest
F1 score. Measurements were conducted using an
Nvidia Tesla P100 GPU and an Intel Xeon Gold
6132 CPU @ 3.700GHz.

Model URL URL&C Chunks/sec
Multiling. BERT-Base  0.224 0.196 59
XLM-RoBERTa-Base 0.213 0.228 63
XLM-RoBERTa-Large 0.216 0.287 20
German BERT-Base 0.195 0.282 67
GELECTRA-Large 0.228 0.430 19
GELECTRA-Base 0.066 0.256 63
GBERT-Large 0.254 0.228 19
GBERT-Base 0.169 0.297 63
SVM (Baseline) 0.022 0.027 1000

Table 6: Average F1 scores on the complete test set over
the three topics and inference throughput (chunks/sec)
averaged over 5 runs on the unbalanced test set.

5.2 Zero- and Few-shot Results

Our results demonstrate that zero-shot and few-shot
methods deliver good performance (see Table 5).
The best zero-shot model, determined by averag-
ing the F1 scores across the three topics, is Vicuna
7b, which achieves an average F1 score of 0.930.
The overall best model is Vicuna 13b with few-shot
and random sampling of task demonstrators, which
achieves an average F1 score of 0.970. For sam-
pling task demonstrators, random and random bal-
anced sampling strategies work better than KNN-
based sampling. However, few-shot classification
remains consistently inferior to fine-tuning, which
is therefore the preferred approach for achieving
optimal results if labeled data is available.

5.3 Manual Error Analysis

We perform a manual error analysis on the
predictions of the best performing classifier,
GELECTRA-Large with random negative sam-
pling, by randomly sampling 50 misclassified web-
page chunks from both the unbalanced and ex-
tended test sets per topic, yielding 300 chunks in
total. The errors are categorized by type in Table 7
(for a more detailed breakdown, see Appendix E).

In 42 instances, the classifier’s prediction is cor-
rect and the ground truth is incorrect (GT error).
This is not surprising since the extended test set con-
sists primarily of webpages with low-confidence
labels and the manual labeling is URL-based, while
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Error Type Count Example URL

GT error 42 http://sanitygroup.com/
Topic related 85  http://luckyhemp.de
Law related 50  https://buergergeld.org
Unrelated 56  http://gutefrage.net/
Boilerplate 52 -

Content error 15 -

Table 7: Error analysis of 300 misclassified chunks

the classifier analyzes individual chunks within the
scraped content. In 85 instances, webpage chunks
contained very general information pertaining to
the topic but were not truly relevant (topic related).
Examples include pharmacies selling cannabis, on-
line solar panel shops, and energy price comparison
portals. Conversely, in 50 instances, the classi-
fier identified webpages from ministries or institu-
tions discussing other laws as topic-relevant (law
related). Both cases highlight the inherent difficulty
in distinguishing topical information from specific
legal content. Furthermore, we find that the clas-
sifier is sensitive to words like "legal,” "Umwelt"
(environment), and "Verkehr" (transportation), re-
sulting in 56 misclassified cases (unrelated). Ad-
ditionally, in 52 cases, the classifier misclassified
boilerplate chunks, such as navigation elements
or cookie banners, likely because all chunks in-
herit the webpage’s URL-based label (boilerplate).
This caused some chunks to be labeled as topic-
relevant without containing relevant information,
introducing noise to the training dataset. Finally, in
15 cases, web scraping or preprocessing failed to
produce meaningful content, which confused the
classifier (content error). Errors include warnings
about disabled JavaScript, login-protected content,
or encoding issues.

6 Conclusion

We compare the performance of fine-tuned encoder
models against in-context learning strategies for
the classification of topic-related content. Using
only a few hundred positively annotated data points
per topic, we detect content related to three Ger-
man policies in a database of scraped webpages.
The best supervised classifier, GELECTRA-Large,
using URL & content features, achieves an aver-
age F1 score of 0.430 over all topics, performance
varies by topic. It performs well on the children
and cannabis topics but performs suboptimal in
terms of precision for the energy topic.

All fine-tuned models achieve strong perfor-
mance on the high-quality balanced test set, re-

gardless of using URL or content-based features.
However, performance declines substantially on
lower-quality and unbalanced data, with high recall
but lower precision due to more pages being falsely
labeled as topic-related. While recall remains high
across all topics and test sets, precision drops con-
siderably, leading to a substantial number of false
positives, which indicates that the model is overly
sensitive to keywords that are topic-related but also
occur in other contexts. Webpage content proved
to be a strong signal for classification over URL-
based baselines, and classifiers that combined URL
& content-based features perform best. In cases
where content-based analysis is infeasible, URL-
based classifiers can provide an adequate baseline
performance, although the precision-recall tradeoff
in settings with real-world data requires a careful
approach. However, a manual error analysis re-
vealed that the classifiers struggle to distinguish be-
tween weak and strong relations to the topic, with
URL-based labels leading to incorrect associations
of boilerplate texts with the topic. An investigation
of more elaborate chunk pooling and combination
strategies in future work is needed. Additionally,
incorporating loosely topic-related negative exam-
ples into the training data would likely improve
classifier precision by enabling better differentia-
tion between relevant and non-relevant instances.
For instance, online shops that advertise cannabis
or solar panels are relevant to the topic in general
but not in the sense of political policy discussion.

Our evaluation shows high accuracy for zero-
and few-shot prompting without fine-tuning, indi-
cating their potential in data-constrained situations.
Few-shot learning can be viable when runtime is
less critical, but labeled data is expensive. However,
fine-tuning encoder-based models generally yields
better results and should be given preference over
in-context learning for annotating large datasets.

Future Work. It is likely that classifier precision
can be enhanced by filtering out topic-unrelated
chunks and training a content-only classifier to
remove unrelated content. To address the lim-
ited number of positive examples, data augmenta-
tion appears like a fruitful addition to the pipeline.
For in-context learning, advanced prompting meth-
ods such as prompt chaining and chain-of-thought
prompting are likely to enhance LLM reasoning.

152


http://sanitygroup.com/
http://luckyhemp.de
https://buergergeld.org
http://gutefrage.net/frage/chef-zahlt-bar-auf-die-hand-legal

Limitations

URL-based Labeling. Since we generated train-
ing data based on URL-level labeling of websites
as a proxy for content-based labeling for reasons
of feasibility, it is likely that our data (and there-
fore our findings) are biased. While the manual
error analysis indicated that just 14% of errors are
ground-truth errors, this amount is non-negligible.
In settings where resources are available for proper
content-based labeling, it is likely that this error
can be reduced.

Website Chunking. Since we assign URL-level
labels to webpage chunks, it is likely that chunks
in the training data are labeled incorrectly. As de-
scribed in Section 3.2, we split webpage content
into chunks due to the 512-token input limit for our
classifiers, with each chunk inheriting the URL'’s la-
bel. Thus, if a webpage is labeled as topic-relevant,
all chunks receive a positive label, even if some
contain irrelevant text, such as navigation elements
or cookie banners. As a result of this, the model
sometimes associates boilerplate text with the posi-
tive class. The pragmatic solution here is to go with
the times and use models with larger input sizes to
avoid chunking altogether.

Scraping-induced Noise. Another source of
noise stems from the web scraping process. For ex-
ample, our web scraper did not support JavaScript,
causing many webpages to display warnings or
malfunction. In these cases, the URL label remains
positive, indicating topic-related content, but the
scraper failed to retrieve that content, further intro-
ducing noise in the training data. Similar issues
occur with login protected webpages, dynamic con-
tent, cookie banners, YouTube videos, and PDFs.

Ethics Statement

The browsing traces from which we scraped the
web data were provided by Bilendi GmbH, which
hosts a web tracking panel. The company adheres
to EU GDPR regulations, and participants were
fully informed about the data collection process,
including the option to temporarily disable tracking
for privacy reasons. A letter of information was
provided, and consent was requested from all par-
ticipants upon first contact and then thereafter at
each additional contact point. Ethics approval has
been received by the University of Konstanz IRB
under the number IRB23KN02-003/w.
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to enhance clarity and readability, without suggest-
ing new content. GitHub Copilot assisted in coding
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A Data collection

The URLSs forming the basis for the corpus of this
study were obtained as part of a broader project
in which individuals of a commercial web-tracked
panel were invited to participate in an online ex-
periment. Participants (N=1228) were randomly
assigned to one of 3 groups: a control group, and
two intervention groups (both instructed to search
about the policy topics, but only one with a finan-
cial incentive), with weekly instructions to inform
themselves about the three policy topics during a
20-30h window. The visited URLs were recorded
(N=761K), and the content was scraped.

Children. The "Kindergrundsicherung" (basic
child support) policy aims to combat child poverty
by providing a fixed amount, income-dependent
supplement, and educational benefits.®

®https://www.bmfsfj.de/bmfsfj/service/gesetze/gesetz-
zur-einfuehrung-einer-kindergrundsicherung-
und-zur-aenderung-weiterer-bestimmungen-
bundeskindergrundsicherungsgesetz-bkg—-230650
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Energy. The EEG 2023 (Erneuerbare-Energien-
Gesetz, Renewable Energy Sources Act) aims to
increase the share of renewable energies in gross
electricity consumption to at least 80% by 2030.”

Cannabis. The CanG 2023 (Cannabisgesetz,
Cannabis Control Act) will legalize the private cul-
tivation of cannabis by adults for personal use and
collective non-commercial cultivation.®

B URL Annotation Process

During the 20h-30h windows of the experiment,
participants visited ~ 761K URLs comprising
~ 267K quasi-unique URLs (i.e., the sum of the
total unique URLSs per topic). To obtain training
examples, the URL annotation protocol followed a
multi-level strategy:

1. Hostname category: Hostnames (N =
17,207) were classified according to three cat-
egorizations: (1) base categories provided by
the commercial panel (N = 48), and (2) the
simplified categories (/N = 46) and (3) IAB
categories (N = 405) gathered via the Web-
shrinker service. Three researchers (two post-
docs and one research assistant) indicated if
the base and simplified categories were irrel-
evant to the topic, i.e., were unlikely to con-
tain policy-related information; two annota-
tors (one postdoc and one research assistant)
did so for the IAB categories. Only URLs
from unanimously irrelevant categories were
discarded.

2. Hostname: We extracted the unique host-
names corresponding to the remaining URLs
(homepages were excluded). One research
assistant indicated that the hostname was ir-
relevant (i.e., unlikely to contain information
relevant to the topic). If so, the hostname was
discarded. As an exception, the next level
directly included URLSs corresponding to a cu-
rated list of news hostnames (N ~ 700, Stier
et al., 2020) because they are likely to include
topic-related information (so checking those
domains manually is unnecessary).

3. URL: URLSs were sorted into categories (see
Table 2). URLs that fall into the “Other” cat-

"https://www.bundesregierung.de/breg-
de/schwerpunkte/klimaschutz/novelle-eeg-gesetz-2023-
2023972

8https://www.bundesgesundheitsministerium.de/themen/
cannabis/fag-cannabisgesetz

egory were not annotated (14.7%) because
most would require visiting the URL. One of
the authors checked the hostnames and judged
them to be not very likely to contain relevant
information. One annotator indicated if the
remaining URLs were related to the policy
topic.

For the experiments in the study, three annotated
URL categories were excluded: (1) web searches
because the post-hoc scraping would alter the re-
sults the participants encounter, (2) social media
because the content is not accessible (via scraping),
and (3) YouTube because the API was used instead
of web-scraping (and the content does not strictly
correspond to webpages).

In total, 4983 URLs for children, 5782 for en-
ergy, and 4834 for cannabis manually annotated
URLSs were used in this study; only 139, 180, and
76, respectively, were relevant to each topic.

C Distribution of unique URLSs

The distribution of annotated URLs according to
their category and topic is presented in Table 1.
During the multistep annotation process, some cat-
egories, such as social media and web searches, are
discarded before manual analysis due to their un-
likely relevance to the topic (see column "Used").
Categories with high-confidence labels (used = yes)
include URLs with SEO-optimized titles, news
without SEO-optimized titles, Wikipedia, and key-
worded domains, while web searches, social media,
YouTube shorts and videos, and other miscella-
neous URLs have only low-confidence labels (used
=no). The latter categories form the basis of our ex-
tended test set. The URL counts in Table 1 indicate
the total number of URLs annotated. The number
of webpages in our dataset used in our experiments
is lower because cases where content cannot be
retrieved using our web scraper are excluded.
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D Manually-augmented data

Given the scarcity of topic-relevant URLs among
the annotated cases, a research assistant was in-
structed to complement our training dataset using
the Google search engine. Three query terms were
based on how the policy topics were referred to
in the online survey experiment: "kindergrund-
sicherung'", "gesetze zur forderung erneuerbarer
energien”, and “cannabis legalisierung". The pro-

cess was twofold:

1. First, the assistant downloaded approximately
15 non-news results related to the topic among
the top 30, limiting the search until July 31st,
2023.

2. Second, they performed nine monthly-
restricted news searches between November
1st, 2022, and July 31st, 2023, downloading
those relevant to the topic among the top 10
results (top 20 for cannabis).

In total, 77, 83, and 137 webpages were added
for each topic, respectively.

E Manual Error Analysis

In our manual error analysis of GELECTRA-Large
with random negative sampling, we examine 300
misclassified webpage chunks. Identifying these
errors helps us refine labeling, enhance preprocess-
ing, and adjust the model to better distinguish rel-
evant from irrelevant content. See Table 2 for a
detailed breakdown.

This analysis highlights areas for improvement
in our model. For instance, in 52 cases, boilerplate
text (e.g., navigation elements, cookie banners) is
predicted as topic-relevant by the classifier, likely
due to URL-based ground truth labels. The 512-
token input limit necessitates chunking the web-
page content. For URLs with positive labels, all
chunks, sometimes including boilerplate, inherit
the URL’s positive label. This causes the model
to associate boilerplate text with the positive class
during training. Using models with larger input
sizes could mitigate this issue.

Noise from the web scraping process is an-
other concern, as indicated by the 15 examples
in our sample. Our web scraper does not support
JavaScript, leading to errors when retrieving con-
tent from some webpages. This highlights the im-
portance of URL-only classifiers as a fallback.
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URL Category Children Energy Cannabis Details Used

‘Web searches 6723 6374 7869 Identified by query search parameters such as the ~ No
g in google.com/search?g=value

URLs with SEO-optimized title 3713 4476 3947 Identified by hyphenated separation of long strings, Yes
such as example.com/germany-legalises-cannabis

News without SEO-optimized title 498 559 624  Identified using a manually curated list of news  Yes
hostnames, such as example.com

Social Media 469 482 529  Due to GDPR, the provider excludes URLs visited = No
by fewer than 3 people. However, under our re-
quest, they included unique visits to lists of media
and politicians by HBI and BTW17

Wikipedia 208 301 271 Wikipedia titles do not follow SEO standards Yes

YouTube shorts and videos 1656 1433 1875 YouTube API was used to obtain metadata (e.g., No
title and description) for the classification

Keyworded Domains 33 182 106  URLs corresponding to domains that contain com-  Yes
mon keywords identified in the web searches or the
SEO titles, such as example-cannabis-info.com

Other 1822 2750 2711 URLs that does not match any above categories. No

Table 1: Distribution of unique annotated URLs by category and topic. In addition to the number of unique URLSs in
each category, we include methodological details about the categorization.

Error Type

Error Descriptions

Count Example URL

Ground truth error The classifier’s prediction is correct and the

ground truth is incorrect. This is often due to
the Extended test set consisting primarily of
webpage chunks with low-confidence labels
and the manual labeling being URL-based
while the classifier analyzes chunks within
the scraped content.

42 sanitygroup.com,
tecson.de/heizoelpreise.html,

barth-wuppertal.de/warum-eine-neue-

gasheizung-noch-sinn-macht,

kinder-grund-sicherung.de/impressum,

cdu.de/artikel/ganzheitliche-loesungen-

statt-buerokratie

Topic related

Webpage chunks contain general informa-
tion pertaining to the topic but are not truly
relevant. Examples include pharmacies sell-
ing cannabis products, online shops selling
solar panels, and web portals comparing en-
ergy prices.

85 luckyhemp.de,
leafly.de,
solaridee.de,
hwk-stuttgart.de/e-mobilitaet,
umweltbundesamt.de ,
hartz4antrag.de/

Law related

The classifier identifies webpage chunks
from ministries or institutions discussing
other laws as policy-relevant. This high-
lights the difficulty in distinguishing topical
information from specific legal content.

50 landkreisleipzig.de,
hartziv.org,
leipzig.de/umwelt-und-verkehr,
fuehrungszeugnis.bund.de/ffw,
loerrach-landkreis.de/

Unrelated

The classifier is sensitive to words like
"legal,” "Umwelt" (environment), and
"Verkehr" (transportation), leading to mis-
classification of irrelevant webpage chunks.

56 lernstudio-barbarossa.de/regensburg,

biker-boarder.de/cannondale/2824204s.html,
kachelmannwetter.com/de/wetteranalyse/,

swr.de/

Boilerplate

Misclassification of boilerplate chunks, such
as navigation elements or cookie banners,
due to all chunks inheriting the webpage’s
URL-based label. This introduces noise into
the training dataset.

52 -

Content error

Web scraping or preprocessing failures pro-
duce unusable text, confusing the classifier.
Errors include warnings about JavaScript,
login-protected content, or encoding issues.

15 -

Table 2: Categorization of 300 misclassified webpage chunks; sampled from unbalanced and extended test sets
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Abstract

Large Language Models (LLMs) are consid-
ered to have potentially extensive knowledge,
but because their internal processing is black-
boxed, it has been difficult to directly edit
the knowledge held by the LLMs themselves.
To address this issue, a method called local
modification-based knowledge editing has been
developed. This method identifies the knowl-
edge neurons that encode the target knowl-
edge and adjusts the parameters associated with
these neurons to update the knowledge. Knowl-
edge neurons are identified by masking the
o part from sentences representing relational
triplets (s, r, 0), having the LLM predict the
masked part, and observing the LLM’s acti-
vation during the prediction. When the ar-
chitecture is decoder-based, the predicted o
needs to be located at the end of the sentence.
Previous local modification-based knowledge
editing methods for decoder-based models
have assumed SVO languages and faced chal-
lenges when applied to SOV languages such as
Japanese. In this study, we propose a knowl-
edge editing method that eliminates the need
for word order constraints by converting the
input for identifying knowledge neurons into a
question where o is the answer. We conducted
validation experiments on 500 examples and
confirmed that the proposed method is effec-
tive for Japanese, a non-SVO language. We
also applied this method to English, an SVO
language, and demonstrated that it outperforms
conventional methods.

1 Introduction

Large Language Models (LLMs) have made re-
markable progress in recent years and continue to
exhibit significant performance improvements. At
the same time, they have also become increasingly
multilingual, with pre-trained LLMs appearing
not only on Subject-Verb-Object (SVO) languages
such as English (Brown et al., 2020; OpenAl, 2023;
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Figure 1: An example of knowledge representation
using triplets for Shohei Ohtani.

Touvron et al., 2023) and Chinese (Jiao et al., 2023),
but also on Subject-Object-Verb (SOV) languages
such as Japanese (Sugiyama et al., 2020) and Ko-
rean (Ko et al., 2023).

These models have potentially acquired exten-
sive knowledge about various facts by learning
from huge data sets (Petroni et al., 2019; Jiang
et al., 2020; Roberts et al., 2020), which can be
used to generate language. However, several issues
have been pointed out, such as the phenomenon
known as “hallucination,” which generates infor-
mation that differs from the facts, and the inability
to adapt to facts that change over time. To solve
these problems fundamentally, it is necessary to
edit the knowledge held by the model. For exam-
ple, as shown in Fig. 1, in models that are unaware
of the fact that Shohei Ohtani’s team has changed,
the information needs to be edited and the models
updated with the new knowledge.

Various methods have been proposed to update
the knowledge held by the model. One of the these,
local modification-based knowledge editing, is a
method that identifies the neurons in which knowl-
edge is encoded (knowledge neurons) and updates
the knowledge by adjusting those neurons. This
local modification-based method is expected to be
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enable efficient knowledge editing while avoiding
some of the challenges posed by other approaches.

Knowledge neurons are identified by masking
the o part of sentences representing the relational
triplet (s, r, 0), having the LLM predict them, and
observing the activity of the LLM. In the case of
the decoder-based model of the transformer archi-
tecture, the predicate o must be located at the end
of the sentence, which places a restriction on the
word order of these methods. This constraint poses
a challenge when applying these methods to SOV
languages, where the object usually precedes the
verb. As a result, the difference in word order be-
tween SVO and SOV languages makes it difficult
to directly apply existing knowledge editing ap-
proaches to models pre-trained in SOV languages.

In this study, we propose a method to resolve
the word order constraint by converting the input
to the LLM during knowledge neuron identifica-
tion into an interrogative with o as the answer. We
applied the proposed method to both English, an
SVO language, and Japanese, an SOV language,
to determine its effectiveness and investigate the
impact of input format conversion on knowledge
neuron identification. The significance of this re-
search is twofold: we show that our method elim-
inates the word order constraints on knowledge
editing, enabling its application to languages with
various word orders, and we provide insights into
the indirect effect of input format conversion on
the knowledge neuron identification process.

2 Previous Works

Methods such as fine-tuning (Min et al., 2023) and
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020; Ram et al., 2023; Jiang et al., 2023)
are typically used for updating the knowledge of
LLMs. Fine-tuning is effective for general per-
formance improvement, but it has limitations for
specific knowledge editing due to issues such as
computational resource consumption and overfit-
ting to datasets. Furthermore, while fine-tuning
can be useful for teaching the model how to solve
tasks, it is reportedly to be unsuitable for teaching
new knowledge (Gekhman et al., 2024). RAG is
a learning-free method that adds information to
prompts, but it requires additional resources during
inference and has limitations such as the amount of
information constrained by the prompt length (Liu
et al., 2023).

Knowledge editing can be broadly catego-

rized into external memorization-based methods,
global optimization-based methods, and local
modification-based methods (Wang et al., 2023).
External memorization-based methods store new
knowledge in external memory and edit knowledge
without changing the original model parameters
(Mitchell et al., 2022; Murty et al., 2022; Madaan
et al., 2022). There are also methods that store new
knowledge in additional parameters (Dong et al.,
2022; Huang et al., 2023). Global optimization-
based methods include meta-learning (Cheng et al.,
2023) and subspace fine-tuning (Lee et al., 2022;
Zhu et al., 2020). Local modification-based knowl-
edge editing methods aim to update knowledge by
identifying knowledge neurons, which are thought
to encode specific knowledge, and editing them
(Dai et al., 2022). These methods involve two main
steps: locating the knowledge neurons that repre-
sent the knowledge to be edited and editing those
neurons to modify the encoded knowledge. By
directly targeting the specific neurons responsible
for storing a particular piece of knowledge, local
modification-based methods offer a more focused
and efficient approach to knowledge editing com-
pared to other methods.

Existing methods for knowledge localization can
be broadly divided into gradient-based methods and
methods inspired by causal relationships. Gradient-
based methods, such as the one proposed by Dai
et al. (2022), introduced the concept of knowl-
edge neurons and localized them by evaluating
the contribution of each neuron using integrated
gradients (Geva et al., 2021). In contrast, meth-
ods inspired by causal relationships, introduced by
Meng et al. (2022), define knowledge neurons as
the neuron activations within an LLLM that have
the strongest causal effect on predicting specific
factual knowledge. This approach has influenced
the development of knowledge editing algorithms
such as ROME (Meng et al., 2022) and MEMIT
(Meng et al., 2023).

It has been reported that changes in the expres-
sion of the input sentence or the language used
during knowledge neuron identification can lead
to differences in the set of neurons identified as
knowledge neurons (Chen et al., 2024). Since, we
converted the input format in the current study,
which also enables adaptation to SOV languages,
it is necessary to verify the impact of each of these
changes.
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2.1 Rank-One Model Editing (ROME)

ROME, one of the local modification-based meth-
ods, is a knowledge editing approach consisting
of two steps: identifying knowledge neurons (lo-
cating) and editing those neurons (editing) (Meng
et al., 2022). The target model for editing in ROME
is a decoder-based model that adopts the decoder
side of the transformer architecture. ROME relies
on the use of relation triples. A relation triple (s, r,
0) (Nagasawa et al., 2023) consists of a subject s
and an object o entity, as well as a predicate describ-
ing the relation r that holds between the subject and
the object, e.g., (Shohei Ohtani, is a member of the,
Angeles).

2.1.1 Locating

The locating procedure is as follows:

1. Input an incomplete sentence containing (s, r),
and have the model output o. Then, calculate
the output probability of o, p(o|s, r), and the
activation of the hidden neurons.

Add noise to the embedding vector of the to-
kens corresponding to s, and output p(ols, r)
again.

For all hidden neurons, replace the activation
of the hidden neuron with the activation of
the hidden neuron calculated before adding
noise, one by one, and calculate how much
each affects p(o[s, r).

Calculate how much the multilayer perceptron
(MLP) module and attention module within
each block affect p(os, r).

The effect of each neuron on p(ols, r) is defined
as the indirect effect (IE) (Meng et al., 2022), which
is the difference between p(o|s,r) of a model
where one noisy hidden neuron is replaced with
a clean one and p(o|s,r) of a noisy model. Av-
eraging over a sample of statements, we obtain
the average indirect effect (AIE) for each hidden
neuron.

Meng et al. (2022) have shown that the hidden
neurons with high IE are concentrated near the final
token of s and near the output as a result of this
procedure. They also found that the MLP module
contributes to the hidden neurons near the last to-
ken of s, and that the attention module contributes
near the output. We show the results of our own
verification on the left side of Fig. 2.

The MLP module is represented by
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MLP(X) = ReLU(x -W1 + bl) - Wy + by (1)

According to the study by Geva et al. (2021),
each layer of the MLP in the transformer model
functions as a key-value memory. The input to
the MLP acts as a query, the first layer represents
the key, and the second layer represents the value.
Assuming that the key-value plays the role of re-
calling knowledge, the study by Meng et al. (2022)
assumes that the MLP plays the role of storing
knowledge.

On the basis of these findings and the observa-
tion that the hidden neurons near the last subject
token are activated by the MLP module, we con-
sider that the location of knowledge neurons is in
the MLP module located near the last subject token.
This observation was consistent across different
models. Therefore, in the locating process, the
layer where the MLP module with the highest IE
exists can be identified.

2.1.2 Editing

Consider the case of editing from (s, r, 0) to (s, r,
0*) as the setting for editing. Here, the procedure
is to edit the weights of the second layer, which is
thought to represent the value within the identified
MLP module. First, (s, r) is input as in locating.
Then, the value mapped from the key correspond-
ing to (s, r) is replaced with the value correspond-
ing to o*. A notable point during editing is that
it solves an optimization problem that does not af-
fect other knowledge. In other words, it iteratively
edits knowledge by setting a constraint condition
to maximize p(o*|s,r) while not affecting other
knowledge. This constraint condition allows for
updating only the target knowledge while preserv-
ing other knowledge. Furthermore, the number of
iterative steps set for editing influences p(o*|s, r)
and the impact on other knowledge.

3 Proposed Method

Decoder-based models are constrained by the word
order due to the architecture of the model being han-
dled and the locating method. In locating, a method
is used where an incomplete sentence containing (s,
r) is input, and o is output in a way that follows the
incomplete sentence. Due to the constraints of this
architecture, in order to output o, the information
of (s, r) needs to be included beforehand, which
strongly influences the word order. Particularly in



Table 1: Example of input format conversion.

ROME
Proposed

“Shohei Ohtani is a member of the”
“Where does Shohei Ohtani belong to?”

Table 2: Example of known facts dataset.

Subject Windows Media Player
Prompt “Windows Media Player is developed by”
Attribute  Microsoft

SOV languages like Japanese, r tends to be located
at the end of the sentence, so there is a tendency
for information to be insufficient.

To solve this problem, we propose a method that
can handle input sentences where r follows o by
using an interrogative complete sentence with o
as the answer as input and obtaining o as output.
In this method, since the sentence is completed
in the input, locating can be performed without
being affected by word order. Table 1 shows spe-
cific examples. Similarly, editing can be performed
without being affected by word order by converting
(s, r) for outputting o into an interrogative complete
sentence.

Note that the proposed method cannot fully com-
plete the locating operation simply by changing
the input sentence format. In ROME, for exam-
ple, since the input sentences end with phrases like
“~ of” or “~ in,” the word that the LLM outputs
following the input is likely to be the expected o.
Therefore, locating can be performed by directly
observing the generation probability of the output
word. In the proposed method, since the input sen-
tence ends with “~?,” the answer is output as a
sentence, and the word output following the input
is less likely to be the expected o.

To solve these problems in the proposed method,
instead of observing the generation probability of
the word output following the input, we decided to
observe the generation probability of the expected
o among all the probabilities assigned to all vocab-
ularies calculated when outputting the continuation
of the input. This enables the proposed method to
identify the activation related to a specific (s, r, 0).

4 Experimental Setup
4.1 Datasets

Using 500 instances from the known facts dataset,
we utilized the same dataset as Meng et al. (2022).
From this dataset, we extracted the “subject,”
“prompt,” and “attribute” to construct (s, r, 0). Spe-
cific examples of each are shown in Table 2. Ad-

ditionally, since the known facts dataset does not
include o*, which corresponds to the edited object,
we manually added it for the editing experiments.
This dataset is referred to as dataset_1.

Using the OpenAl API, we implemented GPT-4
(OpenAl, 2023) to convert the prompts in dataset_1
into interrogative sentences, creating dataset_2. We
then translated dataset_2 into Japanese using GPT-
4, resulting in dataset_3.

Upon manually inspecting all 500 instances of
dataset_2 for distortion in meaning, we found the
overall quality to be excellent. Similarly, a manual
inspection of all 500 instances of dataset_3 showed
no distortion in meaning. However, roughly 10%
of the data had proper nouns left in English instead
of being translated into Japanese.

4.2 Experimental Overview

We compared the results of locating using ROME
with dataset_1 and the proposed method with
dataset_2 on the English LLM EleutherAl/gpt-
j-6b'. Additionally, we performed editing with
a fixed number of 20 steps and compared the
p(0*|s, r) after editing for each method.

Next, we performed locating in Japanese us-
ing the proposed method on the Japanese LLM
rinna/japanese-gpt-neox-3.6b” with dataset_3. We
performed editing on 500 instances with a fixed
number of seven steps and counted the percentage
of data where the output changed as expected.

5 Results and Discussion

5.1 Locating for English LLM

Figure 2 shows the average indirect effect (AIE)
and 95% confidence interval for each token posi-
tion due to each neuron’s activation in each layer
of the English LLM. The figure displays the AIE
for the hidden neuron, MLP module, and atten-
tion module in both ROME and the proposed
method. From top to bottom, it represents the AIE
of each neuron’s activation at the “First subject
token,” “Middle subject tokens,” “Last subject to-
ken,” “First subsequent token,” “Further tokens,”
and “Last token” positions.

Explaining the “input example” in the figure us-
ing the left side as an example, when observing
the probability of generating “Angels” given the
input “Shohei Ohtani is a member of the” using

1https://huggingface.co/EleutherAI/gpt—j—6b
2https://huggingface.co/rinna/
japanese-gpt-neox-3.6b
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the Eleuther Al/gpt-j-6b tokenizer, “sh” is the “First
subject token,” “ohei Oht” are the “Middle subject
tokens,” “ani” is the “Last subject token,” “is” is
the “First subsequent token,” “a member of” are
the “Further tokens,” and “the” is the “Last token.”

Overall, the AIE trends are mostly consistent
between ROME and the proposed method. Among
these, the “Last token” position and the “Last sub-
ject token” position are considered the most im-
portant. At the “Last token” position, we observe
that the AIE of the hidden neuron and the attention
module are high in the later layers. Furthermore, at
the “Last subject token” position, which is crucial
for identifying knowledge neurons, the AIE of the
hidden neuron is high in the early layers for both
methods, and the peak positions are almost identi-
cal. Since the layer where the AIE of the hidden
neuron peaks at the “Last subject token” position is
considered to be the knowledge neuron, this result
confirms that the knowledge neurons identified by
both methods are consistent.

On the other hand, looking at the AIE of the hid-
den neuron, unlike ROME, the proposed method

shows a high AIE in the later layers at the “First
subsequent token” position, similar to the “Last to-
ken” position. Additionally, the AIE at the “Further
tokens” position is smaller in the proposed method
compared to ROME. and the proposed method has
a smaller overall variance.

The phenomenon of high AIE in the later lay-
ers at the “First subsequent token” position in the
proposed method can be attributed to the fact that
s often appears near the end of a sentence, and
there are cases where the “First subsequent token”
is also the “Last token,” resulting in a high AIE.
The smaller AIE at the “Further tokens” position
in the proposed method can be attributed to the
fact that s often appears at the end of a sentence,
resulting in many cases where there are no “Further
tokens.” The smaller overall variance in the pro-
posed method will be a subject for future research.

5.2 Editing for English LLM

The histogram of the updated p(o|s,r) when the
number of iterative steps was fixed at 20 and edit-
ing was performed on 500 instances is shown in
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Fig. 3. The percentage of cases where the value
of p(o*|s,r) after editing reached 0.95 or higher
was 21.4% for ROME and 98.6% for the proposed
method, thus demonstrating a performance im-
provement in the English text examples. Addition-
ally, the mean was 0.389 for ROME and 0.993 for
the proposed method, while the variance was 0.154
for ROME and 0.00111 for the proposed method.

Observing the updated p(o*|s, r) sequentially,
we can see that ROME also managed to edit the
first few instances close to 1. However, as the num-
ber of edits increased, the p(o*|s, r) after editing
decreased. This phenomenon is presumably due to
the strong influence of the editing history.

We should point out that there is an improved
method called MEMIT (Meng et al., 2023) that
supports editing multiple pieces of knowledge. The
main difference is that while ROME edits only
one layer, MEMIT edits multiple layers, and it
is compatible with the proposed method. Using
MEMIT for editing will be a subject for future
research. For reference, we present the changes in
the output text when editing is performed using the
example in Fig. 1 in Appendix A.

5.3 Locating for Japanese LLM

Figure 4 shows the average indirect effect (AIE)
and 95% confidence interval for each token posi-
tion due to each neuron’s activation in each layer
of the Japanese LLM using the proposed method.
Focusing on the last subject token position and last

token position, we can see that the trends of in-
crease and decrease are similar to the results of
previous studies. However, in the MLP module at
the last subject token position, unlike the results
of previous studies, we observed that the values
become negative in the later layers. The values at
the middle subject tokens position are extremely
small, and the overall results are flat. Although the
values are negative, their absolute values are larger
than those of other token positions, indicating a
significant effect on the output. Furthermore, the
values are mostly constant regardless of the layer.

The phenomenon of the AIE becoming negative
in the later layers of the MLP module at the last
subject token position suggests that the model may
recall knowledge that seems to be the answer in
the early layers and considers other possibilities
in the later layers. The reason for the extremely
small values at the middle subject tokens position
requires further investigation. Additionally, a pos-
sible reason for the overall flat results is perplexity.
Usually, a candidate word for the output is assigned
a significantly higher probability compared to other
vocabulary words. In the case of ROME, it is pos-
sible to place o as the natural output in context, so
p(ols, r) tends to be assigned a higher probability
compared to other words. On the other hand, in
the proposed method, p(o|s, r) is measured with
input-output pairs that ignore the naturalness of
the sentence, so p(ols,r) is less likely to be as-
signed a high probability compared to other words.
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Therefore, in the proposed method, the original
probability is low, and the indirect effect (IE) rep-
resenting the change in probability also tends to be
relatively small, resulting in mostly flat results.
Finally, the results of this study may also be
influenced by the quality degradation of the dataset.

5.4 Editing for Japanese LLM

The effectiveness of locating for the Japanese LLM
is evaluated through editing, as comparative verifi-
cation is not possible. When the number of steps
was fixed at seven and editing was performed using
dataset_3, we confirmed that the output changed
as expected in 27% of the cases. Although this
experiment was conducted with a fixed number of
steps for all data, we can expect further improve-
ment by adjusting the number of steps individually.
Additionally, the difficulty of editing may vary de-
pending on how much the LLM already knows
about the knowledge it is updating, indicating the
need for further investigation.

As a specific example, we examine the changes
in output using the example in Fig. 1. Although
all inputs to and outputs from the Japanese LLM
are in Japanese, the following examples are pre-
sented in English translation. The locating result
before editing, where “Shohei Ohtani” is a member
of the “Angels,” is shown in Fig. 5. The output
of the Japanese LLM before editing is shown in
Fig. 6, and the output after editing the Japanese
LLM knowledge to change “Shohei Ohtani” to be
a member of the “Dodgers” is shown in Fig. 7 (all
translated into English). The input used for confir-
mation was “Shohei Ohtani.” As seen in Fig. 7, the
output related to “Angels” before editing changed
to output related to “Dodgers” after editing.

However, when editing the Japanese LLM using
the proposed method, we observed that the edit-

ing process had a detrimental effect on the LLM,
such as an increased repetitive output after editing.
The reason for the model corruption is presumably
that, despite not being able to obtain the desired
o* from the first output following the input of the
proposed method, the model was forcibly updated
in an unnatural way by focusing on o* and mak-
ing p(o*|s, r) large, resulting in model corruption.
As a countermeasure, adjustments were made to
the number of steps to avoid making p(o*|s, r) too
large, which reduced the adverse effects on the
model. Nevertheless, the appropriate number of
steps varies depending on the data, resulting in a
heuristic approach.

Overall, our results demonstrate that the editing
and the preceding locating of the proposed method
for the Japanese LLM were effective. However,
we also found that careful adjustments are neces-
sary during editing to avoid adversely affecting
the model. The future challenge is how to fur-
ther improve the editing method and enable stable
knowledge updates.

6 Conclusion

In this paper, we proposed a new method for identi-
fying knowledge neurons. This method eliminates
the conventional constraints and enables flexible
locating regardless of whether the language is SVO
or not.

First, to verify the effectiveness of the proposed
method, we conducted a comparative experiment
on an English model using ROME and the pro-
posed method. The results showed similar trends
in the AIE between both methods, confirming that
the estimated knowledge neuron positions matched.
In terms of editing, the proposed method demon-
strated a superior performance to ROME.

Next, we conducted experiments on the Japanese
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Shohei Ohtani has been garnering a lot of attention in the Major Leagues, being entrusted with
the cleanup spot for the Angels. Many baseball fans have various thoughts and feelings about
Ohtani, who has been demonstrating tremendous talent since his high school days. Among
those thoughts, Ohtani’s clear desire to be a pitcher, which he has expressed since joining the
Nippon Ham Fighters, has been supported by many baseball fans from the beginning. So, it’s
natural to wonder just how much ability Ohtani possesses as a pitcher. Shohei Ohtani as a
pitcher

Figure 6: Output when “Shohei Ohtani” is entered into the model before editing.

Shohei Ohtani is currently playing as a professional baseball player (pitcher) for the Los
Angeles Dodgers. Last season, he hit 2 home runs. ... He excelled as the ace pitcher of his high
school baseball team. He hit a total of 55 home runs in high school. Last season, he hit 2 home
runs. ... He is currently playing as a professional for the New York Brewers. He hit 2 home
runs last year. Last season, he hit 2 home runs... He is currently playing as a professional for

the Los Angeles Dodgers.

Figure 7: Output when “Shohei Ohtani” is entered into the model after editing the team from “Angels” to “Dodgers.”

language, which is an SOV language. While the lo-
cating of the proposed method for the Japanese
LLM yielded significant results, we found that
careful adjustments are necessary during editing
to avoid adversely affecting the model. In future
work, we aim to enhance the editing methodology
to enable stable knowledge updates. Additionally,
we plan to investigate the reason for the extremely
small values at the middle subject tokens position
in the Japanese LLM and the phenomenon of nega-
tive values in the later layers of the MLP module
at the last subject token position.

We also intend to apply the proposed method to
LLMs in other languages and validate its effective-
ness. Through these efforts, we strive to further
develop knowledge editing techniques and make
them adaptable to diverse languages and word or-
ders.

Limitation
This study has the following limitations:

* Knowledge editing has issues such as the di-
rectionality of editing, where the editing is
not reflected when the subject and object of
the edited knowledge are swapped, and the
ripple effect (Cohen et al., 2023), where re-
lated knowledge is not appropriately changed.
However, this study does not discuss these
issues in detail.

* We used a decoder-based model for our vali-
dation, but we did not investigate other com-
monly utilized model architectures such as T5

(Raffel et al., 2019). Exploring these architec-
tures remains a topic for future research.

* To investigate the possibility of knowledge
editing in SOV languages, we took Japanese
as a case study. However, other SOV lan-
guages need to be addressed in future re-
search.
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A Results of Editing the Knowledge of English LLM

To verify the effectiveness of the proposed method in editing, we examine specific output sentences to
confirm if the knowledge has been updated. The number of steps was set to 20, and editing was performed
on an English LLLM using the proposed method. As a specific example for editing, we used the example
in Fig. 1. The input for editing was set as “Where does Shohei Ohtani belong to?”, with s as “Shohei
Ohtani” and o* as “Dodgers.” Additionally, the input for confirmation was set as “Shohei Ohtani.” The
output sentences before and after editing are shown in Fig. 8, where the upper and lower parts depict the
output before and after editing, respectively.

In the upper part, the text highlighted in blue indicates that the team Shohei Ohtani belongs to is
“Angels.” In contrast, in the lower part, the text highlighted in blue shows that the team Shohei Ohtani
belongs to has changed to “Dodgers.” Therefore, we can confirm that the knowledge was updated through
editing in the actual output sentences.

Before editing

Shohei Ohtani is an absolute monster on the mound for the Angels. He has a career 1.89 ERA,
1.05 WHIP, and.971 OPS against. The 23-year-old Japanese star is one of the best pitchers in
the game. Ohtani is the first player in MLB history to hit for a home run, score a run, and throw
a shutout in the same game, and the first to accomplish the feat since Babe Ruth in 1921

After editing

Shohei Ohtani is a baseball star and a Dodgers star. And he’s about to be a Dodger star in a
way the Los Angeles Dodgers have rarely seen before. Dodger manager Dave Roberts said the
Dodgers are “very, very close” to signing outfielder Yasiel Puig. Roberts said Puig is “going to
be a Dodger for a lot of seasons.”

Figure 8: The output before and after editing, using the proposed method, for an English LLM
where Shohei Ohtani’s team was edited from Angels to Dodgers when “Shohei Ohtani” was input.

169



Exploring the Effectiveness and Consistency of Task Selection in
Intermediate-Task Transfer Learning

Pin-Jie Lin' Miaoran Zhang?> Marius Mosbach®* Dietrich Klakow?
'Virginia Tech ?Saarland University, Saarland Informatic Campus
3Mila Quebec Al Institute *McGill University
pinjie@vt.edu

Abstract

Identifying beneficial tasks to transfer from is
a critical step toward successful intermediate-
task transfer learning. In this work, we ex-
periment with 130 source-target task combi-
nations and demonstrate that the transfer per-
formance exhibits severe variance across dif-
ferent source tasks and training seeds, high-
lighting the crucial role of intermediate-task
selection in a broader context. We compare
four representative task selection methods in a
unified setup, focusing on their effectiveness
and consistency. Compared to embedding-free
methods and text embeddings, task embeddings
constructed from fine-tuned weights can better
estimate task transferability by improving task
prediction scores from 2.59% to 3.96%. De-
spite their strong performance, we observe that
the task embeddings do not consistently demon-
strate superiority for tasks requiring reasoning
abilities. Furthermore, we introduce a novel
method that measures pairwise token similarity
using maximum inner product search, leading
to the highest performance in task prediction.
Our findings suggest that token-wise similarity
is better predictive for predicting transferability
compared to averaging weights.'

1 Introduction

Pre-trained language models (PLMs) have become
foundational in the transfer learning paradigm of
natural language processing (NLP) (Devlin et al.,
2019; Brown et al., 2020; Chowdhery et al., 2023).
Intermediate-task transfer learning aims to improve
model performance further by introducing an inter-
mediate stage of supervised training on data-rich
tasks before fine-tuning the target downstream task
(Phang et al., 2018; Pruksachatkun et al., 2020;
Vu et al., 2020). The paradigm has shown to be
particularly useful for improving performance in
resource-constrained scenarios where annotated

'We release the code publicly at https://github.com/uds-
Isv/intermediate-task-selection.

Task embedding
source embedding(QNLI]

1

]
->[

1

1

target embedding [CB

Selecting source task

[ ]

Figure 1: Our proposed method, maximum inner prod-
uct search, is based on pairwise token similarity. Left:
Given a target task (e.g., CB), we obtain the maximum
token-wise similarity scores between the target and the
source tasks for each embedding position. Right: We se-
lect the source task with the highest mean of maximum
similarity scores.

training data is often limited (Prasad et al., 2021;
Vu et al., 2022b).

A crucial aspect of intermediate-task transfer
learning is to select beneficial tasks to transfer
from. However, the costs of searching for the op-
timal intermediate-task, especially with the grow-
ing array of available NLP tasks and the exhaus-
tive process of model fine-tuning (Pruksachatkun
et al., 2020; Vu et al., 2020), are prohibitive. Re-
search on intermediate-task selection mainly pre-
dicts task transferability using task-specific embed-
dings, which condense the task information of a
given target task into a single vector representa-
tion. For example, some works construct task em-
bedding from fine-tuned weights (Vu et al., 2022b;
Zhou et al., 2022) or leverage text embedding (Poth
et al., 2021). More specifically, Poth et al. (2021)
use sentence transformers to encode dataset exam-
ples as text embeddings. The more recent approach
by Vu et al. (2022b) constructs task embeddings
from the weights of soft prompts, which have been
effectively applied in large-scale studies.

Despite their promising results, a systematic
study of the consistency of these task selection
methods is still missing. Specifically, it remains
unclear how consistent these approaches are at
predicting the best source task to transfer from.
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To address this gap, we perform a comprehensive
evaluation of existing task selection methods in
intermediate-task transfer learning. Our research
questions are: (1) Do intermediate-task selection
approaches exhibit consistent performance across
downstream tasks? (2) What are the key ingredients
that result in accurate transferability predictions?

To answer these questions, we perform exper-
iments across 130 intermediate and downstream
task combinations derived from 13 source and 10
target tasks. Our results show that intermediate-
task transfer exhibits significant performance vari-
ance across tasks. Comparing four representative
task selection methods, we find that task embed-
dings based on fine-tuned weights (Vu et al., 2022b)
generally outperform embedding-free and text em-
bedding methods (Poth et al., 2021). However,
we also observe that such task embeddings do not
consistently perform well on tasks requiring high-
level reasoning abilities. Exploring this further, we
revisit the task embedding design and propose a
new construction method based on pairwise token
similarity (see Figure 1), which yields the highest
average task prediction performance of 82.5%. Our
main contributions are as follows:

1. We systematically investigate intermediate-
task transfer learning across 130 intermediate
and downstream task combinations.

2. We examine four representative task selection
methods in a unified setup, including both
embedding-free and embedding-based meth-
ods.

3. We introduce a novel task embedding con-
struction approach based on pairwise token
similarity, which achieves the highest task pre-
diction performance of 82.5% in nDCG score.

4. We provide an in-depth analysis of the impact
of task type and training seed, along with an
exploration into embedding distributions.

2 Related Work

Identifying a beneficial task from a broader set of
source tasks is a crucial step in intermediate-task
transfer learning. Various studies have proposed
methods to estimate task transferability based on
task embeddings.

A foundational approach is Task2Vec (Achille
et al., 2019; Vu et al., 2020), which involves com-
puting the Fisher information matrix and enables to
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measure semantic and taxonomic relationships be-
tween tasks. In contrast, Poth et al. (2021) demon-
strate the effectiveness of text embeddings based
on sentence encoders. The landscape of task selec-
tion approaches has further evolved with the intro-
duction of parameter-efficient fine-tuning (PEFT)
techniques. For instance, Vu et al. (2022b) use soft
prompts to generate task embeddings, demonstrat-
ing the effectiveness of prompt-based embeddings.
Expanding on this, Zhou et al. (2022) investigate
other PEFT methods, including P-tuning (Liu et al.,
2022a,b), fine-tuning only bias terms (Ben Zaken
et al., 2022), and LoRA (Hu et al., 2022). They
construct task embeddings based on the fine-tuned
weights.

Task selection based on neuron activations pro-
vides another perspective by focusing on the pat-
terns of activations within models. Su et al. (2022)
propose model stimulation similarity to identify
beneficial source tasks through the overlap rate
of activations. More recently, Xi et al. (2023) in-
troduce connectivity patterns as task embeddings,
identifying task-specific patterns in deep neural
networks that best represent the tasks.

Our work differs from previous studies by con-
tributing a comparison of existing task selection
methods in a unified setup, specifically focusing
on the effectiveness and consistency of these ap-
proaches.

3 Background

In the following, we introduce the intermediate-
task transfer learning paradigm and motivate our
focus on parameter-efficient fine-tuning.

3.1 Intermediate-Task Transfer Learning

As depicted in Figure 2, intermediate-task training
involves sequentially fine-tuning on a source task
followed by fine-tuning on a target task. By incor-
porating an intermediate stage of supervision (typi-
cally on data-rich tasks), intermediate-task transfer
learning enables knowledge transfer across tasks,
thereby enhancing performance on low-resource
target tasks (Vu et al., 2022b).

More formally, the intermediate-task transfer
learning paradigm can be divided into two stages:
(1) training a PLM fy on a given source task 7T to
obtain the intermediate model f,; (2) training the
intermediate model f, on the target task 7. The
objective function with a cross-entropy loss £ of
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Figure 2: Left: Intermediate-task transfer learning performs sequentially learning on the source task followed by
fine-tuning on the target task. Right: Task selection is a process where given a target task, the goal is to identify the
most beneficial task for transfer by searching over a set of source tasks through its task embedding. The selection
process relies on a similarity metric to measure the transferability of tasks or datasets.

the first stage is defined as follows:

0" = argmin L, (fy). (1)
0

Here, the source task T is selected based on
a selection criterion using metadata of datasets,
domain similarity, or task similarity. Subsequently,
the intermediate model is trained on the target task:
6" = argmin L, (fy) @)
6/
Note that in Equation 2 the intermediate model
. . . / .
f is parameterized with @ , representing the param-
eters of the model trained on source task T .

3.2 Parameter-Efficient Fine-Tuning via Soft
Prompts

Modern language models often contain billions of
parameters, making sequential fine-tuning and ex-
perimenting with a large number of source and
target task combinations impractical. Recent stud-
ies have explored parameter-efficient fine-tuning
approach through prompt tuning, which involves
learning task-specific soft prompts that allow a
frozen language model to efficiently perform spe-
cific downstream tasks (Lester et al., 2021; Li and
Liang, 2021; Liu et al., 2022a). Unlike discrete
prompts, soft prompts consist of a set of learnable
prompt tokens that are learned through backpropa-
gation and can be applied to various downstream
tasks. This approach has been successfully used to
efficiently adapt large language models in various
scenarios (Qin and Eisner, 2021; Vu et al., 2022a;
Asai et al., 2022).

More recently, researchers have focused on
intermediate-task transfer learning using prompt
tuning, specifically Soft Prompt Transfer (SPoT)
(Vu et al., 2022b). SPoT employs a series of soft
prompt tokens to adapt frozen models to specific

Method DATASET D MODEL f OUTPUT
EMBEDDING-FREE
RANDOM X X -
METADATA
S1ZE v X R
EMBEDDING-BASED
TEXT EMBEDDING
SEMB v v R4
TASK EMBEDDING
FEATURE v v R4

Table 1: An overview of task selection methods. These
task selection methods differ in whether the dataset D
and a model f is used for selection and their output
format. Note that SEMB relies on sentence encoder
models, while FEATURE requires intermediate models
to construct task embeddings.

downstream tasks, making it highly parameter-
efficient for intermediate-task transfer learning.
In this transfer learning procedure, a pre-trained
model is adapted to each task by conditioning on
a set of learnable prompt tokens. Moreover, the
resulting prompts can directly serve as task embed-
dings to assess task transferability.

4 Intermediate-Task Selection Methods

Intermediate-task transfer can improve the perfor-
mance of the target downstream task, but it is com-
putationally infeasible to try out all possible task
combinations, making choosing a beneficial source
task an important problem.

Intermediate-task selection aims to predict task
transferability and retrieve the most beneficial task
from a broad set of available source tasks. This
eliminates the need for exhaustive training and
is more feasible in resource-constrained scenar-
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ios. Here, we compare existing intermediate-task
selection methods which can be categorized into
two groups: embedding-free and embedding-based
methods (see Table 1).

4.1 Embedding-Free Methods

The first group of methods operates without access-
ing any model. They estimate task transferabil-
ity based on certain criteria, such as data size, or
simply perform random selection. These methods
serve as baseline approaches in Poth et al. (2021).

Random selection (RaANpom) This method se-
lects the intermediate-tasks randomly without using
any specific information for the tasks and models.

Data size (S1ze) This method predicts the task
transferability based on the data size, assuming
that larger datasets indicate higher transferability
to model performance.

4.2 Embedding Methods

The second group of methods constructs embed-
dings either using a pre-trained sentence encoder
model or an intermediate model f,. We consider
two such methods:

Sentence embeddings (SEmB) It represents the
text embedding obtained by averaging all sentence
representations on the whole dataset (Poth et al.,
2021). Each sentence representation, denoted as
h.,, is encoded by the encoder model for a given
example x;. These sentence representations are
averaged over the entire dataset: ) 2D % This
method captures linguistic properties of the input
text  for both the source and target tasks, indepen-
dent of the intermediate-task training algorithm.

Prompt similarity (FEATURE) It measures task
similarity based on the similarity between their
task-specific prompts and employs solely fine-
tuned weights to create task embeddings (Vu
et al., 2022b). Let the prompt weights be denoted
as [e1, ea,...en] € RVN*4 consisting of N soft
prompt tokens with d feature dimensions. The
prompt similarity score between two tasks, ¢! and
t2, is defined as the cosine similarity of the average
representations of prompt tokens:

N

N
1 1
sl g2y 1 2
sim(t,t°) = COS(N g € E ej) ()
=1 7=1
where e; and e? represent the prompt token repre-

sentations of the tasks ¢! and #2, and cos denotes the

Name Task [Trainl

source tasks
MNLI NLI 393K
QQpP paragraph detection 364K
QNLI NLI 105K
RECORD QA 101K
) (e semantic similarity 88K
SQUAD QA 88K
DROP QA 77K
SST-2 sentiment analysis 67K
WINOGRANDE  cOmmonsense reasoning 40K
HELLASWAG commonsense reasoning 40K
MULTIRC QA 27K
COSMOSQA commonsense reasoning 25K
RACE QA 25K

target tasks
BooLQ QA 9K
CoLA grammatical acceptability 9K
STS-B semantic similarity 6K
WiIC word sense disambiguation 5K
CR sentiment analysis 4K
MRPC paraphrase detection 4K
RTE NLI 2K
WSC coreference resolution 554
COPA QA 400
CB NLI 250

Table 2: Overview of source and target tasks. For
intermediate-task transfer, we first train on one of the
source tasks and then continually fine-tune on the target
task.

cosine similarity. This method computes the task
embedding, represented as a vector in R?, by aver-
aging the feature values across all prompt tokens.
We refer to this method as FEATURE to emphasize
its focus on capturing task-specific features.

5 Systematic Evaluation of Task Selection
Methods

5.1 Experimental Setup

Datasets. We consider 13 source tasks of various
types, including question answering (QA), natu-
ral language inference (NLI), and sentiment anal-
ysis, among others. We evaluate the transfer per-
formance on 10 target tasks, following the setting
in Vu et al. (2022b), as presented in Table 2. More
details on the datasets are provided in Appendix
Al

Models. For all experiments, we adopt T5 BASE
(Raffel et al., 2020) as our PLM. The pre-trained
weights remain frozen, and only the weights of
the soft prompt tokens are updated. After training,
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these fine-tuned weights are then used to construct
task embeddings and perform soft prompt transfer.

Implementation details. We closely follow the
training configurations outlined in Lester et al.
(2021). We train soft prompts for 30K steps, us-
ing three random seeds (42, 150, 386). We use
N = 100 prompt tokens and initialize the weights
of the prompt tokens from the embeddings of the
top 5K most frequent tokens in the pre-training
data. We use the AdaFactor optimizer (Shazeer and
Stern, 2018) with a linear scheduler. After conduct-
ing prompt tuning, we select the best-performing
checkpoint for prompt transfer. The prompt trans-
fer experiment is conducted with another set of
training seeds (112, 28, 52).

We evaluate the effectiveness of prompt trans-
fer using a relative transfer performance metric,
calculated as follows: w Here, the M;
indicates the model performance with no-transfer
prompt tuning, and M,_,; represents the transfer
performance. The evaluation metric for the model
performance varies according to individual tasks.

5.2 Task Selection Methods and Evaluation

Embedding-based methods. For text em-
beddings, we follow the model choice in Poth
et al. (2021). We use the off-the-shelf encoder
models to derive sentence representations for both
source and target tasks. Specifically, we adopt
Sentence-BERT and Sentence-RoBERTa (Reimers
and Gurevych, 2019) as encoders for SEMB-B and
SEMB-R, respectively.

Selection criterion. We rank the order of
beneficial tasks based on quantitative values from
embedding-free methods. For embedding-based
methods on tasks ¢! and #2, we employ cosine sim-
ilarity using the mapping function A(-) to construct
the task embedding or text embedding for a given
intermediate task. To get the ranking order, we sort
the source tasks based on the score sim(t!,?) =
cos(h(t!), h(t?)) between the source and target
tasks. The ground-truth ranking is obtained by
transferring source tasks to the downstream task
and sorting them based on transfer performance.

Evaluation. We use two metrics® to evaluate
the effectiveness of task selection methods: (1)
Normalized Discounted Cumulative Gain (nDCG)
(Jarvelin and Kekildinen, 2002), a widely accepted
information retrieval measure that evaluates the

2See formal definitions in Appendix A.2.
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Figure 3: Relative transfer performance across ten down-
stream tasks with 390 intermediate-task trained models
(13 source x 10 target tasks x 3 seeds). Each violin
plot illustrates the distribution of performance on the
x-axis, with each dot denoting the relative improvement
or deterioration compared to the no-transfer baseline on
the y-axis. Tasks are arranged in descending order of
the training sample sizes.

overall quality of a ranking, emphasizing the entire
order rather than merely focusing on the rank of
the best source task. The nDCG score ranges from
0 to 1, where 1 presents the exact match with the
ideal order and lower values indicate a lower qual-
ity of ranking. (2) Regret@k (Renggli et al., 2022),
a metric for computational regret, quantifying the
relative performance between the expected perfor-
mance of the top-k selected intermediate-tasks and
the optimal intermediate-task. Lower regret signi-
fies a more effective selection strategy among the
k intermediate models. For each target task, we
evaluate the overall ranking prediction of the 13
source tasks against the ground-truth ranking using
nDCG score. We evaluate the efficacy of the top-k
selected source tasks compared to the ground-truth
selection using Regret@k.

5.3 Results

Intermediate-task transfer exhibits high-
performance variance across tasks. Figure 3
illustrates the relative transfer performance across
10 target tasks, sorted by their training data sizes .
We find that relative transfer performance through
intermediate-task training exhibits significant
variance across tasks, especially for the down-
stream tasks CoLA, RTE, COPA, and CB. This
observation aligns with previous studies showing
significant performance variation across source

tasks (Pruksachatkun et al., 2020; Jiang et al.,

3The detailed transfer performances are presented in Ap-
pendix C.
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CLASSIFICATION M. CHOICE QA ALL

R@1) nDCG? R@I1}, nDCGt R@1] nDCGt |R@1}, nDCG?t
RANDOM 2.18 81.53 2.20 84.52 1.45 86.43 | 2.89 77.89
SIZE 2.10 83.73 1.44 86.01 0.88 90.06 | 2.78 78.00
SEMB-B 1.92 85.21 1.91 86.12 1.21 90.11 2.75 78.23
SEMB-R 1.82 86.51 1.74 86.31 1.12 90.23 2.32 79.26
FEATURE 1.28 87.31 1.67 86.40 1.02 90.70 | 2.04 81.85

Table 3: Comparison of task selection methods on 10 downstream tasks. The nDCG and Regret@1 (R@1) scores
are grouped by the target task category and we report the mean scores for each group. The best scores in each group

are boldfaced.

2023). Additionally, we find that this phenomenon
is particularly pronounced in downstream tasks
with extremely limited labeled data, such as
COPA and CB. In contrast, the relative transfer
performance is more consistent for downstream
tasks that have sufficient training data, like BooLQ
and STS-B. In Appendix B, we show that there
exists a correlation between transfer gains and
training data sizes. These results highlight the
importance of carefully selecting beneficial tasks to
enhance transfer gains, especially in low-resource
scenarios.

Embedding-based selection methods outper-
form embedding-free methods, but the transfer
gains are limited. Table 3 presents results for the
four task selection methods. Embedding-based ap-
proaches show higher task prediction performance
over embedding-free methods, indicating richer in-
formation is obtained from encoded representations
for predicting task transferability. Specifically, FEa-
TURE outperforms all other task selection methods
on average. Despite its strong performance, FEA-
TURE falls short of the simple Size approach in
Regret@]1 for multiple choice (M. CHoICE) and
question answering (QA) tasks. This highlights
the need to further improve task embeddings, es-
pecially for tasks that require reasoning abilities.

In Table 4, we show the eff