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Preface

Research in Natural Language Processing (NLP) has taken a noticeable leap in recent years. The
tremendous growth of information on the web and its easy access has stimulated a large interest in
the field. India, with multiple languages and continuous growth of Indian language content on the
web, makes a fertile ground for NLP research. Moreover, the industry is keenly interested in obtaining
NLP technology for mass use. Internet search companies are increasingly aware of the large market for
processing languages other than English. For example, search capability is needed for content in Indian
and other languages. There is also a need for searching content in multiple languages, and making the
retrieved documents available in the language of the user. As a result, a strong need is being felt for
machine translation to handle this large instantaneous use. Information Extraction, Question Answering
Systems, and Sentiment Analysis are also showing up as other business opportunities.

These needs have resulted in two welcome trends. First, there is a much wider student interest in
getting into NLP at both postgraduate and undergraduate levels. Many students interested in computing
technology are getting interested in natural language technology, and those interested in pursuing
computing research are joining NLP research. Second, the research community in academic institutions
and government funding agencies in India have joined hands to launch consortia projects to develop NLP
products. Each consortium project is a multi-institutional endeavour working with a common software
framework, common language standards, and common technology engines for all the different languages
covered in the consortium. As a result, it has already led to the development of basic tools for multiple
languages that are interoperable for machine translation, cross-lingual search, handwriting recognition,
and OCR.

In this backdrop of increased student interest, greater funding, and most importantly, common standards
and interoperable tools, there has been a spurt in research in NLP on Indian languages whose effects we
have just begun to see. A great number of submissions reflecting good research is a heartening matter.
There is an increasing realization to take advantage of features common to Indian languages in machine
learning. It is a delight to see that such features are not just specific to Indian languages but to a large
number of languages of the world, hitherto ignored. The insights so gained are furthering our linguistic
understanding and will help in technology development for hopefully all languages of the world. For
machine learning and other purposes, linguistically annotated corpora using the common standards have
become available for multiple Indian languages. They have been used for the development of basic
technologies for several languages. A larger set of corpora are expected to be prepared in the near future.

These conference proceedings contain papers selected for presentation in technical sessions of ICON-
2021. We are thankful to our excellent team of reviewers from all over the globe who deserve full
credit for the hard work of reviewing the high-quality submissions with rich technical content. From 204
submissions, 78 papers were selected, 51 long papers, 27 short papers, 2 doctoral consortium papers,
representing a variety of new and interesting developments, covering a wide spectrum of NLP areas and
core linguistics. Besides presentations, the conference also hosted 8 tutorials, 4 workshop, 2 shared tasks,
and 3 system demonstrations.

We are deeply grateful to Prof. Josef van Genabith from DFKI and Saarland University (Germany), Prof.
Philip Resnik from University of Maryland (USA), Prof. Rada Mihalcea from University of Michigan
(USA) and Dr. Louis-Philippe Morency from Carnegie Mellon University (USA) for giving the keynote
lectures at ICON-2021.
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Asutosh Modi (Multimodality), Anoop Kunchukuttan, Karunesh Arora (Machine Translation), Monojit
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Learning in NLP), Vasudeva Varma, Sriparna Saha (Natural Language Text Generation). We also thank
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Abstract

Technical terms may require special handling
when the target audience is bilingual,
depending on the cultural and educational
norms of the society in question. In particular,
certain translation scenarios may require
“term retention” 1i.e. preserving of the
source language technical terms in the target
language output to produce a fluent and
comprehensible  code-switched  sentence.
We show that a standard transformer-based
machine translation model can be adapted
easily to perform this task with little or no
damage to the general quality of its output.
We present an English-to-Hindi model that is
trained to obey a “retain” signal, i.e. it can
perform the required code-switching on a list
of terms, possibly unseen, provided at runtime.
We perform automatic evaluation using BLEU
as well as F1 metrics on the list of retained
terms; we also collect manual judgments on
the quality of the output sentences.

1 Introduction and Motivation

It is common for bilingual or multilingual speakers
to borrow technical terms from other, usually
high resource, languages into their native language.
This may be for several reasons, e.g. the technical
term in the high resource language may be much
more popular and therefore better understood, or
the required term may simply not exist in the
language in question. This is very common,
for example, in Indian languages, where the
language of education is frequently different from
the regional native language.

We can imagine, therefore, a scenario which
requires the automatic translation of text or speech,
with the constraint that a given list of English
domain words appear untranslated in the Hindi
output. Essentially, this can be seen as a special
case of constrained decoding with a given source-
target terminology. We make the assumption that

*Equal contribution by these authors.

1

the user knows the terms to be retained at run time,
and can provide this information to the system
before translating the sentence.’

2 Previous Work

The idea of constrained decoding has been
recognized as useful in several works (Hokamp
and Liu, 2017; Chatterjee et al., 2017; Hasler et al.,
2018; Dinu et al., 2019; Jon et al., 2021). Usually,
the constraints are in the form of a terminology
list, as in the above works. To our knowledge, this
is the first study on combining this concept with
introducing code-switching® (CS) into the output
for a multilingual educational or technical setting.

3 Approach

We set up an end-to-end supervised learning
scenario aimed at teaching the model to perform
term retention. The basic idea is to train a
machine translation model to obey a ‘“signal”,
that we can then provide at run time on selected
words. It is easy to see that such a model (the
“tagged” model) would be independent of domain
and could in theory perform term retention on
any term for which the signal was provided. We
also train a simple baseline for comparison; the
baseline model sees the same training data as the
tagged model, but does not receive any signal
that would be highlighting the terms to retain.
Therefore, given input at run time, it must rely
on past exposure on the specific terms and their
(non-)translation to perform term retention.

We provide the mentioned signal in the form
of tags i.e. <REW> and </REW> tags (standing

’We do not, however, assume that we have this
information while training, since it would be expensive and
unviable to retrain such a model every time for a new setting
and/or new domain vocabulary. In this study, we work with
English-Hindi MT.

3Linguists sometimes make a difference between the
terms code-switching and code-mixing; in this paper, they are
used interchangeably.
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Source sentence: You need to install these Python libraries.

Term list: Python, libraries

Input to the system: You need to install these <REW> Python </REW> <REW> libraries </REW>
Desired output: 3TTUehI 3 Python libraries @t TATUT AT T1fed

Figure 1: Example input to and desired output from the system

Dataset Total Sentences
sentences with CS
Train 250 700 123 274
Development 10 247 5064
Test seen 5000 5000
Test unseen 768 768
Test w/o CS 500 0

Table 1: Types of datasets. CS Sentences: sentences
with introduced code-switching. “Test seen”: sentences
with terminology that were all seen during the training,
“Test unseen”: sentences with terminology that were
never seen during the training as retained words. Test
w/o CS: sentences with no terminology constraints.

for “retained English word”) to indicate that
the enclosed term shall be retained during the
translation, see Figure 1. This approach can be
used in any type of transformer-based translation
system and therefore can be implemented with
little to no effort in current systems.

4 Synthetic Data Creation

We used HindEnCorp 0.5 (Bojar et al., 2014)
data set and we split it into multiple parts as
seen in Table 1. We adapt pre-existing English-
Hindi parallel data so that it manifests term
retention on the target while remaining coherent
and grammatical. We leverage the fact that our
parallel corpus already contains many instances
of simple transliteration equivalents, such as
names of people, places, organizations, etc. We
thus interpret the target sentence as “retaining”
the transliterated word, while being perfectly
grammatical.*

4.1 Identifying Transliterations

Given the parallel corpus, we need to identify
pairs of transliterated words in each English-Hindi

4 Although more sophisticated approaches to synthetic
code-switched data creation may be better suited for other
tasks, we find that this approach is sufficient for our needs.
This may be because term retention is in fact required to be
performed on similar words i.e. named entities or domain
terms that behave similarly to named entities.

sentence pair. We first find the word level
alignments® in source-target pairs, using GIZA++
(Och and Ney, 2003). Then for each aligned
word pair, we check for transliteration using a
normalized edit distance threshold.® We define our
normalized edit distance as:

edit_distance(s,t)
maz(length(s),length(t))

NED(s,t) =

calculated between the English word and
the Hindi word transliterated into Latin script.’
Eyeballing the resulting pairs, we see that the
alignment step along with this threshold results in
near perfect accuracy. This method gives us a total
0f' 269095 transliteration pairs in the whole corpus.

Once a transliteration pair is identified in the
training corpus, we simply replace the target
side Devanagari word with the Latin-script source
word, resulting in an instance of term retention.
The original sentence pair is no longer used in the
training of the tagged model.

5 Model

We used a transformer-based model (Vaswani
et al., 2017) with vocabulary size of 32000 tokens
and with hyperparameters as described in The
University of Edinburgh’s Neural MT Systems for
WMT17 (Sennrich et al., 2017) for both of our
models. We used MarianMT framework (Junczys-
Dowmunt et al., 2018) to train the models; we let
the model train until the BLEU score (Papineni
et al., 2002) did not improve on the development
set for 5 epochs. We then selected the model with
the highest BLEU score as the model used for later
experiments. The change of BLEU score on the

3The idea is that the target transliterated word must “come
from” or be aligned with the source word, assuming a correct
word alignment.

®We use a Python transliteration tool https://pypi.
org/project/indic-transliteration/

"The threshold was tuned over a small subset of the Xlit-
Crowd: Hindi-English Transliteration Corpus (Khapra et al.,
2014): using this corpus, we found the edit distance between
the English source words and the “true” transliterations which
were back-transliterated into Latin script. For the final
experiment, we used the threshold of 0.5.
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Figure 2: BLEU score on development set per epoch

Model | Seen | Unseen | Without CS
Baseline | 28.7 16.8 22.4
Tagged | 27.2 17.5 21.9

Table 2: BLEU score on test set

development set per epoch is in Figure 2. It can be
seen that the BLEU scores for both of the models
are comparable and they train for a similar number
of epochs.

6 Automatic Evaluation

There are two components of model performance:
* Retention of marked terminology
* Overall coherence and fluency

For the former, we calculate precision, recall,
and F1 over the gold retained set of words and the
set of retained terms in the output. Our evaluation
script compares the system output with the list
of terms that should be untranslated in the given
sentence. Precision is the ratio of term occurrences
in the system output that were anticipated in the
reference, out of all produced Latin terms. Recall
is the ratio of term occurrences produced by the
system out of all term occurrences anticipated by
the reference. For the latter, we use BLEU score.

The BLEU scores on test sets can be seen
in Table 2. The baseline model is slightly
better on the seen test set, while the tagged
approach outperforms the baseline model on the
unseen test set. On the “Without CS” test, the
baseline model still (incorrectly) produces English;
however, while the tagged model does not do this,

Model | Precision | Recall | Micro F1
Baseline 0.43 0.63 0.51
Tagged 0.88 0.88 0.88

Table 3: Retention results on seen test set

Model | Precision | Recall | Micro F1
Baseline 0.08 0.25 0.13
Tagged 0.51 0.85 0.64

Table 4: Retention results on unseen test set

it often produces different and sometimes incorrect
Hindi phrasing for these words as compared
to the reference, resulting in an overall lower
BLEU score. A possible explanation for this
observation is that the tagged model has to learn
to use the given signal at proper places which
can damage its performance. On the other
hand on the unseen dataset, the tagged model
receives explicit information to retain the term
and therefore outperforms the baseline model.
Results for the retention metric can be seen in
Table 3 and Table 4.

It can be seen that the tagged approach
outperforms the baseline model on both the
unseen and seen test set, demonstrating that it
indeed learns to obey the provided signal, instead
of simply relying on previous exposure as the
baseline does.?

7 Manual Evaluation

We also performed a manual evaluation to
complement the BLEU score. This evaluation was
solely for the purpose of judging the quality of
the final output regardless of whether the model
managed to retain the required words or not.

7.1 Design

We provide the annotators with the spoken form of
the candidate translation, rather than asking them
to read the script-mixed output. There are two
reasons for this: (1) we do not want the annotators
to be affected by seeing or not seeing Latin script,
(2) the spoken form is the more natural setting in
which code mixing occurs.

8Note that the drop in performance of the tagged model
in the unseen test F1 score indicates that it is not wholly
independent as yet of the terminology it has been exposed to.



Further, in order to ensure blind evaluation of
the Baseline vs. Tagged system, we needed to
control for the fact that the Tagged system has a
higher tendency to retain words in the Latin script.
Since the user may be unfairly biased one way or
the other when judging between sentences with
different numbers of code-switched words, we
decided to select the test sentences in a controlled
manner, depending on the number and nature of
Latin-spelled (i.e. English) words in the output.

The test set partitions are listed as columns in
Tables 5 and 6: “Same # of En words” is the
group of test sentences where the Baseline and
Tagged translated outputs have the same number
of English terms, thus controlling for bias for or
against a translation simply because it has more
English. In total, there were 5 such sentences each
scored 3 times, so we collected 15 judgements on
this partition. For instance in Table 5, we see
that the tagged model was selected as better by 7
judgements and in 4 cases, it tied with the baseline.
“Same set of En words” takes this a step further:
it is the group of sentences where both model
outputs have exactly the same English words in
them; of course, they may (and do) differ in the
rest of the sentence structure, Hindi wording, etc.
Note that selecting sentences with a comparable
number of terms English in them as we do results
in an inherent advantage for the baseline model:
since the baseline model can code-switch when
it chooses rather than according to an external
signal, it is more likely to choose convenient
situations with globally better translations. This
is the reason for the “Random” test set (the last
column in Tables 5 and 6); i.e. sentences picked
randomly, regardless the output of each system,
which are intended to judge the average quality
of the baseline and tagged against each other,
even though these judgments are vulnerable to the
biases discussed above.

In the manual evaluation, we gave 3 native
Hindi speakers, also fluent in English, the source
text and recordings of the translations. The goal of
the annotation was a three-way judgment: whether
the first translation was better, the second was
better, or both were equivalent in quality.

7.2 Results and Analysis

Our manual test set covers a total of only 26
sentences, split equally between outputs from the
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Same Same Random || >
# of En | set of En
words words
Baseline | 4 5 3 12
Tagged | 7 4 1 12
Equal 4 6 5 15
> | 15 15 9 |39
Table 5: Manual test judgments for seen test set.

Overall, the set contains 13 sentences from the seen
test set, leading to the total of 39 judgments over 3
annotators. For example, we had 3 sentences (and
therefore 9 total judgments) in the randomly selected
group of sentences (“Random”); of these 9 judgments, 4
preferred the baseline model, 1 the tagged model, and 5
judgments saw the baseline and tagged outputs as equal
in terms of overall quality.

Same Same Random || >
# of En | set of En
words words
Baseline | 3 8 14
Tagged | 7 4 13
Equal 5 3 4 12
> 15 15 9 39

Table 6: Manual test judgments for unseen test set. This
test set again contains 13 sentences from the unseen
test set, so a total of 39 judgments over 3 annotators
is collected. The columns have the same meaning as in
Table 5.

seen and unseen test sets;” it is intended more
for giving a qualitative sense of the comparison.
Broadly, the evaluators considered the tagged
outputs roughly comparable to the baseline in
terms of coherence and quality, see Tables 5
and 6. Across both test sets, the Baseline
model outputs were considered better 33% of the
time (26 of 78 judgments), the Tagged model
outputs were considered better 32% of the time
(25 judgments), and the outputs were considered
roughly equivalent in quality in the remaining 35%
of the judgments.
We investigated the following questions:

* Do the models perform better on seen words
than on unseen words?

°This is because of the demanding procedure involving
sentence recordings.



In the manual evaluation, we observed
that the models dip in fluency around the
segments with introduced English words.
For example, there is a lack of syntactic
agreement, or the model loses the thread of
the sentence.

Tagged: *3M1dYch packages ST SITYTI
(*Essential packages will begg removedsg)

In this example, we need the plural inflection
of the verb phrase “GHT SITAMMI” (will be
removed). We see these instances both in the
seen and unseen test sets; however, on the
whole, the models are able to keep track of the
source sentences a little better with the seen
test set.

* Why does tagged do better than baseline in
sentences where the same number of English
words was produced in the output?

The baseline model is worse at retaining
fluency around code-switched words,
especially in the unseen test set. While the
tagged model also shows this tendency, it
manages to translate the shorter instances
correctly. ~ With longer sentences, it is
performing equally bad, especially in the
unseen test set.

The “random” test set is intended to take a look at
the average outputs of the models, not controlled
for the number of English words in them. Here,
the models perform similarly, but users differ in
their preferences regarding the presence of English
words.'? Overall, the qualitative assessment yields
that the tagged model performs on par with the
baseline with respect to fluency, and of course
much better at the retention task.

8 Conclusion

The task of applying terminology constraints while
dealing with code-switched text seems especially
important in current multilingual educational and
other settings. We present a simple technique that
can adapt a vanilla transformer-based MT tool for
performing this task, by synthesizing training data
that exhibits term retention. We demonstrate that
our model performs well on unseen terminology,

0For example, in a sentence that only differs in the fact that
aword is in English in the first sentence and in the Hindi form
in the second sentence, annotators apply their preferences.

and that its general translation quality is not
damaged. Future research should consider using
code-switched parallel corpora, either for training
or fine-tuning, in order to teach the models the
various nuances of natural human code-mixing.
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Abstract

Subword-based neural machine translation
is almost free from out-of-vocabulary
(OOV) words. However, it does not always
work well for composing proper nouns. We
propose a method to use Named Entity
(NE) features with Factored Transformer
for accurate proper noun translation. The
NE features are extracted from NE
recognition on input sentences. Our
experimental results showed the proposed
method  outperformed the baseline
subword-based Transformer in BLEU and
proper noun translation accuracy.

1 Introduction

Recent advances in neural machine translation
(NMT) have made machine translation (MT)
systems useful in practical applications. However,
translation of proper nouns still remains difficult in
spite of its importance in practice. Proper nouns are
sometimes processed as out-of-vocabulary (OOV)
words in MT systems due to the limitation of the
vocabulary size and data sparseness. Approaches
for proper noun translation can be divided roughly
into two approaches: the use of hand-crafted
bilingual lexicon as the external knowledge and the
use of subwords.

The former approach uses a bilingual proper
noun dictionary to translate proper nouns. Okuma
et al (2008) proposed replacement-based proper
noun translation. Their method uses a bilingual
dictionary whose entries are associated with proper
noun classes to replace a proper noun with another
surrogate proper noun that frequently appears in
the training corpus. Another method called
lexically constrained decoder (LCD) (Hokamp et
al., 2017) guarantees that proper nouns are
translated into the target language sentence
constrained by a bilingual dictionary (Chen et al.,
2020, Chousa et al., 2021). It extends the beam
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search algorithm to find the hypothesis that
contains all of the proper nouns (Hokamp et al.,
2017). The dictionary-based approach works well
only if the proper nouns to be translated are
included in the bilingual dictionary and requires
efforts for developing the dictionary.

In NMT, the subword-based approach is widely
used. Sennrich et al (2016) proposed the use of
subwords to decompose a word into shorter units.
The method decreases the number of OOV words
and keeps the translation quality if input sentences
include OOV words. However, the subword-based
NMT does not always work on a proper noun
translation due to wrong compositions of subword
translations.

In this paper, we propose a method for NMT
focusing on the proper noun translation using
Factored Transformer with named entity (NE)
features. The proposed method only uses a parallel
corpus and an NE recognition (NER) model as
external knowledge.

2 Related Work

2.1 Factored NMT

Factored NMT (Garcia-Martinez et al., 2016)
integrates linguistic information into an NMT
decoder. It decomposes morphological and
grammatical features of a word into factors. Jordi
et al. (2019) proposed Factored Transformer as an
extension of Transformer (Vaswani et al., 2017) for

low-resource NMT. The outputs from its subword

and factor embedding layers are combined.

2.2 Named Entity Recognition

NER identifies and classifies proper nouns in a
sentence. Recent studies in NER use neural
networks as well. Huang et al., (2015) used Long
Short-Term Memory (LSTM) and Conditional
Random Field (CRF). Arkhipov et al., (2019) used
BERT (Devlin et al., 2018) for NER. BERT utilizes

Proceedings of the 18th International Conference on Natural Language Processing, pages 7-11
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a multilayer bidirectional transformer encoder
which can learn deep bi-directional representations
and can be fine-tuned for various NLP tasks later.

With respect to named entities, the use of a
class-based language model was proposed to solve
the problem of data sparseness in the field of
automatic speech recognition (ASR) research field
(Yamamoto et al., 1999, 2004). This idea was
extended to MT (Tonoik et al., 2005, Yasuda et al.,
2017). This approach improved the translation
performance for unknown and low-frequency
words by using high-frequency surrogate words in
the same category.

The main focus of this paper is proper noun
translation in the subword-based NMT using
Factored Transformer and NE features from NER
without a bilingual dictionary.

3 Proposed Method

We propose the use of NE features as linguistic
factors of Factored Transformer for accurate
proper noun translation.

3.1 Named Entity Feature Vector

NE features obtained from NER on a source
language sentence are injected into the embedding
or encoder layer, as a factor. We can use two types
of NE features: a one-hot NE vector and an NE
probability distribution vector. We extract the NE
features from an input source language sentence by
the following steps.

1.  Apply word segmentation into an input
source language sentence.

2. Apply subword segmentation onto the
word-segmented input.

3. Apply part-of-speech (POS) tags to the
word-segmented input using a POS tagger.

4. Recognize NE in the POS-tagged input
sentence to obtain one-hot NE vectors or
NE probability distribution vectors.

5. Align those NE feature vectors with the
subwords  composing  corresponding
words.

Here, a one-hot NE vector represents a 1-best NE
category while an NE probability distribution
vector represents the ambiguity of NE categories.

3.2 Factored Transformer Architecture

We propose a Factored Transformer model that
uses two factors: subwords and NE features. We
present two types of NE features and the two model

variants in factor-injecting layers, as shown in

Tnput Tnput
sentence sentence
Named Entity

Named Entity
Feature Extraction Feature Extraction

i i j |
Word NE Feature Word NE Feature
Embedding

Embedding Embedding Embedding
r Sum output of embeddings

2-encoders Factored Transformer (b)

Subword token Subword token

Sum output of embeddings

1-encoder Factored Transformer (a)

Figure 1: 1-encoder (a) and 2-encoders models (b)

1-encoder model (Fig. 1(a)):

Each factor has its own embedding layer. The
embedding vectors are summed up together with
the corresponding positional encoding vector and
sent to the following encoder layer. The rest of the
model remains unchanged from the vanilla
Transformer.

2-encoders model (Fig. 1 (b)):

Each factor has its own encoder in addition to the
embedding layer. The outputs from the encoders
are summed up and used as encoder outputs. The
rest of the model remains unchanged.

4 Experimental Settings

We conducted Japanese-to-English and English-to-
Japanese MT experiments to compare the
performance of the proposed method with a
standard NMT method.

4.1 Named Entity Recognition Model

For the Japanese-to-English experiments, we used
an NER model based on a pre-trained BERT model
and fine-tuned it using Japanese NER training data
generated by using the method presented by Takai
et al., (2018). Table 1 shows the detailed parameter
settings of the NER model.

parameter | mini epoch | optimizer
batch size
BERT-NER | 32 4 Adam

Table 1: Detail of NER Hyperparameter



For the English-to-Japanese experiments, we used
the NER module of Stanza®. In the experiments,
the Japanese NER model had 33 categories, and the
English NER model had 77 categories.

As a bilingual corpus of NER training data on
automatic construction method (Takai et al., 2018)
in Japanese-to-English experiments, we used 10
million Japanese and English part sentences of
JParaCrawl. We extracted sentence pairs including
proper nouns by using tagger and POS. Here, we
used Sudachi? for Japanese morphological analysis
to find proper nouns. We chose 1,000 sentence
pairs containing proper nouns for the NER
training, based on the sentence pair scores
(Morishita et al., 2020).

4.2 MT Models

We used Transformer and Factored Transformer
models for NMT, with 6-layer encoders and
decoders. The configurations of the models and
their training were mostly the same as those of the
vanilla Transformer, but we used different settings
on the hyperparameters as shown in the following
Table 2.

directions | max token size | max epoch
J-E 7,300 60
E-J 7,300 33

Table 2: Details of NMT hyperparameters

We used SentencePiece (Kudo et al., 2018) with a
subword unigram model for the subword
tokenization. We used Sudachi and Moses?® as
Japanese and English POS taggers.

4.3 Training and Dev. Data for MT Models

Details of the corpus for the NMT models are
shown in Table 3. For the Japanese-to-English
experiments, we used a part of 10 million
Japanese-to-English sentence pairs in JParaCrawl
(Morishita et al., 2020) for the training of the NMT
models. We chose 160,000 sentence pairs that
contain proper nouns, have sentence pair scores
higher than 0.786, and shorter than 250 subwords.
For the English-to-Japanese experiments, we used
all the 10 million sentence pairs in JParaCrawl as a
training data set due to the effectiveness of the
different conditions from the Japanese-to-English
one: language pairs and amount of training data.

1

http://nip.stanford.edu/software/stanza/1.2.2/en/ner/on
tonotes.pt

WMT 2020 development set* was used as the
development set for all the NMT models.

direc | # of | # of | # of uniq
tion sentences | subwords | subwords
Train | J-E | 159,888 5,318,140 10,073
Dev 10,000 333,933 9,941
Train | E-J | 10,116,570 | 332,520,883 | 47,087
8
Dev 1,998 65,649 6,873

Tahla 2: Nataile nf ~rArniic cizo

4.4  Evaluation Data

Details of the evaluation data are shown in Table 4.
For the Japanese-to-English, we used an
evaluation dataset of 271 sentences containing a
single proper noun. It was collected through field
experiments with taxis in Japan and was translated
manually. The data consisted of conversations
between taxi drivers and travelers. For the English-
to-Japanese task, we used WMT 2020 Test set.

direction | # of | # of | # of uniq
sentences | subwords | subwords

J-E 271 4,258 646

E-J 1,000 32,696 5,171

Table 4: Details of evaluation data size

45 Compared Methods
We compared the following NMT models:

e Transformer (baseline)

e Proposed methods with the combination of
the model architecture and the NE feature
vector representations:

o l-encoder / 2-encoders

o NE one-hot vector / NE probability
distribution vector

4.6 Evaluation metrics

We used BLEU (Papineni et al.,, 2002) as a
translation quality metric. We also evaluated
proper noun translation accuracy (PRPacc); i.e.,
the percentage of proper noun words that correctly
translated over the entire test set.

2 https://github.com/WorksApplications/Sudachi
3 http://www.statmt.org/moses/
4 http://www.statmt.org/wmt20/translation-task.html



5 Results

Table 5 shows the results. In Japanese-to-English,
the proposed 1-encoder models were worse than
the Dbaseline, but the 2-encoders models
outperformed the baseline. The results by the 2-
encoder model with NE probability distributions
showed the best performance, outperformed the
baseline by 9.6 points in PRPacc and 2.5 points in
BLEU. In English-to-Japanese, however, the 1-
encoder models outperformed the baseline. The
improvement in BLEU and PRPacc was smaller
than that in Japanese-to-English. This may be due
to the difference in the training data sizes; the
English-to-Japanese MT models were trained
using the 60 times larger parallel corpus. Another
possible reason is the difference in the degrees of
difficulty in these domains; WMT News task
would be more difficult than the taxi conversation.

With respect to proper noun translation, the lack
of a specific treatment of proper noun translation in
the baseline resulted in worse performance than the
proposed method. Translation examples are shown
in Table 5. The 2-encoders models worked well on
two types of proper nouns: the non-compositional
proper noun of Table 6 (1), and the combination
with proper nouns and general noun of Table 6 (2).
This result can be assumed that the factor of NE
feature vector directly works on the proper noun
translation better in the near decoder.

As shown in Table 6, 2-encoders with NE
probability distributions have better performance
than 2-encoders with NE one-hot vector
performance. Expression of the ambiguity of
proper nouns in the NE probability distributions

method influent on not only proper noun
translation but also the surrounding words of a
proper noun.

NMT NE Feature | PRPacc(%) BLEU
Model JE |[EJ |JA |EJ
vanilla

(baseline) - 56.1 | 465 | 114 | 175
1-encoder 432 | 50.1 | 10.1 | 18.8

One-hot

2-encoders 63.5 | 475 | 13.8 | 17.8
1-encoder Probability | 53.5 | 49.5 | 109 | 184
2-encoders | distributions | 657 | 46.7 | 13.8 | 17.6

Table 5:Proper noun accuracy and BLEU
in J-E task / E-J task

6 Conclusions

We proposed a method to enhance accurate proper
noun translation using subword-based NMT by
Factored-Transformer and NE features. The NE
feature vectors are injected into Factored
Transformer model as factors together with
subwords. In the Japanese-to-English experiments
using a small bilingual training corpus, the
proposed method using the best NE feature vector
outperformed the baseline sub-word-based
transformer model by more than 9.6 points in
proper noun accuracy and 2.5 points in the BLEU
score. It also showed some improvements in the
English-to-Japanese experiments using a large-
scale bilingual corpus.

In future work, we will work on automatic
clustering of proper nouns instead of given NE
categories.

(1) Input sentence: LD E(CIREIFEAHYET

(Gifu Castle is on top of the mountain.)

vanilla - there are castle on the mountains above the mountains.
1-encoder One-hot mount Huangshan is a mountains above the altitude.
2-encoders there are Gifu Castle on the mountains of the mountains.
1-encoder Probability In the mountains, Gifu Castle is located above the top.
2-encoders distributions | there is Gifu Castle on the top of the mountain.

(2) Inputsentence: CDWIFBEFHIEVELE
(This castle was built by Toyotomi Hideyoshi.)

vanilla - this castle was created by an excellent Japanese castle.
1-encoder One-hot this castle was created by yoshino hideyoshi hideyoshinori.
2-encoders this castle of this castle was created by toyotomi hideyoshi.
1-encoder Probability this castle was created by minister toyotomi hideyoshi.
2-encoders distributions | this castle was created by toyotomi hideyoshi.
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Abstract

Machine Translation is highly impacted by
social biases present in data sets, indicating
that it reflects and amplifies stereotypes. In
this work, we study mitigating gender bias
by jointly learning the translation, the part-of-
speech, and the gender of the target language
with different morphological complexity. This
approach has shown improvements up to 6.8
points in gender accuracy without significantly
impacting the translation quality.

1 Introduction

In recent years, the awareness about the bias
present in Machine Translation (MT) systems has
increased in the scientific community, especially
gender bias. Gender is manifested differently in
languages; gender bias problems occur when trans-
lating between languages with +various levels of
morphology. There is bias when the system tends
to translate according to gender roles, even when
there is no ambiguity (Prates et al., 2020).
Surveys (Sun et al., 2019; Blodgett et al., 2020;
Costa-jussa, 2019; Savoldi et al., 2021) have re-
cently shown the great efforts carried out by sci-
entists towards resolving the problem of gender
bias in NMT. Tagging and additional context ap-
proaches (Vanmassenhove et al., 2018; Moryossef
et al., 2019; Basta et al., 2020) have shown an
improvement in translation accuracy when trans-
lating from English to languages with more com-
plex morphology. Domain adaptation techniques
have proved to impact the performance of trans-
lation in (Saunders and Byrne, 2020). Debiased
pre-trained word embeddings have been leveraged
in (Escudé Font and Costa-jussa, 2019) and have
shown improvement in Spanish translations. Gen-
der bias is mainly attributed to the already present
bias in the data used to train MT systems (Savoldi
et al., 2021; Costa-jussa, 2019). Furthermore, it
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has been shown that models trained on these data
tend to amplify further this bias (Zhao et al., 2018).
In this sense, research done aims to avoid or reduce
this amplification, such as fine-tuning techniques
with gender-balanced dataset corpus (Costa-jussa
and de Jorge, 2020) or annotating the source lan-
guage words of the training data with the gender
of the target language words (Stafanovics et al.,
2020). These techniques have shown promising
results regarding gender accuracy.

In line with reducing the amplification of data,
we propose to obtain a system capable of predict-
ing the part-of-speech (pos) and the gender of the
words of the target language, besides the translation.
We expect that, by having more information about
the output words, the system maintains the qual-
ity of the translation and is able to better predict
the gender based on the context without falling so
much into the stereotype. In general, the proposed
configurations outperformed the baseline NMT sys-
tem on gender prediction accuracy by up to 6.8%
while retaining average translation performance.

2 Bias statement

Nowadays, we live in a more globalized and con-
nected world, which leads society to use MT tools
to communicate with different nationalities. The
fact that standard translators present a gender bias
harms society, helping to perpetuate certain stereo-
types and prejudices. An example is the tendency
of specific systems to generalize the different pro-
fessions carried out by men and women (Prates
et al., 2020). It is significantly more visible when
one tries to translate from a gender-neutral lan-
guage, such as English, to another with grammati-
cal gender, such as Spanish. In the first type, nouns
have no grammatical gender, while in the other
type, there is gender inflection in nouns, adjec-
tives, verbs, etc. Therefore, when translating from

Proceedings of the 18th International Conference on Natural Language Processing, pages 12—17
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English to Spanish, the system uses masculine or
feminine inflections following stereotypes. Such
stereotypical errors occur both when the context
indicates gender explicitly and when it does not.

3 Background

In this section, we review the basics of multilin-
guality and multi-task learning in NMT, as well, as
linguistic features and the framework to evaluate
gender bias in MT. All these methodologies are
later used in our proposed research.

Multilingual NMT. Transformers (Vaswani
et al., 2017) have advanced NMT, giving the
ability to pay more attention to multilingual NMT.
The primary approach behind multilingual is to
have the same model architecture to translate
different language pairs (Firat et al., 2016; Johnson
et al., 2017). Previous studies explore different
design approaches for the model architecture,
either partial sharing with shared encoder (Sen
et al., 2019), shared attention (Firat et al., 2016),
task-specific attention (Blackwood et al., 2018),
shared parameters (Zhu et al., 2020), full model
sharing (Johnson et al., 2017) or independent
encoder-decoders without sharing (Escolano et al.,
2021; Lu et al., 2018). In this paper, we adopt this
architecture without sharing.

Multi-task learning NMT. Multi-task learning
(Caruana, 1997) trains the model on several co-
related tasks. This training can lead to generalized
improved performance and facilitate sharing rep-
resentations (Ruder, 2017). In the NMT context,
injecting linguistic knowledge has been success-
ful when training NMT with related tasks ( POS
tagging, dependency parsing). This linguistic injec-
tion can lead to improving NMT generalization and
translation quality, especially in low-resource sce-
narios (Kiperwasser and Ballesteros, 2018; Zare-
moodi and Haffari, 2018; Eriguchi et al., 2017).
Our work depends on adopting linguistic knowl-
edge through training multi-tasks, besides NMT.
We trained our NMT model with POS prediction
and gender tagging tasks.

Linguistic Features. Different linguistic fea-
tures can be utilized for words’ classification, such
as part-of-speech (POS) in morphology. POS refers
to the lexical category of words, defining different
linguistic categories depending on the shared mor-
phological categories between these words. Uni-
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versal Dependencies (UD)! is a framework for con-
sistent grammar annotation across different human
languages (Nivre et al., 2016). It considers a fixed
list of 17 possible POS tags, e.g., noun, verb, ad-
jective, adverb, and preposition. Furthermore, each
word has morphological features, such as person,
number, and gender. According to UD, depending
on the language, there are four different possibili-
ties for the gender of a word; feminine, masculine,
neuter, and common (non-neuter). In this paper,
we focus on the gender morphological feature of
the words.

Gender Bias Analysis Framework. WinoMT
(Stanovsky et al., 2019) is the first challenge test
set used to evaluate gender bias in MT systems.
The test set consists of 3888 sentences; 1826 male
sentences, 1822 female sentences, and 240 neu-
tral sentences. It is also distributed with 1584
anti-stereotype sentences, 1584 pro-stereotype sen-
tences, and 720 neutral sentences. Each sentence
contains two personal entities where one is a coref-
erent to a pronoun, and a golden gender is spec-
ified for this entity. Three metrics are used for
assessment: accuracy (Acc.), which is measured
by comparing the translated entity with the golden
entity, AG and AS. AG is the difference between
the correctly inflected masculine and feminine en-
tities. AS is the difference between the inflected
genders of the pro-stereotype and anti-stereotype
entities. (Saunders and Byrne, 2020) also propose
M:F, which is the ratio of hypotheses with mascu-
line predictions to those with feminine predictions.
AS can be skewed in low-accuracy systems; thus,
M:F would be easier to interpret. Ideally, the ab-
solute values of AS and AG should be closer to 0,
and M:F should be closer to 1.

4 Proposed methodology

Previous work (Costa-jussa et al., 2020) has shown
that the language-specific multilingual NMT archi-
tecture proposed by (Escolano et al., 2021) out-
performed the universal shared encoder-decoder
architecture (Johnson et al., 2017) on gender bias
evaluations. We chose this language-specific archi-
tecture as the baseline for all our experiments.
Given parallel data for a set of languages L =
l1,12, .., with n languages and data for language
pairs, the architecture consists of n encoders and
n decoders, each of them specific for a single lan-

"https://universaldependencies.org/
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Figure 1: The model architecture, each task has its linear layer, softmax, and loss function

guage. Being [; encoder used for all translation
directions involving [; as source language and /;
decoder for all directions involving [; as target lan-
guage. Using the same encoders and decoders on
several translation directions enforces a common
intermediate representation for all encoders in the
system.

This method relies on parallel data only, with-
out any additional linguistic information. Our pro-
posed modification to this architecture (see Figure
1) adds a new linear projection layers to the de-
coders for each additional tagging task tagy € T
Each task focuses on different linguistic aspects
that may improve gender representation. It is
known that multitasking allows models, by induc-
tive bias (Ruder, 2019), to learn a representation
that contains features useful for all the involved
tasks, improving its generalization capabilities. For
each translation direction, the loss is computed as
follows:

K
L(t7 y/a y) = Lt?“ (y/7 y) + Z Ltag(tlﬁ ta’gk(y))

k=1
(D

Where 3/ are the translation logits, y is the refer-
ence target sentence, Ly, is the cross-entropy loss
for the translation task, ¢ is the set of tagging logits
for each of the K tagging tasks, Lyqq4 is the cross-
entropy loss over each tagging task and tagy(y) is
the tagging function over the reference target.

5 Experimental Framework

In this section, we describe the details about the
data and model parameters involved in our experi-
ments.
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5.1 Data and preprocessing

We have used Europarl dataset as training data
between all 12 possible language pairs between
Spanish, German, English, and French. For each
pair, approximately 2 million sentences were avail-
able, for a total amount of 24 million. As validation
and evaluation data for NMT results, newstest2012
and newstest2013 (Bojar et al., 2013). Only results
with English as the source are provided to match
the Gender Bias evaluation framework. All data
has been preprocessed by applying tokenization,
punctuation normalization, and true-casing using
standard Moses (Koehn et al., 2007) scripts and
tokenized at BPE subword level (Sennrich et al.,
2016) with 32 thousand steps using subword-nmt
framework?.

Linguistic features have been extracted using
the Stanza framework (Qi et al., 2020) at word
level. For split words, a tag is repeated. For Gender
bias evaluation, WinoMT dataset has been used.
All data has been preprocessed following the same
pipeline depicted for NMT.

5.2 Model Parameters

All models are implemented on fairseq’s (Ott et al.,
2019) 3 Transformer (Vaswani et al., 2017) with
6 attention layers on both encoder and decoder,
512 embedding size, 8 attention heads and 2048
feed-forward size. Each translation direction has
approximately 60 million parameters. POS tag and
Gender predictions only account for 8704 and 2048
additional parameters compared to the baseline sys-
tem. All models have been trained using no further
improvement of the validation loss as an early stop-
ping criterion.
https://github.com/rsennrich/

subword—-nmt

*https://github.com/pytorch/fairseq ver-
sion 0.6



‘ en-es ‘ en-fr ‘ en-de ‘ es-en ‘ es-fr ‘ es-de ‘ fr-en ‘ fr-es ‘ fr-de ‘ de-en ‘ de-es ‘ de-fr ‘ Avg ‘

Baseline 2948 | 29.56 | 21.5 | 27.38 | 30.25 | 19.61 | 26.03 | 29.04 | 18.96 | 24.04 | 24.95 | 25.24 | 25.50
+POS 29.06 | 29.27 | 214 | 27.16 | 29.79 | 19.43 | 25.92 | 28.89 | 1891 | 24.24 | 24.84 | 24.99 | 25.32
+Gender 29.38 | 29.56 | 21.81 | 27.11 | 30.05 | 19.84 | 26.13 | 29.09 | 18.99 | 24.07 | 24.86 | 25.16 | 25.50
+POS&Gender | 29.12 | 29.37 | 21.59 | 26.92 | 29.9 | 19.48 | 26.54 | 29.2 | 19.24 | 24.23 | 2491 | 24.96 | 25.45

Table 1: Results in terms of BLEU for different language pairs for baseline, the baseline trained with POS tagging
task, the baseline trained with gender tagging task and the baseline trained with aforementioned tasks together.

Spanish French German
‘ Acct ‘ AG| ‘ AS| ‘ M:E] || Acct ‘ AG| ‘ AS| ‘ M:F] || Acct ‘ AG| ‘ AS| ‘ M:E]
Baseline 57.7 | 151 | 185 | 2.85 || 488 | 23.6 | 95 | 399 || 62.7 | 99 | 124 | 23
+POS 63.7 | 7.8 | 155 | 227 || 51.8 | 175 | 74 | 3.13 || 683 | 3.5 8.8 | 1.749
+Gender 582 | 152 | 7.2 | 297 49 21.6 | 3.8 | 352 | 61.3 | 88 64 | 2.06
+POS&Gender | 64.5 | 7.1 | 13.3 | 2.16 || 548 | 143 | 13.8 | 2.8 653 | 55 8 1.95
Table 2: WinoMT Results for the three languages Spanish, French and German
6 Results Spanish seems to benefit from the POS and Gen-

In this section, we explore the improvements
achieved by multi-task training, whether regarding
the general translation accuracy or the gendered
results.

Translation results. Table 1 show the transla-
tion performance of all proposed configurations.
Looking at their average performance, we observe
that the addition of tagging tasks does not signif-
icantly impact the average performance, with a
difference of less than 0.2 between all systems.

When looking at individual directions, we can
see that training gender tagging task with NMT in
English-to-German has improved. We can argue
that German is a higher morphological language
than English, and the gender tagging task helps
the system inject more knowledge about gender in
German, leading to better translation accuracy, up
to 0.31 for the English-to-German pair compared
to the baseline. Training more than one task seems
to be beneficial when the translation is between
high morphological language pairs like French-to-
Spanish and French-to-German where French, Ger-
man, and Spanish are all gendered high morpho-
logical languages. French-to-English seems to also
benefit from the POS and Gender tagging tasks
together.

WinoMT results. WinoMT helps us investi-
gate how the gender-biased entities and profes-
sions translated. The framework investigates the
translations when English is translated to higher
morphological languages; therefore, we show the
WinoMT results from English to Spanish, German
and French.
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der tagging tasks together, where the accuracy in-
creased by 6.8 over the baseline with a lower dif-
ference between the correct translated masculine
entities and the correct translated feminine entities;
of AG 7.1. This is assured by the lower ratio of
male vs. female predictions (M:F) of 2.16. French
also has better accuracy having both tasks trained
together, with 54.8 accuracy, which increases by six
over the baseline. The AG is also lower in this case,
with a value of 14.3. In both languages, the dif-
ference between stereotyped and non-stereotyped
translations did not improve. The improvements
are more related to the general accuracy.

Multitask training of gender seems to impact
the stereotyped translations in the three languages;
however, the general accuracy was not impacted
that much by training the gender tagging task.

POS tagging also appears to help disambiguation
of gender from English to German, giving higher
gender accuracy reaching 68.3 with a low differ-
ence of male and female correct predictions; AG
of 3.5 and M:F of 1.749.

7 Conclusions

In this paper, we have proposed and analyzed the
use of multi-task learning in multilingual NMT.
Learning linguistic tagging simultaneously as mul-
tilingual helps mitigate gender bias while maintain-
ing the average translation performance over the
tested languages. More than the methodology that
we are proposing, which is simple and effective, we
would like to encourage the community to evaluate
their methodologies not only in terms of translation
quality, but also in terms of social bias mitigation.
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Abstract

We study the role of an essential hyper-
parameter that governs the training of Trans-
formers for neural machine translation in a
low-resource setting: the batch size. Using
theoretical insights and experimental evidence,
we argue against the widespread belief that
batch size should be set as large as allowed by
the memory of the GPUs. We show that in a
low-resource setting, a smaller batch size leads
to higher scores in a shorter training time, and
argue that this is due to better regularization of
the gradients during training.

1 Introduction

Training Transformers for low-resource neural ma-
chine translation (NMT), i.e. when only small par-
allel corpora are available, raises the challenge of
finding optimal hyper-parameters. While several
fixed configurations of the Transformer (Vaswani
et al., 2017) have been empirically validated by the
community, such as ‘Base’ or ‘Big’, the settings
of many other hyper-parameters rely on tips from
practitioners. However, these values are not always
suitable to low-resource settings, and systematic
studies in these settings are rare (Araabi and Monz,
2020; Van Biljon et al., 2020).

In this paper, we show that the best values of
a hyper-parameter that is essential for training,
namely batch size, differ in low-resource settings
from those commonly accepted when larger data
sets are available. We analyze the role of small
batch sizes, inspired by studies in computer vision
(Keskar et al., 2016), and then pinpoint empirically
the optimal trade-off between a high batch size
(for efficiency) and a small one (for regularization).
Although large batch sizes were found to lead to
higher-quality models in experiments with high-
resource NMT (Popel and Bojar, 2018; Xu et al.,
2020), we show here that smaller batch sizes can
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outperform the latter, likely due to a regularizing ef-
fect in the gradient update. Moreover, we show that
this finding is invariant to changes in tokenization
methods.

The paper is organized as follows. In Section 2,
we discuss batch size from a machine learning per-
spective, showing why smaller values of batch size
may act as regularizers. Then, in Section 3, we
review studies of hyper-parameters in NMT. In
Section 4, we present the parameters of our Trans-
former and the data from the WMT 2020 Low-
resource task (Fraser, 2020) and other sources that
we use in our experiments. In Section 5, we pro-
vide empirical evidence that smaller batch sizes are
preferable in low-resource settings.

2 ML Perspective on Batch Size

Machine learning theory argues that performing
back-propagation with large batch sizes leads to
better optimization, because the estimates of the
gradients are more accurate. Conversely, using
small batches during training leads to noisier gradi-
ent estimations, i.e. with a larger variance in com-
parison to the gradient computed over the entire
training set. Still, one advantage of small batch
sizes is that they are more likely to make param-
eters converge towards flatter minima of the loss
(Goodfellow et al., 2016, Chapter 8.1.3), as ex-
plained below. Such flatter minima have better
generalization capacities, i.e. they maintain perfor-
mance when presented with a new test set.

Keskar et al. (2016) define a flat minimizer — as
opposed to a sharp one — as a point in the parameter
space that is a local minimum of the loss function,
and where this function varies slowly in a relatively
large neighborhood. Keskar et al. (2016) point
to the following generalization gap: training with
large batch sizes tends to converge towards sharp
minimizers, which offer poorer generalization ca-
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pacities. Conversely, small batch sizes allow con-
vergence towards flat minimizers, which are likely
to generalize better. Thus, smaller batch sizes have
exploration abilities: the search is more likely to
exit the basins of sharp minimizers, and to tend
towards flat minimizers, from where noise will not
cause them to exit.

Since a sharp minimizer requires high precision
to be described, unlike a flat one, the more noise
there is in the gradient, the more unlikely it is
that the parameters will converge towards a sharp
minimizer. This is precisely the contribution of a
smaller batch size: introduce noise in the gradi-
ent estimation. According to this theoretical view,
above a certain threshold of the batch size, the gen-
eralization capacities of a model deteriorate. The
threshold depends on several hyper-parameters, in-
cluding the batch size. Its role has not been fully
settled yet, with observations and conclusions vary-
ing widely across studies (Dinh et al., 2017; Hoffer
et al., 2017; Goyal et al., 2017; Li et al., 2017;
Kawaguchi et al., 2017). Moreover, these studies
are on image data sets, with fully connected or with
convolutional NNs, which differ substantially from
NMT settings.

3 The Role of Batch Size in Neural MT

Several recent studies in NMT have considered
batch size among other hyper-parameters, but they
have either been in high-resource settings (Popel
and Bojar, 2018; Xu et al., 2020) or have given
only marginal attention to batch size (Sennrich and
Zhang, 2019; Araabi and Monz, 2020).

Popel and Bojar (2018) reported that BLEU
scores increased with batch size (including when
using more GPUs) in a Transformer-based NMT
system, although with diminishing returns, recom-
mending in particular that “batch size should be
set as high as possible”. Their experiments were
performed using mainly two datasets, with respec-
tively 58M and 15M sentence pairs. It thus remains
an open question whether their findings regarding
batch size also apply when much less training data
is available.

Sennrich and Zhang (2019) experimented with a
recurrent network in a low-resource setting and
found that smaller batch sizes were beneficial,
along with other forms of regularization. They
experimented with two batch sizes of 4,000 and
1,000 tokens, and observed improvements with the
latter of 0.30 and 0.04 BLEU points on data sets
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with 5k and 160k sentence pairs, respectively. It
is difficult to predict from these results what the
optimal batch size is for Transformer-based NMT.

Araabi and Monz (2020) studied the role of 15
hyper-parameters of the Transformer, with several
sizes of low-resource datasets. For the largest train-
ing sizes tested (80k and 165k sentence pairs),
larger batch sizes improved performance, with
respectively 8,192 and 12,288 versus 4,096 for
the other sizes. For lower training sizes, smaller
batch sizes did not improve performance, which the
authors explain by Transformer’s need for larger
batches. In our view, an alternative explanation is
the order of optimization of the hyper-parameters
(a grid search in which they optimize one hyper-
parameter at a time): batch size is #12 out of 15,
so by the time several sizes are compared, regular-
ization has already been introduced in the model
by dropouts on words, activation, and layers. Late
optimization of batch size, of warmup steps (#14)
or of learning rate (#15) cannot properly determine
their regularizing effects.

Xu et al. (2020) proposed to compute gradients
while accumulating minibatches, and observed that
increasing batch size stabilizes gradient direction
up to a certain point, after which it starts to fluctu-
ate. They used this criterion to dynamically adjust
batch sizes while training. In their experiments
with large training sets (4.5M and 36M sentence
pairs), their average batch size was around 26k on
two GPUs, and never lower than 7k. Their observa-
tions on the gradient direction as more minibatches
are accumulated are consistent with the findings
of Popel and Bojar (2018) who see diminishing
returns when increasing batch size.

4 Datasets and Systems

We train NMT systems with two low-resource par-
allel corpora, listed in the first two lines of Table 1:
the Upper Sorbian (HSB) to German (DE) training
data of the WMT 2020 Low-Resource Translation
Task (Fraser, 2020) and a low-size excerpt of the
German to English News Commentary v13 (Bojar
etal., 2018), from which we randomly sampled 60k
parallel lines. For the HSB-DE models, we also
use the development and test sets provided by the
WMT 2020 and 2021 Low-Resource Translation
Task (Libovicky and Fraser, 2021), each consisting
of 2k sentences, and for DE-EN we sample a devel-
opment set and a test set from the original corpus,
with 2k sentences each as well. We apply a com-



Dataset Lang. Orig. Filt. A%
WMT?20 Low-res. HSB-DE 60k 59.8k 0.29
News Comm. v13  DE-EN 60k 599k 0.20
~ Sorbian Institute ~ HSB 339k 339k  0.00
Witaj HSB 222k 220k 0.84
Web HSB 134k 121k 9.98
Europarl v8 DE 22M 22M 0.79
News Comm. vl5 DE 422k 411k 2.58
JW300 DE 23M  22M 444
Europarl v3 DE 790k 785k  0.69
Europarl v3 EN 790k 782k  1.07

Table 1: Numbers of lines in the original and filtered
corpora used in our experiments. HSB stands for Upper
Sorbian and A% for the proportion of lines filtered out.
The only parallel corpora used for training NMT are
the first two ones; the other corpora are only used to
train the SentencePiece model.

mon filtering process for all data used: we delete
from all our data the sentences that are not between
2 and 300 words long, with resulting numbers of
lines shown in Table 1.

We build subword vocabularies using the Un-
igram LM model (Sennrich et al., 2016; Kudo,
2018) as implemented in SentencePiece', with the
monolingual corpora from Table 1. We train a
shared model for HSB-DE with a vocabulary of
32k pieces, character coverage of 0.98, nbest=1
and alpha=0. The HSB data adds up to 740k sen-
tences, and we sample 680k sentences from three
DE corpora, and add them to the 60k sentences
from the DE side of the parallel HSB-DE corpus.
To train the SentencePiece model for the DE-EN,
for comparison purposes, we treat German as a
low-resource language, and sample 680k lines of
English and German from Europarl v3 (Tiedemann,
2012), which we combine respectively with the 60k
lines extracted from the DE-EN parallel corpus.

We use the Transformer-Base (Vaswani et al.,
2017) in the implementation provided by Open-
NMT (Klein et al., 2017, 2020), with the parame-
ters given in Appendix A. Unless otherwise speci-
fied, we follow OpenNMT-py’s recommended val-
ues for the hyper-parameters.>

When using several GPUs with gradient accumu-
lation, each GPU processes several batches, which
are then accumulated across all GPUs and used
to update the model at each step. Therefore, the
effective batch size is B x G x A, where B is the
individual batch size, G is the number of GPUs

'"https://github.com/google/
sentencepiece

2https://opennmt .net/OpenNMT-py/
examples/Translation.html
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Figure 1: BLEU scores on the test set for HSB-DE
models trained with different batch sizes.

and A the number of accumulated batches, and
differs from the bat ch_size hyper-parameter B.
We train all models on two GeForce RTX 1080Ti
GPUs with 11 GB of memory each and accumulate
gradients over two minibatches (A = 2), follow-
ing OpenNMT-py’s recommendation. Therefore,
the batch_size parameter is not our effective
batch size, which is four times larger. Through-
out this work, we will refer to batch size B as the
batch_size parameter, and report true epochs,
which we define as computed with the effective
batch size as S x Beg /N, for S training steps,
By effective batch size, and N number of source
tokens in the training set.

Following OpenNMT-py’s recommendations,
we set the Adam hyper-parameters at [
0.9, B2 = 0.998, ¢ = 10~® and apply at each
step a scaling factor of two to Noam’s learning rate
schedule, setting warmup steps to 8k. Translations
are generated with a beam width of seven, with an
ensemble of the last four saved checkpoints. We re-
port BLEU scores (Papineni et al., 2002) obtained
with SacreBLEU (Post, 2018) on detokenized text.

5 Experimental Results

To study the impact of batch sizes in a low-resource
setting, we train various HSB-DE and DE-EN mod-
els for 700 epochs with the following batch sizes:
100, 250, 500, 1,000, 2,500, 5,000, 7,500, 10,000,
and 10,240 (this is the largest one that fits in our
GPU memory).

5.1 NMT Performance

NMT performance on the HSB-DE test set through-
out the training is shown in Figure 1, with BLEU
scores depending on the number of epochs. The
evolution depending on real training time (wall



Batch HSB-DE DE-EN
Size dev test dev test
Xent BLEU chrF TER | Xent BLEU chrF TER | Xent BLEU chrF TER | Xent BLEU chrF TER
500 | 0.03 48.12 71.13 37.35| 0.03 41.53 67.34 43.84| 0.11 37.35 58.04 54.54| 0.11 37.72 58.35 54.60
1,000 | 0.02 49.23 72.07 36.35| 0.02 42.26 67.93 43.16| 0.05 38.03 59.39 52.91| 0.05 38.67 59.68 52.71
2,500 | 0.03 4828 71.63 37.02| 0.03 41.18 67.36 44.02| 0.04 33.83 56.70 56.27| 0.04 35.51 57.76 55.47
5,000 | 0.03 46.99 70.74 38.05| 0.03 40.28 66.62 45.24| 0.05 32.47 55.20 57.88| 0.05 33.97 56.16 57.08
7,500 | 0.03 46.05 70.29 38.87| 0.03 39.10 65.94 46.18| 0.05 32.67 55.99 57.67| 0.05 33.80 56.72 57.21
10,000 | 0.04 44.61 69.19 40.00| 0.04 38.41 65.67 46.45| 0.05 31.84 55.20 58.35| 0.05 33.50 56.14 57.63
10,240 | 0.04 45.59 70.12 39.26| 0.04 38.19 65.39 46.79| 0.06 31.49 55.00 58.65| 0.06 33.03 55.78 58.07

Table 2: Loss and scores for models trained for 700 epochs with various batch sizes for HSB-DE and DE-EN
directions. All differences in BLEU on the dev and test sets are statistically significant at the 95% level, except for

the pairs in similar colors.

time) is similar in terms of rankings. Thus, the fol-
lowing analysis holds whether we train the models
for the same amount of epochs or of hours.

The final scores on the development and test
sets are given in Table 2, sorted by batch sizes. We
provide first the actual loss of the model (‘Xent’ for
cross-entropy), and then three typical NMT scores:
BLEU (Papineni et al., 2002), chrF (Popovié, 2015)
and Translation Error Rate (Snover et al., 2006).
The 100 and 250 batch size models did not reach
BLEU scores significantly above zero, and are not
included among the results in the table.

We test the statistical significance of the differ-
ences between each score and the others, with 95%
confidence, using the paired bootstrap resampling
tool from SacreBLEU (Post, 2018).3 All differ-
ences between higher and lower BLEU scores are
statistically significant, except the pairs highlighted
in similar colors in Table 2.* The best NMT scores,
which are always obtained with a batch size of
1,000, are significantly higher than all the other
ones, including those obtained with the largest pos-
sible batch sizes for our GPU (10,000 or 10,240).
We thus select two values for further experiments:
a batch size of 1,000 as our highest-scoring model,
and one of 10,000 as the maximum allowed by our
GPU memory. A simple ratio of 10 holds between
the two values.

These empirical results are contrary to those
from Popel and Bojar (2018), who observe that
increasing the batch size for Transformer-Base pro-

3github.com/mjpost/sacrebleu with  the
signature  nrefs:1|bs:1000|seed:12345|case:mixed|eff:no
|tok:13a|smooth:exp|version:2.0.0.

“The difference in BLEU between the following pairs is
not significant. For HSB-DE, 2,500 vs. 500, and 10,240 vs.
10,000, on the test set; and 2,500 vs. 500, and 7,500 vs. 10,240
on the dev set. For DE-EN these are 7,500 vs. 5,000, and
10,000 vs. 7,500, on the test set; and 1,000 vs. 500, 5,000 vs.
7,500, and 10,000 vs 10,240, on the dev set.
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duces higher scores, although with diminishing
returns after a certain threshold. We hypothesize
that the main explanation is the difference between
the amounts of training data: in our low-resource
setting, we use 60k sentences, while Popel and Bo-
jar (2018) use 57M sentences. Our findings are
consistent with those of Keskar et al. (2016), who
also observe that the optimal batch size is at the
lower end of the range, on a computer vision task
with convolutional and fully-connected NNs.

5.2 Asymptotic Performance

An alternative explanation for the previous results
is that the learning rate is too small for the larger
batch sizes, which require more time to converge.
To test whether the differences observed above be-
tween small and large batch sizes depend on the
actual training time, we continue training the 1,000
and 10,000 batch size models for HSB-DE and DE-
EN for twice as many epochs as above (1400). The
BLEU scores and their increases with respect to
training for 700 epochs are given in Table 3. The
performance gap (from +3.85 to +3.25 BLEU) be-
tween small and large batch sizes is not overturned
by training the models for much longer.

The scores from our best system (1,000 batch
size, 42.81 BLEU on the test set) are similar to
scores obtained by baselines of the five highest-
scoring teams at the WMT20 Low-resource shared
task on HSB-DE (Fraser, 2020). While the scores
of Scherrer et al. (2020) and Li et al. (2020) are not
comparable due to a different architecture or the use
of unsupervised pre-training, the baseline scores
of Knowles et al. (2020), Libovicky et al. (2020)
and Kvapilikova et al. (2020) are respectively 44.1,
43.4, and 38.7. The first one is higher than our best
BLEU by 1.29, likely due to the use of 43M lines
of CS and DE data for the subword vocabulary, vs.
700k in our case.



Batch HSB-DE DE-EN
size dev test dev test
1,000 49.52 42.81 38.67 39.24
(+0.29)  (+0.55) (+0.64) (+0.57)
" 10,000 4644 3956 3319 3442
(+1.83) (+1.15) (+1.35) (+0.92)

Table 3: BLEU scores for models trained for 1,400
epochs. The scores for 1,000 are significantly higher
(at 95%) than those for 10,000. In parenthesis, the ab-
solute difference with BLEU scores after 700 epochs.

5.3 Invariance with respect to Vocabulary

We additionally perform two comparisons that
show that the above results hold regardless of the
tokenizer and the vocabulary size. First, we test
whether the score difference is preserved with an
unshared SentencePiece vocabulary, i.e. when not
sharing the source (HSB and DE) and the target
(DE and EN) vocabularies.

Second, we train two NMT models for HSB-
DE using a Byte Pair Encoding (BPE) vocabulary
(Sennrich et al., 2016), which we generate using
the learn_bpe. py tool from OpenNMT-py, with
32k merge operations and the remaining parame-
ters at default values. Table 4 shows BLEU scores
on the development sets for batch sizes of 1,000
and 10,000. The previously observed differences
in score between the batch sizes still hold, and we
see that a shared SentencePiece vocabulary leads
to a better NMT system than an unshared or a BPE
one.

Batch size SP unshared BPE
HSB-DE DE-EN HSB-DE
1,000 46.80 35.90 46.21
(-2.43) (-2.13) (-3.02)
© 10,000 41.99 30.09 = 4335
(-2.62) (-1.75) (-1.26)

Table 4: BLEU scores on the dev set for HSB-DE and
DE-EN models trained with SentencePiece (SP) vocab-
ularies not shared between source and target (left) and
BPE subwords (right). The scores for 1,000 are signifi-
cantly higher (at 95%) than those for 10,000. In paren-
thesis, the difference with BLEU scores obtained with
the SP shared vocabulary.

6 Conclusion and Future Work

In this work, we have shown that insights from
computer vision on the regularizing effect of small
batch sizes are also applicable to NMT. Our results,
focused on a low-resource setting, challenge those
of previous NMT studies with large amounts of
training data, and the general belief that batch sizes
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should be as large as they fit in the GPU memory.
We have shown that training with small batch sizes
leads to models that generalize better, and found
the optimal batch size below which performance
degrades.

Future work should explore how the learning
rate must be adjusted depending on the batch size,
and whether a dynamically scheduled combina-
tion of batch size and learning rate can provide
an even better regularizer. For instance, it should
be tested if dynamic batch sizes as proposed by
Xu et al. (2020) can also improve performance in
a low-resource setting, with batch size thresholds
changed to measure an optimal level of noise.
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A Appendix

The hyper-parameters used to train our models are
the following ones:
src_words.min_frequency: 2
tgt_wordsmin_frequency: 2
valid batch_size: 200
max_generator_batches: 2
optim: adam
learning.rate: 2.0
adam_betaz: 0.998
decay-method: noam
accum_count: 2
warmup-steps: 8000
label_smoothing: 0.1

max_grad.-norm: 0
param_init: O
param_init_glorot: true
normalization: tokens
encoder_type: transformer
decoder_type: transformer
position_encoding: true
layers: 6

heads: 8

rnn_size: 512
word_.vec_size: 512

transformer_ff: 2048
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dropout: 0.

batch_size:
batch_type:

1
1000
tokens
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Abstract

A key challenge in Literary Machine
Translation is that the meaning of a
sentence can be different from the sum of
meanings of all the words it possesses. This
poses the problem of requiring large
amounts of consistently labelled training
data across a variety of unsages and
languages. In this paper, we propose that
we can economically train machine
translation models to identify and
paraphrase such sentences by leveraging
the language independent framework of
Sabdavyapara (Function of a Word), from
Literary Sciences in Samskrtam, and its
definition of laksyartha (‘Indicated’
meaning). An Indicated meaning exists
where there is incompatibility among the
literal meanings of the words in a sentence
(irrespective of language). The framework
defines seven categories of Indicated
meaning and their characteristics. As a
pilot, we identified 300 such sentences
from literary and regular usage, labelled
them and trained a 2d Convolutional
Neural Network to categorise a sentence
based on the category of Indicated meaning
and finetuned a T5 to paraphrase them. We
then used these paraphrased sentences as
input into Google Translate and compared
this with Google Translate’s translation
before paraphrasing using BLEU scores
against an expected reference translation.
The BLEU scores improved significantly
with the paraphrasing by the T5 trained on
Indicated meaning sentences.

Keywords: Indicated meaning, Literary
Machine Translation, language independent,
T5%, Convolutional Neural Network, paraphrase.

1 T5 is Google’s state of the art text to text NLP model. T5
stands for Text-To-Text Transfer Transformer
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1 Introduction

Consider a sentence from Rabindranath Tagore’s
Gitanjali “Drunk by the joy of singing, I forget
myself”, and its translation to various languages
using Google Translate?. Refer to Table 1 for
sample translations

Language | Google Translate’s Translation

Hindi |7 % oG % 9 F o7 8
Q3 BN uE W g
gaane ke aanand ke nashe mein dhut
main khud ko bhool jaata hoon

Bengali N NS AN WS A
I TSP @it TR

Gana ga'oyara anandé matala hayé
ami nijeké bhulé ya'i

Kannada 033 FO3RLRVDOT TR,
O B3,y TNTITLS
Haduva santésadinda kudidu, nanu
nannannu maretiddéne

Telugu A e330B08 [&@°h, S0)
T 08 )BT

Padina anandanté tragi, nannu
nénu marcipoétunnanu

Italian Ubriaco dalla gioia di cantare,
dimentico me stesso

German Betrunken von der Freude am
Singen vergesse ich mich selbst

Table 1: Sample translations by Google Translate of
the example sentence "Drunk by the joy of singing |
forget myself”

For the example above, while in some languages
the usage could be appropriate, the translation is
not very clear in quite a few languages. On the
other hand, if we paraphrase the original sentence
to “Overjoyed by singing, I forget myself”, then

2 Google’s publicly available translation engine at
https://translate.google.co.in

Proceedings of the 18th International Conference on Natural Language Processing, pages 25-34
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)



Google Translate’s translation is more consistent
across multiple languages. Refer to Table 2 for
sample translations of the paraphrased sentence

Language | Google Translate’s Translation

Hindi Ma-Td g=t ¥ gH I A
Q3 Py T
gaate-gaate khushee se jhoom uthe
main khud ko bhool gaya

Bengali |9 (M¥ WMo, N
Rt g 1R
Gana geyé anandita, ami nijeke
bhulé ya'i

Kannada | 35023523 BROT
BRENPOTB VO 33348
BB L3
Haduva miulaka harsagonda nanu
nannanng maretiddéne

Telugu PCHEI0 T3° SO° T°e°
DO NOTT, T S0)
INVSTATVL OV
Padatarh dvara cala santosincanu,
nénu nannu maracipdyanu

Italian Felicissimo di  cantare, mi
dimentico di me stesso

German Ubergliicklich ~ vom Singen
vergesse ich mich selbst

There are many such sentences across literary
works where the sum of meanings of all the words
in a given sentence, does not necessarily provide
the meaning of the sentence. In all such cases, an
appropriate paraphrasing should make machine

Table 2 : Sample translations by Google Translate of
the paraphrased sentence "Overjoyed by singing, |
forget myself"

translation more accurate. To train machine
learning models for paraphrasing of such sentences
before translation, we are faced with the challenge
of creating large datasets for training across
different types of usages, figures or speech etc., and
across multiple languages.

Recent related works: Recent research in the
applying machine translation models to literary
works is broadly focused on:

 gaq-SIGH-BIHAT TEH: | vakir-boddhavya-kakiinam

sambandhah. The relationship between speaker, listener, tone.
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e training the models to identify and paraphrase
metaphors to their literal meanings (Jerry Lui,
2020) (Rui Mao, 2018) leveraging word
embeddings

e modifications to existing machine translation
models for classification of consistency,
pronoun resolution, and tone/register error
types to consider context of previous sentences
or even the whole story, to improve quality of
literary machine translation (Matusov, 2019)

e the role of referential cohesion to improve
Literary Machine Translation (Rob Voigt,
2012)

However, to our knowledge, there is lack of a
holistic approach that encompasses a variety of the

challenges presented in Literary Machine
Translation in a manner consistent across
languages.

Our approach: To overcome this challenge, we
seek inspiration from kavyasastra, the Science of
Literary Works / Poetics, in Samskrtam. Various
texts in Samskrtam in this domain, provide
comprehensive and lucid frameworks to
understand literary works. A variety of concepts
discussed in these texts are language independent
as well. Of many such concepts, kavyasastra lays
much importance to a word and its meaning. It
emphasises that a word and its meaning depend on
the speaker, the listener, and the tone®. At times, it
is understood with the context too. This framework
of understanding the meaning is called
Sabdavyapara (as explained in kavyaprakasa) and
it categorises the word and its meaning broadly into
three types?, namely,

e vacakah (dId: - Expressive) word with
vacyarthah (HF«QT?-f: Expressed) meaning or
literal / direct / primary meaning

e laksanikah (S&TOIb: - Indicative) word with
laksyarthah (@ieam: - Indicated meaning)

e vyafjakah (H3®d: - Suggestive) word with
vyangyarthah @W?f: - Suggested)
meaning.

The Indicated meaning from the above
framework provides a very fundamental
categorisation of words which covers a variety of

4 TgTIh] WAT&ITOIp: Rea A TIADB AT | syadvacako
laksanikah $abdotra vyanjakastridha . The words are of 3
types — Expressive, Indicative and Suggestive



figurative usages, metaphors, referential cohesion
and other characteristics. Hence, it provides a more
holistic approach, in comparison to techniques
focusing on metaphors and figures of speech, to
solving some of the key problems in Literary
Machine Translation. We explain the Indicated
meaning, its various types and their characteristics
along with examples in section 2.

The Hypothesis: Our hypothesis is that if we
train a state of the art NLP model to paraphrase
based on the Sabdavyapara framework and then
use a state of the art Machine Translation model to
translate, the translation of Literary works across
languages will be much more meaningful, and
consistent. Moreover, since the framework is
language independent and has a very structured
definition of the various types of Indicated
meaning and their characteristics, we should be
able to achieve a very efficient training with
smaller datasets and consistently across languages.

We adopted a novel approach, based on
Sabdavyapara framework’s  definition  and
characteristics of the Indicated meaning, to
a) Train a 2d Convolutional Neural Network
(CNN2d) to Identify the existence of an
Indicated meaning, in a given sentence
If Indicated meaning is present, then train a
CNN2d to categorise the sentence based on the
type of Indicated meaning, as per the
framework
Leverage the characteristics of the various
types of Indicated meaning defined in the
framework to finetune a Google T5
(Transformer NLP model) to paraphrase the
sentence by elaborating the Indicated meaning
such that the paraphrased sentence can be
translated consistently by a model like Google
Translate.

b)

To do an initial validation of our hypothesis we
created a dataset of 300 sentences from literary
works, Sastra works and common usage®. In
Section 3, we describe the solution we adopted
including the models we trained along with the

5> We picked 300 sentences from a combination of
Rabindranath Tagore’s Gitanjali, kalidasa’s
kumarasambhavam and $astra texts of dhvanyaloka,
kavyaprakasa.

6 ST T-UI - T UTRG TEIHURGETHT TSI
-9 areatdf faRrway: srouriffy arene: | - akanksa-
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results we achieved in our pilot. In section 4, we
conclude and highlight the other use cases of NLP
where the identification and paraphrasing of
Indicated meaning can be applicable. In
Appendices we provide some examples of the
seven categories of Indicated meaning.

2 Sabdavyapara (Function of a Word)
and laksyartha (Indicated meaning)

As stated above, according to Sabdavyapara
framework meanings words convey are
categorised as vacyartha (Expressed meaning),
laksyartha (Indicated meaning) and vyangyartha
(Suggested meaning). While ‘Expressed meaning’
is the straightforward sum of meanings of all the
words in the sentence, in ‘Indicated meaning’ or
‘Suggested meaning’ the meaning of the sentence
is not the sum total of the meanings of all the words
and differ based on the various nuances of
language, local culture etc.,

Expressive: That which denotes the direct
conventional (or dictionary) meaning is the
Expressive word. In ordinary parlance, a word
denotes something by convention of the given
language. Where the conventional denotation is not
known, there is no comprehension of the meaning.
Thus, when the conventional denotation is
apprehended directly, without the intervention of
any other agency, the word is said to be
‘Expressive’ of the denotation or meaning. In a
sentence the words also need to satisfy three®
conditions to be able to express the meaningful
sentence. They need to have ‘mutual requirement’
as in all of them are needed, they need to be
‘compatible’ with each other and there needs to be
‘proximity’ meaning certain words need to be next
to each other. Consider the sentence “The student
is studying mathematics”. It is very clearly
understood what each word is denoting, hence each
word is expressive. Moreover, they satisfy the three
conditions of ‘mutual requirement’, ‘compatibility’
and ‘proximity’; therefore, the sentence is a
meaningful sentence. The meaning of such a
sentence obtained by the meanings of the
‘Expressive’ words is called the ‘Expressed’

yogyata-sannidhivasad vaksyamanasvartipanam
padarthanam samanvaye tatparyartho visesavapuh
apatharthopi vakyarthah When the denotations of different
words become related together though ‘mutual
requirement’, compatibility’ and ‘proximity’ there appears
in the shape of the ‘meaning of the sentence’ which is not
expressed by any single word constituting the sentence.



meaning. It can also be referred to as the ‘Primary’
meaning of the sentence.

Indicative * : When the ‘Primary’ (or
‘Expressed’) meaning does not make sense
(because of incompatibility), another meaning,
which is in close affinity to what the word is
denoting, is implied by the word. Such a meaning
is called the ‘Indicated’ meaning that such a word
is the ‘Indicative’ word in the given sentence.
Consider the sentence “Drunk by the joy of singing,
1 forget myself’. Here when we put together the
‘Primary’ meanings of all the words we see there is
incompatibility as joy is not a physical drink that
one can get drunk on. The word drunk here implies
the meaning overtaken or completely filled with.
Using this implied meaning of the word drunk, we
arrive at the meaning “Overjoyed by singing, I
forget myself”. This is called the ‘Indicated’
meaning and the word drunk is the ‘Indicative’
word in this sentence. This process of implying the
‘Indicated’ meaning is called ‘Indication’. The
‘Indicated’ meaning of such a sentence makes the
import of the sentence much clearer and is also
very easily translatable by a machine learning
model to any other language

Suggestive: Where the ‘Primary’ meaning is
clear, there can also exist a ‘Suggested’ meaning.
Such a word is called the ‘Suggestive’ word. The
‘Suggested’ meaning can also exist along with the
‘Indicated’ meaning. Since the focus of this paper
is on the ‘Indicated’ meaning and its application,
we do not go into the details of this category.

2.1

‘Usage’ and ‘Special Purpose’
Indication 8 :The process of imposing the
‘Indicated’ meaning is done either based on
‘Usage’ or for a ‘Special Purpose’. and as such
these are the 2 categories of ‘Indication’.

Example of ‘Indication’ on the basis of ‘Usage’:
Consider the sentence “Do not beat around the
bush when expressing your viewpoint”. Here the
primary meaning of words ‘do not beat around the
bush’ are incompatible with the words ‘expressing
your viewpoint’. However, it is common usage that
means ‘do not waste time by giving lengthy and

Various types of ‘Indication’

7 TRATSETS TR — mukhyarthabadhe tadyoge - When
there is incompatibility in the Primary meaning and the
other meaning has affinity with the Primary meaning

8 SIEaISY UISHIA - riihito'tha prayojanat - The
Indication is of 2 types, based on Usage and based on
Special Purpose
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cyclical explanations. This ‘Indicated’ meaning
conveys the meaning of the sentence appropriately.
A lot of idioms in English language, for example,
fall into this category of ‘Indication based on
Usage’

Example of ‘Indication’ on the basis of ‘Special
Purpose’: Consider the sentence “Her face had
blooming smiles at the thought of meeting her
lover”. Here the ‘Primary’ meaning of the word
‘blooming” is to be flowering and this is
incompatible with the sense of the sentence which
is describing the expression of a person’s face. The
word ‘blooming’ is implying the ‘Indicated’
meaning in excess / lot of / big, which is in affinity
with its ‘Primary’ meaning. Read with the
‘Indicated’ meaning, the sentence means that “Big
smiles appeared on her face at the thought of
meeting her lover’. An appropriate paraphrased
sentence could be ‘She had big smiles on her face
at the thought of meeting her lover’. Moreover, the
implication of the ‘Indicated’ meaning also has a
‘Special Purpose’ of referring to the beauty,
radiance etc. in an excessive way that appeared on
her face at the thought of meeting her lover.

While ‘Indication’ on the basis of ‘Usage’ has no
further sub-categories, ‘Indication’ on the basis of
‘Special Purpose’ has 6 sub-categories.

Six sub-categories of ‘Indication’ on the basis of
‘Special Purpose’: ‘Indication’ on the basis of
‘Special Purpose’ is further categorised into two®,
namely, ‘Pure’ and ‘Qualitative’ Indications. When
the ‘Indication’ relies upon similarity / similitude it
is called ‘Qualitative’ Indication and when it is
based upon other kinds of relationships (like cause-
effect and not on similarity / similitude) it is called
‘Pure’ Indication.

‘Qualitative’ _Indication: Consider the
sentence “Her eyes are lotus petals”. In this
sentence, the qualities of lotus petals are being
imposed upon the eyes of the person and this is to
show the similarities in their qualities, for example
this lady has big eyes and in the shape of lotus
petals. Here the imposed meaning is the quality of
the lotus petal that is being imposed upon the eyes
of the lady. This is an example of ‘Qualitative’

° ﬂaﬁﬁraﬂﬁmmwm bhedavimau ca

sadrsyatsambandhantarastatha. These 2 are different.
One is by similarity and other by other relationships



Indication. An appropriate paraphrased sentence
could be ‘Her eyes are big and beautiful like lotus
petals’.

Qualitative Indication can be of two types,
namely, ‘Super-imponent Qualitative’ Indication
and ‘Intro-susceptive Qualitative’ Indication,
based on how the imposed qualities and that which
they are being imposed upon are expressed in the
sentence.

1. ‘Super-imponent'® Qualitative’ Indication:
When what is being imposed and that which it is
being imposed upon are mentioned separately in
the sentence it is called a ‘Super-imponent’. The
sentence “Her eyes are lotus petals” is an example
of “‘Super-imponent Qualitative' Indication as what
is being imposed (lotus petals) and that which it is
being imposed upon (eyes) are mentioned
separately. (akin to a simile)

2. ‘Intro-susceptive ' Qualitative’ Indication:
When what is being imposed consumes (takes
within itself) that which it is being imposed up on
it is called ‘Intro-susceptive’. Both are not
mentioned separately in the sentence and only what
is being imposed is mentioned. Considering the
same example of the lady with big and beautiful
eyes, if someone were to look at the lady’s
beautiful eyes and say “They are lotus petals”, then
this becomes an example of ‘Intro-Susceptive
Qualitative’ Indication (akin to a metaphor). Here
that which is being imposed (lotus petals) has
consumed that which it is being imposed upon
(eyes). A paraphrased sentence will be “Her eyes,
which are big and beautiful, appear to be lotus
petals themselves.”

‘Pure™? Indication

‘Pure’ Indication is of four types, namely,
Inclusive Indication, Indicative Indication, Super-
imponent Pure Indication and Intro-susceptive
Pure Indication.

3. ‘Inclusive Pure’ Indication: When the
implication of the ‘Secondary’ meaning is for the
sake of completing the ‘Primary’ meaning itself, it
is called Inclusive Indication. Consider the
sentence “Your pizza is on its way”. Here, the pizza
that has been ordered cannot be travelling on its

10 JRIYTT g TEat faweft fawaRaa | saropanya tu
yatroktau visayl visayastatha . Super-impotent is one where
imposed and that which it is being imposed are stated / said
separately.

1 fAgea: o -a R T 11T |
visayantahkrtenyasmin sa syatsadhyavasanika . That which
the imposed consumes that which it is being imposed upon
is Intro-susceptive
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own, there is an unwritten actor present in the
sentence, the pizza delivery person. The word
pizza without losing its ‘Primary’ meaning is
implying an actor to complete the ‘Primary’
meaning itself. This is ‘Inclusive’ Indication. A
paraphrased sentence elaborating the Indicated
meaning could be “The pizza delivery boy, along
with your pizza, is on his way”

4. ‘Indicative Pure’ Indication: When the
‘Primary’ meaning is replaced by the ‘Secondary’
meaning, it is called Indicative Indication.
Consider the sentence “She jumps to conclusions”.
Here, the Primary meaning of the word jumps is
replaced by as Secondary meaning ‘to form
quickly’. Hence this is an Indicative Indication. A
paraphrased sentence elaborating the Indicated
meaning will be “She forms conclusions very
quickly”

5. Super-imponent Pure Indication: When the
Indication is based upon a relationship like cause-
effect (and not similarity / similitude) between the
imposed and what it is being imposed, and both are
stated separately in the sentence it is ‘Super-
imponent Pure’ indication. Consider the sentence
“Knowledge is power”. Here there is a cause-effect
relationship between Knowledge (that which it is
being imposed upon) and Power (imposed).
Moreover, both are being stated clearly in the
sentence. Hence it is a ‘Super-imponent Pure’
Indication. An appropriate paraphrased sentence
will be “Knowledge gives power”

6. ‘Intro-susceptive Pure’ Indication: This is like
the ‘Super-imponent Pure’ Indication but the
imposed and that which it is being imposed upon
are not stated separately in the sentence. When
someone described a knowledgeable person and
says “He has the power”, it is an example of Intro-
susceptive Pure Indication as Power (imposed)
consumes the word Knowledge (that which it is
being imposed upon) and both the words are stated
not stated separately in the sentenc e. An
appropriate paraphrased sentence will be “He has
the power of knowledge”

12 9figd RIAT: TRTY WU | JUTeT derui
%RQ?K‘IT g@a arfgen | svasiddhaye paraksepah parartham
svasamarpanam . upadanam laksanam cetyukta suddhauva
sa dvidha . Pure is of 2 types Inclusive and Indicative.
Inclusive implies another actor to achieve its Primary
meaning. Indicative gives up its Primary meaning to take on
the Secondary meaning.



Seven categories of Indication: The two types
of ‘Qualitative’ Indication and four®® types of
‘Pure’ Indication make up the six categories of
Indication based on Special Purpose. Along with
the ‘Usage based’ Indication there are in total
seven categories of Indication. The categorisation
helps understanding the sentences and also
provides a distinctive way for paraphrasing the
sentence for each of the -categories. The
characteristics of the seven categories discussed
above have been summarised into a flow chart
presented in Appendix I. A few more examples of
the seven categories of Indication are provided in
Appendix II.

3 Application of the laksyartha concept
to Machine Learning models

If we notice the paraphrasing of the sentences
with Indicated meaning, there are patterns that are
correlated to the category of the Indicated meaning,
in most cases except in the ‘Usage based’
Indication. At a high level the patterns of
paraphrasing are summarised in Table 3 below.

Category of | Typical Pattern of

Indication Paraphrase

Super- Typically ‘like’ or an equivalent

imponent word is added in the sentence as

Qualitative the Indication is based on
comparison

Intro- Similar to above along with the

susceptive addition of the words that are

Qualitative left out in the sentence. This
needs context in which the
sentence as the speaker would
leave out some of the words

Inclusive A related word(s) are added to

Pure explicitly mention the
unspoken actor

Indicative A secondary meaning of the

Pure word replaced the word in the
sentence where this indication
exists. This secondary meaning
is typically very closely related
to the primary meaning of the
word

13 Commentators of kavyaprakasa also explain that

Inclusive and Indicative Indications are further divided into
Super-impotent and Intro-susceptive each, giving rise to the
4 Pure Indications. Either as per this categorisation or as per
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Super- Words are added to show the
imponent relationship ~ between  the
Pure imposed and this which it is
being imposed. Typically this
relationship between the words
is quite commonly used
Super- Same as above along with the
imponent addition of the words that are
Pure left out in the sentence. This
needs context in which the
sentence as the speaker would
leave out some of the words
Usage based | Does not have any pattern as it
is based on widely accepted
usage in the given language.

Inspired by the correlation between the
paraphrasing and the category of the Indication, we
embarked on the pilot of training the Machine
Learning models to do this paraphrasing before
translation by Google Translate. Given the
comprehensiveness and the fundamental nature of
the categorisation, we believe that the training can
be achieved with relatively small datasets. Hence,
we attempted the pilot with a very small dataset.
We broke the pilot down into three steps

Table 3: Typical patterns that can be observed in
Paraphrasing sentences, based on the category of
Indication

Step 1: Identify the existence of an Indicated
meaning in the sentence. This means that the
model needs to identify the incompatibility
between the words in a sentence. To achieve this,
we trained a multi-layer perceptron of 3 layers and
a 2d Convolutional Neural Network (CNN2d) with
filter sizes of 3, 4, 5, 6, 7 and 8 for binary
classification on a dataset of 400 example
sentences (100 without Indicated meaning and 300
with Indicated meaning). We used 320 of these
sentences for training and 80 sentences for testing.
While the multi-layer perceptron trained to 70%
test accuracy, CNN2d achieved 78% test accuracy.
This was on expected lines as the existence of
Indicated meaning is identified based on
incompatibility between words (refer footnote 4).
The CNN2d is comparing groups of adjacent
words of length 3, 4, 5, 6, 7 and 8 in its filters to

what has been explained in Section 2, there are 4 types of
Pure Indication. We took the choice of the categorisation
that we think is most appropriate for the Machine
Translation.



map the incompatibility. Sample classification 2 | He is a | Usage Super-
results by the CNN2d trained on our dataset of 400 walking Based imponent
sentences are presented below in Table 4. encyclopeadia Qualitative

Sl | Sentence Classification - 3 On this stormy | Inclusive | Inclusive

No Indication Exists night the sky | Pure Pure

(Yes/No) groans
Trained | Actual 4 | This is a | Expressive | Expressive
CNN2d magnificent

1 My heart | Yes Yes new shirt
spreads its 5 Health is | Super- Super-
wings wealth imponent | imponent

2 Master is | Yes Yes Qualitative | Qualitative
knowledge 6 | His radiance | Indicative | Indicative

3 He is speaking | Yes No was  visible | Pure Pure
the truth from far

4 Truth is bitter to | No Yes 7 | The bus is | Inclusive | Inclusive
swallow arriving late Pure Pure

5 I can run fast No No 8 | Master is | Super- Super-

6 On this stormy | Yes Yes knowledge imponent | imponent
night the sky Qualitative | Pure
groans 9 | My heart | Super- Intro-

7 It 1is raining | No No spreads its | imponent | susceptive
heavily today wings Qualitative | Qualitative

8 He is a walking | Yes Yes 10 | Truth is bitter | Expressive | Indicative
encyclopeadia to swallow Pure

9 He stole her | Yes Yes 11 | Your pizza is | Expressive | Inclusive
heart on its way Pure

10 | The water is | No No 12 | Time  heals | Intro- Intro-
blue in colour everyone susceptive | susceptive

Qualitative | Qualitative

Step 2: Identify the category of
Indicated meaning in a sentence. We labelled the
400 sentences with eight labels (one label for
Expressive and one each for category of Indication
per the framework explained in Section 2) and
trained the CNN2d for multi-classification. 320
sentences were used for training and 80 were used
for testing. The model achieved 72% test accuracy.
Sample classification results by the CNN2d trained

Table 4: CNN2d classification of whether an
Indicated meaning exists in the given sentence

on our dataset are presented below in Table 5.

Sl | Sentence Category of Indication
No Trained Actual
CNN2d
1 He is | Indicative | Indicative
stretching the | Pure Pure
truth
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Step 3: Paraphrase the sentence with
elaborating the Indicated meaning based on the
category of Indicated meaning. We finetuned a
pre-trained Google’s TS5 model to paraphrase
sentences with our custom dataset of sentences
with Indicated meaning. We used the patterns
described in Table 3 to create our custom dataset.
Our dataset contained 250 training sentences and
50 testing sentences. We refer to this finetuned T5

Table 5: CNN2d classification of a given sentence
based on the type of Indicated meaning it contains

model as the T5-1.
We then used the T5-I paraphrased sentences as
input to Google Translate for translation to various



languages. We then used BLEU * (Bilingual
Evaluation Understudy) score to compare the
translation with and without T5-I paraphrasing. For
the purpose of this pilot we used translation to three
Indian languages — Telugu, Hindi, Kannada. We
used a typical human translation of the sentences in
these 3 languages as reference for calculation the
BLEU scores. Here, we present the comparison of
translation with and without the paraphrasing by
T5-I for a few validation sentences along with the
respective BLEU scores.

Original Sentence: She was showered with
blessings

Expected Translation: €830 To°e>°
33000 FOBOA. | ITD| Tgd TR
3TRRaTg I/ 93 9R WBLRY,
33000 WNP) BRTBTe)
Paraphrased Sentence (by T5-1) : She
received lots of blessings

Google Translate’s Translation Of
Original BLEU | Paraphras | BLEU

Sentence Score | ed Score
Sentence

eSad) 0.54 es) oyeey | 0.70

330y ARGV

& oLOE

INWToln

S0

a8 0 3edgd | 055

3Tefaig & 3frefarg

BIEREI foret

QI IR

€93 0 93D 0.70

e3dCad0F WBF R,

B0 e33Ca00E

AR, TRY,

RICA) BRBTYD

Original Sentence: He stretched the truth
Expected Translation: €¢5¢% €922
e303°¢8) / T S Tl / 95330 RO,
LTI

Paraphrased Sentence (by T5-1) : He used
falsehood

14 BLEU (BiLingual Evaluation Understudy) is a metric for

automatically evaluating machine-translated text. The
BLEU score is a number between zero and one that

measures the similarity of the machine-translated text to a
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Google Translate’s Translation Of

Original | BLEU | Paraphrase | BLEU
Sentence | Score | d Sentence Score
d&sd) | 0 €95 0.76
NNl 0I5,
[N Go0O3A0

T°C
34 Tg | 0.76 3B IS 0.66
T BT 3

foa
93330 0 €933 0.76
AN35ed AT,
A AL O]
AZO
[V [ON)

Original Sentence: | buy peace of mind by
being silent

Expected Translation: e [5°QS0M
&0 03F)oR rocverdd / T3l gU
EHR Y AT 8 / Do) 35000
S0P, NPAT.

Paraphrased Sentence (by T5-1) : My peace
of mind comes by being silent

Google Translate’s Translation Of

Original BLEU | Paraphras | BLEU

Sentence Score | ed Score
Sentence

S0 0.79 X380 0.0

O GO0

€080 O J°

o SO0 INVINE e

0AF°0 &

& e

§0800 Vel

€%

dqy 043 | gUIEd | 0.68

TEH T It R

Py T &)

RIGd g RUIG

VO 0.64 o | 0.69

IRVEINIAD) (RN

NPT NN

DDRDOT

set of high quality reference translations. A value of 0

means that the machine-translated output has no overlap
with the reference translation (low quality) while a value of
1 means there is perfect overlap with the reference
translations (high quality).




AN 2003
TD03OD AM33
AN

DOLDR

3¢S

Original Sentence: An idea sprouted in his
mind

Expected Translation: @58 2,8 &35S
SDHO 1 IqH! H | Ue faaR 3iman/
£9333¢). 2,0 BT ODE)
BOBRTBANID.

Paraphrased Sentence (by T5-1) : Anidea
came to his mind

Google Translate’s Translation Of

Original BLEU | Paraphras | BLEU
Sentence Score | ed Score
Sentence
965 0.56 965 0.56
A’ &S’
2.8 2.8
eSS &35S
R[OOI INTARTeIN
S0
IIGHTTH | 0.50 3I9% 0.48
TH faaR feamr o
DT T foaR
3T
933 0.79 933 0.67
ENTALS AN
&) 20T 2,00
TOS NVADIOW
BB BRFLA
QINCN) 3N

It can be noticed that even where the
individual BLEU score did not show improvement
with the paraphrasing by T5-1, the translation of the
paraphrased sentence is much more meaningful
than the one without. Taking a corpus score on the
12 Google Translate translations above the BLEU
score for translations improved from 0.39 to 0.6
with paraphrasing by T5-1.

15 We leveraged existing code of CNN2d and T5 models
from Google Colab’s (Colaboratory is cloud based ML
resource) pytorch libraries.
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4 Conclusion

Where the CNN2d correctly identified the
existence of Indication, it performed very well in
identifying the sub-categories of Indication except
in the case of the two Super-imponent Indications.
We believe this because of the lack of equal
number of examples across categories in our
training dataset. The improvement in BLEU score
achieved for translations with paraphrasing by T5-
I is significant and encouraging. The difference in
the translation with and without T5-I paraphrasing
was very evident in more complicated literary
usages of sentences (and not just metaphors).

For the purpose of the pilot we trained black-
box® implementations of CNN2d and T5-base in
with a small dataset. We believe fine-tuning of the
model architecture and a limited increase in the
dataset can improve accuracy of the models for
paraphrasing and translating sentences in Literary
works with Indicated meaning to a higher level of
accuracy. Where word embeddings are available
the trained models should also work across
languages..

There are other use cases as well, where
understanding the real intent of a sentence depends
on understanding of the Indicated meaning,
including dialogue systems, sentiment analysis and
emotion analysis.
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Abstract

In this paper, we explore various approaches to
build Hindi to Bengali Neural Machine Trans-
lation (NMT) systems for the educational do-
main. Translation of educational content poses
several challenges, such as unavailability of
gold standard data for model building, exten-
sive uses of domain-specific terms, as well as
the presence of noise in the form of sponta-
neous speech as the corpus is prepared from
subtitle data and noise due to the process of
corpus creation through back-translation. We
create an educational parallel corpus by crawl-
ing lecture subtitles and translating them into
Hindi and Bengali using Google translate. We
also create a clean parallel corpus by post-
editing synthetic corpus via annotation and
crowd-sourcing. We build NMT systems on
the prepared corpus with domain adaptation
objectives. We also explore data augmentation
methods by automatically cleaning synthetic
corpus and using it to further train the models.
We experiment with combining domain adap-
tation objective with multilingual NMT. We
report BLEU and TER scores of all the mod-
els on a manually created Hindi-Bengali edu-
cational testset. Our experiments show that the
multilingual domain adaptation model outper-
forms all the other models by achieving 34.8
BLEU and 0.466 TER scores.

1

Massive Open Online Courses (MOOCs) have
gained a lot of attention in recent years due to the
availability of high-quality educational resources
free of cost. In India, National Programme on
Technology Enhanced Learning (NPTEL)! is one
such initiative to promote online education. How-
ever, most of the content offered in English poses
a problem for non-native English language speak-
ers especially in a multilingual country like India.

Introduction

"https://nptel.ac.in/
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One potential solution to mitigate this problem is
developing Machine Translation (MT) systems to
translate contents from English to other Indian lan-
guages. Developing Machine Translation (MT)
systems between two Indian languages is more dif-
ficult than developing systems between English and
Indian languages due to the unavailability of the ed-
ucational parallel corpus for Indian languages. MT
systems, especially current state-of-the-art Neural
Machine Translation (NMT) systems (Sutskever
et al., 2014; Bahdanau et al., 2015; Vaswani et al.,
2017) are data-hungry and requires a lot of training
data (Zoph et al., 2016; Koehn and Knowles, 2017).
Developing MT systems for the educational do-
main poses issues such as lack of data, translation
of domain-specific terms, phrases, and mathemati-
cal expressions. Since the dataset is prepared from
the lecture subtitles and transcripts, it also con-
tains noise in the form of spontaneous speech (e.g:
’umm’, ’yes! good morning’ etc.) and repetition
of phrases (e.g: ’ok, well.. ok well, now we have
to compute this value’ etc.). Due to these issues,
building an MT system for the educational domain
is a challenging task.

In this paper, we focus on developing the NMT
systems between two Indian languages, namely
Hindi — Bengali language pair for the computer
science domain. We create a Hindi-Bengali educa-
tional corpus by crawling NPTEL lecture subtitles,
transcripts that are in English and translating them
into Hindi and Bengali. We create two types of ed-
ucational parallel corpora, ‘synthetic’ and ‘clean’.
Synthetic corpus is prepared from translating En-
glish data into Hindi and Bengali with the help of
Google Translate?. Clean corpus is prepared by
manual post-editing of synthetic data via manual
annotation and crowd-sourcing. We conduct exper-
iments on prepared corpora with domain adapta-

*https://translate.google.com/
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tion (Chu et al., 2017), objective. We experiment
with denoising (Edunov et al., 2018) and automatic
post-editing (Pal et al., 2016) objectives to automat-
ically clean the synthetic corpus which are further
used to train the models. We also experimented on
multilingual NMT (Johnson et al., 2017) using the
English part of the corpus along with Hindi and
Bengali. Since there is no standard educational test
set is available to test our models’ performance,
we manually create the test set by translating the
Hindi part of the English-Hindi parallel corpus (Al
domain) from Adap-MT shared task (Sharma et al.,
2020) into Bengali. We report BLEU and TER
score (Post, 2018) on the prepared test corpus>.

The paper is organized as follows. In Section
2, we briefly review a few of the notable works on
building MT systems for educational content and
domain adaptation, data augmentation methods in
NMT. In Section 3, we describe the corpus creation
process. The experimental setup used to conduct
domain adaptation and semi-synthetic data augmen-
tation experiments are described in Section 4 and
Section 5, respectively. The NMT model settings
and experimental setup are described in Section
6. Results are described in Section 7. Finally, the
work is concluded in Section 8.

2 Related Work

Building an NMT system for any domain requires
a significant amount of data. In the educational
domain, obtaining data is very challenging. Most
of the works in building MT systems for the ed-
ucational domain is focused on creating corpora.
Abdelali et al. (2014) have created educational cor-
pora for 20 languages (20 monolingual and 190
parallel corpora) by crawling AMARA website*
which is a community-driven web-based platform
for editing and creating subtitles for videos. Paral-
lel corpus for European languages in Educational
domain have been created via crowd-sourcing Kor-
doni et al. (2016); Sosoni et al. (2018); Behnke et al.
(2018) . They built NMT systems on the prepared
corpora and report that even a small amount of
crowd-sourced translations can improve the trans-
lation quality.

Domain adaptation is a methodology to adapt
models trained on out-of-domain data to in-domain
data. Chu et al. (2017) proposed two methods for

3The developed system can be accessible via following
link: http://edumt.ngrok.io/
*https://amara.org/en/
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fine-tuning which do not need any modifications
to standard NMT architecture. One method is to
add domain tags (e.g: ‘<2domain>") and train the
NMT model on the combined corpora from mul-
tiple domains. The second method is to fine-tune
the model trained on out-of-domain data on the
combination of in-domain and out-of-domain data.
Britz et al. (2017) proposed three methods for do-
main adaptation. ‘Discriminative Mixing’ method
uses a discriminator which is a fully connected
layer, to predict the domain tag the current input
sentence belongs to. The loss from discriminator
and decoder is added and back-propagated which
jointly optimizes the network. This makes the en-
coder encode domain-related features. ‘Adversar-
ial Discriminative Mixing’ method is the same as
‘Discriminative Mixing’ method except while back-
propagating loss, the loss from discriminator is
reversed by multiplying it with —1. This makes the
encoder encode domain invariant features. ‘Target
Token Mixing’ does not use a discriminator network
but simulates the discriminator by adding domain
tags to the target sentence.

Improving the performance of NMT models
with additional monolingual data is a common
practice especially in low-resource settings. Back-
translation (Sennrich et al., 2016) is an effective
approach to make use of the target monolingual
data. Edunov et al. (2018) conducted various ex-
periments to generate synthetic source sentences
from target monolingual data and used it to further
train the models. They report that corrupting syn-
thetic source sentences with noise and using that
noisy source sentence instead of a clean synthetic
source sentence, significantly improve the perfor-
mance of the NMT models. Multilingual NMT
(Johnson et al., 2017) is another popular approach
to improve the performance of NMT models for
low resource language pairs by augmenting the low
resource pairs with high resource language pairs
and training a single NMT model.

In this work, we build NMT models with do-
main adaptation objectives. We experiment with
cleaning synthetic in-domain corpus with denoising
auto-encoder (Vincent et al., 2008) and Automatic
Post-Editing (Pal et al., 2016) objectives. The re-
sulting data is augmented with created in-domain
corpus and used to train NMT models. We also
experiment with combining multilingual NMT and
domain adaptation objectives.



3 Corpus Creation

We prepare the parallel corpus in educational do-
main by crawling lecture subtitles. Specifically,
we crawl the lecture subtitles from YouTube and
lecture transcripts from NPTEL courses’. The sub-
titles crawled from YouTube are of smaller length
compared to subtitles crawled from lecture tran-
scripts. We crawl lectures on Programming, Data
Structures, Algorithms, Machine Learning, and Ar-
tificial Intelligence.

3.1 Data Crawling

* Crawling Subtitles: Video lecture subtitles
are crawled from NPTEL® and MIT OCW’
YouTube channels. We crawl the data us-
ing youtube-transcript-api® Python package.
First, we collect the URLs of lecture videos.
Every video has two types of subtitles in En-
glish. One is auto-generated by YouTube and
the second one is official subtitles uploaded
along with the video. We extract only the offi-
cial subtitles to minimize the amount of noise
in the data as much as possible. Table 1 shows
the statistics of crawled subtitle corpus.

Crawling Lecture Transcripts: Lecture
transcripts are crawled from the NPTEL
courses. For a given course, the lecture tran-
script is made available in PDF format. Every
PDF is tagged as ‘Verified’ and ‘To be ver-
ified’. We consider the courses whose tran-
scripts are tagged as “Verified’®. We use pdfto-
text'® Python package to extract text from
PDF. After getting the text, we use sacre-
moses'!', a Python implementation of Moses
(Koehn et al., 2007) tokenizer to tokenize the
data into sentences. Table 2 shows the statis-
tics of crawled transcript corpus.

3.2 Creation of Synthetic Corpus

The crawled data is in English. To prepare the
Hindi-Bengali parallel corpus, we use Google trans-
late tool. The lecture subtitles are crawled from
YouTube, translated into Hindi and Bengali with

>https://nptel.ac.in/course.html
Shttps://www.youtube.com/user/nptelhrd
"https://www.youtube.com/user/MIT
8https://pypi.org/project/youtube-transcript-api/
°“Verified’ transcripts are the transcripts that are post-
edited after the automatic transcription is done.
Ohttps://github.com/jalan/pdftotext
"https://github.com/alvations/sacremoses
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Domain #Videos | #Subtitles
Prog, DS and Algo 838 263,150
ML and Al 678 176,764
Total 1,516 439,914

Table 1: Statistics of corpus prepared from YouTube
subtitles. Here, Prog: Programming, DS: Data Struc-
tures, Algo: Algorithms, ML: Machine Learning, Al:
Artificial Intelligence. #Videos: No. of videos and
#Subtitles: No. of subtitles.

Domain #PDFs | #Subtitles
Prog, DS and Algo 324 46,009
ML and AI 775 109,179
Total 1,099 155,188

Table 2: Statistics of corpus prepared from NPTEL lec-
ture transcripts. Prog: Programming, DS: Data Struc-
tures, Algo: Algorithms, ML: Machine Learning, Al:
Artificial Intelligence. #PDFs: No. of transcript PDFs
and #Subtitles: No. of subtitles.

the help of YouTube’s built-in Google translate tool.
The lecture transcripts are translated into Hindi and
Bengali with the help of Google translate web in-
terface!?. Table 3 shows the statistics of prepared
synthetic corpus. Table 4 shows language-wise av-
erage sentence length of synthetic corpus prepared
from the subtitles and transcripts.

Domain #Subtitles
Prog, DS and Algo | 309,159
ML and Al 285,943
Total 595,102

Table 3: Statistics of the synthetic corpus. Prog: Pro-
gramming, DS: Data Structures, Algo: Algorithms,
ML: Machine Learning, AI: Artificial Intelligence.
#Subtitles: No. of subtitles.

Language | Subtitles | Transcripts
Bengali 11.7 13.96
Hindi 14.6 17.57
English 13.61 16.24

Table 4: Average sentence lengths of synthetic cor-
pora for each language. Subtitles: Data crawled from
YouTube lecture subtitles. Transcripts: Data crawled
from NPTEL lecture transcripts.

Ztranslation using Google translate is done between July
2020 to February 2021.



3.3 Creation of Clean Corpus

We create a clean Hindi-Bengali parallel corpus by
taking part of synthetic corpus and post-edited by
annotators and crowd-sourcing. We remove this
data from the synthetic corpus to avoid data du-
plication when training models. We employ three
annotators who are fluent in English, Hindi, and
Bengali. We provide English corpus and corre-
sponding Hindi and Bengali translations. The an-
notators post-edited both Hindi and Bengali data
based on the English data. We follow the same
method to get data post-edited by crowd-sourcing'?
company also. After a clean corpus is created, we
took a random sample of 263 Hindi-Bengali par-
allel sentences for analysis. We ask 4 people who
speak both Hindi and Bengali'* to score the ran-
dom sample based on Adequacy and Fluency on
a scale of 1-5. For the Hindi part of the sample,
the average adequacy and fluency scores are 4.3
and 4.5, respectively. For the Bengali part of the
sample, the average adequacy and fluency scores
are 4.3 and 4.6, respectively. Based on the man-
ual analysis of the post-edited corpus, we conclude
that the post-edited clean corpus is of high quality.
Table 5 shows the statistics of the clean corpus.

Domain #Subtitles
Prog, DS and Algo 22,046
ML and Al 18,190
Total 40,236

Table 5: Statistics of the clean corpus. Here, Prog:
Programming, DS: Data Structures, Algo: Algorithms,
ML: Machine Learning, Al: Artificial Intelligence.
#Subtitles: No. of subtitles.

Corpus Domain #Sentences

Synthetic + Clean | Educational 635,338

Samanantar General 2,501,608
Table 6: Statistics of data used in experiments.

Here, Synthetic: Prepared synthetic educational corpus.
Clean: Prepared clean educational corpus. Samanantar:
Samanantar Hindi-Bengali corpus. #Sentences: No. of
sentences.

4 Domain Adaptation

We consider both synthetic and clean Hindi-
Bengali educational parallel corpus as in-domain
Bhttps://xsaras.com/

'“Please note that there is no overlap between annotators
who post-edited the corpus and evaluators.
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data. Samanantar corpus (Ramesh et al., 2021)'° is
considered as out-of-domain data. Table 6 shows
the statistics of data used in experiments. Since
there is no standard Hindi-Bengali educational test
set is available to test our models, we manually cre-
ate the test set by translating Hindi part of English-
Hindi parallel corpus (Al domain) from Adap-MT
shared task (Sharma et al., 2020) into Bengali. We
carefully create the test set by avoiding any overlap
between the test set and in-domain corpus which
is used for training. The prepared test set of size
2,630 sentences is used to evaluate all trained mod-
els.

We train two baseline models, namely ‘Out-
of-domain baseline’ and ‘In-domain baseline’.
The out-of-domain baseline model is trained on
Samanantar corpus and the in-domain baseline
model is trained on the prepared clean educational
parallel corpus. We train two domain adaptation
models by following fine-tuning (Chu et al., 2017)
method. Specifically, we use the out-of-domain
baseline model as the parent model. The parent
model is fine-tuned with (i). Clean educational par-
allel corpus (denoted as ‘FT-Clean’) (ii). Synthetic
+ Clean educational parallel corpus (denoted as ‘FT-
Both’). The reason to build two fine-tuned models
is to check whether synthetic corpus is improving
model performance or not. Based on the results (ref
Table 7) we choose to use both Synthetic and Clean
parallel corpus as our in-domain corpus. We also
train another fine-tuned model following mixed
fine-tuning (Chu et al., 2017) method. Similar to
fine-tuned models, the out-of-domain baseline is
used as a parent model and fine-tuned with the
combination of Samanantar and Synthetic + Clean
educational parallel corpus (denoted as ‘FT-Both-
Mixed’).

We also experiment with adding domain tags'6
to source sentence (Chu et al., 2017) (denoted as
‘Source Token Mixing’) and target sentence (Britz
et al., 2017) (denoted as ‘Target Token Mixing’).
Using these methods, a single model can be trained
on both out-of-domain and in-domain data at the
same time. This will save time to train the model.
In our case, since out-of-domain data size is very
large compared to in-domain data, we oversam-
ple in-domain data to match the size of the out-of-
domain data.

Shttps://indicnlp.aidbharat.org/samanantar/#indic-indic
5We use ##2GEN, ##2EDU tags to denote general and
educational domains respectively.



4.1 Multilingual Domain Adaptation

Multilingual NMT model (Johnson et al., 2017;
Sen et al., 2018) is a single model trained for
multiple translation directions by combining paral-
lel corpora from multiple languages into a single
unified corpus. Multilingual models have shown
improvement for language pairs having less cor-
pus. In this work, we experiment with combin-
ing domain adaptation objective with multilingual
model (Chu and Dabre, 2019) to check whether
adding another language to the corpus will im-
prove the model performance or not (denoted as
‘FT-Multilingual’). To build this model, we use the
Out-of-domain baseline model which is trained on
Hindi-Bengali Samanantar corpus, as the parent
model. We fine-tune the model on multilingual
in-domain corpus obtained by combining Hindi-
Bengali, Hindi-English, and English-Bengali cor-
pus!”. Specifically, we concatenated Hindi-English,
English-Bengali, and Hindi-Bengali corpora. Simi-
lar to Johnson et al. (2017), we use language tags
to denote the target language'®. Here, the English
part of the corpus act as a bridge between Hindi
and Bengali.

S Semi-Synthetic Data Augmentation

Since most of our in-domain data is synthetic, we
conduct experiments on automatic corpus cleaning.
We experiment with two methods for automatic
corpus cleaning, Denoising auto-encoder (Vincent
et al., 2008; Edunov et al., 2018) and Automatic
Post-Editing (APE) (Pal et al., 2016). We conduct
experiments on the Bengali part of the corpus as it
is our target language. We use synthetic-clean Ben-
gali sentence pairs from Clean corpus'® as our train-
ing corpus for corpus cleaning experiments. With
the APE objective, we train an end-to-end NMT
model with synthetic Bengali sentences as input
and clean Bengali sentences as the target. Edunov
et al. (2018) show that when using back-translated
(Sennrich et al., 2016) data to train the NMT model,
adding noise to input sentences improve model per-
formance significantly. Similarly, we create a noisy
version of source sentences with two types of noise:
(i). Randomly dropping word with probability 0.1

Since we created the educational corpus by translating
English to Hindi and Bengali, we have 3-way parallel corpus
involving Hindi, Bengali and English languages

18We use ##2EN, ##2BN tags to denote English and Ben-
gali respectively

Since we created clean corpus from synthetic corpus, we
have synthetic-clean sentence pairs.
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(i1). randomly swapping tokens with its neighbor-
ing token with probability 0.1 (Edunov et al., 2018).
We do not modify the target sentences. We also
experiment by combining these two objectives and
training a single model which can perform both
denoising and automatic post-editing. After train-
ing, we use these models to generate clean Bengali
sentences from synthetic Bengali sentences. We
denote this as ‘Semi-Synthetic’ corpus since the
source (Hindi) is synthetic and the target (Bengali)
is automatically cleaned.

The main reason to perform automatic corpus
cleaning is to use the resulting clean corpus to
improve the performance of the NMT model for
the educational domain. To this extent, we repeat
the experiment similar to ‘FT-Both’ which is fine-
tuning the model trained on Samanantar corpus
with educational corpus. However, now we use
Semi-Synthetic corpus along with Synthetic and
Clean corpora to fine-tune the model. ‘FT-Both
+ Denoising’ denotes the model fine-tuned with
clean, synthetic corpora and semi-synthetic cor-
pus obtained from the denoising experiment. ‘FT-
Both + APE’ denotes the model fine-tuned with
clean, synthetic corpora and semi-synthetic cor-
pus obtained from the APE experiment. Similarly,
‘FT-Both + Denoising + APE’ denotes the model
fine-tuned with clean, synthetic corpora and semi-
synthetic corpus obtained from the experiment
combining denoising and APE objectives. The rea-
son to combine the semi-synthetic data with clean
and synthetic data is to provide the model with as
much data as possible since in-domain data size is
less compared to out-of-domain data.

6 Experimental Setup

All the models have trained on the Transformer
(Vaswani et al., 2017) architecture. We use 6 layer
Encoder-Decoder stacks with 8 attention heads.
Embedding and hidden sizes are set to 512, dropout
(Srivastava et al., 2014) rate is set to 0.1. The
feed-forward layer consists of 2,048 cells. Adam
(Kingma and Ba, 2015) optimizer is used for train-
ing with 8,000 warm-up steps with an initial learn-
ing rate of 2. We use token-wise batching with
batch size set to 2048 tokens. For fine-tuned mod-
els, the parent model is trained till convergence®”
and the child model is initialized with the last
checkpoint from the parent model without resetting
any hyper-parameters. All the models are trained

POperplexity is used as stopping criterion.



till convergence and checkpoints are created after
every 10,000 steps. All the checkpoints are aver-
aged and considered the best parameters for the
respective model. We use OpenNMT toolkit (Klein
et al., 2017)%! to train the models. We tokenize
the data into subwords with the unigram language
model (Kudo, 2018) using SentencePiece (Kudo
and Richardson, 2018) implementation. For all
the models except ‘FT-Multilingual’, we learn sub-
word rules on corpus obtained by concatenating
in-domain and out-of-domain corpora. The size
of subword vocabulary is 50K for both Hindi and
Bengali. For the ‘FT-Multilingual’ model, we learn
joint subword vocabulary for Hindi, Bengali, and
English by combining all the in-domain corpora
and Hindi-Bengali out-of-domain corpora, and the
size of joint subword vocabulary is 75K. At the
time of decoding, the beam size is set to 5 with no
length penalty.

Model BLEU(?) | TER(])
Out-of-domain Baseline 17.3 0.608
In-domain Baseline 12.6 0.704
FT-Clean 21.5 0.634
FT-Both 33.6 0.482
FT-Both-Mixed 27.7 0.548
Source Token Mixing 23.0 0.607
Target Token Mixing 18.6 0.692
FT-Multilingual 34.8 0.466
FT-Both + Denoising 335 0.481
FT-Both + APE 33.0 0.493
FT-Both + Denoising + APE 32.7 0.493

Table 7: BLEU and TER scores of all trained models.
FT-Multilingual model outperforms all other models
with 34.8 BLEU score and 0.466 TER score.

7 Results and Analysis

We test all the models on the prepared Hindi-
Bengali test corpus of size 2,630 and report BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006) scores, calculated with sacreBLEU (Post,
2018)%2. Table 7 shows the results of the models?>.
The two baseline models, viz. Out-of-domain Base-
line and In-domain Baseline performance are the
lowest of all the other models. This behavior is
expected since there is less relevant data as the

2 https://github.com/OpenNMT/OpenNMT-py/tree/1.2.0
Zhttps://github.com/mjpost/sacreBLEU
BsacreBLEU signatures:

BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1

TER+tok.tercom-nonorm-punct-noasian-
uncased+version.1.5.1

models are trained on out-of-domain corpus and
small in-domain corpus respectively. However, the
models trained with fine-tuning objectives, namely
FT-Clean, FT-Both, and FT-Both-Mixed achieve
better results than both baseline models. Specifi-
cally, FT-Both, the model which fine-tuned with
both clean and synthetic in-domain corpus achieved
better results than the other two models. Interest-
ingly, FT-Both-Mixed, the model fine-tuned with
combining data from in-domain and out-of-domain
data, achieves less BLEU score (27.7) than FT-Both
(33.6) despite this method showing improvement
(Chuetal., 2017) in other cases. In our case, adding
the out-of-domain data is not helping the model but
when compared to the other two fine-tuned models,
it converged faster which suggests that the model is
over-fitting. We also observe that adding in-domain
data although it is synthetic, is helping the model.

The models, Source Token Mixing and Target
Token Mixing performance are less compared to
fine-tuned models. Despite a single model jointly
trained for both in-domain and out-of-domain and
can share information between both the domains,
performance on in-domain data is not significant.
Both the models outperform baseline models but
the Target Token Mixing model achieves less
BLEU score (18.6) than the FT-Clean model (21.5).
Similar to the FT-Both-Mixed model, adding out-
of-domain data is acting as noise which limits the
performance of the model on in-domain data.

The model fine-tuned with the multilingual edu-
cational corpus (FT-Multilingual) achieve the high-
est BLEU score of 34.8 and lowest TER score
of 0.466 (higher BLEU and lower TER scores
are preferable) of all other models. We observe
that adding more in-domain data is improving the
model performance. In our case, we add English
in-domain corpus (i.e. Hindi-English and English-
Bengali) to the Hindi-Bengali corpus. Since both
Hindi and Bengali synthetic data were prepared
from English data, adding English along with
Hindi-Bengali helped the model to learn better rep-
resentations for the Hindi-Bengali pair. This is
evident from the experiments with BLEU score of
FT-Multilingual model (34.8) improved by +1.2
points than FT-Both model (33.6). Similarly the
TER score of the FT-Multilingual model (0.466)
improved by -0.016%* points than FT-Both model
(0.482).

**Negative sign indicates the improvement as lower TER
score is better.



Results from the semi-synthetic in-domain data
augmentation models are interesting due to the rea-
son that adding more in-domain data is not im-
proving the performance. This observation is op-
posite of the observation from the FT-Multilingual
model where adding the English part of the parallel
corpus is making the model outperform all other
models. Although the models, namely FT-Both
+ Denoising, FT-Both + APE, and FT-Both + De-
noising + APE are trained on in-domain corpus
twice the size of actual in-domain corpus (since
we add the semi-synthetic corpus to clean and syn-
thetic corpus, the size of in-domain corpus become
almost doubled) none of the models can outper-
form FT-Both model (it only trained on clean and
synthetic corpus). However, these three models
outperform all other models except FT-Both and
FT-Multilingual with FT-Both + Denoising model
achieving the second-best TER score (0.481). We
observe that the Denoising objective is more effec-
tive than the APE objective for automatic corpus
cleaning. We believe that if more synthetic-clean
in-domain sentence pairs are available to train the
denoising model, it will improve the quality of the
semi-synthetic corpus which, in turn, improves the
NMT model.

We conduct a human evaluation on the output
of our best model, namely FT-Multilingual. We
randomly choose 50 sentences from the test set and
given to 4 evaluators®® along with reference and
output of the model and asked to evaluate based on
Adequacy and Fluency on the scale of 1-5. The av-
erage adequacy and fluency scores are 3.5 and 3.85,
respectively. Based on the human evaluation, we
conclude that the model can translate educational
data with good adequacy and fluency.

8 Conclusion

In this paper, we have explored the problem of
building an NMT system in the educational do-
main for the Hindi-Bengali language pair. Since
there is no data available in the educational do-
main, we created the parallel corpus by extracting
from lecture subtitles and transcripts and translat-
ing them into Hindi and Bengali. We also create
a clean parallel corpus by post-editing the parallel
corpus via crowd-sourcing as well as with the help
of annotators. We trained Neural Machine Trans-
lation models with domain adaptation objectives

BThese evaluators are the same who evaluated the quality
of prepared clean in-domain corpus.
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by training models on publicly available Samanan-
tar Hindi-Bengali parallel corpus and fine-tuned
with prepared educational data. We explored vari-
ous methods to fine-tune the models such as mixed
fine-tuning, source token mixing, and target token
mixing. We experimented with data augmentation
methods by automatically cleaning the synthetic
in-domain corpus with denoising auto-encoder and
automatic post-editing objectives. The resulting
data is combined with prepared in-domain corpus
and trained models. We also experimented with
combining domain adaptation with multilingual
NMT by training a model on Samanantar Hindi-
Bengali corpus and fine-tuned with multilingual
in-domain corpus obtained by combining Hindi-
Bengali, Hindi-English, and English-Bengali in-
domain corpora. Since there is no standard test
corpus is available, we created Hindi-Bengali ed-
ucational test corpus through manual translation.
We observed that the multilingual model outper-
formed all other models by achieving 34.8 BLEU
and 0.466 TER points. We also conducted a hu-
man analysis of the multilingual model by taking
a sample of 50 random sentences evaluated based
on adequacy and fluency metrics by 4 evaluators.
The model achieved average adequacy and fluency
scores of 3.5 and 3.85, respectively.
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Abstract

We present findings from a first in-depth post-
editing effort estimation study in the English-
Hindi direction along multiple effort indica-
tors. We conduct a controlled experiment in-
volving professional translators, who complete
assigned tasks alternately, in a translation from
scratch and a post-edit condition. We find that
post-editing reduces translation time (by 63%),
utilizes fewer keystrokes (by 59%), and de-
creases the number of pauses (by 63%) when
compared to translating from scratch. We fur-
ther verify the quality of translations thus pro-
duced via a human evaluation task in which
we do not detect any discernible quality differ-
ences.

1 Introduction

Translation workflows that are based on post-
editing of Machine Translation output are being
increasingly adopted in the industry (Gaspari et al.,
2015). Gains that accrue from a post-editing based
workflow, measured over multiple post-editing ef-
fort indicators, have been reported to be consid-
erably significant by a number of previous stud-
ies over multiple language combinations (Plitt and
Masselot, 2010; C. M. de Sousa et al., 2011; Green
et al., 2013). But to extend post-editing beyond
its current silos it is imperative to put new and
less-studied language pairs under the lens to make
a case for wider adoption via empirically backed
evidence.!

Post-editing effort is often quantified across
three different dimensions, each focusing in turn on
a different aspect of post-editing behaviour (Krings,
2001). The dimensions studied are the following:
Temporal— understood as the time taken to com-
plete a translation task, often reported per segment
or word; Technical— estimate of the physical labour

'Gaspari et al. (2015)’s survey reveals a heavy skew to-
wards English and other European language combinations.
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of the translation activity, measured in terms of
keystrokes logged or edit operations performed;
and Cognitive— an indirect estimate of the extent of
cognitive processes underlying the translation task,
inferred from keylogging pause or eye-tracking
data as it is not possible to observe these directly
(Moorkens et al., 2015).

If it can be shown that post-editing machine
translation output is temporally efficient, techni-
cally less laborious, and cognitively less demand-
ing, then it can be recommended as the default
workflow for large translation jobs. But this first
calls for a comparison between machine translation
based post-editing behaviour (henceforth PE) and
unaided human translation from scratch (hence-
forth HT). Thus, the research questions that we
pose are the following:

* Is post-editing effort as measured on temporal,
technical and cognitive dimensions lesser in
the PE condition than the HT condition for the
English-Hindi direction?

¢ Is the quality of post-edited segments equal to
translated segments as ascertained by human
raters?

¢ Do automatic MT evaluation metrics correlate
with PE effort indicators, when both measured
at the segment level?

Most of this paper will focus on answering the
first question in some detail. We are equally in-
terested in the other two as well, but will only be
presenting some initial results from a first attempt
at tackling them.

The rest of this paper is organized as follows:
Section 2 discusses some past studies including
those that have previously studied the English-
Hindi PE direction. In Section 3 we detail our
experimental setup. Section 4 presents our results

Proceedings of the 18th International Conference on Natural Language Processing, pages 44-53
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and analysis and in Section 5 we draw our conclu-
sions and sketch the outlines of our future work.

2 Related Work

We now take a more detailed look at some of the
past efforts towards contrasting the two settings.
Plitt and Masselot (2010) compared HT and PE
when translating from English into 4 European lan-
guages (French, Italian, German, and Spanish) and
reported an overall productivity gain of 74% which
converted into time savings of 43%. They also
observed a 70% reduction in keyboard time and
31% in pause time for the PE setting. C. M. de
Sousa et al. (2011) also report PE to be 40% faster
than HT in the English-Portuguese direction when
translating movie subtitles.

Other studies however (Laubli et al., 2013), have
reported more modest gains, with estimated time
savings of 15-20% when translating between a
European language pair (German-French) within
a realistic translation environment.> Garcia (2011)
also finds only marginal productivity gains when
studying the English-Chinese pair and additionally
reports an impact of directionality when source and
target languages are switched.

All of these earlier experiments, however, were
based on the output of Phrase based Statistical Ma-
chine Translation (PBSMT) systems. With Neural
Machine Translation (NMT) and its subsequent it-
erations being the current state of the art and outper-
forming PBSMT (Bahdanau et al., 2014; Vaswani
et al., 2017; Castilho et al., 2018), this shift in tech-
nology paradigm from PBSMT to NMT must then
be addressed in post-editing studies as well.

Laubli et al. (2019) conduct such a study, this
time utilizing the output of an NMT system to
compare PE with HT in the German-French and
German-Italian translation directions.> They re-
port significant overall productivity gains, but with
marked differences between the pairs: 59.74% for
the former and only 9.26% for the latter. Another
interesting comparison of HT, PBSMT, and NMT
post-editing settings performed on a literary text
(chapter from a novel) reports an increase in pro-
ductivity by 36% for the NMT based setting over
HT (Toral et al., 2018).

2Experimental settings for these studies may deploy spe-
cialized interfaces for accurate measurements or make use of
environments already familiar to professional translators.

3The HT condition is aided by a domain specific translation
memory (TM).
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We have seen in previous studies that through-
puts vary considerably depending on the language
pair under the lens (Green et al., 2013; Liubli et al.,
2019). We now discuss some earlier efforts that
have included an Indian language in their experi-
ment.

Shah et al. (2015) conducted an experiment
where students post-edited parts of a specialized
English language textbook on bioelectromagnetism
into 7 languages, 3 of them being Indian languages
including Hindi. They reported an increase in post-
edit time by a factor of 3-5 when the target lan-
guage was an Indian language. They put this down
to greater terminological distance between English
and Indian languages compared to other languages
in their experiment. They do not study and compare
against the HT condition, or report on technical or
cognitive indicators.

Carl et al. (2016) also report results on Hindi
(amongst 6 languages) comparing the HT and PE
conditions. Their English-Hindi results are based
on an existing multilingual translation database that
contains experimental data around translators’ ac-
tivities in both conditions. They find in favour of
the PE condition across all languages when mea-
sured on temporal indicators, but report translating
into Hindi to be the slowest amongst the 6. They
do not quantify average throughput gain or time
savings.

Meetei et al. (2020) compare PE behaviour when
translating from English into 3 Indian languages
(Manipuri, Mizo and Hindi). They conduct light
post-editing and report Hindi to be the fastest to
post-edit amongst the three languages.* They as-
cribe it to the availability of relatively mature MT
systems in the English-Hindi direction compared
to Mizo and Manipuri, which are low-resource lan-
guages. They use student volunteers and do not
investigate cognitive indicators.

Ahmad et al. (2018) present an industry perspec-
tive and claim a 2-3 fold increase in productivity
for users using their tools in combination with MT.
However, they base this on longitudinal tracking of
their users.

While all these past studies have certainly helped
in providing insights into post-editing behaviour
in Indian languages in general and in Hindi in par-
ticular, we sense a need for a more in-depth look
along all PE effort indicators within at least one

“Tt is also often referred to as good enough translations and
is lower than publishable quality translations.
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Figure 1: Shows a snapshot of the translator workbench
used in the study. Depicts an example in the PE condi-
tion pre-filled with an MT proposal; for the HT condi-
tion the text area is left blank.

Indian-language setting. With our current work, we
seek to address this gap.

We see our contribution differentiated from pre-
vious related work as follows: (i) we present in-
depth results from all three primary indicators of
PE effort (temporal, technical and cognitive) for
the English-Hindi direction; (ii) we account for per
translator and per item variation with the use of
mixed-effects models; (iii) we utilize professional
translators in order to accurately gauge the impact
of contrasting conditions; (iv) we conduct a hu-
man quality-rating exercise comparing target text
produced in both conditions; (v) we present cor-
relations of automatic MT metrics with PE effort
indicators.

3 Experimental Setup

We conducted this experiment under a 2 (transla-
tion conditions) x 200 (source segments) mixed
design. All subjects saw both factor levels (HT and
PE), but only one combination for each level as
having been exposed to a source segment in one
condition would have affected their translation in
the other. The study was conducted online over
5 consecutive days with 2 sessions per day. The
sessions were not time bound. Subjects translated 2
files of 10 segments each in alternating conditions
in each session.

All subjects participated in a warm-up transla-
tion exercise a week prior to the start of the actual
task. This was done to establish familiarity with
the interface used in the study. We chose to adapt
an existing beta version of a web-based transla-
tion workbench by adding extensive keystroke log-
ging features along with some other minor tweaks.’
The Ul itself was kept clean and uncluttered, serv-
ing one segment at a time to the translators. This

>https://indictranslate.in/
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meant that while translators had previous context
of the text under translation, they could not nav-
igate ahead for context. A timer was displayed
once a translator navigated to each new segment.
This was meant to prompt the translator to focus
on the activity at hand. Figure 1 shows the work-
bench interface as seen by translators under the PE
condition.

We instructed the participants to aim for publish-
able translation quality. They were free to conduct
web searches and consult online or offline dictio-
naries, but were discouraged from spending too
much time doing s0.% It was deemed acceptable
to transliterate any technical terms or terminology
into Hindi if they could not find its translation even
with the aid of resources available to them. How-
ever, they were strictly prohibited from consulting
any online MT engines during the task. Subjects
were encouraged to complete each task (consisting
of 10 segments) in a single sitting without a break.

Previous studies, such as those discussed earlier,
have noted the impact of a number of different vari-
ables (language pairs, MT paradigms, text domains,
translation environments, translator competencies)
on translation throughputs. This calls for not only
careful experiment design, but also utilization of
techniques that can help with the testing and infer-
ence of results. Green et al. (2013) utilized one
of the first such designs for post-editing produc-
tivity studies and deployed mixed-effects models
(Baayen et al., 2008) to account for inter-language,
inter-subject, and inter-item variability.

Mixed-effects models are able to model this vari-
ability in two ways: (i) through random intercepts,
that can account for the differences between trans-
lators seen in their differing throughputs (or differ-
ences between linguistic items due to the features
inherent to them); (ii) and through a random slope
that accounts for how different subjects may experi-
ence the change of condition differently. Account-
ing for these variabilities allows us to isolate the
effect of condition, generalize our findings beyond
our sample, and avoid the ”language-as-fixed-effect
fallacy” (Clark, 1973).

In fitting our mixed-effects models we follow
a methodology similar to the one described by
Baayen et al. (2008) and followed by Green et al.
(2013) and later Toral et al. (2018). Maximal mod-
els were fit when possible (Barr et al., 2013); in

®This was done as technical terminology related difficulties

have previously been noted for this language direction (Shah
et al., 2015).



Day SI-T1 S1-12 S2-T1 S2-12
Day1 2020 (A1) 2630 (Al)  26.80 (Al) _ 21.30 (A2)
Day2 2090 (A2) 2230(A2) 2490(A2) 2320 (A3)
Day3 2640 (A4) 24.60 (A4) 2630 (A4) 2240 (Ad)
Day4 2240 (A4) 2030 (A4)  18.00 (A5)  18.70 (AS)
Day5 2250 (A5) 1600 (AS) 2030 (A5)  23.00 (A5)
Table 1: Average sentence lengths (in words) per

session-task block as presented to translators. Also
shown in parenthesis are the source articles used for
each block.

case of convergence failure, a less complex model
was fit by successively removing the random slopes
of the by-subject and by-segment random effects
component. Models thus obtained were compared
via likelihood ratio tests. We also refit our final
models after filtering data points with residuals de-
viating more than 2.5 standard deviations. This
helps check for the influence of any atypical out-
liers (Baayen et al., 2008). We verify the residual
plots for normality and homoscedasticity. We uti-
lized the 1me4 package in R (Bates et al., 2015)
for all mixed-effects models related analyses.

3.1 Data

We assembled a corpus of recent English language
news articles from two distinct online sources. The
choice of news as a domain was motivated by obser-
vations of terminology-related difficulties in more
specialized domains, as reported by earlier studies
(Shah et al., 2015). Each news article was seg-
mented into sentences using the NLTK library and
divided into blocks of 10 segments.” Only those
blocks were used that fell within a MEAN + SD of
the corpus mean (Table 1). We prioritized the conti-
nuity of a news article across blocks when making
block selections.® This methodology yielded a to-
tal of 200 unique source segments divided into 20
blocks of 10 segments each, spanning 5 different
news articles: A1-A5. Conditions were counter-
balanced to handle order effects.

3.2 Participants

The participants of our study are self-declared pro-
fessional translators. We contacted a professional
translation service provider to help assemble the
pool.” A short questionnaire accompanied the reg-
istration form for the task. Of our participant pool
of 10 subjects, 70% reported 2-5 years of expe-
rience translating in the English-Hindi direction,

https://www.nltk.org/api/nltk.tokenize.html

81In 2 cases out of 20 we had to skip the subsequent block,
owing to short average sentence lengths of the blocks.

*http://www.ebhashasetu.com/
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while 30% reported 0-2 years of experience. The
same percentage breakdown was observed for a
question related to previous post-editing experi-
ence. All subjects were paid the going market rates
for the task regardless of the condition (PE, HT).

3.3 MT System

The English—Hindi MT engine used for the task is
a transformer based neural machine translation sys-
tem. This subword-based NMT system is trained
on cleaned WAT 2021 '© English-Hindi training
corpus using the Opennmt-py toolkit (Klein et al.,
2020). The system also utilizes forward and back-
ward translations on the IndicCorp monolingual
corpus to obtain synthetic data for training.!' It
uses subwords as the basic translation unit with
20,000 merge operations on both source and tar-
get languages. The system obtained a BLEU score
of 35.46 on cleaned WAT 2021 English-Hindi test
data.

4 Results and Discussion

4.1 Pre-processing

Once we processed the activity logs for all 10 sub-
jects across all 200 segments, they yielded 2000
unique observations. We found that 7 of these items
(all from the HT condition) did not contain a final
translation, so we discarded those. We think that
in these cases the subjects may have accidentally
navigated to the next segment without having com-
pleted a translation. In the PE condition we found
that one subject PO/ had not touched 68% of the
MT outputs and had accepted them without modifi-
cations. This was almost 3 times the next highest
proportion we detected across all other subjects.
We decided to remove all data points generated by
this subject. We were thus left with 1793 observa-
tions on which we base these results.

We calculated time per segment, source seg-
ment lengths (in words and characters), number
of keystrokes (total, as well as those belonging to
different categories: content, navigation and dele-
tion), average pause duration, initial pause duration,
and number of pauses. We also computed H-BLEU
(Papineni et al., 2002), H-TER (Snover et al., 2006)
and H-chrF (Popovi¢, 2015) metrics on the post-
edited segments.'?

Ohttp://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/

"https://indicnlp.ai4bharat.org/corpora/

12H signifies that scores were computed using the reference
generated in the PE condition by the same subject.
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Figure 2: Individual translation throughputs in words
per hour and average throughput in each contrasting
condition.

Having assembled this data, we set out to answer
the research questions posed earlier in Section 2.

4.2 Temporal Effort

We first present a view of temporal effort in terms
of productivity measured as words per hour. We
see productivity improvements in the PE condition
across the board except for subject PO7. Overall,
this translates into a throughput increase from 359
words/hour to 979 words/hour. We thus observe an
overall productivity gain of 172%, which amounts
to 63% in time savings.

This is more than twice the 74% gain reported by
(Plitt and Masselot, 2010) when studying European-
language pairs and the 59.74% reported by (Laubli
et al., 2019) recently. But we note that in the first
case, the experiments were conducted on PBSMT
outputs, and in the second, while NMT was used,
the control condition was aided by a TM, thus push-
ing up the baseline throughputs. With this context
in mind, the average productivity gain seen in our
study does not appear to be unrealistic.

Figure 2 shows a comparison of individual
throughputs in contrasting task conditions along
with means aggregated for the two conditions. We
also note a great variation in productivity gain
amongst subjects ranging from -7% to 410%.

Table 2 helps interpret this further. We contrast
the number of unedited and edited MT propos-
als per subject and their individual productivity
gain percentages. It follows that higher the accep-
tance of MT proposals without modifications by a
subject, greater the gain in individual productivity.
While this may point to high quality MT output,
it also demands a closer scrutiny of the quality of
translations generated in each condition. We ad-
dress this in Section 4.5.
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Participant Unedited (%) Edited (%) Productivity Gain (%)

P02
P03
P04
PO5
P06
PO7
P08
P09
P10

20
3
3

18

25
0
2

25

16

411
73
92

275

404
-7

105

234

169

Table 2: MT segments accepted without modifications
and with modifications per subject along with individ-
ual productivity gain percentages.

We now report the mixed-effects regression re-
sults. Plotting temporal data showed a right-skewed
distribution, so we log transform all time data be-
fore proceeding further. As our goal is to predict
translation time and establish the significance of
conditions, we fit a linear mixed-effects regression
model with two fixed-effect predictors (condition
and segment length) and two random-effect predic-
tors (subjects and segments), where on the subject
predictor we also include a random-slope for task
condition.

In the final model, we observe a significant main
effect for both segment length as well as translation
condition.'3 Temporal effort significantly increases
with segment length, but decreases for the PE con-
dition. Table 3 shows the significance levels and
direction for each predictor in our final models
across all PE effort dimensions that we study.

4.3 Technical Effort

We measure technical effort as the number of
keystrokes used to generate the target text. We
normalize it per source segment character. Figure
3 shows 1.33 keystrokes used per source character
in the HT condition and 0.54 keystrokes in the PE
condition, amounting to an effort reduction of 59%.
Contrast this with the 23% reduction reported by
Toral et al. (2018) when post-editing a literary text.
Again, except for subject PO7 all participants show
reduced effort in the PE condition.

We also classified each keystroke based on the
type of the keystroke logged. We classify these
into content, navigation, and deletion categories
and report the percentage breakdown of the total
into these categories in Table 4. We observe higher
navigation and deletion operations in the PE condi-
tion (28% and 26%) than the HT condition (8% and
14%), while content keystrokes register a higher
percentage in HT (77%) compared to PE (46%).

3We utilize the ImerTest package that extends results with
p-values for models built with lme4.
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Direction: (1 ) arrows depict whether the predictor has a negative or positive correlation with the dependent variable.

Table 3: Significance levels of predictors in our final models across all modeled PE effort dimen-

sions.
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Figure 3: Technical effort estimated as number of
keystrokes needed to generate target text per source
character.

Subject POS is an interesting case as they regis-
ter the highest number of delete operations (they
have high navigation numbers too) in either condi-
tion amongst all participants. This could point to
frequent revisions made on the text.

As number of keystrokes is expressed as counts,
we fit a Poisson generalized linear mixed-effects
model to predict technical effort. We follow the
same methodology as described in the previous
section. We again find a significant main effect both
for segment length as well as translation condition
(Table 3), similar to what we saw for the temporal
dimension earlier. Technical effort increases with
increase in segment length, and decreases for the
change in condition to PE.

4.4 Cognitive Effort

Post-editing effort estimation studies based on eye-
tracking data use fixations as a proxy to estimate
cognitive load; the idea being that greater the num-
ber and duration of fixations, greater the cogni-
tive load (O’Brien, 2011). In the absence of eye-
tracking data, the use of pauses as a proxy for
cognitive load is also well established (O’Brien,
2006). We report on three such cognitive indica-
tors: number of pauses, pause duration, and initial
pause duration. Findings related to the first two
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Figure 4: Cognitive effort estimated as average number
of pauses per source segment.

have been reported in previous post-editing litera-
ture (Green et al., 2013; Toral et al., 2018).'* The
third (initial pause duration), we introduce in order
to gauge differences in reaction times from when a
subject first navigates to a new segment displayed
in either condition to their first action on it.

We calculate the time difference between two
subsequent key events and consider all observations
above 1000ms to be pauses following (O’Brien,
2006; Koehn, 2009).

Figure 4 shows the differences in the frequency
of pauses for each subject in the two conditions.
We notice a reduction of 63% in the PE condition
from 31 pauses per segment in HT to 12 pauses
per segment in PE. This points to a much reduced
cognitive load when post-editing.

However, a similar exercise on pause duration
data reveals an increase of approximately 12% in
the PE condition compared to the HT condition
(Figure 5). Although, it is not significant, this is in
line with findings reported previously comparing
these two specific cognitive indicators (Green et al.,
2013).

We finally compare initial pause duration be-
tween PE and HT. We expect this initial load to be
higher for the PE condition given that there are two

“There is also an indicator reported as pause ratio which
we eschew in favour of initial pause time.



HT (%
Participant %)

PE (%)

Navigation

Deletion

Navigation Deletion

P02

1
Mean=£ SD 77.55+£2180 8.15£7.89

11

14.30 £ 14.63

32
8
41
30
28
12
27
52
19
27.69 £ 13.65

46.52 + 1591 25.8 £ 16.1

Table 4: Types of keystrokes generated by subjects in each condition.
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Figure 5: Cognitive effort estimated as average pause
duration per source segment.

segments displayed to the subject in this condition:
the source segment and the MT proposal, which
have to be read and comprehended before starting
the post-editing activity. This seems to hold, but
not significantly, as we see only a small increase
of about 5% for the PE condition (Figure 6). One
explanation could be that in the PE condition, the
MT proposal in spite of registering a higher cogni-
tive load initially also later acts as a helpful prompt
for the subject. An eye-tracking based experiment
might prove useful in teasing apart these two oppo-
site effects.

When comparing the means'> for pause duration
and initial pause duration we find pause duration
(6.77s for HT and 7.71s for PE) to be consider-
ably lower than initial pause duration (35.02s for
HT and 36.67s for PE). The translator therefore,
takes a longer initial pause to start formulating a
response, but once they start the activity, they take
considerably shorter pauses.

We go on to fit three mixed-effects models to val-
idate these findings. A Poisson generalized mixed-
effects model to estimate pause counts finds signifi-

15 After transforming back from log scale. Also, note that
pause duration does not include initial pause duration as a
component, and is the duration of pauses after post-editing
starts.
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Figure 6: Cognitive effort estimated as average initial
pause duration per source segment.

cant main effects for segment length and condition.
Cognitive effort (measured as count of pauses) in-
creases with segment length and decreases for the
change in condition to PE.

The other two linear mixed-effects models fit to
predict average pause duration, and initial pause
duration find a significant effect only for segment
length and not for condition (Table 3). This shows
that while cognitive effort certainly increases with
segment length, the change in condition to PE, does
not have a discernible effect on cognitive effort,
when measured by the average and initial time du-
ration indicators.

4.5 Quality Judgements

To evaluate whether the quality of texts created in
the PE condition matched those created in the HT
condition, we conducted a human judgement based
pairwise ranking task (Callison-Burch et al., 2011)
on a small sample. We randomly sampled 3 target
segments per condition from each subject. For each
target text thus obtained, we paired it with another
random sample after constraining on condition. We
thus obtained 60 HT-PE pairs for evaluation. As
we discovered issues (discussed earlier in Section
4.1) with subject POI’s data after the quality eval-



PE vs. HT
Evaluator

Win Loss Tie

18
27
7
14

E5 13

Table 5: Pairwise quality judgements on sampled target
texts reported as win, loss, and ties for PE against HT.

uation exercise had already been completed, we
removed any pairs that had a segment translated by
the subject. We report our results on this filtered
set that consists of 47 pairs. Five evaluators were
asked to judge each pair. Ties were allowed.

Table 5 shows the judgements from evaluators
represented as win-loss statistics on the PE condi-
tion. We notice a high number of ties and a slight
preference for the PE condition. However, the pref-
erence does not test to be significant on a sign
test ignoring ties (p-value = 0.08). We conclude
that translating in either condition produces similar
quality target segments. However, we realise that
the sample size was quite small compared to the
number of possible combinations across all partici-
pants. We hope to conduct a more thorough review
of quality in future.

4.6 Automatic Quality Metrics

Finally, we investigate the correlations of some
popular automatic MT evaluation metrics with the
post-editing effort indicators reported so far in this
study. We generated metric scores by comparing
the MT proposal against its post-edited reference.
We calculate scores for H-(BLEU, TER, and chrF).

Table 6 shows moderate correlations for all 3
MT metrics on the temporal indicator, similar to
what Tatsumi (2009) also reported for this indica-
tor. Correlations then get stronger on the technical
indicator and then fade for the cognitive indicator.

We believe this may be because cognitive effort
is the only one out of the three PE dimensions we
studied that is not directly observed (instead, in-
ferred from pause frequency and pause duration
data), whereas the technical and temporal indica-
tors can be measured more directly. This is similar
to findings previously reported by Moorkens et al.
(2015) who note a similar correlation trend across
the three PE effort dimensions. The technical ef-
fort indicator appears to be the one most strongly
correlated with automatic metrics.

The other two cognitive indicators (average and
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PE Indicator

MT Metric

temporal technical cognitive (# pauses)
(H)BLEU r=—.56,""" r=—.71,*"* r=—.48,"*"
(H)TER r=+4.54,""" r=+.70,""" r=+4.49, "
(H)chrF r=—.56, """ r=—.73, """ r=—.49, "

Note: All coefficients for r(898). For TER lower is better hence the positive correla-
tion. The other two cognitive indicators (average and initial pause duration) did not

show any correlation with any of the metrics — coefficients were close to 0.

Table 6: Correlations of PE Effort indicators with auto-

matic MT metrics.

initial pause duration), which did not test signifi-
cant as per our mixed-effects models, also do not
show any correlation with any of the MT metrics
— coefficients obtained were close to 0. We omit
reporting them in Table 6 due to space constraints.

5 Conclusion

We conducted a post-editing effort assessment
study and presented detailed analysis of effort indi-
cators along the temporal, technical and cognitive
dimensions. We observed that in the temporal di-
mension, post-editing reduced translation time by
63%; in the technical dimension it reduced number
of key strokes by 59%; and in the cognitive dimen-
sion, it reduced the frequency of pauses by 63%.
However, it increased average pause duration by
12% and average initial pause duration by 5%.

We then compared the quality of translations
generated in each condition and found them to be
similar.

And finally, we detected moderate to strong cor-
relations for 3 automatic MT evaluation metrics
across all PE effort indicators, with technical ef-
fort most strongly correlating with automatic MT
metrics.

The last two observations regarding human qual-
ity judgement, and MT metrics and their correla-
tions demand a closer look, which was not possible
owing to time and space constraints. We expect
to undertake this as part of our future work. We
also propose to extend this study by including a
third condition in future, either as an additional MT
engine to check if MT quality differences show up
in PE effort indicators (Toral et al., 2018), or by the
use of translation aids (TM) to gauge their impact
in a similar manner (L&ubli et al., 2013, 2019).

We also intend to study other language pairs,
especially those within the multilingual Indian con-
text.
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Abstract

In this paper, we report the experimental find-
ings of building Speech-to-Text translation sys-
tems for Manipuri—English on low resource
setting which is first of its kind in this lan-
guage pair. For this purpose, a new dataset
consisting of a Manipuri-English parallel cor-
pus along with the corresponding audio ver-
sion of the Manipuri text is built. Based
on this dataset, a benchmark evaluation is
reported for the Manipuri—English Speech-
to-Text translation using two approaches: 1)
a pipeline model consisting of ASR (Auto-
matic Speech Recognition) and Machine trans-
lation, and 2) an end-to-end Speech-to-Text
translation. Gaussian Mixture Model-Hidden
Markov Model (GMM-HMM) and Time delay
neural network (TDNN) Acoustic models are
used to build two different pipeline systems
using a shared MT system. Experimental re-
sult shows that the TDNN model outperforms
GMM-HMM model significantly by a margin
of 2.53% WER. However, their evaluation of
Speech-to-Text translation differs by a small
margin of 0.1 BLEU. Both the pipeline trans-
lation models outperform the end-to-end trans-
lation model by a margin of 2.6 BLEU score.

1 Introduction

In recent times, the advance in machine transla-
tion (MT) systems research jumped from textual
modality to multi modality. The success of the
several machine translation system for major lan-
guages based on statistical and neural approaches
shed light towards building better translations sys-
tems for low resource languages as well. Of these,
the statistical machine translation (SMT) (Koehn
etal., 2003) and neural machine translation (NMT)
models (Cho et al., 2014) started its journey from
the traditional text-to-text translation which fur-
ther expanded to the use of multiple modalities
(Huang et al., 2016; Caglayan et al., 2016; Meetei
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et al., 2019; Gain et al., 2021) in the translation
task. The usage of multiple modalities in MT un-
covers new avenues for MT researchers. MT tasks
where multiple modalities are utilized include us-
ing multiple-input modalities, for example, incor-
porating visual and text modalities (Meetei et al.,
2021; Singh et al., 2021), translation between dif-
ferent input and output modalities such as Speech-
to-Text translation (Ney, 1999; Weiss et al., 2017),
etc. With these various methodologies of MT, the
main goal is to obtain the most key information in a
modality in generating the optimal sentence trans-
lation.

The Speech-to-Text (S2T) translation is the
translation of a speech in a source language to a
target language text. The Speech-to-Text transla-
tion task can be broadly addressed using two ap-
proaches: 1) with a pipeline strategy, which sep-
arates the different modalities into modality con-
version, i.e., ASR, followed by text-to-text MT. 2)
end-to-end (E2E) translation where the target text
is directly generated from the speech in the source
language. The Speech-to-Text (S2T) can find its
application in our daily life by creating an ease
form of communication for individuals with phys-
ical disabilities. It can also be used in reducing
the turnaround of quick documentation, generating
subtitles, etc.

Despite the fact that researchers are pushing
the frontiers in machine translation and improv-
ing their capabilities, most of the work is focused
on well-studied languages while work on low re-
source languages such as Manipuri is falling be-
hind. Manipuri (also known as Meiteilon) is the
official language of Manipur, a northeastern state
of India. Manipuri is an extremely low resource
language with a limited dataset available for the
NLP (Natural Language Processing) tasks which
is one of the primary reasons that hindered the de-
velopment of NLP systems for the language.

Proceedings of the 18th International Conference on Natural Language Processing, pages 54—63
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Figure 1: Manipuri—English S2T translation models

This work aims to promote Speech-to-Text
translation of an extremely low resource language
by presenting a benchmark evaluation on a manu-
ally collected speech dataset. This work makes the
following contributions:

* We build the first Manipuri—English S2T
translation dataset.

» Comparison between a pipeline and end-to-
end S2T translation model on the collected
corpus is reported as the benchmark evalua-
tion.

The rest of this paper is presented as follows:
The prior relevant research is discussed in Section
2, followed by the framework of our model in Sec-
tion 3. Section 4 and Section 5 explain the setup
of our system and analysis of our results. The con-
clusion and future work are summarized in Section
6.

2 Related Works

Early attempts to address S2T translation follows
a pipeline approach of two independent models:
ASR and MT systems (Ney, 1999; Matusov et al.,
2005). The approach utilized the hypothesis of
ASR as an input to the MT model to generate the
target-language text. Initial work on direct Speech-
to-Text translation includes (Bérard et al., 2016;
Duong et al., 2016; Bansal et al., 2017). Using
a small French-English synthetic dataset from 7
speakers, Bérard et al. (2016) carried out an end-
to-end S2T translation. The author reported that
their system to be capable of generalizing to a new
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speaker effectively. Bansal et al. (2018) carried
out an end-to-end S2T translation in low resource
settings by training with smaller subsets of 160
hours labeled data. The author reported a BLEU
score of 5.3 and 29.4 when trained with 20 hours
and 160 hours, respectively.

Some of the work in the development of speech
technology for the Manipuri language includes
Rahul et al. (2013); Patel et al. (2018); Devi et al.
(2021). Patel et al. (2018) reported a WER of
19.28% on a GMM-HMM and WER of 13.57%
on a Deep Neural Network-HMM (DNN-HMM)
acoustic model systems. The speech corpus used
in the experiment comprised around 61 hours.
Works on MT for Manipuri-English language pair
are reported using various techniques such as
Example-based MT (Singh and Bandyopadhyay,
2010a), SMT (Singh and Bandyopadhyay, 2010b;
Singh, 2013), and unsupervised NMT (Singh and
Singh, 2020). In a comparative study of SMT and
NMT systems on the Manipuri-English language
pair, the authors (Rahul et al., 2021; Singh and
Singh, 2021) reported NMT system to perform bet-
ter than the SMT system. To date, there is no work
in S2T translation for Manipuri-English language
pair. In order to fill this gap, a Manipuri-English
S2T translation is developed using a small dataset
in our work.

3 Methodologies

Figure 1 illustrates the methodology of our work.
As the initial step of our work, English text dataset
is collected from news articles, which is translated
to Manipuri language. In the next step, speech is



recorded for the Manipuri text. The overall col-
lected dataset is then used to train the pipeline and
End-to-End S2T translation models.

3.1 Language Resources

To build the dataset for our experiment, we col-
lected news articles reported in English from a lo-
cal daily newspaper'. The collected English text is
machine translated to Manipuri followed by man-
ual post-editing of the MT output and training the
MT system with the incremental approach (Meetei
etal., 2020). Following the development of the par-
allel dataset, speech is recorded for each of the Ma-
nipuri sentences by the native speakers of Manipur.
The total number of participants for speech records
is five: one male speaker and four female speak-
ers. There is no overlapping of utterances among
the participants. The recorded speech is post-
processed, where the quality of speech records are
verified manually. Any invalid speech found is
rerecorded to collect quality speech records for the
experiment. The overall collected dataset com-
prises of:

* 3500 Manipuri-English parallel text datasets,
and

* around 5 hrs 30 minutes of speech record of
the Manipuri text.

3.2 Speech Feature Extraction

For any Speech-to-Text system, extracting the au-
dio signal components that can be used to de-
termine linguistic content is important. Mel-
frequency cepstral coefficients (MFCCs), the most
popular, extensively utilized cepstral feature for
ASR, is used as the audio feature for the ASR sys-
tem and the E2E Speech-to-Text translation sys-
tem.

3.3 Pipeline translation model: ASR and MT
Our pipeline S2T translation model consists of two
independent models:

» Automatic Speech Recognition, and

* Neural Machine Translation (NMT)

In our work, we built two separate pipeline
systems using GMM-HMM and TDNN Acoustic
models, which is followed by a shared NMT sys-
tem. The ASR output is fed to the NMT system to
generate the target language.

'Imphal Free Press https://www.ifp.co.in/
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3.3.1 Automatic Speech Recognition (ASR)

The objective of an automatic speech recognition
system is to predict the most likely discrete sym-
bol sequence from a given input acoustic speech
vector O, out of all valid sequences in a target lan-
guage T. Taking input speech sequence as a set of
observation O= (01, 02, ...0,,) and the symbol to be
predicted represented by S = (s1, $2, ...sp, ), the aim
of the ASR model is:

~

S = argmazP(O|S)P(S). (1)

where P(S) is the prior probability for the sequence
S, and the observation likelihood, P(O|S) is the
likelihood of the acoustic input sequence O given
the sequence S, computed using HMM.

The acoustic model based on deep neural net-
works is trained with time delay neural network,
TDNN (Peddinti et al., 2015).

3.3.2 Neural Machine Translation (NMT)

A Neural Machine Translation (NMT) is built for
the MT system in the pipeline model. For a source
sentence, S = {s1,...,8,}, NMT, an encoder-
decoder sequence-to-sequence technique, jointly
models the conditional probability p(T|S) to trans-
late a target sequence, T = {t1,...,tmn}.

Following the attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015), a bi-LSTM
(Sutskever et al., 2014) is used as an encoder. At
time step ¢, the encoder state is represented by the
concatenation of the forward hidden state, h:-, and
backward hidden state, fzz As each word in the
output sequence is decoded, the attention mecha-
nism learns where to focus attention on the input
sequence.

3.4 End-to-End S2T translation model

Our end-to-end S2T translation model follows
Bérard et al. (2018) architecture, an attentive
encoder-decoder model. The speech encoder takes
audio features, X= (1,72, ...,x7,) € RT=*N a5
an input sequence. The audio features are fed into
two non-linear (tanh) layers, which generate N
size features. The new feature sequence length is
reduced by a factor of 4 using two 2D convolu-
tional layers with stride (2; 2), which is then passed
to a three stacked bidirectional LSTMs (Schuster
and Paliwal, 1997). The decoder generates target-
language sequences at the character level. The
character-level decoder is composed of a condi-
tional LSTM with the global attention mechanism
(Bahdanau et al., 2014).



sentences duration (in min)
train 3300 ~314
dev 100 ~9
test 100 ~8
Table 1: Manipuri—English Speech-to-Text transla-

tion dataset setup

4 Experimental Setup

In this section, we present the different Speech-to-
Text translation experiments conducted, including
the dataset and experimental setup.

The training, development, and test data sets
for Manipuri—English S2T translation models are
summarized in Table 1.

4.1 Pipeline S2T Translation Models

The system set up of independent ASR and MT
systems of pipeline S2T translation model are as
follows:

4.1.1 ASR systems

The transcript of the Manipuri text is written in
Bengali script. Words in Manipuri have exact
grapheme-to-phoneme mapping. A grapheme-to-
phoneme list for the Manipuri ASR system is pre-
pared by using the Bengali to Roman script translit-
eration module of (Meetei et al., 2021). The acous-
tic features fed to the GMM-HMM model con-
sists of 13-dimensional MFCC, and 3-dimensional
pitch features for speaker adaptation, namely Prob-
ability of Voicing (POV)-weighted mean subtrac-
tion over 1.5 second windows, Normalized Cross
Correlation Function (NCCF)-derived POV fea-
ture, and delta pitch calculated on raw log pitch.
While TDNN acoustic models are trained using
40-dimensional MFCC with 100-dimensional i-
vectors and 3-dimensional pitch features. We uti-
lized a 3-gram model trained with SRILM (Stol-
cke, 2002) for decoding. The ASR systems are
built using the Kaldi toolkit (Povey et al., 2011).

4.1.2 NMT systems

Two NMT systems are trained using different
dataset set up:

e NMT;,: NMT model trained with the in-
domian dataset (Table 1).

* NMT,: NMT model trained by combin-
ing the in-domain and additional parallel
Manipuri-English text dataset. The additional
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dataset is acquired from TDIL?, data scrapped
from vikaspedia * which are then manually
aligned and the work from (Meetei et al.,
2020). Overall, the domain of the dataset is
from tourism, agriculture, medical and news
articles. The total training dataset size is
23126 (3300 in-domain and 19823 additional
parallel sentences).

As an encoder, a two-layer bi-LSTM with 512
hidden units is used, and the batch size is set to 32.
With a learning rate of 0.001 and Adam optimizer
(Kingma and Ba, 2014), we train the system uti-
lizing early stopping, where training is halted if a
model does not progress on the validation set for
more than 15 epochs.

4.2 End-to-End S2T Translation Model

End-to-End S2T translation models are imple-
mented in PyTorch (Paszke et al., 2019) with
fair-seq toolkit*. We utilize “T-Sm” architecture
(Wang et al., 2020) with default hyper-parameters
and train with Adam optimizer and a learning rate
0f 0.002. Early stopping is used to halt the training
when the system does not improve for 15 epochs
on the development set.

4.3 Evaluation Metrics

The word error rate (WER), which is the ratio of
word insertion, deletion, and substitution errors in
a transcript to the total number of uttered words,
is used to evaluate our ASR systems. The final
hypothesis of S2T are evaluated with BLEU (Pa-
pineni et al., 2002). BLEU is a precision-based
automatic metric used to evaluate the quality of
machine-translated text.

5 Results and Analysis

In this section, we illustrate the results of our
Manipuri—English pipeline and end-to-end S2T
translation models. Along with the automatic met-
ric evaluation, we carried out an in-depth qualita-
tive analysis and human evaluation of our transla-
tion systems.

5.1 Automatic Metrics based Evaluation

The ASR systems are evaluated in terms of

word error rate (WER), and the final hypoth-

esis of translation from the pipeline and end-
*https://tdil-dc.in/

Shttps://vikaspedia.in/
*https://github.com/pytorch/fairseq



Acoustic Model WER MT BLEU Translation Model
Pipeline GMM-HMM 27.69 NMT;, 6.1 PipeHmmIN
NMT, 4.6 PipeHmmG
TDNN 25.16 NMT;, 6.2 PipeTdnnIN
NMT, 4.1 PipeTdnnG
E2E - - - 3.6 E2E

Table 2: Manipuri—English Speech-to-Text translation results

transcriptl FIIA FCT B
Third Kwatha Festival inaugurated
GMM-HMM  © 331 ST FCT EHIFCL
TDNN FIIA FCT EHBCL
transcript2 TSI Yfawas [RURIEIE]
Drivers union suspends bandh
GMM-HMM  &i=edf el Jfamaar <= esed
TDNN TIZGAR RS Jfaadt B eFcd
transcript3 8 fSHaW @15 RIECEMRBROD CCAFCL
All Jiribam Road Transport Drivers Union suspends bandh
GMM-HMM G &R (S5 §iST07110 TiRed Jiamaar 4+ g
TDNN @51 IR (16 GI9107110 T1ReR YfARaa1 16T eded
transcript4 0 ST Nl BT IIZFIF1L [euEETey
Indian bikers reach Imphal after crossing 31 countries
GMM-HMM (7T ©5 SfIeTdl Npeal 3iq 12afIe eEETe
TDNN (eTaT 05 ST Nl Sl IAZFAFIR 22ele] AP

Table 3: Sample input-output of Manipuri Automatic Speech Recognition systems

to-end systems is measured in terms of BLEU
score using SacreBLEU (Post, 2018). Table 2
shows the automatic evaluation score of the ASR
(GMM-HMM and TDNN) output and the trans-
lation output. The signature of the SacreBLEU
is : BLEU + case.mized + numrefs.l +
smooth.exp + tok.13a + version.1.5.1.

* ASR: TDNN model outperforms the GMM-
HMM model significantly by achieving an
improvement of 2.53% WER.

* Translation: The pipeline model with TDNN
ASR and N M T}, achieve the highest BLEU
score.

From the results in Table 2, it is observed that
the evaluation of the target language translations
from the output of the ASR systems using a shared
NMT system differ by a small margin. The TDNN
pipeline model achieve a 0.1 to 0.5 BLEU score
more than the GMM-HMM pipeline model.

Comparing the evaluation scores of the transla-
tion hypothesis from the pipeline and End-to-End
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models, it is clear that the pipeline models out-
performs the End-to-End model significantly by a
margin of 2.6 BLEU score. The result also shows
that the usage of additional out of domain data
where the size of the dataset is substantially larger
than the in-domain dataset size has negative effect
on the BLEU score. A likely cause is the use of
development and test dataset from the in-domain
dataset.

5.2 Qualitative Analysis of Manipuri ASR
Systems

Table 3 shows some sample input-output of Ma-
nipuri ASR systems where we analyse the robust-
ness of the systems on selected words in the refer-
ence transcript highlighted in
In transcriptl, * ” (~ “ahumsuba”
meaning third) is generated in its numerical format
“0 31 (~ “3 suba” meaning 3"%) by GMM-HMM
ASR system while the TDNN ASR system gener-
ate it in its actual format. Though, both the format
has same speech feature, TDNN ASR system per-
forms better in n-gram match.
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Figure 3: Sentence length BLEU evaluation

The samples transcript2 to transcript4 shows
some of the examples where ASR systems gen-
erates incorrect transcript words (highlighted in
“red”) of reference words (highlighted in “green”
From the sample results, it is observed that the
ASR systems suffer when the word contains the
phoneme “b” ( “9%” ~ “bandh”, “©I49" ~ “bha-
van”, “JIe7” ~ “bal”).

A single phoneme in Manipuri could be repre-
sented by different graphemes in the Bengali script.
One such case is shown in transcript3 where the
ASR systems generate the word “@ISTCAD” (~
“transport’) as «GISTCoATD” (~ “transport”). In tran-
scriptd, the word “ZW%F[e7” (~ “imphal”) is a cor-
rect representation of the word “Z%: ¢ (~ “im
phal’) where the joined characters are written sep-
arately.

As the automatic evaluation metrics are com-
puted at the word level, the cases highlighted in
transcript3 and transcript4 often led to low eval-
uation score.
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5.3 Sentence Level Evaluation

An analysis of the Manipuri—English S2T transla-
tion system is carried out by computing the BLEU
score at the sentence level. Figure 2 shows the anal-
ysis based on the number of sentences with respect
to the BLEU score. While the analysis in Figure 3
shows the performance of the systems with shorter
and longer sentences based on the length of the ref-
erence sentence.

In Figure 2, the majority of the translations from
the E2E model are observed to score a BLEU score
of less than 10, while less than half of the transla-
tions from the pipeline model scored less than 10.
It is interesting to note that the highest sentence
level BLEU is achieved by the E2E model even
though the overall performance of the pipeline
model outperforms the E2E model significantly.
A likely cause of the poor performance of end-to-
end S2T translation system is the small size of the
dataset. The result in Figure 3 shows that the sys-
tems perform well with longer sentences [20,30)



sourcel Torert ALNAISN (AW ATLCATFCL

referencel Awareness programme on held

GMM-HMM ASR 5 FT worear AN (NI AP

PipeHmmIN Awareness programme on Mudra Dayal held held

PipeHmmG Awareness programme on foot held

TDNN ASR ToTAT AN (TN SALTFCL

PipeTdnnIN Awareness programme on tobacco Dayal control held

PipeTdnnG Awareness programme on Act held at Moreh

E2E Awareness programme on held at Manipur Press Club , Majorkhul
source2 NGRS Tiew Tt IIE#T FET arieas fhasfrent ar erefy
reference2 speaks to media persons during press

GMM-HMM ASR

ST Tiew Fgent IE#T FET arieasT fTasfrent ar erefy

PipeHmmIN Ng Ibobi speaks to media persons during press conference

PipeHmmG Ibobi speaks during media persons during press conference

TDNN ASR ST Tiew Fent IIE#T FET arieasT Tagfrent ar erefy
PipeTdnnIN Ng Ibobi speaks to media persons during press conference

PipeTdnnG Ibobi speaks during media persons during press conference

E2E Ng . Uttam speaks to media persons during press conference

source3 Nr=efreat arfeamr ar erefer
reference3 Representatives of speaking to the media

GMM-HMM ASR

AT SToFT T=ePear i v siefer

PipeHmmIN Representatives of speaking to media
PipeHmmG Representatives of Ukhrul woman speaking during the inaugural ceremony
TDNN ASR T=eRieaT arfomr at siefer
PipeTdnnIN Representatives of speaking to media
PipeTdnnG Representatives of Ukhrul woman speaking during the inaugural ceremony

E2E Representatives of speaking to the media

Table 4: Manipuri—English Speech-to-Text translation sample input-output

while the sentences with length below 20 score a
BLEU score less than 10.

With only very few samples achieving a BLEU
score above 50, it is clear that a massive effort is re-
quired for the development of Manipuri—English
Speech-to-Text translation systems.

5.4 Qualitative Analysis of
Manipuri—English S2T Systems

Sample input and output from the pipeline mod-
els and E2E Speech-to-Text translation model are
shown in Table 4. The grammatical error or in-
correct word(s) in the output from our systems are
highlighted in “blue”.

In the first sample, despite preserving the infor-
mation moderately, the fluency scale of translation
output with the Pipeline-GMM-HMM is worse
compared to the other systems. One of the main
reason is error propagation from the ASR model
where word ” (~ “act-ki”) is incorrectly gen-
erated as “5 I (~ “e-ki”). Furthermore, E2E
translation model generate additional non-relevant

60

information even though the output sentence is flu-
ent. In the second sample, the named entity word
“Wareppa Naba” (a name of a person) is incorrectly
generated and is replaced by another name of a per-
son (i.e., Ng Ibobi, Ibobi and Ng . Uttam). In dif-
ferent languages, there are cases where multiple
words in one langugae is represented by a single
word in another language. One such case is high-
lighted in the second sample where both the words

and conference which are synonyms is rep-
resented by a single word in Manipuri T (~
“mifam”). This often results to low BLEU score as
the evaluation metric is computed at the word level
n-gram matching and doesn’t consider synonyms.
The third sample shows the handling of long Ma-
nipuri multi-word named entity “

” (~ “Apunba Ireipakki Ma-
heiroi Sinpanglup-ki”), where the suffix “-ki” is
used to denote the possessive noun. It is observed
that the multi-word named entity is translated cor-
rectly despite the slight variation in the output of



Score Adequacy Fluency
1 No information is preserved Incomprehensible
2 Small amount of information is preserved Disfluent
3 Moderately preserved information Non-native
4

All information is preserved

Flawless sentence, and all are correct in terms
of grammatical rules

Table 5: Adequacy Fluency scale

Adequacy Fluency
PipeHmmIN 1.6 2
PipeHmmG 1.5 1.63
PipeTdnnIN 1.63 1.98
PipeTdnnG 1.3 1.93
E2E 1.23 2.83

Table 6: Human Evaluation of Manipuri—English S2T Translation Systems.

the ASR system (GMM-HMM). This is the impact
of the system trained on in-domain training dataset.
However, the translation is not in the line with
the NMT system trained on mixed domain training
dataset (N MT}) as the probability distribution got
skewed towards the add-on dataset.

5.5 Adequacy and Fluency Analysis of
Translation Outputs

Fluency analysis provide evaluation based mainly
on grammatical rules. Adequacy indicates infor-
mation preserved. Adequacy and fluency are mea-
sured on a scale of 1 to 4 and the meaning of the
various scales are summarized in Table 5. To mea-
sure adequacy and fluency, human evaluation on
the test dataset from each S2T translation system
is carried out. The adequacy and fluency ratings
reported by our human evaluators are shown in Ta-
ble 6.

* Among our translation systems, the pipeline
model (PipeTdnnIN) achieves the highest ad-
equacy score. The adequacy score of all the
systems are observed to be in correlation with
our automatic evaluation.

* The fluency score is observed to be non-
correlated with the automatic evaluation
scores. In terms of fluency, the end-to-end
model achieved the highest score. This indi-
cates that despite not preserving the informa-
tion of the source language, the system is able
to generate a fluent text.
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6 Conclusion and Future work

In this work, a comparative study of the con-
ventional pipeline model and end-to-end model
of S2T translation on an extremely low-resource
Manipuri-English language pair is presented. We
also made a comparison of two acoustic models:
GMM-HMM and TDNN, for the ASR module.
An improvement of 2.53% WER is observed in
the ASR model with TDNN compared to GMM-
HMM. The TDNN ASR model is observed to be
more robust than the GMM-HMM model in terms
of n-gram match. The ASR output is fed to a
shared NMT system (trained with the in-domain
or the additional out of domain dataset) in our
pipeline model. In comparison, the translation hy-
pothesis of the pipeline models are comparable in
terms of the BLEU score. However, using an NMT
system trained with a dataset from mixed domain
results to the decrease in the automatic evaluation
score. Though the end-to-end S2T translation has
various advantages over traditional pipeline mod-
els, the limited size of our dataset led to the end-to-
end S2T model’s low performance compared to the
pipeline model. An extensive collection of parallel
S2T translation training data is generally required
to train such an end-to-end S2T translation model.

In future, we plan to increase the size of the
dataset along with the collection of other forms of
modalities such as images. We also plan to explore
various Speech-to-Text machine translation mod-
els to enhance the performance.
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Abstract

In recent times, machine translation models
can learn to perform implicit bridging between
language pairs never seen explicitly during
training and showing that transfer learning
helps for languages with constrained resources.
This work investigates the low resource ma-
chine translation via transfer learning from
multilingual pre-trained models i.e. mBART-
50 and mT5-base in the pretext of Indo-Aryan
(Assamese and Bengali) and Tibeto-Burman
(Manipuri) languages via finetuning as a down-
stream task. Assamese and Manipuri were ab-
sent in the pretraining of both mBART-50 and
the mT5 models. However, the experimen-
tal results attest that the finetuning from these
pre-trained models surpasses the multilingual
model trained from scratch.

1 Introduction

Recent years have witnessed the growing advances
in the field of neural machine translation (NMT)
specifically for the resource rich languages. How-
ever, NMT requires enormous amount of parallel
data in order to have a decent translation system.
On the other hand, the low resource languages
lacks sufficient amount of parallel data, thus mak-
ing the translation system far from the produc-
tion level. Meanwhile, monolingual data is read-
ily available as compared to the parallel data and
many works have been done to exploit it, most
notably in a semi-supervised approach for data
augmentation using self-training (Ueffing, 2006;
Zhang and Zong, 2016; He et al., 2020) and back-
translation (Sennrich et al., 2013; Edunov et al.,
2018). However, these approaches are prone to
generate erroneous translations due to the noisy
synthetic data and often requires an iterative refine-
ment procedure which is both resource intensive
(Hoang et al., 2018) and time consuming process.
Unsupervised machine translation (Lample et al.,
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2018; Artetxe et al., 2018; Lample and Conneau,
2019) on the other hand uses only the monolingual
data and do not require any parallel data which
appears to be intimidating for a low resource sce-
nario. Additionally, the initial cross-lingual map-
ping between the two monolingual data requires
a maximal amount of vocabulary overlaps which
is crucial for a stronger cross-lingual mapping be-
tween the source and the target monolingual vector
spaces. However, the vocabulary overlaps is max-
imised only when the two languages are closely re-
lated thus making the unsupervised machine trans-
lation approach unsuitable for the distant language
pairs even if they have large amount of mono-
lingual data (Kim et al., 2020). Moreover, con-
ventional unsupervised systems utilises iterative
back-translation for the refinement purpose, thus
the unsupervised methods are imposed with the
issues of the back-translation (noisy translations
and resource intensive). Multilingual neural ma-
chine translation (MNMT) (Johnson et al., 2017;
Fan et al., 2021) on the other hand supports the
translation among multiple languages which has
shown to be beneficial for low resource machine
translation via the transfer of cross-linguistic infor-
mation from the higher resource languages (Aha-
roni et al., 2019; Dabre et al., 2020). This can
be facilitated by transferring the trained parame-
ters from a parent model to a child model (Zoph
et al., 2016; Nguyen and Chiang, 2017; Kocmi
and Bojar, 2018) or through a bridge or pivot lan-
guage (Dabre et al., 2015; Utiyama and Isahara,
2007; More et al., 2015). However, MNMT can
be further simplified by converting it into a sin-
gle bilingual NMT by jointly training (Firat et al.,
2016; Johnson et al., 2017) all the languages. Fur-
thermore, the jointly trained MNMT system is ex-
tended with 50 or more languages in a massively
multilingual (Aharoni et al., 2019; Fan et al., 2021;
Xue et al., 2021) scenario which has shown to im-
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prove the low resource machine translation (Dabre
et al., 2020) in the presence of the higher resource
languages with the advantage of training a single
NMT model instead of training separate bilingual
models. However, training these massively mul-
tilingual models from scratch for every new lan-
guages is not feasible both in terms of time and the
resource and has negative impact to the environ-
ment for training such enormous models which can
be coped up via transfer learning where the down-
stream translation task can be simply finetuned
from a large pre-trained model (Liu et al., 2020;
Tang et al., 2020; Conneau et al., 2020; Kakwani
et al., 2020; Khanuja et al., 2021; Xue et al., 2021;
Dabre et al., 2021). Primitive transfer learning in
the NLP flourished with the pretrained word em-
bedding vectors (Mikolov et al., 2013; Pennington
et al., 2014), followed by the pretrained encoder
(Devlin et al., 2019) or decoders or pretraining the
full seq2seq model (Liu et al., 2020). These multi-
lingual pretrained models such as the mBART (Liu
et al., 2020) and the mT5 (Xue et al., 2021) has
shown to benefit the low resource machine transla-
tion during the downstream finetuning step. Addi-
tionally, these pretrained models can be extended
to even new languages (Tang et al., 2020) which
was absent during the pretraining process by sim-
ply resuming the training with the new language
data with the pretrained model checkpoint as a fine-
tuning step and sometimes increasing the BLEU
score also.

In our premise, we make use of the mBART-
50 (Tang et al., 2020) and the mT5-base (Xue
et al., 2021) pretrained models for the English (en)
to {Assamese (asm), Bengali (bn) and Manipuri
(mni)} translation in a one-to-many multilingual
setup. All the three languages apart from English
are the scheduled languages of India where As-
samese and Bengali belong to the Indo-Aryan lan-
guage family while Manipuri is a Tibeto-Burman
language and very few works have been reported
in this language most notably (Singh and Bandy-
opadhyay, 2010; Singh, 2013; Singh and Singh,
2020; Singh et al., 2021; Singh and Singh, 2021;
Sanayai Meetei et al., 2020; Rahul et al., 2021;
Laitonjam and Ranbir Singh, 2021). Additionally,
only the Bengali language is present during the
pretraining of both mBART-50 and the mT5-base
models while Assamese and Manipuri were absent
during the pretraining phase. Hence, the finetun-
ing process involves the transfer learning to totally
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unseen languages and this work investigates the ef-
fect of these pretrained models to the low resource
translation task for these unseen languages. We
also evaluate our performance on the WAT-2021
MultiIndicMT ! test set for English to Bengali and
Flores-101 test set (Goyal et al., 2021) for the En-
glish to (Bengali and Assamese)

2 Multilingual Neural Machine
Translation

Multilingual NMT facilitates the translation be-
tween multiple languages via pivot based (Dabre
etal., 2015), transfer learning (Zoph et al., 2016) or
through a jointly trained single NMT model (John-
son et al., 2017). In this work, we utilise the jointly
trained single multilingual NMT model. Addition-
ally, this single MNMT can be further divided into
three types according to the mapping of the source
and the target languages, Many-to-one (m20). In
this setting, the model is trained to translate multi-
ple source languages into a single target language.
One-to-many (02m). This MNMT model trans-
lates from a single source language to multiple tar-
get languages and many-to-many (m2m). Here,
translation between many source and many target
languages is possible. Moreover, as there are sev-
eral target languages in the 02m and m2m, a target
language tag is typically prepended at the begin-
ning of the source sentence to specify the predicted
target language. Given K sentence pairs and L lan-
guage pairs the training objective of an MNMT

model is to maximise the log-likelihood over the
le(1,...,L)

whole parallel pairs {x(l’k), y(l’k)}ke(1 UKD

as:

K
> log p(y PR 6), (1)

1 k=1

L
1
Lo=—

0 Kl:

where the total parallel sentences K = 21L=1 K.

3 Multilingual Pretrained Model

3.1 mBART

The mBART model which follows the sequence-
to-sequence (Seq2Seq) pre-training scheme of the
BART model and pre-trained on large scale mono-
lingual corpora in 25 languages is used in our work.
There are two types of noises used to produce the
corrected text by removing the text spans and re-
placing them with a mask token and secondly by

"http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual



permuting the order of the sentences within each in-
stance. The large-scale pre-training on multiple di-
verse languages has shown to be helpful at building
low-resource NMT systems by being fine-tuned to
the target language pair (Dabre et al., 2021; Xue
etal., 2021). This also has shown to possess a pow-
erful generalization ability to languages that do not
appear in the pre-training corpora.

3.2 mT5

mTS5 is a massively multilingual pretrained model
variant of Text-to-Text Transfer Transformer (T5)
(Raffel et al., 2020). The T5 is trained on a multi-
task scenario which is governed by the pre-training
on a masked language modeling “span-corruption”
objective, in which consecutive input token spans
are replaced with a mask token and the model is
trained to reconstruct the masked-out tokens.

4 Experimental Setup

4.1 Dataset

The experimentation uses the parallel data from
CVIT-PIB (PIB) (Philip et al., 2021) and PMIndia
(PMI) (Haddow and Kirefu, 2020) dataset. The As-
samese (asm) and Manipuri (mni) data is curated
from PMIndia while Bengali (bn) data is taken
from both CVIT-PIB and PMIndia dataset. For
the development, a small subset of 1000 sentences
from the PMI is used for the mni and asm, while
WAT-2021 is used for the bn side.

The WAT-2021 test set is in-domain with the
PMI and PIB data which are mostly news domain
and we also investigate the domain adaptability of
these pretrained models on a general domain test
set FLORES-101. For this, the en-{asm, bn} trans-
lations are finetuned in a multilingual way with the
FLORES development data.

4.2 Dataset Preprocessing

The text preprocessing step initially tokenizes the
raw texts. English side data is tokenized using the
moses-scripts> while the Indic data are normalized
and tokenized using the IndicNLP toolkit®. Addi-
tionally, we do not perform any sort of script con-
version for the orthogonality matching as bn, asm
and mni all use the same script.

*https://github.com/moses-smt/mosesdecoder/
tree/master/scripts

*https://github.com/anoopkunchukuttan/indic_
nlp_library
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Furthermore, foreign language text are identi-
fied and removed using langid* and their dataset
is de-duplicated and ensured that the training data
excludes any instances of the development and test
sets. Following the work of (Philip et al., 2021), a
sentencepiece (Kudo and Richardson, 2018) BPE
of 3K subword merges is learnt for each language
separately over the normalized and the tokenized
text data. However, the vocabulary for en is learnt
over the combined en data. Finally, the union of
all the unique tokens is taken to make a common
dictionary.

4.3 Training setup

1. One-to-Many multilingual model trained
from scratch (O2M-S): A one-to-many mul-
tilingual NMT is trained from scratch using
transformer with 6 layers of encoders and
decoders, 4 attention heads, 512 embedding
dimension and a feedforward dimension of
1024. The encoder and decoder are shared
and optimised using adam with the betas (0.9,
0.98) with an initial learning rate of 0.0005
which is scheduled using inverse square root
with 4000 warmup updates. The training is
done using fairseq (Ott et al., 2019) toolkit
for 100,000 update steps with a token based
batch of batchsize 4000.

. mBART+O2M: We finetune the mBART-50
model in a one-to-many multilingual setup
for the en to (asm, bn and mni) translation.
Furthermore, the fairseq toolkit is used and
in particular the multi-simple-epoch task of
the fairseq to finetune from mBART-50 pre-
trained model. The system is an mbart-large
architecture and uses the default parameters
as in this setup® and finetuned for 80,000 up-
date steps.

. mT5+02M: The mT5-base model is used for
the finetuning using the simpletransformers li-
brary® with the default setup and finetuned for
80,000 update steps.

Furthermore, all the systems are finetuned for an-
other 15,000 update steps upon the FLORES de-
velopment set after resetting the training optimiz-
ers for the domain adaptation as all the systems are

*https://github.com/saffsd/langid.py

Shttps://github.com/pytorch/fairseq/tree/
main/examples/multilingual

*https://github.com/ThilinaRajapakse/
simpletransformers



trained only on the PMI and PIB data which is a
news domain whereas the FLORES-101 test set is
a general domain data.

4.4 Comparison with Other Works

This work is compared with the following work
evaluated upon the WAT-2021 and FLORES-101
test sets:

1. Ramesh et al. (2021): A multilingual model
trained on the largest publicly available paral-
lel corpora.

. IndicBART (Dabre et al., 2021): A multilin-
gual pretrained model trained on 11 Indic lan-
guages trained using mBART objective.

Evaluation Metrics

. Automatic Evaluation: The automatic eval-
uation is done using BLEU which is reported
over the geometric mean of the 4-gram pre-
cision or BLEU-4, ranging from 0-100, with
100 being the highest. The hypothesis for the
en to {asm, bn, mni} translation evaluation
is detokenized and then retokenized using the
IndicNLP tokenizer and then evaluated with-
out using any tokenizer in SacreBLEU’ .

. Human Evaluation: Human evaluation is
carried out by considering the fluency and ad-
equacy of the translated output. In this pre-
text, three human translators fluent in English-
Manipuri, English-Assamese and English-
Bengali are assigned to separately rate each
sentence from 1-5 for the fluency and the ad-
equacy criteria. Finally, the sentence wise
scores are averaged to get the corpus level
score for both the criteria.

5 Experimental Results

Table 1 reports the automatic evaluation scores of
the systems based on the BLEU score for the en to
{asm, bn and mni} one-to-many translations. Both
the pretrained models outperforms the multilingual
system trained from the scratch (O2M-S) across all
the translation directions suggesting a successful
transfer of information from the pretrained models
to the downstream finetuning task.

Additionally, the significant improvement in
BLEU score after the finetuning is observed for
both the asm and mni languages which were ab-
sent during the pretraining step revealing that these

7BLEU+Case.mixed+numrefSA 1+smooth.exp+tok.none+version.1.5.1
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multilingual pretrained models are language inde-
pendent up to an extent and can be extended to
any new languages irrespective of their relatedness
from the pretrained languages and thus ideal for a
low resource machine translation.

System asm | bn | mni
O2M-S 11 | 16.2 | 19.5
mBART+O02M | 159 | 19.8 | 26.3
mT5+02M 154 | 18.6 | 29.2

Table 1: BLEU score evaluated using PMI test set for
the en to (asm, bn, mni) translation.

5.1 Comparison With Other Works

Table 2 reports the BLEU score of the trained sys-
tems i.e. O2M-S, mBART+0O2M and mT5 which
is compared with Ramesh et al. (2021) and In-
dicBART (Dabre et al., 2021) evaluated upon the
WAT-2021 and PMI test sets. O2M-S performs the
worst amongst all the systems for both the test sets
across all the translation directions. For the WAT-
2021 test set, mT5+0O2M has the best performance
followed by Ramesh et al. (2021). Ramesh et al.
(2021) is trained using the largest available training
data for the Indian languages thus giving an extra
edge. On the other hand FLORES test is a general
domain data thus making the task more challeng-
ing as our systems are trained using only the news
domain from PMI and PIB which is reflected in
the low BLEU scores of our trained systems for
the FLORES test set.

However, IndicBART trained their systems us-
ing Samanantar dataset (Ramesh et al., 2021)
thus making their system more adaptive to
the FLORES domain and surpassing both the
mBART+02M and mT5+0O2M models with a

Test Set

System WAT-2021 FLORES

bn asm  bn
Ramesh et al 16.0 - -
(2021)
IndicBART 11.1 - 30.7
O2M-S 10.7 1.2 23
mBART+02M 14.7 35 56
mT5+02M 16.2 23 48

Table 2: BLEU score of the systems for the en to (asm
and bn) evaluated on WAT-2021 and FLORES TEST
set.



Systems asm  bn
mBART+O2M w/o FT | 2.9 4.6
+5K steps FT 3.1 5.2
+10K steps FT 34 5.5
+15K steps FT 3.5 5.6
mT5+02M w/o FT 0.1 33
+5K steps FT 0.3 39
+10K steps FT 1.3 4.2
+15K steps FT 1.8 4.8

Table 3: Effect of the BLEU score on the finetuning steps (FT) which is finetuned using FLORES development set

for the en to (asm and bn) directions.

whooping 30.7 BLEU score in comparison to the
5.6 and 4.8 BLEU scores for the mBART+02M
and mT5+0O2M respectively. Additionally, for
the WAT-2021 en-bn task, IndicBART performed
poorly even though they pretrain an mBART
model from the Indic languages and finetune upon
it.  Furthermore, the low performance of In-
dicBART on WAT-2021 test reveals two possi-
bilities, i) the finetuning of IndicBART involved
more number of languages than our setting, which
in turn induced a negative transfer (Dabre et al.,
2020) due to the incompatibility of the languages
involved thus the degradation in the performance,
i1) transfer learning from a massively multilingual
pretrained model followed by the multilingual fine-
tuning as in our case is more beneficial than trans-
fer learning from a limited language pretrained
model as in the case of IndicBART and we put for-
ward these as a future work.

5.2 Domain Adaptation via Few Shot
Learning

The systems in our experimentation are trained on
a narrow domain data, thus these systems choke
when evaluated on a general domain data. Hence,
the systems are further finetuned using the FLO-
RES development set for another 15,000 update
steps by resetting the optimisers. The results are
reported in Table 3.

It is observed that this domain adaptation using

incremental finetuning upon the FLORES develop-
ment set improves the BLEU score across all the
directions for both mBART+02M and mT5+02M
models. However, this increment is still insignif-
icant in comparison to IndicBART (Dabre et al.,
2021) as presented in Table 2.

5.3 Human Evaluation Score

Table 4 reports the human evaluation score of the
0O2M-S, mBART+02M and mT5+02M for the
en to (asm, bn and mni) translations based on the
adequacy and fluency criteria which is evaluated
upon the PMI test set. For the en-mni transla-
tion direction presented in Table 4, the multilin-
gual finetuning over both the pretrained models
(mBART+02M) and (mT5+02M) is superior to
the multilingual model trained from scratch (O2M-
S) qualitatively. Additionally, in terms of the ade-
quacy score, mT5+02M performs better than the
mBART+O02M. However, mBART+O2M gives
a competitive performance to the mT5+02M in
terms of the fluency score.

Moreover, the human evaluation scores corre-
lates well with the automatic scores as reported
in Table 1 suggesting the effectiveness of the
transfer learning for this unseen language dur-
ing the pretraining time. On the other hand,
mBART+O02M has higher human evaluation
scores than mT5+02M for the en-asm and en-
bn translations as reported in Table 4. However,

Models en-mni en-asm en-bn
Adequacy Fluency Adequacy Fluency Adequacy Fluency
O2M-S 3.25 3.07 291 3.17 2.75 2.823
mBART+O2M 4.15 4.31 3.82 3.782 3.9122 3.782
mT5+0O2M 442 4.37 3.801 3.775 3.8622 3.688

Table 4: Human evaluation score evaluated on PMI test set based on the adequacy and fluency criteria.
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Source-1

In particular, he mentioned the Buddha and the Ramayana.

Ref WOIN{K TN NPT HFPAT 4 |
TT buddhaa amasung raamaayanbu mahakna akaknanaa pankhi.
Gloss the buddha and the ramayan he particularly mentioned.
02M-S WEIFT AT T AR Ja SIL THIHT J@oN Folent 414
TT mahakna pankhi madudi mahakna buddha amasung raamaadhan buddhagi matanga
pankhi.
Gloss he mentioned that he the buddha and the ramadan buddha’s about mentioned.
ET He mentioned that he mentioned about the Buddha and the Ramadan Buddha.
mBART+02M WG] N2FT I IR INRTN Foleat AT
TT maruoina mahakna buddha amasung raamaayanagi mataangda pankhi.
Gloss importantly he the buddha and the ramayan’s about mentioned.
ET Importantly he mentioned about the Buddha and the Ramayan.
mT5+02M S TR T SWJL TNIFN Folent 27|
T akaknanaa mahakna buddha amasung raamaayangi mataandga pankhi.
Gloss in particular he the buddha and the raamaayana about mentioned.
ET In particular he about mentioned about the buddha and the raamaayana.
Source-2 The Officer Trainees belong to 17 Civil Services, and 3 Services from the Royal Bhutan
Civil Service.
Ref 3R @At st S SRR 5@ SR @Ie gora Bifet AR Sr2n
RIRIE
TT ophisar trenishing aduda sibil sarbiski 17 amasung royel bhutan sibil sarbiski ahum
yaori.
Gloss officer trainees in civil services 17 and royal bhutan civil service’s three belong to.
02M-S 3R v, Bifder iR, Bifee siffifie smrje @rre sieife oSt gomsn
STfeeT SAffTRemanta |
TT ophisar 17, sibil sarbis-shing, sibhil sarbis-shing amasung royel sarbis-shing asi
bhutangi sibhil sarbis-shingdagini.
Gloss officer 17, civil services, civil services and royal services is bhutan’s civil services from.
ET 17 officers, Civil Services, Civil Services and the Royal Services are from Bhutan’s
Civil Services.
mBART+02M 3@ @A1Re 3BT Bifdet 51T s s @rere god Siet stiresn i
of|
TT ophisar trenishing asi sibil sarbis 17 amasung royel bhutan sibil sarbis-tagi sarbis 3ni.
Gloss officer trainees these civil service 17 and royal bhutan civil service from service is 3.
ET These officer trainees are from 17 Civil Services and 3 Services from the Royal Bhutan
Civil Service.
mT5+02M  3R@E @ATFR spmr BiiRe SRS 9 Spje @I gold BIRe SARTRT 151
ERUBICIE]
TT ophisar trenishing aduda sibil sarbiski 17 amasung royel bhutan sibil sarbiski sarbis
ahum yaori.
Gloss officer trainees in civil services 17 and royal bhutan civil service’s service three belong
to.
ET The Officer Trainees belong to 17 Civil Services and 3 Services from the Royal Bhutan
Civil Service.
Source-3 PMSSY has two components
Ref 3. N, @37, G5, 1R 5T W oA CeT
TT pi. em. ess. ess. yai. gi masa ani lei
Gloss PMSSY’s components two has
02M-S PMSSY 5T FCATAT AT CeT
TT PMSSYgi kamponent ani lei
Gloss PMSSY’s components two has
ET PMSSY has two components
mBART+02M PMSSY 51T ST AT (et
TT PMSSYgi kamponent ani lei
Gloss PMSSY’s components two has
ET PMSSY has two components
mT5+02M 3 QN Q7 @57 Q3 Q5T O3] J[QRTSN SCATET i (et
TT pi em ess ess ess ess ess haibasigi kamponent ani lei
Gloss PMSSSSS so called component two has
ET The so called PMSSSSS has two components

Table 5: Sample en-mni translations by the MT systems
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mT5+02M gives a competitive score in terms of
fluency for the en-asm. Based on the quantitative
and qualitative findings from Table 1 and Table 4
respectively, mT5+02M is beneficial for the en-
mni translation while for the en to (asm and bn),
mBART+O2M is found to be effective and we
plan to explore these discrepancies in our future
work.

6 Qualitative and Error Analysis

6.1 Qualitative Analysis

A qualitative analysis in the form of sample input
and output is also presented in Table 5 in addition
to the qualitative scores reported in Section 5.3 to
compare the translation qualities of the O2M-S,
mBART+02M and mT35 for the en to mni transla-
tion of the PMI test set. In doing so, we randomly
select three en test sentences (Source-1, Source-2
and Source-3) and present the respective translated
outputs by the systems. Table 5 contains the fol-
lowing abbreviations: The Roman transliterated
mni sentence is denoted by TT, Gloss is the en
word-for-word translation, and the en translation
for the mni sentence is ET.

In the first source sentence (Source-1), O2M-
S the phrase “mahakna pankhi” (he mentioned)
twice thus degrading the fluency and the term
“raamaayan has been wrongly generated as
“raamaadhan” (ramadan) which in turn detoriates
the adequacy. Similarly, there are several in-
stances where O2M-S has generated erroneous
words. On the other hand, mBART+02M and
mT5+02M made a better translation as compared
to the O2M-S in terms of both adequacy and flu-
ency. However, mBART+0O2M translated the
source word In particular to “maruoina” (impor-
tantly) while mT5+02M translated into the accu-
rate word “akaknanaa” (in particular). Although,
the word order has been displaced even after gener-
ating the correct word hence the automatic scores
which depends upon the exact word overlapping
gets penalised. The second (Source-2) and the
third source (Source-3) sentences are challenging
ones. The Source-2 has complex contextual depen-
dencies which is evident with the struggle to estab-
lish the correct dependency relations in the trans-
lations of the O2M-S and mBART+O2M while,
mT5+02M is the only system which can success-
fully establish the meaning of the source sentence
along with a fluent translation. Apart from this,
the Source-2 contains numerical values /7 and 3
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which is successfully translated by all the three sys-
tems.

Another challenging instance is the presence
of abbreviations in the source sentence and the
valid English terms which exists as in the tar-
get language. This phenomenon is illustrated in
Source-3 translation where all the three systems
generated the source word components as “kam-
ponent” (component) instead of “masa” (branch;
part; component). Thus, even though the O2M-S
and mBART+0O2M generated the correct transla-
tion due to token mismatch between the reference
and the translations, the BLEU score is penalised.
In the same Source-3 sentence, the abbreviation of
PMSSY is directly copied in the outputs of O2M-S
and mBART+O2M which exists as “pi. em. ess.
ess. yai.” (PMSSY) in the reference thus degrad-
ing the BLEU score. mT5+02M on the other hand
generated the extra three extra S in the abbrevia-
tions and excluded Y.

6.2 Error Analysis

The error analysis of the systems are conducted
based on the sentence length. Figure 1A dis-
plays the distribution of the difference between the
length of the translated output from the reference
sentence length of the three systems. Here, the
value of “0” at the X-axis signifies that the trans-
lated output and the reference sentence are of equal
length. In this regard, mBART+O2M has the
highest count for “0” length difference than both
the mT5+02M and O2M-S systems across all the
translation directions, thus providing the heuristics
that the reference and the outputs match word by
word which contradicts the superior automatic and
human evaluation scores of the mT5+02M than
the other two systems for en to mni translation.

Additionally, for the en-asm direction in Fig-
ure 1A(1)) O2M-S and mT5+0O2M have simi-
lar counts for the “0” difference. Furthermore,
mT5+02M tends to generate more shorter length
sentences than the reference sentence in compar-
ison to the other two systems for all directions,
while O2M-S generates more longer sentences.
Hence, mBART+02M produces more equivalent
length to that of the reference than the other two
systems.

Figure 1B depicts the change in the BLEU score
with the varying sentence length. For this, the test
sentences are grouped together in buckets based on
the sentence length of the reference sentences. For
the en-mni direction in Figure 1B(iii), mT5+02M
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Figure 1: Error analysis of the systems based on the sentence length.

supersedes the other two systems across all the
sentence length, followed by the mBART+O02M.
Meanwhile, mBART+02M is robust to longer
sentence length for the en-asm (Figure 1B(i)) and
similar trend exists in the en-bn direction (Fig-
ure 1B(ii)) although, O2M+S and mT5+02M has
higher BLEU scores than mBART+O2M for sen-
tences longer than 60 tokens.

7 Conclusion

In this work, we report the findings of the in-
vestigation of low resource machine translation
via transfer learning from multilingual pretrained
models i.e. mBART-50 and mT5-base in the pre-
text of Indo-Aryan (Assamese and Bengali) and
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Tibeto-Burman (Manipuri) languages. It is found
that the transfer learning from these pretrained
multilingual models outperforms the one-to-many
model trained from the scratch across all the trans-
lation directions in all the test sets thus suggesting
the strong transfer of interliguistic information to
the downstream finetuning tasks even for the lan-
guages absent during the pretraining step. Further-
more, the superiority of finetuning from these pre-
trained models than the IndicBART for the English
to Bengali translation using the WAT-2021 test set
suggests that a stronger transfer learning is possi-
ble even without linguistic relatedness during the
pretraining step or due to the negative transfer of
information between the incompatible languages



during the multilingual finetuning of IndicBART.
Finally, we plan to explore more on the negative
transfer and the linguistic relatedness avenue in fu-
ture focusing on Indian languages.
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Generating Slogans with Linguistic Features
using Sequence-to-Sequence Transformer
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Abstract

Previous work  generating slogans
depended on templates or summaries of
company descriptions, making it difficult
to generate slogans with linguistic features.
We present LexPOS, a sequence-to-
sequence transformer model that generates
slogans given phonetic and structural
information. Our model searches for
phonetically similar words given user
keywords. Both the sound-alike words and
user keywords become lexical constraints
for generation. For structural repetition, we
use POS constraints. Users can specify any
repeated phrase structure by POS tags. Our
model-generated slogans are more relevant
to the original slogans than those of
baseline models. They also show phonetic
and structural repetition during inference,
representative  features of memorable
slogans.

1 Introduction

Advertising slogans share many linguistic features,
such as phonetic or structural repetition (Musté et
al. (2015)). These factors make slogans more
memorable (Reece et al. (1994)). However, most
previous works on slogan generation depended on
templates or summaries of company descriptions,
making it difficult to generate slogans with
linguistic features.

We present LexPOS, a sequence-to-sequence
(seq2seq) transformer model with an additional
POS encoder. It models the phonetic and structural
repetition in slogans, using lexical and POS
constraints. When given keywords and POS tags of

! https://github.com/yeounyi/LexPOS
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the desired output structure as input, the model
finds words that sound and mean similar to the user
keywords. The model-generated slogans include
both the user keywords and one sound-alike word.
They also reflect the POS constraints. For instance,
if a user inputs the word ‘cake’ and [*VERB’,
‘DET’, ‘NOUN’, ‘PUNCT’, ‘VERB’, ‘DET’,
‘NOUN’, ‘PUNCT’], the output could be ‘Bake a
cake, bake a smile’. It includes the word ‘cake’ and
its sound-alike word ‘bake’ and has repeated verb
phrases. The source code, pretrained weights, and
data are available online?.

This paper primarily makes the following
contributions:

* Generating slogans taking linguistic features
into account.

* Utilizing a pretraining method of BART and
T5 to model lexical constraints.

* Proposing a novel approach to model structural
constraints by adding a POS encoder.

2 Previous Work

Most of the previous work in slogan generation
focused on modifying templates. BRAINSUP,
proposed by Ozbal et al. (2014), is the first study to
generate customized slogans with lexical,
emotional, and domain constraints. BRAINSUP
utilizes morpho-syntactic patterns mined from
corpus as templates. It first selects the most
compatible template and fills the empty slots in the
template according to user specifications. Before
returning the results, it evaluates the candidate
slogans with various metrics, including phonetic
repetition. However, it can only determine whether
the same phonetic features were used or not.

Proceedings of the 18th International Conference on Natural Language Processing, pages 75-79
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Munigala et al. (2018) presented a model to
generate persuasive sentences from fashion
product descriptions. It expands fashion-related
keywords from inputs and generates sentences
using a domain-specific neural language model
(LM). Keywords from inputs, expanded keywords,
and common functional words are the only
candidates at each time step of the LM. The overall
perplexity is minimized with beam search. The
limitation is that only imperatives can be generated,
as the sentences always begin with a verb.

Jin et al. (2021) introduced a sequence-to-
sequence transformer model to generate diverse
slogans from company descriptions. They
considered slogan generation as abstractive
summarization of company descriptions and chose
the BART-style encoder-decoder model (Lewis et
al. (2020)) with a bidirectional encoder and an
autoregressive decoder. To prevent unrelated
company names from appearing in slogans, they
delexicalized all the company names. In addition,
they trained a model conditioned on the first words’
POS tag, generating syntactically diverse slogans.

Unlike previous works, we do focus on
linguistic features and not depend on templates at
the same time. We take phonetic and structural
repetition into account, factors that make slogans
memorable and unique.

3  Model

Our model first forms the lexical constraints.
During training, it uses the given lexical constraints
as it is. During inference, it searches for sound-
alike words of user keywords. We use the phonetic
vector representation proposed by Parrish (2017).
The phonetic vector uses interleaved phonetic
feature bigrams extracted from phonetic
transcriptions and it covers all the words in CMU
Pronouncing Dictionary > . The model also
considers the semantic similarity of sound-alike
words, to improve the naturalness of the outputs.
We use pretrained Glove embeddings (Pennington
et al. 2014) for semantic similarity. After we
compute cosine similarity to select the top 100
phonetically similar words, we sort them in
semantic similarity. We exclude words that are not
present in Glove embeddings (Pennington et al.
2014) or BART tokenizer vocabulary, not to use

2http://www.speech.cs.cmu.edu/cgi—
bin/cmudict
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unfamiliar words. We select the first three words to
each form the lexical constraints, together with
user keywords. Unlike lexical constraints, POS
constraints don’t need further processing during
training and inference. POS constraints during
inference can be manually specified or popular
POS structures from data would be recommended.

After processing the lexical constraints, the
Transformer architecture (Vaswani et al., 2017)
comes in. The Transformer architecture has
achieved state-of-the-art results on various natural
language processing tasks. We apply a
Transformer-based sequence-to-sequence model
because we need encoders for constraints and
decoders for generation. To leverage the power of
pretrained transformers, we utilized the pretrained
weights of BART and TS5 (Raffel et al., 2020)
released by HuggingFace®. We choose BART and
TS5 because both models were pretrained by
denoising consecutive spans of corrupted tokens,
meaning they can generate natural sentences using
lexical constraints.

The only architectural difference is that our
model has an additional encoder. One encoder
encodes the lexical constraints, and the other
encodes the POS constraints. The weights of the
POS encoder are randomly initialized, and the
vocabulary size of the POS encoder is limited to
20. The vocabulary includes the spaCy* POS tags
and <s>, </s>, <pad> tokens.
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Slogan Lexical Input

POS Input

Breakfast of Champions. <mask> breakfast <mask> [NOUN', 'ADP','NOUN', 'PUNCT']
champions <mask>

The Best a Man Can Get. <mask> best <mask> man [DET','ADJ','DET','NOUN', 'AUX,
<mask> 'VERB', 'PUNCT']

Think Different. <mask> different <mask> [VERB','ADJ','PUNCT'"]

think <mask>

America Runs on <name>.
america
<mask>

<mask> <name> <mask>
<mask>

['PROPN', 'VERB', 'ADP', 'PROPN',

runs 'PUNCT']

Table 1: Example of data. Lexical constraints are bolded in lexical inputs. Special tokens are omitted.

Figure 1: Architecture of LexPOS model.

To incorporate the POS constraints into the rest
of the model, the last hidden states of <s> token
in the POS encoder are repeated with the length of
the last hidden states in the lexical encoder. We
choose the last hidden state of <s> token because
it is widely assumed to include representative
information of all tokens. These two hidden states
are summed and given to the decoder. Then, the
decoder generates slogans with the given lexical
and POS constraints. Figure 1 presents the
architecture of our proposed model.

4 Data

Our training objective is to implement lexical and
POS constraints. The desired model-generated
slogans should follow the lexical constraints and
the POS structural constraints.

We crawl 30,759 unique slogans from online
slogan databases such as Textart.ru®, Slogans Hub®,
Slogan List’, Think Slogans®, and Slogans Point®.
Unlike previous works focusing on commercial
slogans, our dataset covers both commercial and
public slogans. Public slogans include slogans for
health, women’s rights, the environment, and
more. 45.43% of our slogans are commercial,
54.56% are public. Company names in commercial
slogans are delexicalized using a custom special
token <name>, following Jin et al. (2021). We
reserve 20% of the data for validation.

The lexical inputs are lexical constraints
surrounded by <mask> tokens. Just like the
pretraining method of BART and TS5, our model
predicts consecutive spans of <mask> tokens.

Shttp://www.textart.ru/database/slogan/ma
p.html
6https://sloganshub.org/
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The lexical constraints are limited to verbs,
nouns, proper nouns, and adjectives. We extract
them from original slogans using spaCy. Then, we
randomly delete lexical constraints, when there are
5 or more of them to keep the average ratio of the
number of lexical constraints to the total number of
words in the original slogan below 50%. The
average ratio is 41.90%.

Unlike the pretraining method of BART and T3,
we shuffle the lexical constraints to make the
model predict natural ordering. If we don’t shuffle
them, we need to permutate lexical constraints
during inference. For instance, if the user keyword
1s ‘cake’ and its sound-alike word is ‘bake’, we
need both ‘<mask> cake <mask> bake <mask>’
and ‘<mask> bake <mask> cake <mask>’ as
lexical inputs. The number of permutations would
increase dramatically as the number of user
keywords increase. To address this issue, we
shuffle the lexical constraints.

The POS inputs are POS constraints themselves.
We use spaCy POS tagging results of the original
slogan as POS inputs. Table 1 shows the example
of data.

5 Experiments

Following previous work, we conduct a
quantitative evaluation using ROUGE (Lin (2004))
F1 scores and compare our model with the original
sequence-to-sequence model baselines. We also
compute the included lexical constraints rates and
POS F1 scores to check how well the given
constraints are applied. The included lexical
constraints rates are the rates of the lexical
constraints included in model-generated slogans.

"https://www.sloganlist.com/
8https://www.thinkslogans.com/
Shttp://www.sloganspoint.com/



Included Lexical

Rouge 1 Rouge 2 Rouge L. Constraints Rates POS F1
baseline BART 0.4894 0.2282 0.4577 0.9515 0.7992
baseline T5 0.4461 0.1805 0.4150 0.9406 0.7737
LexPOS BART 0.6204 0.3703 0.5921 0.9469 0.9176
LexPOS TS 0.5700 0.3039 0.5339 0.9399 0.8809

Table 2: The quantitative evaluation of various models. Best scores are bolded.

POS F1 scores are computed by comparing the
POS inputs and POS tagging results of model-
generated slogans.

Table 2 presents the quantitative evaluation
result. Our best model achieved a ROUGE-1/-2/-L
F1 score of 62.04/37.03/59.21, 94.69 for the
included lexical constraints rates, and 91.76 for
POS F1 scores. The performance discrepancy
between BART and T5 could be explained by their
pretraining methods. BART was pretrained using
Sentence Permutation, which restores the original
order of shuffled sentences, while T5 was not.

Table 3 shows the sample of generated slogans
from validation data. The results of the LexPOS
model are more relevant to the original slogans.

Gold: The Power of being Global.
BART: Global Power.
LexPOS BART: The power of global.

Gold: <name>. Keep Walking.
BART: I’'m walking <name>.
LexPOS BART: <name>. Walking on.

Gold: How about a nice <name>?
BART: Be nice to <name>.
LexPOS BART: Always be a nice <name>.

Gold: All things are difficult before they are easy.
BART: Difficult things are never easy.

LexPOS BART: The difficult things are made easy
by you.

Gold: Some bruises are on the inside. Stop bullying.
BART: Stop bullying on the inside and stop bruises
on the outside.

LexPOS BART: The bruises are on the inside, stop
bullying.

Table 3: Sample generated slogans from validation
data. “Gold” is the original slogan.

Table 4 shows the inference results. We use
beam search and adjust the temperature to generate
natural slogans.

Keywords: bakery, sandwich

POS: [VERB, DET, NOUN, PUNCT, VERB, DET,
NOUN, PUNCT]

Output: Switch the bakery, the sandwich switches.
Keywords: airline, cheap

POS: [ADJ, NOUN, PUNCT, ADJ, NOUN, PUNCT]
Output: Fast Airline. Keep Cheap.

Keywords: save, energy

POS: [VERB, DET, NOUN, PUNCT, VERB, DET,
NOUN, PUNCT]

Output: Save energy, save faces.

Keywords: brunch, cafe

POS: [NOUN, ADP, NOUN, PUNCT, NOUN, ADP,
NOUN, PUNCT]

Output: Brunch at Brightness, Crunch at Cafe.

Keywords: unique, fashion, brand

POS: [NOUN, ADP, NOUN, PUNCT, NOUN, ADP,
NOUN, PUNCT]

Output: Brand of unique fashion. Passion for fashion.

Table 4: Sample generated slogans from user
keywords and POS constraints. One of the user
keywords and its sound-alike word are bolded.

The model-generated slogans include both the
user keywords and one selected sound-alike word,
fully reflecting users’ intentions. The results also
show phonetic and structural repetition,
representative features of memorable slogans.

6 Conclusion

In this work, we generate slogans with phonetic
and structural repetition using LexPOS model, a
transformer-based sequence-to-sequence model
with an additional POS encoder. It generates
slogans using sound-alike words given user
keywords. The model-generated slogans also
follow structural constraints thanks to the POS
encoder. To our knowledge, it is the first model to
generate slogans without templates, taking
linguistic features into account. Future work
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should implement other linguistic features shown
in slogans.
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Abstract

Linguistic Acceptability is the task of deter-
mining whether a sentence is grammatical or
ungrammatical. It has applications in sev-
eral use cases like Question-Answering, Nat-
ural Language Generation, Neural Machine
Translation, where grammatical correctness is
crucial. In this paper we aim to understand
the decision-making process of BERT (Devlin
et al., 2019) in distinguishing between Lin-
guistically Acceptable sentences (LA) and Lin-
guistically Unacceptable sentences (LUA). We
leverage Layer Integrated Gradients Attribu-
tion Scores (LIG) to explain the Linguistic Ac-
ceptability criteria that are learnt by BERT on
the Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2018) benchmark dataset. Our
experiments on 5 categories of sentences lead
to the following interesting findings: 1) LIG for
LA are significantly smaller in comparison to
LUA, 2) There are specific subtrees of the Con-
stituency Parse Tree (CPT) for LA and LUA
which contribute larger LIG, 3) Across the
different categories of sentences we observed
around 88% to 100% of the Correctly classi-
fied sentences had positive LIG, indicating a
strong positive relationship to the prediction
confidence of the model, and 4) Around 43% of
the Misclassified sentences had negative LIG,
which we believe can become correctly classi-
fied sentences if the LIG are parameterized in
the loss function of the model.

1 Introduction

Linguistic acceptability is an important criteria
in Natural Language Processing and is one of
the tasks in the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018). With the evolution of language encoders
like BERT (which leverages the multi-head self-
attention mechanism (Vaswani et al., 2017) in its
architecture) that have been a breakthrough in lan-
guage understanding and achieved state-of-the-art
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results, the field of probing these architectures for
understanding their behaviours has become impor-
tant.

While there have been several works on interpret-
ing and understanding the different layers of BERT
with respect to lexical, syntactic and semantic be-
haviours (Jawahar et al., 2019; Lin et al., 2019;
Clark et al., 2019; Vashishth et al., 2019; Rogers
et al., 2020), the focus on explaining the linguistic
acceptability (grammaticality) learnt by BERT has
been sparse. Some of the recent works have used
probing tasks to understand the model’s knowl-
edge on particular grammatical features (Shi et al.,
2016; Ettinger et al., 2016; Tenney et al., 2019),
relying on language model probabilities to judge
grammatical acceptability on sentences that dif-
fer minimally (Marvin and Linzen, 2018; Wilcox
et al., 2019), or probing the model’s by training
with boolean grammaticality judgement objectives
(Linzen et al., 2016; Warstadt et al., 2018; Kann
et al., 2019; Warstadt et al., 2019). These meth-
ods have made significant progress in uncovering
that BERT has indeed learnt various aspects of
grammatical knowledge, however their focus has
not been on explaining the black box details of
how BERT arrives at a grammaticality judgement.
Our paper attempts to address this by explaining
the model’s linguistic acceptability judgement with
LIG and CPT (a type of grammar tree) representa-
tions.

Attention mechanism based methods (Bahdanau
et al., 2014; Vaswani et al., 2017) provide inter-
pretable understanding of the model’s behaviour,
however the attention scores cannot be solely re-
lied upon since a feature could influence the output
in multiple ways (for e.g. through memory cells,
recurrent states etc. in LSTM networks). Feature
attribution methods aim to understand the relation-
ship between the model’s output and the input fea-
tures. They are helpful in interpreting the black-
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Sentence Category
rebecca saw the play . CIAMA
the play saw . CIALUA
i surprised myself . RAAM

i surprised himself . RAALUA
the boy is here . SVALA
the boy are here . SVALUA
michael read the book . svotA
michael the book read . SvVotua
what did rebecca read ? WHEM
what did rebecca read the book ?  WHEVA

Table 1: Sample sentences across the 5 categories from
the CoL A Targeted Test Sets.

box details of neural networks and provide insights
that can be used to improve model performance.
While previous feature attribution methods such
as DeepLift (Shrikumar et al., 2016, 2017), Layer-
wise relevance propagation (Binder et al., 2016)
and LIME (Ribeiro et al., 2016) have provided in-
teresting frameworks, they break at least one of
the two axioms that are fundamental for attribution
methods, namely Sensitivity and Implementation
Invariance (Sundararajan et al., 2017).

In our paper we have chosen the Integrated Gra-
dients (IG) (Sundararajan et al., 2017) attribution
method as it satisfies both the aforementioned ax-
ioms. IG is a post-hoc interpretability technique
which aggregates the gradients of the input by in-
terpolating in small steps along the straight line
between a baseline (typically a vector with all ze-
ros) and the input. A large positive or negative IG
score indicates that the feature strongly increases
or decreases the network output respectively, while
a score close to zero indicates that the feature does
not influence the network output. This can also be
understood as follows: a positive score indicates
that the feature tends to agree with the model’s
prediction, while a negative score indicates that
the feature tends to disagree with the model’s pre-
diction. LIG are computed as the IG between the
model output and a particular layer’s input or out-
put. Our work attempts to answer the following
Research Questions:

1. Can LIG of a Constituency Parse Tree (CPT)

give insights on LA vs LUA?

Can LIG be reliably used to explain the Lin-
guistic Acceptability criteria learnt by BERT?

Is there a relationship between LIG and the
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prediction confidence of the model?

2 Experiment Setup

CoLA dataset sentences have a boolean acceptabil-
ity judgement, namely LA and LUA. We have used
the fine-tuned BERT-Base-Uncased-CoL A model
(12 encoder layers with 12 attention heads) pro-
vided by TextAttack (Morris et al., 2020), the Cap-
tum PyTorch Interpretability library (Kokhlikyan
et al., 2020) for computing LIG and the Stanford
CoreNLP toolkit (version 4.2.1) (Manning et al.,
2014) for constructing the CPT. Integrated Gradi-
ents (IG) across the i*" dimension of input x and
baseline z’ are computed as follows:

L OF (2’ + a x (z —2'))

Ba:i

IG:(.Z‘Z'—l';)X/ do

a=0

Captum library approximates the above inte-
gral using the Gauss-Legendre approximation al-
gorithm over 50 uniform steps of « € [0, 1]. The
baseline was selected as a 768 dimension zero vec-
tor. The attribution score for each word is summed
across the dimensions (768 in the case of BERT-
Base) and normalized using the Euclidean norm of
the scores of all the words in the sentence.

We analyzed 5 different categories of sen-
tences within the CoLA Targeted Test Sets:
Causative-Inchoative Alternation (CIA), Reflexive-
Antecedent Agreement (RAA), Subject-Verb
Agreement (SVA), Subject-Verb-Object (SVO) and
Wh-Extraction (WHE). A few sample sentences
across the categories can be seen in Table 1.

The primary focus of our experiments relied on
the LIG computed between the predicted class logit
and the token embedding of the words. Further we
also computed LIG heatmaps with respect to the In-
put (Token + Segment + Position) embedding and
across the 12 Encoder layer embeddings of BERT
to analyze the LIG characteristics. Figure 1 shows
the LIG heatmaps of the top 10 CPT patterns for
the LA and LUA in the WHE category. The unique
CPT patterns were extracted for the correctly clas-
sified sentences of each category, corresponding to
which the LIG of each subtree were computed. LIG
of a subtree is equal to the sum of the LIG of the
words appearing as leaf nodes in the subtree. The
results in Table 2, Table 3, Figure 2 and Figure 3
represent the LIG computed between the predicted
class logit and the token embedding of the words.
For Out-Of-Vocabulary words (OOV), the LIG are
summed across its tokenized sub-words.



CPT Pattern Avg. LIG Category

(S(NP(NN))(VP(VBD)(NP(DT)(NN)))(.)) 0.065 CIAMA
(S(NP(DT)(NN))(VP(VBD))(.)) 1.351 CIALVA
(S(NP(PRP))(VP(VBD)(NP(PRP)))(.)) 0.061 RAALMA
(S(NP(PRP))(VP(VBD)(NP(PRP)))(.)) 0.926 RAALVA
(S(NP(DT)(NN))(VP(VBZ)(ADVP(RB)))(.)) 0.064 SVALA
(S(NP(DT)(NN))(VP(VBP)(ADJP(J1)))(.)) 1.067 SVALUA
(S(NP(NN))(VP(VBD)(NP(DT)(NN)))(.)) -0.012 svotA
(S(NP(NP(NN))(NP(DT)(NN)))(VP(VBD))(.)) 1.226 SVOLUA
(SBARQ(WHNP(WP))(SQ(VBD)(NP(NN))(VP(VB)))(.)) 0.205 WHEM
(SBARQ(WHNP(WP))(SQ(VBD)(NP(NN))(VP( 1.394 WHEVA

VB)(NP(DT)(NN))))(.))

Table 2: Average normalized LIG of most frequent CPT patterns on 5 categories of Correctly classified CoLA
Targeted Test Sets sentences. Subtrees in bold have the largest LIG in the respective categories.
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Figure 1: LIG heatmaps of the top 10 scoring CPT patterns ranked in descending order based on averaged LIG
across the different BERT layers for LA (Left) and LUA (Right) of the WHE category.

Attribution Score Word Importance For each of the 5 category of sentences, we ex-
0.56 [CLS] rebecca read the story H[SEP] tracted all the CPT patterns for correctly classified
Attribution Score Word Importance sentences at every subtree level and picked the most
2.00 [CLS] the story read rebecca J[SEP] frequent patterns at the root level (Table 2). The

subtree patterns in bold are the highest ranking sub-
Figure 2: LIG visualization for a LA sentence (Top) and  trees based on LIG. BERT has been shown to learn
LUA sentence (Bottom) of the SVO category. Green g rfyce level features in the early layers, syntactic
highlighted words contributed strongly towards the : . :
) features in the middle layers and semantic features
model output to be predicted as LA and LUA. . .
in the higher layers (Jawahar et al., 2019). Hence,
we also wanted to analyse the LIG behaviour across
3 LIG for Constituency Parse Tree the 12 layers and especially the early to middle lay-
patterns ers which are relevant for grammar understanding.
Across each of the categories in the LIG heatmaps,
CPT is a type of grammar tree which captures the it was seen that the top subtree CPT patterns based
relations between the constituents of a sentence. on token embedding LIG were also dominating
We believe that analyzing the CPT patterns will ~ across the input and encoder layers of BERT and
give us insights into the grammatical structure of  hence were also found in the top 10 patterns. Fur-
LA and LUA. Computing the LIG for CPT patterns ther, it can be observed in Figure 1 that there are
at different subtree levels can give us an indica-  specific subtrees which dominate more (shades of
tion into the constituents which contribute largely =~ orange) as compared to others. This characteristic
towards making the sentence LA or LUA.
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Category C CC MC CC* CC MC" MC CC*'% MC*%
CIA 182 162 20 144 18 7 13 88.88 35
RAA 144 100 44 100 O 2 42 100 4.54
SVA 676 476 200 441 35 148 52 9264 74
SVO 500 400 100 362 38 54 46 90.5 54
WHE 520 516 4 465 51 0 4 90.11 0

Table 3: LIG assessment for Correctly classified sentences (CC) and Misclassified (MC) sentences (C: Count, CC*:
Count of CC having positive LIG, CC": Count of CC having negative LIG, MC*: Count of MC having positive LIG,
MC": Count of MC having negative LIG, CC*%: Percentage of CC* in CC, MC*%: Percentage of MC* in MC).
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Figure 3: Prediction Probability vs LIG Scatter plots
sentences.

is especially useful for debugging LUA as it helps
us to understand which phrase contributed largely
towards making it unacceptable.

Further, it can be observed in Table 2 that the
LIG for LUA are significantly larger than LA. The
dominating CPT subtree patterns had a large spike
in the LIG for LUA in comparison to LA, indicat-
ing that linguistically acceptable patterns were not
being adhered. In Figure 2 we can see how the
different words in the LA and LUA of the SVO cat-
egory contributed in varying magnitudes towards
the model’s prediction.

4 LIG and Prediction confidence of the
model

We investigated to check if there is a relationship
between the LIG and the prediction confidence of
the model. We found that the range of correctly
classified sentences having positive LIG is between
88% to 100% (CC*% in Table 3) indicating that
whenever the input contributes strongly towards
a particular class (whether it is LA or LUA), the
model has a higher confidence in making the cor-
rect prediction. Around 43% (MC" in Table 3)
of the total misclassified sentences had negative
LIG which showed that the features disagreed with

-1.0 0.0 1.0 15 2.0

for Correctly classified (Left) and Misclassified (Right)

83

the model’s prediction. This behaviour can be
observed distinctly in the Figure 3 scatter plots,
where we notice that there a large number of points
near the top right corner for the correctly classi-
fied sentences, and a large number of points near
the bottom left corner in the case of misclassified
sentences.

We believe that this indication can be used to im-
prove the model’s performance by parameterizing
the LIG in the loss function during the later stages
of the training process once the model has achieved
a reasonable performance (to ensure that the gradi-
ents computed are meaningful) and hence serve as
a correction mechanism for the model. This aligns
with a previous work (Erion et al., 2021) which
showed that axiomatic attribution priors improved
model performance on many real-world tasks.

5 Conclusion

We have proposed a novel approach for explain-
ing the Linguistic Acceptability criteria learnt by
BERT using LIG and CPT patterns. As there is a
strong relationship between LIG and the prediction
confidence of the model, our future work will focus
on parameterizing the LIG in the loss function and
observing the model’s performance.
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Abstract

This paper investigates very low resource lan-
guage model pretraining, when less than 100
thousand sentences are available. We find
that, in very low resource scenarios, statistical
n-gram language models outperform state-of-
the-art neural models. Our experiments show
that this is mainly due to the focus of the for-
mer on a local context. As such, we introduce
three methods to improve a neural model’s per-
formance in the low-resource setting, finding
that limiting the model’s self-attention is the
most effective one, improving on downstream
tasks such as NLI and POS tagging by up
to 5% for the languages we test on: English,
Hindi, and Turkish.

1 Introduction

With the advent of the Transformer (Vaswani et al.,
2017) and masked language model (MLM) pre-
training (Devlin et al., 2018), attention-based neu-
ral networks have proven quite effective at a variety
of language tasks, provided that large amounts of
data are available for pretraining. However, the
performance can drop significantly as the number
of sentences used for MLM pretraining decreases.
This poses an issue for low-resource settings such
as for underrepresented languages, where there is a
limited amount of monolingual data.

Under low-resource conditions, attention-based
models have difficulty learning from MLM, and
as such statistical language models (SLMs) can
outperform neural language models (NLMs). We
demonstrate this by using a popular SLM toolkit,
KenLLM (Heafield, 2011), and test its accuracy on
the MLLM task compared to that of a Transformer
model." The results (Table 1) show that a trigram
SLM is able to outperform the Transformer model
by a wide margin for all languages when only 10
thousand sentences are available.

"The details of these tests are discussed in Section 3.1.
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nl
Data Amount
Language  System 10k 40k 100k
EN NLM 128 30.7 44.6
SLM  29.7 379 42.1
HI NLM  27.0 48.7 574
SLM 457 48.1 524
TR NLM 64 223 36.2
SLM 231 305 39.9

Table 1: English (EN), Hindi (HI), and Turkish (TR)
MLM accuracy scores (%) for a neural versus statistical
model.

While an SLM might outperform a neural model
on MLM, the neural model has the benefit of being
easily transferable to downstream tasks by means
of fine-tuning. As such, this paper seeks to deter-
mine how we can improve the performance of an
NLM to that of an SLM in low-resource scenarios.
We investigate three approaches:

1. Changing the input by limiting the pretrain-

ing context size

Changing the architecture by limiting the
self-attention window

. Changing the training objective by using
soft labels distilled from the SLM

We motivate and detail these methods in Sec-
tion 2, describe experiment details in Section 3,
show and discuss results in Section 4, and conclude
our work in Section 5.

2 Methods

When comparing the general function of an SLM
to an NLM, we consider the largest difference to
be the context size considered. A tri-gram SLM
will consider only the context of the adjacent two
words on either side. For example, the score we
use for word C inthe sequenceA B C D E F G
islog(p(C|A, B) x p(D|B,C) x p(E|C, D)).
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Meanwhile, self-attention allows a Transformer
to consider the entire context, which in XLLM is
256 tokens by default (Lample and Conneau, 2019).
Since XLM is trained with continuous streams of
text, the input size is therefore always 256, and can
consist of multiple sentences. In the low-resource
setting, it may be difficult to learn important fea-
tures from such a large context size.

To tackle this, we consider three alternative ap-
proaches. First, we put the strictest limitation on
context by limiting the length of the input (§ 2.1).
Second, we use a limited attention scope, thereby
limiting the context within the first layer of the
Transformer, but allowing information to flow from
larger contexts in subsequent layers (§ 2.2). Finally,
we put no explicit restriction on context size, but
rather we expect the model to learn to limit itself
via distillation from the limited statistical model
(§2.3).

If context size is indeed the issue, we would
expect the strictest form of limitation to perform
best, as it would not need to learn to limit itself
during training. This may be however too limiting
for tasks which require a larger context, where we
would expect that limiting attention would perform
best. If context size is not the issue, we would ex-
pect that distilling knowledge from the statistical
model would perform best, as its context is not lim-
ited, and the statistical model would still help the
neural model learn a better strategy for language
modelling than it is capable of on its own.

2.1 Changing the Input

We first limit the context size by presenting the
input to a sliding window of a fixed context size.
To stay consistent with the SLM, we only mask
the middle word during MLM pretraining, padding
the left and right side with BOS and EOS tokens re-
spectively as needed.” For example, with a context
size of 5 for the sentence it is sunny today”, we
have:

[BOS]
[BOS]
it is

[BOS] [MASK]
it [MASK] sunny today
[MASK] today [EOS]

[MASK] [EOS] [EOS]

is sunny

is sunny

This approach has the benefit of a smaller input
complexity and an easier training objective (since
only 1 word is masked at a time). These factors

2We also tried just limiting the context size without
changes to MLM or the input, as done in contemporary
work (Press et al., 2020), but the performance was worse.
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should make it easier for the model to learn the im-
portance of local context. However, as the pretrain-
ing step does not expose the model to input longer
than the context size, fine-tuning with a longer con-
text size may hurt the model’s performance.

2.2 Changing the Architecture

Rather than explicitly limiting the context, we also
try limiting the model’s attention towards words
outside of the desired context. This is accomplished
by adding a weight matrix to the query-key matrix
produced during self attention. More specifically,
referring to Equation 1 from Vaswani et al. (2017):

Q T
Attn(Q, K, V') = softmax( NG
We add a band matrix W before applying softmax,
where the elements within the band are O and the
elements outside the band are —oo, shown in Equa-
tion 2.> The size of the band corresponds to the
context size (c¢), as the attention scores within the
band are unaffected, whereas the attention outside
of the band is effectively removed. This approach
is very similar to that of the Longformer (Beltagy
et al., 2020), which has a sliding-window attention
with the aim of reducing model complexity and
computation in long documents.

oo @

QKT

V.

-0 j<i—c

Attn(Q, K, V') = softmax (W + WV,

—00 j>i4c (2)

0

Wi =

otherwise

While the model’s self-attention range is limited
to the defined context size, the ability for infor-
mation from outside the context to associate with
that of within the context is still possible in upper
layers of the Transformer. For example, with a
6-layer encoder and a context size of 5, the first
word could theoretically receive information about
all words up to the 13th position. One benefit of
this approach over limiting the input context (Sec-
tion 2.1) is that the limitation can still be applied
during fine-tuning.

2.3 Changing the Training Objective

The first two approaches have mainly been focused
on the issue of context size, however the impor-
tance of an SLM having a fixed objective is not yet

. QO
*In practice we use —10°.



addressed. While an NLM still has to learn its ob-
jective, we can potentially make this easier to learn
by learning from the outputs of the SLM, inspired
by knowledge distillation (Hinton et al., 2015).

In the MM task, a model is typically trained to
compare its output for masked tokens to a “hard
label”, where the probability is 1 for the actual
word and O for all others. Rather than training
with hard labels, we construct a soft label from
the output of the SLM. This is done by using the
SLM’s score of the context with each candidate
word replacing the mask.* The scores are first min-
max normalized, then weighted, and finally scaled
to unit length (so that the probabilities sum to 1).>
The weighting is done by raising each score to the
nth power, acting as a “hardness” parameter, where
the most likely candidates approach 1 and the least
likely approach O as n increases. We experiment
with n € {1,2,4,6,8} and find n = 6 to give the
best results.

3 Experimental Setup

We test each of our three methods on English (EN),
Hindi (HI), and Turkish (TR). We train our mod-
els with XLLM (Lample and Conneau, 2019), start-
ing from a random initialization. We use the first
10 or 40 thousand sentences per language® from
the WMT2007 NewsCrawl for English (following
XLM), WMT2013 NewsCrawl for Hindi, and the
WMT2016 NewsCrawl for Turkish.” For all of the
tests, the data is tokenized with UDPipe (Straka and
Strakova, 2017),® truecased with Moses (Koehn
et al., 2007), and 10 thousand BPE (Sennrich et al.,
2015) joins are used.

The architecture behind our models is a 6-layer
Transformer with 8 attention heads, an embedding
dimension size of 1024, dropout set at 0.1, and
GELU (Hendrycks and Gimpel, 2016) activation.
For pretraining, we use a batch size of 32, and the
Adam optimizer (Kingma and Ba, 2014), with a
learning rate of le-4. We lower the learning rate
to 2.5e-5 for the fine-tuning tasks. We use an early

“Each masked word is handled separately, so in a sentence
with multiple masked words, the mask does not appear as part
of the context for the SLM.

>To limit memory usage, scores below the top 100 are
zeroed out after normalization.

The datasets come pre-shuffled.

"http://www.statmt.org/wmt16/
translation-task.html

8We use UDPipe so that the tokenization for our POS
tagging data (which comes from UD) is consistent with the
pretraining.

88

stopping criterion of no improvement in accuracy
(MLM accuracy for pretraining, NLI or POS tag
accuracy for fine-tuning) on the validation set for
20000 iterations, with a patience of 10. °

3.1 Measuring MLM accuracy

For our initial experiment showing the MLM accu-
racy of an SLM versus an NLM, we use a trigram
KenLLM model as our statistical model, and XLM
(Lample and Conneau, 2019) as our neural model.
Both KenLLM and the XLLM model are trained on
the same 10 or 40 thousand sentences. Being a
statistical model, KenLM’s training process simply
consists of tabulating frequencies, which are then
used to estimate probabilities during inference.

As KenLLM outputs scores for entire sequences,
we simulate prediction of a masked word by replac-
ing the word with every word in the vocabulary,
and take its highest score as its prediction.'? We re-
peat this for every word in the sentence for the first
100 sentences of the dataset,!!, producing roughly
2600 examples.'?

3.2 Downstream Tasks

We fine-tune our models on the Natural Language
Inference (NLI) task. For training, we use the
MultiNLI dataset (Williams et al., 2018), and for
development and testing, we use the XNLI dataset
(Conneau et al., 2018).

When fine-tuning on XNLI for our limited at-
tention model (Section 2.2), the first token (the
CLS token used for classification) in the final layer
often cannot access information from the second
sentence. As such, we instead average every token
rather than simply taking the first token, which im-
proves results dramatically. We did not find this
to improve any of our results with the other ap-
proaches, so we use only the first token in the other
approaches.

°As we used the XLM implementation from https:
//github.com/facebookresearch/XLM, any hyper-
parameters not mentioned are set at their default values.

19Because these scores are chain probabilities, it is not
clear how to get a perplexity score comparable to that of an
NLM, which is why we chose to compare with MLM accuracy.
However the MLLM accuracies of the NLMs follow the same
trend as their perplexities.

""We use WMT newstest2016 from English—
German for English and English—Turkish for Turkish, and
newstest2014 for English-Hindi for Hindi.

2Unlike in standard MLM during training, for evaluation
only one token is masked in a sentence at a time. Masking
multiple tokens would increase the number of queries to the
KenLLM model exponentially.



We also investigate an easier task that typically
requires less context, part-of-speech (POS) tagging,
in appendix B. When applicable, the training data
for both tasks is limited to the first 10 or 40 thou-
sand sentences, according to the amount of data
used in pretraining.

4 Results

We now compare the results of the SLM, normal
NLM, and our 3 improvements to the NLM: lim-
ited context (NLM-C), limited attention (NLM-A),
and the hybrid training objective (NLM-H). For
NLM-C and NLM-A, we experiment with different
context sizes and attention window sizes, ranging
from 5 to 13. The SLMs are trigram models, and
NLM-H uses these models for its soft labels.

4.1 Pretraining

Table 2 shows the MLM accuracies for all of the
methods, using 10 and 40 thousand sentences. As
we can see, the standard NLM is the worst, each
of the 3 additions improve on the standard NLM,
with NLM-C performing similarly to the SLM.

10k 40k

System Context EN HI TR EN HI TR
NLM 256 128  27.0 6.4 307 487 223
5 274 451 224 375 501 31.7

NLM-C 9 281 459 226 393 533 328
13 294 462 228 404 529 310

5 237 417 171 369 515 304

NLM-A 9 215 426 114 376 513 297
13 201 426 103 376 513 277

NLM-H 256 227 389 14.1 331 488 276
SLM 5 297 457 231 379 481 30.5

Table 2: MLLM accuracies (%), best in bold. The “Con-
text” column refers to the attention window for NLM-
A, and the input size for the others.

The similarity in performance for NLM-C and
SLM strongly suggests that local context is the
most important factor in SLM’s outperformance
over NLM. This focus on local context also has an
impact on the performance of rare words, as the
NLM specifically fails to fill in the mask when the
masked word is a word from the 80% least frequent
words. We discuss this in detail in appendix A.

NLM-A and NLM-H also outperform NLM, but
not to the degree of NLM-C. While NLM-A has
a similar goal as NLM-C, the degree to which in-
formation can flow from a wider context may be
inhibiting the model from focusing on local context.
This would explain why the accuracies decrease as

&9

the attention window increases. For NLM-H, since
the context is not explicitly limited, it can similarly
suffer from the complexity of self-attention.

4.2 NLI

Natural Language Inference (NLI), involves clas-
sifying two statements into three classes: “contra-
diction”, “entailment”, and “neutral”. This typi-
cally would require a large context as the relation
between the two sentences’ meanings needs to be
understood. As our focus for two of our approaches
was to limit their context, we would expect this task
to be the most challenging. Our results are in Table

3.

10k 40k

System Context EN HI TR EN HI TR
NLM 256 456 415 420 532 498 494
5 440 422 421 51.8 474 469
NLM-C 9 448 432 424 518 470 465
13 452 425 414 501 472 465
5 434 445 405 536 482 479
NLM-A 9 468 451 446 544 502 50.2
13 469 468 458 542 497 50.2
NLM-H 256 450 421 448 52,6 494 492

Table 3: NLI accuracies (%), best in bold.

The results on NLI differ greatly from the MLM
accuracies, as NLM-A performs the best across
the board, despite its MLM accuracy being lower
than NLM-C (cf. Table 2). This is likely due to
NLM-A needing no changes to the input between
the pretraining and fine-tuning steps. Meanwhile,
NLM-C performs more poorly as it needs to adjust
to the longer input for fine tuning.

When comparing the context sizes, we see that a
larger context size in general performs better. This
is in line with the idea that NLI generally demands
a larger context size.

5 Conclusion

Despite the ubiquity of pre-trained neural language
models (NLMs) in state-of-the-art NLP, in the low-
resource setting they are outperformed by statistical
language models (SLMs). Their general formula-
tion assumes a large amount of data for pretraining,
so in this work we adapt them to better perform in
low-resource conditions.

We found that the complexity of self-attention
on large contexts is a major inhibitor. As a solution
to this, we propose shortening the attention span
(NLM-A), which we show can increase the model’s
performance on downstream tasks. We believe



that an ideal limitation of attention span would be
initially very limited, but the span would increase
dynamically during training. We plan to look into
this further in future work.

For the best performance on MLM accuracy dur-
ing pretraining itself, we propose limiting the size
of the input (NLM-C), improving upon the standard
method for training neural models. This achieves
SLM-level performance on the lowest resource set-
ting (10 thousand sentences), and outperforms an
SLM on slightly higher-resource settings (40 thou-
sand sentences). In addition, the neural model with
a limited context can, unlike the SLM, be trans-
ferred to downstream tasks.

While limiting the input size (NLM-C) performs
better than limiting the attention span (NLM-A) for
pretraining, the opposite is the case for downstream
tasks. As a potential solution for this, we propose
for future work a second pretraining step in which
the non-limited input is used.

Finally, our work primarily serves to investigate
how attention-based models function with very lit-
tle data. However in many real-world scenarios,
transfer learning from large multilingual models is
often used. Looking at the impact of these meth-
ods with multilingual transfer learning employed
alongside is something we plan to do in the future.
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A Pretraining Analysis

To better understand the failures of the NLM model
on MLM accuracy, we look at the performance of
our models with respect to the frequency of each
word during training. We split the vocabulary into
5 equal bins according to frequency and record the
accuracy on those bins, shown in Table 4.

Bin NLM NLM-A NLM-C NLM-H SLM

1 0.0 1.2 14.3 2.0 16.1

2 0.0 29 9.2 3.0 11.5

10k 3 0.1 3.1 9.0 4.1 10.8
4 0.0 3.6 9.9 32 14.8

5 154 27.1 322 25.7 34.2

1 5.7 14.8 17.9 15.2 17.9

2 7.5 15.4 10.0 14.6 19.2

40k 3 9.9 17.7 19.0 14.6 24.6
4 8.5 16.4 17.4 13.1 19.9

5 335 39.5 433 36.2 42.7

Table 4: Accuracy (%) per frequency bin for English,
with bin 1 being the least frequent 20%, and bin 5 being
the most frequent 20%. For NLM-A and NLM-C, we
only report the scores for the systems with a context
size of 5.

The SLM performs better across the board, but
the NLM specifically fails on the least common
80% of words when 10 thousand sentences are
used. While less frequent, this still accounts for
roughly 20% of the words seen in training data, so
the impact is understandably substantial. Interest-
ingly, NLM-C performs similarly to SLM, which
reinforces the idea that context size is the main rea-
son why SLLMs outperform standard NLMs in the
low resource setting.

We also attempt to measure the “reasonableness”
of a system’s guess for MLM. Considering words
split into multiple tokens by BPE, we measure how
often the system completes them to a word that is
in the vocabulary. For example “up@ @’ could be
reasonably completed with “grade” or “date”. As
the meaning of an entire sentence is not considered,
local context is especially important for completing
this task. We show the results in Table 5.

NLM NLM-A NLM-C NLM-H SLM

10k EN 2.2 22.8 52.8 339 61.1
TR 4.4 322 4.2 32.8 39.9

40k EN 40.3 57.3 69.7 57.0 78.7
TR 453 54.7 55.0 51.9 55.1

Table 5: Word completion (%) for English and Turkish.
Showing systems with context 5 for NLM-A and NLM-
C.

The results show a drastic difference in perfor-
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mance of NLM to SLM when trained on 10 thou-
sand sentences. The standard NLM seems to fail
to understand the concept of multi-token words.
NLM-C and SLM again perform similarly. Inter-
estingly, the discrepancy in performance on the two
languages for the SLM is larger than for the NLMs.
While this not central to the topic of this paper, it
may be worth exploring it further.

Despite performing well on the downstream
tasks, NLM-A does not perform particularly well
on these pretraining metrics. This may showcase
the inherent difficulty in evaluating the quality of
the pretraining objective, as metrics like MLM ac-
curacy or word completion do not give a clear indi-
cation of the transferability of a pretrained model
to a downstream task.

B POS Tagging

Part-of-speech (POS) tagging is considered a much
easier task than NLI, as most words do not need a
large amount of context to be tagged. This should
be an ideal setting for the context-limited methods
to perform well, particularly NLM-C.

We use the POS tagging data from Universal De-
pendencies (UD) v2.7 (Zeman et al., 2020), using
the English-GUM and Turkish-BOUN datasets.

The results on POS tagging (Table 6) are some-
what similar to the NLI results, as NLM-A again
performs the best. As this task is more suited for
the contextually-limited NLM-C, we would expect
it to perform similarly well, however this is not the
case. We believe NLM-C’s poor performance can
again be attributed to the increase in context size
for fine-tuning.

10k 40k

System Context EN TR EN TR
NLM 256 892 875 928 889
5 908 872 917 877

NLM-C 9 905 877 921 88.4
13 907 83 922 882

5 925 892 942 90.0

NLM-A 9 925 892 939 90.1
13 916 8.5 943 90.0

NLM-H 256 914 883 931 889

Table 6: POS tagging accuracies (%), best in bold.

The importance of local context for the POS
tagging task is highlighted by the scores of NLM-
A and NLM-C, where overall the models with a
smaller context perform better than those with a
larger context. NLM-H however does still provide
improvements over the standard NLM, which may



indicate that the network can more easily learn to
limit its self-attention from the soft labels.
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Abstract

We explore the ability of pre-trained language
models BART, an encoder-decoder model,
GPT2 and GPT-Neo, both decoder-only mod-
els for generating sentences from structured
MR tags as input. We observe best results
on several metrics for the YelpNLG and E2E
datasets. Style based implicit tags such as
emotion, sentiment, length etc., allows for con-
trolled generation but it is typically not present
in MR. We present an analysis on YelpNLG
showing BART can express the content with
stylistic variations in the structure of the sen-
tence. Motivated with the results, we define
a new task of emotional situation generation
from various POS tags and emotion label val-
ues as MR using EmpatheticDialogues dataset
and report a baseline. Encoder-Decoder atten-
tion analysis shows that BART learns different
aspects in MR at various layers and heads.

1 Introduction

Recent advances in NLG focus on generating text
from structured data encoded as Meaningful Repre-
sentations (MR). MR typically comprises of seman-
tic content to be realized for generation. This can
be used for automating writing reports from tabu-
lar data, descriptions and reviews for products or
restaurants from catalog, etc. However, style based
implicit tags can add dynamic, engaging and im-
mersive effect in real world NLG applications such
as social and empathetic chatbots. The style aspects
along with content information allows generating
varied and customized text with same content. In
this work, we explore capabilities of an encoder-
decoder model, BART (Lewis et al., 2019), and
two decoder-only models, GPT2 (Radford et al.,
2019) and GPT-Neo (Black et al., 2021) for MR-
to-text generation task. We evaluate BART, GPT2
and GPT-Neo on three datasets, one for content and
other for both content and style. These datasets in-
clude E2E original and clean version (Dusek et al.,
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2020) (Dusek et al., 2019) which are restaurant de-
scription datasets comprising of content based MR
and Yelp NLG (Oraby et al., 2019), a restaurant
reviews corpus having both semantic and stylistic
tags. We define a new task of emotional situation
generation on Empathetic dialogues (ED) dataset
(Rashkin et al., 2018). We construct MRs using set
of POS tag (Qi et al., 2020) values from situation
along with emotion label. Table 9 of Appendix
A describes sample input MR and output for each
dataset.

Our main contributions are defined as: a) The
ability of encoder-decoder based and decoder-only
pretrained transformer models to generate fluent
sentences from content and style based MR. b) A
new task on emotional situation generation using
POS tag and emotion label values as MR and report
its baseline. ¢) Encoder-Decoder attention map
analysis of BART to further understand which layer
and head learns which concept.

2 Related Work

Existing structured data to text datasets - E2E
(Dusek et al., 2020) (Dusek et al., 2019), WebNLG
(Gardent et al., 2017), TOTTO (Parikh et al., 2020),
AGENDA (Koncel-Kedziorski et al., 2019) etc con-
sider input in various formats such as slot value
pair, triplets, or graph. They consist of content
based semantic input in MR. Recently introduced
YelpNLG dataset by (Oraby et al., 2019) considers
style aspect in addition to content slot value in MR
and provides LSTM encoder decoder baseline. Our
work focuses on exploring recent language model
capability for content and style based MR.
Researchers have attempted to improve content
slot value MR to text in attention based encoder
decoder architectures by incorporating various tech-
niques. (Tseng et al., 2020) performed joint train-
ing of NLU and NLG. (Roberti et al., 2019) in-
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Dataset Size Content

Style

restaurant[],cuisine[], food[], staff[],

Sentiment(positive, negative, neutral),
length(short,medium,long), perspective(

Yelp 300k service[], ambiance[], price[] first,person, not first person),exclamation
(has exclamation, no exclamation)
namel[], eatType[],food[],near[], priceRange[],
E2E S0k customerRating[], area[], kidsFriendly[] NA
ED 25Kk POS values subset from [Noun], 32 Emotion Labels

[Adjective], [Verb], [Pronoun]

Table 1: Content and style tag description for each dataset. ED only consists of values without content slot type.

troduced copy mechanism from MR facts to text.
(Kedzie and McKeown, 2020) performed control-
lable MR-to-text generation by comparing differ-
ent linearization strategies and phrase-based data
augmentation technique. (Juraska et al., 2018),
(Zhang et al., 2018), (Gong, 2018) applied re-
ranking on top of seq2seq model providing seman-
tic control, (Puzikov and Gurevych, 2018) came
up with data-driven and template-based generation
system. (Shen et al., 2019) used computational
pragmatic based approach for conditional gener-
ation. However, we observe that all pre-trained
transformer models perform well irrespective of
their sizes, without requiring changes for both con-
tent and style MR.

3 Dataset Description

Table 1 provides a concise description of the
datasets used, which were constructed to explore
and improve the natural language generation capa-
bility of neural architectures. E2E (Dusek et al.,
2020) original, a restaurant review dataset, has high
lexical diversity and diverse discourse phenomena.
E2E clean by (Dusek et al., 2019) is a noise free
version of E2E (Dusek et al., 2020), with no mis-
match between the content of the MR tags and
the corresponding references. (Oraby et al., 2019)
curated MR for YelpNLG automatically by leverag-
ing freely available user review data on restaurants.
This dataset brings in rich language descriptions
with varied semantic emotions and content. To
further explore the empathetic conversational po-
tential, we use ED dataset (Rashkin et al., 2018),
which comprises emotional dialogues between two
persons. Motivated by YelpNLG, we constructed
MR using values from POS tag set from noun, adj,
pronoun and emotion label values for emotional
situations provided in ED dataset.
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4 Experiments

We fine-tune pre-trained language models like
BART-large, GPT2-medium and GPT-Neo 125M
for MR-to-text on train split of respective datasets.
We use early stopping and choose the best model
for evaluation on test set. Other parameters used
for fine tuning are AdamW optimizer with a learn-
ing rate of 3e-5 and a linear learning rate sched-
uler. While generating the output text from MR
we use beam search decoding with beam size of
4. We evaluate the generated output text using the
standard automatic evaluation metrics' BLEU (Pa-
pineni et al., 2002), METEOR (Lavie and Agarwal,
2007), NIST (Doddington, 2002), CIDEr (Vedan-
tam et al., 2015) and ROUGUE (Lin, 2004), and
Semantic Error Rate (SER) (Dusek et al., 2019).

5 Results and Discussion

E2E, E2E clean: We report the fine-tuning re-
sults of the pre-trained models for E2E in Table 2
and compare it with other recent baselines”. We ob-
tain best METEOR, CIDEr and ROUGE-L scores
for E2E original using GPT2 and for E2E clean,
best NIST using GPT2 and best SER score using
BART. The other scores are comparable with base-
lines and do not differ significantly. The results
show that the pre-trained models are able to pre-
serve the content tags in output.

YelpNLG: We report the results for Yelp NLG in
Table 3. We consider all the settings for YelpNLG -
only content (BASE), content with style addition
at different granularity (adjectives, sentiment, all
other style aspects) . We obtain best results on all
the metrics excluding SER using BART. SER less
than 5% for BASE and STYLE setting signifies that

'"https://github.com/tuetschek/
e2e—metrics
2We show few baseline scores due to space constraint.



Architectures BL(T) NT() MT(1) RL(T) CD(T) SER(])
(Dusek and Jurcicek, 2016) 0.6593 8.6094 0.4483 0.685 2.2338 3.56*
Té (Zhang et al., 2018) 0. 6545 8.184 0.4392 0.7083 2.1012 -
Bb (Tseng et al., 2020) 0.6855 - - - - -
S (Shen et al., 2019) 0.6860 8.73 0.4525 0.7082 2.37 -
B BART 0.6757 8.7242 0.4614 0.703 2.3914 3.58
M GPT2 0.6853 8.7164 0.4637 0.7143 2.411 5.56
GPT-Neo 0.6841 8.6654 0.4626 0.7064 2.3697 3.52
o (DuSek and Jur¢icek, 2016) 0.4073 6.1711 0.3776 0.5609 1.8518 0.87
§ (Harkous et al., 2020) 0.436 - 039 0.575 2.0 -
Eu) BART 0.4258 6.4188 0.3858 0.5677 1.9355 0.13
9 GPT2 0.4285 6.4524 0.3854 0.5718 1.9873 1.02
GPT-Neo 0.4087 6.2472 0.3751 0.5561 1.7928 4.06

Table 2: Results on E2E original & Clean test set. * - score on provided outputs. All tables follow these abbrevia-
tions - BL: BLEU, NT: NIST, MT: METEOR, RL: Rouge-L, CD: CIDEr

Variant BL MT CD NT SER

3.840
4.547
4477 0.064
5.537 0.090

0.053
0.063

0.126
0.164
0.166
0.173

0.206
0.233
0.234
0.235

1.300
1.686
1.692
1.838

Base
+Adj
+Sent
+Style

Baseline

1.820
2.355

5.303 0.0346
6.130 0.0358
2.358 6.158 0.0382
0.226 0.268 2.587 6.143 0.0435

0.177
0.224
0.225 0.264

0.227
0.263

Base
+Adj
+Sent
+Style

Bart

0.1673 0.2235 1.7731 4.7605 0.0291
0.2057 0.2578 2.2868 4.8509 0.0308
0.2072 0.2594 2.2971 4.8365 0.0302
0.2276 0.2648 2.5799 6.3915 0.0337

Base
+Adj
+Sent
+Style

Gpt2

0.1646 0.2181 1.6502 5.052 0.0345
+Adj 0.1972 0.2546 2.2095 4.6360 0.0320
+Sent  0.2006 0.2548 2.2104 4.8331 0.0315
+Style 0.2223 0.2611 2.5034 6.3503 0.0443

Base

GptNeo

Table 3: Results on YelpNLG test set. Base MR only
contains content slot type-value pairs, +Adj contains
content slot type-value-adjective triplets. In addition to
+Adj, sentiment and other stylistic aspects are added in
+Sent and +Style, respectively.

Variant BL MT CD NT RL

NAd 0.245 0.293 2414 6.939 0.539
NAdP 0.358 0.349 3.638 8.383 0.660

NAd 0.1855 0.2589 1.8918 5.9274 0.4852
NAdP 0.2726 0.3071 2.8072 7.2803 0.5994

NAd 0.1389 0.2392 1.6136 4.6187 0.4474
NAdP 0.2263 0.2925 2.4268 6.8125 0.5829

GptNeo Gpt2| Bart

Table 4: Results on ED test set. NAd: noun+adjective,
NAdP: NAd+pronoun

the pre-trained models understand and express the
content specifications well in the generated review.
The models learn to associate the attribute values
in the MR tag even in presence of different stylistic
aspects in the fairly complex sentences.

ED: We report the results for ED dataset in Ta-
ble 4. For ED, we provide baseline for various
sequences of POS tag values in MR - (Noun,Adj),
(Noun,Adj,Pronoun), with emotion label. We also
find here that BART performs best compared to
other pretrained models. We observe that increas-
ing the content value information leads to incre-
ment in scores. We observe that the emotional
aspect of the generated statements can be manip-
ulated by changing the input tags, which empha-
sizes the models’ power to generate customized
sentences while expressing all the relevant content
as shown in Table 5 and Table 6.

5.1 Attention Map Analysis for YelpNLG

To further investigate the rationale behind the su-
perior performance of the transformer models, we
extend (Vig, 2019) to analyse the encoder decoder
attentions of BART and report results in Table 7.
As in CNNs, we hypothesised that different nodes
in the architecture would learn to capture particular
tags in the MR. Thus, we evaluate which head and
layer learns to attend to a particular style aspect.
LxHy signifies encoder-decoder attention map cor-
responding to yth head of xth layer. We take 1000
samples in each case and perform element wise
summation of attention distribution scores of the
chosen output tokens shown under By’ over all
input tokens. We report the percentage of cases
in which the input token under To’ was in top3
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YelpNLG MR

Output

food||chicken||delicious||mention_1 food||fries||no_adj||ment
ion_1,positive,len_medium,not_first_person,no_exclamation

the chicken was delicious and the
fries were cooked to perfection.

food||chicken||delicious||mention_1 food||fries||/no_adj||ment
ion_1,positive,len_medium,not_first_person,has_exclamation

the chicken is delicious and the fries
are to die for!

food||chicken||tasty||mention_1

food||fries||delicious||ment
ion_I,negative,len_long,not_first_person,has_exclamation

the chicken was tasty, the fries were
delicious, but the whole thing was a
let down!

food||fries||tasteless||mention_1

food||chicken||yuck||ment
ion_1,positive,len_medium,first_person,has_exclamation

the fries were tasteless, the chicken
was yuck, but i love this place!

Table 5: Generated outputs for YelpNLG using BART.

ED Output

joyful(friends different country)

My friends are coming to visit me from a different country.

guilty(friends different country)
country.

I lied to my friends that I was going to visit them in a different

anxious(husband end month lit-
tle worried funds)

My husband and I are going overseas at the end of the month. I am
a little worried about how we will manage the funds.

Confident(husband end month
little worried funds)

My husband and I are going to get married at the end of the month.
I’m a little worried about the funds we’ll have, but I know we’ll
make it happen.

Table 6: Generated outputs for ED for Emotion with Noun and Adjective using BART.

(top5 for *all’) most maximally attended input to-
kens. ’Sample Type’ column denotes the common
stylistic aspect for all those samples. We observe
that various layers and heads learn different stylis-
tic concepts beyond just learning to copy (as shown
in Figure 1, 2, 3 and 4 of Appendix C). The results
reinforce our hy pothesis and establish that differ-
ent parts of BART learn to understand the intrinsic
meaning of different tags.

5.2 Qualitative Analysis

The generated outputs emphasize sensitivity of
BART towards stylistic aspects. A minute
change from no_exclamation in first row to
has_exclamation in second row in Table 5, to
our surprise, BART has generated very different
and dramatic output. The last two rows show
BART’s capability of handling contrasting scenar-
ios wherein the sentiment of the input is in contrast
to the adjective values of food. Results in Table 6
show that BART can express the same content with
different emotions fed as implicit tags.

While analysing the predictions of the finetuned
models, we observe that most of the time, BART
has been successful in generating output as per the
given style constraints mentioned in the input MR
tags. Table 8 shows a few instances where BART,
out of all the 3 models, is capable of producing

96

better and more meaningful sentences. However
in the last two examples of Table 8, we also report
cases where these models produce incoherent out-
puts that do not meet the required stylistic aspects.

LH Token Maximally | % |Sample
Attended (To,By) Type
L7HO | (’negative’, all) | 86 |negative
L7HO (’neutral’, all) |60.5 |neutral
L1HI11 (first’, 100 |first
first person words) person
L3HS (’short’, all)  {99.4 |short
L8HS5 (Chas’,’!”) 87.7|has exclamation
L7H11 (adjectives, 73 |adjs
food values)
LOH15 (food values, 100 |food
food values) values

Table 7: Attention Analysis for YelpNLG.

5.3 Analysis of the Pre-trained models

We have used pretrained models like BART-large,
GPT2-medium and GPTNeo-125M in our experi-
ments. The number of parameters used for these
models vary. For example, BART-large has 406
million parameters, GPT2-medium has 345 million
parameters and GPTNeo-125M has only 125 mil-
lion parameters. Table 2, 3, 4 show that GPTNeo-
125M, inspite of having less than 50% of the param-



MR: food||steak||awesome||mention_1 food||chicken||fried||mention_1,neutral,len_long,first_person,
no_exclamation

Ref: ”what i had in mind, try out their awesome steak and their fried chicken... however, it turns out
they are only served on weekdays.”

Bart: “’the steak was awesome, but the fried chicken was a bit too sweet for my taste buds, but it
was still good.”

Gpt2: i had the steak which was awesome, and my friend had the fried chicken which was also
good.”

GptNeo: "the steak was awesome, but the fried chicken was a little dry for my taste.”

MR: food||wontons||no_adj||mention_1 food||wontons||no_adj||mention_2 food||meat||no_adj||ment
ion_1,positive,len_medium,not_first_person,no_exclamation

Ref: ”if you go anywhere in california, wontons are wontons with meat inside.”

Bart: “the wontons are not just wontons, they are filled with meat and veggies.”

Gpt2: "wontons are wontons, meat is meat.”

GptNeo: "wontons, fried wontons, fried wontons, fried wontons, fried wontons, fried wontons, fried
wontons, fried wontons, fried wontons.”

MR: food||chicken||lemon||mention_1 food||vegetables||no_adj||mention_1,negative,len_long,not_first
_person,no_exclamation

Ref: “first the appetizer was not prepared properly, out of the lemon chicken and then vegetables
were cold.”

Bart: “’the lemon chicken had a lot of vegetables in it, but not enough of them to make up for the
lack of taste.”

Gpt2: “the lemon chicken had a lot of vegetables in it, but it was very dry.”

GptNeo: ’the lemon chicken had a lot of vegetables in it, but it was a little dry.”

MR: food||chicken||no_adj||mention_1 food||sauce||no_adj||mention_1,negative,len_medium,first_per
son,no_exclamation

Ref: i did not like the way the chicken was cooked or the sauce on it.

Bart: i had the chicken with the sauce on the side and it was good.

Gpt2: i had the chicken with the sauce on the side.

GptNeo: i had the chicken with the sauce on the side.

MR: food||pizza||no_adj||mention_1 food||steak||no_adj||mention_1 food||cheese||no_adj||ment
ion_1,positive,len_medium,not_first_person,no_exclamation

Ref: love the pizza the steak and cheese and the place.

Bart: “pizza, wings, steak, cheese, and more.”

Gpt2: “pizza, steak, cheese, etc.”

GptNeo: "pizza, steak, and mac and cheese.”

Table 8: Example outputs for YelpNLG using BART, GPT2 and GPTNeo.

eters of the other models, is being able to produce 6 Conclusion

competitive results on these tasks, often beating the

baseline performances in several cases.

GPTNeo has been pretrained on Pile (Gao et al.,
2020) dataset, which is composed of different con-
stituent sub-datasets from diverse domains. How-
ever, GPT2 and BART are pretrained exclusively
on text data. The size of the pre-training dataset
seems to have an impact in the performance of the
pre-trained model on downstream tasks. This is
because GPTNeo is trained on 800GB Pile dataset
while GPT2 has been trained on only 40GB of
webtext data.
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We describe the benefits and importance of
MR2text generation. We fine-tune recently in-
troduced Transformer-based language models like
BART, GPT2 and GPTNeo, and produce results on
two versions of E2E, YelpNLG and ED datasets.
We have defined a new task on Emphatetic Dataset
to emphasize the usefulness of implicit tags in NLG.
Quantitative and Qualitative analyses show how
well BART captures the specifications and brings
stylistic variations in generated outputs.
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Abstract

Suicide rates are rising among the youth, and
the high association with suicidal ideation ex-
pression on social media necessitates further
research into models for detecting suicidal
ideation in text, such as tweets, to enable mit-
igation. Existing research has proven the fea-
sibility of detecting suicidal ideation on social
media in a particular language. However, stud-
ies have shown that bilingual and multilingual
speakers tend to use code-mixed text on social
media making the detection of suicidal ideation
on code-mixed data crucial, even more so with
the increasing number of bilingual and mul-
tilingual speakers. In this study we create a
code-mixed Hindi-English (Hinglish) dataset
for detection of suicidal ideation and evaluate
the performance of traditional classifiers, deep
learning architectures, and transformers on it.
Among the tested classifier architectures, Indic
BERT gave the best results with an accuracy of
98.54%.

1 Introduction

A study by the World Health Organization (WHO),
has found that nearly 700,000 people die of sui-
cide each year (WHO). Suicidal ideation, the act
of thinking about, considering or planning suicide,
can be attributed to multiple reasons including men-
tal illness, traumatic stress, loss or fear of loss, so-
cial isolation, biological factors, environmental fac-
tors, genetic factors and situational factors (Wasser-
man et al., 2004). In the wake of COronaVlIrus
Disease-2019 (COVID-19), an increasing number
of individuals across the world have become vic-
tims to one or more than one of these factors, that
has led to increased rates of suicide worldwide
(Fortgang et al., 2021).

It has been found that increase in consumption
and posting on social media has a direct correla-
tion to the tendency of expressing desires, thoughts,

New Delhi, India
bhavya.eel9@nsut.ac.in

and intentions on pro-suicide platforms before at-
tempting suicide (Gea and Sanchez, 2012). With
COVID-19 driving social media consumption up by
72% and posting by 43% such incidents recorded
an all-time high (Wold |, 2020). Danet and Herring
(2007) mentioned that more than half of the people
on social media platforms are not native English
speakers and (Hong et al., 2011) confirmed that
about 50% of the posts on Twitter are in languages
other than English. These studies substantiate the
need of a much broader scope for detection of sui-
cidal ideation on social media than just the English
language.

(Gupta et al., 2016) found that over 26% of the
Indian population speaks more than one language,
often in the form of code-switching or code-mixing.
Code-switching occurs when an individual alter-
nates between multiple languages in the context
of a single conversation or situation while code-
mixing is the use of two or more languages by
an individual below clause level in a single social
context. However, working with code-mixed data
presents it’s own set of challenges, including the
creation of a large number of new constructions for
understanding the syntax and semantics of the two
or more combined languages, the availability of
very small amounts of annotated data, and the use
of drastically different approaches when compared
to monolingual data (Cetinoglu et al., 2016).

In this paper, we aim to detect suicidal ideation
in code-mixed Hinglish. Although significant work
is available for suicidal ideation detection in En-
glish (Castillo-S4nchez et al. (2020), Coppersmith
et al. (2018), Mbarek et al. (2019), Ophir et al.
(2020), Ramirez-Cifuentes et al. (2020), Sawhney
et al. (2020), Shaoxiong Ji (2020), Tadesse et al.
(2019), Vioules et al. (2018)), detection of suici-
dal ideation in code-mixed languages is relatively
unexplored. To the best of our knowledge, we are
the first to identify suicidal ideation in code-mixed
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Table 1: Count and distribution of dataset

Category Sample Count | Percentage
Suicidal Ideation (Positive Samples) 3098 47.41%
Non Suicidal (Negative Samples) 3435 52.59%

Hindi-English.
The contributions of our work include:

1. There is a significant lack of data in code-
mixed suicidal ideation. We attempt to over-
come this drawback by creating a dataset
for suicidal ideation in code-mixed Hindi-
English.

We propose the use of various existing models
to create a baseline for future work in the field.

2 Methodology

The proposed methodology consists of three major
parts, each consisting of a major contribution of
our work.

2.1 Dataset Creation and Analysis

Even with the huge surge in suicidal ideation cases
in code-mixed Hindi-English on social media plat-
forms, there exists no dataset for suicidal ideation
posts in it. Most existing research uses data from
special Reddit channels like “Suicide Watch” (Ji
et al. (2018), Tadesse et al. (2019)) or Twitter
(Mbarek et al., 2019). However, since all of these
datasets are in English, they fail to capture a large
section of suicidal ideation texts that are unac-
counted for due to medium of communication in
specialized channels of social media (like subreddit
“Suicide Watch”), frequent lack of hashtags, and
deletion of such texts by social media companies
due to the impact it can have on other users of their
social media platform. To overcome a lack of a
code-mixed dataset in this domain we scraped data
from the subreddits such as Aww, Jokes, History,
Discussion, Stories and Entertainment as negative
samples and selected text from the “Suicide Watch”
subreddit as positive samples. On the 6533 scraped
samples thus obtained, we used the approach pro-
posed by Gupta et al. (2020) to obtain code-mixed
Hindi-English text from English text. The gener-
ated dataset consists of 6533 code-mixed text sam-
ples, 3098 of which are labelled as having suicidal
ideation and 3435 labelled as having no suicidal
ideation.

From Table-1 it can be observed that the data
is fairly balanced. It is essential to ensure a fair
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representation of class labels in this context to
eradicate unfounded bias due to training data.

Examples of the annotated data are:

Sample: Main literally aur figuratively khud
ko maarnaa caahtaa huun

Translation: I want to kill myself, both literally
and figuratively.

Label: Suicidal Ideation

Sample: Tumhara novels ya books mein fa-
vorite twist kaunsa hai?

Translation: What is your favorite twist in books
or novels?

Label: Non Suicidal

The dataset is available on GitHub .

2.2 Creation of Hindi-English Bi-lingual
Word Embeddings

Word embeddings are dense vectors that give se-
mantic and syntactic information of words in a
context (Mandelbaum and Shalev, 2016) and are
a critical part of text classification tasks. How-
ever, creating embeddings requires a large amount
of textual data. For this purpose, we have used
412k Hinglish tweets and 320k English tweets from
Twitter for code-mixed Hindi-English data and pre-
processed them by removing rare words, hashtags,
mentions and Uniform Resource Locators (URLs).
We experimented with two different experimental
settings to form embeddings using two different
techniques. For the first setting, we have used only
the Hinglish tweets corpus to create embeddings
and for the second one, a corpus of both English
and Hinglish tweets combined. On each of these
experimental settings, we tried the following two
embeddings:

1. Word2Vec: This technique was introduced in
2013 (Mikolov et al., 2013) and is widely re-
garded as a pivotal method for creating dense
word embeddings. Since a pre-trained cor-
pus for English embeddings already exists,
we trained our Hinglish corpus to create the
required embeddings.



2. FastText: FastText was introduced by Face-
book (Bojanowski et al., 2017a) as an exten-
sion of Word2Vec embeddings (Joulin et al.,
2017). Instead of learning weights for words
directly, FastText breaks words into multiple
sub-words (Bojanowski et al., 2017b). This
will be particularly helpful in representing rare
words as embeddings since it is highly likely
that their n-grams will be a subpart of other
words. For example, “aww”, “awww”” and it’s

variations, which are very common on social

media platforms, can be trained appropriately.

2.3 Deep Learning Models

Four traditional classifiers, five deep learning classi-
fiers and two transformers have been used to create
a baseline. These models include:

—

. Naive Bayes (Yu et al., 2015)

. Random Forest (Breiman, 2001)

. Linear SVM (Ladicky and Torr, 2011)

RBF Kernel SVM (Dagi and Tao, 2007)

. Series CNN (Tang et al., 2021)

Parallel CNN (Yao et al., 2019)

. LSTM (Hochreiter and Schmidhuber, 1997)

. Bi-Directional LSTM (Schuster and Paliwal,
1997)

Attention Based Bi-Directional LSTM (Wang
et al., 2016)

10. mBERT (Devlin et al., 2019)

11. Indic BERT (Kakwani et al., 2020)

All these architectures were presented with the task
of binary classification where each text was pre-
dicted as a sample of suicidal ideation or a sample
having no suicidal ideation.

While some of these models have been able to de-
tect sarcasm, irony, and other factors that may af-
fect the classification of a suicidal ideation text, its
explicit learning and merging could be an avenue
for future research.
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3 Experimental Settings / Modeling

For training our deep learning models, we made
a fifteen percent validation split for a total of 20
epochs while the transformers are trained for 5
epochs on the same split. The model checkpoints
are saved at each epoch and the model with high-
est validation accuracy and lowest difference from
training accuracy is saved as the final model to
ensure prevention of overfitting.

Word embeddings are trained using negative
sampling polarity, an embedding size of 300, a
window length of 10. The Adam optimizer is em-
ployed in all of the models, coupled with the binary
cross entropy loss function. With the exception
of the output layer, which has sigmoid activation,
all layers have relu activation. We tested CNN
models with various kernel sizes, number of ker-
nels, dropouts, and strides to see how well they
performed. With the following parameters, the best
results are obtained: stride = 1, number of kernels
= 200, dropout = 0.5

For all RNNs the hyperparameters used are
dropout for recurrent state = 0.25, dropout for input
state = 0.25, and number of LSTM units = 400.

4 Results

We have tested our dataset on traditional machine
learning classifiers, deep learning models and trans-
formers. The results of well known traditional clas-
sifiers have been listed in Table 2. RBF Kernel
SVM gives the best results among the traditional
classifiers with an accuracy of 60.8% on the given
corpus.

Table 2: Accuracy from traditional classifiers

Classifier Accuracy
Naive Bayes 51.2%
Random Forest 55.7%
Linear SVM 59.2%
RBF Kernel SVM 60.8%

Deep Learning models are tested using
Word2Vec and FastText embeddings on Hindi-
English (Hinglish) data only, and on Hinglish and
English data combined. Table 3 shows the re-
sults obtained by training deep learning models
on this corpus. The Attention Bi-LSTM trained
on a Word2Vec embedding of Hinglish and En-
glish data corpus gives the best result of 90.66%.
It is observed that deep learning model architec-
tures perform better with embeddings of Hinglish



Table 3: Accuracy from Deep Learning Models

Hinglish Data Hinglish + English Data
Model Word2Vec | FastText | Word2Vec | FastText
Series CNN 71.26% 71.24% 73.60% 73.12%
Paralle]l CNN 73.86% 73.86% 74.36% 74.16%
LSTM 79.64% 78.52% 81.72% 80.66%
Bi-LSTM 83.42% 82.64% 85.44% 84.74%
Attention Bi-LSTM | 89.66% 87.42% 90.66% 89.82%

and English data combined instead of using just
Hinglish data for creating embeddings which may
be a result of better semantic and correlation cov-
erage between embeddings on English data and
Hinglish data. It’s also worth noting that Word2 Vec
produces slightly better results than the FastText
embeddings. This observation could be due to the
fact that code-mixed data prevents n-grams from
being used as the major classification criterion. Fur-
thermore, the better performance of deep learning
models over traditional classifiers can be attributed
to the fact that they can learn more about human
tendencies like sarcasm and irony (Sentamilselvan
et al. (2021), Potamias et al. (2020)), thus reducing
incorrect predictions on them.

Given the code-mixed nature of the corpus, the
transformers used for classification are mBERT
and IndicBERT. Table 4 shows the results of train-
ing our corpus on these transformers. IndicBERT
slightly outperforms mBERT with an accuracy of
98.54%.

Table 4: Accuracy from Transformers

Classifier Accuracy
mBERT 96.63%
Indic BERT 98.54%

The method of generation of the dataset could
have influenced the results for mBERT’s classi-
fication performance, however, it is highly unlikely
as separate instances of mBERT have been used
for each task and the tasks performed by them are
highly specialized in the given scenario. The per-
formance of IndicBERT on the same task proves
the lack of apparent correlation between the semi-
supervised technique used in the creation of the
dataset (Gupta et al., 2020) and the classification
accuracy of mBERT.

The problem of detecting suicidal thoughts on
code-mixed Hindi-English data is compounded by
a lack of clean data and linguistic complications
connected with code-mixed data. More data, as
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well as well labelled classes, are necessary to allow
the model to accept noise in textual input, spelling
errors, diverse contexts, and stemming words.

5 Conclusions and Future Work

The current research is the first attempt to investi-
gate multilingual text classification to predict sui-
cidal ideation in code-mixed Hindi-English texts,
and proposes a baseline for further work along with
a corpus for validation. For the objective of detect-
ing suicidal text on the created corpus, several deep
learning based models are used, including CNN,
LSTM, Bi-Directional LSTM, Attention Based Bi-
Directional LSTM, mBERT and Indic BERT.Since
texts containing suicidal ideation in Hinglish are
not available directly, a dataset is created by using a
semi-supervised approach to generate code-mixed
Hinglish text using pre-trained encoders and trans-
fer learning from anonymized data in English from
Reddit.

A comparison of the various models indicated
that both BERT-based models mBERT and Indic
BERT give exceptional results and have accom-
plished the task with over 96% accuracy.

Multilingual text classification is still a develop-
ing field, and future advancements could lead to bet-
ter outcomes. Comparing vectors aligned with mul-
tilingual word embeddings generated using MUSE
to FastText pre-aligned word embeddings may gen-
erate better results. Working on factors such as
sarcasm, humor and irony that affect the classifi-
cation of suicidal ideation explicitly, along with
their inclusion in the creation of the model could
be another potential avenue for future research.
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Abstract

Deep Contextual Language Models (LMs) like
ELMO, BERT, and their successors dominate
the landscape of Natural Language Processing
due to their ability to scale across multiple
tasks rapidly by pre-training a single model,
followed by task-specific fine-tuning. Further-
more, multilingual versions of such models
like XLM-R and mBERT have given promis-
ing results in zero-shot cross-lingual transfer,
potentially enabling NLP applications in many
under-served and under-resourced languages.
Due to this initial success, pre-trained mod-
els are being used as ‘Universal Language
Models’ as the starting point across diverse
tasks, domains, and languages. This work ex-
plores the notion of ‘Universality’ by identify-
ing seven dimensions across which a universal
model should be able to scale, that is, perform
equally well or reasonably well, to be useful
across diverse settings. We outline the current
theoretical and empirical results that support
model performance across these dimensions,
along with extensions that may help address
some of their current limitations. Through this
survey, we lay the foundation for understand-
ing the capabilities and limitations of massive
contextual language models and help discern
research gaps and directions for future work to
make these LMs inclusive and fair to diverse
applications, users, and linguistic phenomena.

1 Introduction

Language Models (LMs) have evolved consider-
ably in the past decade, starting from the introduc-
tion of Word2Vec (Mikolov et al., 2013) to the more
recent transformer-based deep models like BERT
(Devlin et al., 2019) and its successors. When fine-
tuned with task-specific data, pre-trained LMs can
be adapted to several different settings, i.e., tasks,
domains, and even languages, as these LMs have

Work done while at Microsoft Research, India

been extended to multiple languages in the multilin-
gual versions like m-BERT and derivatives. These
models can be thought of as ‘Universal’ because of
their potential to be utilized ‘universally’ in several
different application scenarios.!

The merits of transfer learning or pre-training
word representations have been known for a long
time. Moreover, the recent advancements in large-
scale deep learning have pushed the boundaries
of intensive computation and tremendous amounts
of data that can be used to pre-train LMs. How-
ever, pre-training is resource-intensive and is not
carried out for specific scenarios. Instead, massive
LMs are deployed into downstream applications
with potentially billions of users around the world.
This makes ‘Universality’ a vital characteristic as
the models must be inclusive towards a variety of
language usage.

The key contributions of this paper are:

e We formally define ‘Universality’ by selecting
seven dimensions- language, multilingualism,
task, domain, medium of expression, geogra-
phy and demography, and time period - that
capture a variety of language usage.

e We curate the current empirical and theoret-
ical results that provide evidence of scaling
LMs across these dimensions and identify the
capabilities and gaps in these models.

e We outline extensions to these models that
can help in overcoming current limitations to
become truly universal, thus serving a larger
number of end-users and scenarios.

'"Throughout the rest of the paper — “these models”, “LMs”,
“general domain LMs”, “contextual LMs”, “universal LMs”
and all such terms refers to models including but not limited
to ELMo, BERT, RoBERTa, GPT their variants, successors

and multilingual versions
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2 Universality and its Dimensions

Universality can mean many things, and the asso-
ciated philosophical debate is beyond the scope of
this study. Our work aims not to provide a complete
or exhaustive list of capabilities expected out of the
model but a list of aspects that can be considered
as a starting goal to achieve universality.

Our definition of universality spans seven dimen-
sions. These are: language, multilingualism, task,
domain, medium of expression, demography and
geography, and time period. We selected these di-
mensions to cover a broad spectrum of language us-
age and a diverse set of NLP applications. Ideally,
a truly universal model should perform strongly,
or at least reasonably, across them. We present a
detailed analysis of the capabilities and limitations
of LMs in these dimensions in the subsequent sec-
tions. This is followed by extensions, which are
techniques that can be leveraged to overcome the
limitations in the particular dimension.

2.1 Reasoning for Selection of Dimensions

Firstly, it is important to re-iterate that this list of
seven dimensions does not intend to be an exhaus-
tive one. Rather, these dimensions have been se-
lected so as to cover a broad spectrum of language
usage. The reasons why each of these is important
for a general-purpose LM are:

Language Massive multilingual models that can
support close to 100 languages at a time are quickly
becoming standard for building language technolo-
gies that cater to a wide and linguistically diverse
population. However, while high-resources lan-
guages are well served, many low-resource lan-
guages are left behind (Joshi et al., 2021). Thus it
is important to understand where large scale mul-
tilingual LMs stands in terms of availability, eval-
uation, and performance along the dimension of
Language.

Multilingualism LMs are increasingly being de-
ployed into user-facing applications and thus need
to deal with real-world language usage. In multilin-
gual (or bilingual) communities, usage of multiple
languages at once gives rise to many language varia-
tions such as code-mixing, that the model will need
to process. For ascertaining how well models can
deal with these linguistic phenomena, understand-
ing the capabilities and limitations of the models
along this dimension becomes important.

Task LMs are increasingly becoming the stan-
dard component of most NLP pipelines. As a re-
sult, it is important to study how well they adapt to
various different tasks for which they are used.

Domain Typically, LMs are trained on general
purpose language, such as that obtained from
Wikipedia or the Web. As such, their training data
has limited signals for complex vocabulary that is
common for a specialized domain such as medical,
financial, legal, etc. However, real-world applica-
tions of LMs may require it to deal with informa-
tion from different domains. Thus it is important
to understand the limitations of these models when
employed in different domain settings.

Medium of Expression Whether the language
being processed is from a formal email or from
an informal utterance on social media, can make
significant difference in its syntactic and semantic
properties. LMs being deployed in applications
that span across different media are thus bound to
come across linguistic variations induced due to
the medium of expression. This makes it important
to understand how LMs perform across different
mediums of expression.

Geography and Demography Most languages
in the world, including English, have multiple di-
alects that are influenced by geographic and de-
mographic factors. The applications that are de-
veloped using LMs are intended to be used across
the world, spanning users belonging to varied de-
mography. It is hence important that the LMs are
inclusive towards different forms of language usage
and not just cater to a ’standardized’ dialect of the
language. Hence, it is important to understand how
LMs perform across regional and social language
dialects.

Time Period Given the high financial and en-
vironmental costs of training language models, a
single model can be anticipated to be used for
long periods of time. Language, however, changes
extremely rapidly. Events happening around the
world cause constant changes in the vocabulary and
semantics of a language. Thus, it is important for
LMs to be robust towards new word senses, sen-
tence structures, etc. It is thus necessary to evaluate
models on the dimension of Time Period as they
are bound to come across language belonging to
different points in the history.

The following sections go over each of these
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Table 1: Languages and Tasks covered by different
datasets and benchmarks

Datasets Langs. Tasks

WikiANN 176 NER

UD v2 90 POS, dependencies

XNLI 15 NLI

XQuAD 11 QA

MLDoc 8 Document classification

MLQA 7 QA

PAWS-X 6 Paraphrase identification

Benchmarks’

XTREME 40 NLI, POS, NER, QA,
Paraphrase identification,
Sentence retrieval

XGLUE 19 NER, POS, QA, NLI,

News classification,

QA matching,
Paraphrase identification,
Query-ad matching,

Web page ranking,
Question generation,
News title generation

dimensions to describe the limitations and capabili-
ties of models along each of them.

3 Language

There are over 7000 languages in the world. There
is an increased demand for multilingual systems as
information technologies penetrate more lives glob-
ally. The largest available LMs include mBERT
(Devlin et al., 2019), XLM-R (Conneau et al.,
2020a), and mT5 (Xue et al., 2020) serve 104, 100,
and 101 languages respectively. It is clear that they
are far from universal in terms of language cover-
age compared to the number of languages in the
world. Further, there is an expectation that massive
multilingual LMs will perform equally, or at least
reasonably, well on all the languages they serve.
The limited availability of evaluation bench-
marks is a major bottleneck in knowing how LMs
perform across the languages they are pre-trained
on. Table 1 shows that the largest benchmark,
XTREME (Hu et al., 2020), covers less than half
of the total number of languages that these LMs
are trained on. Moreover, other than datasets for
syntactic tasks like NER (Rahimi et al., 2019), and
POS (Nivre et al., 2016), the largest available se-
mantic task dataset, XNLI (Conneau et al., 2018),
covers only 15 languages. Although LMs are tested
on individual tasks or languages that may not be
covered in these benchmarks, overall, there is a con-
siderable reliance on standard benchmarks to make

Balanced version
3Each task may cover only a subset of languages
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modelling choices. Thus, how well LMs perform
in the untested languages remains unanswered.

There is a great disparity in performance across
the languages that are tested through these bench-
marks. A general observation is that the perfor-
mance of low resource languages continues to be
lower than high resource languages. The extent
to which cross-lingual transfer helps improve per-
formance varies across languages. Studies that
empirically support these claims are:

Cross-script transfer is not equally good across
languages in mBERT. Ahmad et al. 2019a find that
cross-script cross-lingual transfer is effective in
the case of Hindi and Urdu, whereas this is not
observed between English and Japanese.

Word order differences across language leads to
worse cross-lingual transfer (Ahmad et al., 2019a).
The correlation between word ordering distance
and cross-lingual transfer is found to be high in the
experiments by Ahmad et al. 2019b. K et al. 2020
also find that word order has a significant bearing
on transfer.

Contrary to common intuition, K et al. 2020 find
that shared vocabulary does not affect Universal-
ity or generalization across languages considerably.
Artetxe et al. 2020a also find that ‘effective vocab-
ulary size per language’ affects cross-lingual per-
formance rather than joint or disjoint vocabulary of
multiple languages.

In massively multilingual LMs, where typically
a joint vocabulary across languages is used, lan-
guages tend to compete for the allocations in the
shared vocabulary. Siddhant et al. 2020 show that
increasing number of languages may worsen perfor-
mance compared to models with fewer languages.
This is similar to the findings of Wu and Dredze
2019. Thus, limiting pre-training to only the re-
quired languages needed for the downstream tasks
may be more beneficial. Conneau et al. 2020a
coined the term “curse of multilinguality” for this
phenomenon and pointed to the trade-off between
model performance and language coverage. This
result is also shown in MuRIL, a BERT model
trained on 17 Indian languages, which outperforms
mBERT on the XTREME benchmark significantly
across all languages (MuRIL, 2021). Similarly,
clustering languages and using different multilin-
gual model for each group, rather than one massive
model, gives better performance in Neural Machine
Translation (Tan et al., 2019).

Wu and Dredze 2019 observe that mBERT does



not transfer well between distant languages. Fur-
ther, they conclude that while mBERT may per-
form very well in cross-lingual transfer compared
to other models, it still falls short of models that
have been trained with cross-lingual signals like
bitext, bilingual dictionaries, or limited target lan-
guage supervision.

Answering whether all languages in mBERT are
equally well represented, Wu and Dredze 2020 find
that mBERT does not learn high-quality representa-
tions for all languages, especially for low resource
languages. The bottom 30% languages in terms
of data size perform even worse than a non-BERT
model for NER. For low resource languages, the
combined effect of less data for pre-training and
annotated data for fine-tuning compounds together
leading to worsening of their performance. On
the other end of the spectrum, the top 10% lan-
guages are hurt by joint training as mBERT per-
forms worse than monolingual baselines of NER.

To summarize, universality in the language di-
mension has three levels. At the highest level, the
largest models available today span only around
100 of the 7000+ languages globally and thus are
far from universal in terms of language coverage.
Secondly, out of the languages that these models
are trained on, not all of them are evaluated, im-
plying that we do not have enough information
to make generalized claims of universality in per-
formance for the languages that the LMs support.
Finally, at the lowest level, the performance is not
uniform across the tested languages. The perfor-
mance of lower resourced languages is lower than
that of higher-resourced languages. Increasing the
number of languages hurts performance at both
ends of the spectrum, and cross-lingual transfer is
non-uniform and dependent on many factors.

Extensions: Monolingual models learn general-
izable representations and can be adapted to new
languages without joint training. Conneau et al.
2020b show that the representations learned by
monolingual models without any shared vocabu-
lary align with each other and can be adapted to a
new language. Similarly, Artetxe et al. 2020b study
the transfer of monolingual representations to new
languages without using shared vocabulary or joint
training. They propose a zero-shot cross-lingual
transfer technique where the resultant model is a
monolingual LM adapted to a new language. Tela
et al. 2020 study adaptation to the extremely low re-
sourced language, Tigrinya. They find that English
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XLNet generalizes better than BERT and mBERT,
which is surprising given that mBERT is trained in
multiple languages. Thus, the adaptation of mono-
lingual models may help in extending LMs to new
low-resource languages.

Wang et al. 2020 enlarge mBERT’s vocabu-
lary and continue pre-training on 27 target lan-
guages, out of which 11 are new. They observe per-
formance improvement in zero-shot cross-lingual
NER for all 27 languages. The extension benefits
both the existing and newly added languages. The
drawback is that the base model (mBERT) is bi-
ased towards the target languages, downgrading
performance on non-target languages.

The data and compute cost of training LMs from
scratch poses a major limitation, especially for low-
resourced languages. Tran 2020 propose a data and
compute efficient technique to circumvent the need
of training language-specific models from scratch.
They learn target language word-embeddings from
an English LM while keeping the pre-trained en-
coder layer fixed. The English and target language
LMs are then both fine-tuned to obtain a bilingual
LM. This technique performs better than mBERT
and XLM-R on XNLI in 5 of 6 languages with
different amounts of resources.

Chi et al. 2020 combine the cross-lingual transfer
of a multilingual LM with a task-specific monolin-
gual LM to improve zero-shot cross-lingual classifi-
cation. The source-language monolingual ‘teacher’
model provides supervision for the downstream
task, and the multilingual model acts as a ‘student’.
The method outperforms direct multilingual fine-
tuning for zero-shot cross-lingual sentiment analy-
sis and XNLI in most of the languages.

Pfeiffer et al. 2020 propose an adaptor based
modular framework that mitigates the curse of mul-
tilinguality and adapts a multilingual model to ar-
bitrary tasks and languages using language and
task-specific adaptors. Their method gives state-
of-the-art results for cross-lingual transfer among
typologically diverse languages across tasks includ-
ing NER, causal commonsense reasoning, and QA.

4 Multilingualism

In multilingual communities, several linguistic phe-
nomena lead to variation in language usage. While
some of these are well-known and studied, others
do not get enough attention. Universal LMs should
be able to deal with these phenomena as we can
expect them to encounter such forms of language



when deployed in user-facing applications.

Code-mixing, or using two more languages in a
single utterance, is common in multilingual com-
munities. LMs may not perform optimally in the
presence of such code-mixing. Multilingual mod-
els like mBERT are not pre-trained with mixed lan-
guage data, which leaves the model under-prepared
for code-switched settings resulting in sub-optimal
performance (Khanuja et al., 2020). This can be
overcome to a certain extent by training using other
data, such as social media, but it is unlikely to
cover all the forms of code-switching produced by
multilinguals.

Romanization of languages to the Latin script
has increased with the advent of digitization of
communication. While some models like XL.M-
R (Conneau et al., 2020a) and MuRIL (MuRIL,
2021) use romanized versions of some languages
in training, the effectiveness of these LMs on Ro-
manized (or more generally transliterated) text is
still unclear.

Diglossia is a kind of multilingualism where a
single community uses a substantially different lan-
guage dialect in different communication settings
(Ferguson, 1959). Since data from the internet is
used in training, it is likely that LMs cannot han-
dle diglossia. However, there are no studies that
concretely prove (or disprove) this.

To summarize, apart from code-mixing, there
has been very little work in recognizing, under-
standing, or improving LMs for different phenom-
ena arising due to multilingualism, making the di-
mension under-represented in the study of LMs.

Extensions: Efforts have been made to improve
LMs, particularly mBERT to deal with code mixed
data. Khanuja et al. 2020 present a modified version
of mBERT which performs better than standard
mBERT in English-Hindi and English-Spanish
code mixed data using synthetically generated
code-mixed data for continued pre-training.

5 Task

NLP applications range from syntactic tasks, like
POS, NER, etc. to semantic tasks like NLI, QA, etc.
LMs learn task-agnostic representations and can be
fine-tuned with task-specific data or used in task-
specific architectures as features. Thus, Universal
LM:s should adapt well to a wide variety of tasks.
Like languages, the extent of evaluation on dif-
ferent NLP tasks is constrained by the availability
of benchmarks that span various tasks. As shown in

Table 1, only a small fraction of the large number of
tasks studied in NLP are evaluated by benchmarks.
While there are many other task-specific datasets,
the success of LMs is associated with performance
on these benchmarks rather than a wider variety of
tasks.

Universal Language Model Fine-tuning for Text
classification (ULMFiT) uses discriminative fine-
tuning, gradual unfreezing of layers, and slanted
triangular learning rates for target-specific fine-
tuning, giving better performance on multiple tasks
(Howard and Ruder, 2018). This work also explic-
itly defines the term ‘universal’, in their context as
referring to — applicable to all tasks in text classifi-
cation, using a single training process and architec-
ture, usable without feature-engineering, and not
requiring additional in-domain data.

Masked language modeling (MLM) is the most
generalizable pre-training objective for the extent
of transfer among twelve pre-training objectives
for nine target tasks (Liu et al., 2019).

Data size is important in effective pre-training
of LMs (Liu et al., 2019) but transfer gains be-
tween source and target tasks are also possible with
smaller source datasets (Vu et al., 2020b).

Similarity between source and target tasks is
important for transfer gains. Liu et al. 2019 find
that closeness in pre-training objective and target
task is important for transfer. Peters et al. 2019
find that while feature extraction and fine-tuning
of LMs give similar performance, exceptions occur
when the source and target tasks are either very
similar or very dissimilar. Vu et al. 2020b also
find that similarity is important, especially in low-
resource scenarios, but, exceptions of transfer gains
between dissimilar tasks are possible.

To summarize, LMs are universal in the task
dimension owing to task-specific architectures or
fine-tuning. However, the success of LMs is of-
ten associated with few benchmarks which cover
limited tasks. The similarity between tasks, data
size, and pre-training objectives are keys to transfer
gains, which are important for Universality.

Extensions: Pattern Exploiting Training (PET)
(Schick and Schiitze, 2020a) reformulates tasks
as cloze questions,* making them the same as the
MLM objective, requiring less data with no addi-
tional fine-tuning or a task-specific architecture to
achieve remarkable zero-shot and few-shot perfor-

“Cloze questions are statements with exactly one masked
token.
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mance. Using PET with ALBERT few-shot perfor-
mance competitive to GPT-3, which is 780 times
larger in terms of the number of parameters com-
pared to ALBERT, is obtained (Schick and Schiitze,
2020b). The recently introduced TS5 model (Raffel
et al., 2020) leverages a text-to-text framework to
enabling a single architecture to perform multiple
tasks and achieving state-of-art results. These are
concrete steps to enable universality towards tasks,
as a single model can be built to generalize across
solving multiple tasks.

6 Domain

NLP models are applied to many real-world ap-
plications in different domains like medical, sci-
entific, legal, financial etc. A universal model in
this dimension should adapt to different domains
or scenarios without loss of performance.

Processing domain-specific language often re-
quires the processing of specialized vocabulary and
language usage. Even though LMs learn some
implicit clusters of domains (Aharoni and Gold-
berg, 2020), this may not be enough and special-
ized domain-specific LMs are needed (Lee et al.,
2020; Chalkidis et al., 2020; Beltagy et al., 2019;
Huang et al., 2019; Araci, 2019; Gu et al., 2020).

Despite the success of general domain LMs, it is
found that pre-training LM on in-domain data im-
proves performance across high and low resource
settings (Gururangan et al., 2020).

Lee et al. 2020 introduced BioBERT, learned
using continued pre-training of BERT on medi-
cal text, which performed better than BERT on
biomedical tasks. In contrast, Gu et al. 2020 in-
troduce PubMedBERT and challenge the benefits
of out-of-domain data in pre-training by showing
that pre-training LM from scratch on in-domain
data (if available) is better than mixed or contin-
ual pre-training. Huang et al. 2019 propose the
clinical BERT model that is pre-trained on clinical
notes text corpora, which learns better relationships
among medical concepts and outperforms general
domain LMs in clinical tasks.

Chalkidis et al. 2020 introduce Legal-BERT and
observe that continual pre-training of BERT or
training it from scratch with legal data both perform
similarly and significantly better than using BERT
off the shelf. Beltagy et al. 2019 release SciBERT,
trained from scratch on scientific publications giv-
ing better performance on scientific tasks. Araci
2019 use domain adaptation and transfer learning
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to develop FinBERT, achieving state-of-the-art per-
formance in the financial domain.

Performance of domain-specific LM can degrade
on general domain tasks (Gu et al., 2020; Xu et al.,
2020; Thompson et al., 2019; Rongali et al., 2020).
This phenomenon is also known as catastrophic
forgetting and prevents the LM from being truly
universal.

To summarize, LMs are not universal in the
domain dimension, and different domain-specific
LMs have been introduced to cater to this require-
ment. Domain-specific LMs are either trained from
scratch or by mixed or continual pre-training of
existing LMs. While none of these techniques are
clear winners, performance degradation in general
domain tasks is observed in many cases.

Extensions: Vu et al. 2020a study adversarial
masking strategies to learn specific target domain
vocabulary along with continual pre-training by
carefully selecting tokens to be masked, leading
to better domain adaptation performance across
multiple source and target domains.

MuTSPad (Multi-Task Supervised Pretraining
and Adaptation) (Meftah et al., 2020) leverages
hierarchical learning of a multi-task model on high-
resource domain followed by fine-tuning on multi-
ple tasks on the low-resource target domain.

Ben-David et al. 2020 extend the pivot-based
transfer learning to transformer-based LMs by de-
veloping PERL (Pivot-based Encoder Representa-
tion of Language), that uses continual pre-training
with MLM to learn representations that reduce the
gap between source and target domains followed by
fine-tuning for the downstream classification task.
The pivot is selected such that the source and target
domain labels have greater mutual information to
facilitate a good transfer.

Jiang and Zhai 2007 propose several heuristics
like removing misleading examples from the source
domain, assigning more weight to target domain
instances, and augmenting target training instances
with predicted labels for better domain adaptation
from a distributional perspective.

Various methods that are computationally effi-
cient (Poerner et al., 2020), use more effective ad-
versarial training (Ma et al., 2019), and reduce the
requirement of annotated data in low-resource set-
tings (Hazen et al., 2019) have been proposed for
computation and data efficient domain adaptation.

Rongali et al. 2020 overcome catastrophic forget-
ting, out-performing domain-specific LMs while



maintaining performance on general domain tasks.

7 Medium of Expression

Language varies with the medium of expression.
There are syntactic and semantic alterations like the
use of ill-formed sentence or grammatical structure,
inflections, slang, compressions, and abbreviations
due to limited space, familiarity with the audience,
and communicative intent. Universal LMs should
be robust to such variations. Often these special-
ized settings are simply treated as a different do-
main (Qudar and Mago, 2020; Nguyen et al., 2020).
However, in this work, we treat ‘domain’ as spe-
cialized fields of expertise. The current discussion
pertains to the medium in which language is used.

Language in social media and texting may not
follow conventions of written language. Sentences
are often shorter or grammatically ill-formed and
may not be coherent enough for LMs that rely
on contextual information (Eisenstein, 2013; Han
et al., 2013; Choudhury et al., 2007).

LMs perform sub-optimally on non-standard lan-
guage as compared to specialized LMs. BERTweet
(Nguyen et al., 2020), a Roberta-based LM trained
on English tweets, outperforms both RoBERTa and
XLM-R base models even though RoOBERTa and
XLM-R use 2 times and 3.75 times more data, re-
spectively. TweetBERT (Qudar and Mago, 2020),
another LM trained on tweets outperforms seven
general domain LMs.

To summarize, the language used in different
media of expression is substantially different. The
limited amount of investigation in this direction
indicates that LMs are not universal to these varia-
tions and perform sub-optimally on the language
used in social media and texting.

Extensions: Dai et al. (2020) propose cost-
effective training by appropriate selection of addi-
tional data for training a LM from a Twitter corpus.

8 Geography and Demography

Standard and non-standard dialects, both social
and regional, lead to varied word, and language use
(Labov, 1980; Milroy, 1992; Tagliamonte, 2006;
Wolfram and Schilling, 2015; Nguyen et al., 2016).
Regional dialect refers to the varied usage of the
same language across different places. For exam-
ple, the use of ‘wicked’ can refer to bad or evil (“he
is a wicked man”), or as an intensifier to adverbs
(“my son is wicked smart”’) (Bamman et al., 2014a;
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Kulkarni et al., 2016). Sociolects, or social dialects,
similar to regional dialects, are language dialects
dependant on social variables like age, race, gen-
der, socio-economic status, ethnicity, etc. (Nguyen
et al., 2016). Geographic and demographic varia-
tions stem from grammatical, phonological, syntac-
tic, lexical, semantic features, or any combinations,
making it difficult to capture and evaluate.

Since LMs are trained on standard language di-
alects, non-standard dialects spoken by millions of
people are largely ignored. Such a system can re-
sult in bias against specific cultural or geographical
communities in user-facing applications leading to
ethical implications in building fair NLP systems.

A Universal LM should be sensitive to seman-
tic shifts arising from its users’ demographic or
geographical diversity. Taking these variations
into consideration has resulted in improved per-
formance and personalization of applications like
conversational agents, sentiment analysis, word
prediction, cyber-bullying detection, and machine
translation (Ostling and Tiedemann, 2017; Rahimi
et al., 2017; Mirkin and Meunier, 2015; Hovy,
2015; Hovy and Sg¢gaard, 2015; Stoop and van den
Bosch, 2014; Volkova et al., 2013).

Kulkarni et al. 2016 present a novel approach
to quantify semantic shift that is statistically sig-
nificant across geographical regions and propose a
new measure of dialect similarity to establish how
close the language in two regions is. Demszky et al.
2020 focus on Indian English and show that dialect
features can be learned given very limited data with
strong performance.

In the 2020 VarDial evaluation task for Ro-
manian Dialect Identification, an SVM ensemble
based on word and character n-grams outperformed
fine-tuned Romanian BERT model. These results
are consistent with the earlier evaluation results
of VarDial where shallow models outperformed
deep models. In Social Media Variety Geolocation,
predicting geolocation (coordinates) from text, the
best performance was obtained by a BERT architec-
ture with a double regression classification output.
In contrast, the next two best models were both
shallow. (Gaman et al., 2020).

Demographic features like age, gender have been
predicted from language usage Peersman et al.
(2011); Morgan-Lopez et al. (2017), whereas social
class or ethnicity receive less attention (Moham-
mady Ardehaly and Culotta, 2015). Prediction of
demographic features from language use quantifies



the correlation between social variables and social
dialects. While individuals may intentionally or
naturally digress from such conventions, these sta-
tistical patterns are a cornerstone for studying the
interaction between society and language in com-
putational sociolinguistics (Nguyen et al., 2016).

There are some worrisome findings of bias of
performance across age, ethnicity, or gender in
contextual LMs. (Hovy and Sggaard, 2015) find
that a POS tagger trained on the English Penn tree-
bank performed better on texts written by older
authors. Tan et al. 2020 show bias against non-
standard English (in this case Singaporean English)
in BERT. Bhardwaj et al. 2020 expose gender bias
in BERT by showing that the model assigns lower
(or higher) scores consistently for sentences that
contain words indicating gender in cases where
gender information should have no bearing.

To summarize, the influence of geography and
demography on language usage is well known, and
LMs must be sensitive and inclusive of such varia-
tion. However, there has been limited, albeit now
growing, attention to these factors. In some cases,
shallow models have outperformed deep models in
recognizing semantic shifts, and there is evidence
of bias against particular social groups.

Extensions: Bamman et al. 2014b learn lan-
guage representations that take geographical situa-
tions or variations into account by enriching Vector
space word representations (word2vec) with geo-
graphical knowledge from metadata about authors.
Hovy and Purschke 2018 employ retrofitting for in-
cluding geographic information to capture regional
variation in continuous regional distribution and at
a fine-grained level using online posts in German
and the corresponding cities of their authors as la-
bels to create document embeddings. While these
techniques do not involve any contextual LMs, such
representations and retrofitting can be extended to
contextual LMs.

Tan et al. 2020 propose an adversarial approach
to make models like BERT more robust to non-
standard forms of English using inflectional mor-
phology perturbations.

Debiasing techniques such as the ones studied
in (Bolukbasi et al., 2016; Kaneko and Bollegala,
2019) can remove gender stereotypes from pre-
trained word embeddings.
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9 Time Period

Language evolves continuously, and individual
word meanings can change significantly over the
years (Cook et al., 2014; Kim et al., 2014; Hamil-
ton et al., 2016). Most of the data used in LM
pre-training is from the late 20th century. Thus,
whether these models can handle word senses
across timescales is a pertinent question. Universal
LMs should appropriately deal with language with
a nuanced understanding of diachronic semantic
change (DSC) because, when deployed in down-
stream applications, such variations may be en-
countered and misinterpreted. Some of the studies
we mention below are not strictly focused on con-
textual LMs. Nevertheless, we find it important to
note such research as we hope it can be extended
to contextual LMs in the future.

The intensity of the change of meaning of dif-
ferent words is different — some are more subtly
changed than the others. Kim et al. 2014 trace a
period from 1900-2009, obtain year-specific word
embeddings on the Google Books N-grams corpus,
and pinpoint the extent and time-period of occur-
rence of semantic shift.

Hamilton et al. 2016 evaluate static word embed-
dings for known historical changes using corpora
spanning four languages and two historical periods.
They create diachronic embeddings by learning
separate representations across the time periods
followed by alignment over different time scales.

DSC can be detected by clustering word sensed.
Mitra et al. 2014 organize words in a time-period
specific graph where its nearest neighbors are co-
occurring words, and word-senses are clustered.
The shift in word sense or the emergence of a new
word sense can be identified by the change of clus-
ter for a particular word. Giulianelli et al. 2020
perform clustering over usage types in BERT and
use the contextual property of LM to quantify se-
mantic change instead of relying on a specific set
of word senses.

DSC evaluation lacks standardization.
Schlechtweg et al. 2019 perform a large
scale evaluation on German, revealing the best set
of parameters for optimal performance, compare
various state-of-the-art methods, and outline
improvements for better performance.

Shallow models can outperform contextual LMs
in identifying semantic shift. Schlechtweg et al.
2019 show that a shallow skip-gram model with
negative sampling, orthogonal alignment, and co-



sine distance performs best in identifying DSC in
German. Kaiser et al. 2020 reconfirm this by us-
ing a similar model to obtain the first position in
the DIACR-Ita shared task (Basile et al., 2020) on
Italian DSC. Similar findings of only limited suc-
cess in contextual LMs are reported in the shared
task on Unsupervised Lexical Semantic Change
Detection in 5 languages hosted at SemEval 2020
(Schlechtweg et al., 2020).

While the success in identifying these shifts may
be limited, (Rodina et al., 2020) find that DSC
identified by contextual LMs can have a strong
correlation with human judgment of change.

Within contextual LMs, BERT and ELMo per-
form similarly for Russian. Rodina et al. 2020
show that neither BERT nor Elmo outperform each
other when fine-tuned using historical text in Rus-
sian to detect semantic change. Moreover, results
from the shared task on Unsupervised Lexical Se-
mantic Change Detection in 5 languages hosted at
SemEval 2020 (Schlechtweg et al., 2020) show that
systems performing well over one language may
not perform as well for other languages.

To summarize, time period is under-studied and
there is little understanding of whether contextual
LMs can handle such nuanced language variation.
For the closely related task of DSC, shallow models
can outperform deep LMs, and performance can
vary greatly across languages.

Extensions: Rudolph and Blei 2017 develop dy-
namic word-embeddings with an attribute of time
that captures the semantic shifts in word meanings
in sequential historical data on top of Bernoulli
embeddings such that representations are shared
within specific time periods rather than through-
out the corpus. Similarly, Bamler and Mandt 2017
use timestamped data to build static probabilistic
representation for tracing semantic change.

To mitigate the problem of using different repre-
sentations of words over different time periods, Hu
et al. 2019 propose a framework for tracking and
representing word senses by leveraging pre-trained
BERT embeddings and Oxford dictionary data to
learn fine-grained senses.

10 Conclusion

Deep Contextual LMs are being applied today to
various different applications due to their perceived
‘Universality’. In this work, we attempt to holis-
tically define ‘Universality’ to encompass a wide
variety of scenarios and linguistic phenomena.

We define Universality using seven dimen-
sions: Language, Multilingualism, Task, Domain,
Medium of Expression, Geography and Demogra-
phy, and Time Period. These dimensions result in
unique variations in language usage that are com-
monly encountered in real-life scenarios. We aim
for this definition to be sound rather than complete.
That is, a model should strive to achieve Universal-
ity in these dimensions, but they are in no way a
complete, exhaustive list of everything the model
needs to be capable of.

We survey research across all the dimensions
and find that: First, while dimensions like language,
task, and domain are more widely studied, other
dimensions, especially multilingualism, geography
and demography, and time period receive less at-
tention. Second, limited evaluation benchmarks
constrain the complete understanding of capabil-
ities even in the more studied dimensions. Third,
language variation arising in specific scenarios of
demography, geography, time period, multilingual-
ism, and medium of expression is often studied in
an isolated manner.

The dimensions we survey are a starting point
that LMs can aim to be inclusive towards in order
to serve a diverse set of users and scenarios. Large
contextual LMs may not be the optimal choice for
all scenarios, with shallow, task-specific models
sometimes leading to better outcomes. Overall,
‘Universality’ is yet to be fully understood, studied,
and achieved. We hope that this work will lay the
foundation to understanding the capabilities and
limitations of LMs and spur further research into
making models more inclusive and fair.
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Abstract

Deep learning based methods have shown
tremendous success in several Natural Lan-
guage Processing (NLP) tasks. The recent
trends in the usage of Deep Learning based
models for natural language tasks have def-
initely produced incredible performance for
several application areas. However, one major
problem that most of these models face is the
lack of transparency, i.e., the actual decision
process of the underlying model is not explain-
able. In this paper, first we solve a very fun-
damental problem of Natural Language Under-
standing (NLU), i.e., intent detection using a
Bidirectional Long Short Term Memory (BiL-
STM). In order to determine the defining fea-
tures that lead to a specific intent class, we use
the Layerwise Relevance Propagation (LRP)
algorithm to find the defining feature(s). In the
process, we conclude that saliency method of
eLRP (epsilon Layerwise Relevance Propaga-
tion) is a prominent process for highlighting
the important features of the input responsi-
ble for classification of intent, which also pro-
vides significant insights into the inner work-
ings, such as the reasons for misclassification
by the black box model.

1 Introduction

Chatbots or conversational agents have been gain-
ing immense popularity in recent years. This is one
of the most widely used Artificial Intelligence (Al)
applications that has a market value of USD 190.8
millions, and is expected to grow upto USD 1,250.1
million by the year 2025'. These chatbots are being
used in almost every vertical of our society, such
as travel, healthcare, judiciary etc. With the rapid
adaptation of chatbots as digital assistants, it is im-
portant that these chatbots should be very robust, as
many of these domains (e.g., health, judiciary etc.)

"https://www.grandviewresearch.com/industry-
analysis/chatbot-market
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are very sensitive, and minor inaccuracies in infor-
mation can lead to significant damage. The model
as a whole can be made robust if all its individual
components are also accurate. The very first step of
most modular dialogue systems is the Natural Lan-
guage Understanding (NLU) phase, that comprises
of dialogue act classification, intent detection and
slot filling. This part of the dialogue system plays
an important role of deciphering the syntax and
semantics of the user input, to aptly produce the
bot’s reply. While the intent classification focuses
on the semantic meaning of the input, slot filling
focuses on extracting the relevant information like
named entities efc.

These systems are not perfect, and even the state-
of-the-art models very often fail to classify the in-
tent correctly. In order to understand what went
wrong in these misclassifications, the features of
the text that led to the incorrect classification can
provide some helpful information. Due to the rise
of deep neural network based architectures the
transparency of such models is low. This leads
to the requirement of eXplainable Artificial Intelli-
gence (XAI) methods that determine the important
features of the input text. There are 2 major meth-
ods that highlight the feature importance, namely
saliency based methods and attention based meth-
ods. Saliency based methods (Section 2.2) are ad-
hoc techniques that explain individual inference
done by the model. This is done after the model
training process, hence the cost depends on the
number of explanations required. The additional
cost of these XAl models tend to make the archi-
tectural framework more expensive. Since most
of the XAI methods explain each prediction indi-
vidually, the processing cost keeps on increasing
during the model deployment. Attention, on the
other hand, calculates the feature importance over
the entire training data, and seems like a cost ef-
fective alternative to saliency in figuring out the

Proceedings of the 18th International Conference on Natural Language Processing, pages 120-127
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)



relevant features of the input text. Whether atten-
tion is actually a good alternative for explanation is
still a matter to be explored (Grimsley et al., 2020).
When compared to the saliency based techniques,
due to the attention’s focus on gradient descent as
the weight updating criteria, attention has shown
high correlation to the gradient based saliency tech-
niques (Jain and Wallace, 2019).

In this paper, we investigate into an explainable
deep learning based intent classifier. We compute
the features responsible for misclassification of the
utterances, in order to get a better idea of why actu-
ally the trained model incorrectly predicted these
test inputs. This leads to a much better understand-
ing of the limitations of Long Short Term Memory
(LSTM) based models. One such limitation is when
we go over the ATIS dataset, where we find out that
the model misclassifies an Intent class(as shown in
figure 2) *meal’ even though it learns to identify
the *meal’ token as the most important feature as
cumulative weight of tokens pointing to the ’flight’
intent is higher. Another such instance can be the
"day_name’ intent being misclassified as ’flight’.
The model does not even learn to pay attention to
token(s) like *day’ or ’day of the week’ as the total
instances of *day_name’ in the entire dataset is less
than 0.1% of the dataset.

2 Related Work

In this section, we present a very brief literature sur-
vey that starts with a intent classification followed
by saliency based explainable models.

2.1 Basic Components of any Conversational
System

In practice, two forms of chatbot architectures are
prevalent. One being the modular architecture that
we focus here in this paper. This procedure breaks
the conversational process into a pipeline structure
where the upcoming module uses the information
gathered from the previous step to build a func-
tional agent. The process includes intent classifica-
tion, slot filling/entity extraction for the language
understanding phase. Dialogue Management (DM)
uses the intent and entities extracted to formulate
the next action. In this phase we can also employ
rules to direct the functioning to a specific action.
For example- one rule could be that if the input
is exactly the same, use the reply in the training
data directly. Of course, this depends on the task at
hand. Finally, the information of the DM module
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is actualized into human understandable text us-
ing the Natural Language Generation (NLG) phase.
This text generation can be either template based
or a neural based, trained on the data available.
The second prevalent architecture is the end-to-end
architecture which trains a single deep learning
model which takes the user input and gives reply
utterance directly in one go. Since the entire pro-
cess of conversation is condensed into one single
model this kind of architecture generally requires
much more data and since we cannot explicitly im-
part rules on such a model, it can perform poorly
on seemingly simple tasks for a similar amount of
data.

2.2 Intent Classification

Intent classification is a highly informational step
of any modular dialogue system. It is the initial
process of the Natural Language Understanding
(NLU) pipeline, which focuses on the prediction
of the task the user wants the current input to fo-
cus on, from the variety of tasks the model has
been trained to perform. The Cambridge dictio-
nary defines intention as ’something you want or
plan to do’. Similarly in NLP the intent refers
to the task/goal the user wants to accomplish by
the conversation. For example, in the user utter-
ance 'what meals are available in flight from Mil-
waukee to Seattle’ the goal/intent of the user is to
enquire about the food options. The structure of
this utterance is similar to that of a flight search
query like *what flights are available from Milwau-
kee to Seattle’, we want the model to be able to
aptly distinguish between these intents. A good
intent classifier can bypass poorly directed user
queries and correctly processes user intents leading
to the smooth conversational flow. Bi-directional
Long Short Term Memory (BiLSTM) (Huang et al.,
2015) models are a decent baseline in NLP tasks
including classification, generation, summarization
etc. However, due to the innate opaqueness of
neural network based models it leaves a lot to be
desired in terms of making the users understand
the decision making process. This leads to people
using adhoc post-processing steps (saliency tech-
niques) to find out the features/tokens in our text
most responsible for the classification output of the
model. However, since this adds an overhead to
the model, it results in increased cost for providing
feature importance.



2.3 Saliency Techniques

Saliency is used in psychology and other fields with
subtly varying meanings. For NLP tasks, we refer
to saliency as the process of finding the most im-
portant features/token(s) responsible for the model.
For example, in the utterance “The service was
bad.”, the token(s) ’service’ and ’bad’ are respon-
sible for the utterance to be classified with intent
’complaint’. There are multiple classes of these
models with the focus, ranging from token combi-
nations, to game theory concepts (Section 2.3.2)
and propagation based (Section 2.3.3). We discuss
some techniques for saliency and try to highlight
the issues pertaining to these models for adhoc ex-
planations.

2.3.1 Occlusion/Perturbation based

The occlusion or perturbation based methods
(Zeiler and Fergus, 2014) compute the feature im-
portance by removing parts of the input and recal-
culating the classification output and measuring
the deviation from the original classification. This
deviation from the original prediction then serves
as a measure of the importance of the feature with
respect to the current model classification. Though
these methods are easy to execute for the Natural
Language Processing (NLP) tasks, these add a high
computation overhead in order to find the important
features. For example - for just a text of 10 tokens
there can be hundreds of such perturbation based
subtexts resulting in a tedious prediction phase.
The number of such perturbation based combina-
tions of tokens increases exponentially with the size
of the input text. Even though you can use mean-
ingful combination techniques(Fong and Vedaldi,
2017) (here the overhead can be reduced by using
many techniques like stopword removal, named en-
tity removal, merging adjective with adverbs such
as treating ‘very good’ as a single occlusion candi-
date etc.) the substantial overhead still exists.

2.3.2 Mathematical Model based

GradientxInput(Denil et al., 2014) calculates
saliency of the input text as a function of input
sequence vs individual input tokens. Integrated
Gradient(Sundararajan et al., 2017) is another gra-
dient based method that extends upon Gradientx-
Input techniques and deals with the sensitivity and
implementation invariance. Even though both IG
and GradientXInput focus on the sensitivity of the
features, it is taken as a measure of the saliency of
the input features. SHAP (Lundberg and Lee, 2017)
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uses the concept of shapley values from game the-
ory to calculate the feature importance.

2.3.3 Propagation based

Layerwise Relevance Propagation (LRP)(Bach
et al., 2015) uses an additional backward pass that
calculates the relevance of the nodes of our network
at each layer. It then uses the weights of the nodes
to redistribute the relevance of each layer with re-
spect to the prediction. So, when it finally arrives
at the input layer it has the relevant information for
each input with regard to the prediction. Since the
backward pass flows over the entire network, the
cost of saliency is directly proportional to the size
of the network trained (example, overhead for a
model with 10 layers of depth is more than a model
with 2 layers).

2.3.4 Sampling based

LIME(Ribeiro et al., 2016) adopts a local approach
to the saliency problem. For a specific input at hand
it calculates a locality around the input and then
uses that local sample space to train an inherently
interpretable model. This newly trained model is
then used to make an explanation regarding fea-
ture importance for the input. However, in some
cases like image classification, even these localities
might be too much to be represented by a linear
model, Anchors(Ribeiro et al., 2018) is a method
which counters this issue by instead forming condi-
tions for prediction. This rule/condition fixes the
prediction at local level so changes ant global level.
Thus highlighting the parts in the input that are
enough to classify it. However, since the technique
involves sampling from the training data and also
training a new model (both for each explanation
to any input), such methods are some of the most
expensive saliency methods available.

2.4 Global vs Local Methods

Global methods describe the average behavior of
a machine learning model. Global methods es-
timate expected values based on the distribution
of the data. For example, the partial dependence
plot (Friedman, 2001), a feature effect plot, is the
most expected outcome when all other features are
turned insignificant i.e. it shows the marginal effect
one or two features have on the predicted outcome
of a machine learning model. Since global interpre-
tation methods describe average behavior, they are
particularly useful when the user wants to under-
stand the general mechanisms in the data or debug



a model.

The counterpart to global methods are local
methods. Local interpretation methods explain in-
dividual predictions. LIME(Ribeiro et al., 2016)
and SHAP(Lundberg and Lee, 2017) are attribu-
tion methods, so that the prediction of a single in-
stance is described as the sum of feature effects.
Other methods, such as counterfactual explana-
tions(Wachter et al., 2017), are example-based.

For this paper, we focus on local explanations,i.e.
look at the individual instances and try to figure
the reason for misclassification for each group of
instances instead of figuring a general trend for all
the misclassification.

3 Methodology

We implement eLRP (epsilon Layerwise Relevance
Propagation) model over a BiLSTM trained model
to find the important features for a particular pre-
diction. This is done with the aim of finding the
reason behind the misclassification in incorrectly
predicted utterances, as that can potentially help
us deduce the reason for misclassification and im-
prove our understanding of the model.

3.1 Intent Classification

For the base model, we use a BiLSTM based
architecture. Bidirectional LSTM (BiLSTM) is
used to model dependencies on the next time step
in the input utterance. These are a combination
of a recurrent layers that propagate the sequence
forward through blocks and a recurrent module
that propagates the sequence backwards through a
different block. The tail model uses a concatena-
tion operation on the penultimate two hidden states
as input for the final layer.

i0,r = sigmoid(Wjxy + b;)

éor = tanh(Wexy + be)

cot = tot X Cot

00t = sigmoid(Woxy + Vocot + bo)
hot = 00t X tanh(co )

For training, the Adam optimizer (Kingma and
Ba, 2014) and categorical cross-entropy loss(Zhang
and Sabuncu, 2018) were used. This model had a
depth of 2 with each layer having 256 hidden nodes
and a dropout of 0.5. We went with a batch size of
24 due to memory restrictions.
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3.2 Layer-wise Relevance Propagation

LRP works as an adhoc over the final trained model
to calculate the explanation based on the domain
of its inputs. LRP takes the weightage of the final
classification and distribute this value over the pre-
vious layer depending on the contribution/influence
of the neuron in the previous layer. This backward
pass of sorts recursively distributes the classifica-
tion weight to the input features, quantifying their
importance to the task at hand. For example- if a
model predicted the intent to ’flight’ with a con-
fidence of 0.8, this 0.8 is then distributed to the
neurons of the previous model layer depending on
their influence as per equation 1. Recursively this
weight/relevance of 0.8 reaches to the feature input
layer and the relevance is distributed across the in-
put tokens. For better comprehension we normalize
the input token relevance for clarity.

S IRy (1)

k20 Wi,
Here, j and k denote 2 neurons of consecutive lay-
ers, w is weight, and a is the activation. Finally, R
denotes the relevance of each neuron. a;w;, mod-
els the extent of influence of the neuron j in making
the neuron k relevant. This influence is then used to
distribute the relevance of neuron k to the neurons
in the previous layer. Ry, is the relevance of the k"
neuron at current layer. In this paper, we use eLRP
which is a modification of base LRP (equation 2)
that includes € term in the denominator.

a;j Wi,

+ 200 ajwj,

k €

2

Ry

The role of ¢ is to still accumulate some rele-
vance even when the influence of the activation of
neuron k are weak or contradictory i.e. if Ry is very
small then each of the relevance it provides to the
neuron(s) j is negligible. The e term helps to main-
tain mathematical cohesion in case the relevance
reaches zero. As € becomes larger, only the most
salient explanation factors survive the absorption.
This typically leads to explanations that are sparser
in terms of input features i.e. the weight distributed
is more focused on the important features and all
the irrelevant features(stopwords etc) get near zero
weightage. This makes the weight distribution less
noisy as we can easily focus on the relevant input
features. So in conclusion we can say eLRP results
in sparser and less noisy relevances.



3.3 Model

The model used in this paper uses BiLSTM to train
the model for the intent classification task and then
employs a LRP model for explanation of the infer-
ences done by the model at testing. The backward
pass implemented is a single step process that goes
over all the layers of the trained model (from fi-
nal prediction to the input features) and distributes
the weight of the prediction over the input features.
Finally, the input feature(s) with highest relative
weight are considered responsible for the output of
the model.

Forward/Predictton Phase

[NTU'J'
Prediction

Hidden Layers

EackwardFeaturs ralevance Phase

Figure 1: Basic representation of prediction phase (sin-
gle forward pass) and feature relevance phase (single
backward pass) of the BILSTM + ¢LRP architecture

4 Dataset and Experimental Setup

In this section, we present the details of the datasets
and experimental setup.

4.1 Dataset

We use the following benchmark datasets for the
experiments.

ATIS: ATIS (Airline Travel Information System)
(Hemphill et al., 1990) is a dataset of airline cus-
tomer service with multiple user utterances and
corresponding Intents. The dataset includes 4,478
utterances in training, 500 utterances for valida-
tion and 893 utterances in the test set. The data is
annotated with 17 intent classes, viz. ’flight’, ’air-
fare’, ’airline’, ’ground_service’, *quantity’, ’city’,
"abbreviation’, ’aircraft’, ’distance’, *ground_fare’,

’

“capacity’, 'flight_time’, meal’, ’flight_no’, ’re-

striction’, “airport’, ’cheapest’. We removed 23
instances labeled with more than one intent.

MultiDoGO: MultiDoGO dataset (Peskov et al.,
2019) comprises of six domains, viz. airline, fast-
food, finance, insurance, media and software. The
dataset has two formats, annotated and unannotated.
The unannotated version contains 86K conversa-
tions, while the annotated version contains 15,000
conversations with 2,500 for each domain. We fo-
cus on the user utterances of two sub-domains of
airline and finance for intent classification with 38
classes. We use the training, validation and test sets,
comprising of 29,742, 4,260 and 8,488 utterances,
respectively.

4.2 Experimental Setup

For the experiment, we train the BiLSTM model.
We train the model with epochs set to 5, 10 and
20. This is done to avoid any possible overfitting
scenario. Adam optimizer and categorical cross-
entropy loss were used. To represent the word
vectors, a 256 dimensional (non-pretrained) vec-
tors were used. Inference is then generated on the
test data, where we primarily focus on the misclas-
sification. The eLRP method is then executed on
these misclassification to find why these utterances
were predicted incorrectly.

4.3 Results and Analysis

The BiLSTM model is trained on the above men-
tioned datasets (ATIS airline dataset, MultiDoGO
airline subdomain dataset and MultiDoGO finance
subdomain dataset). We demonstrate the results in
Table 1. Then, eLRP is used as an adhoc model to
gain insights on misclassification. The interesting
cases are highlighted.

Table 1: Results of BiILSTM trained on 3 datasets
(ATIS airline dataset, MultiDoGO airline subdomain
dataset and MultiDoGO finance subdomain dataset)

Dataset Accuracy | Precision | Recall
ATIS 0.93 0.93 0.93
MultiDoGO 0.91 0.91 0.91
Airline
MultiDoGO 0.89 0.89 0.89
Finance

While we closely look at the misclassified cases,
we see that most of the misclassifications in the
ATIS dataset are a result of being predicted as be-
longing to the ’flight’ class instead of the actual
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class. This can be attributed to the disproportion-
ate training data where 3388 of the 4478 training
utterances are for the *flight’ class. This misclas-
sification seems to be due to named entities like
locations being taken as a shortcut to classify ut-
terance as intent ’flight’. For example, in Figure 2
one can see that the presence of location tokens (in
blue) collectively lead to misclassification as intent
"flight’ even though the model knows that the to-
kens 'meal’ and ’cities’ (in red) play important role
in the classification process (tokens highlighted
with blue are responsible for current prediction,
the ones with red highlight the second most likely
class). This structure of sentences comprise of 4 of
the 6 test examples for intent “meal’, all 4 of which
are misclassified. The only 2 correctly classified ut-
terances are the ones that do not mention the cities
i.e. “are meals ever served on tower air’ and ’are
snacks served on tower air’.

Prediction = flight
Actual = day_name

what day of the week 8 I from FESHNE & BN v

Prediction = flight
Actual = meal
what [ll88l are served on american flight 665 673 from milwaukee to seattle

Prediction = flight
Actual = city
8 what Bl from boston does america west fly first class

Figure 2: Examples of misclassifications on the ATIS
dataset

For MultiDoGO airline sub domain, majority
of misclassifications seem to arise from the model
paying heavy weightage to the tokens *ok’ as ’con-
firmation’, and thanks for ’thankyou’ as the intent
class, as shown in Figure 3. There are also a few
cases of model being confused between the intents
“getseatinfo’ (asking for seat details, ex- I want to
know seat no) and ’changeseatassignment’ (change
the curreent seating, ex- I want to get window seat)
due to having similar tokens in the training data.
Also for the utterance ’thank you sir but i would
like to have a middle seat as i do not like a window
seat’ this direct alignment of the word thank to the
intent “thankyou’ leads to misclassification even
though the model pays attention to the tokens re-
lating to the correct intent ’changeseatassignment’.
We found that this association can be lowered by
introducing more examples of similar structure to
above utterance but that leads to some instances
of 'thankyou’ intent to ’rejection’ intent(ex- thank
you so much nothing more bye). For the first ex-

ample shown the misclassification is negligible in
the context that the same utterance ’ok thanks’ is
labelled as both ’thankyou’ and ’confirmation’ in
the training data.

Prediction = thankyou
Actual = confirmation

Prediction = thankyou

Actual = changeseatassignment
TRERE you sir but i would like to have a idale 588 a5 i do not like a window EEEI

Prediction = getseatinfo
Actual = changeseatassignment
i want to know my 521 [l

Figure 3: Examples of misclassifications for the Multi-
DoGO data

For MultiDoGO finance dataset, on the other
hand, is filled with misclassifications that seem
to be right when going through human evaluation.
For example, in Figure 4, examples 1 and 3 can
be said to be somewhat correctly predicted (since
we are looking at them as individual utterances
instead of entire dialogue) even though the actual
intents are different. For example 2, the evaluation
could go either way depending on preferences of
the annotator and the evaluators as all the closing
greeting examples have the word thanks in them
and are very overlapping in their intention.

Prediction = {ransfermongy
Actual = confentonly
i need to [iESIEl money from checking to EENNGE

Prediction = closingareeting
Actual = thankyou

thanks [l

Prediction = reportiostcard
Actual = contentonly
my credit card is [l since today moming

Figure 4: Examples of misclassification on Multi-
DoGO finance intents

Going through all these datasets, we summarize
that there are a lot of inferences that can be drawn
with respect to the incorrect classification. The is-
sues arising due to the unbalanced dataset results in
forcing the model to pay high attention to some spe-
cific tokens. We see the benefits of saliency based
methods as it highlights the tokens responsible for
the classification. This not only helps us under-
stand the reason for misclassification but also can
highlight cases where the data might be incorrectly
annotated, resulting in the possibility to improve
the quality of dataset along with the classification
process.
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5 Conclusion and Future work

In this paper, we have attempted to build an ex-
plainable intent detection model with the saliency
based methods. The model is able to identify the
appropriate and relevant features used for intent
classification. We also discussed some issues with
these approaches, most of which deal with the fact
that the saliency techniques calculate the feature
importance (which constitute an explanation) as an
adhoc measure.

Saliency does have quite a few benefits of itself.
The modular nature of the implementations pro-
vides a degree of model-agnostic behaviour which
allows us to treat the black boxed nature of the
deep learning models as an afterthought and focus
entirely on the performance. After the model is
trained and tuned, we applied the saliency tech-
niques for determining the feature relevance. This
also ensures that we can apply different saliency
techniques for the same base model and the same
saliency technique to different models allowing for
a high degree of robustness.

However, even for saliency it is not necessary
that the importance assigned to a feature is, in fact,
due to the relevance of the features but could sim-
ply be a result of the underlying issues with the
technique used. For example, in occlusion based
methods, if we remove a feature, it is possible that
the change in the prediction is just the result of
the new input not being in the format the model
expects(Kindermans et al., 2019).

For future work, we plan to use the feature im-
portance information and use it to retrain the model
in such a way to reduce misclassification. One
such method could be to use the important features
of misclassifications to help identify which kind
of data to add, to improve the performance of the
model further. However, such a method needs to be
done in such a way that the incorrect predictions do
not get corrected at the cost of misclassification of
originally correctly predicted utterances. Another
such method could be to identify the nodes which
are more relevant to a highly misclassified intent
and boost those neurons to improve model perfor-
mance. However, this also needs to make sure the
nodes we are associating with a particular intent do
not have high influence on other intents as well, as
that might lower the accuracy of some other intent.
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Abstract

Cosine similarity is a widely used measure
of the relatedness of pre-trained word embed-
dings, trained on a language modeling goal.
Datasets such as WordSim-353 and SimLex-
999 rate how similar words are according to
human annotators, and as such are often used
to evaluate the performance of language mod-
els. Thus, any improvement on the word sim-
ilarity task requires an improved word repre-
sentation. In this paper, we propose instead
the use of an extended cosine similarity mea-
sure to improve performance on that task, with
gains in interpretability. We explore the hy-
pothesis that this approach is particularly use-
ful if the word-similarity pairs share the same
context, for which distinct contextualized simi-
larity measures can be learned. We first use the
dataset of Richie et al. (2020) to learn contex-
tualized metrics and compare the results with
the baseline values obtained using the standard
cosine similarity measure, which consistently
shows improvement. We also train a contextu-
alized similarity measure for both SimLex-999
and WordSim-353, comparing the results with
the corresponding baselines, and using these
datasets as independent test sets for the all-
context similarity measure learned on the con-
textualized dataset, obtaining positive results
for a number of tests.

1 Introduction

Cosine similarity has been largely used as a mea-
sure of word relatedness, since vector space models
for text representation appeared to automatically
optimize the task of information retrieval (Salton
and McGill, 1983). While other distance measures
are also commonly used, such as Euclidean dis-
tance (Witten et al., 2005), for cosine similarity
only the vector directions are relevant, and not
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their norms. More recently, pre-trained word rep-
resentations, also referred to as embeddings, ob-
tained from neural network language models, start-
ing from word2vec (W2V) (Mikolov et al., 2013),
emerged as the main source of word embeddings,
and are subsequently used in model performance
evaluation on tasks such as word similarity (To-
shevska et al., 2020). Datasets such as SimLex-999
(Hill et al., 2015) and WordSim-353 (Finkelstein
et al., 2001), which score similarity between word-
pairs according to the assessment of several hu-
mans annotators, have become the benchmarks for
the performance of a certain type of embedding
on the task of word similarity (Recski et al., 2016;
Dob6 and Csirik, 2020; Speer et al., 2017; Banjade
et al., 2015).

For 71, and 71y, the vector representations of two
distinct words w, and wy, cosine similarity takes
the form

Mg - Mp

()

COSgp = 775 1o
AR

with the Euclidean inner product between any two
vectors 7, and 7 given as

=7 =

Mo - Ty = Y i, 2)
i
and the norm of a vector 77, given as
|7l = V7o - Tia, 3)

dependent on the inner product (Axler, 1997).
Using this measure of similarity, improvements
can only take place if the vectors that represent the
words change. However, the assumption that the
vectors interact using a Euclidean inner product
becomes less plausible when it comes to higher
order vectors. If, differently, we consider that the
vector components are not described in a Euclidean
basis, then we enlarge the possible relationships
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between the vectors. Specifically in the calculation
of the inner product, on which the cosine similarity
depends, we can use an intermediary metric tensor.
By challenging the assumption that the underlying
metric is Euclidean, cosine similarity values can be
improved without changing vector representations.

We identify two main motivations to search for
improved cosine similarity measures. The first mo-
tivation has to do with the cost of training larger and
more refined language models (Bender et al., 2021).
By increasing the performance on a task simply by
changing the evaluation measure without changing
the pre-trained embeddings, we expect that better
results can be achieved with more efficient and in-
terpretable methods. This is particularly true of
contextualized datasets, with benefits not only for
tasks such as word similarity, but also others that
use cosine similarity as a measure of relatedness,
such as content based recommendation systems
(Schwarz et al., 2017), and where it can be particu-
larly interesting to explore the different metrics that
emerge as representations of vector relatedness.

The second motivation comes from composi-
tional distributional semantics, where words of dif-
ferent syntactic types are represented by tensors
of different ranks, and representations of larger
fragments of text are produced via tensor contrac-
tion (Coecke and Clark, 2010; Grefenstette and
Sadrzadeh, 2011a,b; Milajevs et al., 2014; Baroni
et al., 2014; Paperno et al., 2014). This framework
has proved to be a valuable tool for low resource
languages, enhancing the scarce available data with
a grammatical structure for composition, providing
embeddings of complex expressions (Abbaszadeh
et al., 2021). As these contractions depend on an
underlying metric that is usually taken to be Eu-
clidean, improvements have only been achieved,
once again, by modifying word representations
(Wijnholds and Sadrzadeh, 2019). As proposed
by Correia et al. (2020), another way to improve
on these results consists in using a different metric
to mediate tensor contractions. Metrics obtained in
tasks such as word similarity can be transferred to
tensor contraction, and thus we expect this work to
open new research avenues on the compositional
distributional framework, providing a better inte-
gration with (contextual) language models.

This paper is organized as follows. In §2 we in-
troduce an extended cosine similarity measure, mo-
tivating the introduction of a metric on the hypoth-
esis that it can optimize the relationships between
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the vectors. In §3 we explain our experiment on
contextualized and non-contextualized datasets to
test whether improvements can be achieved. In §4
we present the results obtained in our experiments
and in §5 we discuss these results and propose fur-
ther work.

Our contributions are summarized below:

e Use of contextualized datasets to explore con-
textualized dynamic embeddings and evaluate
the viability of contextualized similarity mea-
sures;

e Expansion of the notion of cosine similarity,
motivating our model theoretically, contribut-
ing to a conceptual simplification that yields
interpretable improvements.

1.1 Related Literature

Variations on similarity metrics on the contextual-
ized dataset of Richie et al. (2020) have been first
explored in Richie and Bhatia (2021), but only on
static vector representations and diagonal metrics.
Other analytical approaches to similarity learning
have been identified in Kulis et al. (2013). The
notion of soft cosine similarity of Sidorov et al.
(2014) presents a relevant extension theoretically
similar to ours, but motivated and implemented
differently. Using count-base vector space models
with words and n-grams as features, the authors
extract a similarity score between features, using
external semantic information, that they use as a
distance matrix that can be seen as a metric; how-
ever, they do not implement it as in Eq. (4), but
instead they transform the components by creating
a higher dimensional vector space where each entry
is the average of the components in two features,
multiplied by the metric, whereas we, by contrast,
learn the metric automatically and apply it to the
vectors directly. Hewitt and Manning (2019) also
use a modified metric for inner product to probe the
syntactic structure of the representations, showing
that syntax trees are embedded implicitly in deep
models’ vector geometry.

Context dependency in how humans evaluate
similarity, which we based our study on, has been
widely supported in the psycholinguistic literature.
Tversky (1977) shows that similarity can be ex-
pressed as a linear combination of properties of
objects, Barsalou (1982) looks at how context-
dependent and context-independent properties in-
fluence similarity perception, Medin et al. (1993)
explore how similarity judgments are constrained



by the very fact of being requested, and Goldstone
et al. (1997) test how similarity judgments are in-
fluenced by context that can either be explicit or
perceived.

2 Model

A metric is a tensor that maps any two vectors to
an element of the underlying field K, which in this
case will be the field of real numbers R. This el-
ement is what is known as the inner product. To
this effect, the metric tensor can be represented
as a function, not necessarily linear, over each of
the coordinates of the vectors it acts on. In geo-
metric terms, the metric characterizes the under-
lying geometry of a vector space, by describing
the projection of the underlying manifold of a non-
Euclidean geometry to a Euclidean geometry R"
(Wald, 2010). The inner product between two vec-
tors is informed by the metric in a precise way, and
is representative of how the distance between two
vectors should be calculated.

A standard example consists of two unit vectors
on a sphere, which is an S? manifold that can be
mapped onto R3. If the vectors are represented in
spherical coordinates, which are a map from S? to
IR3, the standard method of computing the angle
between the vectors using Eq. (1) will fail to give
the correct value. The vectors need to be trans-
formed by the appropriate non-linear metric to the
Euclidean basis in R? before a contraction of the
coordinates can take place. To illustrate this, take
as an example a triangle drawn on the surface of a
sphere S2. If it is projected onto a planisphere R?,
a naive measurement of its internal angles will ex-
ceed the known 180 degrees, which corresponds to
a change in the inner product between the vectors
tangents to the triangle corners (see Levart (2011)
for a demonstration). To preserve this inner prod-
uct, and thus recover the equivalence between a
triangle on a spherical surface and a triangle on a
Euclidean plane, the coordinates need to be prop-
erly transformed by the appropriate metric before
they are contracted.

By the same token, we explore here the possi-
bility that the shortcomings of the values obtained
using cosine similarity when compared with hu-
man similarity ratings are not due to poor vector
representations, but to a measure that fails to assess
the distance between the vectors adequately. To
test this hypothesis, we generalize the inner prod-
uct of Eq. (2) to accommodate a larger class of
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relationships between vectors, modifying it using a
metric represented by the distance matrix d, once
a basis is assumed, that defines the inner product
between two vectors as
Tl -d Ty = Z AL dir,
]

4

where 7% is the ith component of 7i,. Using a
metric of this form, the best we can achieve is a
linear rescaling of the components of the vectors,
which entails the existence of a non-orthogonal
basis. The metric d is required to be bilinear and
symmetric, which is satisfied if

d*¥™ = B'B, (5)
such that Eq. (4) can be rewritten as
Ao a iy = (Biia)" - (Bii) . ©6)

We can thus learn the components of a metric
for a certain set of vectors by fitting it to the goal of
preserving a specified inner product. In the case of
word similarity, the matrix B can be learned super-
vised on human similarity judgments, towards the
goal that a contextualized cosine similarity applied
to a set of word embeddings, using Eq. (6), returns
the correct human assessment. An advantage of
this approach is that the cosine is symmetric with
respect to its inputs, which is a nice property that
this extension preserves by requiring that symmetry
of the metric.

3 Methods

The general outline of our experiment is as fol-
lows. First, we learn contextualized cosine simi-
larity measures for related (contextualized) pairs
of words, and afterwards for unrelated (non-
contextualized) pairs of words. A schematic rep-
resentation can be found in Fig. 1. We then test
whether these learned measures are transferable
and provide improvements on word pairs that were
not seen during training, when compared with the
standard cosine similarity baseline.

3.1 Datasets

For a contextualized assessments of word similar-
ity, we use the dataset of Richie et al. (2020), where
365 participants were asked to judge the similarity
between English word-pairs that are co-hyponyms
of eight different hypernyms (Table 1). Participants
were assigned a specific hypernym and were asked
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Figure 1: Schematic representation of the experiment leading up to the results in Tables 4 and 5.

to rate the similarity between each co-hyponym
pair from 1 to 7, with the highest rating indicating
the words to be maximally similar. The number
of annotators varies per hypernym, but each word-
pair is rated by around 30 annotators, such that for
the largest categories each annotator only saw a
fraction of the totality of the word-pairs. As exam-
ples from the hypernym ‘Clothing’, the word-pair
‘hat/overalls’ was rated by 32 of the 61 annotators,
resulting in an average similarity of 1.469, while
‘coat/gloves’ had an average similarity rating of
3.281 and ‘coat/jacket’ of 6.438, also by 32 annota-
tors. The average similarity was computed for all
word-pairs and rescaled to a value between 0 and
1, to be used as the target for supervised learning.

Besides trying to fit a contextualized similar-
ity measure to each hypernym, we also consid-
ered the entire all-hypernyms dataset, in order to
test whether training on the hypernyms separately
would result in a better cosine measure compared
with when the hypernym information was disre-
garded.

To test whether similarity measures can be
learned if the similarity of words is not assessed
within a specific context, we use the WordSim-353
(WS353) (Finkelstein et al., 2001) and part of the
SimLex-999 (SL999) (Hill et al., 2015) datasets,
where the word-pairs bear no specific semantic re-
lation. From the SL.999 dataset only the nouns
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Table 1: Number of words, word-pairs and human an-
notators per hypernym.

Hypernym | Words | Pairs | Annotators
Birds 30 435 54
Clothing 29 406 61
Professions 28 378 67
Sports 28 378 61
Vehicles 22 231 28
Fruit 21 210 31
Furniture 20 190 33
Vegetables 20 190 30

All 198 2418 365

were included, resulting in a dataset of 666 word-
pairs. Additionally, we use these datasets to verify
whether the similarity metric learned by training
on the whole dataset of Richie et al. (2020) can be
transferred to other, more general, datasets.

3.2 Word embeddings

To fine-tune the cosine similarity measure, we start
from different pre-trained word representations.
We do that for two classes of embeddings, static
and dynamic.

Static embeddings were obtained from a pre-
trained word2vec (W2V) model (Mikolov et al.,
2013) and a pre-trained GloVe model (Pennington
et al., 2014), each used to encode each word in the
pair. Dynamic embeddings were obtained from two
Transformers-based models, pre-trained BERT (De-
vlin et al., 2019) and GPT-2 models (Radford et al.,



Representation Corpus Corpus size | Dim
word2vec Google News 100B 300
GloVe GigaWord Corpus & Wikipedia 6B 200
BERThasc-uncased | BooksCorpus & English Wikipedia 3.3B 768
GPT-2nedium 8 million web pages ~ 40 GB 768

Table 2: Pre-trained embeddings obtained from differ-
ent source language models, with BERT and GPT-2 im-
plemented using the Huggingface Transformers library.

Hypernym | Context words

Birds small, migratory, other,
water, breeding

Clothing cotton, heavy, outer, winter,
leather

Professions | health, legal, engineering,
other, professional

Sports youth, women, men, ea, boys

Vehicles military, agricultural, motor,
recreational, commercial

Fruit citrus, summer, wild, sweet,
passion

Furniture wood, furniture, modern,
antique, office

Vegetables some, wild, root, fresh, green

Table 3: Five most likely words for masked token pre-
ceding hypernym token using BERT.

2019) (see Table 2). Here the representation of
each word was taken to be the average representa-
tion of sub-word tokens when necessary, excluding
the [CLS] and [SEP] tokens.

The token representations provided by the BERT
model, as a bidirectional dynamic language model,
can change depending on the surrounding context
tokens. As such, additional contextualized embed-
dings were retrieved, BERT .5+, to test whether per-
formance could be improved relative to the baseline
cosine metric by using the hypernym information,
as well as when compared with the hypernym co-
sine metric learned on non-contextualized repre-
sentations. In this way we test whether leveraging
the contextual information intrinsic to this dataset
can in itself improve similarity at the baseline level,
without the need of further training.

The contextualized vectors of BERT ., were
obtained by first having BERT predict the five
most likely adjectives that precede each hypernym
using ([MASK] <hypernym>), and then using
those adjectives to obtain five contextualized em-
beddings for each co-hyponym, subsequently aver-
aged over. Most of the predicted words were adjec-
tives, and the few cases that were not were filtered
out. For instance, for the category ‘Clothing’, the
most likely masked tokens were ‘cotton’, ‘heavy’,
‘outer’, ‘winter’ and ‘leather’. The contextualized
representation of each hyponyms of ‘Clothing” was
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Figure 2: Distributions of pairwise human similarity
judgments siMp.qq, and cosine similarity measures us-
ing either BERT representations (cos(BERT)) or con-
textualized BERT representations (cos(BERTt,:)). In
(a) and (b) the absolute difference of scores, ordered
per hypernym, is shown, while (c) and (d) represent the
distribution of different similarity scores with respect
to each other. Comparing the first two plots we can
see a regularization effect by contextualizing the repre-
sentations, and between the last two plots we can see a
clustering effect.
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thus calculated as its average representation in the
context of each of the adjectives, so that, for in-
stance, for ’coat’ we first obtained its contextual-
ized representation in ‘cotton coat’, ‘heavy coat’,
‘outer coat’, ‘winter coat’, and ‘leather coat’, per-
forming a final averaging. The full list of context
words can be found in Table 3. Figs. 2a and 2b
show that this transformation reduces the absolute
extreme values of the difference between the val-
ues of the standard cosine similarity and the cor-
responding human similarity assessments, while
regularizing the bulk of the differences closer to
the desired value of 0. We tested other forms of
contextualizing, such as (<hypernym> is/are
[MASK]), but the resulting representations did not
show as much improvement.

The WS353 and SL999 datasets were only
trained with non-contextualized embeddings, since
we cannot obtain contextualized embeddings for
the nouns in these datasets using the same method.
For consistency, the models that were learned with
contextualized representations were not tested on
these datasets at the final step of our experiment.

3.3 Model

A linear model was implemented on the PyTorch
machine learning framework to learn the parame-
ters of B, without a bias, such that a word initially
represented by input,, is transformed to input’, =
Binput,. The forward function of this model takes
two inputs and returns

(input’,)”

\/(input’a)T - input’; \/(input’b)T - inputy

- input’,

» (D

where a and b correspond to the indices of the
words of a given word-pair!.

3.4 Cross-validation

The number of co-hyponyms per hypernym is small
when compared with the number of parameters
in B to be trained, which depends on the square
of the dimension Dim of each representation. To
ensure that the models did not overfit, a k-fold
cross-validation was used during training (Raschka,
2015), which divided each dataset in k training sets
and non-overlapping development sets. Addition-
ally, early stopping of training was implemented
in the event that the validation loss increased for

'https://github.com/maradf/
Contextualized-Cosine

\ —— Clothing train
0.20 1 Clothing val

1 ¥
0.00
o 50 100 150 200 250 300 350 400

Epochs

Figure 3: Example of learning curve, showing losses
over epochs, from a fold training on the hypernym
Clothes on the GloVe embeddings. In this case, train-
ing was stopped early at 397 epochs.

ten consecutive epochs after it dropped below 0.1
(Bishop, 2006).

3.5 Hyperparameter selection

Per each dataset h (each hypernym, all hypernyms,
WS353 or SLL999) and learning rate /., k models
Bzhlr were trained, with ¢ € {1,...,k} and with k
cofresponding validation sets val;. The training
was done using two 16 cores (64 threads) Intel
Xeon CPU at 2.1 GHz.

A fixed seed was used to find the best combina-
tion of the learning rate [, (1 x 1075, 1 x 1076,
and 1 x 10~7) and the number of folds (5, 6 and
7) for the k-fold cross-validation. The regression
to the best metric was done using the mean square
error loss function and the Adam optimizer. The
maximum number of training epochs was set to
500, as most models converged at that point as per
preliminary learning curve inspection (Fig.3). The
implementation of early stopping resulted in de
facto variation of the number of epochs required to
train each model.

3.6 Testing the model

Each one of the Bifflr models was tested on the cor-
responding holdout validation set val;, resulting
in two correlation scores between the models’ pre-
dicted similarity scores and the human judgment
scores: a Pearson correlation score rﬁlr (vall) and
a Spearman correlation score pf'; (vall'). A final
score per k and [, was calculated ’using the average
performance on the validation sets as
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(a) Pearson correlations.

BERT BERT ¢ GPT-2 word2vec GloVe

Dataset (h)

Model Base Model Base Model Base Model Base Model Base
Birds 0.311 0.098 0316 0.042  0.200 -0.023 0.293 0.213 0.215 0.194
Clothing 0.550 0.141 0.515 0.065 0.501 0.349 0.529 0.417 0.574 0.364
Professions 0.501 0.193 0.601 0.073 0.651 0.542 0.635 0.566 0.529 0.529
Sports 0452 0.175 0.543 0.139 0.556 0.324 0.532 0.418 0.580 0.386
Vehicles 0.496 0.218 0.616 0.123 0.645 0.385 0.738 0.719 0.703 0.567
Fruit 0.315 0.016 0378 -0.037 0.333 0.203 0.361 0.239 0.571 0.392
Furniture 0.353 -0.018 0.539 -0.035 0.568 0.399 0.368 0.333 0.470 0.462
Vegetables 0.211  -0.059 0.293 -0.044 0378 0.144 0.577 0.281 0.562 0.290
All hypernyms 0434  0.100 0.542 0.040 0.508 0.287 0.483 0.400 0.539 0.397
WordSim-353 0.517 0.238 - - 0.651 0.647 0.637 0.654  0.622 0.568
SimLex-999 0.403 0.161 - - 0.555 0.504 0.495 0.455 0.510 0.408

(b) Spearman correlations.

Dataset (h) BERT BERT ;. GPT-2 word2vec GloVe

Model Base Model Base Model Base Model Base Model Base
Birds 0.260 0.102  0.299 0.052  0.190 -0.054 0.250 0.211 0.238 0.201
Clothing 0436 0.184 0467 0.059 0.445 0.276 0.510 0.414 0.513 0.384
Professions 0.501 0.248 0.578 0.170  0.560 0.473 0.518 0.410 0.482 0.486
Sports 0.391 0.174  0.526 0.142 0.540 0.291 0.458 0.339 0.478 0.325
Vehicles 0.518  0.238 0.601 0.056 0.626  0.288 0.709 0.687 0.680 0.596
Fruit 0.265 -0.014 0.333 -0.103 0.365 0.173 0.368 0.277 0.491 0.342
Furniture 0.353 -0.032 0.491 -0.120 0.527 0.393 0442 0.402 0464 0.451
Vegetables 0.217 -0.028 0.305 0.015 0.363  0.089 0.587 0.290 0.528 0.228
All hypernyms  0.407  0.111 0.504 0.034 0504 0.242 0.446 0.379 0.477 0.377
WordSim-353 0.543 0.267 - - 0.715 0.705 0.675 0.701 0.624 0.579
SimLex-999 0.416 0.180 - - 0.566 0.513 0475 0.445 0.500 0.374

Table 4: Best correlation scores between human similarity judgments and similarity scores found by the trained
model, compared with baseline cosine metric values of the same hyperparameters. The underlined correlation
values are the statistical significant values with a p < 0.05, and the bold values correspond to model correlations

that were higher than base correlations.

k
1
i, = ;rmaz?» (8)
1 k
Pt = 1 ; Py, (val}). ©

The baseline results were obtained in a similar
form, but with the model B! corresponding to
the identity matrix, returning the standard cosine
similarity rating as

k
1
T‘Z’Std =7 Z rStd(val?), (10)
=1
1 k
o=y ot wal]). A
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The model results shown in Table 4 correspond
to the best correlation values obtained using Eqgs.
(8) and (9), with the baselines given as in Eqs. (10)

and (11). The hyperparameters corresponding to
the best results can be found in Table 5, along with
the relative change in correlation performance. As
the seed was fixed, the differences in performance
achieved by models trained on each hypernym
and on all-hypernyms of the contextualized dataset
were not due to randomization errors. The final
correlation per fold on the entire all-hypernyms
dataset was found by first calculating the correla-
tion per hypernym and then averaging over all eight
hypernyms.

To test the transferability of the metric learned
on the all-hypernyms dataset to other datasets, the
model that returned the best correlation scores on
the validation datasets of the all-hypernyms dataset
was tested on the entire WS353 and SL.999 datasets.
As the best performing model consists in fact of k
models, each one of these was tested on the entire
datasets, as
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(a) Pearson correlations.

Dataset (h) BERT BERT c1x¢ GPT-2 w2v GloVe
% I, k % Ir, k % Ir,k % ir,k % Ir, k
Birds 217 107%5 652 107%5 770 1075,5 38 107°,5 11 107%,7
Clothing 200 107%5 692 107°%6 44 10756 27 1057 58 10795
Professions 160 107%5 723 107°%6 20 107%,5 12 10757 0 10735
Sports 158 10756 291 107%6 72 10756 27 10756 50 10797
Vehicles 128 107%6 401 10=°,7 68 107%,5 3 107°%,5 24 10796
Fruit 1869 107°,7 922 10756 64 107°,7 51 10765 46 1077,7
Furniture 1861 107°,7 1440 1076 42 107°7 11 10756 2 107°6
Vegetables 258 107°,7 566 1076 163 107°,5 105 10757 94 10765
All 334 1075,5 1255 10°%7 77 10756 21 107%,6 36 1077,6
WordSim-353 117 107%,7 - - 1 107%,7 3 107%,6 10 107%,5
SimLex-999 150 1076,7 - - 10 10756 9 10756 25 10795
(b) Spearman correlations.
Dataset (h) BERT BERT ;¢ GPT-2 w2V GloVe
% Ir, k % Ir, k % Ir, k % Ir,k % Ir,k
Birds 155 107%,5 475 107%5 252 107°7 18 107°5 18 1077,5
Clothing 137 107%5 692 107%6 61 107°,7 23 107°,7 34 10755
Professions 102 10757 240 107%5 18 10755 26 107%,7 -1 1077,6
Sports 125 10756 270 1076 8 107°,6 35 10756 47 10756
Vehicles 118 107%6 973 107%6 117 10757 3 107%,5 14 10796
Fruit 1793 107%7 223 10756 111 10,6 33 10°%6 44 10°7,7
Furniture 1003 107%6 309 10755 34 107°,5 10 107°,6 3 10767
Vegetables 675 107°,7 1933 10°%6 308 107°,5 102 10767 132 10765
All hypernyms 267 107°,5 1382 10757 108 107°,6 18 107°%6 27 10795
WordSim-353 103 107%,5 - - 1 107%,7 4 10795 8 107°,5
SimLex-999 131 1076,7 - - 10 1075,6 7 107%,6 34 10795

Table 5: Change (%) in correlation from Table 4, given by (|[Model| — |Base|)/|Base|, at corresponding best
hyperparameters (Ir, k). Values in bold indicate the highest increase on a given dataset.

k

hitest 1 All—h h

klfs =22 Til, YP (test™), (12)
=1

htest All—h

PRl = kZp Ptest"),  (13)

with h € {WS353,SL999}.

The baselines for these results were obtained
by applying B**¢ to the entire WS353 and SL999
datasets as

rh,std — TStd(testh),

= p*(testh).

(14)

h,std (15)

p

As the correlation functions are not linear, the re-
sults from Eqgs. (10) and (11) for the WS353 and
SL999 datasets are expected to differ from those
obtained using Eqgs. (14) and (15) for the same
datasets.
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4 Results

The validation results on Table 4 show consistent
improvements over the baselines, with statistical
significance. This confirms that the modification
introduced to the cosine measure worked in a prin-
cipled way, and consistent with the results found by
Richie and Bhatia (2021). On the individual hyper-
nym datasets, ‘Vehicles’ showed the best correla-
tions, except for the Pearson correlation in GPT-2,
in spite of not being the largest hypernym dataset.
On the contrary, the smallest categories showed
the lowest correlations. In general, the relative per-
formance of hypernyms according to the baselines
extends to the model correlations, although with
better performance. With some exceptions, mainly
in the ‘Birds’ hypernym, the best performing rep-
resentation was GPT-2, followed by W2V, but the
relative increase as shown in Table 5 was clearly
superior for the dynamic representations. An im-
portant observation that we make is that the model
trained on all hypernyms had a better performance
than the average performance on the individual hy-



pernyms. As the seed was fixed, this means that
the performance on the hypernym-specific valida-
tion sets increased if at training time the models
saw more examples, from different categories, in-
dicating that a similarity relationship was learned
and transferred across different contexts. Improve-
ments over baseline also took place if a metric was
learned on datasets where the word pairs did not
share a context, as was the case with WS353 and
SL999, but the percentual increase was lower, as
seen in Table 5.

Comparing the results of BERT contextualized
and non-contextualized, the baseline values of the
contextualized representations were worse than
those obtained with the contextualized embeddings,
although without statistical significance, while the
improvement after training was consistently better
and significant for all datasets with the contextu-
alized representations. Figs. 2c and 2d, show that
the distribution of points using the contextualized
embeddings is more concentrated and collinear,
making it more likely that a metric that acts in the
same way for all points in the dataset will rotate
and rescale them into a positive correlation. The
percentual increases also show that BERT contex-
tualized had the greatest increases from before to
after training, suggesting that there was a cumula-
tive effect in considering the context both in the
representations and in the similarity measure.

Table 6 shows the results of applying the best
model learned on all hypernyms to the WS353 and
SL999 datasets. The baseline values for the static
representations are comparable with the existing
literature (Toshevska et al., 2020). We see that our
model was capable of improving on the correlation
scores on the datasets, for some representations.
Although the improvements did not happen across
the board, they show clear evidence that the notion
of similarity in the form of a modified cosine
measure can be learned in one dataset and applied
with positive results to an independent dataset.

Pearson Spearman

WS353  SL999  WS353  SL999

Model 0487  0.375 0.519 0.384

BERT Base 0.239  0.151 0.267  0.172
GPT-2 Model 0.635  0.507 0.676  0.513
Base 0.647  0.504 0.709  0.520

W2V Model 0.613  0.472 0.632 0457
Base 0.653  0.460 0.700  0.452

GloVe Model 0.593  0.431 0.558  0.392
Base 0.578  0.408 0.578  0.376

SOTA 0.704  0.658 0.828 0.76

Table 6: Best model trained on all hypernyms, tested
on SimLex-999 and WordSim-353 datasets. Bold val-
ues indicate correlation scores above baseline, and un-
derlining indicates statistical significance. State of the
art from Recski et al. (2016); Dob6 and Csirik (2020);
Speer et al. (2017); Banjade et al. (2015).

5 Conclusion and Outlook

In this paper we tested whether a contextualized
notion of cosine similarity could be learned, im-
proving the similarity not only of the results for the
datasets where it was learned, but of unrelated sim-
ilarities. We showed that this metric improved the
correlations above baseline, and that, when learned
on a contextualized similarity dataset, it had an ad-
vantage when compared to one learned on a dataset
with unrelated word-pairs. We furthermore showed
that this framework has the potential to generalize
the notion of similarity to word-pairs it has not seen
during training. An important future research line
towards interpretability consists in understanding
the properties of the metrics that yielded the best
results, particularly in identifying the distinctive
features of the best metrics, such as their eigen-
systems. Other further directions include apply-
ing these metrics to distributional compositional
contractions, including with dependency enhance-
ments (Kogkalidis et al., 2019), testing this frame-
work on larger contextualized datasets and trying
out more complex, non-linear, metric forms.
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Abstract

This work combines information about the di-
alogue history encoded by pre-trained mod-
els with a meaning representation of the cur-
rent system utterance to realize contextual lan-
guage generation in task-oriented dialogues.
We utilize the pre-trained multi-context Con-
veRT model for context representation in a
model trained from scratch; and leverage the
immediate preceding user utterance for con-
text generation in a model adapted from the
pre-trained GPT-2. Both experiments with
the MultiWOZ dataset show that contextual
information encoded by pre-trained models
improves the performance of response gener-
ation both in automatic metrics and human
evaluation. Our presented contextual gener-
ator enables higher variety of generated re-
sponses that fit better to the ongoing dialogue.
Analysing the context size shows that longer
context does not automatically lead to bet-
ter performance, but the immediate preceding
user utterance plays an essential role for con-
textual generation. In addition, we also pro-
pose a re-ranker for the GPT-based genera-
tion model. The experiments show that the re-
sponse selected by the re-ranker has a signifi-
cant improvement on automatic metrics.

1 Introduction

In a conversation, speakers are influenced by pre-
vious utterances and tend to adapt their way of
speaking to each other (DuSek and Jurcicek, 2016;
Reitter et al., 2006). Furthermore, generating the
responses that fit well to dialogue context facilitates
successful conversation and strengthens the user’s
impression of Spoken Dialogue Systems (SDSs).
Several previous works (Dusek and Jurcicek, 2016;
Kale and Rastogi, 2020; Sankar et al., 2019) have
explored the impact of previous dialogue informa-
tion on the generated language in task-oriented
dialogue. However, how to efficiently infuse the
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Context: My friend

MR: inform told me about a place
(type=guesthouse; called the Carolina Bed
stars=4) and Breakfast. Do you

know anything about it?

contextual
NLG

Yes, it is a guesthouse
with a 4 star rating.

typical
NLG

It is a 4 star guesthouse.

Figure 1: An example of contextual NLG (red part)
compared with typical NLG (blue part) in our experi-
ments. (More examples with multi-turn context please
find in the Appendix)

dialogue context into a semantically controlled gen-
erator for improving the contextual interactive ex-
perience is still challenging. Such as, the contextual
generator proposed in DuSek and Jurcicek (2016)
has no big improvement without the help of an ad-
ditional re-ranker. The empirical study in Sankar
et al. (2019) demonstrated that both recurrent and
transformer-based seq2seq model can not effec-
tively consider previous dialogue history for gen-
eration. In this work, we propose two contextual
generators, which both utilize pre-trained models
to encode dialogue context. And the experiment
results show that context does matter in semanti-
cally controlled task-oriented Natural Language
Generation (NLG).

The function of NLG in task-oriented SDS is to
generate meaningful output in the form of natural
language with the guidance of meaning represen-
tation (MR). The MR is a formalism of response
semantics and generally represents a dialogue ac-
tion (DA), such as inform or request, along with
one or more slots and their values (See the MR in

Proceedings of the 18th International Conference on Natural Language Processing, pages 139-151
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Figure 1). However, this typical NLG only takes
the input MR into account and has no clue on how
to adapt to the dialogue history. This results in
coarse and flat responses (see the blue part in Fig-
ure 1). To enable the contextual interaction in SDS,
task-oriented NLG should not only contain the de-
sired MR information, but also have access to the
dialogue history. The example shown in Figure 1
taken from our experiments: compared with non-
contextual generation, the response with context
guidance adapts better to the preceding dialogue
and is more like a sentence from a real human. In
addition, the contextual NLG models are prone to
generate more diverse responses.

In summary, the main contributions of this paper
are as follows:

* To leverage the contextual nature of the multi-
turn dialogue, we utilize the pre-trained multi-
context ConveRT (Henderson et al., 2020) to
encode dialogue history for the contextual
generator. These contextual embeddings are
then forwarded to the Semantically Controlled
LSTM (SC-LSTM) generator (Wen et al.,
2015). The ConveRT initialized SC-LSTM
is called CSC-LSTM for short in this paper.
With the powerful multi-context encoding of
ConveRT, we also analyse the impact of vari-
able context size on CSC-LSTM. To the best
of our knowledge, we are the first to utilize the
pre-trained conversational model ConveRT
for contextual generation in task-oriented dia-
logue system.

We leverage only the immediate preced-
ing user utterance for contextual generation.
Adapted from GPT-2 (Radford et al., 2019),
the user utterance and DA guide the contextual
generation as context and semantic informa-
tion respectively. We call Contextually and
Semantically Conditioned GPT CSC-GPT
for short in this paper. The experiments of
GPT-based contextual model show that gen-
eration benefits from dialogue context, even
if only immediate preceding user utterance is
taken into account.

We propose a BERT-based (Devlin et al.,
2019) Re-ranker (BERT-R) for the CSC-GPT
generator, to select system response that fit
better to the user utterance. Given the top 5
generations of CSC-GPT, several automatic
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scores are regarded as contextual basis be-
tween user utterance and system response to
train on a multiple regression task adapted
from BERT. Experiments show that the re-
selected generation has a significant improve-
ment on the performance scores.

The remainder of this paper is structured as fol-
lows: Section 2 shows the related works of our
research. Section 3 introduces the dataset and the
automatic metric scores which are used in this work.
Section 4 describes our proposed three models:
CSC-LSTM, CSC-GPT and BERT-R, as well as
the experiment details. Section 5 shows the experi-
ment results of all models in automatic metrics and
human evaluation. The last Section 6 concludes
and outlines future research.

2 Related Works

For task-oriented NLG, semantically controlled
neural models play a significant role. Wen et al.
(2015) introduced a semantically conditioned
model by adding an additional semantic cell in
LSTM to control the DA, which is defined as the
combination of intent and slot-value pairs, for gen-
eration. Tseng et al. (2018) improved the RNN-
based generator by considering latent information
using the semantically conditional variational au-
toencoder architecture. As the major advantage
and superior performance of pre-trained LMs (De-
vlin et al., 2019; Radford et al., 2019), Peng et al.
(2020b) proposed a semantically controlled gener-
ation model based on GPT-2; Chen et al. (2020)
and Peng et al. (2020a) presented an end-to-end
task-oriented SDS based on the pre-trained GPT-2.
Even though there has been plenty of works on
semantically guided NLG, most approaches fail in
utilizing information of the preceding interaction.
Dusek and Jurcicek (2016) stood out as they ex-
tended the idea of NLG from MRs by adding one
preceding user utterance to their recurrent encoder.
However, we are more interested in the influence
of bigger context sizes in CSC-LSTM contextual
generation. And the model in Dusek and Jurcicek
(2016) was not able to show any improvement for
contextual generation without an additional n-gram
match re-ranker. However, our proposed contex-
tual generators outperform both the baselines even
without re-ranker and the re-ranker in our work can
further highly improve the generation performance
on automatic metrics. Sankar et al. (2019) made an
empirical study to understand how models use the



available dialog history for generation and found
that both recurrent and transformer-based seq2seq
model can not consider previous dialogue history
effectively. However, the dialogue history in our
work is encoded by pre-trained models and exper-
iments show that the generation in task-oriented
dialogue benefits from dialogue history. Kale and
Rastogi (2020) also examined the role of context
and demonstrated that the generation benefits from
the dialogue history. While their approach highly
relies on manually pre-defined templates which are
costly to create, in this work, all responses are di-
rectly generated without the need of any templates.

3 Dataset and Automatic Metrics

In our work, the automatic metric scores are not
only used for performance evaluation, but also used
for the BERT-R training in Section 4.3. Hence, we
introduce the dataset and the automatic metrics
beforehand in this section.

3.1 MultiwWOZ dataset

The original MultiwOZ (Budzianowski et al.,
2018) dataset is a fully-labeled collection of human-
human written conversations spanning over mul-
tiple domains and topics. It contains over 10, 000
dialogues spanning 8 domains, namely: Restaurant,
Hotel, Attraction, Taxi, Train, Hospital, Bus, and
Police. The test and validation sets contain 1, 000
examples each for performance comparison. The
MultiwOZ 2.1 (Eric et al., 2020) and MultiwOZ
2.2 (Zang et al., 2020) both fix some dialogue state
annotation errors and dialogue utterances, resulting
in an improved version of the original MultiWOZ.

The MultiwOZ 2.1 is used for evaluation of
CSC-LSTM in Section 4.1 in accordance with re-
lated work. The MultiWOZ 2.1 and 2.2 are both
used additionally for evaluating CSC-GPT and
BERT-R in Section 4.2 and 4.3.

3.2 Automatic metrics

The following metrics are used for performance
comparison in Section 5 and several are applied for
BERT-R training as target score in Section 4.3.

3.2.1 N-gram matching metrics

BLEU-4 is the 4-gram BLEU score (Papineni et al.,
2002), which is the most widely used metric score
for evaluating the performance of language genera-
tion and machine translation. In this work, BLEU-4
is computed for multiple values of n = (1,2, 3,4)
with weights (0.25,0.25,0.25,0.25) respectively
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and the scores are averaged geometrically. A
smoothing function is used to avoid that no n-gram
overlaps are found.

The target signal 7y gy.4 in Section 4.3 repre-
sents the BLEU-4 score between system generated
response and gold reference in BERT-R.

Meteor (Banerjee and Lavie, 2005) is a kind of
weighted F-score based on mapping unigrams and
also computes a penalty function for incorrect word
order. Lavie and Agarwal (2007) demonstrated that
Meteor score has high correlation with human rat-
ings.

The target signal Tyeteor in Section 4.3 represents
the Meteor score between system generation and
gold reference in BERT-R.

3.2.2 Machine learned metric

BERTScore (Zhang et al., 2019) is a machine
learned automatic evaluation metric for text gener-
ation that has shown a high correlation with human
judgments. BERTScore leverages the pre-trained
contextual embeddings from variants of BERT (De-
vlin et al., 2019) and matches words in candidate
and reference sentences by cosine similarity. More-
over, BERTScore computes precision, recall, and
F1 measure!. Zhang et al. (2019) showed that the
Roberta (Liu et al., 2019) large model has the best-
performing results for English tasks. So the roberta-
large model? is used for computing BERTScore in
this work.

The target signals TBERTpres TBERT:c> TBERTY, in
Section 4.3 represent the precision, recall and F1
of BERTScore between system response and gold
reference respectively in BERT-R.

3.2.3 Other metrics:

ConveRT cosine similarity: ConveRT (Hender-
son et al., 2020) is a light-weight conversational
model pre-trained on the large Reddit conversa-
tional corpus (Henderson et al., 2019). It provides
powerful representations for conversational data
and can be used as a response ranker by compar-
ing the cosine similarity between user utterance
and multiple responses. In this work, we not only
utilize the pre-trained ConveRT for context embed-
ding in CSC-LSTM, but also for a target score in
BERT-R.

The target signal TconveRT.cs in Section 4.3 means

'Only Fl score, which represents a reasonable balance
between recall and precision, is shown in Table 1, Table 2,
Table 4, Table 5 and Figure 2 for performance comparison.

*https://github.com/Tiiiger/bert_score
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Figure 2: The curves of BLEU-4, Meteor, BERTScore
and Variation size over CSC-LSTM model with differ-
ent context size (the exact value of metrics please find
in Table 1) show similar tendency: the both ends of ev-
ery curve have better performance than the inner part.

the cosine similarity of ConveRT embedding be-
tween user utterance and system response in BERT-
R.

Variation size measures the variation of the gen-
erated system responses, i.e., how many different
realisations are generated for one DA on average.
The variation size results computed on the full Mul-
tiWOZ test data are shown in the left part of the
results column (/) while the right part shows the
variation size computed only over the instances of
the test data with DA that appear more than once,
i.e., where variation can actually occur.

4 The Proposed Models and Experiment
Details

In this section, our proposed models (two contex-
tual generators, one response re-ranker) and corre-
sponding experiment details are introduced.

4.1 ConveRT initialized SC-LSTM:
CSC-LSTM

We train CSC-LSTM? on the basis of the SC-
LSTM (Wen et al., 2015), where a semantic con-
trol cell encodes DA into an one-hot embedding
to guide the task-oriented generation that is obliv-
ious about any dialogue history. In our proposed
CSC-LSTM, we apply the pre-trained multi-context
ConveRT* for encoding the dialogue history and
the contextual embedding is forwarded to initialize
the SC-LSTM generator. Before initialization in
CSC-LSTM, a non-linear transformation® is applied,
which is shown in Eq. 1, to project the ConveRT

3The architecture of CSC-LSTM is shown in Appendix.

*https://github.com/davidalami/ConveRT

>Using the same hidden size as the dimension of the Con-
veRT embedding, i.e., CSC-LSTM (hidden size 512) without
project function dy in Eq. 1 results in worse performance.

embedding into the SC-LSTM decoder space:
hy = tanh(W C, + b) . (1)

ho € R% is the SC-LSTM decoder initial recurrent
state, C, € R% is the ConveRT context embedding
and W € R% ¥4 projects the context level embed-
ding into the decoder space. The W and b are
learnable parameters during the CSC-LSTM train-
ing.

Experiment details of CSC-LSTM: For CSC-
LSTM, the SC-LSTM will be used as baseline with-
out additional context information. This means, for
each utterance generation, the hidden state is ini-
tialized with zeros in SC-LSTM. The MultiwOZ
2.1 (Eric et al., 2020) dataset is used for SC-LSTM
and CSC-LSTM generation models.

The multi-context ConveRT embedding dimen-
sionality is 512, hence, the d. in Eq. 1 is 512 for
CSC-LSTM training. In order to ensure a fair com-
parison, we set the same hyper-parameters for SC-
LSTM and CSC-LSTM: the hidden size to 300 (the
dg in Eq. 1), the learning rate to 5e—3, the batch
size to 128 and beam search decoding in inference
with beam size 10. Early stopping and cross en-
tropy loss are applied during the SC-LSTM and
CSC-LSTM training. The responses in SC-LSTM
and CSC-LSTM are delexicalised text where the
slot values are replaced by its corresponding slot
tokens.

Context size analysis of CSC-LSTM: The pre-
trained multi-context ConveRT does not only en-
code the immediate preceding user utterance but
in addition a maximum of 10 previous dialogue
sentences, i.e., 5 user utterances and 5 system re-
sponses (5ubs). To analyse the effect of this con-
text on the performance of the CSC-LSTM, multi-
ple models with different context sizes have been
trained. And we plot the trend and show exact
values of all metric scores in Figure 2 and Table
1 respectively. The Ou0s in Figure 2 and Table
1 means only immediate preceding user utterance
without extra context is taken into account for con-
textual generator CSC-LSTM training.

4.2 Contextually and Semantically
Conditioned GPT: CSC-GPT

In addition to the contextual generator trained from
scratch in Section 4.1, we also explore contextual
generation adapted from a pre-trained LM model
in this section.
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context size \ OuOs luls 2u2s 3u3s 4uds Suss
BLEU-4 (%) 29.59 29.76  29.68 29.50 29.46 29.79
Meteor (%) 51.29 51.11  51.21 50.80 5092 51.22
BERTScore F1 (%) | 59.17 59.24 59.02 59.14 59.06 59.13
Variation size 2.05 2.07 2.01 1.99 2.06 2.11

Table 1: The results for BLEU, Meteor, BERTScore and Variation size of CSC-LSTM model with variant context
size (best results are marked with bold font and worst results are marked with underline) show that the best models
exist in OuOs, luls and Su5s, while the worst models exist in 2uZ2s, 3u3s and 4u4s.

We train CSC-GPT® on the basis of the pre-
trained GPT-2 (Radford et al., 2019). It adopts
the generic Transformers (Vaswani et al., 2017).
Peng et al. (2020b) already proposed the SC-GPT
model, which was continuously training the GPT-2
on (DA, system response) pairs. However, no con-
text information was taken into account in SC-GPT
for dialogue response generation. In our proposed
CSC-GPT, we leverage the extra user context be-
yond semantic information to guide the generation
process. This means, (user utterance, DA, sys-
tem response) MultiWOZ triplets are continuously
trained on the pre-trained GPT-2 model for contex-
tual generation. Given the extra context size analy-
sis result of CSC-LSTM model (shown in 5.1) and
GPU memory limitation for training the pre-trained
LM, only the immediate preceding user utterance
is used as context information in the CSC-GPT’ .

In this work, we tackle the generation problem
using conditional LM. Given the dialogue dataset
D = {(un,dyn, rn)}Y_; with N samples, the goal
is to build a statistical model parameterized by 6 to
characterize pg(r|u, d), which can be written as the
product of a series of conditional probabilities.

T

po(riu,d) = [ po(rilres, u,d)
t=1

)

where r~; indicates all tokens before ¢. The u
represents user utterance; d means the system
DA and r is the system response which includes
(r1,79,...7¢, ...) tokens with length 7T'.

Experiment details of CSC-GPT: In order to
achieve a robust performance comparison, two
datasets, namely MultiwWOZ 2.1 and MultiwOZ
2.2, are used in SC-GPT and CSC-GPT. During

SThe architecture of CSC-GPT is shown in Figure 4 in
Appendix

"In the Appendix, we also conduct the CSC-GPT with
different context size: CSC-GPT (OuOs) and CSC-GPT (luls).
The performance comparison in Table 4 supports the extra
context size analysis in CSC-LSTM: longer dialogue context
can not linearly improve the generation performance.

143

training, the batch size is 16, the maximal epoch
is 10, the learning rate is 5e—>5 and early stopping
is used. During decoding, we use the top-k (Fan
et al., 2018) and nucleus sampling (top-p) (Holtz-
man et al., 2019) decoding algorithms with top-k
equal to 5 and top-p equal to 0.9. This means, the
next token distribution is filtered to keep maximal
top 5 tokens with highest probability and the cumu-
lative probability above a 0.9 threshold. Due to the
computational expense of running large SC-GPT
and CSC-GPT model, only the top 5 responses are
generated.

4.3 BERT Re-ranker: BERT-R

In this paper, we propose a BERT (Devlin et al.,
2019) Re-ranker (BERT-R) to select the top gen-
eration which is more similar to human sentence
and better fits to user context. As the generated
responses of the CSC-LSTM are delexicalized and
have less variability compared with the CSC-GPT,
we only apply the re-ranker to the CSC-GPT model.
Adapted from pre-trained BERT, the BERT-R is
continually trained with task-oriented dialogue data
and then fine-tuned on a multiple regression task,
where the model learns the relationship between
user utterance and system response from the vari-
ous regression targets defined by multiple metrics
scores.

There are two steps in our proposed BERT-R:
masked LM pre-training and multiple regression
fine-tuning. And the BERT-base-uncased® model
with 12 layers, 768 hidden units and 12 heads is
used in this work.

Masked LM Pre-training The original BERT
was pre-trained with the BooksCorpus (Zhu et al.,
2015) and English Wikipedia. In order to better
generalize to task-oriented dialogues, we continu-
ally train the BERT model with a dialogue dataset:
DSTCS (Rastogi et al., 2020), which is a schema-
guided dialogue dataset and consists of over 20k

8https://huggingface.co/bert-base-uncased



annotated multi-domain, task-oriented conversa-
tions between a human and a virtual assistant. And
Sellam et al. (2020) and Peng et al. (2020b) both
continually trained with task-specific data based
on the pre-trained LMs for better generalisation.
Similar to the masked LM training of the original
BERT, only 15% tokens are randomly masked for
prediction with cross entropy loss.

Multiple Regression Fine-tuning The ideal
generated response should be close to human com-
munication and relevant to preceding user utter-
ance at the same time. The general idea for BERT-
R is straightforward: using multiple widely used
metric scores to guide the model to learn the re-
lationship of user utterance and system response
by a multiple regression task, where the regression
targets are those metric scores. Those multiple
metric scores define how good the generation is
from different perspectives to avoid dominance by
one single score. Hence, we employ two n-gram
matching metrics: BLEU-4 and Meteor score, and
a machine learned score: BERTScore, to define
how similar system response is with respect to gold
reference; and ConveRT cosine similarity to define
how contextual system response is with respect to
user utterance.

In this work, we continually train BERT-R
with the guidance of multiple metric scores.
Define the user utterance u = (uq,...,u;)
of length | where each wu; is a token and
system response r = (rq,...,7y) of length
m. Let D' = {(un,rn,y7)}\", be a train-
ing dataset of size N’, where 7 is a target

signal. y” represents all metric scores: y™ =

(yT BLEU-4 , yT Meteor , yTBERTpre , yT BERTrec , yT BERTf; , yT ConveRT-cs ) .

Hence, the size of 7 is 6, which means 6 specific
regression layers will be added to the output of
[CLS] token in BERT-R. y™ will guide BERT-R to
learn how similar system response r is with respect
to gold reference and how contextual system
response r is with respect to user utterance u
during the fine-tuning. Given the training data, the
goal of fine-tuning is to learn a multiple regression
function f : (u,r) — y” that predicts different
metric scores.

Given the sentence pair (u,r), the pre-trained
BERT-R returns a sequence of contextualized vec-
tors:

= BERT-R(u,r)
3)

VICLS]s Vuys «-+» Vulvv’fp ey Ve

where vicrs) is the BERT-R output representation
for the special [CLS] token, which can be further
fine-tuned for classification or regression task. As
described by Devlin et al. (2019), we add separate
linear layers on top of the [CLS] vector to predict
different metric scores:

g" = flu,r)

where W7 and b” are the weight matrix and bias
vector respectively. And we use the Eq. 5, the sum
of all target-specific regression loss to fine-tune
BERT-R.

= WTV[CLS] +b" @

After fine-tuning, the BERT-R is used to select the
top generation with the highest score: the sum of
all regression output of BERT-R, which is shown in
Eq. 6:

l fine-tuning

Sperrr = Y BERT-R(u,r) (6)
=
Experiment details of BERT-R: During
masked LM pre-training, batch size is 32, maximal
epoch is 10 and learning rate is 5e—5. And early
stopping is used to avoid over-fitting on the DSTCS8
training dataset.

For the fine-tuning of BERT-R, we generate the
top b responses for MultiWOZ data with CSC-GPT
model firstly. And in order to clean the system
generated responses, we have the following proce-
dures:

1) The duplicated system responses are removed.

2) The last turn of every dialogue is removed,
where there are always “thank you” and “good
bye”, kind of non-informative sentences.

3) In order to let the network glance what the
human communication looks like, we add the
gold reference for the user utterance in the
training dataset. In addition, we need to re-
move the system responses which are same
as the gold reference beforehand, to comply
with the rule 1).

After finishing the above process, we compute the
target score respectively for the label of different re-
gression layers. During the training of the multiple
regression task, the batch size is set to 32, learning
rate le—5, and early stopping is used to save the
best BERT re-ranker.
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MultiwWOZ 2.1 MultiwWOZ 2.2
BLEU-4 Meteor BERTScore Variation BLEU-4 Meteor BERTScore Variation
(%) (%) F1 (%) size (%) (%) F1 (%) size

SC-LSTM (Wen et al., 2015)  28.76 49.93 58.71 1.00/1.00 - - - -
CSC-LSTM (5ubs) 29.79 51.22 59.13 1.35/2.11 - - - -
SC-GPT (Peng et al., 2020b)  28.95 50.22 91.96 2.27/6.56  28.53 49.80 91.95 2.78/6.70
CSC-GPT 29.91 51.34 92.08 2.29/6.66  29.41 51.10 92.08 2.81/6.82
BERT-R 32.37 54.01 92.40 2.22/6.34  31.68 53.65 92.39 2.81/6.82

Table 2: The results for BLEU, Meteor, BERTScore and variation size of top one generation in all models demon-
strate that our proposed contextual models in: CSC-LSTM against SC-LSTM and CSC-GPT against SC-GPT, both
outperform the corresponding baseline. Meanwhile, the proposed re-ranker BERT-R also highly improve the metric

scores compared with all other models.

5 The Experiment Results

The experimental results of all models introduced
in Section 4 are presented in this section. To ensure
a consistent performance comparison, we compute
the metric scores based on the top one generation
of all models. Table 2 shows the results of all
automatic metrics.

Furthermore, a human evaluation has been con-
ducted. We randomly sampled 100 dialogues and
their corresponding top one generations from our
proposed models as well as the baselines. We re-
cruited three annotators with relevant background
in SDS to evaluate the responses generated by dif-
ferent models. Each rater was presented the com-
plete preceding dialogue and asked to rate if “The
highlighted system response could plausibly have
been produced by a human” (natural) and if “The
highlighted system response fits well to the previ-
ous dialog” (contextual). Each metric is rated on a
5-point Likert scale, where 1 is “not agree at all”,
5 is “fully agree”. In order to guarantee the strict-
ness of human evaluation, the human judges have
no information about the origin of the utterances,
i.e., which model generated the utterance. Table 3
shows the human evaluation results.

Contextual  Natural
SC-LSTM (Wen et al., 2015) 3.96 4.04
CSC-LSTM (5ubs) 4.21% 4.16"
SC-GPT (Peng et al., 2020b) 4.00 4.14
CSC-GPT 425" 427"
BERT-R 4.18 4.26

Table 3: The results of human evaluation on natural
and contextual score of all models. (x: p-value < 0.01,
comparison with SC-LSTM baseline; +: p-value < 0.1,
comparison with SC-GPT baseline) show the superior-
ity of our proposed contextual models.
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5.1 Experiment results of CSC-LSTM

The automatic metric scores comparing SC-LSTM
and CSC-LSTM in Table 2 show that CSC-LSTM
has the overall better performance in BLEU-4, Me-
teor, BERTScore and variation size compared to
the baseline. The variation size results show CSC-
LSTM can generate more variant responses per
DA, which may indicate a more contextual fitting
response, while the SC-LSTM only generate the
same utterances each time. The performance com-
parison between SC-LSTM and CSC-LSTM in Ta-
ble 2 support our initial assumption that context
helps to generate good system utterances. Espe-
cially the increase in variation size is of importance
as it indicates that the resulting utterances of CSC-
LSTM indeed be different for different contexts.

This has been validated by the human evaluation
of SC-LSTM and CSC-LSTM in Table 3. It shows
that the variation introduced by CSC-LSTM actu-
ally results in utterances that fit significantly better
to the preceding dialogue and are perceived as sig-
nificantly more natural. Overall, the performance
comparison between SC-LSTM and CSC-LSTM on
automatic metrics and human evaluation demon-
strate the dialogue history contributes to contextual
and variant responses.

The context size analysis of CSC-LSTM demon-
strate that the automatic metric scores are influ-
enced by the length of the context. All metrics
show similar curves over the different contextual
model in Figure 2. The both ends of the curves
have better performance than the inner part. The
Table 1 shows the best BLEU-4 and variation size
are both achieved for context sizes of bubs; while
Ou0s has the best Meteor and 1uls has the best
BERTScore. Both show that the contextual mod-
els 0u0s, 1uls and 5ubs generally outperform the



2u2s, 3uds and 4u4s. Hence, the investigation of
the impact of context size for CSC-LSTM genera-
tion indicates that longer context does not linearly
result in better performance, which is further con-
firmed in the performance comparison between
CSC-GPT(0u0s) and CSC-GPT(1uls) shown in
Table 4 in Appendix. Evidently, all contextual mod-
els achieve better performance than the baseline
(SC-LSTM in Table 2). We therefore conclude that
the immediate preceding user utterance yields the
indispensable information for contextual genera-
tion. With limited memory, using only immediate
preceding user utterance without extra context can
be regarded as a balanced option that we directly
apply for training the CSC-GPT.

5.2 Experiment results of CSC-GPT

All scores between SC-GPT and CSC-GPT in Ta-
ble 2 demonstrate that the CSC-GPT is superior
to the baseline SC-GPT for both datasets, Multi-
WOZ 2.1 and MultiWOZ 2.2. Our assumption is
again confirmed in GPT-based generation model:
dialogue history contributes to contextual and vari-
ant response, even though only one preceding user
utterance is taken into account.

When comparing the human evaluation results
of SC-GPT and CSC-GPT in Table 3, the assump-
tion is further supported: adding context to the
generation process results in more natural and con-
textual responses. The CSC-GPT generator even
achieves the best rating both in terms of natural
and contextual score compared to all other mod-
els. This means that enhancing an already powerful
pre-trained model with context is essential for its
application within dialogue systems.

5.3 Experiment results of BERT-R

Our proposed BERT-R selects the top one response
from 5 CSC-GPT generations with the highest
score in Eq. 6. The metric scores of CSC-GPT
and BERT-R in Table 2 show that the selected gen-
eration by BERT-R has a significant improvement
on BLEU-4, Meteor and BERTScore’, with a little
loss on variation size compared to the top one gener-
ation in CSC-GPT. This is in line with human evalu-
ation results where the CSC-GPT achieves slightly
better scores both in naturalness and contextualness
than BERT-R, even though BERT-R clearly shows
better results compared to the SC-GPT baseline.

%also improvement on ConveRT cosine similarity, which
is shown in the Appendix.
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6 Conclusion and Future Work

In this paper, we propose two contextual generation
models: CSC-LSTM trained from scratch and CSC-
GPT adapted from pre-trained GPT-2. Both inte-
grate dialogue context information into NLG for
generating more variant and contextual response in
task-oriented dialogue systems.

In the experiment of CSC-LSTM against SC-
LSTM and CSC-GPT against SC-GPT, our pro-
posed contextual models both improve the gen-
eration performance in automatic metrics, thus
showing that CSC-LSTM and CSC-GPT are able
to capture better the contextual needs resulting in
a higher similarity to the data. This is further un-
derpinned by the number of variations. More vari-
ant responses are generated per DA in CSC-LSTM,
while the SC-LSTM only generates the same ut-
terances each time. Furthermore, the variation
size of GPT-based generators is higher than SC-
LSTM based models. The possible reason is the
pre-trained GPT-2 contributes to more diverse re-
sponses by default. The human evaluation results in
Table 3 not only demonstrate the contextual model
can generate more contextual and natural response
compared with their baseline respectively, but also
show GPT-2 contextual model CSC-GPT is supe-
rior than CSC-LSTM.

An investigation of the impact of context size
for dialogue response generation in CSC-LSTM in-
dicates that longer context does not automatically
result in better performance. However, all vari-
ant CSC-LSTM models have better performance
than baseline, which means the immediate preced-
ing user utterance contains the most contextual in-
formation for generation. This is also verified in
GPT-2 contextual generators, even only immedi-
ate preceding user utterance is taken into account,
the CSC-GPT model outperforms SC-GPT both on
automatic metrics and human evaluation.

In addition to the above mentioned two con-
textual models, we also present a re-ranker for
CSC-GPT contextual model. Adapted from pre-
trained BERT, the BERT-R continually train on
multi-domain dialogues and fine-tune on a mul-
tiple regression task to learn the relationship be-
tween user context and system response by the
metric guidance of BLEU-4, Meteor, BERTScore
and ConveRT cosine similarity. Finally, the top
one generation selected by BERT-R has significant
superiority in BLEU-4, Meteor, BERTScore and
ConveRT cosine similarity compared with top one



generation in CSC-GPT. This means, that our pro-
posed BERT-R works from the guidance of metric
scores and can choose the generation with highest
score. However, CSC-GPT slightly outperforms
BERT-R in variation size and human evaluation.
The possible reason is that the existing automatic
metrics still have bias with human judgments (Cha-
ganty et al., 2018).

In the future, we will further explore the per-
formance of BERT-R with the guidance of other
automatic metrics, which have higher correlation
with human judgements. Furthermore, there seems
to be a link between the variation size metric and
the human evaluation scores, which will also be
part of future work.
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A Appendices

In order to better understand what our proposed
architectures look like, please find the following
Figure 3 and Figure 4. The model CSC-GPT gen-
erates contextual response with the guidance of
immediate preceding user utterance and DA. In the
CSC-LSTM, the SC-LSTM was proposed in Wen
et al. (2015) and an additional cell was introduced
into the LSTM cell to gate the DA information.
The original LSTM cell follows:

it = 0(Wyiwe + Wpihi—1)

ft (Wwfwt + thht—l)

Oy = O'(Wwowt + Whoht—l)

ét = tanh(chwt + thht—l)
a=fiOc1+iO¢

hy = 0y © tanh(cy)

(7

In SC-LSTM, the d; starts from an one-hot vector,
at each time step the DA cell decides what infor-
mation should be retained for future time steps and
discards the others. Like:

Tt = O'(erwt + a(whrht—l))

di =7y - di—q

®)

Then, the value cell in Eq. 7 also depends on the
DA,

Ct = ft ®c—1 + it ® ét + tanh(WdCdt) (9)

Finally, the hidden state is further updated by new
value cell. In our proposed CSC-LSTM, not only
DA cell is added, but the SC-LSTM cell is initial-
ized by contextual ConveRT embedding.

Given the pre-trained model can handle the
longer dialogue context for generation, so we also
trained CSC-GPT contextual model with one more
turn context besides the immediate preceding user
utterance, i.e. luls. And the results comparison
between CSC-GPT (0uOs) and CSC-GPT (1uls) is
shown in Table 4. We can know that the BLEU-4
and Meteor of CSC-GPT (Ou0Os) outperforms CSC-
GPT (luls), meanwhile, the BERTScore and vari-
ation size have no big difference. This further
demonstrate that longer context can not directly
result in better performance. The maximal length
of input in CSC-GPT (0u0s) is 120, however, CSC-
GPT (1uls)is 190 with more GPU memory. Hence,
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hg refers to Eq. 1, dialogue context is encoded by ConveRT and projected to decoder space with the Eq. 1
dp is DA one-hot embedding, like (0, 0, ..., 1, ...) represents “hotel{ request(area=?)}”
wy is the input token at time slot ¢

Figure 3: The architecture of CSC-LSTM.

uy, is the immediate preceding user utterance, like “Does it provide free parking?”
dy, is the DA, like “hotel {inform (internet=yes; parking=yes)}”
Ty, 1s the gold response, like “Yes, free parking and free wifi!”

Figure 4: The architecture of CSC-GPT. The immediate preceding user utterance and MR together guide the
contextual response generation.

we recommend only immediate preceding user ut-
terance is taken into account for contextual genera-
tion in task-oriented dialogue system.

The BERT-R is trained with multiple metric
scores: BLEU-4, Meteor, BERTScore and Con-
veRT cosine similarity. In order to make consistent
comparison of all models, we don’t show the Con-
veRT cosine similarity of BERT-R in the main paper.
The Table 5 shows that all scores get improvement.

There are several use cases in Table 6. And by
system response comparison of SC-LSTM agaist
CSC-LSTM and SC-GPT agaist CSC-GPT given
preceding dialogue context, the Table 6 shows the
importance of dialogue context for natural and con-
textual response.
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MultiwOZ 2.1 MultiwOZ 2.2

BLEU-4 Meteor BERTScore Variation BLEU-4 Meteor BERTScore Variation
(%) (%) F1 (%) size (%) (%) F1 (%) size

CSC-GPT (Ou0s) 2991 51.34 92.08 2.29/6.66  29.41 51.10 92.08 2.81/6.82
CSC-GPT (Iuls) 2970  51.02 92.08 2.29/6.67 28.80  50.32 91.94 2.81/6.81

Table 4: The results for BLEU, Meteor, BERTScore and Variation size of top one CSC-GPT (0u0s) generation and
CSC-GPT (1uls) show that CSC-GPT (0u0Os) outperforms CSC-GPT (luls) and support the context size analysis
of CSC-LSTM: the longer context in contextual model can not linearly result in better performance.

MultivOZ 2.1 MultiwOZ 2.2
BLEU-4 Meteor BERTScore ConveRT BLEU-4 Meteor BERTScore ConveRT
(%) (%) F1 (%) cs (%) (%) F1 (%) cs
CSC-GPT 29091 51.34 92.08 33.41 29.41 51.10 92.08 33.81
BERT-R 32.37 54.01 92.40 34.70 31.68 53.65 92.39 35.00

Table 5: The results for BLEU, Meteor, BERTScore and ConveRT cosine similarity of top one CSC-GPT gen-
eration and the selected one by BERT-R demonstrate that all target metrics used in BERT-R have a significant
improvement through re-ranking.
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User: Hi, I'm looking for a hotel called aylesbray lodge guest house. Do you

context . .
have anything with that name?

SC-LSTM: It is a moderately priced hotel in the south. Would you like me

to book it for you?

CSC-LSTM: Yes, it is a hotel in the south in the moderately priced price range.
Would you like to book a room?

SC-GPT: It is a moderately priced hotel in the south area. Would you like me
to book it for you?

CSC-GPT: 1 do, it is a moderately priced hotel in the south. Would you like

to make a booking?

system response

User: I'm looking for a nightclub to go to. Are there any in the centre of town?
System: There are 5 nightclubs in the centre. Ballare is one of them. Would that
work for you?

User: Is there an entrance fee for Ballare?

context

SC-LSTM: The entrance fee is 5 pounds.
CSC-LSTM Yes, it is 5 pounds .
SC-GPT: The entrance fee is 5 pounds.
CSC-GPT: Yes, itis 5 pounds to get in.

system response

context User: Hi, I am trying to plan my trip and could use some help with a particular restaurant.

SC-LSTM: Do you have a preference for area or price range?
CSC-LSTM: Do you have a certain area or price range in mind?

system response  SC-GPT: Sure, what kind of food are you looking for and what area and price range?
CSC-GPT: I would love to assist you! What type of food are you looking for and
what price range?

User: Can you also help me find a train to Bishops Stortford?

System: There are more than 70 trains to Bishops Stratford. Could you tell me

what day you would like to leave, where you would like to leave from, and the times?

User: I am leaving Cambridge on Sunday, can you please tell me the travel time on that ride?
System: Sure, it is a 38 minute trip. Would you like a ticket?

User: I need to leave after 14:45 also.

context

SC-LSTM: The tr3600 leaves Cambridge at 15:29.

CSC-LSTM: Tr3600 leaves Cambridge at 15:29. Would that works for you?
SC-GPT: Tr3600 leaves Cambridge at 15:29.

CSC-GPT: How about tr36007? It leaves Cambridge at 15:29.

system response

Table 6: System response of different models given preceding dialogue context show that the contextual models:
CSC-LSTM and CSC-GPT, can generate more natural responses that fit better to dialogue history.
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Abstract

The mental disorder of online users is deter-
mined using social media posts. The ma-
jor challenge in this domain is to avail the
ethical clearance for using the user-generated
text on social media platforms. Academic re-
searchers identified the problem of insufficient
and unlabeled data for mental health classifi-
cation. To handle this issue, we have studied
the effect of data augmentation techniques on
domain-specific user-generated text for men-
tal health classification. Among the exist-
ing well-established data augmentation tech-
niques, we have identified Easy Data Augmen-
tation (EDA), conditional BERT, and Back-
Translation (BT) as the potential techniques for
generating additional text to improve the per-
formance of classifiers. Further, three different
classifiers- Random Forest (RF), Support Vec-
tor Machine (SVM) and Logistic Regression
(LR) are employed for analyzing the impact of
data augmentation on two publicly available
social media datasets. The experimental results
show significant improvements in classifiers’
performance when trained on the augmented
data.

1 Introduction

Recent studies over mental health classification
(Salari et al., 2020; Garg, 2021; Biester et al., 2021)
convey that amid COVID-19 pandemic, the num-
ber of stress, anxiety and depression related mental
disorders have increased. As per the recent survey,
the rate of increase of mental disorders is more
than those of physical health impacts on the Chi-
nese population (Huang and Zhao, 2020). In this
context, the early detection of psychological dis-
orders is very important for good governance. It
is observed that more than 80% of the people who
commit suicide, disclose their intention to do so
on social media (Sawhney et al., 2021). Clinical
depression is the result of frequent tensions and

stress. Further, prevailing clinical depression for a
longer time period results in suicidal tendencies.

The information mining from social media helps
in identifying stressful and casual conversations
(Thelwall, 2017; Turcan and McKeown, 2019; Tur-
can et al., 2021). Many Machine Learning (ML)
algorithms are developed in literature using both
automatic and handcrafted features for classifying
Microblog. The problem of data sparsity is under-
explored for mental health studies on social media
due to the sensitivity of data (Wongkoblap et al.,
2017). Multiple ethical clearances are required for
new developments in mental health classification.
To deal with this issue of data sparsity, we have
used data augmentation techniques to multiply the
training data (Turcan and McKeown, 2019; Haque
et al., 2021). The increase in training data may
help to improve the hyper-parameter learning of
textual features and thereby, reducing overfitting.
Data Augmentation is the method of increasing the
data diversity without collecting more data (Feng
et al., 2021). The idea behind the use of Data
Augmentation (DA) techniques is to understand
the improvements in training classifiers for mental
health detection on social media.

In this manuscript, the mental health classifi-
cation is performed for two datasets to test the
scalability of data augmentation approaches for
mental healthcare domain. The classification of ca-
sual and stressful conversations (Turcan and McK-
eown, 2019), and classifying depression and suici-
dal posts (Haque et al., 2021) on social media. We
select a rule based approach which preserves the
original label and diversifies the text. To the best of
our knowledge, this is the first attempt of stuffing
additional data for mental health classification and
there is no such study in the existing literature. The
key contributions of this work are as follows:

* To determine the feasibility and the impor-
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tance of data augmentation in the domain-
specific study of mental health classification
to solve the problem of data sparsity.

* The empirical study for different classifica-
tion algorithms show significantly improved
F-measure.

Ethical Clearance: We use limited, sparse and
publicly available dataset for this study and so, no
ethical approval is required from the Institutional
Review Board (IRB) or elsewhere.

We organize rest of the manuscript in different
sections. Section 2 describes the historical per-
spective of data augmentation and mental health
classification on social media. We discuss the data
augmentation methods and the architecture for ex-
perimental setups in Section 3. Section 4 elucidates
the experimental results and evaluation over the
proposed architecture of experimental setup which
shows the significance and feasibility of data aug-
mentation over mental health classification prob-
lems. Finally, Section 5 gives the conclusion and
future scope of this work.

2 Related Work

Mental health classification can be quite challeng-
ing without the availability of sufficient data. Al-
though the users’ posts can be extracted from the
social media platforms such as Reddit, Twitter and
Facebook, annotating these posts is quite expen-
sive. To address this issue, researchers have pro-
posed different data augmentation techniques suit-
able for Natural Language Processing (NLP) which
varies from simple rule-based methods to more
complex generative approaches (Feng et al., 2021).
The data augmentation tasks is categorized into
conditional and unconditional augmentation task
(Shorten et al., 2021).

2.1 Evolution of textual Data Augmentation

The unconditional data augmentation models
like Generative adversarial networks (Goodfellow
et al., 2014) and Variational autoencoders (Kingma
and Welling, 2014) generates the random texts ir-
respective of the context. We do not use uncon-
ditional data augmentation for this task as it is re-
quired to preserve the context of the information as
per the label. The conditional masking of a few to-
kens in the original sentence was observed to boost
the classification performance in NLP tasks (Li
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et al., 2020; Wu et al., 2021). Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019), the pre-trained language mod-
els, are proposed with the objective to capture the
left and right context in the sentence to generate the
masked tokens. The pre-trained autoencoder model
conditional BERT (Wu et al., 2019; Kumar et al.,
2021) is used as a well-established technique for
generating label compatible augmented data from
the original data.

One of the simplest rule-based data augmenta-
tion techniques is proposed as Easy Data Augmen-
tation (EDA) (Wei and Zou, 2019). The authors
proposed four random operations such as random
insertion, random deletion, random swapping and
random replacement on the given text for generat-
ing new sentences. The experimental results give
better performance on five benchmark text clas-
sification tasks (Wei and Zou, 2019), as the true
labels of the generated text were conserved during
the process of data augmentation. A graph based
data augmentation is proposed for sentences using
balance theory and transitivity to infer the pairs gen-
erated by augmentation of sentences (Chen et al.,
2020). The sentence-based data augmentation is
not suitable for the problem of mental health clas-
sification on Reddit data as the posts contain large
paragraphs.

Back Translation (BT) or Round-trip translation
is another augmentation technique which is used as
a pipeline for text generation (Sennrich et al., 2015).
The BT approach converts the A language of text to
B language of text and then back to A language of
the same text. This back-translation (Corbeil and
Ghadivel, 2020) of data helps in diversifying the
data by preserving its contextual information. Al-
though, the interpolation techniques are proposed
for data augmentation (Zhang et al., 2017), it is
minimally used for textual data in existing litera-
ture (Guo et al., 2020).

In our work, we have studied the effect of
all three different augmentation techniques- EDA,
Conditional BERT and Back-translation to increase
the size of training data for the task of mental health
classification.

2.2 Mental Health Classification: Historical
Perspective

The existing literature on mental health detection
and analysis of social media data (Garg, 2021)
shows the problem of automatic labeling as noisy



labels. To handle this, either the label correc-
tion of noisy labels is required as shown in SD-
CNL (Haque et al., 2021) for manual labeling, or
data augmentation (Chen et al., 2021). Since many
existing datasets for mental health detection like
RSDD, SMHD (Harrigian et al., 2020), CLPsych
(Preotiuc-Pietro et al., 2015) needs ethical clear-
ance and are available only on request, we intend
to pick small dataset with limited set of instances
which are available in the public domain.

The Dreaddit dataset is manually labelled as
stressful and casual conversation (Turcan and
McKeown, 2019). In SDCNL dataset (Haque et al.,
2021), the posts related to clinical depression and
suicidal tendencies use similar words. Thus, we
hypothesize that experimental results with data aug-
mentation for classifying depression and suicidal
risk may not generate well diversified data. In this
manuscript, we use three data augmentation meth-
ods to text and validate the performance of the
classifiers over both Dreaddit and SDCNL dataset.

3 Background: Data Augmentation
Methods

Data augmentation (Feng et al., 2021) is a recent
technique used for NLP to handle the problem of
data sparsity by increasing the size of the train-
ing data without explicitly collecting the data. In
this Section, we describe three potential textual
data augmentation techniques, problem formula-
tion, and architecture of the experimental setup.

3.1 Textual Data Augmentation

Out of many data augmentation tasks for NLP clas-
sification, very few are related to this problem do-
main of mental healthcare. This limitation is due
to the presence of ill-formed (user-generated) text
and the need to preserve the contextual informa-
tion as per the label of the instances. To handle
this issue, we use three different approaches. The
first approach is based on NLP-based Augmenta-
tion technique (Wei and Zou, 2019), the second is
based on conditional pre-trained language models
such as BERT (Kumar et al., 2021) and the third
approach is based on back translation (Ng et al.,
2019). We briefly explain these methods in this
section.

3.1.1 Easy Data Augmentation

In the previous work (Wei and Zou, 2019), NLP-
based operations have been shown to achieve good
results on text classification tasks. This method of

154

data augmentation helps in diversifying the training
samples while maintaining the class label associ-
ated with the post of a user at sentence level. The
following four operations have been used in this
work for augmenting the data:

* Synonym Replacement. Randomly n-words
are chosen other than stop words from each
sentence and replaced by one of its synonyms.

Random Insertion. In this operation, a random
synonym of a random word is inserted into a
random position of a sentence for n number
of times.

Random Swap. Two words are randomly cho-
sen in a sentence and swapped.

¢ Random Deletion. A word is deleted from a
sentence with probability p.

3.1.2 Pre-Trained Language Models

Recently, deep bi-directional models have been
used for generating textual data (Kobayashi, 2018;
Song et al., 2019; Dong et al., 2017). These
models are pre-trained with unlabelled text which
can be fine tuned in autoencoder (Devlin et al.,
2019), auto-regressive (Radford et al., 2019), or
seq2seq (Lewis et al., 2019) settings. In autoen-
coder settings, a few tokens are randomly masked
and the model is trained to predict alternative to-
kens. In auto-regressive settings, the model pre-
dicts the succeeding word according to the context.
In seg2seq settings, the model is fine tuned on de-
noising autoencoder tasks. These transformers use
associated class labels to generate the augmented
text which helps in preserving its label. In this
work, we adopt a framework' defined by (Kumar
et al., 2021) and fine tune pre-trained BERT in
auto-regressive settings.

3.1.3 Back Translation

Back translation (BT) is the data augmentation
technique used for diversifying the information by
changing the language of textual data to some lan-
guage A and changing it back to its original lan-
guage. In this experimental framework, we have
used German as an intermediate language A. We
use BT for the Microblogs by first converting it into
German language using Neural Machine Transla-
tion (Ng et al., 2019) and then converting it back to

"https://github.com/amazon-research/transformers-data-
augmentation



the English language. It is interesting to note that
ill-formed and user-generated information is con-
verted to the standard English language using BT
and thus, spelling mistakes are reduced. Although
the content is changed, contextual information is
preserved.

3.2 Problem Formulation

Given a dataset D consisting of n-training samples
where each sample is a text sequence x consisting
of m-words and each sequence is associated with a
label y. The objective is to generate an augmented
data Dy, of n-synthetic samples using EDA, BERT
and Back Translation.

3.2.1 AugEDA: Data augmentation using
Easy Data Augmentation

In our work, 30% words of i training sample are
randomly chosen for applying any one of the four
EDA operation-Synonym Replacement, Random
Insertion, Random Swap and Random Deletion
(Wei and Zou, 2019). In synonym replacement, the
chosen word is substituted by any one of the ran-
domly selected synonym of this word from Word-
Net(Miller, 1995). In random insertion, j random
positions are chosen for inserting random synonym
of randomly chosen word out of m-words. In ran-
dom swap, two words are randomly chosen from
m-words and swapped with each other. A word is
deleted with 10% probability in random deletion
operation. The new sentence generated after ap-
plying any one of the lexical substitution method
is added to the synthetic dataset Dgy,. The pro-
cess is repeated for n-training samples to create an
augmented dataset of size n.

3.2.2 AugBERT: Data augmentation using
BERT

We use the conditional BERT language model to
generate the augmented data. We consider the label
y and sequence S = 51, 59...5n of n-tokens to
calculate the probability p(¢;) = (.|y, S) of masked
token ¢; unlike masked language models that use
only sequence .S for predicting the probability of
masked tokens. As defined by (Kumar et al., 2021),
the conditional BERT model prepends associated
label y to each sequence S in dataset D without
adding it to the vocabulary of the model. For fine
tuning of the model, some tokens of the sequence
are randomly masked and the objective is to predict
the original token according to the context of the
sequence.
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3.2.3 AugBT: Data augmentation using
Back-Translation

To generate new textual data using Back-
Translation, each of i training sample z; is con-
verted into a sentence y; written in German lan-
guage and then y; is converted back to a sentence
z; in English. The generated sentence z; is added
to the augmented dataset Dgy,. This process is
repeated for n training samples to create an aug-
mented dataset of n samples.

3.3 Architecture: Experimental Setup

The architecture of the experimental setup for aug-
menting domain-specific data of mental health clas-
sification from social media posts is shown in Fig-
ure 1. The Microblogs are given as an input for
classifying the mental health of the users. The
idea behind this approach is to generate some se-
quence of sentences and augment some more data
for better training of classifiers. Thus, the number
of instances are increased by using different data
augmentation techniques.

The results are implemented for two publicly
available mental health datasets, namely, Dread-
dit and SDCNL. The dataset is divided into train-
ing and testing data. The training data is given
as an input to the data augmentation methodolo-
gies, namely, EDA (Wei and Zou, 2019), Autoen-
coder conditional BERT (Wu et al., 2019) and
Back-Translation (Ng et al., 2019). These three ap-
proaches are well established approaches for data
augmentation in classification of the textual data.
The original training data is almost doubled in the
process of the data augmentation. The original
and augmented data are fed to different machine
learning classifiers for results and analysis.

4 Experimental Results and Evaluation

In this section, we discuss the datasets and the
experimental results. We further analyze results
for data diversity and statistical significance of the
classifiers over augmented data as compared to the
original data.

4.1 Dataset

The idea behind this study is to improve the train-
ing parameters of the classifier by removing the
limitation of data sparsity. The two sparse datasets
which are used for domain-specific data augmenta-
tion are Dreaddit > (Turcan and McKeown, 2019)

*http: //www.cs.columbia.edu/eturcan/data/ dreaddit.zip.
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Figure 1: The Architecture of Experimental Setup for
Data Augmentation

and SDCNL? (Haque et al., 2021) from existing
literature are explained in this Section.

4.1.1 Dreaddit dataset

The Dreaddit dataset(Turcan and McKeown, 2019)
consists of lengthy posts in five different categories
and is used for classifying stressful posts from ca-
sual conversations. The categories of subreddits
selected by authors having stressful conversations
are interpersonal conflicts, mental illness (anxiety
and PTSD), financial and social.

Dataset ‘ Stress ‘ Non-Stress
Training data | 1488 1350
Testing data 369 346

Table 1: Dreaddit Dataset Statistics

Out of total 187444 posts scraped from these
five categories, the authors have manually labelled
3553 Reddit posts. While selecting the posts for
annotation, the authors selected those segments
whose average token length was greater than 100.
The average tokens per post in this dataset is 420
tokens. This statistics of the Dreaddit dataset is
shown in Table 1.

4.1.2 SDCNL dataset

The SDCNL dataset(Haque et al., 2021) is scrapped
from Reddit social media platform from two sub-
reddits: r/SuicideWatch and r/Depression to carry

3https://github.com/ayaanzhaque/SDCNL
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out the study for classifying posts into depression
specific or suicide specific. This dataset contains
1895 posts containing 1517 training samples and
379 testing samples. The dataset contains title, self-
text and megatext of the reddit tweets along with
other fields.

Dataset ‘ Depression ‘ Suicide
Training data 729 788
Testing data 186 193

Table 2: SDCNL Dataset Statistics

In this dataset, 729 out of 1517 instances are
labelled as depression specific posts as shown in
Table 2. The dataset is manually labelled to reduce
noisy automated labels. The idea behind using this
data is that we hypothesise that this dataset is even
more complex than the Dreaddit dataset due to the
presence of similar domain-specific words in posts.

4.2 Experimental Setup

The original and the augmented dataset used for
experimentation is quite noisy as the posts used in
this data is user-generated natural language text
expressing the feelings of the writer. The pre-
processing steps are applied using the NLTK li-
brary* of Python (Bird, 2006). The data is trans-
formed before applying the supervised learning
models employed in this work. The posts are
long paragraphs, so in the first step the data is
tokenized into sentences and then sentences are
further tokenized into words. After removal of stop-
words, punctuations,unknown characters from the
extracted tokens, we use stemming and lemmatiza-
tion to extract the root words.

After pre-processing of the data, it is transformed
to a feature vector using Term Frequency- Inverse
Document Frequency (TF-IDF), Word2Vec (Gold-
berg and Levy, 2014) and Doc2Vec (Lau and Bald-
win, 2016). Word2Vec embedding and Doc2Vec
embedding provides dense vector representation of
data while capturing its context. In this research
work, the Gensim library” is used to learn word em-
beddings from the training corpus using skip-gram
algorithm. A vector of 300 dimensions is chosen
and default settings of Word2Vec and Doc2Vec
models are used for experiments and evaluation.

The learning based classifiers which are used
for this research work are the Logistic Regression

“https://www.nltk.org/
>https://pypi.org/project/gensim/



(LR), the Support Vector Machine(SVM), and the
Random Forest (RF) with the default settings of
scikit-learn® (sklearn) library of Python. The hard-
ware configuration of the system which is used to
perform this study is 2.6 GHz 6-core Intel Core i7,
Turbo Boost up to 4.5 GHz, with 12 MB shared L3
cache.

4.3 Experimental Results

We reference (Kumar et al., 2021) for implemen-
tation ’ and use AugBERT, AugEDA, and AugBT
on two datasets- Dreaddit and SDCNL. The dataset
is divided into 75% training and 25% testing set
and the value of Precision (P), Recall(R) and F1
score (F1) are computed on the testing samples
to evaluate the performance of the classifiers with
and without domain -specific data augmentation
for mental health classification. Table 3 and Ta-
ble 4 presents the results achieved for original and
augmented data for Dreaddit and SDCNL using
three different classifiers, namely, Logistic regres-
sion (LR), Support Vector Machine (SVM) and
Random Forest (RF), respectively.

4.3.1 Experimental Results for Dreaddit

As observed from Table 3, the F1 score showed
an average improvement of around 1.4% achieved
by all models with AugBERT as compared to the
original training dataset. It is also found that the
AugEDA gives maximum improvement of around
4% when Word2Vec and Doc2Vec embeddings
were employed with LR. Also, there is negligible
improvement in the results with AugBT.

4.3.2 Experimental Results for SDCNL

In this Section, the results of the experimental study
are presented for the SDCNL dataset. As observed
from Table 4, the average improvement of around
2.3% is observed for all the models as per F1 score
with AugBERT. The AugEDA shows maximum
improvement of more than 5% when Word2Vec
and Doc2Vec embeddings were employed with
RF. The results also indicate a minor improve-
ment of around 1 — 2% when classifiers employed
Doc2Vec and TF-IDF embeddings for representing
augmented data using Back Translation.

Due to increase in the size of augmented data, the
input vector representations using TF-IDF requires
higher computational time as compared to other

Shttps:/scikit-learn.org/stable/
"https://github.com/varunkumar-
dev/TransformersDataAugmentation
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embeddings. Thus, a few results are shown empty
in Table 3 and Table 4. In healthcare, more precise
results are expected than recall which means that
the content which is identified as stressful must
be correct and matters more than diagnosing the
total number of correct instances. Thus, precision
must improve more than recall values. We have
considered these nuances to examine the results
of classifiers and found that Logistic Regression
gives improved results with the Doc2Vec encoding
scheme.

4.4 Data Diversity of Augmented Data

The diversity of the generated data by different aug-
mentation techniques are measured by the Bilin-
gual Evaluation Understudy (BLEU) score (Pap-
ineni et al., 2002). The BLUE score ranges be-
tween 0 and 1. The lower the value, the better is
the diversity in the data. Thus, the BLEU score is
computed by comparing n-grams of both original
and generated text where n = 2.

As observed from Table 5, the BLEU score for
augmented data varies from 82% - 99%. The train-
ing samples are multiplied by 1.75 to 2.0 times for
data augmentation approaches. The data for Aug-
BERT is more diversified and thus, the results are
significantly improved for AugBERT rather than
AugEDA and AugBT as evident from Table 3 and
Table 4. The experimental results show that the
samples are upto 18% more diverse than those of
original training samples for AugBERT over the
Dreaddit dataset. However, the least data diver-
sity is observed for AugEDA and AugBT over the
SDCNL dataset.

4.5 Statistical Significance

In this Section, to understand the importance of
generating more instances in training data is per-
formed using three different data augmentation
techniques. The statistical student’s t-test was used
to test the significance of the improvement in clas-
sifier using augmented data with p — value as 0.05,
0.10, and 0.15. The resulting value for t-test in
Dreaddit and SDCNL over AugBERT is obtained
as 0.00033 and 0.09241 which shows the overall
significant improvements with 5% and 10% signifi-
cant levels, respectively. The results are improved
in 83%, and 66% in the cases of different encoding
vectors and classifiers which are used as learning
based algorithms for AugBERT and AugEDA data
augmentation techniques, respectively.



Methods used | Original AugBERT AugEDA AugBT
P R F1 P R F1 P R F1 P R F1

RF+Word2Vec+TFIDF 0.68 0.84 075|069 084 076 | 0.68 0.81 0.74 | 0.67 0.84 0.74
SVM+Word2Vec+TFIDF 069 075 072 ] 069 079 074" | 069 0.79 0.74" | 0.74 0.66 0.69
LR+Word2Vec+TFIDF 071 078 0.74 | 071 079 075 | 0.72 0.79 0.75 | 0.71 0.77 0.74
RF+Doc2Vec 065 0.78 0.71 | 0.62 0.83 0.71 0.65 0.80 0.72 | 0.63 0.82 0.72
SVM-+Doc2Vec 0.74 076 075 | 073 0.78 0.76 | 0.74 0.73 0.73 | 0.73 0.75 0.74
LR+Doc2Vec 073 075 074 | 073 078 0.76* | 0.72 0.73 072 | 0.72 0.76 0.74
RF+Word2Vec+Doc2Vec 0.85 0.67 0.75 ] 067 086 0.75 | 0.68 0.86 0.76 | 0.66 0.84 0.74
SVM+Word2Vec+Doc2Vvec | 0.75 0.68 0.71 | 0.70 0.74 0.72 | 0.73 0.71 0.72 | 0.71 0.74 0.72
LR+Word2Vec+Doc2Vec 076 0.69 072 | 071 076 073 | 0.75 0.78 0.76* | 0.71 0.76 0.73
RF+TFIDF 070 0.73 071 [ 0.69 079 0.74 | 0.67 0.84 0.747 - - -
SVM+TFIDF 079 0.68 0.73 | 0.74 0.78 0.76* | 0.70 0.73 0.72 - - -
LR+TFIDF 068 082 074|070 080 075 | 0.76 0.75 0.75 - - -

Table 3: Classification Results on Dreaddit Dataset: Precision(P), Recall(R), F-measure(F1) score on the Original
and Augmented Datasets using BERT, EDA and BackTranslation. Text in bold shows the maximum F1 score
achieved by the model. ’-’ indicates no results. *+’ indicates significantly different results using statistical t-test.

Methods used | Original AugBERT AugEDA AugBT
P R F1 P R F1 P R F1 P R F1

RF+Word2Vec+TFIDF 068 0.67 067 | 0.69 0.69 0.69" | 0.63 0.66 0.65 0.65 0.68 0.67
SVM+Word2Vec+TFIDF 0.69 0.67 068 | 0.65 0.66 0.66 0.67 0.70 0.69 0.63 0.67 0.65
LR+Word2Vec+TFIDF 0.63 070 0.66 | 0.67 0.73 0.70* | 0.65 0.69 0.67 | 0.61 067 0.64
RF+Doc2Vec 0.65 0.57 061 | 063 0.51 0.56 0.64 0.55 0.60 0.59 0.57 0.58
SVM+Doc2Vec 0.65 0.66 065 | 066 073 0.70* | 0.66 070 0.68" | 0.65 0.69 0.67"
LR+Doc2Vec 0.65 0.67 0.66 | 0.68 0.76 0.71* 0.68 0.71 0.69" | 0.66 0.69 0.68"
RF+Word2Vec+Doc2Vec 063 0.64 063 | 0.63 0.58 0.60 0.67 0.69 0.68" | 0.66 0.67 0.67"
SVM+Word2Vec+Doc2Vec | 0.65 0.67 0.66 | 0.64 0.70 0.67 060 0.66 0.66 | 062 064 063
LR+Word2Vec+Doc2Vec 0.64 0.64 064 | 064 073 0.68 | 059 065 062 | 061 0.65 0.63
RF+TFIDF 061 0.85 0.71 | 0.63 0.81 0.71 - - - - - -
SVM+TFIDF 0.71 0.75 073 | 0.67 085 0.75% 0.76 073 0.75" | 0.71 0.77 0.74
LR+TFIDF 0.70 0.77 073 | 0.68 0.85 0.76* | 0.76 0.75 0.75* | 0.71 077 0.74

Table 4: Classification Results on SDCNL Dataset: Precision(P), Recall(R), F-measure(F1) score on Original and
Augmented Datasets using BERT, EDA and Back Translation. Text in bold shows the maximum F1 score achieved

by the model. ’-’ indicates no results.’+ indicates significantly different results using statistical t-test.
Dreaddit | SDCNL Dreaddit | AugBERT | AugEDA | AugBT
AugEDA 0.97 0.99 t-test -4.69041 1.07605 | 0.75593
AugBERT 0.82 0.97 p-value 0.00033 0.15247 | 0.23568
AugBT 0.88 0.99

Table 5: Data Diversity using BLEU Score

4.5.1 Statistical Significance for Dreaddit

It is evident from Table 6 that AugBERT and
AugEDA show significantly improved results and
there is no effect of AugBT over domain-specific
data augmentation for mental health.

On drilling down the results, it is observed that
the AugBERT based augmented results for SVM
classifier are significantly better than the other clas-
sification techniques. Some more significant im-
provements with the use of LR classifier is ob-
served as shown in Table 3 with as high as 5% for

Table 6: Statistical Significance of overall results with
Original Data

AugEDA. The variation of improvement in results
ranges upto 4.1%, 5.5% and 1.3% for AugBERT,
AugEDA and AugBT, respectively.

4.5.2 Statistical Significance for SDCNL

The significant improvements over SDCNL dataset
is observed on the basis of p — value as 0.05, 0.10
and 0.15 as shown in Table 7. The results have
shown that the AugBERT and AugEDA gives bet-
ter results for 10% variation in results and validates
the hypothesis that the augmented data gives sig-
nificant improvements over the original dataset.
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SDCNL | AugBERT | AugEDA | AugBT
t-test -1.42426 | -1.6361 | 0.25118

p-value 0.09241 0.06644 | 0.40338

Table 7: Statistical Significance of overall results with
Original Data

Similar to the Dreaddit observations, the signifi-
cant improvements with LR classifier are observed
for classifying mental health into clinical depres-
sion and suicidal tendencies. On the contrary, SVM
with Doc2Vec shows much better results with Aug-
BERT, AugEDA and AugBT.

5 Conclusion

In this work, we use the data augmentation ap-
proach for mental health classification on two dif-
ferent social media datasets. The experimental
results using Logistic Regression classifier and
Doc2Vec embedding shows significant improve-
ments in F1 score and Precision with AugBERT.
To tackle the problem of data sparsity and sup-
port the automation of the 3-Step theory over so-
cial media data (Klonsky and May, 2015), the data
augmentation over mental healthcare may give re-
markable results. In future, we are planning to
use other domain-specific libraries and neural ma-
chine translation for explainable and conditional
data augmentation.
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A Appendix

Samples of original and augmented data

Original data

Augmented data
(AugEDA)

Augmented
data(AugBERT)

Augmented
data(AugBT)

He said he could run
some more tests, but
he didn't think it would
help.

he talk about my said
run tests but he didnt
think would help

he said he tried run
some more medicine,
but he weren't think it
would help.

he said he could run
some clinical tests, but
he didn't think it would
okay.

Is always adamant
about keeping contact
with the people she
cheated with.

is always headstrong
about contact with the
people me cheated
with

then rather adamant
about keeping contact
featuring the people
she cheated with

is always adamant by
keeping track featuring
strange people she
cheated with

It seemed like a
circulation problem,
and | panicked and of
course ended up in the
ER again.

it seemed as a
circulation problem i
panicked and of course
finish up in er again

many said like a
relationship collapsed,
and i, and same course
ended up entering the
er again

it seemed had mostly
circulation problem,
and i panicked and of
course ended up in er
again.
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Abstract

Text Style Transfer (TST) aims to alter the
underlying style of the source text to another
specific style while keeping the same content.
Due to the scarcity of high-quality parallel
training data, unsupervised learning has be-
come a trending direction for TST tasks. In
this paper, we propose a novel VAE based
Text Style Transfer with pivOt Words Enhance-
ment leaRning (VI-STOWER) method which
utilizes Variational AutoEncoder (VAE) and
external style embeddings to learn semantics
and style distribution jointly. Additionally, we
introduce pivot words learning, which is ap-
plied to learn decisive words for a specific
style and thereby further improve the overall
performance of the style transfer. The pro-
posed VI-STOWER can be scaled to differ-
ent TST scenarios given very limited and non-
parallel training data with a novel and flexi-
ble style strength control mechanism. Exper-
iments demonstrate that the VI-STOWER out-
performs the state-of-the-art on sentiment, for-
mality, and code-switching TST tasks .

1 Introduction

Text style transfer (TST) is an important task in the
natural language generation area, aiming to control
the certain manner of the semantics style expressed
in the generated text. Such styles include but not
limit to emotion, humor, politeness, formality, and
code-switching. For instance, sentiment transfer
is widely seen in sentiment analysis for review-
ing comments (e.g., yelp, twitter), and targets on
converting the original negative/positive comment
into a new comment with same topic but opposite
sentiment (Hu et al., 2017; Shen et al., 2017); for-
mality transfer is commonly used in documenting,
aims at transferring the informal oral expression
Work done during an internship at Amazon Alexa AL

'The code is available at https://github.com/
felixxu/VT-STOWER.
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into a formal written expression (Jin et al., 2020).
In this paper, we also consider code-switching as
a style transfer task, which has not been explored
by previous works. Code-switching is a compli-
cated linguistic phenomenon where a speaker al-
ternates between two or more languages in one
utterance, either inter-sentential or intra-sentential.
The code-switching transfer is a more challenging
task considering cross-lingual alignment and lim-
ited available training data in nature. Examples
of these three style transfer tasks are shown in the
Figure 1.

Because of the scarcity of high-quality parallel
training data, unsupervised learning has become
the mainstream for TST tasks. Existing works on
unsupervised TST learning can be roughly cate-
gorized into Disentanglement (Shen et al., 2017;
Hu et al., 2017; Fu et al., 2018; John et al., 2019)
and Style Attribute Rewriting (Lample et al., 2019;
Dai et al., 2019; Yi et al., 2020). Disentanglement
approaches strip style features from the content
and incorporate the content features with the tar-
get style representation. However, researchers be-
come less focus on disentanglement methods after
Locatello et al. (2019) theoretically proved disen-
tanglement approaches are impossible to represent
style fully with unsupervised learning. The style
attribute rewriting enforces the model to focus on
style-independent words by cycle reconstruction
and rewriting the style attributes with style em-
beddings. Dai et al. (2019) firstly proposed style
transfer model based on the transformer architec-
ture along with target style information. Lample
et al. (2019) reported that a good decoder can gen-
erate the text with the desired style by rewriting the
original style. However, the style strength of the
generated sentences cannot be easily adjusted in
above mentioned works.

Variational autoencoder (VAE) is firstly pro-
posed by (Kingma and Welling, 2014) for gener-

Proceedings of the 18th International Conference on Natural Language Processing, pages 162—172
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ation by formatting the latent distribution instead
of feeding a single latent feature to the decoder.
Many TST models have been benefited from the
architecture of VAE. Bowman et al. (2016); John
et al. (2019) showed that the latent space learned
by VAE is considerably smoother and more contin-
uous than the one learned by Deterministic Autoen-
coder (DAE). Hu et al. (2017) proposed a new neu-
ral generative model that combines VAE and holis-
tic attribute discriminators for effective imposition
of the style semantic structures. In this paper, we

Negative
Positive
Informal
Formal
Hindi
Code-switch

they were dry and truly tasteless.

they were tasty and truly delicious.

u ’ll find a man who really deserves u one day.

you will find a man who really deserves you one day.

AT SATUehI AR fhet® U9 8 7 (Do you like animation movies?)
AT eI GHHM movies THE § ? (Do you like animation movies?)

Figure 1: Examples of different TST. Including sen-
timent style transfer (negative <> positive), formality
style transfer (informal <+ formal), code-switch style
transfer (single language <+ code-switch sentence).

also leverage the VAE and propose a novel method
called VAE based Text Style Transfer with pivOt
Words Enhancement leaRn-ing (VI-STOWER) for
TST tasks. VI-STOWER utilizes both VAE and
style embeddings to jointly learn the distribution of
content and style features. More importantly, we
boost the performance of TST tasks much more
by inventing pivot words enhancement learning.
Compared with other style-transfer methods, our
proposed VI-STOWER has a bunch of advantages.
In general, the advantages and contributions of the
VT-STOWER can be summarised as follows:

e VI-STOWER integrates the advantages of
both VAE and style embeddings. The former
catches continuous style expression distribu-
tion in language itself while the latter differen-
tiates embedding between original style and
target style.

VT-STOWER has the flexibility to adjust
the target style strength by granting differ-
ent weights to the auxiliary target style em-
bedding; This allows VI-STOWER to bet-
ter migrate to different style transfer scenar-
ios, which is rarely studied in previous style-
transfer work.

With the pivot words masking enhancement
mechanism, VI-STOWER is able to focus
more on the pivot words (certain words that
can determine the style of the sentence) and
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be aware of which words have higher prob-
ability to be transferred in the TST. This en-
hancement significantly improves the transfer
accuracy while maintaining original topic.

VT-STOWER can be easily scaled to dif-
ferent types of TST tasks. To the best of
our knowledge, we are the first to consider
code-switching in perspective of style trans-
fer and demonstrate that VI-STOWER can
be successfully applied to the Hindi-Hinglish
code-switching transfer. Therefore, we pro-
vide more potential solutions for the the code-
switching problems beyond translation by
which translating from single language to
code-switching expression is very hard given
limited training data.

We evaluate VI-STOWER on the benchmark
dataset of sentiment, formality transfer tasks,
and the code-switching style transfer. Experi-
mental results on all tasks demonstrate better
overall performance against state-of-the-art
methods, which highlights effectiveness and
wide application of VI-STOWER.

2 Proposed Method

The training of VI-STOWER consists of two
stages. The training stage I is a VAE reconstruction
task in which the input text x will be reconstructed
together with external style embeddings. The la-
tent space of content distribution is learned by VAE,
and the original and target style mapping will be
learned and saved in style embeddings. The trained
VAE and style embeddings will also be utilized in
the second training stage.

To make the style transfer focus on pivot words
(e.g., emotional words in sentiment TST) while
maintaining other words unchanged (so that the
fluency and semantics can be largely preserved),
we fine-tune the VAE with pivot word masking
in training stage II. The masking is based on the
probability distribution of pivot words for specific
styles, which is learned from a style classification
task.

In the inference stage, VI-STOWER uses the
learned external target style embeddings to adjust
the sampled latent vector of the original input to
the target style. The adjusted sentence vector will
then be input to the decoder to generate the target
style text.



2.1 Training Stage I: VAE & Style
Embeddings

Figure 2a presents the details of training stage 1.
Given a sentence x whose style type is known, we
firstly extract the contextualized vectors through a
pre-trained language model as the input to the VAE
model, since a pre-trained language model (such as
RoBerta (Liuet al., 2019) and XIL.M-R (Conneau
et al., 2020)) can improve the performance of the
downstream models, especially when the training
data size is small (Peters et al., 2018). After that,
similar to typical VAE structure from Bowman et al.
(2016); John et al. (2019), a multi-layer transformer
is used as the encoder to encode z to a mean vector
u € R? and a variance vector ¥ € R to construct
a latent distribution N'(u, X). d represents the di-
mension of the latent space. z is the vector sampled
from the latent distribution and will be input to the
decoder (which is also a multi-layer transformer) to
reconstruct the original text. The latent distribution
is assumed to be a normal distribution N (0,T). The
standard loss function of the VAE model is defined
as:

Lyge = _Eq(z\x) [10gp(l’|2’)]+,8]KL(q(Z’$) || p(Z

(1)
where the first term represents the likelihood of the
reconstruction of the original text = while the sec-
ond term is the Kullback—Leibler (KL) divergence
between the latent distribution and standard normal
distribution. p(z) represents the prior which is the
standard normal distribution N (0,1), and ¢(z|z) is
the posterior distribution in the form of N (p, X). 8
is the hyperparameter balancing the learning capac-
ity between self-reconstruction and style features
(Higgins et al., 2016).

Style embeddings are also learned in this train-
ing stage. Instead of disentangling style attributes
from latent features (Shen et al., 2017; Hu et al.,
2017; Fu et al., 2018; John et al., 2019), we uti-
lize external style embeddings to learn the orig-
inal and target style representations. The advan-
tage of external style embeddings is that they can
avoid separating latent feature which leads to the
lower capacity of vector representation (Dai et al.,
2019), and can differentiate the space of different
styles. The set of style embeddings is defined as
S = {51,802, ,8k},5 € RF*4 where k is the
number of styles (k is commonly to be 2 in TST
tasks). Style embeddings are generated by a linear
forward network whose output dimension is d. This
style embedding network is randomly initialized

)
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and will be updated by minimizing the similarity
between the style embeddings and latent feature of
the input instances.

To minimize such similarity, we calculate the
cosine similarity between style embeddings s;
(1 < ¢ < k) and sampled latent feature z as the
style loss. The assumption is that the style embed-
ding should be highly related to the latent feature
encoded from the sentence which belongs to the
same style, e.g., the distance between positive style
embedding and latent vector encoded from positive
sentence should be close to 1, while the distance
should be 0 between positive style embedding and
latent vector from the negative input sentence. The
style loss is defined as follows:

k
Estyle = - Z d; IOg(U(COS(siv Sg(z)))) (2)
=1

For brevity, we only present the loss for a single
style sentence, where d; represents the ground truth
distance. Specifically, if 7;; style is the style of
the input sentence, d; = 1, otherwise, d; = 0.
o(+) here is the sigmoid activation function which
controls the range of cosine similarity between 0
and 1. sg(-) is the ‘stop gradient’ function, e.g.,
the feature sg(z) is extracted through the latent
distribution and used as an independent constant
vector for computing the Lg;,;.. The VAE loss is
slightly modified from Equation 1 by adding style
embedding to hint decoder the style of sentences to
be generated.

Lyge = _Eq(z\m) [1ng(x|z + Sg(SI))]

+ 5 -KL(g(z[z) [ p(z)) 3)

where s, is the style embedding of sentence .
Similarly, the s, is also used as a constant vector.
Therefore, the total loss function is then defined as:

4

where \yqe and Ay e are penalty weights, which
are hyperparameters to balance between VAE loss
and style embeddings loss.

Etotal = )\vaeﬁvae + )\styleﬁstyle

2.2 Training Stage II: Pivot Words Masking

In Stage I, we co-train VAE & style embeddings
where we show how to leverage learned style em-
beddings to further improve the VAE model. In
stage II, We further enhance the model by masking
pivot words to prompt decoder to focus on pivot
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Figure 2: Workflow of two training stages. a) Training stage I: VAE & style embeddings training. The VAE
structure learns to reconstruct the inputs sentence z, and the style embeddings learn the vector representation of
each style. PTLM represents Pre-Trained Language Model. b) Training stage II: pivot words masking training. The
VAE is further fine-tuned with similar reconstruction task with additional pivot words masking. The frozen style
embeddings are added to the latent vector to reconstruct the original sentence. We frozen the style embeddings in
this step since the style-related pivot words have higher possibility to be masked and latent vector loses the style
information which is the key for style embeddings training.

words, because certain style-related words play cru-
cial roles in TST (Fu et al., 2019). For instance,
the pivot word of the sentence ‘I am disappointed
with the restaurant’ in sentiment transfer is ‘dis-
appointed’ because this word contributes the most
to the negative sentiment. However, other words
such as I, was” are anchor words, which are un-
related to the sentiment but affect the semantics
thus should be unchanged during the style trans-
fer. Therefore, this stage of training is important
to enhance the model ability in transferring pivot
words while keeping anchor words. This stage can-
not be merged into training stage I because 1) in
this stage style embeddings have no visibility to the
style-related pivot words so that the style informa-
tion is hard to be learned; 2) the style embeddings
learned in training stage I have auxiliary function in
helping reconstructing masked pivot words during
fine-tuning the VAE.

However, randomly masking words in input sen-
tence and only relying on style embeddings to em-
phasize the pivot words does not achieve ideal
results. A more efficient way is to learn which
words are more possible to be pivot words for a
specific style, and mask them based on the proba-
bility. Similar to Sudhakar et al. (2019), we utilizes
the importance score distribution to indicate the
possibility of words being pivot (a pivot word has
a higher score). Such importance score distribution
is achieved from the attention weights of a style
classifier. Specifically, we train a style classifier
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based on a pre-trained language model, appending
with a softmax layer over the attention stack of the
first token. The first token is usually a special sym-
bol that represents the beginning of the sentence
(e.g., “<s>’), and also collects other tokens’ atten-
tion weights that correspond to their significance
in identifying the style of the input sentence. The
importance score of a token w in the input sentence
x is defined as follows:

T
Q<s>,z‘Kw7¢
Y

L
a(w) = % Z softmax e ( 5)

=1

)

where L is the number of attention heads. (), K are
quires and keys in the final layer of the language
model (Vaswani et al., 2017). Their subscript <
w, 1 > represents the vector of token w in 4, head.
v is a hyperparameter ranging in (0,1) to adjust the
sharpness of the score distribution (smaller means
sharper).

After we get the pivot words probability, we
mask words in the input sentences based on this
importance score distribution. Specifically, every
token x; is assigned a random number p;, conform-
ing to the uniform distribution p; ~ uniform[0,1].
Tokens are masked into a special symbol ‘<mask>’
if their assigned number is smaller than the score
(pi < a(z;)) so that words that possess higher im-
portant scores have higher probability to be masked.
Following the previous example, the input sen-
tence would be masked as ‘I was <mask> with
the restaurant’. In this way, masked sentence pre-



serves the content but with style attributes removed.
Then the VAE model is fine-tuned to reconstruct
masked sentence to the original sentence by adding
the corresponding style embedding to the latent
feature. The loss function is defined as follows:

Lyge = _Eq(z|x) [logp(x\z + Sg(S;))]

+ 8- KL(q(z|2) | p(2)) (6)

where s/, is the style embedding which has the
same style as input x. Note that we do not up-
date style embeddings in this stage because the
style embeddings are used for assisting fine-tuning
the decoder with style information, and their gen-
eral style representation should not be impacted by
the pivot words reconstruction loss. Moreover, to
prevent the latent space of VAE from shifting or
distorting to unreasonable distribution that only de-
scribes masked sentences, we conduct pivot words
masking in randomly 50% of sentences.

Although Madaan et al. (2020) has a similar
method tagging the source style phrases and gen-
erating the target style sentences by using n-gram
tf—idfs, the core differences of our stage II method
are: 1) each word has a probability of being masked
calculated by the attention scores of the stacked
classifier on a language model, which leads to a
smooth word masking probability distribution; 2)
VAE decoder reconstructs the masked sentences
using both information of latent space and external
style embeddings.

2.3 Inference stage

In the inference stage, the latent representation z
generated from the input sentence x through VAE
will be adjusted before sending to the decoder. In
detail, the latent vector z will be added the target
style embedding and subtracted the style embed-
ding of original style as z. Intuitively, we expect
the injection and removal of style information is
completed by the addition and subtraction oper-
ations of style embeddings. The updated latent
representation is expressed as follows:

(7)

2 =z4w- (s — 5,)

where s; and s, are target and original style embed-
dings trained in the stage I respectively. w repre-
sents the style weight that adjusts the style strength
applied to the sentence generation. A higher weight
means stronger style attributes will be injected for
generation.
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3 Experiments

3.1 TST Evaluation Tasks and the Settings

We evaluate VI-STOWER with three different TST
tasks: sentiment transfer, formality transfer, and
code-switching transfer.

For sentiment transfer, we adopt the Yelp dataset
(Liet al., 2018), in which each sample is a business
review of a restaurant and is labeled as positive
or negative. For formality transfer, We adopt one
of the largest corpus for formality transfer task,
namely Family and Relationships domain data in
GYAFC (Grammarly’s Yahoo Answers Formal-
ity Corpus) (Rao and Tetreault, 2018). For code-
switching transfer, we evaluate VI-STOWER on a
Hindi—Hinglish transfer task, which is extracted
from the English-Hinglish translation dataset at
LinCE (Linguistic Code-switching Evaluation)
(Aguilar et al., 2020). We first translate English
sentences into Hindi by Amazon Translation Ser-
vice and then transliterate Latin scripts of Hindi
words into Devanagari form by using indic-trans
tool (Bhat et al., 2014) to keep the consistency of
the script of language . Note this dataset is very
low-resource, which only contains 7K sentences
for training. Similar to GYAFC set, we shuffle the
training data and treat it as unpaired data. Note
that two of the training sets are transformed from
originally paired dataset instead of directly using
richer unpaired datasets, it is because we want to
make a fair comparison with other referenced ap-
proaches. The training and test set size for each
task is presented in Table 1.

Tasks

Sentiment Transfer (positive/negative)
Formality Transfer (formal/informal)
Code-Switching Transfer (Hinglish/English)

test set

500/500
1K/1.3K
300/300

training set  evaluation set
266K/177K 2K/2K
52K/52K 2.2K/2.7K
7K/TK 300/300

Table 1: Training, evaluation, and test set size of three
evaluation tasks.

Considering that GYAFC and Yelp dataset are
written in English and the code-switching dataset
is in mixed languages of Hindi and English, we use
RoBERTa as the pre-trained language model for
sentiment and formality transfer tasks, and XLM-R
(Conneau et al., 2020) for code-switching transfer.
Also, we fine-tune the style classifier to obtain im-
portant score distribution by leveraging RoBERTa
and XLM-R for the corresponding transfer tasks.

>The output of translator is Devanagari form while the
original script of Hindi in LinCE is Latin.



More training hyperparameters are shown in Ap-
pendix A.

3.2 Evaluation Metrics

Style Transfer Accuracy (Acc) Style transfer
accuracy (Acc) is defined as the ratio of the number
of successfully transferred sentences and the total
number of input sentences. Following previous
studies (Dai et al., 2019; Sudhakar et al., 2019), we
leverage fastText classifier (Joulin et al., 2017) to
classify whether the original text have been suc-
cessfully transferred to the target style. The clas-
sifier is trained on the same training data used for
style transfer. The three classifiers achieve 97.6%,
85.75% and 99.7% accuracy for sentiment, formal-
ity and code-switching style classification itself,
respectively.

Perplexity (PPL) We also measure the fluency
of the transferred sentences by calculating their
perplexity. The lower the perplexity is, the more
fluent the generated sentences are. For the GYAFC
and Yelp dataset which are in English, we use the
pre-trained language model GPT2 (Radford et al.,
2019) to compute the perplexity, where no further
fine-tuning is conducted. However, GPT2 does
not apply to other languages or code-switching
sentences. Following Samanta et al. (2019), we
train a character-level LSTM (Kim et al., 2016)
on the code-switching training data and utilize this
model to derive the perplexity of generated code-
switching sentences.

BLEU Scores Content preservation is evalu-
ated by the tokenized BLEU scores (Papineni
et al., 2002) between the transferred sentences and
human-authored references, which is calculated
with the multi-bleu.perl. Note that GYAFC
dataset has four human references, so the BLEU for
GYAFC is the mean BLEU scores between the gen-
erated sentences and four references. Because there
is no human reference for code-switching task, we
report BLEU scores between transferred sentences
and original sentences for code-switching transfer
instead.

Geometric Mean (GM) Following Yi et al.
(2020), We also report the geometric mean of accu-
racy, BLEU, ﬁ as the overall performance.

3.3 Main Results

The performance of VI-STOWER and previous
works are shown in Table 2. First of all, we can
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Models | Acct PPL| BLEU{ GM?

Sentiment Transfer (Yelp)

CrossAlignment 740 4291 9.06 5.63
Delete & Retrieve 87.5  40.66 5.99 5.21
B-GST 843 2527 22.82 8.41
Style Transformer 83.9  43.60 28.29 8.57
Deep LatentSeq 83.0  27.08 24.03 8.46
StyIns 91.5 42.60 25.11 8.49
Tag & Generate 87.5 3298 21.80 8.17
Ours (stage I, w = 4) 91.7 3835 18.51 7.75
Ours (stage I, w = 2) 91.1  30.78 23.97 8.61
" Human Reference | 741 2740 1000  13.08
Formality Transfer (GYAFC)
CrossAlignment 65.35 13.66 1.57 3.40
Delete & Retrieve 53.85 29.70 11.71 5.71
Style Transformer 56.05 48.72 24.67 7.09
Ours (stage I, w = 4) 80.9  31.90 14.19 6.92
Ours (stage II, w = 3.1) 81.0 30.78 15.84 7.21
" Human Reference | § 8231 2805 1000 13.39
Code-Switching Transfer (LinCE)
Style Transformer 99.3 60145 3.47 3.78
Randomly Replace 1.02 21324  69.09 2.36
Ours (stage I, w = 0.75) | 66.67 2991 24.30 7.81
Ours (stage II, w = 0.75) | 68.70  30.02 26.42 8.11

Table 2: Overall results of our models (VI-STOWER)
and previous methods on three style transfer tasks. The
best scores are bolded in the corresponding metric. T
means the higher is better, vice versa.

clearly see the performance improvement brought
by stage II training compared with single train-
ing stage 1. In all three transfer tasks, models
trained in stage II lead to lower PPL (or simi-
lar PPL in code-switching transfer) and higher
BLEU scores when we find a w to control them
in a similar Acc, which achieves better overall
performance. For instance, compared with the
model trained in stage I with w = 4 in the sen-
timent transfer, the model fine-tuned in stage II
achieves similar accuracy with w = 2 (91.7% vs.
91.1%). At the same time, the stage II model de-
creases the PPL from 38.35 to 30.78 and increases
the BLEU from 18.51 to 23.97, which demonstrates
that the pivot words masking training is capable of
improving the smoothness of the sentences and the
preserving the content. Note that we cannot use
the same weight w for a direct comparison since
the models in two training stages have different
sensitivity to w. Therefore, we use w that produces
similar accuracy between stage I and stage II for a
fair comparison for the PPL and BLUE.

When comparing our method with several state-
of-the-art references: CrossAlignment (Shen et al.,
2017), Delete & Retrieve (Li et al., 2018), B-GST
(Sudhakar et al., 2019), Style Transformer (Dai
et al., 2019), Deep LatentSeq (He et al., 2020),
Tag & Generate (Madaan et al., 2020) and StyIns
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Figure 3: Illustration of style weight w vs. Acc, PPL and BLEU in sentiment, formality and code-switching
transfer tasks. Note there is a trade-off between Acc and PPL/BLEU. With increasing of w, Acc will increase

while BLEU drops down and PPL increases.

Negative — Positive Transfer (Yelp)

Original the place has obviously gone downhill over the years .
Style Transformer | the place has consistently gone handful over the years .
VT-STOWER the place has greatly improved over the years .
Informal — Formal (GYAFC)
Original ask her out or tell her u like or admire her .
Style Transformer | ask her out or tell her is like or admire her .
VT-STOWER ask her out or inform her that you like her .
Code-Switching Transfer (LinCE)
- T HGHA G | SITT 6 | 7S A1 el U1 o 31t H chel 7HEE fehall g |

Original

(I agree! I was not sure how to feel so.)
Style Transformer | movie &l é‘ (are movie)

T TgHA § | SIdT § | A5l I 1o had f 31 7 tight Aeww fohar =y |
Randomly Replace . .

(L agree! I put I sure had no idea that I could be felt so tight.)

S L E " .
VT-STOWER J.aglee ! & sure qi?r AT Y end & &A1 féel HE

(i agree ! T wasn’t sure how would I feel)

Figure 4: Comparison of style transfer outputs of our
models and style transformer in three transfer tasks.
Our models are stage II models in Table 2. Translations
for code-switching sentences are shown in parenthesis.

(Yi et al., 2020), the performance of their methods
is directly evaluated on their provided outputs by
using our metric evaluators. We will further discuss
how w affect the performance in next section. We
can clearly see the overall performance (GM) of
our proposed model is better than all baselines. For
evaluating the success of style transfer, accuracy is
the most critical metrics, for which VI-STOWER
also demonstrates large improvement in sentiment
and formality transfer.

In the sentiment style transfer, our model with
w = 2 (after stage II training) has competitive
accuracy (91.1%), and BLEU (23.97) compared
with the state-of-the-art methods StylIns (Yi et al.,
2020) (accuracy=91.5%, BLEU=25.41) and style
transformer (Dai et al., 2019) (accuracy=83.9%,
BLEU=28.29) but achieve much lower perplexity
(30.78) compared to 42.60 in Stylns and 43.60
in style transformer, which demonstrates that the
sentences generated from our model is closer to
the natural language. VI-STOWER also outper-
forms other previous methods by a large margin
in all three metrics. In the formality transfer, the
most competitive model is the style transformer.
Although it achieves higher BLEU scores (24.67),
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our models beats it on higher style transfer accu-
racy (81.0% vs. 56.05%) and significantly lower
PPL (30.78 vs. 48.72) with limited loss of BLEU
scores.

For the code-switching transfer, since there is
no previous TST experimenting on this task, we
train the strongest baseline (style transformer) for
this task. Interestingly, style transformer obtains
a very high accuracy (99.8%) with the costs of
very high PPL (601.46) and very low BLEU score
(3.47). The possible reason is that the style trans-
former is only able to capture partial special style
features from the small dataset (7K) and only trans-
fer sentences based on these features without fully
capturing the nature of languages, resulting in high
accuracy but low fluency and BLEU. However, VT-
STOWER can balance among the accuracy, fluency,
and BLEU to achieve reasonable results even in the
case of the low-resource dataset, which demon-
strates its generalization power. Additionally, we
also design another baseline, i.e., we randomly re-
place 15% Hindi words with English words (Zheng
et al., 2021) based on the MUSE dictionary (Con-
neau et al., 2017), because intuitively, people may
regard code-switching text generation as simply
translating several words. However, this method
only achieve 1.02% accuracy, because simple trans-
lation and replacement cannot accord with the
habit of bilingual expression in code-switching sen-
tences, namely, code-switching has its own style
according to the speakers (e.g., usually noun is
more likely to be replaced with foreign language
than preposition). Intuitively, when we compare the
VT-STOWER with original and other approaches
as shown in Figure 4, the output bilingual sentence
from VI-STOWER reads more fluent and can be
easier understood.
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Figure 5: Tllustration of the mean attention weights of token ‘<s>’ from all heads at the final layer in three TST
tasks. Higher importance scores are assigned to pivot words, which are depicted as deeper lines in the figures.

3.4 Effect of Style Weights

As shown in Equation 7, the strength of the target
style in 2’ is adjusted by the style weight w. In
Figure 3, we present metrics trend with five dif-
ferent w for the models trained in stage II 3, and
demonstrate how the style weight w affects the out-
puts. Taking sentiment transfer task as an example,
when w is increased from 0.5 to 2.5, the transfer
accuracy climbs from 17.3% up to 95.9%;, but the
BLEU score drops from 27.44 down to 20.85, and
PPL increases from 24.77 to 32.8. The reason is
when increasing w, more style information is in-
jected into the latent vector that the decoder pays
more attention to the target style feature rather than
the naturalness and content of generated sentences.
Therefore, w is a trade-off hyperparameter between
the transfer accuracy and PPL/BLEU. Examples
of generated sentences transferred from positive
to negative sentiment with w = 1.5,2, 2.5 are il-
lustrated in Table 3. When w = 1.5, the model
still can find a positive word, ‘enjoying,” which
makes the sentence ironical. In the case of w = 2,
the ‘enjoying’ is rephrased to ‘avoid’, turning the
sentence into a full negative attitude. If we further
increment w = 2.5, more negative words will be
added regardless of the smoothness of the sentence.
Similar discussions also hold for the formality and
code-switching transfer, where their results versus
various style weights are illustrated in Figure 3b
and 3c.

3.5 Importance Score Distribution

Recall that for the training stage II, the importance
scores are derived from the attention scores of the

3w ranges from 0.5 to 2.5 with an interval of 0.5 for sen-
timent and formality transfer, and from 0.25 to 1.25 with an
interval of 0.25 for code-switching transfer.
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Positive — Negative with various w

Original | i will be going back and enjoying this great place !

“w = 1.5 | i will be going back and enjoying this terrible place !
w= i will be going back and avoid this terrible place !
w = 2.5 | i will be going back and worst rude avoid this terrible place !

Table 3: Examples of sentences transferred from pos-
itive to negative sentiment with various settings of w.
The higher w is the more negative words are injected in
the sentences.

BOS token ‘<s>’, which are the mean scores of all
heads from the last layer of a pre-trained encoder.
Figure 5 presents the examples of importance score,
showing how the score value represen