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Preface

Research in Natural Language Processing (NLP) has taken a noticeable leap in recent years. The
tremendous growth of information on the web and its easy access has stimulated a large interest in
the field. India, with multiple languages and continuous growth of Indian language content on the
web, makes a fertile ground for NLP research. Moreover, the industry is keenly interested in obtaining
NLP technology for mass use. Internet search companies are increasingly aware of the large market for
processing languages other than English. For example, search capability is needed for content in Indian
and other languages. There is also a need for searching content in multiple languages, and making the
retrieved documents available in the language of the user. As a result, a strong need is being felt for
machine translation to handle this large instantaneous use. Information Extraction, Question Answering
Systems, and Sentiment Analysis are also showing up as other business opportunities.

These needs have resulted in two welcome trends. First, there is a much wider student interest in
getting into NLP at both postgraduate and undergraduate levels. Many students interested in computing
technology are getting interested in natural language technology, and those interested in pursuing
computing research are joining NLP research. Second, the research community in academic institutions
and government funding agencies in India have joined hands to launch consortia projects to develop NLP
products. Each consortium project is a multi-institutional endeavour working with a common software
framework, common language standards, and common technology engines for all the different languages
covered in the consortium. As a result, it has already led to the development of basic tools for multiple
languages that are interoperable for machine translation, cross-lingual search, handwriting recognition,
and OCR.

In this backdrop of increased student interest, greater funding, and most importantly, common standards
and interoperable tools, there has been a spurt in research in NLP on Indian languages whose effects we
have just begun to see. A great number of submissions reflecting good research is a heartening matter.
There is an increasing realization to take advantage of features common to Indian languages in machine
learning. It is a delight to see that such features are not just specific to Indian languages but to a large
number of languages of the world, hitherto ignored. The insights so gained are furthering our linguistic
understanding and will help in technology development for hopefully all languages of the world. For
machine learning and other purposes, linguistically annotated corpora using the common standards have
become available for multiple Indian languages. They have been used for the development of basic
technologies for several languages. A larger set of corpora are expected to be prepared in the near future.

These conference proceedings contain papers selected for presentation in technical sessions of ICON-
2021. We are thankful to our excellent team of reviewers from all over the globe who deserve full
credit for the hard work of reviewing the high-quality submissions with rich technical content. From 204
submissions, 78 papers were selected, 51 long papers, 27 short papers, 2 doctoral consortium papers,
representing a variety of new and interesting developments, covering a wide spectrum of NLP areas and
core linguistics. Besides presentations, the conference also hosted 8 tutorials, 4 workshop, 2 shared tasks,
and 3 system demonstrations.

We are deeply grateful to Prof. Josef van Genabith from DFKI and Saarland University (Germany), Prof.
Philip Resnik from University of Maryland (USA), Prof. Rada Mihalcea from University of Michigan
(USA) and Dr. Louis-Philippe Morency from Carnegie Mellon University (USA) for giving the keynote
lectures at ICON-2021.
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We thank all the area chairs for the various tracks at ICON-2021, especially, Dipti Misra Sharma,
Pawan Goyal (Syntax and Semantics), Kamal Kumar Choudhary, Krishna Prasad Miyapuram
(Computational Psycholinguistics), Asif Ekbal, Shubhashis Sengupta (QA, Information Extraction),
Ranjani Parthasarathi, Girish K. Palshikar (Information Retrieval and Text Mining), Dipankar Das,
Raksha Sharma (Sentiment Analysis and Emotion Recognition), Girish Nath Jha, Niladri Shekhar
Dash (Language Resources and Evaluation), Srinivas Bangalore, Kalika Bali (Speech), C V Jawahar,
Asutosh Modi (Multimodality), Anoop Kunchukuttan, Karunesh Arora (Machine Translation), Monojit
Choudhury, Anand Kumar M (NLP Applications), Sudeshna Sarkar, Sandipan Dandapat (Machine
Learning in NLP), Vasudeva Varma, Sriparna Saha (Natural Language Text Generation). We also thank
Radhika Mamidi, Samar Husain (Doctoral Consortium), Partha Pakray, Vishal Goyal (Shared Task/Tools
Contest), Sudip Kumar Naskar, Amitava Das (Workshop/Tutorial) for taking the responsibilities of the
events.

We are thankful to the team members of the Centre for Natural Language Processing (CNLP) Group and
the Department of Computer Science and Engineering for making the organization of the event at the
National Institute of Technology Silchar (NIT Silchar) a success.

We heartily express our gratitude to Partha Pakray, Naresh Babu Muppalaneni, Badal Soni, Loitongbam
Sanayai Meetei, Ringki Das, Salam Michael Singh, Alok Singh for their timely help with sincere
dedication to make this conference a success. We also thank all the student volunteers who came forward
to help us with this task. Finally, we thank all the researchers who responded to our call for papers and all
the participants of ICON-2021, without whose overwhelming response the conference would not have
been a success. We wholeheartedly thank all the reviewers who accepted our invitation and spent their
valuable time reviewing the papers to maintain their high international standards. We thank the session
chairs for finding out time for our conference.
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Constrained Decoding for Technical Term Retention in English­Hindi MT
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Abstract
Technical terms may require special handling
when the target audience is bilingual,
depending on the cultural and educational
norms of the society in question. In particular,
certain translation scenarios may require
“term retention” i.e. preserving of the
source language technical terms in the target
language output to produce a fluent and
comprehensible code­switched sentence.
We show that a standard transformer­based
machine translation model can be adapted
easily to perform this task with little or no
damage to the general quality of its output.
We present an English­to­Hindi model that is
trained to obey a “retain” signal, i.e. it can
perform the required code­switching on a list
of terms, possibly unseen, provided at runtime.
We perform automatic evaluation using BLEU
as well as F1 metrics on the list of retained
terms; we also collect manual judgments on
the quality of the output sentences.

1 Introduction and Motivation

It is common for bilingual or multilingual speakers
to borrow technical terms from other, usually
high resource, languages into their native language.
This may be for several reasons, e.g. the technical
term in the high resource language may be much
more popular and therefore better understood, or
the required term may simply not exist in the
language in question. This is very common,
for example, in Indian languages, where the
language of education is frequently different from
the regional native language.
We can imagine, therefore, a scenario which

requires the automatic translation of text or speech,
with the constraint that a given list of English
domain words appear untranslated in the Hindi
output. Essentially, this can be seen as a special
case of constrained decoding with a given source­
target terminology. We make the assumption that

*Equal contribution by these authors.

the user knows the terms to be retained at run time,
and can provide this information to the system
before translating the sentence.2

2 Previous Work

The idea of constrained decoding has been
recognized as useful in several works (Hokamp
and Liu, 2017; Chatterjee et al., 2017; Hasler et al.,
2018; Dinu et al., 2019; Jon et al., 2021). Usually,
the constraints are in the form of a terminology
list, as in the above works. To our knowledge, this
is the first study on combining this concept with
introducing code­switching3 (CS) into the output
for a multilingual educational or technical setting.

3 Approach

We set up an end­to­end supervised learning
scenario aimed at teaching the model to perform
term retention. The basic idea is to train a
machine translation model to obey a “signal”,
that we can then provide at run time on selected
words. It is easy to see that such a model (the
“tagged” model) would be independent of domain
and could in theory perform term retention on
any term for which the signal was provided. We
also train a simple baseline for comparison; the
baseline model sees the same training data as the
tagged model, but does not receive any signal
that would be highlighting the terms to retain.
Therefore, given input at run time, it must rely
on past exposure on the specific terms and their
(non­)translation to perform term retention.
We provide the mentioned signal in the form

of tags i.e. <REW> and </REW> tags (standing
2We do not, however, assume that we have this

information while training, since it would be expensive and
unviable to retrain such a model every time for a new setting
and/or new domain vocabulary. In this study, we work with
English­Hindi MT.

3Linguists sometimes make a difference between the
terms code­switching and code­mixing; in this paper, they are
used interchangeably.
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Source sentence: You need to install these Python libraries.
Term list: Python, libraries
Input to the system: You need to install these <REW> Python </REW> <REW> libraries </REW>
Desired output: आपको इन Python libraries को ȸाɟपत करना चाɟहय

Figure 1: Example input to and desired output from the system

Dataset Total
sentences

Sentences
with CS

Train 250 700 123 274
Development 10 247 5 064
Test seen 5 000 5 000
Test unseen 768 768
Test w/o CS 500 0

Table 1: Types of datasets. CS Sentences: sentences
with introduced code­switching. “Test seen”: sentences
with terminology that were all seen during the training,
“Test unseen”: sentences with terminology that were
never seen during the training as retained words. Test
w/o CS: sentences with no terminology constraints.

for “retained English word”) to indicate that
the enclosed term shall be retained during the
translation, see Figure 1. This approach can be
used in any type of transformer­based translation
system and therefore can be implemented with
little to no effort in current systems.

4 Synthetic Data Creation

We used HindEnCorp 0.5 (Bojar et al., 2014)
data set and we split it into multiple parts as
seen in Table 1. We adapt pre­existing English­
Hindi parallel data so that it manifests term
retention on the target while remaining coherent
and grammatical. We leverage the fact that our
parallel corpus already contains many instances
of simple transliteration equivalents, such as
names of people, places, organizations, etc. We
thus interpret the target sentence as “retaining”
the transliterated word, while being perfectly
grammatical.4

4.1 Identifying Transliterations
Given the parallel corpus, we need to identify
pairs of transliterated words in each English­Hindi

4Although more sophisticated approaches to synthetic
code­switched data creation may be better suited for other
tasks, we find that this approach is sufficient for our needs.
This may be because term retention is in fact required to be
performed on similar words i.e. named entities or domain
terms that behave similarly to named entities.

sentence pair. We first find the word level
alignments5 in source­target pairs, using GIZA++
(Och and Ney, 2003). Then for each aligned
word pair, we check for transliteration using a
normalized edit distance threshold.6 We define our
normalized edit distance as:

NED(s, t) =
edit_distance(s, t)

max(length(s), length(t))

calculated between the English word and
the Hindi word transliterated into Latin script.7
Eyeballing the resulting pairs, we see that the
alignment step along with this threshold results in
near perfect accuracy. This method gives us a total
of 269095 transliteration pairs in the whole corpus.
Once a transliteration pair is identified in the

training corpus, we simply replace the target
side Devanagari word with the Latin­script source
word, resulting in an instance of term retention.
The original sentence pair is no longer used in the
training of the tagged model.

5 Model

We used a transformer­based model (Vaswani
et al., 2017) with vocabulary size of 32000 tokens
and with hyperparameters as described in The
University of Edinburgh’s Neural MT Systems for
WMT17 (Sennrich et al., 2017) for both of our
models. We used MarianMT framework (Junczys­
Dowmunt et al., 2018) to train the models; we let
the model train until the BLEU score (Papineni
et al., 2002) did not improve on the development
set for 5 epochs. We then selected the model with
the highest BLEU score as the model used for later
experiments. The change of BLEU score on the

5The idea is that the target transliterated word must “come
from” or be aligned with the source word, assuming a correct
word alignment.

6We use a Python transliteration tool https://pypi.
org/project/indic-transliteration/

7The threshold was tuned over a small subset of the Xlit­
Crowd: Hindi­English Transliteration Corpus (Khapra et al.,
2014): using this corpus, we found the edit distance between
the English source words and the “true” transliterations which
were back­transliterated into Latin script. For the final
experiment, we used the threshold of 0.5.
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Figure 2: BLEU score on development set per epoch

Model Seen Unseen Without CS
Baseline 28.7 16.8 22.4
Tagged 27.2 17.5 21.9

Table 2: BLEU score on test set

development set per epoch is in Figure 2. It can be
seen that the BLEU scores for both of the models
are comparable and they train for a similar number
of epochs.

6 Automatic Evaluation

There are two components of model performance:

• Retention of marked terminology

• Overall coherence and fluency

For the former, we calculate precision, recall,
and F1 over the gold retained set of words and the
set of retained terms in the output. Our evaluation
script compares the system output with the list
of terms that should be untranslated in the given
sentence. Precision is the ratio of term occurrences
in the system output that were anticipated in the
reference, out of all produced Latin terms. Recall
is the ratio of term occurrences produced by the
system out of all term occurrences anticipated by
the reference. For the latter, we use BLEU score.
The BLEU scores on test sets can be seen

in Table 2. The baseline model is slightly
better on the seen test set, while the tagged
approach outperforms the baseline model on the
unseen test set. On the “Without CS” test, the
baselinemodel still (incorrectly) produces English;
however, while the tagged model does not do this,

Model Precision Recall Micro F1
Baseline 0.43 0.63 0.51
Tagged 0.88 0.88 0.88

Table 3: Retention results on seen test set

Model Precision Recall Micro F1
Baseline 0.08 0.25 0.13
Tagged 0.51 0.85 0.64

Table 4: Retention results on unseen test set

it often produces different and sometimes incorrect
Hindi phrasing for these words as compared
to the reference, resulting in an overall lower
BLEU score. A possible explanation for this
observation is that the tagged model has to learn
to use the given signal at proper places which
can damage its performance. On the other
hand on the unseen dataset, the tagged model
receives explicit information to retain the term
and therefore outperforms the baseline model.
Results for the retention metric can be seen in
Table 3 and Table 4.
It can be seen that the tagged approach

outperforms the baseline model on both the
unseen and seen test set, demonstrating that it
indeed learns to obey the provided signal, instead
of simply relying on previous exposure as the
baseline does.8

7 Manual Evaluation

We also performed a manual evaluation to
complement the BLEU score. This evaluation was
solely for the purpose of judging the quality of
the final output regardless of whether the model
managed to retain the required words or not.

7.1 Design

We provide the annotators with the spoken form of
the candidate translation, rather than asking them
to read the script­mixed output. There are two
reasons for this: (1) we do not want the annotators
to be affected by seeing or not seeing Latin script,
(2) the spoken form is the more natural setting in
which code mixing occurs.

8Note that the drop in performance of the tagged model
in the unseen test F1 score indicates that it is not wholly
independent as yet of the terminology it has been exposed to.
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Further, in order to ensure blind evaluation of
the Baseline vs. Tagged system, we needed to
control for the fact that the Tagged system has a
higher tendency to retain words in the Latin script.
Since the user may be unfairly biased one way or
the other when judging between sentences with
different numbers of code­switched words, we
decided to select the test sentences in a controlled
manner, depending on the number and nature of
Latin­spelled (i.e. English) words in the output.
The test set partitions are listed as columns in

Tables 5 and 6: “Same # of En words” is the
group of test sentences where the Baseline and
Tagged translated outputs have the same number
of English terms, thus controlling for bias for or
against a translation simply because it has more
English. In total, there were 5 such sentences each
scored 3 times, so we collected 15 judgements on
this partition. For instance in Table 5, we see
that the tagged model was selected as better by 7
judgements and in 4 cases, it tied with the baseline.
“Same set of En words” takes this a step further:
it is the group of sentences where both model
outputs have exactly the same English words in
them; of course, they may (and do) differ in the
rest of the sentence structure, Hindi wording, etc.
Note that selecting sentences with a comparable
number of terms English in them as we do results
in an inherent advantage for the baseline model:
since the baseline model can code­switch when
it chooses rather than according to an external
signal, it is more likely to choose convenient
situations with globally better translations. This
is the reason for the “Random” test set (the last
column in Tables 5 and 6); i.e. sentences picked
randomly, regardless the output of each system,
which are intended to judge the average quality
of the baseline and tagged against each other,
even though these judgments are vulnerable to the
biases discussed above.
In the manual evaluation, we gave 3 native

Hindi speakers, also fluent in English, the source
text and recordings of the translations. The goal of
the annotation was a three­way judgment: whether
the first translation was better, the second was
better, or both were equivalent in quality.

7.2 Results and Analysis

Our manual test set covers a total of only 26
sentences, split equally between outputs from the

Same
# of En
words

Same
set of En
words

Random
∑

Baseline 4 5 3 12
Tagged 7 4 1 12
Equal 4 6 5 15
∑

15 15 9 39

Table 5: Manual test judgments for seen test set.
Overall, the set contains 13 sentences from the seen
test set, leading to the total of 39 judgments over 3
annotators. For example, we had 3 sentences (and
therefore 9 total judgments) in the randomly selected
group of sentences (“Random”); of these 9 judgments, 4
preferred the baseline model, 1 the tagged model, and 5
judgments saw the baseline and tagged outputs as equal
in terms of overall quality.

Same
# of En
words

Same
set of En
words

Random
∑

Baseline 3 8 3 14
Tagged 7 4 2 13
Equal 5 3 4 12
∑

15 15 9 39

Table 6: Manual test judgments for unseen test set. This
test set again contains 13 sentences from the unseen
test set, so a total of 39 judgments over 3 annotators
is collected. The columns have the same meaning as in
Table 5.

seen and unseen test sets;9 it is intended more
for giving a qualitative sense of the comparison.
Broadly, the evaluators considered the tagged
outputs roughly comparable to the baseline in
terms of coherence and quality, see Tables 5
and 6. Across both test sets, the Baseline
model outputs were considered better 33% of the
time (26 of 78 judgments), the Tagged model
outputs were considered better 32% of the time
(25 judgments), and the outputs were considered
roughly equivalent in quality in the remaining 35%
of the judgments.
We investigated the following questions:

• Do the models perform better on seen words
than on unseen words?

9This is because of the demanding procedure involving
sentence recordings.
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In the manual evaluation, we observed
that the models dip in fluency around the
segments with introduced English words.
For example, there is a lack of syntactic
agreement, or the model loses the thread of
the sentence.

Tagged: *आवश्यक packages हटाया जाएगा।
(*Essential packages will besg removedsg)

In this example, we need the plural inflection
of the verb phrase “हटाया जाएगा।” (will be
removed). We see these instances both in the
seen and unseen test sets; however, on the
whole, themodels are able to keep track of the
source sentences a little better with the seen
test set.

• Why does tagged do better than baseline in
sentences where the same number of English
words was produced in the output?

The baseline model is worse at retaining
fluency around code­switched words,
especially in the unseen test set. While the
tagged model also shows this tendency, it
manages to translate the shorter instances
correctly. With longer sentences, it is
performing equally bad, especially in the
unseen test set.

The “random” test set is intended to take a look at
the average outputs of the models, not controlled
for the number of English words in them. Here,
the models perform similarly, but users differ in
their preferences regarding the presence of English
words.10 Overall, the qualitative assessment yields
that the tagged model performs on par with the
baseline with respect to fluency, and of course
much better at the retention task.

8 Conclusion

The task of applying terminology constraints while
dealing with code­switched text seems especially
important in current multilingual educational and
other settings. We present a simple technique that
can adapt a vanilla transformer­based MT tool for
performing this task, by synthesizing training data
that exhibits term retention. We demonstrate that
our model performs well on unseen terminology,

10For example, in a sentence that only differs in the fact that
a word is in English in the first sentence and in the Hindi form
in the second sentence, annotators apply their preferences.

and that its general translation quality is not
damaged. Future research should consider using
code­switched parallel corpora, either for training
or fine­tuning, in order to teach the models the
various nuances of natural human code­mixing.
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Abstract 

Subword-based neural machine translation 

is almost free from out-of-vocabulary 

(OOV) words. However, it does not always 

work well for composing proper nouns. We 

propose a method to use Named Entity 

(NE) features with Factored Transformer 

for accurate proper noun translation. The 

NE features are extracted from NE 

recognition on input sentences. Our 

experimental results showed the proposed 

method outperformed the baseline 

subword-based Transformer in BLEU and 

proper noun translation accuracy. 

1 Introduction 

Recent advances in neural machine translation 

(NMT) have made machine translation (MT) 

systems useful in practical applications. However, 

translation of proper nouns still remains difficult in 

spite of its importance in practice. Proper nouns are 

sometimes processed as out-of-vocabulary (OOV) 

words in MT systems due to the limitation of the 

vocabulary size and data sparseness. Approaches 

for proper noun translation can be divided roughly 

into two approaches: the use of hand-crafted 

bilingual lexicon as the external knowledge and the 

use of subwords. 

The former approach uses a bilingual proper 

noun dictionary to translate proper nouns. Okuma 

et al (2008) proposed replacement-based proper 

noun translation. Their method uses a bilingual 

dictionary whose entries are associated with proper 

noun classes to replace a proper noun with another 

surrogate proper noun that frequently appears in 

the training corpus. Another method called 

lexically constrained decoder (LCD) (Hokamp et 

al., 2017) guarantees that proper nouns are 

translated into the target language sentence 

constrained by a bilingual dictionary (Chen et al., 

2020, Chousa et al., 2021). It extends the beam 

search algorithm to find the hypothesis that 

contains all of the proper nouns (Hokamp et al., 

2017). The dictionary-based approach works well 

only if the proper nouns to be translated are 

included in the bilingual dictionary and requires 

efforts for developing the dictionary. 

In NMT, the subword-based approach is widely 

used. Sennrich et al (2016) proposed the use of 

subwords to decompose a word into shorter units. 

The method decreases the number of OOV words 

and keeps the translation quality if input sentences 

include OOV words. However, the subword-based 

NMT does not always work on a proper noun 

translation due to wrong compositions of subword 

translations. 

In this paper, we propose a method for NMT 

focusing on the proper noun translation using 

Factored Transformer with named entity (NE) 

features. The proposed method only uses a parallel 

corpus and an NE recognition (NER) model as 

external knowledge. 

2  Related Work 

2.1 Factored NMT 

Factored NMT (García-Martínez et al., 2016) 

integrates linguistic information into an NMT 

decoder. It decomposes morphological and 

grammatical features of a word into factors. Jordi 

et al. (2019) proposed Factored Transformer as an 

extension of Transformer (Vaswani et al., 2017) for 

low-resource NMT. The outputs from its subword 

and factor embedding layers are combined. 

2.2 Named Entity Recognition  

NER identifies and classifies proper nouns in a 

sentence. Recent studies in NER use neural 

networks as well. Huang et al., (2015) used Long 

Short-Term Memory (LSTM) and Conditional 

Random Field (CRF). Arkhipov et al., (2019) used 

BERT (Devlin et al., 2018) for NER. BERT utilizes 

Named Entity-Factored Transformer for Proper Noun Translation 
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a multilayer bidirectional transformer encoder 

which can learn deep bi-directional representations 

and can be fine-tuned for various NLP tasks later. 

With respect to named entities, the use of a 

class-based language model was proposed to solve 

the problem of data sparseness in the field of 

automatic speech recognition (ASR) research field 

(Yamamoto et al., 1999, 2004). This idea was 

extended to MT (Tonoik et al., 2005, Yasuda et al., 

2017). This approach improved the translation 

performance for unknown and low-frequency 

words by using high-frequency surrogate words in 

the same category.  

The main focus of this paper is proper noun 

translation in the subword-based NMT using 

Factored Transformer and NE features from NER 

without a bilingual dictionary. 

3 Proposed Method 

We propose the use of NE features as linguistic 

factors of Factored Transformer for accurate 

proper noun translation.  

3.1 Named Entity Feature Vector  

NE features obtained from NER on a source 

language sentence are injected into the embedding 

or encoder layer, as a factor. We can use two types 

of NE features: a one-hot NE vector and an NE 

probability distribution vector. We extract the NE 

features from an input source language sentence by 

the following steps. 

1. Apply word segmentation into an input 

source language sentence. 

2. Apply subword segmentation onto the 

word-segmented input. 

3. Apply part-of-speech (POS) tags to the 

word-segmented input using a POS tagger. 

4. Recognize NE in the POS-tagged input 

sentence to obtain one-hot NE vectors or 

NE probability distribution vectors. 

5. Align those NE feature vectors with the 

subwords composing corresponding 

words. 

Here, a one-hot NE vector represents a 1-best NE 

category while an NE probability distribution 

vector represents the ambiguity of NE categories. 

3.2 Factored Transformer Architecture 

We propose a Factored Transformer model that 

uses two factors: subwords and NE features. We 

present two types of NE features and the two model 

variants in factor-injecting layers, as shown in 

Fig.1. 

 
Figure 1: 1-encoder (a) and 2-encoders models (b) 

 

1-encoder model (Fig. 1(a)): 

Each factor has its own embedding layer. The 

embedding vectors are summed up together with 

the corresponding positional encoding vector and 

sent to the following encoder layer. The rest of the 

model remains unchanged from the vanilla 

Transformer. 

 

2-encoders model (Fig. 1 (b)): 

Each factor has its own encoder in addition to the 

embedding layer. The outputs from the encoders 

are summed up and used as encoder outputs. The 

rest of the model remains unchanged. 

4 Experimental Settings 

We conducted Japanese-to-English and English-to-

Japanese MT experiments to compare the 

performance of the proposed method with a 

standard NMT method. 

4.1 Named Entity Recognition Model 

For the Japanese-to-English experiments, we used 

an NER model based on a pre-trained BERT model 

and fine-tuned it using Japanese NER training data 

generated by using the method presented by Takai 

et al., (2018). Table 1 shows the detailed parameter 

settings of the NER model.  

 

Input 
sentence

Subword token
Named Entity

Feature Extraction

Word 
Embedding

NE Feature
Embedding

1-encoder Factored Transformer (a)

Encoder

Decoder

Sum output of embeddings 

Input 
sentence

Subword token
Named Entity

Feature Extraction

Word 
Embedding

NE Feature
Embedding

2-encoders Factored Transformer (b)

Encoder

Decoder

Sum output of embeddings 

Encoder

parameter mini 

batch size 

epoch optimizer 

BERT-NER 32 4 Adam 

 Table 1:  Detail of NER Hyperparameter 
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For the English-to-Japanese experiments, we used 

the NER module of Stanza1 . In the experiments, 

the Japanese NER model had 33 categories, and the 

English NER model had 77 categories. 

As a bilingual corpus of NER training data on 

automatic construction method (Takai et al., 2018) 

in Japanese-to-English experiments, we used 10 

million Japanese and English part sentences of 

JParaCrawl. We extracted sentence pairs including 

proper nouns by using tagger and POS. Here, we 

used Sudachi2 for Japanese morphological analysis 

to find proper nouns. We chose 1,000 sentence 

pairs containing proper nouns for the NER 

training, based on the sentence pair scores 

(Morishita et al., 2020). 

4.2 MT Models 

We used Transformer and Factored Transformer 

models for NMT, with 6-layer encoders and 

decoders. The configurations of the models and 

their training were mostly the same as those of the 

vanilla Transformer, but we used different settings 

on the hyperparameters as shown in the following 

Table 2. 

   
We used SentencePiece (Kudo et al., 2018) with a 

subword unigram model for the subword 

tokenization. We used Sudachi and Moses 3  as 

Japanese and English POS taggers.   

4.3 Training and Dev. Data for MT Models 

Details of the corpus for the NMT models are 

shown in Table 3. For the Japanese-to-English 

experiments, we used a part of 10 million 

Japanese-to-English sentence pairs in JParaCrawl 

(Morishita et al., 2020) for the training of the NMT 

models. We chose 160,000 sentence pairs that 

contain proper nouns, have sentence pair scores 

higher than 0.786, and shorter than 250 subwords.  

For the English-to-Japanese experiments, we used 

all the 10 million sentence pairs in JParaCrawl as a 

training data set due to the effectiveness of the 

different conditions from the Japanese-to-English 

one: language pairs and amount of training data. 

                                                           
1 

http://nlp.stanford.edu/software/stanza/1.2.2/en/ner/on

tonotes.pt 

WMT 2020 development set 4  was used as the 

development set for all the NMT models. 

 

4.4 Evaluation Data  

Details of the evaluation data are shown in Table 4. 

For the Japanese-to-English, we used an 

evaluation dataset of 271 sentences containing a 

single proper noun. It was collected through field 

experiments with taxis in Japan and was translated 

manually. The data consisted of conversations 

between taxi drivers and travelers. For the English-

to-Japanese task, we used WMT 2020 Test set.  

 

4.5 Compared Methods 

We compared the following NMT models: 

 Transformer (baseline) 

 Proposed methods with the combination of 

the model architecture and the NE feature 

vector representations: 

o 1-encoder / 2-encoders 

o NE one-hot vector / NE probability 

distribution vector 

4.6 Evaluation metrics 

We used BLEU (Papineni et al., 2002) as a 

translation quality metric. We also evaluated 

proper noun translation accuracy (PRPacc); i.e., 

the percentage of proper noun words that correctly 

translated over the entire test set. 

2 https://github.com/WorksApplications/Sudachi 
3 http://www.statmt.org/moses/ 
4 http://www.statmt.org/wmt20/translation-task.html 

directions max token size max epoch 

J-E 7,300 60 

E-J 7,300 33 

 Table 2:  Details of NMT hyperparameters 

 

 

 direc

tion 
# of 

sentences 

# of 

subwords 

# of uniq 

subwords 

Train J-E 159,888 5,318,140 10,073 

Dev 10,000 333,933 9,941 

Train E-J 10,116,570 332,520,88

8 

47,087 

Dev 1,998 65,649 6,873 

 Table 3: Details of corpus size  

 

direction # of 

sentences 

# of 

subwords 

# of uniq 

subwords 

J-E 271 4,258 646 

E-J 1,000 32,696 5,171 

 Table 4:  Details of evaluation data size 
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5 Results 

Table 5 shows the results. In Japanese-to-English, 

the proposed 1-encoder models were worse than 

the baseline, but the 2-encoders models 

outperformed the baseline. The results by the 2-

encoder model with NE probability distributions 

showed the best performance, outperformed the 

baseline by 9.6 points in PRPacc and 2.5 points in 

BLEU. In English-to-Japanese, however, the 1-

encoder models outperformed the baseline. The 

improvement in BLEU and PRPacc was smaller 

than that in Japanese-to-English. This may be due 

to the difference in the training data sizes; the 

English-to-Japanese MT models were trained 

using the 60 times larger parallel corpus. Another 

possible reason is the difference in the degrees of 

difficulty in these domains; WMT News task 

would be more difficult than the taxi conversation. 

With respect to proper noun translation, the lack 

of a specific treatment of proper noun translation in 

the baseline resulted in worse performance than the 

proposed method. Translation examples are shown 

in Table 5. The 2-encoders models worked well on 

two types of proper nouns: the non-compositional 

proper noun of Table 6 (1), and the combination 

with proper nouns and general noun of Table 6 (2). 

This result can be assumed that the factor of NE 

feature vector directly works on the proper noun 

translation better in the near decoder.  

As shown in Table 6, 2-encoders with NE 

probability distributions have better performance 

than 2-encoders with NE one-hot vector 

performance. Expression of the ambiguity of 

proper nouns in the NE probability distributions 

method influent on not only proper noun 

translation but also the surrounding words of a 

proper noun. 

 

 

6 Conclusions 

We proposed a method to enhance accurate proper 

noun translation using subword-based NMT by 

Factored-Transformer and NE features. The NE 

feature vectors are injected into Factored 

Transformer model as factors together with 

subwords. In the Japanese-to-English experiments 

using a small bilingual training corpus, the 

proposed method using the best NE feature vector 

outperformed the baseline sub-word-based 

transformer model by more than 9.6 points in 

proper noun accuracy and 2.5 points in the BLEU 

score. It also showed some improvements in the 

English-to-Japanese experiments using a large-

scale bilingual corpus. 

In future work, we will work on automatic 

clustering of proper nouns instead of given NE 

categories. 

 

  

NMT 

Model 
NE Feature PRPacc(%) BLEU 

J-E E-J J-A E-J 

vanilla 

(baseline) 
- 56.1 46.5 11.4 17.5 

1-encoder 
One-hot 

43.2 50.1 10.1 18.8 

2-encoders 63.5 47.5 13.8 17.8 

1-encoder Probability 

distributions 

53.5 49.5 10.9 18.4 

2-encoders 65.7 46.7 13.8 17.6 

Table 5:Proper noun accuracy and BLEU 

 in J-E task / E-J task  

 

(1) Input sentence: 山の上に岐阜城があります 

(Gifu Castle is on top of the mountain.) 

vanilla - there are castle on the mountains above the mountains. 

1-encoder 
One-hot 

mount Huangshan is a mountains above the altitude. 

2-encoders there are Gifu Castle on the mountains of the mountains. 

1-encoder Probability 

distributions 

In the mountains, Gifu Castle is located above the top. 

2-encoders there is Gifu Castle on the top of the mountain. 

(2) Input sentence:  この城は豊臣秀吉が作りました 

(This castle was built by Toyotomi Hideyoshi.) 

vanilla - this castle was created by an excellent Japanese castle. 

1-encoder 
One-hot 

this castle was created by yoshino hideyoshi hideyoshinori. 

2-encoders this castle of this castle was created by toyotomi hideyoshi. 

1-encoder Probability 

distributions 

this castle was created by minister toyotomi hideyoshi. 

2-encoders this castle was created by toyotomi hideyoshi. 

Table 6: Examples of Japanese input sentence and translation output.  
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Abstract

Machine Translation is highly impacted by
social biases present in data sets, indicating
that it reflects and amplifies stereotypes. In
this work, we study mitigating gender bias
by jointly learning the translation, the part-of-
speech, and the gender of the target language
with different morphological complexity. This
approach has shown improvements up to 6.8
points in gender accuracy without significantly
impacting the translation quality.

1 Introduction

In recent years, the awareness about the bias
present in Machine Translation (MT) systems has
increased in the scientific community, especially
gender bias. Gender is manifested differently in
languages; gender bias problems occur when trans-
lating between languages with +various levels of
morphology. There is bias when the system tends
to translate according to gender roles, even when
there is no ambiguity (Prates et al., 2020).

Surveys (Sun et al., 2019; Blodgett et al., 2020;
Costa-jussà, 2019; Savoldi et al., 2021) have re-
cently shown the great efforts carried out by sci-
entists towards resolving the problem of gender
bias in NMT. Tagging and additional context ap-
proaches (Vanmassenhove et al., 2018; Moryossef
et al., 2019; Basta et al., 2020) have shown an
improvement in translation accuracy when trans-
lating from English to languages with more com-
plex morphology. Domain adaptation techniques
have proved to impact the performance of trans-
lation in (Saunders and Byrne, 2020). Debiased
pre-trained word embeddings have been leveraged
in (Escudé Font and Costa-jussà, 2019) and have
shown improvement in Spanish translations. Gen-
der bias is mainly attributed to the already present
bias in the data used to train MT systems (Savoldi
et al., 2021; Costa-jussà, 2019). Furthermore, it

has been shown that models trained on these data
tend to amplify further this bias (Zhao et al., 2018).
In this sense, research done aims to avoid or reduce
this amplification, such as fine-tuning techniques
with gender-balanced dataset corpus (Costa-jussà
and de Jorge, 2020) or annotating the source lan-
guage words of the training data with the gender
of the target language words (Stafanovičs et al.,
2020). These techniques have shown promising
results regarding gender accuracy.

In line with reducing the amplification of data,
we propose to obtain a system capable of predict-
ing the part-of-speech (pos) and the gender of the
words of the target language, besides the translation.
We expect that, by having more information about
the output words, the system maintains the qual-
ity of the translation and is able to better predict
the gender based on the context without falling so
much into the stereotype. In general, the proposed
configurations outperformed the baseline NMT sys-
tem on gender prediction accuracy by up to 6.8%
while retaining average translation performance.

2 Bias statement

Nowadays, we live in a more globalized and con-
nected world, which leads society to use MT tools
to communicate with different nationalities. The
fact that standard translators present a gender bias
harms society, helping to perpetuate certain stereo-
types and prejudices. An example is the tendency
of specific systems to generalize the different pro-
fessions carried out by men and women (Prates
et al., 2020). It is significantly more visible when
one tries to translate from a gender-neutral lan-
guage, such as English, to another with grammati-
cal gender, such as Spanish. In the first type, nouns
have no grammatical gender, while in the other
type, there is gender inflection in nouns, adjec-
tives, verbs, etc. Therefore, when translating from
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English to Spanish, the system uses masculine or
feminine inflections following stereotypes. Such
stereotypical errors occur both when the context
indicates gender explicitly and when it does not.

3 Background

In this section, we review the basics of multilin-
guality and multi-task learning in NMT, as well, as
linguistic features and the framework to evaluate
gender bias in MT. All these methodologies are
later used in our proposed research.

Multilingual NMT. Transformers (Vaswani
et al., 2017) have advanced NMT, giving the
ability to pay more attention to multilingual NMT.
The primary approach behind multilingual is to
have the same model architecture to translate
different language pairs (Firat et al., 2016; Johnson
et al., 2017). Previous studies explore different
design approaches for the model architecture,
either partial sharing with shared encoder (Sen
et al., 2019), shared attention (Firat et al., 2016),
task-specific attention (Blackwood et al., 2018),
shared parameters (Zhu et al., 2020), full model
sharing (Johnson et al., 2017) or independent
encoder-decoders without sharing (Escolano et al.,
2021; Lu et al., 2018). In this paper, we adopt this
architecture without sharing.

Multi-task learning NMT. Multi-task learning
(Caruana, 1997) trains the model on several co-
related tasks. This training can lead to generalized
improved performance and facilitate sharing rep-
resentations (Ruder, 2017). In the NMT context,
injecting linguistic knowledge has been success-
ful when training NMT with related tasks ( POS
tagging, dependency parsing). This linguistic injec-
tion can lead to improving NMT generalization and
translation quality, especially in low-resource sce-
narios (Kiperwasser and Ballesteros, 2018; Zare-
moodi and Haffari, 2018; Eriguchi et al., 2017).
Our work depends on adopting linguistic knowl-
edge through training multi-tasks, besides NMT.
We trained our NMT model with POS prediction
and gender tagging tasks.

Linguistic Features. Different linguistic fea-
tures can be utilized for words’ classification, such
as part-of-speech (POS) in morphology. POS refers
to the lexical category of words, defining different
linguistic categories depending on the shared mor-
phological categories between these words. Uni-

versal Dependencies (UD)1 is a framework for con-
sistent grammar annotation across different human
languages (Nivre et al., 2016). It considers a fixed
list of 17 possible POS tags, e.g., noun, verb, ad-
jective, adverb, and preposition. Furthermore, each
word has morphological features, such as person,
number, and gender. According to UD, depending
on the language, there are four different possibili-
ties for the gender of a word; feminine, masculine,
neuter, and common (non-neuter). In this paper,
we focus on the gender morphological feature of
the words.

Gender Bias Analysis Framework. WinoMT
(Stanovsky et al., 2019) is the first challenge test
set used to evaluate gender bias in MT systems.
The test set consists of 3888 sentences; 1826 male
sentences, 1822 female sentences, and 240 neu-
tral sentences. It is also distributed with 1584
anti-stereotype sentences, 1584 pro-stereotype sen-
tences, and 720 neutral sentences. Each sentence
contains two personal entities where one is a coref-
erent to a pronoun, and a golden gender is spec-
ified for this entity. Three metrics are used for
assessment: accuracy (Acc.), which is measured
by comparing the translated entity with the golden
entity, ∆G and ∆S. ∆G is the difference between
the correctly inflected masculine and feminine en-
tities. ∆S is the difference between the inflected
genders of the pro-stereotype and anti-stereotype
entities. (Saunders and Byrne, 2020) also propose
M:F, which is the ratio of hypotheses with mascu-
line predictions to those with feminine predictions.
∆S can be skewed in low-accuracy systems; thus,
M:F would be easier to interpret. Ideally, the ab-
solute values of ∆S and ∆G should be closer to 0,
and M:F should be closer to 1.

4 Proposed methodology

Previous work (Costa-jussà et al., 2020) has shown
that the language-specific multilingual NMT archi-
tecture proposed by (Escolano et al., 2021) out-
performed the universal shared encoder-decoder
architecture (Johnson et al., 2017) on gender bias
evaluations. We chose this language-specific archi-
tecture as the baseline for all our experiments.

Given parallel data for a set of languages L =
l1, l2, ..ln with n languages and data for language
pairs, the architecture consists of n encoders and
n decoders, each of them specific for a single lan-

1https://universaldependencies.org/
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Figure 1: The model architecture, each task has its linear layer, softmax, and loss function

guage. Being li encoder used for all translation
directions involving li as source language and li
decoder for all directions involving li as target lan-
guage. Using the same encoders and decoders on
several translation directions enforces a common
intermediate representation for all encoders in the
system.

This method relies on parallel data only, with-
out any additional linguistic information. Our pro-
posed modification to this architecture (see Figure
1) adds a new linear projection layers to the de-
coders for each additional tagging task tagk ∈ T .
Each task focuses on different linguistic aspects
that may improve gender representation. It is
known that multitasking allows models, by induc-
tive bias (Ruder, 2019), to learn a representation
that contains features useful for all the involved
tasks, improving its generalization capabilities. For
each translation direction, the loss is computed as
follows:

L(t, y′, y) = Ltr(y
′, y) +

K∑

k=1

Ltag(tk, tagk(y))

(1)

Where y′ are the translation logits, y is the refer-
ence target sentence, Ltr is the cross-entropy loss
for the translation task, t is the set of tagging logits
for each of the K tagging tasks, Ltag is the cross-
entropy loss over each tagging task and tagk(y) is
the tagging function over the reference target.

5 Experimental Framework

In this section, we describe the details about the
data and model parameters involved in our experi-
ments.

5.1 Data and preprocessing
We have used Europarl dataset as training data
between all 12 possible language pairs between
Spanish, German, English, and French. For each
pair, approximately 2 million sentences were avail-
able, for a total amount of 24 million. As validation
and evaluation data for NMT results, newstest2012
and newstest2013 (Bojar et al., 2013). Only results
with English as the source are provided to match
the Gender Bias evaluation framework. All data
has been preprocessed by applying tokenization,
punctuation normalization, and true-casing using
standard Moses (Koehn et al., 2007) scripts and
tokenized at BPE subword level (Sennrich et al.,
2016) with 32 thousand steps using subword-nmt
framework2.

Linguistic features have been extracted using
the Stanza framework (Qi et al., 2020) at word
level. For split words, a tag is repeated. For Gender
bias evaluation, WinoMT dataset has been used.
All data has been preprocessed following the same
pipeline depicted for NMT.

5.2 Model Parameters
All models are implemented on fairseq’s (Ott et al.,
2019) 3 Transformer (Vaswani et al., 2017) with
6 attention layers on both encoder and decoder,
512 embedding size, 8 attention heads and 2048
feed-forward size. Each translation direction has
approximately 60 million parameters. POS tag and
Gender predictions only account for 8704 and 2048
additional parameters compared to the baseline sys-
tem. All models have been trained using no further
improvement of the validation loss as an early stop-
ping criterion.

2https://github.com/rsennrich/
subword-nmt

3https://github.com/pytorch/fairseq ver-
sion 0.6
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en-es en-fr en-de es-en es-fr es-de fr-en fr-es fr-de de-en de-es de-fr Avg
Baseline 29.48 29.56 21.5 27.38 30.25 19.61 26.03 29.04 18.96 24.04 24.95 25.24 25.50
+POS 29.06 29.27 21.4 27.16 29.79 19.43 25.92 28.89 18.91 24.24 24.84 24.99 25.32
+Gender 29.38 29.56 21.81 27.11 30.05 19.84 26.13 29.09 18.99 24.07 24.86 25.16 25.50
+POS&Gender 29.12 29.37 21.59 26.92 29.9 19.48 26.54 29.2 19.24 24.23 24.91 24.96 25.45

Table 1: Results in terms of BLEU for different language pairs for baseline, the baseline trained with POS tagging
task, the baseline trained with gender tagging task and the baseline trained with aforementioned tasks together.

Spanish French German
Acc↑ ∆G↓ ∆S↓ M:F↓ Acc↑ ∆G↓ ∆S↓ M:F↓ Acc↑ ∆G↓ ∆S↓ M:F↓

Baseline 57.7 15.1 18.5 2.85 48.8 23.6 9.5 3.99 62.7 9.9 12.4 2.3
+POS 63.7 7.8 15.5 2.27 51.8 17.5 7.4 3.13 68.3 3.5 8.8 1.749
+Gender 58.2 15.2 7.2 2.97 49 21.6 3.8 3.52 61.3 8.8 6.4 2.06
+POS&Gender 64.5 7.1 13.3 2.16 54.8 14.3 13.8 2.8 65.3 5.5 8 1.95

Table 2: WinoMT Results for the three languages Spanish, French and German

6 Results

In this section, we explore the improvements
achieved by multi-task training, whether regarding
the general translation accuracy or the gendered
results.

Translation results. Table 1 show the transla-
tion performance of all proposed configurations.
Looking at their average performance, we observe
that the addition of tagging tasks does not signif-
icantly impact the average performance, with a
difference of less than 0.2 between all systems.

When looking at individual directions, we can
see that training gender tagging task with NMT in
English-to-German has improved. We can argue
that German is a higher morphological language
than English, and the gender tagging task helps
the system inject more knowledge about gender in
German, leading to better translation accuracy, up
to 0.31 for the English-to-German pair compared
to the baseline. Training more than one task seems
to be beneficial when the translation is between
high morphological language pairs like French-to-
Spanish and French-to-German where French, Ger-
man, and Spanish are all gendered high morpho-
logical languages. French-to-English seems to also
benefit from the POS and Gender tagging tasks
together.

WinoMT results. WinoMT helps us investi-
gate how the gender-biased entities and profes-
sions translated. The framework investigates the
translations when English is translated to higher
morphological languages; therefore, we show the
WinoMT results from English to Spanish, German
and French.

Spanish seems to benefit from the POS and Gen-
der tagging tasks together, where the accuracy in-
creased by 6.8 over the baseline with a lower dif-
ference between the correct translated masculine
entities and the correct translated feminine entities;
of ∆G 7.1. This is assured by the lower ratio of
male vs. female predictions (M:F) of 2.16. French
also has better accuracy having both tasks trained
together, with 54.8 accuracy, which increases by six
over the baseline. The ∆G is also lower in this case,
with a value of 14.3. In both languages, the dif-
ference between stereotyped and non-stereotyped
translations did not improve. The improvements
are more related to the general accuracy.

Multitask training of gender seems to impact
the stereotyped translations in the three languages;
however, the general accuracy was not impacted
that much by training the gender tagging task.

POS tagging also appears to help disambiguation
of gender from English to German, giving higher
gender accuracy reaching 68.3 with a low differ-
ence of male and female correct predictions; ∆G
of 3.5 and M:F of 1.749.

7 Conclusions

In this paper, we have proposed and analyzed the
use of multi-task learning in multilingual NMT.
Learning linguistic tagging simultaneously as mul-
tilingual helps mitigate gender bias while maintain-
ing the average translation performance over the
tested languages. More than the methodology that
we are proposing, which is simple and effective, we
would like to encourage the community to evaluate
their methodologies not only in terms of translation
quality, but also in terms of social bias mitigation.
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Abstract

We study the role of an essential hyper-
parameter that governs the training of Trans-
formers for neural machine translation in a
low-resource setting: the batch size. Using
theoretical insights and experimental evidence,
we argue against the widespread belief that
batch size should be set as large as allowed by
the memory of the GPUs. We show that in a
low-resource setting, a smaller batch size leads
to higher scores in a shorter training time, and
argue that this is due to better regularization of
the gradients during training.

1 Introduction

Training Transformers for low-resource neural ma-
chine translation (NMT), i.e. when only small par-
allel corpora are available, raises the challenge of
finding optimal hyper-parameters. While several
fixed configurations of the Transformer (Vaswani
et al., 2017) have been empirically validated by the
community, such as ‘Base’ or ‘Big’, the settings
of many other hyper-parameters rely on tips from
practitioners. However, these values are not always
suitable to low-resource settings, and systematic
studies in these settings are rare (Araabi and Monz,
2020; Van Biljon et al., 2020).

In this paper, we show that the best values of
a hyper-parameter that is essential for training,
namely batch size, differ in low-resource settings
from those commonly accepted when larger data
sets are available. We analyze the role of small
batch sizes, inspired by studies in computer vision
(Keskar et al., 2016), and then pinpoint empirically
the optimal trade-off between a high batch size
(for efficiency) and a small one (for regularization).
Although large batch sizes were found to lead to
higher-quality models in experiments with high-
resource NMT (Popel and Bojar, 2018; Xu et al.,
2020), we show here that smaller batch sizes can

outperform the latter, likely due to a regularizing ef-
fect in the gradient update. Moreover, we show that
this finding is invariant to changes in tokenization
methods.

The paper is organized as follows. In Section 2,
we discuss batch size from a machine learning per-
spective, showing why smaller values of batch size
may act as regularizers. Then, in Section 3, we
review studies of hyper-parameters in NMT. In
Section 4, we present the parameters of our Trans-
former and the data from the WMT 2020 Low-
resource task (Fraser, 2020) and other sources that
we use in our experiments. In Section 5, we pro-
vide empirical evidence that smaller batch sizes are
preferable in low-resource settings.

2 ML Perspective on Batch Size

Machine learning theory argues that performing
back-propagation with large batch sizes leads to
better optimization, because the estimates of the
gradients are more accurate. Conversely, using
small batches during training leads to noisier gradi-
ent estimations, i.e. with a larger variance in com-
parison to the gradient computed over the entire
training set. Still, one advantage of small batch
sizes is that they are more likely to make param-
eters converge towards flatter minima of the loss
(Goodfellow et al., 2016, Chapter 8.1.3), as ex-
plained below. Such flatter minima have better
generalization capacities, i.e. they maintain perfor-
mance when presented with a new test set.

Keskar et al. (2016) define a flat minimizer – as
opposed to a sharp one – as a point in the parameter
space that is a local minimum of the loss function,
and where this function varies slowly in a relatively
large neighborhood. Keskar et al. (2016) point
to the following generalization gap: training with
large batch sizes tends to converge towards sharp
minimizers, which offer poorer generalization ca-
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pacities. Conversely, small batch sizes allow con-
vergence towards flat minimizers, which are likely
to generalize better. Thus, smaller batch sizes have
exploration abilities: the search is more likely to
exit the basins of sharp minimizers, and to tend
towards flat minimizers, from where noise will not
cause them to exit.

Since a sharp minimizer requires high precision
to be described, unlike a flat one, the more noise
there is in the gradient, the more unlikely it is
that the parameters will converge towards a sharp
minimizer. This is precisely the contribution of a
smaller batch size: introduce noise in the gradi-
ent estimation. According to this theoretical view,
above a certain threshold of the batch size, the gen-
eralization capacities of a model deteriorate. The
threshold depends on several hyper-parameters, in-
cluding the batch size. Its role has not been fully
settled yet, with observations and conclusions vary-
ing widely across studies (Dinh et al., 2017; Hoffer
et al., 2017; Goyal et al., 2017; Li et al., 2017;
Kawaguchi et al., 2017). Moreover, these studies
are on image data sets, with fully connected or with
convolutional NNs, which differ substantially from
NMT settings.

3 The Role of Batch Size in Neural MT

Several recent studies in NMT have considered
batch size among other hyper-parameters, but they
have either been in high-resource settings (Popel
and Bojar, 2018; Xu et al., 2020) or have given
only marginal attention to batch size (Sennrich and
Zhang, 2019; Araabi and Monz, 2020).

Popel and Bojar (2018) reported that BLEU
scores increased with batch size (including when
using more GPUs) in a Transformer-based NMT
system, although with diminishing returns, recom-
mending in particular that “batch size should be
set as high as possible”. Their experiments were
performed using mainly two datasets, with respec-
tively 58M and 15M sentence pairs. It thus remains
an open question whether their findings regarding
batch size also apply when much less training data
is available.

Sennrich and Zhang (2019) experimented with a
recurrent network in a low-resource setting and
found that smaller batch sizes were beneficial,
along with other forms of regularization. They
experimented with two batch sizes of 4,000 and
1,000 tokens, and observed improvements with the
latter of 0.30 and 0.04 BLEU points on data sets

with 5k and 160k sentence pairs, respectively. It
is difficult to predict from these results what the
optimal batch size is for Transformer-based NMT.

Araabi and Monz (2020) studied the role of 15
hyper-parameters of the Transformer, with several
sizes of low-resource datasets. For the largest train-
ing sizes tested (80k and 165k sentence pairs),
larger batch sizes improved performance, with
respectively 8,192 and 12,288 versus 4,096 for
the other sizes. For lower training sizes, smaller
batch sizes did not improve performance, which the
authors explain by Transformer’s need for larger
batches. In our view, an alternative explanation is
the order of optimization of the hyper-parameters
(a grid search in which they optimize one hyper-
parameter at a time): batch size is #12 out of 15,
so by the time several sizes are compared, regular-
ization has already been introduced in the model
by dropouts on words, activation, and layers. Late
optimization of batch size, of warmup steps (#14)
or of learning rate (#15) cannot properly determine
their regularizing effects.

Xu et al. (2020) proposed to compute gradients
while accumulating minibatches, and observed that
increasing batch size stabilizes gradient direction
up to a certain point, after which it starts to fluctu-
ate. They used this criterion to dynamically adjust
batch sizes while training. In their experiments
with large training sets (4.5M and 36M sentence
pairs), their average batch size was around 26k on
two GPUs, and never lower than 7k. Their observa-
tions on the gradient direction as more minibatches
are accumulated are consistent with the findings
of Popel and Bojar (2018) who see diminishing
returns when increasing batch size.

4 Datasets and Systems

We train NMT systems with two low-resource par-
allel corpora, listed in the first two lines of Table 1:
the Upper Sorbian (HSB) to German (DE) training
data of the WMT 2020 Low-Resource Translation
Task (Fraser, 2020) and a low-size excerpt of the
German to English News Commentary v13 (Bojar
et al., 2018), from which we randomly sampled 60k
parallel lines. For the HSB-DE models, we also
use the development and test sets provided by the
WMT 2020 and 2021 Low-Resource Translation
Task (Libovický and Fraser, 2021), each consisting
of 2k sentences, and for DE-EN we sample a devel-
opment set and a test set from the original corpus,
with 2k sentences each as well. We apply a com-
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Dataset Lang. Orig. Filt. ∆%
WMT20 Low-res. HSB-DE 60k 59.8k 0.29
News Comm. v13 DE-EN 60k 59.9k 0.20
Sorbian Institute HSB 339k 339k 0.00
Witaj HSB 222k 220k 0.84
Web HSB 134k 121k 9.98
Europarl v8 DE 2.2M 2.2M 0.79
News Comm. v15 DE 422k 411k 2.58
JW300 DE 2.3M 2.2M 4.44
Europarl v3 DE 790k 785k 0.69
Europarl v3 EN 790k 782k 1.07

Table 1: Numbers of lines in the original and filtered
corpora used in our experiments. HSB stands for Upper
Sorbian and ∆% for the proportion of lines filtered out.
The only parallel corpora used for training NMT are
the first two ones; the other corpora are only used to
train the SentencePiece model.

mon filtering process for all data used: we delete
from all our data the sentences that are not between
2 and 300 words long, with resulting numbers of
lines shown in Table 1.

We build subword vocabularies using the Un-
igram LM model (Sennrich et al., 2016; Kudo,
2018) as implemented in SentencePiece1, with the
monolingual corpora from Table 1. We train a
shared model for HSB-DE with a vocabulary of
32k pieces, character coverage of 0.98, nbest = 1
and alpha = 0. The HSB data adds up to 740k sen-
tences, and we sample 680k sentences from three
DE corpora, and add them to the 60k sentences
from the DE side of the parallel HSB-DE corpus.
To train the SentencePiece model for the DE-EN,
for comparison purposes, we treat German as a
low-resource language, and sample 680k lines of
English and German from Europarl v3 (Tiedemann,
2012), which we combine respectively with the 60k
lines extracted from the DE-EN parallel corpus.

We use the Transformer-Base (Vaswani et al.,
2017) in the implementation provided by Open-
NMT (Klein et al., 2017, 2020), with the parame-
ters given in Appendix A. Unless otherwise speci-
fied, we follow OpenNMT-py’s recommended val-
ues for the hyper-parameters.2

When using several GPUs with gradient accumu-
lation, each GPU processes several batches, which
are then accumulated across all GPUs and used
to update the model at each step. Therefore, the
effective batch size is B ×G×A, where B is the
individual batch size, G is the number of GPUs

1https://github.com/google/
sentencepiece

2https://opennmt.net/OpenNMT-py/
examples/Translation.html

Figure 1: BLEU scores on the test set for HSB-DE
models trained with different batch sizes.

and A the number of accumulated batches, and
differs from the batch size hyper-parameter B.
We train all models on two GeForce RTX 1080Ti
GPUs with 11 GB of memory each and accumulate
gradients over two minibatches (A = 2), follow-
ing OpenNMT-py’s recommendation. Therefore,
the batch size parameter is not our effective
batch size, which is four times larger. Through-
out this work, we will refer to batch size B as the
batch size parameter, and report true epochs,
which we define as computed with the effective
batch size as S × Beff /N , for S training steps,
Beff effective batch size, and N number of source
tokens in the training set.

Following OpenNMT-py’s recommendations,
we set the Adam hyper-parameters at β1 =
0.9, β2 = 0.998, ε = 10−8 and apply at each
step a scaling factor of two to Noam’s learning rate
schedule, setting warmup steps to 8k. Translations
are generated with a beam width of seven, with an
ensemble of the last four saved checkpoints. We re-
port BLEU scores (Papineni et al., 2002) obtained
with SacreBLEU (Post, 2018) on detokenized text.

5 Experimental Results

To study the impact of batch sizes in a low-resource
setting, we train various HSB-DE and DE-EN mod-
els for 700 epochs with the following batch sizes:
100, 250, 500, 1,000, 2,500, 5,000, 7,500, 10,000,
and 10,240 (this is the largest one that fits in our
GPU memory).

5.1 NMT Performance
NMT performance on the HSB-DE test set through-
out the training is shown in Figure 1, with BLEU
scores depending on the number of epochs. The
evolution depending on real training time (wall
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Batch HSB-DE DE-EN
Size dev test dev test

Xent BLEU chrF TER Xent BLEU chrF TER Xent BLEU chrF TER Xent BLEU chrF TER
500 0.03 48.12 71.13 37.35 0.03 41.53 67.34 43.84 0.11 37.35 58.04 54.54 0.11 37.72 58.35 54.60

1,000 0.02 49.23 72.07 36.35 0.02 42.26 67.93 43.16 0.05 38.03 59.39 52.91 0.05 38.67 59.68 52.71
2,500 0.03 48.28 71.63 37.02 0.03 41.18 67.36 44.02 0.04 33.83 56.70 56.27 0.04 35.51 57.76 55.47
5,000 0.03 46.99 70.74 38.05 0.03 40.28 66.62 45.24 0.05 32.47 55.20 57.88 0.05 33.97 56.16 57.08
7,500 0.03 46.05 70.29 38.87 0.03 39.10 65.94 46.18 0.05 32.67 55.99 57.67 0.05 33.80 56.72 57.21

10,000 0.04 44.61 69.19 40.00 0.04 38.41 65.67 46.45 0.05 31.84 55.20 58.35 0.05 33.50 56.14 57.63
10,240 0.04 45.59 70.12 39.26 0.04 38.19 65.39 46.79 0.06 31.49 55.00 58.65 0.06 33.03 55.78 58.07

Table 2: Loss and scores for models trained for 700 epochs with various batch sizes for HSB-DE and DE-EN
directions. All differences in BLEU on the dev and test sets are statistically significant at the 95% level, except for
the pairs in similar colors.

time) is similar in terms of rankings. Thus, the fol-
lowing analysis holds whether we train the models
for the same amount of epochs or of hours.

The final scores on the development and test
sets are given in Table 2, sorted by batch sizes. We
provide first the actual loss of the model (‘Xent’ for
cross-entropy), and then three typical NMT scores:
BLEU (Papineni et al., 2002), chrF (Popović, 2015)
and Translation Error Rate (Snover et al., 2006).
The 100 and 250 batch size models did not reach
BLEU scores significantly above zero, and are not
included among the results in the table.

We test the statistical significance of the differ-
ences between each score and the others, with 95%
confidence, using the paired bootstrap resampling
tool from SacreBLEU (Post, 2018).3 All differ-
ences between higher and lower BLEU scores are
statistically significant, except the pairs highlighted
in similar colors in Table 2.4 The best NMT scores,
which are always obtained with a batch size of
1,000, are significantly higher than all the other
ones, including those obtained with the largest pos-
sible batch sizes for our GPU (10,000 or 10,240).
We thus select two values for further experiments:
a batch size of 1,000 as our highest-scoring model,
and one of 10,000 as the maximum allowed by our
GPU memory. A simple ratio of 10 holds between
the two values.

These empirical results are contrary to those
from Popel and Bojar (2018), who observe that
increasing the batch size for Transformer-Base pro-

3github.com/mjpost/sacrebleu with the
signature nrefs:1|bs:1000|seed:12345|case:mixed|eff:no
|tok:13a|smooth:exp|version:2.0.0.

4The difference in BLEU between the following pairs is
not significant. For HSB-DE, 2,500 vs. 500, and 10,240 vs.
10,000, on the test set; and 2,500 vs. 500, and 7,500 vs. 10,240
on the dev set. For DE-EN these are 7,500 vs. 5,000, and
10,000 vs. 7,500, on the test set; and 1,000 vs. 500, 5,000 vs.
7,500, and 10,000 vs 10,240, on the dev set.

duces higher scores, although with diminishing
returns after a certain threshold. We hypothesize
that the main explanation is the difference between
the amounts of training data: in our low-resource
setting, we use 60k sentences, while Popel and Bo-
jar (2018) use 57M sentences. Our findings are
consistent with those of Keskar et al. (2016), who
also observe that the optimal batch size is at the
lower end of the range, on a computer vision task
with convolutional and fully-connected NNs.

5.2 Asymptotic Performance

An alternative explanation for the previous results
is that the learning rate is too small for the larger
batch sizes, which require more time to converge.
To test whether the differences observed above be-
tween small and large batch sizes depend on the
actual training time, we continue training the 1,000
and 10,000 batch size models for HSB-DE and DE-
EN for twice as many epochs as above (1400). The
BLEU scores and their increases with respect to
training for 700 epochs are given in Table 3. The
performance gap (from +3.85 to +3.25 BLEU) be-
tween small and large batch sizes is not overturned
by training the models for much longer.

The scores from our best system (1,000 batch
size, 42.81 BLEU on the test set) are similar to
scores obtained by baselines of the five highest-
scoring teams at the WMT20 Low-resource shared
task on HSB-DE (Fraser, 2020). While the scores
of Scherrer et al. (2020) and Li et al. (2020) are not
comparable due to a different architecture or the use
of unsupervised pre-training, the baseline scores
of Knowles et al. (2020), Libovický et al. (2020)
and Kvapilı́ková et al. (2020) are respectively 44.1,
43.4, and 38.7. The first one is higher than our best
BLEU by 1.29, likely due to the use of 43M lines
of CS and DE data for the subword vocabulary, vs.
700k in our case.
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Batch HSB-DE DE-EN
size dev test dev test
1,000 49.52

(+0.29)
42.81
(+0.55)

38.67
(+0.64)

39.24
(+0.57)

10,000 46.44
(+1.83)

39.56
(+1.15)

33.19
(+1.35)

34.42
(+0.92)

Table 3: BLEU scores for models trained for 1,400
epochs. The scores for 1,000 are significantly higher
(at 95%) than those for 10,000. In parenthesis, the ab-
solute difference with BLEU scores after 700 epochs.

5.3 Invariance with respect to Vocabulary
We additionally perform two comparisons that
show that the above results hold regardless of the
tokenizer and the vocabulary size. First, we test
whether the score difference is preserved with an
unshared SentencePiece vocabulary, i.e. when not
sharing the source (HSB and DE) and the target
(DE and EN) vocabularies.

Second, we train two NMT models for HSB-
DE using a Byte Pair Encoding (BPE) vocabulary
(Sennrich et al., 2016), which we generate using
the learn bpe.py tool from OpenNMT-py, with
32k merge operations and the remaining parame-
ters at default values. Table 4 shows BLEU scores
on the development sets for batch sizes of 1,000
and 10,000. The previously observed differences
in score between the batch sizes still hold, and we
see that a shared SentencePiece vocabulary leads
to a better NMT system than an unshared or a BPE
one.

Batch size SP unshared BPE
HSB-DE DE-EN HSB-DE

1,000 46.80
(-2.43)

35.90
(-2.13)

46.21
(-3.02)

10,000 41.99
(-2.62)

30.09
(-1.75)

43.35
(-1.26)

Table 4: BLEU scores on the dev set for HSB-DE and
DE-EN models trained with SentencePiece (SP) vocab-
ularies not shared between source and target (left) and
BPE subwords (right). The scores for 1,000 are signifi-
cantly higher (at 95%) than those for 10,000. In paren-
thesis, the difference with BLEU scores obtained with
the SP shared vocabulary.

6 Conclusion and Future Work

In this work, we have shown that insights from
computer vision on the regularizing effect of small
batch sizes are also applicable to NMT. Our results,
focused on a low-resource setting, challenge those
of previous NMT studies with large amounts of
training data, and the general belief that batch sizes

should be as large as they fit in the GPU memory.
We have shown that training with small batch sizes
leads to models that generalize better, and found
the optimal batch size below which performance
degrades.

Future work should explore how the learning
rate must be adjusted depending on the batch size,
and whether a dynamically scheduled combina-
tion of batch size and learning rate can provide
an even better regularizer. For instance, it should
be tested if dynamic batch sizes as proposed by
Xu et al. (2020) can also improve performance in
a low-resource setting, with batch size thresholds
changed to measure an optimal level of noise.
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Jindřich Libovický and Alexander Fraser. 2021. Find-
ings of the WMT 2021 shared tasks in unsupervised
MT and very low resource supervised MT. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, Online. Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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A Appendix

The hyper-parameters used to train our models are
the following ones:
src words min frequency: 2
tgt words min frequency: 2
valid batch size: 200
max generator batches: 2
optim: adam
learning rate: 2.0
adam beta2: 0.998
decay method: noam
accum count: 2
warmup steps: 8000
label smoothing: 0.1
max grad norm: 0
param init: 0
param init glorot: true
normalization: tokens
encoder type: transformer
decoder type: transformer
position encoding: true
layers: 6
heads: 8
rnn size: 512
word vec size: 512
transformer ff: 2048

dropout: 0.1
batch size: 1000
batch type: tokens
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Abstract 

A key challenge in Literary Machine 

Translation is that the meaning of a 

sentence can be different from the sum of 

meanings of all the words it possesses. This 

poses the problem of requiring large 

amounts of consistently labelled training 

data across a variety of unsages and 

languages. In this paper, we propose that 

we can economically train machine 

translation models to identify and 

paraphrase such sentences by leveraging 

the language independent framework of 

Śabdavyāpāra (Function of a Word), from 

Literary Sciences in Saṃskṛtam, and its 

definition of lakṣyārtha (‘Indicated’ 

meaning). An Indicated meaning exists 

where there is incompatibility among the 

literal meanings of the words in a sentence 

(irrespective of language). The framework 

defines seven categories of Indicated 

meaning and their characteristics. As a 

pilot, we identified 300 such sentences 

from literary and regular usage, labelled 

them and trained a 2d Convolutional 

Neural Network to categorise a sentence 

based on the category of Indicated meaning 

and finetuned a T5 to paraphrase them. We 

then used these paraphrased sentences as 

input into Google Translate and compared 

this with Google Translate’s translation 

before paraphrasing using BLEU scores 

against an expected reference translation. 

The BLEU scores improved significantly 

with the paraphrasing by the T5 trained on 

Indicated meaning sentences.  

Keywords: Indicated meaning, Literary 

Machine Translation, language independent, 

T51, Convolutional Neural Network, paraphrase.  

                                                           
1 T5 is Google’s state of the art text to text NLP model. T5 

stands for Text-To-Text Transfer Transformer 

1 Introduction 

Consider a sentence from Rabindranath Tagore’s 

Gitanjali “Drunk by the joy of singing, I forget 

myself”, and its translation to various languages 

using Google Translate 2 . Refer to Table 1 for 

sample translations 

Language Google Translate’s Translation 

Hindi गाने के आनंद के नशे में धुत मैं 

खुद को भूल जाता हूँ 

gaane ke aanand ke nashe mein dhut 

main khud ko bhool jaata hoon 

Bengali গান গাওযার আনন্দে মাতাল হন্দয 

আমম মনন্দেন্দে ভুন্দল যাই 

Gāna gā'ōẏāra ānandē mātāla haẏē 

āmi nijēkē bhulē yā'i 

Kannada ಹಾಡುವ ಸಂತೋಷದಿಂದ ಕುಡಿದು, 

ನಾನು ನನನ ನುನ  ಮರೆತಿದ್ದ ೋನೆ 

Hāḍuva santōṣadinda kuḍidu, nānu 

nannannu maretiddēne 

Telugu పాడిన ఆనందంతో త్రాగి, నన్ను  

నేన్న మర్చి పోతున్ను న్న 

Pāḍina ānandantō trāgi, nannu 

nēnu marcipōtunnānu 

Italian Ubriaco dalla gioia di cantare, 

dimentico me stesso 

German Betrunken von der Freude am 

Singen vergesse ich mich selbst 

 For the example above, while in some languages 

the usage could be appropriate, the translation is 

not very clear in quite a few languages. On the 

other hand, if we paraphrase the original sentence 

to “Overjoyed by singing, I forget myself”, then 

2 Google’s publicly available translation engine at 

https://translate.google.co.in 

lakṣyārtha (Indicated Meaning) of Śabdavyāpāra (Function of a 

Word) framework from kāvyaśāstra (The Science of Literary 

Studies) in Samskṛtam :Its application to Literary Machine 

Translation and other NLP tasks 
 

Sripathi Sripada     Anupama Ryali     Raghuram Sheshadri 

School of Vedic Sciences, MIT-ADT University, India   

{sripathi.sripada, anupamaskt, raghuys}@gmail.com 

 

 

Table 1: Sample translations by Google Translate of 

the example sentence "Drunk by the joy of singing I 

forget myself” 
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Google Translate’s translation is more consistent 

across multiple languages. Refer to Table 2 for 

sample translations of the paraphrased sentence 

 

Language Google Translate’s Translation 

Hindi गाते-गाते खुशी से झमू उठे मैं 

खुद को भूल गया 

gaate-gaate khushee se jhoom uthe 

main khud ko bhool gaya 

Bengali গান গগন্দয আনন্দেত, আমম 

মনন্দেন্দে ভুন্দল যাই 

Gāna gēẏē ānandita, āmi nijēkē 

bhulē yā'i 

Kannada ಹಾಡುವ ಮೂಲಕ 

ಹಷಷಗಿಂಡ ನಾನು ನನನ ನೆನ ೋ 

ಮರೆತಿದ್ದ ೋನೆ 

Hāḍuva mūlaka harṣagoṇḍa nānu 

nannannē maretiddēne 

Telugu పాడటం ద్వా రా చాలా 

సంతోషంచాన్న, నేన్న నన్ను  

మరచిపోయాన్న 

Pāḍaṭaṁ dvārā cālā santōṣin̄cānu, 

nēnu nannu maracipōyānu 

Italian Felicissimo di cantare, mi 

dimentico di me stesso 

German Überglücklich vom Singen 

vergesse ich mich selbst 

There are many such sentences across literary 

works where the sum of meanings of all the words 

in a given sentence, does not necessarily provide 

the meaning of the sentence. In all such cases, an 

appropriate paraphrasing should make machine 

translation more accurate. To train machine 

learning models for paraphrasing of such sentences 

before translation, we are faced with the challenge 

of creating large datasets for training across 

different types of usages, figures or speech etc., and 

across multiple languages.  

 

Recent related works: Recent research in the 

applying machine translation models to literary 

works is broadly focused on: 

                                                           
3  वकृ्त-बोद्धव्य-काकूनां सम्बन्धः। vaktṛ-boddhavya-kākūnāṃ 

sambandhaḥ. The relationship between speaker, listener, tone. 

 

 training the models to identify and paraphrase 

metaphors to their literal meanings (Jerry Lui, 

2020) (Rui Mao, 2018) leveraging word 

embeddings 

 modifications to existing machine translation 

models for classification of consistency, 

pronoun resolution, and tone/register error 

types to consider context of previous sentences 

or even the whole story, to improve quality of 

literary machine translation (Matusov, 2019) 

 the role of referential cohesion to improve 

Literary Machine Translation (Rob Voigt, 

2012) 

 

 However, to our knowledge, there is lack of a 

holistic approach that encompasses a variety of the 

challenges presented in Literary Machine 

Translation in a manner consistent across 

languages. 

  

 Our approach: To overcome this challenge, we 

seek inspiration from kāvyaśāstra, the Science of 

Literary Works / Poetics, in Saṃskṛtam. Various 

texts in Saṃskṛtam in this domain, provide 

comprehensive and lucid frameworks to 

understand literary works.  A variety of concepts 

discussed in these texts are language independent 

as well. Of many such concepts, kāvyaśāstra lays 

much importance to a word and its meaning. It 

emphasises that a word and its meaning depend on 

the speaker, the listener, and the tone3. At times, it 

is understood with the context too. This framework 

of understanding the meaning is called 

Śabdavyāpāra (as explained in kāvyaprakāśa) and 

it categorises the word and its meaning broadly into 

three types4, namely,  

 vācakaḥ (वाचकः - Expressive) word with 

vācyārthaḥ (वाच्यार्थः Expressed) meaning or 

literal / direct / primary meaning 

 lākṣaṇikaḥ (लाक्षणिकः - Indicative) word with 

lakṣyārthaḥ (लक्ष्यार्थः - Indicated meaning) 

 vyañjakaḥ (व्यञ्जकः - Suggestive) word with 

vyaṅgyārthaḥ (व्यङ््गयार्थः - Suggested) 

meaning. 

 

The Indicated meaning from the above 

framework provides a very fundamental 

categorisation of words which covers a variety of 

4 स्याद्वाचको लाक्षणिकः शब्दोत्र व्यञ्जकस्त्रिधा । syādvācako 

lākṣaṇikaḥ śabdotra vyañjakastridhā . The words are of 3 

types – Expressive, Indicative and Suggestive 

Table 2 : Sample translations by Google Translate of 

the paraphrased sentence "Overjoyed by singing, I 

forget myself" 
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figurative usages, metaphors, referential cohesion 

and other characteristics. Hence, it provides a more 

holistic approach, in comparison to techniques 

focusing on metaphors and figures of speech, to 

solving some of the key problems in Literary 

Machine Translation. We explain the Indicated 

meaning, its various types and their characteristics 

along with examples in section 2.  

 

The Hypothesis: Our hypothesis is that if we 

train a state of the art NLP model to paraphrase 

based on the Śabdavyāpāra framework and then 

use a state of the art Machine Translation model to 

translate, the translation of Literary works across 

languages will be much more meaningful, and 

consistent. Moreover, since the framework is 

language independent and has a very structured 

definition of the various types of Indicated 

meaning and their characteristics, we should be 

able to achieve a very efficient training with 

smaller datasets and consistently across languages. 

 

We adopted a novel approach, based on 

Śabdavyāpāra framework’s definition and 

characteristics of the Indicated meaning, to  

a) Train a 2d Convolutional Neural Network 

(CNN2d) to Identify the existence of an 

Indicated meaning, in a given sentence 

b) If Indicated meaning is present, then train a 

CNN2d to categorise the sentence based on the 

type of Indicated meaning, as per the 

framework 

c) Leverage the characteristics of the various 

types of Indicated meaning defined in the 

framework to finetune a Google T5 

(Transformer NLP model) to paraphrase the 

sentence by elaborating the Indicated meaning 

such that the paraphrased sentence can be 

translated consistently by a model like Google 

Translate. 

 

To do an initial validation of our hypothesis we 

created a dataset of 300 sentences from literary 

works, Śāstra works and common usage 5 . In 

Section 3, we describe the solution we adopted 

including the models we trained along with the 

                                                           
5 We picked 300 sentences from a combination of 

Rabindranath Tagore’s Gitanjali, kālidāsa’s 

kumārasambhavam and śāstra texts of dhvanyāloka, 

kāvyaprakāśa.  
6 आकाङ्क्षा-योयता-सणिणधवशाद् वक्ष्यमािस्वरूपानां पदार्ाथनां 

समन्वये तात्पयाथर्ो णवशेषवपुः अपर्ार्ोणप वाक्यार्थः | – ākāṅkṣā-

results we achieved in our pilot. In section 4, we 

conclude and highlight the other use cases of NLP 

where the identification and paraphrasing of 

Indicated meaning can be applicable. In 

Appendices we provide some examples of the 

seven categories of Indicated meaning. 

2 Śabdavyāpāra (Function of a Word) 

and lakṣyārtha (Indicated meaning) 

As stated above, according to Śabdavyāpāra 

framework meanings words convey are 

categorised as vācyārtha (Expressed meaning), 

lakṣyārtha (Indicated meaning) and vyaṅgyārtha 

(Suggested meaning). While ‘Expressed meaning’ 

is the straightforward sum of meanings of all the 

words in the sentence, in ‘Indicated meaning’ or 

‘Suggested meaning’ the meaning of the sentence 

is not the sum total of the meanings of all the words 

and differ based on the various nuances of 

language, local culture etc.,  

Expressive: That which denotes the direct 

conventional (or dictionary) meaning is the 

Expressive word. In ordinary parlance, a word 

denotes something by convention of the given 

language. Where the conventional denotation is not 

known, there is no comprehension of the meaning. 

Thus, when the conventional denotation is 

apprehended directly, without the intervention of 

any other agency, the word is said to be 

‘Expressive’ of the denotation or meaning. In a 

sentence the words also need to satisfy three 6 

conditions to be able to express the meaningful 

sentence. They need to have ‘mutual requirement’ 

as in all of them are needed, they need to be 

‘compatible’ with each other and there needs to be 

‘proximity’ meaning certain words need to be next 

to each other. Consider the sentence “The student 

is studying mathematics”. It is very clearly 

understood what each word is denoting, hence each 

word is expressive. Moreover, they satisfy the three 

conditions of ‘mutual requirement’, ‘compatibility’ 

and ‘proximity’; therefore, the sentence is a 

meaningful sentence. The meaning of such a 

sentence obtained by the meanings of the 

‘Expressive’ words is called the ‘Expressed’ 

yogyatā-sannidhivaśād vakṣyamāṇasvarūpānāṃ 

padārthānāṃ samanvaye tātparyārtho viśeṣavapuḥ 

apathārthopi vākyārthaḥ  When the denotations of different 

words become related together though ‘mutual 

requirement’, compatibility’ and ‘proximity’ there appears 

in the shape of the ‘meaning of the sentence’ which is not 

expressed by any single word constituting the sentence. 
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meaning. It can also be referred to as the ‘Primary’ 

meaning of the sentence. 

Indicative 7 : When the ‘Primary’ (or 

‘Expressed’) meaning does not make sense 

(because of incompatibility), another meaning, 

which is in close affinity to what the word is 

denoting, is implied by the word. Such a meaning 

is called the ‘Indicated’ meaning that such a word 

is the ‘Indicative’ word in the given sentence. 

Consider the sentence “Drunk by the joy of singing, 

I forget myself”. Here when we put together the 

‘Primary’ meanings of all the words we see there is 

incompatibility as joy is not a physical drink that 

one can get drunk on. The word drunk here implies 

the meaning overtaken or completely filled with. 

Using this implied meaning of the word drunk, we 

arrive at the meaning “Overjoyed by singing, I 

forget myself”. This is called the ‘Indicated’ 

meaning and the word drunk is the ‘Indicative’ 

word in this sentence. This process of implying the 

‘Indicated’ meaning is called ‘Indication’. The 

‘Indicated’ meaning of such a sentence makes the 

import of the sentence much clearer and is also 

very easily translatable by a machine learning 

model to any other language 

Suggestive:  Where the ‘Primary’ meaning is 

clear, there can also exist a ‘Suggested’ meaning. 

Such a word is called the ‘Suggestive’ word. The 

‘Suggested’ meaning can also exist along with the 

‘Indicated’ meaning. Since the focus of this paper 

is on the ‘Indicated’ meaning and its application, 

we do not go into the details of this category. 

2.1 Various types of ‘Indication’ 

‘Usage’ and ‘Special Purpose’ 

Indication 8  The process of imposing the 

‘Indicated’ meaning is done either based on 

‘Usage’ or for a ‘Special Purpose’. and as such 

these are the 2 categories of ‘Indication’. 

 Example of ‘Indication’ on the basis of ‘Usage’: 

Consider the sentence “Do not beat around the 

bush when expressing your viewpoint”. Here the 

primary meaning of words ‘do not beat around the 

bush’ are incompatible with the words ‘expressing 

your viewpoint’. However, it is common usage that 

means ‘do not waste time by giving lengthy and 

                                                           
7 मुख्यार्थबाधे तद्योगे – mukhyārthabādhe tadyoge -  When 

there is incompatibility in the Primary meaning and the 

other meaning has affinity with the Primary meaning 
8 रूणितोऽर् प्रयोजनात् –  rūḍhito'tha prayojanāt - The 

Indication is of 2 types, based on Usage and based on 

Special Purpose 

cyclical explanations. This ‘Indicated’ meaning 

conveys the meaning of the sentence appropriately.  

A lot of idioms in English language, for example, 

fall into this category of ‘Indication based on 

Usage’ 

Example of ‘Indication’ on the basis of ‘Special 

Purpose’: Consider the sentence “Her face had 

blooming smiles at the thought of meeting her 

lover”. Here the ‘Primary’ meaning of the word 

‘blooming’ is to be flowering and this is 

incompatible with the sense of the sentence which 

is describing the expression of a person’s face. The 

word ‘blooming’ is implying the ‘Indicated’ 

meaning in excess / lot of / big, which is in affinity 

with its ‘Primary’ meaning. Read with the 

‘Indicated’ meaning, the sentence means that “Big 

smiles appeared on her face at the thought of 

meeting her lover’. An appropriate paraphrased 

sentence could be ‘She had big smiles on her face 

at the thought of meeting her lover’. Moreover, the 

implication of the ‘Indicated’ meaning also has a 

‘Special Purpose’ of referring to the beauty, 

radiance etc. in an excessive way that appeared on 

her face at the thought of meeting her lover.  

While ‘Indication’ on the basis of ‘Usage’ has no 

further sub-categories, ‘Indication’ on the basis of 

‘Special Purpose’ has 6 sub-categories.  

 

Six sub-categories of ‘Indication’ on the basis of 

‘Special Purpose’  ‘Indication’ on the basis of 

‘Special Purpose’ is further categorised into two9, 

namely, ‘Pure’ and ‘Qualitative’ Indications. When 

the ‘Indication’ relies upon similarity / similitude it 

is called ‘Qualitative’ Indication and when it is 

based upon other kinds of relationships (like cause-

effect and not on similarity / similitude) it is called 

‘Pure’ Indication.  

‘Qualitative’ Indication: Consider the 

sentence “Her eyes are lotus petals”. In this 

sentence, the qualities of lotus petals are being 

imposed upon the eyes of the person and this is to 

show the similarities in their qualities, for example 

this lady has big eyes and in the shape of lotus 

petals. Here the imposed meaning is the quality of 

the lotus petal that is being imposed upon the eyes 

of the lady. This is an example of ‘Qualitative’ 

9 भेदाणवमौ च सादृश्यात्सम्बन्धान्तरस्तर्ा bhedāvimau ca 

sādṛśyātsambandhāntarastathā. These 2 are different. 

One is by similarity and other by other relationships 
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Indication. An appropriate paraphrased sentence 

could be ‘Her eyes are big and beautiful like lotus 

petals’. 

Qualitative Indication can be of two types, 

namely, ‘Super-imponent Qualitative’ Indication 

and ‘Intro-susceptive Qualitative’ Indication, 

based on how the imposed qualities and that which 

they are being imposed upon are expressed in the 

sentence. 

1. ‘Super-imponent10  Qualitative’ Indication: 

When what is being imposed and that which it is 

being imposed upon are mentioned separately in 

the sentence it is called a ‘Super-imponent’. The 

sentence “Her eyes are lotus petals” is an example 

of ‘Super-imponent Qualitative' Indication as what 

is being imposed (lotus petals) and that which it is 

being imposed upon (eyes) are mentioned 

separately. (akin to a simile) 

2. ‘Intro-susceptive 11  Qualitative’ Indication: 

When what is being imposed consumes (takes 

within itself) that which it is being imposed up on 

it is called ‘Intro-susceptive’. Both are not 

mentioned separately in the sentence and only what 

is being imposed is mentioned. Considering the 

same example of the lady with big and beautiful 

eyes, if someone were to look at the lady’s 

beautiful eyes and say “They are lotus petals”, then 

this becomes an example of ‘Intro-Susceptive 

Qualitative’ Indication (akin to a metaphor). Here 

that which is being imposed (lotus petals) has 

consumed that which it is being imposed upon 

(eyes). A paraphrased sentence will be “Her eyes, 

which are big and beautiful, appear to be lotus 

petals themselves.” 

‘Pure’12 Indication 

‘Pure’ Indication is of four types, namely, 

Inclusive Indication, Indicative Indication, Super-

imponent Pure Indication and Intro-susceptive 

Pure Indication.  

3. ‘Inclusive Pure’ Indication: When the 

implication of the ‘Secondary’ meaning is for the 

sake of completing the ‘Primary’ meaning itself, it 

is called Inclusive Indication. Consider the 

sentence “Your pizza is on its way”. Here, the pizza 

that has been ordered cannot be travelling on its 

                                                           
10 सारोपान्या तु यत्रोक्तौ णवषयी णवषयस्तर्ा । sāropānyā tu 

yatroktau viṣayī viṣayastathā . Super-impotent is one where 

imposed and that which it is being imposed are stated / said 

separately. 
11 णवषयन्तःकृतेन्यस्त्रिन् सा स्यात्साध्यवसाणनका । 

viṣayantaḥkṛtenyasmin sā syātsādhyavasānikā . That which 

the imposed consumes that which it is being imposed upon 

is Intro-susceptive 

own, there is an unwritten actor present in the 

sentence, the pizza delivery person. The word 

pizza without losing its ‘Primary’ meaning is 

implying an actor to complete the ‘Primary’ 

meaning itself. This is ‘Inclusive’ Indication. A 

paraphrased sentence elaborating the Indicated 

meaning could be “The pizza delivery boy, along 

with your pizza, is on his way” 

4. ‘Indicative Pure’ Indication: When the 

‘Primary’ meaning is replaced by the ‘Secondary’ 

meaning, it is called Indicative Indication. 

Consider the sentence “She jumps to conclusions”. 

Here, the Primary meaning of the word jumps is 

replaced by as Secondary meaning ‘to form 

quickly’. Hence this is an Indicative Indication. A 

paraphrased sentence elaborating the Indicated 

meaning will be “She forms conclusions very 

quickly” 

5. Super-imponent Pure Indication: When the 

Indication is based upon a relationship like cause-

effect (and not similarity / similitude) between the 

imposed and what it is being imposed, and both are 

stated separately in the sentence it is ‘Super-

imponent Pure’ indication. Consider the sentence 

“Knowledge is power”. Here there is a cause-effect 

relationship between Knowledge (that which it is 

being imposed upon) and Power (imposed). 

Moreover, both are being stated clearly in the 

sentence.  Hence it is a ‘Super-imponent Pure’ 

Indication. An appropriate paraphrased sentence 

will be “Knowledge gives power” 

6. ‘Intro-susceptive Pure’ Indication: This is like 

the ‘Super-imponent Pure’ Indication but the 

imposed and that which it is being imposed upon 

are not stated separately in the sentence. When 

someone described a knowledgeable person and 

says “He has the power”, it is an example of Intro-

susceptive Pure Indication as Power (imposed) 

consumes the word Knowledge (that which it is 

being imposed upon) and both the words are stated 

not stated separately in the sentenc e. An 

appropriate paraphrased sentence will be “He has 

the power of knowledge” 

12 स्वणसद्धये पराके्षपः परारं् स्वसमपथिम् । उपादानं लक्षिं 

चेतु्यक्ता शुद्धौव सा णद्वधा । svasiddhaye parākṣepaḥ parārthaṃ 

svasamarpaṇam . upādānaṃ lakṣaṇaṃ cetyuktā śuddhauva 

sā dvidhā . Pure is of 2 types Inclusive and Indicative. 

Inclusive implies another actor to achieve its Primary 

meaning. Indicative gives up its Primary meaning to take on 

the Secondary meaning. 
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Seven categories of Indication  The two types 

of ‘Qualitative’ Indication and four 13  types of 

‘Pure’ Indication make up the six categories of 

Indication based on Special Purpose. Along with 

the ‘Usage based’ Indication there are in total 

seven categories of Indication. The categorisation 

helps understanding the sentences and also 

provides a distinctive way for paraphrasing the 

sentence for each of the categories. The 

characteristics of the seven categories discussed 

above have been summarised into a flow chart 

presented in Appendix I.  A few more examples of 

the seven categories of Indication are provided in 

Appendix II.  

3 Application of the lakṣyārtha concept 

to Machine Learning models 

If we notice the paraphrasing of the sentences 

with Indicated meaning, there are patterns that are 

correlated to the category of the Indicated meaning, 

in most cases except in the ‘Usage based’ 

Indication. At a high level the patterns of 

paraphrasing are summarised in Table 3 below. 

Category of 

Indication 

Typical Pattern of 

Paraphrase 

Super-

imponent 

Qualitative 

Typically ‘like’ or an equivalent 

word is added in the sentence as 

the Indication is based on 

comparison 

Intro-

susceptive 

Qualitative 

Similar to above along with the 

addition of the words that are 

left out in the sentence. This 

needs context in which the 

sentence as the speaker would 

leave out some of the words 

Inclusive 

Pure 

A related word(s) are added to 

explicitly mention the 

unspoken actor 

Indicative 

Pure 

A secondary meaning of  the 

word replaced the word in the 

sentence where this indication 

exists. This secondary meaning 

is typically very closely related 

to the primary meaning of the 

word 

                                                           
13 Commentators of kāvyaprakāśa also explain that 

Inclusive and Indicative Indications are further divided into 

Super-impotent and Intro-susceptive each, giving rise to the 

4 Pure Indications. Either as per this categorisation or as per 

Super-

imponent 

Pure 

Words are added to show the 

relationship between the 

imposed and this which it is 

being imposed. Typically this 

relationship between the words 

is quite commonly used 

Super-

imponent 

Pure 

Same as above along with the 

addition of the words that are 

left out in the sentence. This 

needs context in which the 

sentence as the speaker would 

leave out some of the words 

Usage based Does not have any pattern as it 

is based on widely accepted 

usage in the given language. 

Inspired by the correlation between the 

paraphrasing and the category of the Indication, we 

embarked on the pilot of training the Machine 

Learning models to do this paraphrasing before 

translation by Google Translate. Given the 

comprehensiveness and the fundamental nature of 

the categorisation, we believe that the training can 

be achieved with relatively small datasets. Hence, 

we attempted the pilot with a very small dataset. 

We broke the pilot down into three steps 

 Step 1  Identify the existence of an Indicated 

meaning in the sentence. This means that the 

model needs to identify the incompatibility 

between the words in a sentence. To achieve this, 

we trained a multi-layer perceptron of 3 layers and 

a 2d Convolutional Neural Network (CNN2d) with 

filter sizes of 3, 4, 5, 6, 7 and 8 for binary 

classification on a dataset of 400 example 

sentences (100 without Indicated meaning and 300 

with Indicated meaning). We used 320 of these 

sentences for training and 80 sentences for testing. 

While the multi-layer perceptron trained to 70% 

test accuracy, CNN2d achieved 78% test accuracy. 

This was on expected lines as the existence of 

Indicated meaning is identified based on 

incompatibility between words (refer footnote 4). 

The CNN2d is comparing groups of adjacent 

words of length 3, 4, 5, 6, 7 and 8 in its filters to 

what has been explained in Section 2, there are 4 types of 

Pure Indication. We took the choice of the categorisation 

that we think is most appropriate for the Machine 

Translation.  

Table 3: Typical patterns that can be observed in 

Paraphrasing sentences, based on the category of 

Indication 
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map the incompatibility. Sample classification 

results by the CNN2d trained on our dataset of 400 

sentences are presented below in Table 4. 

Sl 

No 

Sentence Classification – 

Indication Exists 

(Yes/No) 

Trained 

CNN2d 

Actual  

1 My heart 

spreads its 

wings 

Yes Yes 

2 Master is 

knowledge 

Yes Yes 

3 He is speaking 

the truth 

Yes No 

4 Truth is bitter to 

swallow 

No Yes 

5 I can run fast No No 

6 On this stormy 

night the sky 

groans 

Yes Yes 

7 It is raining 

heavily today 

No No 

8 He is a walking 

encyclopeadia 

Yes Yes 

9 He stole her 

heart 

Yes Yes 

10 The water is 

blue in colour 

No No 

 

Step 2   Identify the category of 

Indicated meaning in a sentence. We labelled the 

400 sentences with eight labels (one label for 

Expressive and one each for category of Indication 

per the framework explained in Section 2) and 

trained the CNN2d for multi-classification. 320 

sentences were used for training and 80 were used 

for testing. The model achieved 72% test accuracy. 

Sample classification results by the CNN2d trained 

on our dataset are presented below in Table 5.  

Sl 

No 

Sentence Category of Indication 

Trained 

CNN2d  

Actual 

1 He is 

stretching the 

truth 

Indicative 

Pure 

Indicative 

Pure 

2 He is a 

walking 

encyclopeadia 

Usage 

Based 

Super-

imponent 

Qualitative 

3 On this stormy 

night the sky 

groans 

Inclusive 

Pure 

Inclusive 

Pure 

4 This is a 

magnificent 

new shirt 

Expressive Expressive 

5 Health is 

wealth  

Super-

imponent 

Qualitative 

Super-

imponent 

Qualitative 

6 His radiance 

was visible 

from far 

Indicative 

Pure 

Indicative 

Pure 

7 The bus is 

arriving late 

Inclusive 

Pure 

Inclusive 

Pure 

8 Master is 

knowledge 

Super-

imponent 

Qualitative 

Super-

imponent 

Pure 

9 My heart 

spreads its 

wings 

Super-

imponent 

Qualitative 

Intro-

susceptive 

Qualitative 

10 Truth is bitter 

to swallow 

Expressive Indicative 

Pure 

11 Your pizza is 

on its way 

Expressive Inclusive 

Pure 

12 Time heals 

everyone 

Intro-

susceptive 

Qualitative 

Intro-

susceptive 

Qualitative 

Step 3  Paraphrase the sentence with 

elaborating the Indicated meaning based on the 

category of Indicated meaning. We finetuned a 

pre-trained Google’s T5 model to paraphrase 

sentences with our custom dataset of sentences 

with Indicated meaning. We used the patterns 

described in Table 3 to create our custom dataset. 

Our dataset contained 250 training sentences and 

50 testing sentences. We refer to this finetuned T5 

model as the T5-I.  

We then used the T5-I paraphrased sentences as 

input to Google Translate for translation to various 

Table 4: CNN2d classification of whether an 

Indicated meaning exists in the given sentence 

Table 5: CNN2d classification of a given sentence 

based on the type of Indicated meaning it contains 
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languages. We then used BLEU 14  (Bilingual 

Evaluation Understudy) score to compare the 

translation with and without T5-I paraphrasing. For 

the purpose of this pilot we used translation to three 

Indian languages – Telugu, Hindi, Kannada. We 

used a typical human translation of the sentences in 

these 3 languages as reference for calculation the 

BLEU scores. Here, we present the comparison of 

translation with and without the paraphrasing by 

T5-I for a few validation sentences along with the 

respective BLEU scores. 

 

Original Sentence: She was showered with 

blessings 

Expected Translation: ఆమె చాలా 

ఆశీస్సు లు పందంద. / उसको बहुत सारे 

आशीवाथद् णमले/ ಅವಳಿಗೆ  ಬಹಳಷ್ಟು  

ಆಶೋರ್ವಷದಗಳು ದೊರಕಿದವು 

Paraphrased Sentence (by T5-I) : She 

received lots of blessings 

Google Translate’s Translation Of 

Original 

Sentence  

BLEU 

Score  

Paraphras

ed 

Sentence  

BLEU 

Score 

ఆమె 

ఆశీస్సు ల

తో 

మంచె

 తింంద 

0.54 ఆమె చాలా 

దీవెనలు 

పందంద 

0.70 

वह 

आशीवाथद के 

सार् नहाया 

गया र्ा 

0 उन्हें बहुत 

आशीवाथद 

णमला 

0.55 

ಅವಳು 

ಆಶೋರ್ವಷ

ದದಿಂದ 

ಸುರಿಸಲಪ

ಟ್ು ಳು 

0 ಅವಳು 

ಬಹಳಷ್ಟು  

ಆಶೋರ್ವಷ

ದಗಳನುನ  

ಪಡೆದಳು 

0.70 

 

Original Sentence: He stretched the truth 

Expected Translation: అతడు అబదధమ 

ఆడాడు / उसने झठू बोला / ಅವನು ಸುಳಳ ನುನ  

ಹೇಳಿದನು 

Paraphrased Sentence (by T5-I) : He used 

falsehood 

                                                           
14 BLEU (BiLingual Evaluation Understudy) is a metric for 

automatically evaluating machine-translated text. The 

BLEU score is a number between zero and one that 

measures the similarity of the machine-translated text to a 

Google Translate’s Translation Of 

Original 

Sentence  

BLEU 

Score  

Paraphrase

d Sentence  

BLEU 

Score 

సాా న్ను  

సాగదీశా

డు 

0 అతన్న 

అసాా న్ను  

ఉపయోగిం

చాడు 

0.76 

उसने सच 

फैलाया 

0.76 उन्होनें झठू 

का इसे्तमाल 

णकया 

0.66 

ಅವರು 

ಸತ್ಯ ವ

ನುನ  

ವಿಸತ ರಿಸಿ

ದರು 

0 ಅವರು 

ಸುಳಳ ನುನ  

ಬಳಸಿದರು 

0.76 

 

Original Sentence: I buy peace of mind by 

being silent 

Expected Translation: నేన్న మోనంగా 

ఉండి మనశాశ ంతన్న పందుాన్న / मुझे चुप 

रहकर सुकून णमलता है / ನಾನು  ಮೌನದಿಂದ 

ನೆಮಮ ದಯನುನ  ಗಳಿಸಿದ್. 

Paraphrased Sentence (by T5-I) : My peace 

of mind comes by being silent 

Google Translate’s Translation Of 

Original 

Sentence  

BLEU 

Score  

Paraphras

ed 

Sentence  

BLEU 

Score 

నేన్న 

మౌనంగా 

ఉండడం 

ద్వా రా 

మనశాశ ం

తన్న 

కొన్నక్క ం

టాన్న 

0.79 మౌనంగా 

ఉండడం 

వలల న్న 

మనశాశ ం

త 

కలుగు

తుంద  

0.0 

मैं चुप 

रहकर मन 

की शांणत 

खरीदता हूँ 

0.43 मेरे चुप रहने 

से आती है 

मन की 

शांणत 

0.68 

ನಾನು 

ಮೌನರ್ವ

ಗಿರುವುದರ 

ಮೂಲಕ 

0.64 ಮೌನದಿಂ

ದ ನನನ  

ಮನಸಿಿ ಗೆ 

0.69 

set of high quality reference translations. A value of 0 

means that the machine-translated output has no overlap 

with the reference translation (low quality) while a value of 

1 means there is perfect overlap with the reference 

translations (high quality). 
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ಮನಸಿಿ ನ 

ಶಿಂತಿಯ

ನುನ  

ಖರಿೋದಸು

ತ್ತ ೋನೆ 

ಶಿಂತಿ 

ಸಿಗುತ್ತ ದ್ 

 

Original Sentence: An idea sprouted in his 

mind 

Expected Translation: అతన్నకి ఒక ఆలోచన 

వచిి ంద / उसको मन में एक णवचार आया / 

ಅವನಲಿ್ಲ  ಒಿಂದು  ಉಪಾಯವು 

ಚಿಗುರೊಡೆಯಿತು. 

Paraphrased Sentence (by T5-I) : An idea 

came to his mind 

Google Translate’s Translation Of 

Original 

Sentence  

BLEU 

Score  

Paraphras

ed 

Sentence  

BLEU 

Score 

అతన్న 

మదలో 

ఒక 

ఆలోచన 

మొలకె

 తింంద 

0.56 అతన్న 

మదలో 

ఒక 

ఆలోచన 

వచిి ంద 

0.56 

उसके मन में 

एक णवचार 

कौधंा 

0.50 उसके 

णदमाग में 

एक णवचार 

आया 

0.48 

ಅವನ 

ಮನಸಿಿ ನ

ಲಿ್ಲ  ಒಿಂದು 

ಕಲಪ ನೆ 

ಚಿಗುರೊಡೆ

ಯಿತು 

0.79 ಅವನ 

ಮನಸಿಿ ಗೆ 

ಒಿಂದು 

ಉಪಾಯ 

ಹೊಳೆಯಿ

ತು 

0.67 

 

It can be noticed that even where the 

individual BLEU score did not show improvement 

with the paraphrasing by T5-I, the translation of the 

paraphrased sentence is much more meaningful 

than the one without. Taking a corpus score on the 

12 Google Translate translations above the BLEU 

score for translations improved from 0.39 to 0.6 

with paraphrasing by T5-I.  

                                                           
15 We leveraged existing code of CNN2d and T5 models 

from Google Colab’s (Colaboratory is cloud based ML 

resource) pytorch libraries. 

4 Conclusion 

Where the CNN2d correctly identified the 

existence of Indication, it performed very well in 

identifying the sub-categories of Indication except 

in the case of the two Super-imponent Indications. 

We believe this because of the lack of equal 

number of examples across categories in our 

training dataset. The improvement in BLEU score 

achieved for translations with paraphrasing by T5-

I is significant and encouraging. The difference in 

the translation with and without T5-I paraphrasing 

was very evident in more complicated literary 

usages of sentences (and not just metaphors). 

For the purpose of the pilot we trained black-

box15 implementations of CNN2d and T5-base in 

with a small dataset.  We believe fine-tuning of the 

model architecture and a limited increase in the 

dataset can improve accuracy of the models for 

paraphrasing and translating sentences in Literary 

works with Indicated meaning to a higher level of 

accuracy. Where word embeddings are available 

the trained models should also work across 

languages.. 

There are other use cases as well, where 

understanding the real intent of a sentence depends 

on understanding of the Indicated meaning, 

including dialogue systems, sentiment analysis and 

emotion analysis.  
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Abstract

In this paper, we explore various approaches to
build Hindi to Bengali Neural Machine Trans-
lation (NMT) systems for the educational do-
main. Translation of educational content poses
several challenges, such as unavailability of
gold standard data for model building, exten-
sive uses of domain-specific terms, as well as
the presence of noise in the form of sponta-
neous speech as the corpus is prepared from
subtitle data and noise due to the process of
corpus creation through back-translation. We
create an educational parallel corpus by crawl-
ing lecture subtitles and translating them into
Hindi and Bengali using Google translate. We
also create a clean parallel corpus by post-
editing synthetic corpus via annotation and
crowd-sourcing. We build NMT systems on
the prepared corpus with domain adaptation
objectives. We also explore data augmentation
methods by automatically cleaning synthetic
corpus and using it to further train the models.
We experiment with combining domain adap-
tation objective with multilingual NMT. We
report BLEU and TER scores of all the mod-
els on a manually created Hindi-Bengali edu-
cational testset. Our experiments show that the
multilingual domain adaptation model outper-
forms all the other models by achieving 34.8
BLEU and 0.466 TER scores.

1 Introduction

Massive Open Online Courses (MOOCs) have
gained a lot of attention in recent years due to the
availability of high-quality educational resources
free of cost. In India, National Programme on
Technology Enhanced Learning (NPTEL)1 is one
such initiative to promote online education. How-
ever, most of the content offered in English poses
a problem for non-native English language speak-
ers especially in a multilingual country like India.

1https://nptel.ac.in/

One potential solution to mitigate this problem is
developing Machine Translation (MT) systems to
translate contents from English to other Indian lan-
guages. Developing Machine Translation (MT)
systems between two Indian languages is more dif-
ficult than developing systems between English and
Indian languages due to the unavailability of the ed-
ucational parallel corpus for Indian languages. MT
systems, especially current state-of-the-art Neural
Machine Translation (NMT) systems (Sutskever
et al., 2014; Bahdanau et al., 2015; Vaswani et al.,
2017) are data-hungry and requires a lot of training
data (Zoph et al., 2016; Koehn and Knowles, 2017).
Developing MT systems for the educational do-
main poses issues such as lack of data, translation
of domain-specific terms, phrases, and mathemati-
cal expressions. Since the dataset is prepared from
the lecture subtitles and transcripts, it also con-
tains noise in the form of spontaneous speech (e.g:
’umm’, ’yes! good morning’ etc.) and repetition
of phrases (e.g: ’ok, well.. ok well, now we have
to compute this value’ etc.). Due to these issues,
building an MT system for the educational domain
is a challenging task.

In this paper, we focus on developing the NMT
systems between two Indian languages, namely
Hindi→ Bengali language pair for the computer
science domain. We create a Hindi-Bengali educa-
tional corpus by crawling NPTEL lecture subtitles,
transcripts that are in English and translating them
into Hindi and Bengali. We create two types of ed-
ucational parallel corpora, ‘synthetic’ and ‘clean’.
Synthetic corpus is prepared from translating En-
glish data into Hindi and Bengali with the help of
Google Translate2. Clean corpus is prepared by
manual post-editing of synthetic data via manual
annotation and crowd-sourcing. We conduct exper-
iments on prepared corpora with domain adapta-

2https://translate.google.com/
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tion (Chu et al., 2017), objective. We experiment
with denoising (Edunov et al., 2018) and automatic
post-editing (Pal et al., 2016) objectives to automat-
ically clean the synthetic corpus which are further
used to train the models. We also experimented on
multilingual NMT (Johnson et al., 2017) using the
English part of the corpus along with Hindi and
Bengali. Since there is no standard educational test
set is available to test our models’ performance,
we manually create the test set by translating the
Hindi part of the English-Hindi parallel corpus (AI
domain) from Adap-MT shared task (Sharma et al.,
2020) into Bengali. We report BLEU and TER
score (Post, 2018) on the prepared test corpus3.

The paper is organized as follows. In Section
2, we briefly review a few of the notable works on
building MT systems for educational content and
domain adaptation, data augmentation methods in
NMT. In Section 3, we describe the corpus creation
process. The experimental setup used to conduct
domain adaptation and semi-synthetic data augmen-
tation experiments are described in Section 4 and
Section 5, respectively. The NMT model settings
and experimental setup are described in Section
6. Results are described in Section 7. Finally, the
work is concluded in Section 8.

2 Related Work

Building an NMT system for any domain requires
a significant amount of data. In the educational
domain, obtaining data is very challenging. Most
of the works in building MT systems for the ed-
ucational domain is focused on creating corpora.
Abdelali et al. (2014) have created educational cor-
pora for 20 languages (20 monolingual and 190
parallel corpora) by crawling AMARA website4

which is a community-driven web-based platform
for editing and creating subtitles for videos. Paral-
lel corpus for European languages in Educational
domain have been created via crowd-sourcing Kor-
doni et al. (2016); Sosoni et al. (2018); Behnke et al.
(2018) . They built NMT systems on the prepared
corpora and report that even a small amount of
crowd-sourced translations can improve the trans-
lation quality.

Domain adaptation is a methodology to adapt
models trained on out-of-domain data to in-domain
data. Chu et al. (2017) proposed two methods for

3The developed system can be accessible via following
link: http://edumt.ngrok.io/

4https://amara.org/en/

fine-tuning which do not need any modifications
to standard NMT architecture. One method is to
add domain tags (e.g: ‘<2domain>’) and train the
NMT model on the combined corpora from mul-
tiple domains. The second method is to fine-tune
the model trained on out-of-domain data on the
combination of in-domain and out-of-domain data.
Britz et al. (2017) proposed three methods for do-
main adaptation. ‘Discriminative Mixing’ method
uses a discriminator which is a fully connected
layer, to predict the domain tag the current input
sentence belongs to. The loss from discriminator
and decoder is added and back-propagated which
jointly optimizes the network. This makes the en-
coder encode domain-related features. ‘Adversar-
ial Discriminative Mixing’ method is the same as

‘Discriminative Mixing’ method except while back-
propagating loss, the loss from discriminator is
reversed by multiplying it with−1. This makes the
encoder encode domain invariant features. ‘Target
Token Mixing’ does not use a discriminator network
but simulates the discriminator by adding domain
tags to the target sentence.

Improving the performance of NMT models
with additional monolingual data is a common
practice especially in low-resource settings. Back-
translation (Sennrich et al., 2016) is an effective
approach to make use of the target monolingual
data. Edunov et al. (2018) conducted various ex-
periments to generate synthetic source sentences
from target monolingual data and used it to further
train the models. They report that corrupting syn-
thetic source sentences with noise and using that
noisy source sentence instead of a clean synthetic
source sentence, significantly improve the perfor-
mance of the NMT models. Multilingual NMT
(Johnson et al., 2017) is another popular approach
to improve the performance of NMT models for
low resource language pairs by augmenting the low
resource pairs with high resource language pairs
and training a single NMT model.

In this work, we build NMT models with do-
main adaptation objectives. We experiment with
cleaning synthetic in-domain corpus with denoising
auto-encoder (Vincent et al., 2008) and Automatic
Post-Editing (Pal et al., 2016) objectives. The re-
sulting data is augmented with created in-domain
corpus and used to train NMT models. We also
experiment with combining multilingual NMT and
domain adaptation objectives.
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3 Corpus Creation

We prepare the parallel corpus in educational do-
main by crawling lecture subtitles. Specifically,
we crawl the lecture subtitles from YouTube and
lecture transcripts from NPTEL courses5. The sub-
titles crawled from YouTube are of smaller length
compared to subtitles crawled from lecture tran-
scripts. We crawl lectures on Programming, Data
Structures, Algorithms, Machine Learning, and Ar-
tificial Intelligence.

3.1 Data Crawling
• Crawling Subtitles: Video lecture subtitles

are crawled from NPTEL6 and MIT OCW7

YouTube channels. We crawl the data us-
ing youtube-transcript-api8 Python package.
First, we collect the URLs of lecture videos.
Every video has two types of subtitles in En-
glish. One is auto-generated by YouTube and
the second one is official subtitles uploaded
along with the video. We extract only the offi-
cial subtitles to minimize the amount of noise
in the data as much as possible. Table 1 shows
the statistics of crawled subtitle corpus.

• Crawling Lecture Transcripts: Lecture
transcripts are crawled from the NPTEL
courses. For a given course, the lecture tran-
script is made available in PDF format. Every
PDF is tagged as ‘Verified’ and ‘To be ver-
ified’. We consider the courses whose tran-
scripts are tagged as ‘Verified’9. We use pdfto-
text10 Python package to extract text from
PDF. After getting the text, we use sacre-
moses11, a Python implementation of Moses
(Koehn et al., 2007) tokenizer to tokenize the
data into sentences. Table 2 shows the statis-
tics of crawled transcript corpus.

3.2 Creation of Synthetic Corpus
The crawled data is in English. To prepare the
Hindi-Bengali parallel corpus, we use Google trans-
late tool. The lecture subtitles are crawled from
YouTube, translated into Hindi and Bengali with

5https://nptel.ac.in/course.html
6https://www.youtube.com/user/nptelhrd
7https://www.youtube.com/user/MIT
8https://pypi.org/project/youtube-transcript-api/
9‘Verified’ transcripts are the transcripts that are post-

edited after the automatic transcription is done.
10https://github.com/jalan/pdftotext
11https://github.com/alvations/sacremoses

Domain #Videos #Subtitles
Prog, DS and Algo 838 263,150
ML and AI 678 176,764
Total 1,516 439,914

Table 1: Statistics of corpus prepared from YouTube
subtitles. Here, Prog: Programming, DS: Data Struc-
tures, Algo: Algorithms, ML: Machine Learning, AI:
Artificial Intelligence. #Videos: No. of videos and
#Subtitles: No. of subtitles.

Domain #PDFs #Subtitles
Prog, DS and Algo 324 46,009
ML and AI 775 109,179
Total 1,099 155,188

Table 2: Statistics of corpus prepared from NPTEL lec-
ture transcripts. Prog: Programming, DS: Data Struc-
tures, Algo: Algorithms, ML: Machine Learning, AI:
Artificial Intelligence. #PDFs: No. of transcript PDFs
and #Subtitles: No. of subtitles.

the help of YouTube’s built-in Google translate tool.
The lecture transcripts are translated into Hindi and
Bengali with the help of Google translate web in-
terface12. Table 3 shows the statistics of prepared
synthetic corpus. Table 4 shows language-wise av-
erage sentence length of synthetic corpus prepared
from the subtitles and transcripts.

Domain #Subtitles
Prog, DS and Algo 309,159
ML and AI 285,943
Total 595,102

Table 3: Statistics of the synthetic corpus. Prog: Pro-
gramming, DS: Data Structures, Algo: Algorithms,
ML: Machine Learning, AI: Artificial Intelligence.
#Subtitles: No. of subtitles.

Language Subtitles Transcripts
Bengali 11.7 13.96
Hindi 14.6 17.57
English 13.61 16.24

Table 4: Average sentence lengths of synthetic cor-
pora for each language. Subtitles: Data crawled from
YouTube lecture subtitles. Transcripts: Data crawled
from NPTEL lecture transcripts.

12translation using Google translate is done between July
2020 to February 2021.
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3.3 Creation of Clean Corpus
We create a clean Hindi-Bengali parallel corpus by
taking part of synthetic corpus and post-edited by
annotators and crowd-sourcing. We remove this
data from the synthetic corpus to avoid data du-
plication when training models. We employ three
annotators who are fluent in English, Hindi, and
Bengali. We provide English corpus and corre-
sponding Hindi and Bengali translations. The an-
notators post-edited both Hindi and Bengali data
based on the English data. We follow the same
method to get data post-edited by crowd-sourcing13

company also. After a clean corpus is created, we
took a random sample of 263 Hindi-Bengali par-
allel sentences for analysis. We ask 4 people who
speak both Hindi and Bengali14 to score the ran-
dom sample based on Adequacy and Fluency on
a scale of 1-5. For the Hindi part of the sample,
the average adequacy and fluency scores are 4.3
and 4.5, respectively. For the Bengali part of the
sample, the average adequacy and fluency scores
are 4.3 and 4.6, respectively. Based on the man-
ual analysis of the post-edited corpus, we conclude
that the post-edited clean corpus is of high quality.
Table 5 shows the statistics of the clean corpus.

Domain #Subtitles
Prog, DS and Algo 22,046
ML and AI 18,190
Total 40,236

Table 5: Statistics of the clean corpus. Here, Prog:
Programming, DS: Data Structures, Algo: Algorithms,
ML: Machine Learning, AI: Artificial Intelligence.
#Subtitles: No. of subtitles.

Corpus Domain #Sentences
Synthetic + Clean Educational 635,338
Samanantar General 2,501,608

Table 6: Statistics of data used in experiments.
Here, Synthetic: Prepared synthetic educational corpus.
Clean: Prepared clean educational corpus. Samanantar:
Samanantar Hindi-Bengali corpus. #Sentences: No. of
sentences.

4 Domain Adaptation

We consider both synthetic and clean Hindi-
Bengali educational parallel corpus as in-domain

13https://xsaras.com/
14Please note that there is no overlap between annotators

who post-edited the corpus and evaluators.

data. Samanantar corpus (Ramesh et al., 2021)15 is
considered as out-of-domain data. Table 6 shows
the statistics of data used in experiments. Since
there is no standard Hindi-Bengali educational test
set is available to test our models, we manually cre-
ate the test set by translating Hindi part of English-
Hindi parallel corpus (AI domain) from Adap-MT
shared task (Sharma et al., 2020) into Bengali. We
carefully create the test set by avoiding any overlap
between the test set and in-domain corpus which
is used for training. The prepared test set of size
2,630 sentences is used to evaluate all trained mod-
els.

We train two baseline models, namely ‘Out-
of-domain baseline’ and ‘In-domain baseline’.
The out-of-domain baseline model is trained on
Samanantar corpus and the in-domain baseline
model is trained on the prepared clean educational
parallel corpus. We train two domain adaptation
models by following fine-tuning (Chu et al., 2017)
method. Specifically, we use the out-of-domain
baseline model as the parent model. The parent
model is fine-tuned with (i). Clean educational par-
allel corpus (denoted as ‘FT-Clean’) (ii). Synthetic
+ Clean educational parallel corpus (denoted as ‘FT-
Both’). The reason to build two fine-tuned models
is to check whether synthetic corpus is improving
model performance or not. Based on the results (ref
Table 7) we choose to use both Synthetic and Clean
parallel corpus as our in-domain corpus. We also
train another fine-tuned model following mixed
fine-tuning (Chu et al., 2017) method. Similar to
fine-tuned models, the out-of-domain baseline is
used as a parent model and fine-tuned with the
combination of Samanantar and Synthetic + Clean
educational parallel corpus (denoted as ‘FT-Both-
Mixed’).

We also experiment with adding domain tags16

to source sentence (Chu et al., 2017) (denoted as
‘Source Token Mixing’) and target sentence (Britz
et al., 2017) (denoted as ‘Target Token Mixing’).
Using these methods, a single model can be trained
on both out-of-domain and in-domain data at the
same time. This will save time to train the model.
In our case, since out-of-domain data size is very
large compared to in-domain data, we oversam-
ple in-domain data to match the size of the out-of-
domain data.

15https://indicnlp.ai4bharat.org/samanantar/#indic-indic
16We use ##2GEN, ##2EDU tags to denote general and

educational domains respectively.
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4.1 Multilingual Domain Adaptation

Multilingual NMT model (Johnson et al., 2017;
Sen et al., 2018) is a single model trained for
multiple translation directions by combining paral-
lel corpora from multiple languages into a single
unified corpus. Multilingual models have shown
improvement for language pairs having less cor-
pus. In this work, we experiment with combin-
ing domain adaptation objective with multilingual
model (Chu and Dabre, 2019) to check whether
adding another language to the corpus will im-
prove the model performance or not (denoted as
‘FT-Multilingual’). To build this model, we use the
Out-of-domain baseline model which is trained on
Hindi-Bengali Samanantar corpus, as the parent
model. We fine-tune the model on multilingual
in-domain corpus obtained by combining Hindi-
Bengali, Hindi-English, and English-Bengali cor-
pus17. Specifically, we concatenated Hindi-English,
English-Bengali, and Hindi-Bengali corpora. Simi-
lar to Johnson et al. (2017), we use language tags
to denote the target language18. Here, the English
part of the corpus act as a bridge between Hindi
and Bengali.

5 Semi-Synthetic Data Augmentation

Since most of our in-domain data is synthetic, we
conduct experiments on automatic corpus cleaning.
We experiment with two methods for automatic
corpus cleaning, Denoising auto-encoder (Vincent
et al., 2008; Edunov et al., 2018) and Automatic
Post-Editing (APE) (Pal et al., 2016). We conduct
experiments on the Bengali part of the corpus as it
is our target language. We use synthetic-clean Ben-
gali sentence pairs from Clean corpus19 as our train-
ing corpus for corpus cleaning experiments. With
the APE objective, we train an end-to-end NMT
model with synthetic Bengali sentences as input
and clean Bengali sentences as the target. Edunov
et al. (2018) show that when using back-translated
(Sennrich et al., 2016) data to train the NMT model,
adding noise to input sentences improve model per-
formance significantly. Similarly, we create a noisy
version of source sentences with two types of noise:
(i). Randomly dropping word with probability 0.1

17Since we created the educational corpus by translating
English to Hindi and Bengali, we have 3-way parallel corpus
involving Hindi, Bengali and English languages

18We use ##2EN, ##2BN tags to denote English and Ben-
gali respectively

19Since we created clean corpus from synthetic corpus, we
have synthetic-clean sentence pairs.

(ii). randomly swapping tokens with its neighbor-
ing token with probability 0.1 (Edunov et al., 2018).
We do not modify the target sentences. We also
experiment by combining these two objectives and
training a single model which can perform both
denoising and automatic post-editing. After train-
ing, we use these models to generate clean Bengali
sentences from synthetic Bengali sentences. We
denote this as ‘Semi-Synthetic’ corpus since the
source (Hindi) is synthetic and the target (Bengali)
is automatically cleaned.

The main reason to perform automatic corpus
cleaning is to use the resulting clean corpus to
improve the performance of the NMT model for
the educational domain. To this extent, we repeat
the experiment similar to ‘FT-Both’ which is fine-
tuning the model trained on Samanantar corpus
with educational corpus. However, now we use
Semi-Synthetic corpus along with Synthetic and
Clean corpora to fine-tune the model. ‘FT-Both
+ Denoising’ denotes the model fine-tuned with
clean, synthetic corpora and semi-synthetic cor-
pus obtained from the denoising experiment. ‘FT-
Both + APE’ denotes the model fine-tuned with
clean, synthetic corpora and semi-synthetic cor-
pus obtained from the APE experiment. Similarly,
‘FT-Both + Denoising + APE’ denotes the model
fine-tuned with clean, synthetic corpora and semi-
synthetic corpus obtained from the experiment
combining denoising and APE objectives. The rea-
son to combine the semi-synthetic data with clean
and synthetic data is to provide the model with as
much data as possible since in-domain data size is
less compared to out-of-domain data.

6 Experimental Setup

All the models have trained on the Transformer
(Vaswani et al., 2017) architecture. We use 6 layer
Encoder-Decoder stacks with 8 attention heads.
Embedding and hidden sizes are set to 512, dropout
(Srivastava et al., 2014) rate is set to 0.1. The
feed-forward layer consists of 2,048 cells. Adam
(Kingma and Ba, 2015) optimizer is used for train-
ing with 8,000 warm-up steps with an initial learn-
ing rate of 2. We use token-wise batching with
batch size set to 2048 tokens. For fine-tuned mod-
els, the parent model is trained till convergence20

and the child model is initialized with the last
checkpoint from the parent model without resetting
any hyper-parameters. All the models are trained

20Perplexity is used as stopping criterion.
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till convergence and checkpoints are created after
every 10,000 steps. All the checkpoints are aver-
aged and considered the best parameters for the
respective model. We use OpenNMT toolkit (Klein
et al., 2017)21 to train the models. We tokenize
the data into subwords with the unigram language
model (Kudo, 2018) using SentencePiece (Kudo
and Richardson, 2018) implementation. For all
the models except ‘FT-Multilingual’, we learn sub-
word rules on corpus obtained by concatenating
in-domain and out-of-domain corpora. The size
of subword vocabulary is 50K for both Hindi and
Bengali. For the ‘FT-Multilingual’ model, we learn
joint subword vocabulary for Hindi, Bengali, and
English by combining all the in-domain corpora
and Hindi-Bengali out-of-domain corpora, and the
size of joint subword vocabulary is 75K. At the
time of decoding, the beam size is set to 5 with no
length penalty.

Model BLEU(↑) TER(↓)
Out-of-domain Baseline 17.3 0.608
In-domain Baseline 12.6 0.704
FT-Clean 21.5 0.634
FT-Both 33.6 0.482
FT-Both-Mixed 27.7 0.548
Source Token Mixing 23.0 0.607
Target Token Mixing 18.6 0.692
FT-Multilingual 34.8 0.466
FT-Both + Denoising 33.5 0.481
FT-Both + APE 33.0 0.493
FT-Both + Denoising + APE 32.7 0.493

Table 7: BLEU and TER scores of all trained models.
FT-Multilingual model outperforms all other models
with 34.8 BLEU score and 0.466 TER score.

7 Results and Analysis

We test all the models on the prepared Hindi-
Bengali test corpus of size 2,630 and report BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006) scores, calculated with sacreBLEU (Post,
2018)22. Table 7 shows the results of the models23.
The two baseline models, viz. Out-of-domain Base-
line and In-domain Baseline performance are the
lowest of all the other models. This behavior is
expected since there is less relevant data as the

21https://github.com/OpenNMT/OpenNMT-py/tree/1.2.0
22https://github.com/mjpost/sacreBLEU
23sacreBLEU signatures:

BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1
TER+tok.tercom-nonorm-punct-noasian-
uncased+version.1.5.1

models are trained on out-of-domain corpus and
small in-domain corpus respectively. However, the
models trained with fine-tuning objectives, namely
FT-Clean, FT-Both, and FT-Both-Mixed achieve
better results than both baseline models. Specifi-
cally, FT-Both, the model which fine-tuned with
both clean and synthetic in-domain corpus achieved
better results than the other two models. Interest-
ingly, FT-Both-Mixed, the model fine-tuned with
combining data from in-domain and out-of-domain
data, achieves less BLEU score (27.7) than FT-Both
(33.6) despite this method showing improvement
(Chu et al., 2017) in other cases. In our case, adding
the out-of-domain data is not helping the model but
when compared to the other two fine-tuned models,
it converged faster which suggests that the model is
over-fitting. We also observe that adding in-domain
data although it is synthetic, is helping the model.

The models, Source Token Mixing and Target
Token Mixing performance are less compared to
fine-tuned models. Despite a single model jointly
trained for both in-domain and out-of-domain and
can share information between both the domains,
performance on in-domain data is not significant.
Both the models outperform baseline models but
the Target Token Mixing model achieves less
BLEU score (18.6) than the FT-Clean model (21.5).
Similar to the FT-Both-Mixed model, adding out-
of-domain data is acting as noise which limits the
performance of the model on in-domain data.

The model fine-tuned with the multilingual edu-
cational corpus (FT-Multilingual) achieve the high-
est BLEU score of 34.8 and lowest TER score
of 0.466 (higher BLEU and lower TER scores
are preferable) of all other models. We observe
that adding more in-domain data is improving the
model performance. In our case, we add English
in-domain corpus (i.e. Hindi-English and English-
Bengali) to the Hindi-Bengali corpus. Since both
Hindi and Bengali synthetic data were prepared
from English data, adding English along with
Hindi-Bengali helped the model to learn better rep-
resentations for the Hindi-Bengali pair. This is
evident from the experiments with BLEU score of
FT-Multilingual model (34.8) improved by +1.2
points than FT-Both model (33.6). Similarly the
TER score of the FT-Multilingual model (0.466)
improved by -0.01624 points than FT-Both model
(0.482).

24Negative sign indicates the improvement as lower TER
score is better.
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Results from the semi-synthetic in-domain data
augmentation models are interesting due to the rea-
son that adding more in-domain data is not im-
proving the performance. This observation is op-
posite of the observation from the FT-Multilingual
model where adding the English part of the parallel
corpus is making the model outperform all other
models. Although the models, namely FT-Both
+ Denoising, FT-Both + APE, and FT-Both + De-
noising + APE are trained on in-domain corpus
twice the size of actual in-domain corpus (since
we add the semi-synthetic corpus to clean and syn-
thetic corpus, the size of in-domain corpus become
almost doubled) none of the models can outper-
form FT-Both model (it only trained on clean and
synthetic corpus). However, these three models
outperform all other models except FT-Both and
FT-Multilingual with FT-Both + Denoising model
achieving the second-best TER score (0.481). We
observe that the Denoising objective is more effec-
tive than the APE objective for automatic corpus
cleaning. We believe that if more synthetic-clean
in-domain sentence pairs are available to train the
denoising model, it will improve the quality of the
semi-synthetic corpus which, in turn, improves the
NMT model.

We conduct a human evaluation on the output
of our best model, namely FT-Multilingual. We
randomly choose 50 sentences from the test set and
given to 4 evaluators25 along with reference and
output of the model and asked to evaluate based on
Adequacy and Fluency on the scale of 1-5. The av-
erage adequacy and fluency scores are 3.5 and 3.85,
respectively. Based on the human evaluation, we
conclude that the model can translate educational
data with good adequacy and fluency.

8 Conclusion

In this paper, we have explored the problem of
building an NMT system in the educational do-
main for the Hindi-Bengali language pair. Since
there is no data available in the educational do-
main, we created the parallel corpus by extracting
from lecture subtitles and transcripts and translat-
ing them into Hindi and Bengali. We also create
a clean parallel corpus by post-editing the parallel
corpus via crowd-sourcing as well as with the help
of annotators. We trained Neural Machine Trans-
lation models with domain adaptation objectives

25These evaluators are the same who evaluated the quality
of prepared clean in-domain corpus.

by training models on publicly available Samanan-
tar Hindi-Bengali parallel corpus and fine-tuned
with prepared educational data. We explored vari-
ous methods to fine-tune the models such as mixed
fine-tuning, source token mixing, and target token
mixing. We experimented with data augmentation
methods by automatically cleaning the synthetic
in-domain corpus with denoising auto-encoder and
automatic post-editing objectives. The resulting
data is combined with prepared in-domain corpus
and trained models. We also experimented with
combining domain adaptation with multilingual
NMT by training a model on Samanantar Hindi-
Bengali corpus and fine-tuned with multilingual
in-domain corpus obtained by combining Hindi-
Bengali, Hindi-English, and English-Bengali in-
domain corpora. Since there is no standard test
corpus is available, we created Hindi-Bengali ed-
ucational test corpus through manual translation.
We observed that the multilingual model outper-
formed all other models by achieving 34.8 BLEU
and 0.466 TER points. We also conducted a hu-
man analysis of the multilingual model by taking
a sample of 50 random sentences evaluated based
on adequacy and fluency metrics by 4 evaluators.
The model achieved average adequacy and fluency
scores of 3.5 and 3.85, respectively.
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Abstract

We present findings from a first in-depth post-
editing effort estimation study in the English-
Hindi direction along multiple effort indica-
tors. We conduct a controlled experiment in-
volving professional translators, who complete
assigned tasks alternately, in a translation from
scratch and a post-edit condition. We find that
post-editing reduces translation time (by 63%),
utilizes fewer keystrokes (by 59%), and de-
creases the number of pauses (by 63%) when
compared to translating from scratch. We fur-
ther verify the quality of translations thus pro-
duced via a human evaluation task in which
we do not detect any discernible quality differ-
ences.

1 Introduction

Translation workflows that are based on post-
editing of Machine Translation output are being
increasingly adopted in the industry (Gaspari et al.,
2015). Gains that accrue from a post-editing based
workflow, measured over multiple post-editing ef-
fort indicators, have been reported to be consid-
erably significant by a number of previous stud-
ies over multiple language combinations (Plitt and
Masselot, 2010; C. M. de Sousa et al., 2011; Green
et al., 2013). But to extend post-editing beyond
its current silos it is imperative to put new and
less-studied language pairs under the lens to make
a case for wider adoption via empirically backed
evidence.1

Post-editing effort is often quantified across
three different dimensions, each focusing in turn on
a different aspect of post-editing behaviour (Krings,
2001). The dimensions studied are the following:
Temporal– understood as the time taken to com-
plete a translation task, often reported per segment
or word; Technical– estimate of the physical labour

1Gaspari et al. (2015)’s survey reveals a heavy skew to-
wards English and other European language combinations.

of the translation activity, measured in terms of
keystrokes logged or edit operations performed;
and Cognitive– an indirect estimate of the extent of
cognitive processes underlying the translation task,
inferred from keylogging pause or eye-tracking
data as it is not possible to observe these directly
(Moorkens et al., 2015).

If it can be shown that post-editing machine
translation output is temporally efficient, techni-
cally less laborious, and cognitively less demand-
ing, then it can be recommended as the default
workflow for large translation jobs. But this first
calls for a comparison between machine translation
based post-editing behaviour (henceforth PE) and
unaided human translation from scratch (hence-
forth HT). Thus, the research questions that we
pose are the following:

• Is post-editing effort as measured on temporal,
technical and cognitive dimensions lesser in
the PE condition than the HT condition for the
English-Hindi direction?

• Is the quality of post-edited segments equal to
translated segments as ascertained by human
raters?

• Do automatic MT evaluation metrics correlate
with PE effort indicators, when both measured
at the segment level?

Most of this paper will focus on answering the
first question in some detail. We are equally in-
terested in the other two as well, but will only be
presenting some initial results from a first attempt
at tackling them.

The rest of this paper is organized as follows:
Section 2 discusses some past studies including
those that have previously studied the English-
Hindi PE direction. In Section 3 we detail our
experimental setup. Section 4 presents our results
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and analysis and in Section 5 we draw our conclu-
sions and sketch the outlines of our future work.

2 Related Work

We now take a more detailed look at some of the
past efforts towards contrasting the two settings.
Plitt and Masselot (2010) compared HT and PE
when translating from English into 4 European lan-
guages (French, Italian, German, and Spanish) and
reported an overall productivity gain of 74% which
converted into time savings of 43%. They also
observed a 70% reduction in keyboard time and
31% in pause time for the PE setting. C. M. de
Sousa et al. (2011) also report PE to be 40% faster
than HT in the English-Portuguese direction when
translating movie subtitles.

Other studies however (Läubli et al., 2013), have
reported more modest gains, with estimated time
savings of 15–20% when translating between a
European language pair (German-French) within
a realistic translation environment.2 Garcia (2011)
also finds only marginal productivity gains when
studying the English-Chinese pair and additionally
reports an impact of directionality when source and
target languages are switched.

All of these earlier experiments, however, were
based on the output of Phrase based Statistical Ma-
chine Translation (PBSMT) systems. With Neural
Machine Translation (NMT) and its subsequent it-
erations being the current state of the art and outper-
forming PBSMT (Bahdanau et al., 2014; Vaswani
et al., 2017; Castilho et al., 2018), this shift in tech-
nology paradigm from PBSMT to NMT must then
be addressed in post-editing studies as well.

Läubli et al. (2019) conduct such a study, this
time utilizing the output of an NMT system to
compare PE with HT in the German-French and
German-Italian translation directions.3 They re-
port significant overall productivity gains, but with
marked differences between the pairs: 59.74% for
the former and only 9.26% for the latter. Another
interesting comparison of HT, PBSMT, and NMT
post-editing settings performed on a literary text
(chapter from a novel) reports an increase in pro-
ductivity by 36% for the NMT based setting over
HT (Toral et al., 2018).

2Experimental settings for these studies may deploy spe-
cialized interfaces for accurate measurements or make use of
environments already familiar to professional translators.

3The HT condition is aided by a domain specific translation
memory (TM).

We have seen in previous studies that through-
puts vary considerably depending on the language
pair under the lens (Green et al., 2013; Läubli et al.,
2019). We now discuss some earlier efforts that
have included an Indian language in their experi-
ment.

Shah et al. (2015) conducted an experiment
where students post-edited parts of a specialized
English language textbook on bioelectromagnetism
into 7 languages, 3 of them being Indian languages
including Hindi. They reported an increase in post-
edit time by a factor of 3–5 when the target lan-
guage was an Indian language. They put this down
to greater terminological distance between English
and Indian languages compared to other languages
in their experiment. They do not study and compare
against the HT condition, or report on technical or
cognitive indicators.

Carl et al. (2016) also report results on Hindi
(amongst 6 languages) comparing the HT and PE
conditions. Their English-Hindi results are based
on an existing multilingual translation database that
contains experimental data around translators’ ac-
tivities in both conditions. They find in favour of
the PE condition across all languages when mea-
sured on temporal indicators, but report translating
into Hindi to be the slowest amongst the 6. They
do not quantify average throughput gain or time
savings.

Meetei et al. (2020) compare PE behaviour when
translating from English into 3 Indian languages
(Manipuri, Mizo and Hindi). They conduct light
post-editing and report Hindi to be the fastest to
post-edit amongst the three languages.4 They as-
cribe it to the availability of relatively mature MT
systems in the English-Hindi direction compared
to Mizo and Manipuri, which are low-resource lan-
guages. They use student volunteers and do not
investigate cognitive indicators.

Ahmad et al. (2018) present an industry perspec-
tive and claim a 2–3 fold increase in productivity
for users using their tools in combination with MT.
However, they base this on longitudinal tracking of
their users.

While all these past studies have certainly helped
in providing insights into post-editing behaviour
in Indian languages in general and in Hindi in par-
ticular, we sense a need for a more in-depth look
along all PE effort indicators within at least one

4It is also often referred to as good enough translations and
is lower than publishable quality translations.
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Figure 1: Shows a snapshot of the translator workbench
used in the study. Depicts an example in the PE condi-
tion pre-filled with an MT proposal; for the HT condi-
tion the text area is left blank.

Indian-language setting. With our current work, we
seek to address this gap.

We see our contribution differentiated from pre-
vious related work as follows: (i) we present in-
depth results from all three primary indicators of
PE effort (temporal, technical and cognitive) for
the English-Hindi direction; (ii) we account for per
translator and per item variation with the use of
mixed-effects models; (iii) we utilize professional
translators in order to accurately gauge the impact
of contrasting conditions; (iv) we conduct a hu-
man quality-rating exercise comparing target text
produced in both conditions; (v) we present cor-
relations of automatic MT metrics with PE effort
indicators.

3 Experimental Setup

We conducted this experiment under a 2 (transla-
tion conditions) × 200 (source segments) mixed
design. All subjects saw both factor levels (HT and
PE), but only one combination for each level as
having been exposed to a source segment in one
condition would have affected their translation in
the other. The study was conducted online over
5 consecutive days with 2 sessions per day. The
sessions were not time bound. Subjects translated 2
files of 10 segments each in alternating conditions
in each session.

All subjects participated in a warm-up transla-
tion exercise a week prior to the start of the actual
task. This was done to establish familiarity with
the interface used in the study. We chose to adapt
an existing beta version of a web-based transla-
tion workbench by adding extensive keystroke log-
ging features along with some other minor tweaks.5

The UI itself was kept clean and uncluttered, serv-
ing one segment at a time to the translators. This

5https://indictranslate.in/

meant that while translators had previous context
of the text under translation, they could not nav-
igate ahead for context. A timer was displayed
once a translator navigated to each new segment.
This was meant to prompt the translator to focus
on the activity at hand. Figure 1 shows the work-
bench interface as seen by translators under the PE
condition.

We instructed the participants to aim for publish-
able translation quality. They were free to conduct
web searches and consult online or offline dictio-
naries, but were discouraged from spending too
much time doing so.6 It was deemed acceptable
to transliterate any technical terms or terminology
into Hindi if they could not find its translation even
with the aid of resources available to them. How-
ever, they were strictly prohibited from consulting
any online MT engines during the task. Subjects
were encouraged to complete each task (consisting
of 10 segments) in a single sitting without a break.

Previous studies, such as those discussed earlier,
have noted the impact of a number of different vari-
ables (language pairs, MT paradigms, text domains,
translation environments, translator competencies)
on translation throughputs. This calls for not only
careful experiment design, but also utilization of
techniques that can help with the testing and infer-
ence of results. Green et al. (2013) utilized one
of the first such designs for post-editing produc-
tivity studies and deployed mixed-effects models
(Baayen et al., 2008) to account for inter-language,
inter-subject, and inter-item variability.

Mixed-effects models are able to model this vari-
ability in two ways: (i) through random intercepts,
that can account for the differences between trans-
lators seen in their differing throughputs (or differ-
ences between linguistic items due to the features
inherent to them); (ii) and through a random slope
that accounts for how different subjects may experi-
ence the change of condition differently. Account-
ing for these variabilities allows us to isolate the
effect of condition, generalize our findings beyond
our sample, and avoid the ”language-as-fixed-effect
fallacy” (Clark, 1973).

In fitting our mixed-effects models we follow
a methodology similar to the one described by
Baayen et al. (2008) and followed by Green et al.
(2013) and later Toral et al. (2018). Maximal mod-
els were fit when possible (Barr et al., 2013); in

6This was done as technical terminology related difficulties
have previously been noted for this language direction (Shah
et al., 2015).
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Day S1-T1 S1-T2 S2-T1 S2-T2
Day 1 20.20 (A1) 26.30 (A1) 26.80 (A1) 21.30 (A2)
Day 2 20.90 (A2) 22.30 (A2) 24.90 (A2) 23.20 (A3)
Day 3 26.40 (A4) 24.60 (A4) 26.30 (A4) 22.40 (A4)
Day 4 22.40 (A4) 20.30 (A4) 18.00 (A5) 18.70 (A5)
Day 5 22.50 (A5) 16.00 (A5) 20.30 (A5) 23.00 (A5)

Table 1: Average sentence lengths (in words) per
session-task block as presented to translators. Also
shown in parenthesis are the source articles used for
each block.

case of convergence failure, a less complex model
was fit by successively removing the random slopes
of the by-subject and by-segment random effects
component. Models thus obtained were compared
via likelihood ratio tests. We also refit our final
models after filtering data points with residuals de-
viating more than 2.5 standard deviations. This
helps check for the influence of any atypical out-
liers (Baayen et al., 2008). We verify the residual
plots for normality and homoscedasticity. We uti-
lized the lme4 package in R (Bates et al., 2015)
for all mixed-effects models related analyses.

3.1 Data
We assembled a corpus of recent English language
news articles from two distinct online sources. The
choice of news as a domain was motivated by obser-
vations of terminology-related difficulties in more
specialized domains, as reported by earlier studies
(Shah et al., 2015). Each news article was seg-
mented into sentences using the NLTK library and
divided into blocks of 10 segments.7 Only those
blocks were used that fell within a MEAN ± SD of
the corpus mean (Table 1). We prioritized the conti-
nuity of a news article across blocks when making
block selections.8 This methodology yielded a to-
tal of 200 unique source segments divided into 20
blocks of 10 segments each, spanning 5 different
news articles: A1–A5. Conditions were counter-
balanced to handle order effects.

3.2 Participants
The participants of our study are self-declared pro-
fessional translators. We contacted a professional
translation service provider to help assemble the
pool.9 A short questionnaire accompanied the reg-
istration form for the task. Of our participant pool
of 10 subjects, 70% reported 2–5 years of expe-
rience translating in the English-Hindi direction,

7https://www.nltk.org/api/nltk.tokenize.html
8In 2 cases out of 20 we had to skip the subsequent block,

owing to short average sentence lengths of the blocks.
9http://www.ebhashasetu.com/

while 30% reported 0–2 years of experience. The
same percentage breakdown was observed for a
question related to previous post-editing experi-
ence. All subjects were paid the going market rates
for the task regardless of the condition (PE, HT).

3.3 MT System

The English→Hindi MT engine used for the task is
a transformer based neural machine translation sys-
tem. This subword-based NMT system is trained
on cleaned WAT 2021 10 English-Hindi training
corpus using the Opennmt-py toolkit (Klein et al.,
2020). The system also utilizes forward and back-
ward translations on the IndicCorp monolingual
corpus to obtain synthetic data for training.11 It
uses subwords as the basic translation unit with
20,000 merge operations on both source and tar-
get languages. The system obtained a BLEU score
of 35.46 on cleaned WAT 2021 English-Hindi test
data.

4 Results and Discussion

4.1 Pre-processing

Once we processed the activity logs for all 10 sub-
jects across all 200 segments, they yielded 2000
unique observations. We found that 7 of these items
(all from the HT condition) did not contain a final
translation, so we discarded those. We think that
in these cases the subjects may have accidentally
navigated to the next segment without having com-
pleted a translation. In the PE condition we found
that one subject P01 had not touched 68% of the
MT outputs and had accepted them without modifi-
cations. This was almost 3 times the next highest
proportion we detected across all other subjects.
We decided to remove all data points generated by
this subject. We were thus left with 1793 observa-
tions on which we base these results.

We calculated time per segment, source seg-
ment lengths (in words and characters), number
of keystrokes (total, as well as those belonging to
different categories: content, navigation and dele-
tion), average pause duration, initial pause duration,
and number of pauses. We also computed H-BLEU
(Papineni et al., 2002), H-TER (Snover et al., 2006)
and H-chrF (Popović, 2015) metrics on the post-
edited segments.12

10http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/
11https://indicnlp.ai4bharat.org/corpora/
12H signifies that scores were computed using the reference

generated in the PE condition by the same subject.
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Figure 2: Individual translation throughputs in words
per hour and average throughput in each contrasting
condition.

Having assembled this data, we set out to answer
the research questions posed earlier in Section 2.

4.2 Temporal Effort

We first present a view of temporal effort in terms
of productivity measured as words per hour. We
see productivity improvements in the PE condition
across the board except for subject P07. Overall,
this translates into a throughput increase from 359
words/hour to 979 words/hour. We thus observe an
overall productivity gain of 172%, which amounts
to 63% in time savings.

This is more than twice the 74% gain reported by
(Plitt and Masselot, 2010) when studying European-
language pairs and the 59.74% reported by (Läubli
et al., 2019) recently. But we note that in the first
case, the experiments were conducted on PBSMT
outputs, and in the second, while NMT was used,
the control condition was aided by a TM, thus push-
ing up the baseline throughputs. With this context
in mind, the average productivity gain seen in our
study does not appear to be unrealistic.

Figure 2 shows a comparison of individual
throughputs in contrasting task conditions along
with means aggregated for the two conditions. We
also note a great variation in productivity gain
amongst subjects ranging from -7% to 410%.

Table 2 helps interpret this further. We contrast
the number of unedited and edited MT propos-
als per subject and their individual productivity
gain percentages. It follows that higher the accep-
tance of MT proposals without modifications by a
subject, greater the gain in individual productivity.
While this may point to high quality MT output,
it also demands a closer scrutiny of the quality of
translations generated in each condition. We ad-
dress this in Section 4.5.

Participant Unedited (%) Edited (%) Productivity Gain (%)
P02 20 80 411
P03 3 97 73
P04 3 97 92
P05 18 82 275
P06 25 75 404
P07 0 100 -7
P08 2 98 105
P09 25 75 234
P10 16 84 169

Table 2: MT segments accepted without modifications
and with modifications per subject along with individ-
ual productivity gain percentages.

We now report the mixed-effects regression re-
sults. Plotting temporal data showed a right-skewed
distribution, so we log transform all time data be-
fore proceeding further. As our goal is to predict
translation time and establish the significance of
conditions, we fit a linear mixed-effects regression
model with two fixed-effect predictors (condition
and segment length) and two random-effect predic-
tors (subjects and segments), where on the subject
predictor we also include a random-slope for task
condition.

In the final model, we observe a significant main
effect for both segment length as well as translation
condition.13 Temporal effort significantly increases
with segment length, but decreases for the PE con-
dition. Table 3 shows the significance levels and
direction for each predictor in our final models
across all PE effort dimensions that we study.

4.3 Technical Effort
We measure technical effort as the number of
keystrokes used to generate the target text. We
normalize it per source segment character. Figure
3 shows 1.33 keystrokes used per source character
in the HT condition and 0.54 keystrokes in the PE
condition, amounting to an effort reduction of 59%.
Contrast this with the 23% reduction reported by
Toral et al. (2018) when post-editing a literary text.
Again, except for subject P07 all participants show
reduced effort in the PE condition.

We also classified each keystroke based on the
type of the keystroke logged. We classify these
into content, navigation, and deletion categories
and report the percentage breakdown of the total
into these categories in Table 4. We observe higher
navigation and deletion operations in the PE condi-
tion (28% and 26%) than the HT condition (8% and
14%), while content keystrokes register a higher
percentage in HT (77%) compared to PE (46%).

13We utilize the lmerTest package that extends results with
p-values for models built with lme4.
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Predictor
Temporal Technical Cognitive

number average duration initial duration

Segment length ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗ ↑∗∗∗
Condition (PE vs. HT ) ↓∗∗∗ ↓∗∗∗ ↓∗∗∗ − −

Significance levels: —(p > 0.1), (p < 0.1), *(p < 0.05), **(p < 0.01), ***(p < 0.001).
Direction: (↑ ↓) arrows depict whether the predictor has a negative or positive correlation with the dependent variable.

Table 3: Significance levels of predictors in our final models across all modeled PE effort dimen-
sions.
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Figure 3: Technical effort estimated as number of
keystrokes needed to generate target text per source
character.

Subject P08 is an interesting case as they regis-
ter the highest number of delete operations (they
have high navigation numbers too) in either condi-
tion amongst all participants. This could point to
frequent revisions made on the text.

As number of keystrokes is expressed as counts,
we fit a Poisson generalized linear mixed-effects
model to predict technical effort. We follow the
same methodology as described in the previous
section. We again find a significant main effect both
for segment length as well as translation condition
(Table 3), similar to what we saw for the temporal
dimension earlier. Technical effort increases with
increase in segment length, and decreases for the
change in condition to PE.

4.4 Cognitive Effort

Post-editing effort estimation studies based on eye-
tracking data use fixations as a proxy to estimate
cognitive load; the idea being that greater the num-
ber and duration of fixations, greater the cogni-
tive load (O’Brien, 2011). In the absence of eye-
tracking data, the use of pauses as a proxy for
cognitive load is also well established (O’Brien,
2006). We report on three such cognitive indica-
tors: number of pauses, pause duration, and initial
pause duration. Findings related to the first two
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Figure 4: Cognitive effort estimated as average number
of pauses per source segment.

have been reported in previous post-editing litera-
ture (Green et al., 2013; Toral et al., 2018).14 The
third (initial pause duration), we introduce in order
to gauge differences in reaction times from when a
subject first navigates to a new segment displayed
in either condition to their first action on it.

We calculate the time difference between two
subsequent key events and consider all observations
above 1000ms to be pauses following (O’Brien,
2006; Koehn, 2009).

Figure 4 shows the differences in the frequency
of pauses for each subject in the two conditions.
We notice a reduction of 63% in the PE condition
from 31 pauses per segment in HT to 12 pauses
per segment in PE. This points to a much reduced
cognitive load when post-editing.

However, a similar exercise on pause duration
data reveals an increase of approximately 12% in
the PE condition compared to the HT condition
(Figure 5). Although, it is not significant, this is in
line with findings reported previously comparing
these two specific cognitive indicators (Green et al.,
2013).

We finally compare initial pause duration be-
tween PE and HT. We expect this initial load to be
higher for the PE condition given that there are two

14There is also an indicator reported as pause ratio which
we eschew in favour of initial pause time.
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Participant
HT (%) PE (%)

Content Navigation Deletion Content Navigation Deletion

P02 81 9 11 41 32 27
P03 94 1 5 58 8 34
P04 86 9 5 48 41 11
P05 85 5 10 56 30 14
P06 90 1 9 54 28 18
P07 66 11 23 56 12 32
P08 24 25 51 10 27 63
P09 78 12 10 35 52 13
P10 94 1 5 59 19 22
Mean± SD 77.55± 21.80 8.15± 7.89 14.30± 14.63 46.52± 15.91 27.69± 13.65 25.8± 16.1

Table 4: Types of keystrokes generated by subjects in each condition.
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Figure 5: Cognitive effort estimated as average pause
duration per source segment.

segments displayed to the subject in this condition:
the source segment and the MT proposal, which
have to be read and comprehended before starting
the post-editing activity. This seems to hold, but
not significantly, as we see only a small increase
of about 5% for the PE condition (Figure 6). One
explanation could be that in the PE condition, the
MT proposal in spite of registering a higher cogni-
tive load initially also later acts as a helpful prompt
for the subject. An eye-tracking based experiment
might prove useful in teasing apart these two oppo-
site effects.

When comparing the means15 for pause duration
and initial pause duration we find pause duration
(6.77s for HT and 7.71s for PE) to be consider-
ably lower than initial pause duration (35.02s for
HT and 36.67s for PE). The translator therefore,
takes a longer initial pause to start formulating a
response, but once they start the activity, they take
considerably shorter pauses.

We go on to fit three mixed-effects models to val-
idate these findings. A Poisson generalized mixed-
effects model to estimate pause counts finds signifi-

15After transforming back from log scale. Also, note that
pause duration does not include initial pause duration as a
component, and is the duration of pauses after post-editing
starts.
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Figure 6: Cognitive effort estimated as average initial
pause duration per source segment.

cant main effects for segment length and condition.
Cognitive effort (measured as count of pauses) in-
creases with segment length and decreases for the
change in condition to PE.

The other two linear mixed-effects models fit to
predict average pause duration, and initial pause
duration find a significant effect only for segment
length and not for condition (Table 3). This shows
that while cognitive effort certainly increases with
segment length, the change in condition to PE, does
not have a discernible effect on cognitive effort,
when measured by the average and initial time du-
ration indicators.

4.5 Quality Judgements

To evaluate whether the quality of texts created in
the PE condition matched those created in the HT
condition, we conducted a human judgement based
pairwise ranking task (Callison-Burch et al., 2011)
on a small sample. We randomly sampled 3 target
segments per condition from each subject. For each
target text thus obtained, we paired it with another
random sample after constraining on condition. We
thus obtained 60 HT-PE pairs for evaluation. As
we discovered issues (discussed earlier in Section
4.1) with subject P01’s data after the quality eval-
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Evaluator
PE vs. HT

Win Loss Tie

E1 18 14 15
E2 27 15 5
E3 7 7 33
E4 14 11 22
E5 13 11 23

Table 5: Pairwise quality judgements on sampled target
texts reported as win, loss, and ties for PE against HT.

uation exercise had already been completed, we
removed any pairs that had a segment translated by
the subject. We report our results on this filtered
set that consists of 47 pairs. Five evaluators were
asked to judge each pair. Ties were allowed.

Table 5 shows the judgements from evaluators
represented as win-loss statistics on the PE condi-
tion. We notice a high number of ties and a slight
preference for the PE condition. However, the pref-
erence does not test to be significant on a sign
test ignoring ties (p-value = 0.08). We conclude
that translating in either condition produces similar
quality target segments. However, we realise that
the sample size was quite small compared to the
number of possible combinations across all partici-
pants. We hope to conduct a more thorough review
of quality in future.

4.6 Automatic Quality Metrics

Finally, we investigate the correlations of some
popular automatic MT evaluation metrics with the
post-editing effort indicators reported so far in this
study. We generated metric scores by comparing
the MT proposal against its post-edited reference.
We calculate scores for H-(BLEU, TER, and chrF).

Table 6 shows moderate correlations for all 3
MT metrics on the temporal indicator, similar to
what Tatsumi (2009) also reported for this indica-
tor. Correlations then get stronger on the technical
indicator and then fade for the cognitive indicator.

We believe this may be because cognitive effort
is the only one out of the three PE dimensions we
studied that is not directly observed (instead, in-
ferred from pause frequency and pause duration
data), whereas the technical and temporal indica-
tors can be measured more directly. This is similar
to findings previously reported by Moorkens et al.
(2015) who note a similar correlation trend across
the three PE effort dimensions. The technical ef-
fort indicator appears to be the one most strongly
correlated with automatic metrics.

The other two cognitive indicators (average and

MT Metric
PE Indicator

temporal technical cognitive (# pauses)

(H)BLEU r =−.56, ∗∗∗ r =−.71, ∗∗∗ r =−.48, ∗∗∗

(H)TER r = +.54, ∗∗∗ r = +.70, ∗∗∗ r = +.49, ∗∗∗

(H)chrF r =−.56, ∗∗∗ r =−.73, ∗∗∗ r =−.49, ∗∗∗

Note: All coefficients for r(898). For TER lower is better hence the positive correla-
tion. The other two cognitive indicators (average and initial pause duration) did not
show any correlation with any of the metrics – coefficients were close to 0.

Table 6: Correlations of PE Effort indicators with auto-
matic MT metrics.

initial pause duration), which did not test signifi-
cant as per our mixed-effects models, also do not
show any correlation with any of the MT metrics
– coefficients obtained were close to 0. We omit
reporting them in Table 6 due to space constraints.

5 Conclusion

We conducted a post-editing effort assessment
study and presented detailed analysis of effort indi-
cators along the temporal, technical and cognitive
dimensions. We observed that in the temporal di-
mension, post-editing reduced translation time by
63%; in the technical dimension it reduced number
of key strokes by 59%; and in the cognitive dimen-
sion, it reduced the frequency of pauses by 63%.
However, it increased average pause duration by
12% and average initial pause duration by 5%.

We then compared the quality of translations
generated in each condition and found them to be
similar.

And finally, we detected moderate to strong cor-
relations for 3 automatic MT evaluation metrics
across all PE effort indicators, with technical ef-
fort most strongly correlating with automatic MT
metrics.

The last two observations regarding human qual-
ity judgement, and MT metrics and their correla-
tions demand a closer look, which was not possible
owing to time and space constraints. We expect
to undertake this as part of our future work. We
also propose to extend this study by including a
third condition in future, either as an additional MT
engine to check if MT quality differences show up
in PE effort indicators (Toral et al., 2018), or by the
use of translation aids (TM) to gauge their impact
in a similar manner (Läubli et al., 2013, 2019).

We also intend to study other language pairs,
especially those within the multilingual Indian con-
text.
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Abstract

In this paper, we report the experimental find­
ings of building Speech­to­Text translation sys­
tems for Manipuri→English on low resource
setting which is first of its kind in this lan­
guage pair. For this purpose, a new dataset
consisting of a Manipuri­English parallel cor­
pus along with the corresponding audio ver­
sion of the Manipuri text is built. Based
on this dataset, a benchmark evaluation is
reported for the Manipuri→English Speech­
to­Text translation using two approaches: 1)
a pipeline model consisting of ASR (Auto­
matic Speech Recognition) and Machine trans­
lation, and 2) an end­to­end Speech­to­Text
translation. Gaussian Mixture Model­Hidden
Markov Model (GMM­HMM) and Time delay
neural network (TDNN) Acoustic models are
used to build two different pipeline systems
using a shared MT system. Experimental re­
sult shows that the TDNN model outperforms
GMM­HMM model significantly by a margin
of 2.53% WER. However, their evaluation of
Speech­to­Text translation differs by a small
margin of 0.1 BLEU. Both the pipeline trans­
lation models outperform the end­to­end trans­
lation model by a margin of 2.6 BLEU score.

1 Introduction

In recent times, the advance in machine transla­
tion (MT) systems research jumped from textual
modality to multi modality. The success of the
several machine translation system for major lan­
guages based on statistical and neural approaches
shed light towards building better translations sys­
tems for low resource languages as well. Of these,
the statistical machine translation (SMT) (Koehn
et al., 2003) and neural machine translation (NMT)
models (Cho et al., 2014) started its journey from
the traditional text­to­text translation which fur­
ther expanded to the use of multiple modalities
(Huang et al., 2016; Caglayan et al., 2016; Meetei

et al., 2019; Gain et al., 2021) in the translation
task. The usage of multiple modalities in MT un­
covers new avenues for MT researchers. MT tasks
where multiple modalities are utilized include us­
ing multiple­input modalities, for example, incor­
porating visual and text modalities (Meetei et al.,
2021; Singh et al., 2021), translation between dif­
ferent input and output modalities such as Speech­
to­Text translation (Ney, 1999; Weiss et al., 2017),
etc. With these various methodologies of MT, the
main goal is to obtain themost key information in a
modality in generating the optimal sentence trans­
lation.
The Speech­to­Text (S2T) translation is the

translation of a speech in a source language to a
target language text. The Speech­to­Text transla­
tion task can be broadly addressed using two ap­
proaches: 1) with a pipeline strategy, which sep­
arates the different modalities into modality con­
version, i.e., ASR, followed by text­to­text MT. 2)
end­to­end (E2E) translation where the target text
is directly generated from the speech in the source
language. The Speech­to­Text (S2T) can find its
application in our daily life by creating an ease
form of communication for individuals with phys­
ical disabilities. It can also be used in reducing
the turnaround of quick documentation, generating
subtitles, etc.
Despite the fact that researchers are pushing

the frontiers in machine translation and improv­
ing their capabilities, most of the work is focused
on well­studied languages while work on low re­
source languages such as Manipuri is falling be­
hind. Manipuri (also known as Meiteilon) is the
official language of Manipur, a northeastern state
of India. Manipuri is an extremely low resource
language with a limited dataset available for the
NLP (Natural Language Processing) tasks which
is one of the primary reasons that hindered the de­
velopment of NLP systems for the language.
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Figure 1: Manipuri→English S2T translation models

This work aims to promote Speech­to­Text
translation of an extremely low resource language
by presenting a benchmark evaluation on a manu­
ally collected speech dataset. This work makes the
following contributions:

• We build the first Manipuri→English S2T
translation dataset.

• Comparison between a pipeline and end­to­
end S2T translation model on the collected
corpus is reported as the benchmark evalua­
tion.

The rest of this paper is presented as follows:
The prior relevant research is discussed in Section
2, followed by the framework of our model in Sec­
tion 3. Section 4 and Section 5 explain the setup
of our system and analysis of our results. The con­
clusion and future work are summarized in Section
6.

2 Related Works

Early attempts to address S2T translation follows
a pipeline approach of two independent models:
ASR and MT systems (Ney, 1999; Matusov et al.,
2005). The approach utilized the hypothesis of
ASR as an input to the MT model to generate the
target­language text. Initial work on direct Speech­
to­Text translation includes (Bérard et al., 2016;
Duong et al., 2016; Bansal et al., 2017). Using
a small French­English synthetic dataset from 7
speakers, Bérard et al. (2016) carried out an end­
to­end S2T translation. The author reported that
their system to be capable of generalizing to a new

speaker effectively. Bansal et al. (2018) carried
out an end­to­end S2T translation in low resource
settings by training with smaller subsets of 160
hours labeled data. The author reported a BLEU
score of 5.3 and 29.4 when trained with 20 hours
and 160 hours, respectively.
Some of the work in the development of speech

technology for the Manipuri language includes
Rahul et al. (2013); Patel et al. (2018); Devi et al.
(2021). Patel et al. (2018) reported a WER of
19.28% on a GMM­HMM and WER of 13.57%
on a Deep Neural Network­HMM (DNN­HMM)
acoustic model systems. The speech corpus used
in the experiment comprised around 61 hours.
Works on MT for Manipuri­English language pair
are reported using various techniques such as
Example­based MT (Singh and Bandyopadhyay,
2010a), SMT (Singh and Bandyopadhyay, 2010b;
Singh, 2013), and unsupervised NMT (Singh and
Singh, 2020). In a comparative study of SMT and
NMT systems on the Manipuri­English language
pair, the authors (Rahul et al., 2021; Singh and
Singh, 2021) reported NMT system to perform bet­
ter than the SMT system. To date, there is no work
in S2T translation for Manipuri­English language
pair. In order to fill this gap, a Manipuri­English
S2T translation is developed using a small dataset
in our work.

3 Methodologies

Figure 1 illustrates the methodology of our work.
As the initial step of our work, English text dataset
is collected from news articles, which is translated
to Manipuri language. In the next step, speech is
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recorded for the Manipuri text. The overall col­
lected dataset is then used to train the pipeline and
End­to­End S2T translation models.

3.1 Language Resources
To build the dataset for our experiment, we col­
lected news articles reported in English from a lo­
cal daily newspaper1. The collected English text is
machine translated to Manipuri followed by man­
ual post­editing of the MT output and training the
MT system with the incremental approach (Meetei
et al., 2020). Following the development of the par­
allel dataset, speech is recorded for each of the Ma­
nipuri sentences by the native speakers of Manipur.
The total number of participants for speech records
is five: one male speaker and four female speak­
ers. There is no overlapping of utterances among
the participants. The recorded speech is post­
processed, where the quality of speech records are
verified manually. Any invalid speech found is
rerecorded to collect quality speech records for the
experiment. The overall collected dataset com­
prises of:

• 3500 Manipuri­English parallel text datasets,
and

• around 5 hrs 30 minutes of speech record of
the Manipuri text.

3.2 Speech Feature Extraction
For any Speech­to­Text system, extracting the au­
dio signal components that can be used to de­
termine linguistic content is important. Mel­
frequency cepstral coefficients (MFCCs), the most
popular, extensively utilized cepstral feature for
ASR, is used as the audio feature for the ASR sys­
tem and the E2E Speech­to­Text translation sys­
tem.

3.3 Pipeline translation model: ASR and MT
Our pipeline S2T translation model consists of two
independent models:

• Automatic Speech Recognition, and

• Neural Machine Translation (NMT)

In our work, we built two separate pipeline
systems using GMM­HMM and TDNN Acoustic
models, which is followed by a shared NMT sys­
tem. The ASR output is fed to the NMT system to
generate the target language.

1Imphal Free Press https://www.ifp.co.in/

3.3.1 Automatic Speech Recognition (ASR)
The objective of an automatic speech recognition
system is to predict the most likely discrete sym­
bol sequence from a given input acoustic speech
vector O, out of all valid sequences in a target lan­
guage T. Taking input speech sequence as a set of
observation O= (o1, o2, ...on) and the symbol to be
predicted represented by S = (s1, s2, ...sn), the aim
of the ASR model is:

Ŝ = argmaxP (O|S)P (S). (1)

where P(S) is the prior probability for the sequence
S, and the observation likelihood, P(O|S) is the
likelihood of the acoustic input sequence O given
the sequence S, computed using HMM.
The acoustic model based on deep neural net­

works is trained with time delay neural network,
TDNN (Peddinti et al., 2015).

3.3.2 Neural Machine Translation (NMT)
A Neural Machine Translation (NMT) is built for
the MT system in the pipeline model. For a source
sentence, S = {s1, . . . , sn}, NMT, an encoder­
decoder sequence­to­sequence technique, jointly
models the conditional probability p(T|S) to trans­
late a target sequence, T = {t1, . . . , tm}.
Following the attention mechanism (Bahdanau

et al., 2014; Luong et al., 2015), a bi­LSTM
(Sutskever et al., 2014) is used as an encoder. At
time step t, the encoder state is represented by the
concatenation of the forward hidden state, h⃗i, and
backward hidden state, ⃗hi. As each word in the
output sequence is decoded, the attention mecha­
nism learns where to focus attention on the input
sequence.

3.4 End­to­End S2T translation model
Our end­to­end S2T translation model follows
Bérard et al. (2018) architecture, an attentive
encoder­decoder model. The speech encoder takes
audio features, X= (x1, x2, ..., xTx) ∈ RTx×N as
an input sequence. The audio features are fed into
two non­linear (tanh) layers, which generate Ń
size features. The new feature sequence length is
reduced by a factor of 4 using two 2D convolu­
tional layers with stride (2; 2), which is then passed
to a three stacked bidirectional LSTMs (Schuster
and Paliwal, 1997). The decoder generates target­
language sequences at the character level. The
character­level decoder is composed of a condi­
tional LSTM with the global attention mechanism
(Bahdanau et al., 2014).
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sentences duration (in min)
train 3300 ~314
dev 100 ~9
test 100 ~8

Table 1: Manipuri→English Speech­to­Text transla­
tion dataset setup

.

4 Experimental Setup

In this section, we present the different Speech­to­
Text translation experiments conducted, including
the dataset and experimental setup.
The training, development, and test data sets

for Manipuri→English S2T translation models are
summarized in Table 1.

4.1 Pipeline S2T Translation Models
The system set up of independent ASR and MT
systems of pipeline S2T translation model are as
follows:

4.1.1 ASR systems
The transcript of the Manipuri text is written in
Bengali script. Words in Manipuri have exact
grapheme­to­phoneme mapping. A grapheme­to­
phoneme list for the Manipuri ASR system is pre­
pared by using the Bengali to Roman script translit­
eration module of (Meetei et al., 2021). The acous­
tic features fed to the GMM­HMM model con­
sists of 13­dimensional MFCC, and 3­dimensional
pitch features for speaker adaptation, namely Prob­
ability of Voicing (POV)­weighted mean subtrac­
tion over 1.5 second windows, Normalized Cross
Correlation Function (NCCF)­derived POV fea­
ture, and delta pitch calculated on raw log pitch.
While TDNN acoustic models are trained using
40­dimensional MFCC with 100­dimensional i­
vectors and 3­dimensional pitch features. We uti­
lized a 3­gram model trained with SRILM (Stol­
cke, 2002) for decoding. The ASR systems are
built using the Kaldi toolkit (Povey et al., 2011).

4.1.2 NMT systems
Two NMT systems are trained using different
dataset set up:

• NMTin: NMT model trained with the in­
domian dataset (Table 1).

• NMTg: NMT model trained by combin­
ing the in­domain and additional parallel
Manipuri­English text dataset. The additional

dataset is acquired fromTDIL2, data scrapped
from vikaspedia 3 which are then manually
aligned and the work from (Meetei et al.,
2020). Overall, the domain of the dataset is
from tourism, agriculture, medical and news
articles. The total training dataset size is
23126 ( 3300 in­domain and 19823 additional
parallel sentences).

As an encoder, a two­layer bi­LSTM with 512
hidden units is used, and the batch size is set to 32.
With a learning rate of 0.001 and Adam optimizer
(Kingma and Ba, 2014), we train the system uti­
lizing early stopping, where training is halted if a
model does not progress on the validation set for
more than 15 epochs.

4.2 End­to­End S2T Translation Model
End­to­End S2T translation models are imple­
mented in PyTorch (Paszke et al., 2019) with
fair-seq toolkit4. We utilize “T-Sm” architecture
(Wang et al., 2020) with default hyper­parameters
and train with Adam optimizer and a learning rate
of 0.002. Early stopping is used to halt the training
when the system does not improve for 15 epochs
on the development set.

4.3 Evaluation Metrics
The word error rate (WER), which is the ratio of
word insertion, deletion, and substitution errors in
a transcript to the total number of uttered words,
is used to evaluate our ASR systems. The final
hypothesis of S2T are evaluated with BLEU (Pa­
pineni et al., 2002). BLEU is a precision­based
automatic metric used to evaluate the quality of
machine­translated text.

5 Results and Analysis

In this section, we illustrate the results of our
Manipuri→English pipeline and end­to­end S2T
translation models. Along with the automatic met­
ric evaluation, we carried out an in­depth qualita­
tive analysis and human evaluation of our transla­
tion systems.

5.1 Automatic Metrics based Evaluation
The ASR systems are evaluated in terms of
word error rate (WER), and the final hypoth­
esis of translation from the pipeline and end­

2https://tdil-dc.in/
3https://vikaspedia.in/
4https://github.com/pytorch/fairseq
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Acoustic Model WER MT BLEU Translation Model
Pipeline GMM­HMM 27.69 NMTin 6.1 PipeHmmIN

NMTg 4.6 PipeHmmG
TDNN 25.16 NMTin 6.2 PipeTdnnIN

NMTg 4.1 PipeTdnnG
E2E ­ ­ ­ 3.6 E2E

Table 2: Manipuri→English Speech­to­Text translation results
.

transcript1 অহুমশ‌ুবা কৱাথা কুৈŜ েহৗেদাকে­
Third Kwatha Festival inaugurated

GMM­HMM ৩ শ‌ুবা কৱাথা কুৈŜ েহৗেদাকে­
TDNN অহুমশ‌ুবা কৱাথা কুৈŜ েহৗেদাকে­

transcript2 đাইভরিশংগী য়িুনয়ননা বħ ৈয়েথাকে­
Drivers union suspends bandh

GMM­HMM đাইভরিশংগী য়িুনয়ননা বħ ৈয়েথাকে­
TDNN đাইভরিশংগী য়িুনয়ননা ভাবন ৈয়েথাকে­

transcript3 ওল িজিরবাম েরাড ýাıেপাটর্ đাইভরস য়িুনয়ননা বħ ৈয়েথাকে­
All Jiribam Road Transport Drivers Union suspends bandh

GMM­HMM ওল িজিরবাম েভাট ãাıেপাটর্ đাইভর য়িুনয়ননা বħ ৈয়েথাকে­
TDNN ওল িজিরবাম েভাট ãাıেপাটর্ đাইভর য়িুনয়ননা বাল ৈয়েথাকে­

transcript4 ৈলবাক ৩১ লানলবা মতুংদা ইিħয়ান বাইকরিশং ইŗাল েয়ৗরকে­
Indian bikers reach Imphal after crossing 31 countries

GMM­HMM ৈলবা ৩১ লানলবা মতুংদা ইিħয়ান বাইকরিশং ইŗাল েয়ৗরকে­
TDNN ৈলবা ৩১ লানলবা মতুংদা ইিħয়ান বাইকরিশং ইমফাল েয়ৗরকে­

Table 3: Sample input­output of Manipuri Automatic Speech Recognition systems

to­end systems is measured in terms of BLEU
score using SacreBLEU (Post, 2018). Table 2
shows the automatic evaluation score of the ASR
(GMM­HMM and TDNN) output and the trans­
lation output. The signature of the SacreBLEU
is : BLEU + case.mixed + numrefs.1 +
smooth.exp+ tok.13a+ version.1.5.1.

• ASR: TDNN model outperforms the GMM­
HMM model significantly by achieving an
improvement of 2.53% WER.

• Translation: The pipelinemodel with TDNN
ASR and NMTin achieve the highest BLEU
score.

From the results in Table 2, it is observed that
the evaluation of the target language translations
from the output of the ASR systems using a shared
NMT system differ by a small margin. The TDNN
pipeline model achieve a 0.1 to 0.5 BLEU score
more than the GMM­HMM pipeline model.
Comparing the evaluation scores of the transla­

tion hypothesis from the pipeline and End­to­End

models, it is clear that the pipeline models out­
performs the End­to­End model significantly by a
margin of 2.6 BLEU score. The result also shows
that the usage of additional out of domain data
where the size of the dataset is substantially larger
than the in­domain dataset size has negative effect
on the BLEU score. A likely cause is the use of
development and test dataset from the in­domain
dataset.

5.2 Qualitative Analysis of Manipuri ASR
Systems

Table 3 shows some sample input­output of Ma­
nipuri ASR systems where we analyse the robust­
ness of the systems on selected words in the refer­
ence transcript highlighted in green.
In transcript1, “অহুমশ‌ুবা” (~ “ahumsuba”

meaning third) is generated in its numerical format
“৩শ‌ুবা” (~ “3 suba”meaning 3rd) byGMM­HMM
ASR system while the TDNN ASR system gener­
ate it in its actual format. Though, both the format
has same speech feature, TDNN ASR system per­
forms better in n­gram match.
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Figure 2: Sentence level BLEU evaluation

Figure 3: Sentence length BLEU evaluation

The samples transcript2 to transcript4 shows
some of the examples where ASR systems gen­
erates incorrect transcript words (highlighted in
“red”) of reference words (highlighted in “green”).
From the sample results, it is observed that the
ASR systems suffer when the word contains the
phoneme “b” ( “বħ” ~ “bandh”, “ভাবন” ~ “bha­
van”, “বাল” ~ “bal”).
A single phoneme in Manipuri could be repre­

sented by different graphemes in the Bengali script.
One such case is shown in transcript3 where the
ASR systems generate the word “ýাıেপাটর্ ” (~
“transport”) as “ãাıেপাটর্ ” (~ “transport”). In tran­
script4, the word “ইমফাল” (~ “imphal”) is a cor­
rect representation of the word “ইŗাল” (~ “im­
phal”) where the joined characters are written sep­
arately.
As the automatic evaluation metrics are com­

puted at the word level, the cases highlighted in
transcript3 and transcript4 often led to low eval­
uation score.

5.3 Sentence Level Evaluation

An analysis of the Manipuri→English S2T transla­
tion system is carried out by computing the BLEU
score at the sentence level. Figure 2 shows the anal­
ysis based on the number of sentences with respect
to the BLEU score. While the analysis in Figure 3
shows the performance of the systems with shorter
and longer sentences based on the length of the ref­
erence sentence.
In Figure 2, the majority of the translations from

the E2Emodel are observed to score a BLEU score
of less than 10, while less than half of the transla­
tions from the pipeline model scored less than 10.
It is interesting to note that the highest sentence
level BLEU is achieved by the E2E model even
though the overall performance of the pipeline
model outperforms the E2E model significantly.
A likely cause of the poor performance of end­to­
end S2T translation system is the small size of the
dataset. The result in Figure 3 shows that the sys­
tems perform well with longer sentences [20,30)
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source1 আর.িত.আই. এ�কী মতাংদা খংিমĭবগী েথৗরম পাংেথাকে­
reference1 Awareness programme on RTI Act held

GMM­HMM ASR আর িত আই ঈ কী মতাংদা খংিমĭবগী েথৗরম পাংেথাকে­
PipeHmmIN Awareness programme on Mudra Dayal held held
PipeHmmG Awareness programme on foot held

TDNN ASR আর িত আই এ�কী মতাংদা খংিমĭবগী েথৗরম পাংেথাকে­
PipeTdnnIN Awareness programme on tobacco Dayal control held
PipeTdnnG Awareness programme on Act held at Moreh

E2E Awareness programme on RTI Act held at Manipur Press Club , Majorkhul

source2 পাওমীিশংগী মীফম মনংুদা ৱােরķা নাবানা েমিডয়াগী মীওইিশংদা ৱা ঙাংিখ
reference2 Wareppa Naba speaks to media persons during press meet

GMM­HMM ASR পাওমীিশংগী মীফম মনংুদা ৱােরķা নাবানা েমিডয়াগী মীওইিশংদা ৱা ঙাংিখ
PipeHmmIN Ng Ibobi speaks to media persons during press conference
PipeHmmG Ibobi speaks during media persons during press conference

TDNN ASR পাওমীিশংগী মীফম মনংুদা ৱােরķা নাবানা েমিডয়াগী মীওইিশংদা ৱা ঙাংিখ
PipeTdnnIN Ng Ibobi speaks to media persons during press conference
PipeTdnnG Ibobi speaks during media persons during press conference

E2E Ng . Uttam speaks to media persons during press conference

source3 অপনুবা ইৈরপাি� মৈহেরাই িশনপাংলপুকী মীহুৎিশংনা েমিডয়াদা ৱা ঙাংিল
reference3 Representatives of Apunba Ireipakki Maheiroi Sinpanglup speaking to the media

GMM­HMM ASR অপনুবা ইৈরপাি� মৈহেরাইিশং পান লপুকী মীহুৎিশংনা েমিডয়াদা ৱা ঙাংিল
PipeHmmIN Representatives of Apunba Ireipakki Maheiroi Sinpanglup speaking to media
PipeHmmG Representatives of Ukhrul woman speaking during the inaugural ceremony

TDNN ASR অপনুবা ইৈরপাি� মৈহেরাই িশনপাংলপুকী মীহুৎিশংনা েমিডয়াদা ৱা ঙাংিল
PipeTdnnIN Representatives of Apunba Ireipakki Maheiroi Sinpanglup speaking to media
PipeTdnnG Representatives of Ukhrul woman speaking during the inaugural ceremony

E2E Representatives of Apunba Ireipakki Maheiroi Sinpanglup speaking to the media

Table 4: Manipuri→English Speech­to­Text translation sample input­output
.

while the sentences with length below 20 score a
BLEU score less than 10.
With only very few samples achieving a BLEU

score above 50, it is clear that a massive effort is re­
quired for the development of Manipuri→English
Speech­to­Text translation systems.

5.4 Qualitative Analysis of
Manipuri→English S2T Systems

Sample input and output from the pipeline mod­
els and E2E Speech­to­Text translation model are
shown in Table 4. The grammatical error or in­
correct word(s) in the output from our systems are
highlighted in “blue”.
In the first sample, despite preserving the infor­

mation moderately, the fluency scale of translation
output with the Pipeline­GMM­HMM is worse
compared to the other systems. One of the main
reason is error propagation from the ASR model
where word “এ�কী” (~ “act­ki”) is incorrectly gen­
erated as “ঈ কী” (~ “e­ki”). Furthermore, E2E
translation model generate additional non­relevant

information even though the output sentence is flu­
ent. In the second sample, the named entity word
“WareppaNaba” (a name of a person) is incorrectly
generated and is replaced by another name of a per­
son (i.e., Ng Ibobi, Ibobi and Ng . Uttam). In dif­
ferent languages, there are cases where multiple
words in one langugae is represented by a single
word in another language. One such case is high­
lighted in the second sample where both the words
meet and conference which are synonyms is rep­
resented by a single word in Manipuri “মীফম” (~
“mifam”). This often results to low BLEU score as
the evaluation metric is computed at the word level
n­gram matching and doesn’t consider synonyms.
The third sample shows the handling of long Ma­
nipuri multi­word named entity “অপনুবা ইৈরপাি�
মৈহেরাই িশনপাংলপুকী” (~ “Apunba Ireipakki Ma­
heiroi Sinpanglup­ki”), where the suffix “­ki” is
used to denote the possessive noun. It is observed
that the multi­word named entity is translated cor­
rectly despite the slight variation in the output of
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Score Adequacy Fluency

1 No information is preserved Incomprehensible
2 Small amount of information is preserved Disfluent
3 Moderately preserved information Non­native
4 All information is preserved Flawless sentence, and all are correct in terms

of grammatical rules

Table 5: Adequacy Fluency scale

Adequacy Fluency

PipeHmmIN 1.6 2
PipeHmmG 1.5 1.63
PipeTdnnIN 1.63 1.98
PipeTdnnG 1.3 1.93
E2E 1.23 2.83

Table 6: Human Evaluation of Manipuri→English S2T Translation Systems.

the ASR system (GMM­HMM). This is the impact
of the system trained on in­domain training dataset.
However, the translation is not in the line with
the NMT system trained on mixed domain training
dataset (NMTg) as the probability distribution got
skewed towards the add­on dataset.

5.5 Adequacy and Fluency Analysis of
Translation Outputs

Fluency analysis provide evaluation based mainly
on grammatical rules. Adequacy indicates infor­
mation preserved. Adequacy and fluency are mea­
sured on a scale of 1 to 4 and the meaning of the
various scales are summarized in Table 5. To mea­
sure adequacy and fluency, human evaluation on
the test dataset from each S2T translation system
is carried out. The adequacy and fluency ratings
reported by our human evaluators are shown in Ta­
ble 6.

• Among our translation systems, the pipeline
model (PipeTdnnIN) achieves the highest ad­
equacy score. The adequacy score of all the
systems are observed to be in correlation with
our automatic evaluation.

• The fluency score is observed to be non­
correlated with the automatic evaluation
scores. In terms of fluency, the end­to­end
model achieved the highest score. This indi­
cates that despite not preserving the informa­
tion of the source language, the system is able
to generate a fluent text.

6 Conclusion and Future work

In this work, a comparative study of the con­
ventional pipeline model and end­to­end model
of S2T translation on an extremely low­resource
Manipuri­English language pair is presented. We
also made a comparison of two acoustic models:
GMM­HMM and TDNN, for the ASR module.
An improvement of 2.53% WER is observed in
the ASR model with TDNN compared to GMM­
HMM. The TDNN ASR model is observed to be
more robust than the GMM­HMMmodel in terms
of n­gram match. The ASR output is fed to a
shared NMT system (trained with the in­domain
or the additional out of domain dataset) in our
pipeline model. In comparison, the translation hy­
pothesis of the pipeline models are comparable in
terms of the BLEU score. However, using an NMT
system trained with a dataset from mixed domain
results to the decrease in the automatic evaluation
score. Though the end­to­end S2T translation has
various advantages over traditional pipeline mod­
els, the limited size of our dataset led to the end­to­
end S2Tmodel’s low performance compared to the
pipeline model. An extensive collection of parallel
S2T translation training data is generally required
to train such an end­to­end S2T translation model.
In future, we plan to increase the size of the

dataset along with the collection of other forms of
modalities such as images. We also plan to explore
various Speech­to­Text machine translation mod­
els to enhance the performance.
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Abstract

In recent times, machine translation models
can learn to perform implicit bridging between
language pairs never seen explicitly during
training and showing that transfer learning
helps for languages with constrained resources.
This work investigates the low resource ma-
chine translation via transfer learning from
multilingual pre-trained models i.e. mBART-
50 and mT5-base in the pretext of Indo-Aryan
(Assamese and Bengali) and Tibeto-Burman
(Manipuri) languages via finetuning as a down-
stream task. Assamese and Manipuri were ab-
sent in the pretraining of both mBART-50 and
the mT5 models. However, the experimen-
tal results attest that the finetuning from these
pre-trained models surpasses the multilingual
model trained from scratch.

1 Introduction

Recent years have witnessed the growing advances
in the field of neural machine translation (NMT)
specifically for the resource rich languages. How-
ever, NMT requires enormous amount of parallel
data in order to have a decent translation system.
On the other hand, the low resource languages
lacks sufficient amount of parallel data, thus mak-
ing the translation system far from the produc-
tion level. Meanwhile, monolingual data is read-
ily available as compared to the parallel data and
many works have been done to exploit it, most
notably in a semi-supervised approach for data
augmentation using self-training (Ueffing, 2006;
Zhang and Zong, 2016; He et al., 2020) and back-
translation (Sennrich et al., 2013; Edunov et al.,
2018). However, these approaches are prone to
generate erroneous translations due to the noisy
synthetic data and often requires an iterative refine-
ment procedure which is both resource intensive
(Hoang et al., 2018) and time consuming process.
Unsupervised machine translation (Lample et al.,

2018; Artetxe et al., 2018; Lample and Conneau,
2019) on the other hand uses only the monolingual
data and do not require any parallel data which
appears to be intimidating for a low resource sce-
nario. Additionally, the initial cross-lingual map-
ping between the two monolingual data requires
a maximal amount of vocabulary overlaps which
is crucial for a stronger cross-lingual mapping be-
tween the source and the target monolingual vector
spaces. However, the vocabulary overlaps is max-
imised only when the two languages are closely re-
lated thus making the unsupervised machine trans-
lation approach unsuitable for the distant language
pairs even if they have large amount of mono-
lingual data (Kim et al., 2020). Moreover, con-
ventional unsupervised systems utilises iterative
back-translation for the refinement purpose, thus
the unsupervised methods are imposed with the
issues of the back-translation (noisy translations
and resource intensive). Multilingual neural ma-
chine translation (MNMT) (Johnson et al., 2017;
Fan et al., 2021) on the other hand supports the
translation among multiple languages which has
shown to be beneficial for low resource machine
translation via the transfer of cross-linguistic infor-
mation from the higher resource languages (Aha-
roni et al., 2019; Dabre et al., 2020). This can
be facilitated by transferring the trained parame-
ters from a parent model to a child model (Zoph
et al., 2016; Nguyen and Chiang, 2017; Kocmi
and Bojar, 2018) or through a bridge or pivot lan-
guage (Dabre et al., 2015; Utiyama and Isahara,
2007; More et al., 2015). However, MNMT can
be further simplified by converting it into a sin-
gle bilingual NMT by jointly training (Firat et al.,
2016; Johnson et al., 2017) all the languages. Fur-
thermore, the jointly trained MNMT system is ex-
tended with 50 or more languages in a massively
multilingual (Aharoni et al., 2019; Fan et al., 2021;
Xue et al., 2021) scenario which has shown to im-
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prove the low resource machine translation (Dabre
et al., 2020) in the presence of the higher resource
languages with the advantage of training a single
NMT model instead of training separate bilingual
models. However, training these massively mul-
tilingual models from scratch for every new lan-
guages is not feasible both in terms of time and the
resource and has negative impact to the environ-
ment for training such enormous models which can
be coped up via transfer learning where the down-
stream translation task can be simply finetuned
from a large pre-trained model (Liu et al., 2020;
Tang et al., 2020; Conneau et al., 2020; Kakwani
et al., 2020; Khanuja et al., 2021; Xue et al., 2021;
Dabre et al., 2021). Primitive transfer learning in
the NLP flourished with the pretrained word em-
bedding vectors (Mikolov et al., 2013; Pennington
et al., 2014), followed by the pretrained encoder
(Devlin et al., 2019) or decoders or pretraining the
full seq2seq model (Liu et al., 2020). These multi-
lingual pretrained models such as the mBART (Liu
et al., 2020) and the mT5 (Xue et al., 2021) has
shown to benefit the low resource machine transla-
tion during the downstream finetuning step. Addi-
tionally, these pretrained models can be extended
to even new languages (Tang et al., 2020) which
was absent during the pretraining process by sim-
ply resuming the training with the new language
data with the pretrained model checkpoint as a fine-
tuning step and sometimes increasing the BLEU
score also.

In our premise, we make use of the mBART-
50 (Tang et al., 2020) and the mT5-base (Xue
et al., 2021) pretrained models for the English (en)
to {Assamese (asm), Bengali (bn) and Manipuri
(mni)} translation in a one-to-many multilingual
setup. All the three languages apart from English
are the scheduled languages of India where As-
samese and Bengali belong to the Indo-Aryan lan-
guage family while Manipuri is a Tibeto-Burman
language and very few works have been reported
in this language most notably (Singh and Bandy-
opadhyay, 2010; Singh, 2013; Singh and Singh,
2020; Singh et al., 2021; Singh and Singh, 2021;
Sanayai Meetei et al., 2020; Rahul et al., 2021;
Laitonjam and Ranbir Singh, 2021). Additionally,
only the Bengali language is present during the
pretraining of both mBART-50 and the mT5-base
models while Assamese and Manipuri were absent
during the pretraining phase. Hence, the finetun-
ing process involves the transfer learning to totally

unseen languages and this work investigates the ef-
fect of these pretrained models to the low resource
translation task for these unseen languages. We
also evaluate our performance on the WAT-2021
MultiIndicMT 1 test set for English to Bengali and
Flores-101 test set (Goyal et al., 2021) for the En-
glish to (Bengali and Assamese)

2 Multilingual Neural Machine
Translation

Multilingual NMT facilitates the translation be-
tween multiple languages via pivot based (Dabre
et al., 2015), transfer learning (Zoph et al., 2016) or
through a jointly trained single NMT model (John-
son et al., 2017). In this work, we utilise the jointly
trained single multilingual NMT model. Addition-
ally, this single MNMT can be further divided into
three types according to the mapping of the source
and the target languages, Many-to-one (m2o). In
this setting, the model is trained to translate multi-
ple source languages into a single target language.
One-to-many (o2m). This MNMT model trans-
lates from a single source language to multiple tar-
get languages and many-to-many (m2m). Here,
translation between many source and many target
languages is possible. Moreover, as there are sev-
eral target languages in the o2m and m2m, a target
language tag is typically prepended at the begin-
ning of the source sentence to specify the predicted
target language. Given K sentence pairs and L lan-
guage pairs the training objective of an MNMT
model is to maximise the log-likelihood over the
whole parallel pairs {x(l,k), y(l,k)}l∈(1,...,L)k∈(1,...,Kl)

as:

Lθ =
1

K

L∑

l=1

Kl∑

k=1

log p(y(l,k)|x(l,k); θ), (1)

where the total parallel sentences K =
∑L

l=1Kl.

3 Multilingual Pretrained Model

3.1 mBART

The mBART model which follows the sequence-
to-sequence (Seq2Seq) pre-training scheme of the
BART model and pre-trained on large scale mono-
lingual corpora in 25 languages is used in our work.
There are two types of noises used to produce the
corrected text by removing the text spans and re-
placing them with a mask token and secondly by

1http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual
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permuting the order of the sentences within each in-
stance. The large-scale pre-training on multiple di-
verse languages has shown to be helpful at building
low-resource NMT systems by being fine-tuned to
the target language pair (Dabre et al., 2021; Xue
et al., 2021). This also has shown to possess a pow-
erful generalization ability to languages that do not
appear in the pre-training corpora.

3.2 mT5

mT5 is a massively multilingual pretrained model
variant of Text-to-Text Transfer Transformer (T5)
(Raffel et al., 2020). The T5 is trained on a multi-
task scenario which is governed by the pre-training
on a masked language modeling “span-corruption”
objective, in which consecutive input token spans
are replaced with a mask token and the model is
trained to reconstruct the masked-out tokens.

4 Experimental Setup

4.1 Dataset

The experimentation uses the parallel data from
CVIT-PIB (PIB) (Philip et al., 2021) and PMIndia
(PMI) (Haddow and Kirefu, 2020) dataset. The As-
samese (asm) and Manipuri (mni) data is curated
from PMIndia while Bengali (bn) data is taken
from both CVIT-PIB and PMIndia dataset. For
the development, a small subset of 1000 sentences
from the PMI is used for the mni and asm, while
WAT-2021 is used for the bn side.

The WAT-2021 test set is in-domain with the
PMI and PIB data which are mostly news domain
and we also investigate the domain adaptability of
these pretrained models on a general domain test
set FLORES-101. For this, the en-{asm, bn} trans-
lations are finetuned in a multilingual way with the
FLORES development data.

4.2 Dataset Preprocessing

The text preprocessing step initially tokenizes the
raw texts. English side data is tokenized using the
moses-scripts2 while the Indic data are normalized
and tokenized using the IndicNLP toolkit3. Addi-
tionally, we do not perform any sort of script con-
version for the orthogonality matching as bn, asm
and mni all use the same script.

2https://github.com/moses-smt/mosesdecoder/
tree/master/scripts

3https://github.com/anoopkunchukuttan/indic_
nlp_library

Furthermore, foreign language text are identi-
fied and removed using langid4 and their dataset
is de-duplicated and ensured that the training data
excludes any instances of the development and test
sets. Following the work of (Philip et al., 2021), a
sentencepiece (Kudo and Richardson, 2018) BPE
of 3K subword merges is learnt for each language
separately over the normalized and the tokenized
text data. However, the vocabulary for en is learnt
over the combined en data. Finally, the union of
all the unique tokens is taken to make a common
dictionary.

4.3 Training setup
1. One-to-Many multilingual model trained

from scratch (O2M-S): A one-to-many mul-
tilingual NMT is trained from scratch using
transformer with 6 layers of encoders and
decoders, 4 attention heads, 512 embedding
dimension and a feedforward dimension of
1024. The encoder and decoder are shared
and optimised using adam with the betas (0.9,
0.98) with an initial learning rate of 0.0005
which is scheduled using inverse square root
with 4000 warmup updates. The training is
done using fairseq (Ott et al., 2019) toolkit
for 100,000 update steps with a token based
batch of batchsize 4000.

2. mBART+O2M: We finetune the mBART-50
model in a one-to-many multilingual setup
for the en to (asm, bn and mni) translation.
Furthermore, the fairseq toolkit is used and
in particular the multi-simple-epoch task of
the fairseq to finetune from mBART-50 pre-
trained model. The system is an mbart-large
architecture and uses the default parameters
as in this setup5 and finetuned for 80,000 up-
date steps.

3. mT5+O2M: The mT5-base model is used for
the finetuning using the simpletransformers li-
brary6 with the default setup and finetuned for
80,000 update steps.

Furthermore, all the systems are finetuned for an-
other 15,000 update steps upon the FLORES de-
velopment set after resetting the training optimiz-
ers for the domain adaptation as all the systems are

4https://github.com/saffsd/langid.py
5https://github.com/pytorch/fairseq/tree/

main/examples/multilingual
6https://github.com/ThilinaRajapakse/

simpletransformers
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trained only on the PMI and PIB data which is a
news domain whereas the FLORES-101 test set is
a general domain data.

4.4 Comparison with Other Works
This work is compared with the following work
evaluated upon the WAT-2021 and FLORES-101
test sets:

1. Ramesh et al. (2021): A multilingual model
trained on the largest publicly available paral-
lel corpora.

2. IndicBART (Dabre et al., 2021): A multilin-
gual pretrained model trained on 11 Indic lan-
guages trained using mBART objective.

4.5 Evaluation Metrics
1. Automatic Evaluation: The automatic eval-

uation is done using BLEU which is reported
over the geometric mean of the 4-gram pre-
cision or BLEU-4, ranging from 0-100, with
100 being the highest. The hypothesis for the
en to {asm, bn, mni} translation evaluation
is detokenized and then retokenized using the
IndicNLP tokenizer and then evaluated with-
out using any tokenizer in SacreBLEU7.

2. Human Evaluation: Human evaluation is
carried out by considering the fluency and ad-
equacy of the translated output. In this pre-
text, three human translators fluent in English-
Manipuri, English-Assamese and English-
Bengali are assigned to separately rate each
sentence from 1-5 for the fluency and the ad-
equacy criteria. Finally, the sentence wise
scores are averaged to get the corpus level
score for both the criteria.

5 Experimental Results

Table 1 reports the automatic evaluation scores of
the systems based on the BLEU score for the en to
{asm, bn and mni} one-to-many translations. Both
the pretrained models outperforms the multilingual
system trained from the scratch (O2M-S) across all
the translation directions suggesting a successful
transfer of information from the pretrained models
to the downstream finetuning task.

Additionally, the significant improvement in
BLEU score after the finetuning is observed for
both the asm and mni languages which were ab-
sent during the pretraining step revealing that these

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.none+version.1.5.1

multilingual pretrained models are language inde-
pendent up to an extent and can be extended to
any new languages irrespective of their relatedness
from the pretrained languages and thus ideal for a
low resource machine translation.

System asm bn mni
O2M-S 11 16.2 19.5
mBART+O2M 15.9 19.8 26.3
mT5+O2M 15.4 18.6 29.2

Table 1: BLEU score evaluated using PMI test set for
the en to (asm, bn, mni) translation.

5.1 Comparison With Other Works

Table 2 reports the BLEU score of the trained sys-
tems i.e. O2M-S, mBART+O2M and mT5 which
is compared with Ramesh et al. (2021) and In-
dicBART (Dabre et al., 2021) evaluated upon the
WAT-2021 and PMI test sets. O2M-S performs the
worst amongst all the systems for both the test sets
across all the translation directions. For the WAT-
2021 test set, mT5+O2M has the best performance
followed by Ramesh et al. (2021). Ramesh et al.
(2021) is trained using the largest available training
data for the Indian languages thus giving an extra
edge. On the other hand FLORES test is a general
domain data thus making the task more challeng-
ing as our systems are trained using only the news
domain from PMI and PIB which is reflected in
the low BLEU scores of our trained systems for
the FLORES test set.

However, IndicBART trained their systems us-
ing Samanantar dataset (Ramesh et al., 2021)
thus making their system more adaptive to
the FLORES domain and surpassing both the
mBART+O2M and mT5+O2M models with a

System
Test Set

WAT-2021 FLORES
bn asm bn

Ramesh et al.
(2021)

16.0 - -

IndicBART 11.1 - 30.7
O2M-S 10.7 1.2 2.3
mBART+O2M 14.7 3.5 5.6
mT5+O2M 16.2 2.3 4.8

Table 2: BLEU score of the systems for the en to (asm
and bn) evaluated on WAT-2021 and FLORES TEST
set.
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Systems asm bn
mBART+O2M w/o FT 2.9 4.6

+5K steps FT 3.1 5.2
+10K steps FT 3.4 5.5
+15K steps FT 3.5 5.6

mT5+O2M w/o FT 0.1 3.3
+5K steps FT 0.3 3.9
+10K steps FT 1.3 4.2
+15K steps FT 1.8 4.8

Table 3: Effect of the BLEU score on the finetuning steps (FT) which is finetuned using FLORES development set
for the en to (asm and bn) directions.

whooping 30.7 BLEU score in comparison to the
5.6 and 4.8 BLEU scores for the mBART+O2M
and mT5+O2M respectively. Additionally, for
the WAT-2021 en-bn task, IndicBART performed
poorly even though they pretrain an mBART
model from the Indic languages and finetune upon
it. Furthermore, the low performance of In-
dicBART on WAT-2021 test reveals two possi-
bilities, i) the finetuning of IndicBART involved
more number of languages than our setting, which
in turn induced a negative transfer (Dabre et al.,
2020) due to the incompatibility of the languages
involved thus the degradation in the performance,
ii) transfer learning from a massively multilingual
pretrained model followed by the multilingual fine-
tuning as in our case is more beneficial than trans-
fer learning from a limited language pretrained
model as in the case of IndicBART and we put for-
ward these as a future work.

5.2 Domain Adaptation via Few Shot
Learning

The systems in our experimentation are trained on
a narrow domain data, thus these systems choke
when evaluated on a general domain data. Hence,
the systems are further finetuned using the FLO-
RES development set for another 15,000 update
steps by resetting the optimisers. The results are
reported in Table 3.

It is observed that this domain adaptation using

incremental finetuning upon the FLORES develop-
ment set improves the BLEU score across all the
directions for both mBART+O2M and mT5+O2M
models. However, this increment is still insignif-
icant in comparison to IndicBART (Dabre et al.,
2021) as presented in Table 2.

5.3 Human Evaluation Score

Table 4 reports the human evaluation score of the
O2M-S, mBART+O2M and mT5+O2M for the
en to (asm, bn and mni) translations based on the
adequacy and fluency criteria which is evaluated
upon the PMI test set. For the en-mni transla-
tion direction presented in Table 4, the multilin-
gual finetuning over both the pretrained models
(mBART+O2M) and (mT5+O2M) is superior to
the multilingual model trained from scratch (O2M-
S) qualitatively. Additionally, in terms of the ade-
quacy score, mT5+O2M performs better than the
mBART+O2M. However, mBART+O2M gives
a competitive performance to the mT5+O2M in
terms of the fluency score.

Moreover, the human evaluation scores corre-
lates well with the automatic scores as reported
in Table 1 suggesting the effectiveness of the
transfer learning for this unseen language dur-
ing the pretraining time. On the other hand,
mBART+O2M has higher human evaluation
scores than mT5+O2M for the en-asm and en-
bn translations as reported in Table 4. However,

Models en-mni en-asm en-bn
Adequacy Fluency Adequacy Fluency Adequacy Fluency

O2M-S 3.25 3.07 2.91 3.17 2.75 2.823
mBART+O2M 4.15 4.31 3.82 3.782 3.9122 3.782

mT5+O2M 4.42 4.37 3.801 3.775 3.8622 3.688

Table 4: Human evaluation score evaluated on PMI test set based on the adequacy and fluency criteria.
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Source-1 In particular, he mentioned the Buddha and the Ramayana.
Ref বċুা অমসংু রামায়নবু মহা¢া অক¢না পনিখ।
TT buddhaa amasung raamaayanbu mahakna akaknanaa pankhi.
Gloss the buddha and the ramayan he particularly mentioned.
O2M-S মহা¢া পনিখ মদিুদ মহা¢া বċু অমসংু রামাধন বċুগী মতাংদা পনিখ।
TT mahakna pankhi madudi mahakna buddha amasung raamaadhan buddhagi matanga

pankhi.
Gloss he mentioned that he the buddha and the ramadan buddha’s about mentioned.
ET He mentioned that he mentioned about the Buddha and the Ramadan Buddha.
mBART+O2M মŠওইনা মহা¢া বċু অমসংু রামায়ণগী মতাংদা পনিখ।
TT maruoina mahakna buddha amasung raamaayanagi mataangda pankhi.
Gloss importantly he the buddha and the ramayan’s about mentioned.
ET Importantly he mentioned about the Buddha and the Ramayan.
mT5+O2M অক¢না মহা¢া বċু অমসংু রামায়নগী মতাংদা পনিখ।
TT akaknanaa mahakna buddha amasung raamaayangi mataandga pankhi.
Gloss in particular he the buddha and the raamaayana about mentioned.
ET In particular he about mentioned about the buddha and the raamaayana.
Source-2 The Officer Trainees belong to 17 Civil Services, and 3 Services from the Royal Bhutan

Civil Service.
Ref ওিফসর ƶýনীিশং অদদুা িসিবল সিবƸসকী ১৭ অমসংু ƶরােয়ল ভুতান িসিবল সিবƸসকী অƢম

য়াওির।
TT ophisar trenishing aduda sibil sarbiski 17 amasung royel bhutan sibil sarbiski ahum

yaori.
Gloss officer trainees in civil services 17 and royal bhutan civil service’s three belong to.
O2M-S ওিফসর ১৭, িসিবল সিবƸসিশং, িসিভল সিবƸসিশং অমসংু ƶরােয়ল সিবƸসিশং অিস ভুতানগী

িসিভল সিবƸসিশংদগীিন।
TT ophisar 17, sibil sarbis-shing, sibhil sarbis-shing amasung royel sarbis-shing asi

bhutangi sibhil sarbis-shingdagini.
Gloss officer 17, civil services, civil services and royal services is bhutan’s civil services from.
ET 17 officers, Civil Services, Civil Services and the Royal Services are from Bhutan’s

Civil Services.
mBART+O2M ওিফসর ƶýনীিশং অিস িসিবল সিবƸস ১৭ অমসংু ƶরােয়ল ভুতান িসিবল সিবƸসতগী সিবƸস

৩িন।
TT ophisar trenishing asi sibil sarbis 17 amasung royel bhutan sibil sarbis-tagi sarbis 3ni.
Gloss officer trainees these civil service 17 and royal bhutan civil service from service is 3.
ET These officer trainees are from 17 Civil Services and 3 Services from the Royal Bhutan

Civil Service.
mT5+O2M ওিফসর ƶýনীিশং অদদুা িসিবল সিবƸসকী ১৭ অমসংু ƶরােয়ল ভুতান িসিবল সিবƸসকী সিবƸস

অƢম য়াওির।
TT ophisar trenishing aduda sibil sarbiski 17 amasung royel bhutan sibil sarbiski sarbis

ahum yaori.
Gloss officer trainees in civil services 17 and royal bhutan civil service’s service three belong

to.
ET The Officer Trainees belong to 17 Civil Services and 3 Services from the Royal Bhutan

Civil Service.
Source-3 PMSSY has two components
Ref িপ. এম. এস. এস. ৱাই .গী মশা অিন Ʒল
TT pi. em. ess. ess. yai. gi masa ani lei
Gloss PMSSY’s components two has
O2M-S PMSSYগী কেŕােনě অিন Ʒল
TT PMSSYgi kamponent ạni lei
Gloss PMSSY’s components two has
ET PMSSY has two components
mBART+O2M PMSSYগী কেŕােনě অিন Ʒল
TT PMSSYgi kamponent ạni lei
Gloss PMSSY’s components two has
ET PMSSY has two components
mT5+O2M িপ এম এস এস এস এস এস হায়বিসগী কেŕােনě অিন Ʒল
TT pi em ess ess ess ess ess haibasigi kamponent ani lei
Gloss PMSSSSS so called component two has
ET The so called PMSSSSS has two components

Table 5: Sample en-mni translations by the MT systems
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mT5+O2M gives a competitive score in terms of
fluency for the en-asm. Based on the quantitative
and qualitative findings from Table 1 and Table 4
respectively, mT5+O2M is beneficial for the en-
mni translation while for the en to (asm and bn),
mBART+O2M is found to be effective and we
plan to explore these discrepancies in our future
work.

6 Qualitative and Error Analysis

6.1 Qualitative Analysis

A qualitative analysis in the form of sample input
and output is also presented in Table 5 in addition
to the qualitative scores reported in Section 5.3 to
compare the translation qualities of the O2M-S,
mBART+O2M and mT5 for the en to mni transla-
tion of the PMI test set. In doing so, we randomly
select three en test sentences (Source-1, Source-2
and Source-3) and present the respective translated
outputs by the systems. Table 5 contains the fol-
lowing abbreviations: The Roman transliterated
mni sentence is denoted by TT, Gloss is the en
word-for-word translation, and the en translation
for the mni sentence is ET.

In the first source sentence (Source-1), O2M-
S the phrase “mahakna pankhi” (he mentioned)
twice thus degrading the fluency and the term
“raamaayan has been wrongly generated as
‘‘raamaadhan” (ramadan) which in turn detoriates
the adequacy. Similarly, there are several in-
stances where O2M-S has generated erroneous
words. On the other hand, mBART+O2M and
mT5+O2M made a better translation as compared
to the O2M-S in terms of both adequacy and flu-
ency. However, mBART+O2M translated the
source word In particular to “maruoina” (impor-
tantly) while mT5+O2M translated into the accu-
rate word “akaknanaa” (in particular). Although,
the word order has been displaced even after gener-
ating the correct word hence the automatic scores
which depends upon the exact word overlapping
gets penalised. The second (Source-2) and the
third source (Source-3) sentences are challenging
ones. The Source-2 has complex contextual depen-
dencies which is evident with the struggle to estab-
lish the correct dependency relations in the trans-
lations of the O2M-S and mBART+O2M while,
mT5+O2M is the only system which can success-
fully establish the meaning of the source sentence
along with a fluent translation. Apart from this,
the Source-2 contains numerical values 17 and 3

which is successfully translated by all the three sys-
tems.

Another challenging instance is the presence
of abbreviations in the source sentence and the
valid English terms which exists as in the tar-
get language. This phenomenon is illustrated in
Source-3 translation where all the three systems
generated the source word components as “kam-
ponent” (component) instead of “masa” (branch;
part; component). Thus, even though the O2M-S
and mBART+O2M generated the correct transla-
tion due to token mismatch between the reference
and the translations, the BLEU score is penalised.
In the same Source-3 sentence, the abbreviation of
PMSSY is directly copied in the outputs of O2M-S
and mBART+O2M which exists as “pi. em. ess.
ess. yai.” (PMSSY) in the reference thus degrad-
ing the BLEU score. mT5+O2M on the other hand
generated the extra three extra S in the abbrevia-
tions and excluded Y.

6.2 Error Analysis
The error analysis of the systems are conducted
based on the sentence length. Figure 1A dis-
plays the distribution of the difference between the
length of the translated output from the reference
sentence length of the three systems. Here, the
value of “0” at the X-axis signifies that the trans-
lated output and the reference sentence are of equal
length. In this regard, mBART+O2M has the
highest count for “0” length difference than both
the mT5+O2M and O2M-S systems across all the
translation directions, thus providing the heuristics
that the reference and the outputs match word by
word which contradicts the superior automatic and
human evaluation scores of the mT5+O2M than
the other two systems for en to mni translation.

Additionally, for the en-asm direction in Fig-
ure 1A(i) O2M-S and mT5+O2M have simi-
lar counts for the “0” difference. Furthermore,
mT5+O2M tends to generate more shorter length
sentences than the reference sentence in compar-
ison to the other two systems for all directions,
while O2M-S generates more longer sentences.
Hence, mBART+O2M produces more equivalent
length to that of the reference than the other two
systems.

Figure 1B depicts the change in the BLEU score
with the varying sentence length. For this, the test
sentences are grouped together in buckets based on
the sentence length of the reference sentences. For
the en-mni direction in Figure 1B(iii), mT5+O2M
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A: Sentence count distribution of hypothesis B: BLEU scores of the systems
length difference from reference bucketed on test sentence length
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Figure 1: Error analysis of the systems based on the sentence length.

supersedes the other two systems across all the
sentence length, followed by the mBART+O2M.
Meanwhile, mBART+O2M is robust to longer
sentence length for the en-asm (Figure 1B(i)) and
similar trend exists in the en-bn direction (Fig-
ure 1B(ii)) although, O2M+S and mT5+O2M has
higher BLEU scores than mBART+O2M for sen-
tences longer than 60 tokens.

7 Conclusion

In this work, we report the findings of the in-
vestigation of low resource machine translation
via transfer learning from multilingual pretrained
models i.e. mBART-50 and mT5-base in the pre-
text of Indo-Aryan (Assamese and Bengali) and

Tibeto-Burman (Manipuri) languages. It is found
that the transfer learning from these pretrained
multilingual models outperforms the one-to-many
model trained from the scratch across all the trans-
lation directions in all the test sets thus suggesting
the strong transfer of interliguistic information to
the downstream finetuning tasks even for the lan-
guages absent during the pretraining step. Further-
more, the superiority of finetuning from these pre-
trained models than the IndicBART for the English
to Bengali translation using the WAT-2021 test set
suggests that a stronger transfer learning is possi-
ble even without linguistic relatedness during the
pretraining step or due to the negative transfer of
information between the incompatible languages
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during the multilingual finetuning of IndicBART.
Finally, we plan to explore more on the negative
transfer and the linguistic relatedness avenue in fu-
ture focusing on Indian languages.
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Abstract 

Previous work generating slogans 

depended on templates or summaries of 

company descriptions, making it difficult 

to generate slogans with linguistic features. 

We present LexPOS, a sequence-to-

sequence transformer model that generates 

slogans given phonetic and structural 

information. Our model searches for 

phonetically similar words given user 

keywords. Both the sound-alike words and 

user keywords become lexical constraints 

for generation. For structural repetition, we 

use POS constraints. Users can specify any 

repeated phrase structure by POS tags. Our 

model-generated slogans are more relevant 

to the original slogans than those of 

baseline models. They also show phonetic 

and structural repetition during inference, 

representative features of memorable 

slogans. 

1 Introduction 

Advertising slogans share many linguistic features, 

such as phonetic or structural repetition (Musté et 

al. (2015)). These factors make slogans more 

memorable (Reece et al. (1994)). However, most 

previous works on slogan generation depended on 

templates or summaries of company descriptions, 

making it difficult to generate slogans with 

linguistic features. 

We present LexPOS, a sequence-to-sequence 

(seq2seq) transformer model with an additional 

POS encoder. It models the phonetic and structural 

repetition in slogans, using lexical and POS 

constraints. When given keywords and POS tags of 

                                                           
1 https://github.com/yeounyi/LexPOS 

the desired output structure as input, the model 

finds words that sound and mean similar to the user 

keywords. The model-generated slogans include 

both the user keywords and one sound-alike word. 

They also reflect the POS constraints. For instance, 

if a user inputs the word ‘cake’ and [‘VERB’, 

‘DET’, ‘NOUN’, ‘PUNCT’, ‘VERB’, ‘DET’, 

‘NOUN’, ‘PUNCT’], the output could be ‘Bake a 

cake, bake a smile’. It includes the word ‘cake’ and 

its sound-alike word ‘bake’ and has repeated verb 

phrases. The source code, pretrained weights, and 

data are available online1. 

This paper primarily makes the following 

contributions: 

• Generating slogans taking linguistic features 

into account. 

• Utilizing a pretraining method of BART and 

T5 to model lexical constraints. 

• Proposing a novel approach to model structural 

constraints by adding a POS encoder. 

2 Previous Work 

Most of the previous work in slogan generation 

focused on modifying templates. BRAINSUP, 

proposed by Özbal et al. (2014), is the first study to 

generate customized slogans with lexical, 

emotional, and domain constraints. BRAINSUP 

utilizes morpho-syntactic patterns mined from 

corpus as templates. It first selects the most 

compatible template and fills the empty slots in the 

template according to user specifications. Before 

returning the results, it evaluates the candidate 

slogans with various metrics, including phonetic 

repetition. However, it can only determine whether 

the same phonetic features were used or not. 

Generating Slogans with Linguistic Features  

using Sequence-to-Sequence Transformer 
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Munigala et al. (2018) presented a model to 

generate persuasive sentences from fashion 

product descriptions. It expands fashion-related 

keywords from inputs and generates sentences 

using a domain-specific neural language model 

(LM). Keywords from inputs, expanded keywords, 

and common functional words are the only 

candidates at each time step of the LM. The overall 

perplexity is minimized with beam search. The 

limitation is that only imperatives can be generated, 

as the sentences always begin with a verb. 

Jin et al. (2021) introduced a sequence-to-

sequence transformer model to generate diverse 

slogans from company descriptions. They 

considered slogan generation as abstractive 

summarization of company descriptions and chose 

the BART-style encoder-decoder model (Lewis et 

al. (2020)) with a bidirectional encoder and an 

autoregressive decoder. To prevent unrelated 

company names from appearing in slogans, they 

delexicalized all the company names. In addition, 

they trained a model conditioned on the first words’ 

POS tag, generating syntactically diverse slogans. 

Unlike previous works, we do focus on 

linguistic features and not depend on templates at 

the same time. We take phonetic and structural 

repetition into account, factors that make slogans 

memorable and unique.  

3 Model 

Our model first forms the lexical constraints. 

During training, it uses the given lexical constraints 

as it is. During inference, it searches for sound-

alike words of user keywords. We use the phonetic 

vector representation proposed by Parrish (2017). 

The phonetic vector uses interleaved phonetic 

feature bigrams extracted from phonetic 

transcriptions and it covers all the words in CMU 

Pronouncing Dictionary 2 . The model also 

considers the semantic similarity of sound-alike 

words, to improve the naturalness of the outputs. 

We use pretrained Glove embeddings (Pennington 

et al. 2014) for semantic similarity. After we 

compute cosine similarity to select the top 100 

phonetically similar words, we sort them in 

semantic similarity. We exclude words that are not 

present in Glove embeddings (Pennington et al. 

2014) or BART tokenizer vocabulary, not to use 

                                                           
2 http://www.speech.cs.cmu.edu/cgi-
bin/cmudict 

unfamiliar words. We select the first three words to 

each form the lexical constraints, together with 

user keywords. Unlike lexical constraints, POS 

constraints don’t need further processing during 

training and inference. POS constraints during 

inference can be manually specified or popular 

POS structures from data would be recommended. 

After processing the lexical constraints, the 

Transformer architecture (Vaswani et al., 2017) 

comes in. The Transformer architecture has 

achieved state-of-the-art results on various natural 

language processing tasks. We apply a 

Transformer-based sequence-to-sequence model 

because we need encoders for constraints and 

decoders for generation. To leverage the power of 

pretrained transformers, we utilized the pretrained 

weights of BART and T5 (Raffel et al., 2020) 

released by HuggingFace3. We choose BART and 

T5 because both models were pretrained by 

denoising consecutive spans of corrupted tokens, 

meaning they can generate natural sentences using 

lexical constraints.  

The only architectural difference is that our 

model has an additional encoder. One encoder 

encodes the lexical constraints, and the other 

encodes the POS constraints. The weights of the 

POS encoder are randomly initialized, and the 

vocabulary size of the POS encoder is limited to 

20. The vocabulary includes the spaCy4 POS tags 

and <s>, </s>, <pad> tokens. 

 

  

3https://huggingface.co/transformers 

4 https://spacy.io/ 
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Figure 1: Architecture of LexPOS model. 

 

To incorporate the POS constraints into the rest 

of the model, the last hidden states of <s> token 

in the POS encoder are repeated with the length of 

the last hidden states in the lexical encoder. We 

choose the last hidden state of <s> token because 

it is widely assumed to include representative 

information of all tokens. These two hidden states 

are summed and given to the decoder. Then, the 

decoder generates slogans with the given lexical 

and POS constraints. Figure 1 presents the 

architecture of our proposed model. 

4 Data 

Our training objective is to implement lexical and 

POS constraints. The desired model-generated 

slogans should follow the lexical constraints and 

the POS structural constraints.  

We crawl 30,759 unique slogans from online 

slogan databases such as Textart.ru5, Slogans Hub6, 

Slogan List7, Think Slogans8, and Slogans Point9. 

Unlike previous works focusing on commercial 

slogans, our dataset covers both commercial and 

public slogans. Public slogans include slogans for 

health, women’s rights, the environment, and 

more. 45.43% of our slogans are commercial, 

54.56% are public. Company names in commercial 

slogans are delexicalized using a custom special 

token <name>, following Jin et al. (2021). We 

reserve 20% of the data for validation. 

The lexical inputs are lexical constraints 

surrounded by <mask> tokens. Just like the 

pretraining method of BART and T5, our model 

predicts consecutive spans of <mask> tokens.  

                                                           
5http://www.textart.ru/database/slogan/ma

p.html 

6 https://sloganshub.org/ 

The lexical constraints are limited to verbs, 

nouns, proper nouns, and adjectives. We extract 

them from original slogans using spaCy. Then, we 

randomly delete lexical constraints, when there are 

5 or more of them to keep the average ratio of the 

number of lexical constraints to the total number of 

words in the original slogan below 50%. The 

average ratio is 41.90%. 

Unlike the pretraining method of BART and T5, 

we shuffle the lexical constraints to make the 

model predict natural ordering. If we don’t shuffle 

them, we need to permutate lexical constraints 

during inference. For instance, if the user keyword 

is ‘cake’ and its sound-alike word is ‘bake’, we 

need both ‘<mask> cake <mask> bake <mask>’ 

and ‘<mask> bake <mask> cake <mask>’ as 

lexical inputs. The number of permutations would 

increase dramatically as the number of user 

keywords increase. To address this issue, we 

shuffle the lexical constraints.  

The POS inputs are POS constraints themselves. 

We use spaCy POS tagging results of the original 

slogan as POS inputs. Table 1 shows the example 

of data. 

5 Experiments 

Following previous work, we conduct a 

quantitative evaluation using ROUGE (Lin (2004)) 

F1 scores and compare our model with the original 

sequence-to-sequence model baselines. We also 

compute the included lexical constraints rates and 

POS F1 scores to check how well the given 

constraints are applied.  The included lexical 

constraints rates are the rates of the lexical 

constraints included in model-generated slogans. 

7 https://www.sloganlist.com/ 
8 https://www.thinkslogans.com/ 
9 http://www.sloganspoint.com/ 

Slogan Lexical Input POS Input 

Breakfast of Champions. <mask> breakfast <mask> 

champions <mask> 

['NOUN', 'ADP', 'NOUN', 'PUNCT'] 

The Best a Man Can Get. <mask> best <mask> man 

<mask> 

['DET', 'ADJ', 'DET', 'NOUN', 'AUX', 

'VERB', 'PUNCT'] 

Think Different. <mask> different <mask> 

think <mask> 

['VERB', 'ADJ', 'PUNCT'] 

America Runs on <name>. <mask> <name> <mask> 

america <mask> runs 

<mask> 

['PROPN', 'VERB', 'ADP', 'PROPN', 

'PUNCT'] 

Table 1: Example of data. Lexical constraints are bolded in lexical inputs. Special tokens are omitted. 
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POS F1 scores are computed by comparing the 

POS inputs and POS tagging results of model-

generated slogans.  

Table 2 presents the quantitative evaluation 

result. Our best model achieved a ROUGE-1/-2/-L  

F1 score of 62.04/37.03/59.21, 94.69 for the 

included lexical constraints rates, and 91.76 for 

POS F1 scores. The performance discrepancy 

between BART and T5 could be explained by their 

pretraining methods. BART was pretrained using 

Sentence Permutation, which restores the original 

order of shuffled sentences, while T5 was not.  

Table 3 shows the sample of generated slogans 

from validation data. The results of the LexPOS 

model are more relevant to the original slogans.  

 

Table 3: Sample generated slogans from validation 

data. “Gold” is the original slogan. 

Table 4 shows the inference results. We use 

beam search and adjust the temperature to generate 

natural slogans.  

 

Keywords: bakery, sandwich 

POS: [VERB, DET, NOUN, PUNCT, VERB, DET, 

NOUN, PUNCT]   

Output: Switch the bakery, the sandwich switches. 

Keywords: airline, cheap 

POS: [ADJ, NOUN, PUNCT, ADJ, NOUN, PUNCT] 

Output: Fast Airline. Keep Cheap. 

Keywords: save, energy 

POS: [VERB, DET, NOUN, PUNCT, VERB, DET, 

NOUN, PUNCT]  

Output: Save energy, save faces. 

Keywords: brunch, cafe 

POS: [NOUN, ADP, NOUN, PUNCT, NOUN, ADP, 

NOUN, PUNCT] 

Output: Brunch at Brightness, Crunch at Cafe. 

Keywords: unique, fashion, brand 

POS: [NOUN, ADP, NOUN, PUNCT, NOUN, ADP, 

NOUN, PUNCT]  

Output: Brand of unique fashion. Passion for fashion. 

Table 4: Sample generated slogans from user 

keywords and POS constraints. One of the user 

keywords and its sound-alike word are bolded. 

The model-generated slogans include both the 

user keywords and one selected sound-alike word, 

fully reflecting users’ intentions. The results also 

show phonetic and structural repetition, 

representative features of memorable slogans.  

6 Conclusion 

In this work, we generate slogans with phonetic 

and structural repetition using LexPOS model, a 

transformer-based sequence-to-sequence model 

with an additional POS encoder. It generates 

slogans using sound-alike words given user 

keywords. The model-generated slogans also 

follow structural constraints thanks to the POS 

encoder. To our knowledge, it is the first model to 

generate slogans without templates, taking 

linguistic features into account. Future work 

Gold: The Power of being Global. 

BART: Global Power. 

LexPOS BART: The power of global. 

Gold: <name>. Keep Walking. 

BART: I’m walking <name>. 

LexPOS BART: <name>. Walking on. 

Gold: How about a nice <name>? 

BART: Be nice to <name>. 

LexPOS BART: Always be a nice <name>. 

Gold: All things are difficult before they are easy. 

BART: Difficult things are never easy. 

LexPOS BART: The difficult things are made easy 

by you. 

Gold: Some bruises are on the inside. Stop bullying. 

BART: Stop bullying on the inside and stop bruises 

on the outside. 

LexPOS BART: The bruises are on the inside, stop 

bullying. 

 
 

Rouge 1 

 

Rouge 2 

 

Rouge L 

Included Lexical 

Constraints Rates 

 

POS F1 

baseline BART 0.4894 0.2282 0.4577 0.9515 0.7992 

baseline T5 0.4461 0.1805 0.4150 0.9406 0.7737 

LexPOS BART  0.6204 0.3703 0.5921 0.9469 0.9176 

LexPOS T5 0.5700 0.3039 0.5339 0.9399 0.8809 

Table 2: The quantitative evaluation of various models. Best scores are bolded. 
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should implement other linguistic features shown 

in slogans. 
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Abstract

Linguistic Acceptability is the task of deter-
mining whether a sentence is grammatical or
ungrammatical. It has applications in sev-
eral use cases like Question-Answering, Nat-
ural Language Generation, Neural Machine
Translation, where grammatical correctness is
crucial. In this paper we aim to understand
the decision-making process of BERT (Devlin
et al., 2019) in distinguishing between Lin-
guistically Acceptable sentences (LA) and Lin-
guistically Unacceptable sentences (LUA). We
leverage Layer Integrated Gradients Attribu-
tion Scores (LIG) to explain the Linguistic Ac-
ceptability criteria that are learnt by BERT on
the Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2018) benchmark dataset. Our
experiments on 5 categories of sentences lead
to the following interesting findings: 1) LIG for
LA are significantly smaller in comparison to
LUA, 2) There are specific subtrees of the Con-
stituency Parse Tree (CPT) for LA and LUA
which contribute larger LIG, 3) Across the
different categories of sentences we observed
around 88% to 100% of the Correctly classi-
fied sentences had positive LIG, indicating a
strong positive relationship to the prediction
confidence of the model, and 4) Around 43% of
the Misclassified sentences had negative LIG,
which we believe can become correctly classi-
fied sentences if the LIG are parameterized in
the loss function of the model.

1 Introduction

Linguistic acceptability is an important criteria
in Natural Language Processing and is one of
the tasks in the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018). With the evolution of language encoders
like BERT (which leverages the multi-head self-
attention mechanism (Vaswani et al., 2017) in its
architecture) that have been a breakthrough in lan-
guage understanding and achieved state-of-the-art

results, the field of probing these architectures for
understanding their behaviours has become impor-
tant.

While there have been several works on interpret-
ing and understanding the different layers of BERT
with respect to lexical, syntactic and semantic be-
haviours (Jawahar et al., 2019; Lin et al., 2019;
Clark et al., 2019; Vashishth et al., 2019; Rogers
et al., 2020), the focus on explaining the linguistic
acceptability (grammaticality) learnt by BERT has
been sparse. Some of the recent works have used
probing tasks to understand the model’s knowl-
edge on particular grammatical features (Shi et al.,
2016; Ettinger et al., 2016; Tenney et al., 2019),
relying on language model probabilities to judge
grammatical acceptability on sentences that dif-
fer minimally (Marvin and Linzen, 2018; Wilcox
et al., 2019), or probing the model’s by training
with boolean grammaticality judgement objectives
(Linzen et al., 2016; Warstadt et al., 2018; Kann
et al., 2019; Warstadt et al., 2019). These meth-
ods have made significant progress in uncovering
that BERT has indeed learnt various aspects of
grammatical knowledge, however their focus has
not been on explaining the black box details of
how BERT arrives at a grammaticality judgement.
Our paper attempts to address this by explaining
the model’s linguistic acceptability judgement with
LIG and CPT (a type of grammar tree) representa-
tions.

Attention mechanism based methods (Bahdanau
et al., 2014; Vaswani et al., 2017) provide inter-
pretable understanding of the model’s behaviour,
however the attention scores cannot be solely re-
lied upon since a feature could influence the output
in multiple ways (for e.g. through memory cells,
recurrent states etc. in LSTM networks). Feature
attribution methods aim to understand the relation-
ship between the model’s output and the input fea-
tures. They are helpful in interpreting the black-
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Sentence Category
rebecca saw the play . CIALA

the play saw . CIALUA

i surprised myself . RAALA

i surprised himself . RAALUA

the boy is here . SVALA

the boy are here . SVALUA

michael read the book . SVOLA

michael the book read . SVOLUA

what did rebecca read ? WHELA

what did rebecca read the book ? WHELUA

Table 1: Sample sentences across the 5 categories from
the CoLA Targeted Test Sets.

box details of neural networks and provide insights
that can be used to improve model performance.
While previous feature attribution methods such
as DeepLift (Shrikumar et al., 2016, 2017), Layer-
wise relevance propagation (Binder et al., 2016)
and LIME (Ribeiro et al., 2016) have provided in-
teresting frameworks, they break at least one of
the two axioms that are fundamental for attribution
methods, namely Sensitivity and Implementation
Invariance (Sundararajan et al., 2017).

In our paper we have chosen the Integrated Gra-
dients (IG) (Sundararajan et al., 2017) attribution
method as it satisfies both the aforementioned ax-
ioms. IG is a post-hoc interpretability technique
which aggregates the gradients of the input by in-
terpolating in small steps along the straight line
between a baseline (typically a vector with all ze-
ros) and the input. A large positive or negative IG
score indicates that the feature strongly increases
or decreases the network output respectively, while
a score close to zero indicates that the feature does
not influence the network output. This can also be
understood as follows: a positive score indicates
that the feature tends to agree with the model’s
prediction, while a negative score indicates that
the feature tends to disagree with the model’s pre-
diction. LIG are computed as the IG between the
model output and a particular layer’s input or out-
put. Our work attempts to answer the following
Research Questions:

1. Can LIG of a Constituency Parse Tree (CPT)
give insights on LA vs LUA?

2. Can LIG be reliably used to explain the Lin-
guistic Acceptability criteria learnt by BERT?

3. Is there a relationship between LIG and the

prediction confidence of the model?

2 Experiment Setup

CoLA dataset sentences have a boolean acceptabil-
ity judgement, namely LA and LUA. We have used
the fine-tuned BERT-Base-Uncased-CoLA model
(12 encoder layers with 12 attention heads) pro-
vided by TextAttack (Morris et al., 2020), the Cap-
tum PyTorch Interpretability library (Kokhlikyan
et al., 2020) for computing LIG and the Stanford
CoreNLP toolkit (version 4.2.1) (Manning et al.,
2014) for constructing the CPT. Integrated Gradi-
ents (IG) across the ith dimension of input x and
baseline x′ are computed as follows:

IG = (xi−x′i)×
∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα

Captum library approximates the above inte-
gral using the Gauss-Legendre approximation al-
gorithm over 50 uniform steps of α ∈ [0, 1]. The
baseline was selected as a 768 dimension zero vec-
tor. The attribution score for each word is summed
across the dimensions (768 in the case of BERT-
Base) and normalized using the Euclidean norm of
the scores of all the words in the sentence.

We analyzed 5 different categories of sen-
tences within the CoLA Targeted Test Sets:
Causative-Inchoative Alternation (CIA), Reflexive-
Antecedent Agreement (RAA), Subject-Verb
Agreement (SVA), Subject-Verb-Object (SVO) and
Wh-Extraction (WHE). A few sample sentences
across the categories can be seen in Table 1.

The primary focus of our experiments relied on
the LIG computed between the predicted class logit
and the token embedding of the words. Further we
also computed LIG heatmaps with respect to the In-
put (Token + Segment + Position) embedding and
across the 12 Encoder layer embeddings of BERT
to analyze the LIG characteristics. Figure 1 shows
the LIG heatmaps of the top 10 CPT patterns for
the LA and LUA in the WHE category. The unique
CPT patterns were extracted for the correctly clas-
sified sentences of each category, corresponding to
which the LIG of each subtree were computed. LIG
of a subtree is equal to the sum of the LIG of the
words appearing as leaf nodes in the subtree. The
results in Table 2, Table 3, Figure 2 and Figure 3
represent the LIG computed between the predicted
class logit and the token embedding of the words.
For Out-Of-Vocabulary words (OOV), the LIG are
summed across its tokenized sub-words.
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CPT Pattern Avg. LIG Category
(S(NP(NN))(VP(VBD)(NP(DT)(NN)))(.)) 0.065 CIALA

(S(NP(DT)(NN))(VP(VBD))(.)) 1.351 CIALUA

(S(NP(PRP))(VP(VBD)(NP(PRP)))(.)) 0.061 RAALA

(S(NP(PRP))(VP(VBD)(NP(PRP)))(.)) 0.926 RAALUA

(S(NP(DT)(NN))(VP(VBZ)(ADVP(RB)))(.)) 0.064 SVALA

(S(NP(DT)(NN))(VP(VBP)(ADJP(JJ)))(.)) 1.067 SVALUA

(S(NP(NN))(VP(VBD)(NP(DT)(NN)))(.)) -0.012 SVOLA

(S(NP(NP(NN))(NP(DT)(NN)))(VP(VBD))(.)) 1.226 SVOLUA

(SBARQ(WHNP(WP))(SQ(VBD)(NP(NN))(VP(VB)))(.)) 0.205 WHELA

(SBARQ(WHNP(WP))(SQ(VBD)(NP(NN))(VP( 1.394 WHELUA

VB)(NP(DT)(NN))))(.))

Table 2: Average normalized LIG of most frequent CPT patterns on 5 categories of Correctly classified CoLA
Targeted Test Sets sentences. Subtrees in bold have the largest LIG in the respective categories.

Figure 1: LIG heatmaps of the top 10 scoring CPT patterns ranked in descending order based on averaged LIG
across the different BERT layers for LA (Left) and LUA (Right) of the WHE category.

Figure 2: LIG visualization for a LA sentence (Top) and
LUA sentence (Bottom) of the SVO category. Green
highlighted words contributed strongly towards the
model output to be predicted as LA and LUA.

3 LIG for Constituency Parse Tree
patterns

CPT is a type of grammar tree which captures the
relations between the constituents of a sentence.
We believe that analyzing the CPT patterns will
give us insights into the grammatical structure of
LA and LUA. Computing the LIG for CPT patterns
at different subtree levels can give us an indica-
tion into the constituents which contribute largely
towards making the sentence LA or LUA.

For each of the 5 category of sentences, we ex-
tracted all the CPT patterns for correctly classified
sentences at every subtree level and picked the most
frequent patterns at the root level (Table 2). The
subtree patterns in bold are the highest ranking sub-
trees based on LIG. BERT has been shown to learn
surface level features in the early layers, syntactic
features in the middle layers and semantic features
in the higher layers (Jawahar et al., 2019). Hence,
we also wanted to analyse the LIG behaviour across
the 12 layers and especially the early to middle lay-
ers which are relevant for grammar understanding.
Across each of the categories in the LIG heatmaps,
it was seen that the top subtree CPT patterns based
on token embedding LIG were also dominating
across the input and encoder layers of BERT and
hence were also found in the top 10 patterns. Fur-
ther, it can be observed in Figure 1 that there are
specific subtrees which dominate more (shades of
orange) as compared to others. This characteristic
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Category C CC MC CC+ CC- MC+ MC- CC+% MC+%
CIA 182 162 20 144 18 7 13 88.88 35
RAA 144 100 44 100 0 2 42 100 4.54
SVA 676 476 200 441 35 148 52 92.64 74
SVO 500 400 100 362 38 54 46 90.5 54
WHE 520 516 4 465 51 0 4 90.11 0

Table 3: LIG assessment for Correctly classified sentences (CC) and Misclassified (MC) sentences (C: Count, CC+:
Count of CC having positive LIG, CC-: Count of CC having negative LIG, MC+: Count of MC having positive LIG,
MC-: Count of MC having negative LIG, CC+%: Percentage of CC+ in CC, MC+%: Percentage of MC+ in MC).

Figure 3: Prediction Probability vs LIG Scatter plots for Correctly classified (Left) and Misclassified (Right)
sentences.

is especially useful for debugging LUA as it helps
us to understand which phrase contributed largely
towards making it unacceptable.

Further, it can be observed in Table 2 that the
LIG for LUA are significantly larger than LA. The
dominating CPT subtree patterns had a large spike
in the LIG for LUA in comparison to LA, indicat-
ing that linguistically acceptable patterns were not
being adhered. In Figure 2 we can see how the
different words in the LA and LUA of the SVO cat-
egory contributed in varying magnitudes towards
the model’s prediction.

4 LIG and Prediction confidence of the
model

We investigated to check if there is a relationship
between the LIG and the prediction confidence of
the model. We found that the range of correctly
classified sentences having positive LIG is between
88% to 100% (CC+% in Table 3) indicating that
whenever the input contributes strongly towards
a particular class (whether it is LA or LUA), the
model has a higher confidence in making the cor-
rect prediction. Around 43% (MC- in Table 3)
of the total misclassified sentences had negative
LIG which showed that the features disagreed with

the model’s prediction. This behaviour can be
observed distinctly in the Figure 3 scatter plots,
where we notice that there a large number of points
near the top right corner for the correctly classi-
fied sentences, and a large number of points near
the bottom left corner in the case of misclassified
sentences.

We believe that this indication can be used to im-
prove the model’s performance by parameterizing
the LIG in the loss function during the later stages
of the training process once the model has achieved
a reasonable performance (to ensure that the gradi-
ents computed are meaningful) and hence serve as
a correction mechanism for the model. This aligns
with a previous work (Erion et al., 2021) which
showed that axiomatic attribution priors improved
model performance on many real-world tasks.

5 Conclusion

We have proposed a novel approach for explain-
ing the Linguistic Acceptability criteria learnt by
BERT using LIG and CPT patterns. As there is a
strong relationship between LIG and the prediction
confidence of the model, our future work will focus
on parameterizing the LIG in the loss function and
observing the model’s performance.
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Alexander Binder, Grégoire Montavon, Sebastian La-
puschkin, Klaus-Robert Müller, and Wojciech Samek.
2016. Layer-wise relevance propagation for neural
networks with local renormalization layers. In Inter-
national Conference on Artificial Neural Networks,
pages 63–71. Springer.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Gabriel Erion, Joseph D Janizek, Pascal Sturmfels,
Scott M Lundberg, and Su-In Lee. 2021. Improving
performance of deep learning models with axiomatic
attribution priors and expected gradients. Nature
Machine Intelligence, pages 1–12.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceed-
ings of the 1st workshop on evaluating vector-space
representations for nlp, pages 134–139.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
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Abstract

This paper investigates very low resource lan-
guage model pretraining, when less than 100
thousand sentences are available. We find
that, in very low resource scenarios, statistical
n-gram language models outperform state-of-
the-art neural models. Our experiments show
that this is mainly due to the focus of the for-
mer on a local context. As such, we introduce
three methods to improve a neural model’s per-
formance in the low-resource setting, finding
that limiting the model’s self-attention is the
most effective one, improving on downstream
tasks such as NLI and POS tagging by up
to 5% for the languages we test on: English,
Hindi, and Turkish.

1 Introduction

With the advent of the Transformer (Vaswani et al.,
2017) and masked language model (MLM) pre-
training (Devlin et al., 2018), attention-based neu-
ral networks have proven quite effective at a variety
of language tasks, provided that large amounts of
data are available for pretraining. However, the
performance can drop significantly as the number
of sentences used for MLM pretraining decreases.
This poses an issue for low-resource settings such
as for underrepresented languages, where there is a
limited amount of monolingual data.

Under low-resource conditions, attention-based
models have difficulty learning from MLM, and
as such statistical language models (SLMs) can
outperform neural language models (NLMs). We
demonstrate this by using a popular SLM toolkit,
KenLM (Heafield, 2011), and test its accuracy on
the MLM task compared to that of a Transformer
model.1 The results (Table 1) show that a trigram
SLM is able to outperform the Transformer model
by a wide margin for all languages when only 10
thousand sentences are available.

1The details of these tests are discussed in Section 3.1.

Data Amount
Language System 10k 40k 100k

EN NLM 12.8 30.7 44.6
SLM 29.7 37.9 42.1

HI NLM 27.0 48.7 57.4
SLM 45.7 48.1 52.4

TR NLM 6.4 22.3 36.2
SLM 23.1 30.5 39.9

Table 1: English (EN), Hindi (HI), and Turkish (TR)
MLM accuracy scores (%) for a neural versus statistical
model.

While an SLM might outperform a neural model
on MLM, the neural model has the benefit of being
easily transferable to downstream tasks by means
of fine-tuning. As such, this paper seeks to deter-
mine how we can improve the performance of an
NLM to that of an SLM in low-resource scenarios.
We investigate three approaches:

1. Changing the input by limiting the pretrain-
ing context size

2. Changing the architecture by limiting the
self-attention window

3. Changing the training objective by using
soft labels distilled from the SLM

We motivate and detail these methods in Sec-
tion 2, describe experiment details in Section 3,
show and discuss results in Section 4, and conclude
our work in Section 5.

2 Methods

When comparing the general function of an SLM
to an NLM, we consider the largest difference to
be the context size considered. A tri-gram SLM
will consider only the context of the adjacent two
words on either side. For example, the score we
use for word C in the sequence A B C D E F G
is log(p(C|A,B)× p(D|B,C)× p(E|C,D)).
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Meanwhile, self-attention allows a Transformer
to consider the entire context, which in XLM is
256 tokens by default (Lample and Conneau, 2019).
Since XLM is trained with continuous streams of
text, the input size is therefore always 256, and can
consist of multiple sentences. In the low-resource
setting, it may be difficult to learn important fea-
tures from such a large context size.

To tackle this, we consider three alternative ap-
proaches. First, we put the strictest limitation on
context by limiting the length of the input (§ 2.1).
Second, we use a limited attention scope, thereby
limiting the context within the first layer of the
Transformer, but allowing information to flow from
larger contexts in subsequent layers (§ 2.2). Finally,
we put no explicit restriction on context size, but
rather we expect the model to learn to limit itself
via distillation from the limited statistical model
(§ 2.3).

If context size is indeed the issue, we would
expect the strictest form of limitation to perform
best, as it would not need to learn to limit itself
during training. This may be however too limiting
for tasks which require a larger context, where we
would expect that limiting attention would perform
best. If context size is not the issue, we would ex-
pect that distilling knowledge from the statistical
model would perform best, as its context is not lim-
ited, and the statistical model would still help the
neural model learn a better strategy for language
modelling than it is capable of on its own.

2.1 Changing the Input

We first limit the context size by presenting the
input to a sliding window of a fixed context size.
To stay consistent with the SLM, we only mask
the middle word during MLM pretraining, padding
the left and right side with BOS and EOS tokens re-
spectively as needed.2 For example, with a context
size of 5 for the sentence ”it is sunny today”, we
have:

[BOS] [BOS] [MASK] is sunny
[BOS] it [MASK] sunny today
it is [MASK] today [EOS]
is sunny [MASK] [EOS] [EOS]

This approach has the benefit of a smaller input
complexity and an easier training objective (since
only 1 word is masked at a time). These factors

2We also tried just limiting the context size without
changes to MLM or the input, as done in contemporary
work (Press et al., 2020), but the performance was worse.

should make it easier for the model to learn the im-
portance of local context. However, as the pretrain-
ing step does not expose the model to input longer
than the context size, fine-tuning with a longer con-
text size may hurt the model’s performance.

2.2 Changing the Architecture
Rather than explicitly limiting the context, we also
try limiting the model’s attention towards words
outside of the desired context. This is accomplished
by adding a weight matrix to the query-key matrix
produced during self attention. More specifically,
referring to Equation 1 from Vaswani et al. (2017):

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

We add a band matrix W before applying softmax,
where the elements within the band are 0 and the
elements outside the band are −∞, shown in Equa-
tion 2.3 The size of the band corresponds to the
context size (c), as the attention scores within the
band are unaffected, whereas the attention outside
of the band is effectively removed. This approach
is very similar to that of the Longformer (Beltagy
et al., 2020), which has a sliding-window attention
with the aim of reducing model complexity and
computation in long documents.

Attn(Q,K, V ) = softmax(W +
QKT

√
dk

)V,

wi,j =





−∞ j < i− c

−∞ j > i+ c

0 otherwise

(2)

While the model’s self-attention range is limited
to the defined context size, the ability for infor-
mation from outside the context to associate with
that of within the context is still possible in upper
layers of the Transformer. For example, with a
6-layer encoder and a context size of 5, the first
word could theoretically receive information about
all words up to the 13th position. One benefit of
this approach over limiting the input context (Sec-
tion 2.1) is that the limitation can still be applied
during fine-tuning.

2.3 Changing the Training Objective
The first two approaches have mainly been focused
on the issue of context size, however the impor-
tance of an SLM having a fixed objective is not yet

3In practice we use −109.
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addressed. While an NLM still has to learn its ob-
jective, we can potentially make this easier to learn
by learning from the outputs of the SLM, inspired
by knowledge distillation (Hinton et al., 2015).

In the MLM task, a model is typically trained to
compare its output for masked tokens to a “hard
label”, where the probability is 1 for the actual
word and 0 for all others. Rather than training
with hard labels, we construct a soft label from
the output of the SLM. This is done by using the
SLM’s score of the context with each candidate
word replacing the mask.4 The scores are first min-
max normalized, then weighted, and finally scaled
to unit length (so that the probabilities sum to 1).5

The weighting is done by raising each score to the
nth power, acting as a “hardness” parameter, where
the most likely candidates approach 1 and the least
likely approach 0 as n increases. We experiment
with n ∈ {1, 2, 4, 6, 8} and find n = 6 to give the
best results.

3 Experimental Setup

We test each of our three methods on English (EN),
Hindi (HI), and Turkish (TR). We train our mod-
els with XLM (Lample and Conneau, 2019), start-
ing from a random initialization. We use the first
10 or 40 thousand sentences per language6 from
the WMT2007 NewsCrawl for English (following
XLM), WMT2013 NewsCrawl for Hindi, and the
WMT2016 NewsCrawl for Turkish.7 For all of the
tests, the data is tokenized with UDPipe (Straka and
Straková, 2017),8 truecased with Moses (Koehn
et al., 2007), and 10 thousand BPE (Sennrich et al.,
2015) joins are used.

The architecture behind our models is a 6-layer
Transformer with 8 attention heads, an embedding
dimension size of 1024, dropout set at 0.1, and
GELU (Hendrycks and Gimpel, 2016) activation.
For pretraining, we use a batch size of 32, and the
Adam optimizer (Kingma and Ba, 2014), with a
learning rate of 1e-4. We lower the learning rate
to 2.5e-5 for the fine-tuning tasks. We use an early

4Each masked word is handled separately, so in a sentence
with multiple masked words, the mask does not appear as part
of the context for the SLM.

5To limit memory usage, scores below the top 100 are
zeroed out after normalization.

6The datasets come pre-shuffled.
7http://www.statmt.org/wmt16/

translation-task.html
8We use UDPipe so that the tokenization for our POS

tagging data (which comes from UD) is consistent with the
pretraining.

stopping criterion of no improvement in accuracy
(MLM accuracy for pretraining, NLI or POS tag
accuracy for fine-tuning) on the validation set for
20000 iterations, with a patience of 10. 9

3.1 Measuring MLM accuracy

For our initial experiment showing the MLM accu-
racy of an SLM versus an NLM, we use a trigram
KenLM model as our statistical model, and XLM
(Lample and Conneau, 2019) as our neural model.
Both KenLM and the XLM model are trained on
the same 10 or 40 thousand sentences. Being a
statistical model, KenLM’s training process simply
consists of tabulating frequencies, which are then
used to estimate probabilities during inference.

As KenLM outputs scores for entire sequences,
we simulate prediction of a masked word by replac-
ing the word with every word in the vocabulary,
and take its highest score as its prediction.10 We re-
peat this for every word in the sentence for the first
100 sentences of the dataset,11, producing roughly
2600 examples.12

3.2 Downstream Tasks

We fine-tune our models on the Natural Language
Inference (NLI) task. For training, we use the
MultiNLI dataset (Williams et al., 2018), and for
development and testing, we use the XNLI dataset
(Conneau et al., 2018).

When fine-tuning on XNLI for our limited at-
tention model (Section 2.2), the first token (the
CLS token used for classification) in the final layer
often cannot access information from the second
sentence. As such, we instead average every token
rather than simply taking the first token, which im-
proves results dramatically. We did not find this
to improve any of our results with the other ap-
proaches, so we use only the first token in the other
approaches.

9As we used the XLM implementation from https:
//github.com/facebookresearch/XLM, any hyper-
parameters not mentioned are set at their default values.

10Because these scores are chain probabilities, it is not
clear how to get a perplexity score comparable to that of an
NLM, which is why we chose to compare with MLM accuracy.
However the MLM accuracies of the NLMs follow the same
trend as their perplexities.

11We use WMT newstest2016 from English–
German for English and English–Turkish for Turkish, and
newstest2014 for English–Hindi for Hindi.

12Unlike in standard MLM during training, for evaluation
only one token is masked in a sentence at a time. Masking
multiple tokens would increase the number of queries to the
KenLM model exponentially.
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We also investigate an easier task that typically
requires less context, part-of-speech (POS) tagging,
in appendix B. When applicable, the training data
for both tasks is limited to the first 10 or 40 thou-
sand sentences, according to the amount of data
used in pretraining.

4 Results

We now compare the results of the SLM, normal
NLM, and our 3 improvements to the NLM: lim-
ited context (NLM-C), limited attention (NLM-A),
and the hybrid training objective (NLM-H). For
NLM-C and NLM-A, we experiment with different
context sizes and attention window sizes, ranging
from 5 to 13. The SLMs are trigram models, and
NLM-H uses these models for its soft labels.

4.1 Pretraining

Table 2 shows the MLM accuracies for all of the
methods, using 10 and 40 thousand sentences. As
we can see, the standard NLM is the worst, each
of the 3 additions improve on the standard NLM,
with NLM-C performing similarly to the SLM.

10k 40k
System Context EN HI TR EN HI TR

NLM 256 12.8 27.0 6.4 30.7 48.7 22.3

NLM-C
5 27.4 45.1 22.4 37.5 50.1 31.7
9 28.1 45.9 22.6 39.3 53.3 32.8

13 29.4 46.2 22.8 40.4 52.9 31.0

NLM-A
5 23.7 41.7 17.1 36.9 51.5 30.4
9 21.5 42.6 11.4 37.6 51.3 29.7

13 20.1 42.6 10.3 37.6 51.3 27.7

NLM-H 256 22.7 38.9 14.1 33.1 48.8 27.6

SLM 5 29.7 45.7 23.1 37.9 48.1 30.5

Table 2: MLM accuracies (%), best in bold. The “Con-
text” column refers to the attention window for NLM-
A, and the input size for the others.

The similarity in performance for NLM-C and
SLM strongly suggests that local context is the
most important factor in SLM’s outperformance
over NLM. This focus on local context also has an
impact on the performance of rare words, as the
NLM specifically fails to fill in the mask when the
masked word is a word from the 80% least frequent
words. We discuss this in detail in appendix A.

NLM-A and NLM-H also outperform NLM, but
not to the degree of NLM-C. While NLM-A has
a similar goal as NLM-C, the degree to which in-
formation can flow from a wider context may be
inhibiting the model from focusing on local context.
This would explain why the accuracies decrease as

the attention window increases. For NLM-H, since
the context is not explicitly limited, it can similarly
suffer from the complexity of self-attention.

4.2 NLI

Natural Language Inference (NLI), involves clas-
sifying two statements into three classes: “contra-
diction”, “entailment”, and “neutral”. This typi-
cally would require a large context as the relation
between the two sentences’ meanings needs to be
understood. As our focus for two of our approaches
was to limit their context, we would expect this task
to be the most challenging. Our results are in Table
3.

10k 40k
System Context EN HI TR EN HI TR

NLM 256 45.6 41.5 42.0 53.2 49.8 49.4

NLM-C
5 44.0 42.2 42.1 51.8 47.4 46.9
9 44.8 43.2 42.4 51.8 47.0 46.5

13 45.2 42.5 41.4 50.1 47.2 46.5

NLM-A
5 43.4 44.5 40.5 53.6 48.2 47.9
9 46.8 45.1 44.6 54.4 50.2 50.2

13 46.9 46.8 45.8 54.2 49.7 50.2

NLM-H 256 45.0 42.1 44.8 52.6 49.4 49.2

Table 3: NLI accuracies (%), best in bold.

The results on NLI differ greatly from the MLM
accuracies, as NLM-A performs the best across
the board, despite its MLM accuracy being lower
than NLM-C (cf. Table 2). This is likely due to
NLM-A needing no changes to the input between
the pretraining and fine-tuning steps. Meanwhile,
NLM-C performs more poorly as it needs to adjust
to the longer input for fine tuning.

When comparing the context sizes, we see that a
larger context size in general performs better. This
is in line with the idea that NLI generally demands
a larger context size.

5 Conclusion

Despite the ubiquity of pre-trained neural language
models (NLMs) in state-of-the-art NLP, in the low-
resource setting they are outperformed by statistical
language models (SLMs). Their general formula-
tion assumes a large amount of data for pretraining,
so in this work we adapt them to better perform in
low-resource conditions.

We found that the complexity of self-attention
on large contexts is a major inhibitor. As a solution
to this, we propose shortening the attention span
(NLM-A), which we show can increase the model’s
performance on downstream tasks. We believe
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that an ideal limitation of attention span would be
initially very limited, but the span would increase
dynamically during training. We plan to look into
this further in future work.

For the best performance on MLM accuracy dur-
ing pretraining itself, we propose limiting the size
of the input (NLM-C), improving upon the standard
method for training neural models. This achieves
SLM-level performance on the lowest resource set-
ting (10 thousand sentences), and outperforms an
SLM on slightly higher-resource settings (40 thou-
sand sentences). In addition, the neural model with
a limited context can, unlike the SLM, be trans-
ferred to downstream tasks.

While limiting the input size (NLM-C) performs
better than limiting the attention span (NLM-A) for
pretraining, the opposite is the case for downstream
tasks. As a potential solution for this, we propose
for future work a second pretraining step in which
the non-limited input is used.

Finally, our work primarily serves to investigate
how attention-based models function with very lit-
tle data. However in many real-world scenarios,
transfer learning from large multilingual models is
often used. Looking at the impact of these meth-
ods with multilingual transfer learning employed
alongside is something we plan to do in the future.
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Faculty of Mathematics and Physics, Charles
University.

90



A Pretraining Analysis

To better understand the failures of the NLM model
on MLM accuracy, we look at the performance of
our models with respect to the frequency of each
word during training. We split the vocabulary into
5 equal bins according to frequency and record the
accuracy on those bins, shown in Table 4.

Bin NLM NLM-A NLM-C NLM-H SLM

10k

1 0.0 1.2 14.3 2.0 16.1
2 0.0 2.9 9.2 3.0 11.5
3 0.1 3.1 9.0 4.1 10.8
4 0.0 3.6 9.9 3.2 14.8
5 15.4 27.1 32.2 25.7 34.2

40k

1 5.7 14.8 17.9 15.2 17.9
2 7.5 15.4 10.0 14.6 19.2
3 9.9 17.7 19.0 14.6 24.6
4 8.5 16.4 17.4 13.1 19.9
5 33.5 39.5 43.3 36.2 42.7

Table 4: Accuracy (%) per frequency bin for English,
with bin 1 being the least frequent 20%, and bin 5 being
the most frequent 20%. For NLM-A and NLM-C, we
only report the scores for the systems with a context
size of 5.

The SLM performs better across the board, but
the NLM specifically fails on the least common
80% of words when 10 thousand sentences are
used. While less frequent, this still accounts for
roughly 20% of the words seen in training data, so
the impact is understandably substantial. Interest-
ingly, NLM-C performs similarly to SLM, which
reinforces the idea that context size is the main rea-
son why SLMs outperform standard NLMs in the
low resource setting.

We also attempt to measure the “reasonableness”
of a system’s guess for MLM. Considering words
split into multiple tokens by BPE, we measure how
often the system completes them to a word that is
in the vocabulary. For example “up@@” could be
reasonably completed with “grade” or “date”. As
the meaning of an entire sentence is not considered,
local context is especially important for completing
this task. We show the results in Table 5.

NLM NLM-A NLM-C NLM-H SLM

10k EN 2.2 22.8 52.8 33.9 61.1
TR 4.4 32.2 42.2 32.8 39.9

40k EN 40.3 57.3 69.7 57.0 78.7
TR 45.3 54.7 55.0 51.9 55.1

Table 5: Word completion (%) for English and Turkish.
Showing systems with context 5 for NLM-A and NLM-
C.

The results show a drastic difference in perfor-

mance of NLM to SLM when trained on 10 thou-
sand sentences. The standard NLM seems to fail
to understand the concept of multi-token words.
NLM-C and SLM again perform similarly. Inter-
estingly, the discrepancy in performance on the two
languages for the SLM is larger than for the NLMs.
While this not central to the topic of this paper, it
may be worth exploring it further.

Despite performing well on the downstream
tasks, NLM-A does not perform particularly well
on these pretraining metrics. This may showcase
the inherent difficulty in evaluating the quality of
the pretraining objective, as metrics like MLM ac-
curacy or word completion do not give a clear indi-
cation of the transferability of a pretrained model
to a downstream task.

B POS Tagging

Part-of-speech (POS) tagging is considered a much
easier task than NLI, as most words do not need a
large amount of context to be tagged. This should
be an ideal setting for the context-limited methods
to perform well, particularly NLM-C.

We use the POS tagging data from Universal De-
pendencies (UD) v2.7 (Zeman et al., 2020), using
the English-GUM and Turkish-BOUN datasets.

The results on POS tagging (Table 6) are some-
what similar to the NLI results, as NLM-A again
performs the best. As this task is more suited for
the contextually-limited NLM-C, we would expect
it to perform similarly well, however this is not the
case. We believe NLM-C’s poor performance can
again be attributed to the increase in context size
for fine-tuning.

10k 40k
System Context EN TR EN TR

NLM 256 89.2 87.5 92.8 88.9

NLM-C
5 90.8 87.2 91.7 87.7
9 90.5 87.7 92.1 88.4

13 90.7 88.3 92.2 88.2

NLM-A
5 92.5 89.2 94.2 90.0
9 92.5 89.2 93.9 90.1

13 91.6 88.5 94.3 90.0

NLM-H 256 91.4 88.3 93.1 88.9

Table 6: POS tagging accuracies (%), best in bold.

The importance of local context for the POS
tagging task is highlighted by the scores of NLM-
A and NLM-C, where overall the models with a
smaller context perform better than those with a
larger context. NLM-H however does still provide
improvements over the standard NLM, which may
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indicate that the network can more easily learn to
limit its self-attention from the soft labels.
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Abstract
We explore the ability of pre-trained language
models BART, an encoder-decoder model,
GPT2 and GPT-Neo, both decoder-only mod-
els for generating sentences from structured
MR tags as input. We observe best results
on several metrics for the YelpNLG and E2E
datasets. Style based implicit tags such as
emotion, sentiment, length etc., allows for con-
trolled generation but it is typically not present
in MR. We present an analysis on YelpNLG
showing BART can express the content with
stylistic variations in the structure of the sen-
tence. Motivated with the results, we define
a new task of emotional situation generation
from various POS tags and emotion label val-
ues as MR using EmpatheticDialogues dataset
and report a baseline. Encoder-Decoder atten-
tion analysis shows that BART learns different
aspects in MR at various layers and heads.

1 Introduction

Recent advances in NLG focus on generating text
from structured data encoded as Meaningful Repre-
sentations (MR). MR typically comprises of seman-
tic content to be realized for generation. This can
be used for automating writing reports from tabu-
lar data, descriptions and reviews for products or
restaurants from catalog, etc. However, style based
implicit tags can add dynamic, engaging and im-
mersive effect in real world NLG applications such
as social and empathetic chatbots. The style aspects
along with content information allows generating
varied and customized text with same content. In
this work, we explore capabilities of an encoder-
decoder model, BART (Lewis et al., 2019), and
two decoder-only models, GPT2 (Radford et al.,
2019) and GPT-Neo (Black et al., 2021) for MR-
to-text generation task. We evaluate BART, GPT2
and GPT-Neo on three datasets, one for content and
other for both content and style. These datasets in-
clude E2E original and clean version (Dušek et al.,

2020) (Dušek et al., 2019) which are restaurant de-
scription datasets comprising of content based MR
and Yelp NLG (Oraby et al., 2019), a restaurant
reviews corpus having both semantic and stylistic
tags. We define a new task of emotional situation
generation on Empathetic dialogues (ED) dataset
(Rashkin et al., 2018). We construct MRs using set
of POS tag (Qi et al., 2020) values from situation
along with emotion label. Table 9 of Appendix
A describes sample input MR and output for each
dataset.

Our main contributions are defined as: a) The
ability of encoder-decoder based and decoder-only
pretrained transformer models to generate fluent
sentences from content and style based MR. b) A
new task on emotional situation generation using
POS tag and emotion label values as MR and report
its baseline. c) Encoder-Decoder attention map
analysis of BART to further understand which layer
and head learns which concept.

2 Related Work

Existing structured data to text datasets - E2E
(Dušek et al., 2020) (Dušek et al., 2019), WebNLG
(Gardent et al., 2017), TOTTO (Parikh et al., 2020),
AGENDA (Koncel-Kedziorski et al., 2019) etc con-
sider input in various formats such as slot value
pair, triplets, or graph. They consist of content
based semantic input in MR. Recently introduced
YelpNLG dataset by (Oraby et al., 2019) considers
style aspect in addition to content slot value in MR
and provides LSTM encoder decoder baseline. Our
work focuses on exploring recent language model
capability for content and style based MR.

Researchers have attempted to improve content
slot value MR to text in attention based encoder
decoder architectures by incorporating various tech-
niques. (Tseng et al., 2020) performed joint train-
ing of NLU and NLG. (Roberti et al., 2019) in-
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Dataset Size Content Style

Yelp 300k
restaurant[],cuisine[], food[], staff[],
service[], ambiance[], price[]

Sentiment(positive, negative, neutral),
length(short,medium,long), perspective(
first,person, not first person),exclamation
(has exclamation, no exclamation)

E2E 50k
name[], eatType[],food[],near[], priceRange[],
customerRating[], area[], kidsFriendly[]

NA

ED 25k
POS values subset from [Noun],
[Adjective], [Verb], [Pronoun]

32 Emotion Labels

Table 1: Content and style tag description for each dataset. ED only consists of values without content slot type.

troduced copy mechanism from MR facts to text.
(Kedzie and McKeown, 2020) performed control-
lable MR-to-text generation by comparing differ-
ent linearization strategies and phrase-based data
augmentation technique. (Juraska et al., 2018),
(Zhang et al., 2018), (Gong, 2018) applied re-
ranking on top of seq2seq model providing seman-
tic control, (Puzikov and Gurevych, 2018) came
up with data-driven and template-based generation
system. (Shen et al., 2019) used computational
pragmatic based approach for conditional gener-
ation. However, we observe that all pre-trained
transformer models perform well irrespective of
their sizes, without requiring changes for both con-
tent and style MR.

3 Dataset Description

Table 1 provides a concise description of the
datasets used, which were constructed to explore
and improve the natural language generation capa-
bility of neural architectures. E2E (Dušek et al.,
2020) original, a restaurant review dataset, has high
lexical diversity and diverse discourse phenomena.
E2E clean by (Dušek et al., 2019) is a noise free
version of E2E (Dušek et al., 2020), with no mis-
match between the content of the MR tags and
the corresponding references. (Oraby et al., 2019)
curated MR for YelpNLG automatically by leverag-
ing freely available user review data on restaurants.
This dataset brings in rich language descriptions
with varied semantic emotions and content. To
further explore the empathetic conversational po-
tential, we use ED dataset (Rashkin et al., 2018),
which comprises emotional dialogues between two
persons. Motivated by YelpNLG, we constructed
MR using values from POS tag set from noun, adj,
pronoun and emotion label values for emotional
situations provided in ED dataset.

4 Experiments

We fine-tune pre-trained language models like
BART-large, GPT2-medium and GPT-Neo 125M
for MR-to-text on train split of respective datasets.
We use early stopping and choose the best model
for evaluation on test set. Other parameters used
for fine tuning are AdamW optimizer with a learn-
ing rate of 3e-5 and a linear learning rate sched-
uler. While generating the output text from MR
we use beam search decoding with beam size of
4. We evaluate the generated output text using the
standard automatic evaluation metrics1 BLEU (Pa-
pineni et al., 2002), METEOR (Lavie and Agarwal,
2007), NIST (Doddington, 2002), CIDEr (Vedan-
tam et al., 2015) and ROUGUE (Lin, 2004), and
Semantic Error Rate (SER) (Dušek et al., 2019).

5 Results and Discussion

E2E, E2E clean: We report the fine-tuning re-
sults of the pre-trained models for E2E in Table 2
and compare it with other recent baselines2. We ob-
tain best METEOR, CIDEr and ROUGE-L scores
for E2E original using GPT2 and for E2E clean,
best NIST using GPT2 and best SER score using
BART. The other scores are comparable with base-
lines and do not differ significantly. The results
show that the pre-trained models are able to pre-
serve the content tags in output.

YelpNLG: We report the results for Yelp NLG in
Table 3. We consider all the settings for YelpNLG -
only content (BASE), content with style addition
at different granularity (adjectives, sentiment, all
other style aspects) . We obtain best results on all
the metrics excluding SER using BART. SER less
than 5% for BASE and STYLE setting signifies that

1https://github.com/tuetschek/
e2e-metrics

2We show few baseline scores due to space constraint.
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Architectures BL(↑) NT(↑) MT(↑) RL(↑) CD(↑) SER(↓)

E
2E

O
ri

gi
na

l

(Dušek and Jurčı́ček, 2016) 0.6593 8.6094 0.4483 0.685 2.2338 3.56∗

(Zhang et al., 2018) 0. 6545 8.184 0.4392 0.7083 2.1012 -
(Tseng et al., 2020) 0.6855 - - - - -
(Shen et al., 2019) 0.6860 8.73 0.4525 0.7082 2.37 -
BART 0.6757 8.7242 0.4614 0.703 2.3914 3.58
GPT2 0.6853 8.7164 0.4637 0.7143 2.411 5.56
GPT-Neo 0.6841 8.6654 0.4626 0.7064 2.3697 3.52

E
2E

C
le

an

(Dušek and Jurčı́ček, 2016) 0.4073 6.1711 0.3776 0.5609 1.8518 0.87
(Harkous et al., 2020) 0.436 - 0.39 0.575 2.0 -
BART 0.4258 6.4188 0.3858 0.5677 1.9355 0.13
GPT2 0.4285 6.4524 0.3854 0.5718 1.9873 1.02
GPT-Neo 0.4087 6.2472 0.3751 0.5561 1.7928 4.06

Table 2: Results on E2E original & Clean test set. * - score on provided outputs. All tables follow these abbrevia-
tions - BL: BLEU, NT: NIST, MT: METEOR, RL: Rouge-L, CD: CIDEr

Variant BL MT CD NT SER

B
as

el
in

e Base 0.126 0.206 1.300 3.840 0.053
+Adj 0.164 0.233 1.686 4.547 0.063
+Sent 0.166 0.234 1.692 4.477 0.064
+Style 0.173 0.235 1.838 5.537 0.090

B
ar

t

Base 0.177 0.227 1.820 5.303 0.0346
+Adj 0.224 0.263 2.355 6.130 0.0358
+Sent 0.225 0.264 2.358 6.158 0.0382
+Style 0.226 0.268 2.587 6.143 0.0435

G
pt

2

Base 0.1673 0.2235 1.7731 4.7605 0.0291
+Adj 0.2057 0.2578 2.2868 4.8509 0.0308
+Sent 0.2072 0.2594 2.2971 4.8365 0.0302
+Style 0.2276 0.2648 2.5799 6.3915 0.0337

G
pt

N
eo

Base 0.1646 0.2181 1.6502 5.052 0.0345
+Adj 0.1972 0.2546 2.2095 4.6360 0.0320
+Sent 0.2006 0.2548 2.2104 4.8331 0.0315
+Style 0.2223 0.2611 2.5034 6.3503 0.0443

Table 3: Results on YelpNLG test set. Base MR only
contains content slot type-value pairs, +Adj contains
content slot type-value-adjective triplets. In addition to
+Adj, sentiment and other stylistic aspects are added in
+Sent and +Style, respectively.

Variant BL MT CD NT RL

B
ar

t NAd 0.245 0.293 2.414 6.939 0.539
NAdP 0.358 0.349 3.638 8.383 0.660

G
pt

2 NAd 0.1855 0.2589 1.8918 5.9274 0.4852
NAdP 0.2726 0.3071 2.8072 7.2803 0.5994

G
pt

N
eo NAd 0.1389 0.2392 1.6136 4.6187 0.4474

NAdP 0.2263 0.2925 2.4268 6.8125 0.5829

Table 4: Results on ED test set. NAd: noun+adjective,
NAdP: NAd+pronoun

the pre-trained models understand and express the
content specifications well in the generated review.
The models learn to associate the attribute values
in the MR tag even in presence of different stylistic
aspects in the fairly complex sentences.

ED: We report the results for ED dataset in Ta-
ble 4. For ED, we provide baseline for various
sequences of POS tag values in MR - (Noun,Adj),
(Noun,Adj,Pronoun), with emotion label. We also
find here that BART performs best compared to
other pretrained models. We observe that increas-
ing the content value information leads to incre-
ment in scores. We observe that the emotional
aspect of the generated statements can be manip-
ulated by changing the input tags, which empha-
sizes the models’ power to generate customized
sentences while expressing all the relevant content
as shown in Table 5 and Table 6.

5.1 Attention Map Analysis for YelpNLG
To further investigate the rationale behind the su-
perior performance of the transformer models, we
extend (Vig, 2019) to analyse the encoder decoder
attentions of BART and report results in Table 7.
As in CNNs, we hypothesised that different nodes
in the architecture would learn to capture particular
tags in the MR. Thus, we evaluate which head and
layer learns to attend to a particular style aspect.
LxHy signifies encoder-decoder attention map cor-
responding to yth head of xth layer. We take 1000
samples in each case and perform element wise
summation of attention distribution scores of the
chosen output tokens shown under ’By’ over all
input tokens. We report the percentage of cases
in which the input token under ’To’ was in top3
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YelpNLG MR Output
food||chicken||delicious||mention 1 food||fries||no adj||ment
ion 1,positive,len medium,not first person,no exclamation

the chicken was delicious and the
fries were cooked to perfection.

food||chicken||delicious||mention 1 food||fries||no adj||ment
ion 1,positive,len medium,not first person,has exclamation

the chicken is delicious and the fries
are to die for!

food||chicken||tasty||mention 1 food||fries||delicious||ment
ion 1,negative,len long,not first person,has exclamation

the chicken was tasty, the fries were
delicious, but the whole thing was a
let down!

food||fries||tasteless||mention 1 food||chicken||yuck||ment
ion 1,positive,len medium,first person,has exclamation

the fries were tasteless, the chicken
was yuck, but i love this place!

Table 5: Generated outputs for YelpNLG using BART.

ED Output
joyful(friends different country) My friends are coming to visit me from a different country.
guilty(friends different country) I lied to my friends that I was going to visit them in a different

country.
anxious(husband end month lit-
tle worried funds)

My husband and I are going overseas at the end of the month. I am
a little worried about how we will manage the funds.

Confident(husband end month
little worried funds)

My husband and I are going to get married at the end of the month.
I’m a little worried about the funds we’ll have, but I know we’ll
make it happen.

Table 6: Generated outputs for ED for Emotion with Noun and Adjective using BART.

(top5 for ’all’) most maximally attended input to-
kens. ’Sample Type’ column denotes the common
stylistic aspect for all those samples. We observe
that various layers and heads learn different stylis-
tic concepts beyond just learning to copy (as shown
in Figure 1, 2, 3 and 4 of Appendix C). The results
reinforce our hy pothesis and establish that differ-
ent parts of BART learn to understand the intrinsic
meaning of different tags.

5.2 Qualitative Analysis

The generated outputs emphasize sensitivity of
BART towards stylistic aspects. A minute
change from no exclamation in first row to
has exclamation in second row in Table 5, to
our surprise, BART has generated very different
and dramatic output. The last two rows show
BART’s capability of handling contrasting scenar-
ios wherein the sentiment of the input is in contrast
to the adjective values of food. Results in Table 6
show that BART can express the same content with
different emotions fed as implicit tags.

While analysing the predictions of the finetuned
models, we observe that most of the time, BART
has been successful in generating output as per the
given style constraints mentioned in the input MR
tags. Table 8 shows a few instances where BART,
out of all the 3 models, is capable of producing

better and more meaningful sentences. However
in the last two examples of Table 8, we also report
cases where these models produce incoherent out-
puts that do not meet the required stylistic aspects.

LH Token Maximally % Sample
Attended (To,By) Type

L7H0 (’negative’, all) 86 negative
L7H0 (’neutral’, all) 60.5 neutral
L1H11 (’first’, 100 first

first person words) person
L3H8 (’short’, all) 99.4 short
L8H5 (’has’, ’!’) 87.7 has exclamation
L7H11 (adjectives, 73 adjs

food values)
L0H15 (food values, 100 food

food values) values

Table 7: Attention Analysis for YelpNLG.

5.3 Analysis of the Pre-trained models

We have used pretrained models like BART-large,
GPT2-medium and GPTNeo-125M in our experi-
ments. The number of parameters used for these
models vary. For example, BART-large has 406
million parameters, GPT2-medium has 345 million
parameters and GPTNeo-125M has only 125 mil-
lion parameters. Table 2, 3, 4 show that GPTNeo-
125M, inspite of having less than 50% of the param-
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MR: food||steak||awesome||mention 1 food||chicken||fried||mention 1,neutral,len long,first person,
no exclamation
Ref: ”what i had in mind, try out their awesome steak and their fried chicken... however, it turns out
they are only served on weekdays.”
Bart: ”the steak was awesome, but the fried chicken was a bit too sweet for my taste buds, but it
was still good.”
Gpt2: ”i had the steak which was awesome, and my friend had the fried chicken which was also
good.”
GptNeo: ”the steak was awesome, but the fried chicken was a little dry for my taste.”
MR: food||wontons||no adj||mention 1 food||wontons||no adj||mention 2 food||meat||no adj||ment
ion 1,positive,len medium,not first person,no exclamation
Ref: ”if you go anywhere in california, wontons are wontons with meat inside.”
Bart: ”the wontons are not just wontons, they are filled with meat and veggies.”
Gpt2: ”wontons are wontons, meat is meat.”
GptNeo: ”wontons, fried wontons, fried wontons, fried wontons, fried wontons, fried wontons, fried
wontons, fried wontons, fried wontons.”
MR: food||chicken||lemon||mention 1 food||vegetables||no adj||mention 1,negative,len long,not first
person,no exclamation

Ref: ”first the appetizer was not prepared properly, out of the lemon chicken and then vegetables
were cold.”
Bart: ”the lemon chicken had a lot of vegetables in it, but not enough of them to make up for the
lack of taste.”
Gpt2: ”the lemon chicken had a lot of vegetables in it, but it was very dry.”
GptNeo: ”the lemon chicken had a lot of vegetables in it, but it was a little dry.”
MR: food||chicken||no adj||mention 1 food||sauce||no adj||mention 1,negative,len medium,first per
son,no exclamation
Ref: i did not like the way the chicken was cooked or the sauce on it.
Bart: i had the chicken with the sauce on the side and it was good.
Gpt2: i had the chicken with the sauce on the side.
GptNeo: i had the chicken with the sauce on the side.
MR: food||pizza||no adj||mention 1 food||steak||no adj||mention 1 food||cheese||no adj||ment
ion 1,positive,len medium,not first person,no exclamation
Ref: love the pizza the steak and cheese and the place.
Bart: ”pizza, wings, steak, cheese, and more.”
Gpt2: ”pizza, steak, cheese, etc.”
GptNeo: ”pizza, steak, and mac and cheese.”

Table 8: Example outputs for YelpNLG using BART, GPT2 and GPTNeo.

eters of the other models, is being able to produce
competitive results on these tasks, often beating the
baseline performances in several cases.

GPTNeo has been pretrained on Pile (Gao et al.,
2020) dataset, which is composed of different con-
stituent sub-datasets from diverse domains. How-
ever, GPT2 and BART are pretrained exclusively
on text data. The size of the pre-training dataset
seems to have an impact in the performance of the
pre-trained model on downstream tasks. This is
because GPTNeo is trained on 800GB Pile dataset
while GPT2 has been trained on only 40GB of
webtext data.

6 Conclusion

We describe the benefits and importance of
MR2text generation. We fine-tune recently in-
troduced Transformer-based language models like
BART, GPT2 and GPTNeo, and produce results on
two versions of E2E, YelpNLG and ED datasets.
We have defined a new task on Emphatetic Dataset
to emphasize the usefulness of implicit tags in NLG.
Quantitative and Qualitative analyses show how
well BART captures the specifications and brings
stylistic variations in generated outputs.
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Abstract

Suicide rates are rising among the youth, and
the high association with suicidal ideation ex-
pression on social media necessitates further
research into models for detecting suicidal
ideation in text, such as tweets, to enable mit-
igation. Existing research has proven the fea-
sibility of detecting suicidal ideation on social
media in a particular language. However, stud-
ies have shown that bilingual and multilingual
speakers tend to use code-mixed text on social
media making the detection of suicidal ideation
on code-mixed data crucial, even more so with
the increasing number of bilingual and mul-
tilingual speakers. In this study we create a
code-mixed Hindi-English (Hinglish) dataset
for detection of suicidal ideation and evaluate
the performance of traditional classifiers, deep
learning architectures, and transformers on it.
Among the tested classifier architectures, Indic
BERT gave the best results with an accuracy of
98.54%.

1 Introduction

A study by the World Health Organization (WHO),
has found that nearly 700,000 people die of sui-
cide each year (WHO). Suicidal ideation, the act
of thinking about, considering or planning suicide,
can be attributed to multiple reasons including men-
tal illness, traumatic stress, loss or fear of loss, so-
cial isolation, biological factors, environmental fac-
tors, genetic factors and situational factors (Wasser-
man et al., 2004). In the wake of COronaVIrus
Disease-2019 (COVID-19), an increasing number
of individuals across the world have become vic-
tims to one or more than one of these factors, that
has led to increased rates of suicide worldwide
(Fortgang et al., 2021).

It has been found that increase in consumption
and posting on social media has a direct correla-
tion to the tendency of expressing desires, thoughts,

and intentions on pro-suicide platforms before at-
tempting suicide (Gea and Sánchez, 2012). With
COVID-19 driving social media consumption up by
72% and posting by 43% such incidents recorded
an all-time high (Wold |, 2020). Danet and Herring
(2007) mentioned that more than half of the people
on social media platforms are not native English
speakers and (Hong et al., 2011) confirmed that
about 50% of the posts on Twitter are in languages
other than English. These studies substantiate the
need of a much broader scope for detection of sui-
cidal ideation on social media than just the English
language.

(Gupta et al., 2016) found that over 26% of the
Indian population speaks more than one language,
often in the form of code-switching or code-mixing.
Code-switching occurs when an individual alter-
nates between multiple languages in the context
of a single conversation or situation while code-
mixing is the use of two or more languages by
an individual below clause level in a single social
context. However, working with code-mixed data
presents it’s own set of challenges, including the
creation of a large number of new constructions for
understanding the syntax and semantics of the two
or more combined languages, the availability of
very small amounts of annotated data, and the use
of drastically different approaches when compared
to monolingual data (Çetinoğlu et al., 2016).

In this paper, we aim to detect suicidal ideation
in code-mixed Hinglish. Although significant work
is available for suicidal ideation detection in En-
glish (Castillo-Sánchez et al. (2020), Coppersmith
et al. (2018), Mbarek et al. (2019), Ophir et al.
(2020), Ramı́rez-Cifuentes et al. (2020), Sawhney
et al. (2020), Shaoxiong Ji (2020), Tadesse et al.
(2019), Vioules et al. (2018)), detection of suici-
dal ideation in code-mixed languages is relatively
unexplored. To the best of our knowledge, we are
the first to identify suicidal ideation in code-mixed
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Table 1: Count and distribution of dataset
Category Sample Count Percentage

Suicidal Ideation (Positive Samples) 3098 47.41%
Non Suicidal (Negative Samples) 3435 52.59%

Hindi-English.
The contributions of our work include:

1. There is a significant lack of data in code-
mixed suicidal ideation. We attempt to over-
come this drawback by creating a dataset
for suicidal ideation in code-mixed Hindi-
English.

2. We propose the use of various existing models
to create a baseline for future work in the field.

2 Methodology

The proposed methodology consists of three major
parts, each consisting of a major contribution of
our work.

2.1 Dataset Creation and Analysis
Even with the huge surge in suicidal ideation cases
in code-mixed Hindi-English on social media plat-
forms, there exists no dataset for suicidal ideation
posts in it. Most existing research uses data from
special Reddit channels like “Suicide Watch” (Ji
et al. (2018), Tadesse et al. (2019)) or Twitter
(Mbarek et al., 2019). However, since all of these
datasets are in English, they fail to capture a large
section of suicidal ideation texts that are unac-
counted for due to medium of communication in
specialized channels of social media (like subreddit
“Suicide Watch”), frequent lack of hashtags, and
deletion of such texts by social media companies
due to the impact it can have on other users of their
social media platform. To overcome a lack of a
code-mixed dataset in this domain we scraped data
from the subreddits such as Aww, Jokes, History,
Discussion, Stories and Entertainment as negative
samples and selected text from the “Suicide Watch”
subreddit as positive samples. On the 6533 scraped
samples thus obtained, we used the approach pro-
posed by Gupta et al. (2020) to obtain code-mixed
Hindi-English text from English text. The gener-
ated dataset consists of 6533 code-mixed text sam-
ples, 3098 of which are labelled as having suicidal
ideation and 3435 labelled as having no suicidal
ideation.

From Table-1 it can be observed that the data
is fairly balanced. It is essential to ensure a fair

representation of class labels in this context to
eradicate unfounded bias due to training data.

Examples of the annotated data are:

Sample: Main literally aur figuratively khud
ko maarnaa caahtaa huun
Translation: I want to kill myself, both literally
and figuratively.
Label: Suicidal Ideation

Sample: Tumhara novels ya books mein fa-
vorite twist kaunsa hai?
Translation: What is your favorite twist in books
or novels?
Label: Non Suicidal

The dataset is available on GitHub .

2.2 Creation of Hindi-English Bi-lingual
Word Embeddings

Word embeddings are dense vectors that give se-
mantic and syntactic information of words in a
context (Mandelbaum and Shalev, 2016) and are
a critical part of text classification tasks. How-
ever, creating embeddings requires a large amount
of textual data. For this purpose, we have used
412k Hinglish tweets and 320k English tweets from
Twitter for code-mixed Hindi-English data and pre-
processed them by removing rare words, hashtags,
mentions and Uniform Resource Locators (URLs).
We experimented with two different experimental
settings to form embeddings using two different
techniques. For the first setting, we have used only
the Hinglish tweets corpus to create embeddings
and for the second one, a corpus of both English
and Hinglish tweets combined. On each of these
experimental settings, we tried the following two
embeddings:

1. Word2Vec: This technique was introduced in
2013 (Mikolov et al., 2013) and is widely re-
garded as a pivotal method for creating dense
word embeddings. Since a pre-trained cor-
pus for English embeddings already exists,
we trained our Hinglish corpus to create the
required embeddings.
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2. FastText: FastText was introduced by Face-
book (Bojanowski et al., 2017a) as an exten-
sion of Word2Vec embeddings (Joulin et al.,
2017). Instead of learning weights for words
directly, FastText breaks words into multiple
sub-words (Bojanowski et al., 2017b). This
will be particularly helpful in representing rare
words as embeddings since it is highly likely
that their n-grams will be a subpart of other
words. For example, “aww”, “awww” and it’s
variations, which are very common on social
media platforms, can be trained appropriately.

2.3 Deep Learning Models

Four traditional classifiers, five deep learning classi-
fiers and two transformers have been used to create
a baseline. These models include:

1. Naive Bayes (Yu et al., 2015)

2. Random Forest (Breiman, 2001)

3. Linear SVM (Ladicky and Torr, 2011)

4. RBF Kernel SVM (Daqi and Tao, 2007)

5. Series CNN (Tang et al., 2021)

6. Parallel CNN (Yao et al., 2019)

7. LSTM (Hochreiter and Schmidhuber, 1997)

8. Bi-Directional LSTM (Schuster and Paliwal,
1997)

9. Attention Based Bi-Directional LSTM (Wang
et al., 2016)

10. mBERT (Devlin et al., 2019)

11. Indic BERT (Kakwani et al., 2020)

All these architectures were presented with the task
of binary classification where each text was pre-
dicted as a sample of suicidal ideation or a sample
having no suicidal ideation.
While some of these models have been able to de-
tect sarcasm, irony, and other factors that may af-
fect the classification of a suicidal ideation text, its
explicit learning and merging could be an avenue
for future research.

3 Experimental Settings / Modeling

For training our deep learning models, we made
a fifteen percent validation split for a total of 20
epochs while the transformers are trained for 5
epochs on the same split. The model checkpoints
are saved at each epoch and the model with high-
est validation accuracy and lowest difference from
training accuracy is saved as the final model to
ensure prevention of overfitting.

Word embeddings are trained using negative
sampling polarity, an embedding size of 300, a
window length of 10. The Adam optimizer is em-
ployed in all of the models, coupled with the binary
cross entropy loss function. With the exception
of the output layer, which has sigmoid activation,
all layers have relu activation. We tested CNN
models with various kernel sizes, number of ker-
nels, dropouts, and strides to see how well they
performed. With the following parameters, the best
results are obtained: stride = 1, number of kernels
= 200, dropout = 0.5

For all RNNs the hyperparameters used are
dropout for recurrent state = 0.25, dropout for input
state = 0.25, and number of LSTM units = 400.

4 Results

We have tested our dataset on traditional machine
learning classifiers, deep learning models and trans-
formers. The results of well known traditional clas-
sifiers have been listed in Table 2. RBF Kernel
SVM gives the best results among the traditional
classifiers with an accuracy of 60.8% on the given
corpus.

Table 2: Accuracy from traditional classifiers
Classifier Accuracy

Naive Bayes 51.2%
Random Forest 55.7%

Linear SVM 59.2%
RBF Kernel SVM 60.8%

Deep Learning models are tested using
Word2Vec and FastText embeddings on Hindi-
English (Hinglish) data only, and on Hinglish and
English data combined. Table 3 shows the re-
sults obtained by training deep learning models
on this corpus. The Attention Bi-LSTM trained
on a Word2Vec embedding of Hinglish and En-
glish data corpus gives the best result of 90.66%.
It is observed that deep learning model architec-
tures perform better with embeddings of Hinglish
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Table 3: Accuracy from Deep Learning Models
Hinglish Data Hinglish + English Data

Model Word2Vec FastText Word2Vec FastText
Series CNN 71.26% 71.24% 73.60% 73.12%

Parallel CNN 73.86% 73.86% 74.36% 74.16%
LSTM 79.64% 78.52% 81.72% 80.66%

Bi-LSTM 83.42% 82.64% 85.44% 84.74%
Attention Bi-LSTM 89.66% 87.42% 90.66% 89.82%

and English data combined instead of using just
Hinglish data for creating embeddings which may
be a result of better semantic and correlation cov-
erage between embeddings on English data and
Hinglish data. It’s also worth noting that Word2Vec
produces slightly better results than the FastText
embeddings. This observation could be due to the
fact that code-mixed data prevents n-grams from
being used as the major classification criterion. Fur-
thermore, the better performance of deep learning
models over traditional classifiers can be attributed
to the fact that they can learn more about human
tendencies like sarcasm and irony (Sentamilselvan
et al. (2021), Potamias et al. (2020)), thus reducing
incorrect predictions on them.

Given the code-mixed nature of the corpus, the
transformers used for classification are mBERT
and IndicBERT. Table 4 shows the results of train-
ing our corpus on these transformers. IndicBERT
slightly outperforms mBERT with an accuracy of
98.54%.

Table 4: Accuracy from Transformers
Classifier Accuracy
mBERT 96.63%

Indic BERT 98.54%

The method of generation of the dataset could
have influenced the results for mBERT’s classi-
fication performance, however, it is highly unlikely
as separate instances of mBERT have been used
for each task and the tasks performed by them are
highly specialized in the given scenario. The per-
formance of IndicBERT on the same task proves
the lack of apparent correlation between the semi-
supervised technique used in the creation of the
dataset (Gupta et al., 2020) and the classification
accuracy of mBERT.

The problem of detecting suicidal thoughts on
code-mixed Hindi-English data is compounded by
a lack of clean data and linguistic complications
connected with code-mixed data. More data, as

well as well labelled classes, are necessary to allow
the model to accept noise in textual input, spelling
errors, diverse contexts, and stemming words.

5 Conclusions and Future Work

The current research is the first attempt to investi-
gate multilingual text classification to predict sui-
cidal ideation in code-mixed Hindi-English texts,
and proposes a baseline for further work along with
a corpus for validation. For the objective of detect-
ing suicidal text on the created corpus, several deep
learning based models are used, including CNN,
LSTM, Bi-Directional LSTM, Attention Based Bi-
Directional LSTM, mBERT and Indic BERT.Since
texts containing suicidal ideation in Hinglish are
not available directly, a dataset is created by using a
semi-supervised approach to generate code-mixed
Hinglish text using pre-trained encoders and trans-
fer learning from anonymized data in English from
Reddit.

A comparison of the various models indicated
that both BERT-based models mBERT and Indic
BERT give exceptional results and have accom-
plished the task with over 96% accuracy.

Multilingual text classification is still a develop-
ing field, and future advancements could lead to bet-
ter outcomes. Comparing vectors aligned with mul-
tilingual word embeddings generated using MUSE
to FastText pre-aligned word embeddings may gen-
erate better results. Working on factors such as
sarcasm, humor and irony that affect the classifi-
cation of suicidal ideation explicitly, along with
their inclusion in the creation of the model could
be another potential avenue for future research.
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Abstract

Deep Contextual Language Models (LMs) like
ELMO, BERT, and their successors dominate
the landscape of Natural Language Processing
due to their ability to scale across multiple
tasks rapidly by pre-training a single model,
followed by task-specific fine-tuning. Further-
more, multilingual versions of such models
like XLM-R and mBERT have given promis-
ing results in zero-shot cross-lingual transfer,
potentially enabling NLP applications in many
under-served and under-resourced languages.
Due to this initial success, pre-trained mod-
els are being used as ‘Universal Language
Models’ as the starting point across diverse
tasks, domains, and languages. This work ex-
plores the notion of ‘Universality’ by identify-
ing seven dimensions across which a universal
model should be able to scale, that is, perform
equally well or reasonably well, to be useful
across diverse settings. We outline the current
theoretical and empirical results that support
model performance across these dimensions,
along with extensions that may help address
some of their current limitations. Through this
survey, we lay the foundation for understand-
ing the capabilities and limitations of massive
contextual language models and help discern
research gaps and directions for future work to
make these LMs inclusive and fair to diverse
applications, users, and linguistic phenomena.

1 Introduction

Language Models (LMs) have evolved consider-
ably in the past decade, starting from the introduc-
tion of Word2Vec (Mikolov et al., 2013) to the more
recent transformer-based deep models like BERT
(Devlin et al., 2019) and its successors. When fine-
tuned with task-specific data, pre-trained LMs can
be adapted to several different settings, i.e., tasks,
domains, and even languages, as these LMs have

∗Work done while at Microsoft Research, India

been extended to multiple languages in the multilin-
gual versions like m-BERT and derivatives. These
models can be thought of as ‘Universal’ because of
their potential to be utilized ‘universally’ in several
different application scenarios.1

The merits of transfer learning or pre-training
word representations have been known for a long
time. Moreover, the recent advancements in large-
scale deep learning have pushed the boundaries
of intensive computation and tremendous amounts
of data that can be used to pre-train LMs. How-
ever, pre-training is resource-intensive and is not
carried out for specific scenarios. Instead, massive
LMs are deployed into downstream applications
with potentially billions of users around the world.
This makes ‘Universality’ a vital characteristic as
the models must be inclusive towards a variety of
language usage.

The key contributions of this paper are:

• We formally define ‘Universality’ by selecting
seven dimensions- language, multilingualism,
task, domain, medium of expression, geogra-
phy and demography, and time period - that
capture a variety of language usage.

• We curate the current empirical and theoret-
ical results that provide evidence of scaling
LMs across these dimensions and identify the
capabilities and gaps in these models.

• We outline extensions to these models that
can help in overcoming current limitations to
become truly universal, thus serving a larger
number of end-users and scenarios.

1Throughout the rest of the paper – “these models”, “LMs”,
“general domain LMs”, “contextual LMs”, “universal LMs”
and all such terms refers to models including but not limited
to ELMo, BERT, RoBERTa, GPT their variants, successors
and multilingual versions
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2 Universality and its Dimensions

Universality can mean many things, and the asso-
ciated philosophical debate is beyond the scope of
this study. Our work aims not to provide a complete
or exhaustive list of capabilities expected out of the
model but a list of aspects that can be considered
as a starting goal to achieve universality.

Our definition of universality spans seven dimen-
sions. These are: language, multilingualism, task,
domain, medium of expression, demography and
geography, and time period. We selected these di-
mensions to cover a broad spectrum of language us-
age and a diverse set of NLP applications. Ideally,
a truly universal model should perform strongly,
or at least reasonably, across them. We present a
detailed analysis of the capabilities and limitations
of LMs in these dimensions in the subsequent sec-
tions. This is followed by extensions, which are
techniques that can be leveraged to overcome the
limitations in the particular dimension.

2.1 Reasoning for Selection of Dimensions

Firstly, it is important to re-iterate that this list of
seven dimensions does not intend to be an exhaus-
tive one. Rather, these dimensions have been se-
lected so as to cover a broad spectrum of language
usage. The reasons why each of these is important
for a general-purpose LM are:

Language Massive multilingual models that can
support close to 100 languages at a time are quickly
becoming standard for building language technolo-
gies that cater to a wide and linguistically diverse
population. However, while high-resources lan-
guages are well served, many low-resource lan-
guages are left behind (Joshi et al., 2021). Thus it
is important to understand where large scale mul-
tilingual LMs stands in terms of availability, eval-
uation, and performance along the dimension of
Language.

Multilingualism LMs are increasingly being de-
ployed into user-facing applications and thus need
to deal with real-world language usage. In multilin-
gual (or bilingual) communities, usage of multiple
languages at once gives rise to many language varia-
tions such as code-mixing, that the model will need
to process. For ascertaining how well models can
deal with these linguistic phenomena, understand-
ing the capabilities and limitations of the models
along this dimension becomes important.

Task LMs are increasingly becoming the stan-
dard component of most NLP pipelines. As a re-
sult, it is important to study how well they adapt to
various different tasks for which they are used.

Domain Typically, LMs are trained on general
purpose language, such as that obtained from
Wikipedia or the Web. As such, their training data
has limited signals for complex vocabulary that is
common for a specialized domain such as medical,
financial, legal, etc. However, real-world applica-
tions of LMs may require it to deal with informa-
tion from different domains. Thus it is important
to understand the limitations of these models when
employed in different domain settings.

Medium of Expression Whether the language
being processed is from a formal email or from
an informal utterance on social media, can make
significant difference in its syntactic and semantic
properties. LMs being deployed in applications
that span across different media are thus bound to
come across linguistic variations induced due to
the medium of expression. This makes it important
to understand how LMs perform across different
mediums of expression.

Geography and Demography Most languages
in the world, including English, have multiple di-
alects that are influenced by geographic and de-
mographic factors. The applications that are de-
veloped using LMs are intended to be used across
the world, spanning users belonging to varied de-
mography. It is hence important that the LMs are
inclusive towards different forms of language usage
and not just cater to a ’standardized’ dialect of the
language. Hence, it is important to understand how
LMs perform across regional and social language
dialects.

Time Period Given the high financial and en-
vironmental costs of training language models, a
single model can be anticipated to be used for
long periods of time. Language, however, changes
extremely rapidly. Events happening around the
world cause constant changes in the vocabulary and
semantics of a language. Thus, it is important for
LMs to be robust towards new word senses, sen-
tence structures, etc. It is thus necessary to evaluate
models on the dimension of Time Period as they
are bound to come across language belonging to
different points in the history.

The following sections go over each of these
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Table 1: Languages and Tasks covered by different
datasets and benchmarks

Datasets Langs. Tasks
WikiANN 1762 NER
UD v2 90 POS, dependencies
XNLI 15 NLI
XQuAD 11 QA
MLDoc 8 Document classification
MLQA 7 QA
PAWS-X 6 Paraphrase identification
Benchmarks3

XTREME 40 NLI, POS, NER, QA,
Paraphrase identification,
Sentence retrieval

XGLUE 19 NER, POS, QA, NLI,
News classification,
QA matching,
Paraphrase identification,
Query-ad matching,
Web page ranking,
Question generation,
News title generation

dimensions to describe the limitations and capabili-
ties of models along each of them.

3 Language

There are over 7000 languages in the world. There
is an increased demand for multilingual systems as
information technologies penetrate more lives glob-
ally. The largest available LMs include mBERT
(Devlin et al., 2019), XLM-R (Conneau et al.,
2020a), and mT5 (Xue et al., 2020) serve 104, 100,
and 101 languages respectively. It is clear that they
are far from universal in terms of language cover-
age compared to the number of languages in the
world. Further, there is an expectation that massive
multilingual LMs will perform equally, or at least
reasonably, well on all the languages they serve.

The limited availability of evaluation bench-
marks is a major bottleneck in knowing how LMs
perform across the languages they are pre-trained
on. Table 1 shows that the largest benchmark,
XTREME (Hu et al., 2020), covers less than half
of the total number of languages that these LMs
are trained on. Moreover, other than datasets for
syntactic tasks like NER (Rahimi et al., 2019), and
POS (Nivre et al., 2016), the largest available se-
mantic task dataset, XNLI (Conneau et al., 2018),
covers only 15 languages. Although LMs are tested
on individual tasks or languages that may not be
covered in these benchmarks, overall, there is a con-
siderable reliance on standard benchmarks to make

2Balanced version
3Each task may cover only a subset of languages

modelling choices. Thus, how well LMs perform
in the untested languages remains unanswered.

There is a great disparity in performance across
the languages that are tested through these bench-
marks. A general observation is that the perfor-
mance of low resource languages continues to be
lower than high resource languages. The extent
to which cross-lingual transfer helps improve per-
formance varies across languages. Studies that
empirically support these claims are:

Cross-script transfer is not equally good across
languages in mBERT. Ahmad et al. 2019a find that
cross-script cross-lingual transfer is effective in
the case of Hindi and Urdu, whereas this is not
observed between English and Japanese.

Word order differences across language leads to
worse cross-lingual transfer (Ahmad et al., 2019a).
The correlation between word ordering distance
and cross-lingual transfer is found to be high in the
experiments by Ahmad et al. 2019b. K et al. 2020
also find that word order has a significant bearing
on transfer.

Contrary to common intuition, K et al. 2020 find
that shared vocabulary does not affect Universal-
ity or generalization across languages considerably.
Artetxe et al. 2020a also find that ‘effective vocab-
ulary size per language’ affects cross-lingual per-
formance rather than joint or disjoint vocabulary of
multiple languages.

In massively multilingual LMs, where typically
a joint vocabulary across languages is used, lan-
guages tend to compete for the allocations in the
shared vocabulary. Siddhant et al. 2020 show that
increasing number of languages may worsen perfor-
mance compared to models with fewer languages.
This is similar to the findings of Wu and Dredze
2019. Thus, limiting pre-training to only the re-
quired languages needed for the downstream tasks
may be more beneficial. Conneau et al. 2020a
coined the term “curse of multilinguality” for this
phenomenon and pointed to the trade-off between
model performance and language coverage. This
result is also shown in MuRIL, a BERT model
trained on 17 Indian languages, which outperforms
mBERT on the XTREME benchmark significantly
across all languages (MuRIL, 2021). Similarly,
clustering languages and using different multilin-
gual model for each group, rather than one massive
model, gives better performance in Neural Machine
Translation (Tan et al., 2019).

Wu and Dredze 2019 observe that mBERT does
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not transfer well between distant languages. Fur-
ther, they conclude that while mBERT may per-
form very well in cross-lingual transfer compared
to other models, it still falls short of models that
have been trained with cross-lingual signals like
bitext, bilingual dictionaries, or limited target lan-
guage supervision.

Answering whether all languages in mBERT are
equally well represented, Wu and Dredze 2020 find
that mBERT does not learn high-quality representa-
tions for all languages, especially for low resource
languages. The bottom 30% languages in terms
of data size perform even worse than a non-BERT
model for NER. For low resource languages, the
combined effect of less data for pre-training and
annotated data for fine-tuning compounds together
leading to worsening of their performance. On
the other end of the spectrum, the top 10% lan-
guages are hurt by joint training as mBERT per-
forms worse than monolingual baselines of NER.

To summarize, universality in the language di-
mension has three levels. At the highest level, the
largest models available today span only around
100 of the 7000+ languages globally and thus are
far from universal in terms of language coverage.
Secondly, out of the languages that these models
are trained on, not all of them are evaluated, im-
plying that we do not have enough information
to make generalized claims of universality in per-
formance for the languages that the LMs support.
Finally, at the lowest level, the performance is not
uniform across the tested languages. The perfor-
mance of lower resourced languages is lower than
that of higher-resourced languages. Increasing the
number of languages hurts performance at both
ends of the spectrum, and cross-lingual transfer is
non-uniform and dependent on many factors.

Extensions: Monolingual models learn general-
izable representations and can be adapted to new
languages without joint training. Conneau et al.
2020b show that the representations learned by
monolingual models without any shared vocabu-
lary align with each other and can be adapted to a
new language. Similarly, Artetxe et al. 2020b study
the transfer of monolingual representations to new
languages without using shared vocabulary or joint
training. They propose a zero-shot cross-lingual
transfer technique where the resultant model is a
monolingual LM adapted to a new language. Tela
et al. 2020 study adaptation to the extremely low re-
sourced language, Tigrinya. They find that English

XLNet generalizes better than BERT and mBERT,
which is surprising given that mBERT is trained in
multiple languages. Thus, the adaptation of mono-
lingual models may help in extending LMs to new
low-resource languages.

Wang et al. 2020 enlarge mBERT’s vocabu-
lary and continue pre-training on 27 target lan-
guages, out of which 11 are new. They observe per-
formance improvement in zero-shot cross-lingual
NER for all 27 languages. The extension benefits
both the existing and newly added languages. The
drawback is that the base model (mBERT) is bi-
ased towards the target languages, downgrading
performance on non-target languages.

The data and compute cost of training LMs from
scratch poses a major limitation, especially for low-
resourced languages. Tran 2020 propose a data and
compute efficient technique to circumvent the need
of training language-specific models from scratch.
They learn target language word-embeddings from
an English LM while keeping the pre-trained en-
coder layer fixed. The English and target language
LMs are then both fine-tuned to obtain a bilingual
LM. This technique performs better than mBERT
and XLM-R on XNLI in 5 of 6 languages with
different amounts of resources.

Chi et al. 2020 combine the cross-lingual transfer
of a multilingual LM with a task-specific monolin-
gual LM to improve zero-shot cross-lingual classifi-
cation. The source-language monolingual ‘teacher’
model provides supervision for the downstream
task, and the multilingual model acts as a ‘student’.
The method outperforms direct multilingual fine-
tuning for zero-shot cross-lingual sentiment analy-
sis and XNLI in most of the languages.

Pfeiffer et al. 2020 propose an adaptor based
modular framework that mitigates the curse of mul-
tilinguality and adapts a multilingual model to ar-
bitrary tasks and languages using language and
task-specific adaptors. Their method gives state-
of-the-art results for cross-lingual transfer among
typologically diverse languages across tasks includ-
ing NER, causal commonsense reasoning, and QA.

4 Multilingualism

In multilingual communities, several linguistic phe-
nomena lead to variation in language usage. While
some of these are well-known and studied, others
do not get enough attention. Universal LMs should
be able to deal with these phenomena as we can
expect them to encounter such forms of language
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when deployed in user-facing applications.
Code-mixing, or using two more languages in a

single utterance, is common in multilingual com-
munities. LMs may not perform optimally in the
presence of such code-mixing. Multilingual mod-
els like mBERT are not pre-trained with mixed lan-
guage data, which leaves the model under-prepared
for code-switched settings resulting in sub-optimal
performance (Khanuja et al., 2020). This can be
overcome to a certain extent by training using other
data, such as social media, but it is unlikely to
cover all the forms of code-switching produced by
multilinguals.

Romanization of languages to the Latin script
has increased with the advent of digitization of
communication. While some models like XLM-
R (Conneau et al., 2020a) and MuRIL (MuRIL,
2021) use romanized versions of some languages
in training, the effectiveness of these LMs on Ro-
manized (or more generally transliterated) text is
still unclear.

Diglossia is a kind of multilingualism where a
single community uses a substantially different lan-
guage dialect in different communication settings
(Ferguson, 1959). Since data from the internet is
used in training, it is likely that LMs cannot han-
dle diglossia. However, there are no studies that
concretely prove (or disprove) this.

To summarize, apart from code-mixing, there
has been very little work in recognizing, under-
standing, or improving LMs for different phenom-
ena arising due to multilingualism, making the di-
mension under-represented in the study of LMs.

Extensions: Efforts have been made to improve
LMs, particularly mBERT to deal with code mixed
data. Khanuja et al. 2020 present a modified version
of mBERT which performs better than standard
mBERT in English-Hindi and English-Spanish
code mixed data using synthetically generated
code-mixed data for continued pre-training.

5 Task

NLP applications range from syntactic tasks, like
POS, NER, etc. to semantic tasks like NLI, QA, etc.
LMs learn task-agnostic representations and can be
fine-tuned with task-specific data or used in task-
specific architectures as features. Thus, Universal
LMs should adapt well to a wide variety of tasks.

Like languages, the extent of evaluation on dif-
ferent NLP tasks is constrained by the availability
of benchmarks that span various tasks. As shown in

Table 1, only a small fraction of the large number of
tasks studied in NLP are evaluated by benchmarks.
While there are many other task-specific datasets,
the success of LMs is associated with performance
on these benchmarks rather than a wider variety of
tasks.

Universal Language Model Fine-tuning for Text
classification (ULMFiT) uses discriminative fine-
tuning, gradual unfreezing of layers, and slanted
triangular learning rates for target-specific fine-
tuning, giving better performance on multiple tasks
(Howard and Ruder, 2018). This work also explic-
itly defines the term ‘universal’, in their context as
referring to – applicable to all tasks in text classifi-
cation, using a single training process and architec-
ture, usable without feature-engineering, and not
requiring additional in-domain data.

Masked language modeling (MLM) is the most
generalizable pre-training objective for the extent
of transfer among twelve pre-training objectives
for nine target tasks (Liu et al., 2019).

Data size is important in effective pre-training
of LMs (Liu et al., 2019) but transfer gains be-
tween source and target tasks are also possible with
smaller source datasets (Vu et al., 2020b).

Similarity between source and target tasks is
important for transfer gains. Liu et al. 2019 find
that closeness in pre-training objective and target
task is important for transfer. Peters et al. 2019
find that while feature extraction and fine-tuning
of LMs give similar performance, exceptions occur
when the source and target tasks are either very
similar or very dissimilar. Vu et al. 2020b also
find that similarity is important, especially in low-
resource scenarios, but, exceptions of transfer gains
between dissimilar tasks are possible.

To summarize, LMs are universal in the task
dimension owing to task-specific architectures or
fine-tuning. However, the success of LMs is of-
ten associated with few benchmarks which cover
limited tasks. The similarity between tasks, data
size, and pre-training objectives are keys to transfer
gains, which are important for Universality.

Extensions: Pattern Exploiting Training (PET)
(Schick and Schütze, 2020a) reformulates tasks
as cloze questions,4 making them the same as the
MLM objective, requiring less data with no addi-
tional fine-tuning or a task-specific architecture to
achieve remarkable zero-shot and few-shot perfor-

4Cloze questions are statements with exactly one masked
token.
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mance. Using PET with ALBERT few-shot perfor-
mance competitive to GPT-3, which is 780 times
larger in terms of the number of parameters com-
pared to ALBERT, is obtained (Schick and Schütze,
2020b). The recently introduced T5 model (Raffel
et al., 2020) leverages a text-to-text framework to
enabling a single architecture to perform multiple
tasks and achieving state-of-art results. These are
concrete steps to enable universality towards tasks,
as a single model can be built to generalize across
solving multiple tasks.

6 Domain

NLP models are applied to many real-world ap-
plications in different domains like medical, sci-
entific, legal, financial etc. A universal model in
this dimension should adapt to different domains
or scenarios without loss of performance.

Processing domain-specific language often re-
quires the processing of specialized vocabulary and
language usage. Even though LMs learn some
implicit clusters of domains (Aharoni and Gold-
berg, 2020), this may not be enough and special-
ized domain-specific LMs are needed (Lee et al.,
2020; Chalkidis et al., 2020; Beltagy et al., 2019;
Huang et al., 2019; Araci, 2019; Gu et al., 2020).

Despite the success of general domain LMs, it is
found that pre-training LM on in-domain data im-
proves performance across high and low resource
settings (Gururangan et al., 2020).

Lee et al. 2020 introduced BioBERT, learned
using continued pre-training of BERT on medi-
cal text, which performed better than BERT on
biomedical tasks. In contrast, Gu et al. 2020 in-
troduce PubMedBERT and challenge the benefits
of out-of-domain data in pre-training by showing
that pre-training LM from scratch on in-domain
data (if available) is better than mixed or contin-
ual pre-training. Huang et al. 2019 propose the
clinicalBERT model that is pre-trained on clinical
notes text corpora, which learns better relationships
among medical concepts and outperforms general
domain LMs in clinical tasks.

Chalkidis et al. 2020 introduce Legal-BERT and
observe that continual pre-training of BERT or
training it from scratch with legal data both perform
similarly and significantly better than using BERT
off the shelf. Beltagy et al. 2019 release SciBERT,
trained from scratch on scientific publications giv-
ing better performance on scientific tasks. Araci
2019 use domain adaptation and transfer learning

to develop FinBERT, achieving state-of-the-art per-
formance in the financial domain.

Performance of domain-specific LM can degrade
on general domain tasks (Gu et al., 2020; Xu et al.,
2020; Thompson et al., 2019; Rongali et al., 2020).
This phenomenon is also known as catastrophic
forgetting and prevents the LM from being truly
universal.

To summarize, LMs are not universal in the
domain dimension, and different domain-specific
LMs have been introduced to cater to this require-
ment. Domain-specific LMs are either trained from
scratch or by mixed or continual pre-training of
existing LMs. While none of these techniques are
clear winners, performance degradation in general
domain tasks is observed in many cases.

Extensions: Vu et al. 2020a study adversarial
masking strategies to learn specific target domain
vocabulary along with continual pre-training by
carefully selecting tokens to be masked, leading
to better domain adaptation performance across
multiple source and target domains.

MuTSPad (Multi-Task Supervised Pretraining
and Adaptation) (Meftah et al., 2020) leverages
hierarchical learning of a multi-task model on high-
resource domain followed by fine-tuning on multi-
ple tasks on the low-resource target domain.

Ben-David et al. 2020 extend the pivot-based
transfer learning to transformer-based LMs by de-
veloping PERL (Pivot-based Encoder Representa-
tion of Language), that uses continual pre-training
with MLM to learn representations that reduce the
gap between source and target domains followed by
fine-tuning for the downstream classification task.
The pivot is selected such that the source and target
domain labels have greater mutual information to
facilitate a good transfer.

Jiang and Zhai 2007 propose several heuristics
like removing misleading examples from the source
domain, assigning more weight to target domain
instances, and augmenting target training instances
with predicted labels for better domain adaptation
from a distributional perspective.

Various methods that are computationally effi-
cient (Poerner et al., 2020), use more effective ad-
versarial training (Ma et al., 2019), and reduce the
requirement of annotated data in low-resource set-
tings (Hazen et al., 2019) have been proposed for
computation and data efficient domain adaptation.

Rongali et al. 2020 overcome catastrophic forget-
ting, out-performing domain-specific LMs while
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maintaining performance on general domain tasks.

7 Medium of Expression

Language varies with the medium of expression.
There are syntactic and semantic alterations like the
use of ill-formed sentence or grammatical structure,
inflections, slang, compressions, and abbreviations
due to limited space, familiarity with the audience,
and communicative intent. Universal LMs should
be robust to such variations. Often these special-
ized settings are simply treated as a different do-
main (Qudar and Mago, 2020; Nguyen et al., 2020).
However, in this work, we treat ‘domain’ as spe-
cialized fields of expertise. The current discussion
pertains to the medium in which language is used.

Language in social media and texting may not
follow conventions of written language. Sentences
are often shorter or grammatically ill-formed and
may not be coherent enough for LMs that rely
on contextual information (Eisenstein, 2013; Han
et al., 2013; Choudhury et al., 2007).

LMs perform sub-optimally on non-standard lan-
guage as compared to specialized LMs. BERTweet
(Nguyen et al., 2020), a Roberta-based LM trained
on English tweets, outperforms both RoBERTa and
XLM-R base models even though RoBERTa and
XLM-R use 2 times and 3.75 times more data, re-
spectively. TweetBERT (Qudar and Mago, 2020),
another LM trained on tweets outperforms seven
general domain LMs.

To summarize, the language used in different
media of expression is substantially different. The
limited amount of investigation in this direction
indicates that LMs are not universal to these varia-
tions and perform sub-optimally on the language
used in social media and texting.

Extensions: Dai et al. (2020) propose cost-
effective training by appropriate selection of addi-
tional data for training a LM from a Twitter corpus.

8 Geography and Demography

Standard and non-standard dialects, both social
and regional, lead to varied word, and language use
(Labov, 1980; Milroy, 1992; Tagliamonte, 2006;
Wolfram and Schilling, 2015; Nguyen et al., 2016).
Regional dialect refers to the varied usage of the
same language across different places. For exam-
ple, the use of ‘wicked’ can refer to bad or evil (“he
is a wicked man”), or as an intensifier to adverbs
(“my son is wicked smart”) (Bamman et al., 2014a;

Kulkarni et al., 2016). Sociolects, or social dialects,
similar to regional dialects, are language dialects
dependant on social variables like age, race, gen-
der, socio-economic status, ethnicity, etc. (Nguyen
et al., 2016). Geographic and demographic varia-
tions stem from grammatical, phonological, syntac-
tic, lexical, semantic features, or any combinations,
making it difficult to capture and evaluate.

Since LMs are trained on standard language di-
alects, non-standard dialects spoken by millions of
people are largely ignored. Such a system can re-
sult in bias against specific cultural or geographical
communities in user-facing applications leading to
ethical implications in building fair NLP systems.

A Universal LM should be sensitive to seman-
tic shifts arising from its users’ demographic or
geographical diversity. Taking these variations
into consideration has resulted in improved per-
formance and personalization of applications like
conversational agents, sentiment analysis, word
prediction, cyber-bullying detection, and machine
translation (Östling and Tiedemann, 2017; Rahimi
et al., 2017; Mirkin and Meunier, 2015; Hovy,
2015; Hovy and Søgaard, 2015; Stoop and van den
Bosch, 2014; Volkova et al., 2013).

Kulkarni et al. 2016 present a novel approach
to quantify semantic shift that is statistically sig-
nificant across geographical regions and propose a
new measure of dialect similarity to establish how
close the language in two regions is. Demszky et al.
2020 focus on Indian English and show that dialect
features can be learned given very limited data with
strong performance.

In the 2020 VarDial evaluation task for Ro-
manian Dialect Identification, an SVM ensemble
based on word and character n-grams outperformed
fine-tuned Romanian BERT model. These results
are consistent with the earlier evaluation results
of VarDial where shallow models outperformed
deep models. In Social Media Variety Geolocation,
predicting geolocation (coordinates) from text, the
best performance was obtained by a BERT architec-
ture with a double regression classification output.
In contrast, the next two best models were both
shallow. (Gaman et al., 2020).

Demographic features like age, gender have been
predicted from language usage Peersman et al.
(2011); Morgan-Lopez et al. (2017), whereas social
class or ethnicity receive less attention (Moham-
mady Ardehaly and Culotta, 2015). Prediction of
demographic features from language use quantifies
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the correlation between social variables and social
dialects. While individuals may intentionally or
naturally digress from such conventions, these sta-
tistical patterns are a cornerstone for studying the
interaction between society and language in com-
putational sociolinguistics (Nguyen et al., 2016).

There are some worrisome findings of bias of
performance across age, ethnicity, or gender in
contextual LMs. (Hovy and Søgaard, 2015) find
that a POS tagger trained on the English Penn tree-
bank performed better on texts written by older
authors. Tan et al. 2020 show bias against non-
standard English (in this case Singaporean English)
in BERT. Bhardwaj et al. 2020 expose gender bias
in BERT by showing that the model assigns lower
(or higher) scores consistently for sentences that
contain words indicating gender in cases where
gender information should have no bearing.

To summarize, the influence of geography and
demography on language usage is well known, and
LMs must be sensitive and inclusive of such varia-
tion. However, there has been limited, albeit now
growing, attention to these factors. In some cases,
shallow models have outperformed deep models in
recognizing semantic shifts, and there is evidence
of bias against particular social groups.

Extensions: Bamman et al. 2014b learn lan-
guage representations that take geographical situa-
tions or variations into account by enriching Vector
space word representations (word2vec) with geo-
graphical knowledge from metadata about authors.
Hovy and Purschke 2018 employ retrofitting for in-
cluding geographic information to capture regional
variation in continuous regional distribution and at
a fine-grained level using online posts in German
and the corresponding cities of their authors as la-
bels to create document embeddings. While these
techniques do not involve any contextual LMs, such
representations and retrofitting can be extended to
contextual LMs.

Tan et al. 2020 propose an adversarial approach
to make models like BERT more robust to non-
standard forms of English using inflectional mor-
phology perturbations.

Debiasing techniques such as the ones studied
in (Bolukbasi et al., 2016; Kaneko and Bollegala,
2019) can remove gender stereotypes from pre-
trained word embeddings.

9 Time Period

Language evolves continuously, and individual
word meanings can change significantly over the
years (Cook et al., 2014; Kim et al., 2014; Hamil-
ton et al., 2016). Most of the data used in LM
pre-training is from the late 20th century. Thus,
whether these models can handle word senses
across timescales is a pertinent question. Universal
LMs should appropriately deal with language with
a nuanced understanding of diachronic semantic
change (DSC) because, when deployed in down-
stream applications, such variations may be en-
countered and misinterpreted. Some of the studies
we mention below are not strictly focused on con-
textual LMs. Nevertheless, we find it important to
note such research as we hope it can be extended
to contextual LMs in the future.

The intensity of the change of meaning of dif-
ferent words is different – some are more subtly
changed than the others. Kim et al. 2014 trace a
period from 1900-2009, obtain year-specific word
embeddings on the Google Books N-grams corpus,
and pinpoint the extent and time-period of occur-
rence of semantic shift.

Hamilton et al. 2016 evaluate static word embed-
dings for known historical changes using corpora
spanning four languages and two historical periods.
They create diachronic embeddings by learning
separate representations across the time periods
followed by alignment over different time scales.

DSC can be detected by clustering word sensed.
Mitra et al. 2014 organize words in a time-period
specific graph where its nearest neighbors are co-
occurring words, and word-senses are clustered.
The shift in word sense or the emergence of a new
word sense can be identified by the change of clus-
ter for a particular word. Giulianelli et al. 2020
perform clustering over usage types in BERT and
use the contextual property of LM to quantify se-
mantic change instead of relying on a specific set
of word senses.

DSC evaluation lacks standardization.
Schlechtweg et al. 2019 perform a large
scale evaluation on German, revealing the best set
of parameters for optimal performance, compare
various state-of-the-art methods, and outline
improvements for better performance.

Shallow models can outperform contextual LMs
in identifying semantic shift. Schlechtweg et al.
2019 show that a shallow skip-gram model with
negative sampling, orthogonal alignment, and co-
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sine distance performs best in identifying DSC in
German. Kaiser et al. 2020 reconfirm this by us-
ing a similar model to obtain the first position in
the DIACR-Ita shared task (Basile et al., 2020) on
Italian DSC. Similar findings of only limited suc-
cess in contextual LMs are reported in the shared
task on Unsupervised Lexical Semantic Change
Detection in 5 languages hosted at SemEval 2020
(Schlechtweg et al., 2020).

While the success in identifying these shifts may
be limited, (Rodina et al., 2020) find that DSC
identified by contextual LMs can have a strong
correlation with human judgment of change.

Within contextual LMs, BERT and ELMo per-
form similarly for Russian. Rodina et al. 2020
show that neither BERT nor Elmo outperform each
other when fine-tuned using historical text in Rus-
sian to detect semantic change. Moreover, results
from the shared task on Unsupervised Lexical Se-
mantic Change Detection in 5 languages hosted at
SemEval 2020 (Schlechtweg et al., 2020) show that
systems performing well over one language may
not perform as well for other languages.

To summarize, time period is under-studied and
there is little understanding of whether contextual
LMs can handle such nuanced language variation.
For the closely related task of DSC, shallow models
can outperform deep LMs, and performance can
vary greatly across languages.

Extensions: Rudolph and Blei 2017 develop dy-
namic word-embeddings with an attribute of time
that captures the semantic shifts in word meanings
in sequential historical data on top of Bernoulli
embeddings such that representations are shared
within specific time periods rather than through-
out the corpus. Similarly, Bamler and Mandt 2017
use timestamped data to build static probabilistic
representation for tracing semantic change.

To mitigate the problem of using different repre-
sentations of words over different time periods, Hu
et al. 2019 propose a framework for tracking and
representing word senses by leveraging pre-trained
BERT embeddings and Oxford dictionary data to
learn fine-grained senses.

10 Conclusion

Deep Contextual LMs are being applied today to
various different applications due to their perceived
‘Universality’. In this work, we attempt to holis-
tically define ‘Universality’ to encompass a wide
variety of scenarios and linguistic phenomena.

We define Universality using seven dimen-
sions: Language, Multilingualism, Task, Domain,
Medium of Expression, Geography and Demogra-
phy, and Time Period. These dimensions result in
unique variations in language usage that are com-
monly encountered in real-life scenarios. We aim
for this definition to be sound rather than complete.
That is, a model should strive to achieve Universal-
ity in these dimensions, but they are in no way a
complete, exhaustive list of everything the model
needs to be capable of.

We survey research across all the dimensions
and find that: First, while dimensions like language,
task, and domain are more widely studied, other
dimensions, especially multilingualism, geography
and demography, and time period receive less at-
tention. Second, limited evaluation benchmarks
constrain the complete understanding of capabil-
ities even in the more studied dimensions. Third,
language variation arising in specific scenarios of
demography, geography, time period, multilingual-
ism, and medium of expression is often studied in
an isolated manner.

The dimensions we survey are a starting point
that LMs can aim to be inclusive towards in order
to serve a diverse set of users and scenarios. Large
contextual LMs may not be the optimal choice for
all scenarios, with shallow, task-specific models
sometimes leading to better outcomes. Overall,
‘Universality’ is yet to be fully understood, studied,
and achieved. We hope that this work will lay the
foundation to understanding the capabilities and
limitations of LMs and spur further research into
making models more inclusive and fair.
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Abstract

Deep learning based methods have shown
tremendous success in several Natural Lan-
guage Processing (NLP) tasks. The recent
trends in the usage of Deep Learning based
models for natural language tasks have def-
initely produced incredible performance for
several application areas. However, one major
problem that most of these models face is the
lack of transparency, i.e., the actual decision
process of the underlying model is not explain-
able. In this paper, first we solve a very fun-
damental problem of Natural Language Under-
standing (NLU), i.e., intent detection using a
Bidirectional Long Short Term Memory (BiL-
STM). In order to determine the defining fea-
tures that lead to a specific intent class, we use
the Layerwise Relevance Propagation (LRP)
algorithm to find the defining feature(s). In the
process, we conclude that saliency method of
εLRP (epsilon Layerwise Relevance Propaga-
tion) is a prominent process for highlighting
the important features of the input responsi-
ble for classification of intent, which also pro-
vides significant insights into the inner work-
ings, such as the reasons for misclassification
by the black box model.

1 Introduction

Chatbots or conversational agents have been gain-
ing immense popularity in recent years. This is one
of the most widely used Artificial Intelligence (AI)
applications that has a market value of USD 190.8
millions, and is expected to grow upto USD 1,250.1
million by the year 20251. These chatbots are being
used in almost every vertical of our society, such
as travel, healthcare, judiciary etc. With the rapid
adaptation of chatbots as digital assistants, it is im-
portant that these chatbots should be very robust, as
many of these domains (e.g., health, judiciary etc.)

1https://www.grandviewresearch.com/industry-
analysis/chatbot-market

are very sensitive, and minor inaccuracies in infor-
mation can lead to significant damage. The model
as a whole can be made robust if all its individual
components are also accurate. The very first step of
most modular dialogue systems is the Natural Lan-
guage Understanding (NLU) phase, that comprises
of dialogue act classification, intent detection and
slot filling. This part of the dialogue system plays
an important role of deciphering the syntax and
semantics of the user input, to aptly produce the
bot’s reply. While the intent classification focuses
on the semantic meaning of the input, slot filling
focuses on extracting the relevant information like
named entities etc.

These systems are not perfect, and even the state-
of-the-art models very often fail to classify the in-
tent correctly. In order to understand what went
wrong in these misclassifications, the features of
the text that led to the incorrect classification can
provide some helpful information. Due to the rise
of deep neural network based architectures the
transparency of such models is low. This leads
to the requirement of eXplainable Artificial Intelli-
gence (XAI) methods that determine the important
features of the input text. There are 2 major meth-
ods that highlight the feature importance, namely
saliency based methods and attention based meth-
ods. Saliency based methods (Section 2.2) are ad-
hoc techniques that explain individual inference
done by the model. This is done after the model
training process, hence the cost depends on the
number of explanations required. The additional
cost of these XAI models tend to make the archi-
tectural framework more expensive. Since most
of the XAI methods explain each prediction indi-
vidually, the processing cost keeps on increasing
during the model deployment. Attention, on the
other hand, calculates the feature importance over
the entire training data, and seems like a cost ef-
fective alternative to saliency in figuring out the
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relevant features of the input text. Whether atten-
tion is actually a good alternative for explanation is
still a matter to be explored (Grimsley et al., 2020).
When compared to the saliency based techniques,
due to the attention’s focus on gradient descent as
the weight updating criteria, attention has shown
high correlation to the gradient based saliency tech-
niques (Jain and Wallace, 2019).

In this paper, we investigate into an explainable
deep learning based intent classifier. We compute
the features responsible for misclassification of the
utterances, in order to get a better idea of why actu-
ally the trained model incorrectly predicted these
test inputs. This leads to a much better understand-
ing of the limitations of Long Short Term Memory
(LSTM) based models. One such limitation is when
we go over the ATIS dataset, where we find out that
the model misclassifies an Intent class(as shown in
figure 2) ’meal’ even though it learns to identify
the ’meal’ token as the most important feature as
cumulative weight of tokens pointing to the ’flight’
intent is higher. Another such instance can be the
’day name’ intent being misclassified as ’flight’.
The model does not even learn to pay attention to
token(s) like ’day’ or ’day of the week’ as the total
instances of ’day name’ in the entire dataset is less
than 0.1% of the dataset.

2 Related Work

In this section, we present a very brief literature sur-
vey that starts with a intent classification followed
by saliency based explainable models.

2.1 Basic Components of any Conversational
System

In practice, two forms of chatbot architectures are
prevalent. One being the modular architecture that
we focus here in this paper. This procedure breaks
the conversational process into a pipeline structure
where the upcoming module uses the information
gathered from the previous step to build a func-
tional agent. The process includes intent classifica-
tion, slot filling/entity extraction for the language
understanding phase. Dialogue Management (DM)
uses the intent and entities extracted to formulate
the next action. In this phase we can also employ
rules to direct the functioning to a specific action.
For example- one rule could be that if the input
is exactly the same, use the reply in the training
data directly. Of course, this depends on the task at
hand. Finally, the information of the DM module

is actualized into human understandable text us-
ing the Natural Language Generation (NLG) phase.
This text generation can be either template based
or a neural based, trained on the data available.
The second prevalent architecture is the end-to-end
architecture which trains a single deep learning
model which takes the user input and gives reply
utterance directly in one go. Since the entire pro-
cess of conversation is condensed into one single
model this kind of architecture generally requires
much more data and since we cannot explicitly im-
part rules on such a model, it can perform poorly
on seemingly simple tasks for a similar amount of
data.

2.2 Intent Classification

Intent classification is a highly informational step
of any modular dialogue system. It is the initial
process of the Natural Language Understanding
(NLU) pipeline, which focuses on the prediction
of the task the user wants the current input to fo-
cus on, from the variety of tasks the model has
been trained to perform. The Cambridge dictio-
nary defines intention as ’something you want or
plan to do’. Similarly in NLP the intent refers
to the task/goal the user wants to accomplish by
the conversation. For example, in the user utter-
ance ’what meals are available in flight from Mil-
waukee to Seattle’ the goal/intent of the user is to
enquire about the food options. The structure of
this utterance is similar to that of a flight search
query like ’what flights are available from Milwau-
kee to Seattle’, we want the model to be able to
aptly distinguish between these intents. A good
intent classifier can bypass poorly directed user
queries and correctly processes user intents leading
to the smooth conversational flow. Bi-directional
Long Short Term Memory (BiLSTM) (Huang et al.,
2015) models are a decent baseline in NLP tasks
including classification, generation, summarization
etc. However, due to the innate opaqueness of
neural network based models it leaves a lot to be
desired in terms of making the users understand
the decision making process. This leads to people
using adhoc post-processing steps (saliency tech-
niques) to find out the features/tokens in our text
most responsible for the classification output of the
model. However, since this adds an overhead to
the model, it results in increased cost for providing
feature importance.
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2.3 Saliency Techniques

Saliency is used in psychology and other fields with
subtly varying meanings. For NLP tasks, we refer
to saliency as the process of finding the most im-
portant features/token(s) responsible for the model.
For example, in the utterance ”The service was
bad.”, the token(s) ’service’ and ’bad’ are respon-
sible for the utterance to be classified with intent
’complaint’. There are multiple classes of these
models with the focus, ranging from token combi-
nations, to game theory concepts (Section 2.3.2)
and propagation based (Section 2.3.3). We discuss
some techniques for saliency and try to highlight
the issues pertaining to these models for adhoc ex-
planations.

2.3.1 Occlusion/Perturbation based
The occlusion or perturbation based methods
(Zeiler and Fergus, 2014) compute the feature im-
portance by removing parts of the input and recal-
culating the classification output and measuring
the deviation from the original classification. This
deviation from the original prediction then serves
as a measure of the importance of the feature with
respect to the current model classification. Though
these methods are easy to execute for the Natural
Language Processing (NLP) tasks, these add a high
computation overhead in order to find the important
features. For example - for just a text of 10 tokens
there can be hundreds of such perturbation based
subtexts resulting in a tedious prediction phase.
The number of such perturbation based combina-
tions of tokens increases exponentially with the size
of the input text. Even though you can use mean-
ingful combination techniques(Fong and Vedaldi,
2017) (here the overhead can be reduced by using
many techniques like stopword removal, named en-
tity removal, merging adjective with adverbs such
as treating ‘very good’ as a single occlusion candi-
date etc.) the substantial overhead still exists.

2.3.2 Mathematical Model based
GradientxInput(Denil et al., 2014) calculates
saliency of the input text as a function of input
sequence vs individual input tokens. Integrated
Gradient(Sundararajan et al., 2017) is another gra-
dient based method that extends upon Gradientx-
Input techniques and deals with the sensitivity and
implementation invariance. Even though both IG
and GradientXInput focus on the sensitivity of the
features, it is taken as a measure of the saliency of
the input features. SHAP (Lundberg and Lee, 2017)

uses the concept of shapley values from game the-
ory to calculate the feature importance.

2.3.3 Propagation based
Layerwise Relevance Propagation (LRP)(Bach
et al., 2015) uses an additional backward pass that
calculates the relevance of the nodes of our network
at each layer. It then uses the weights of the nodes
to redistribute the relevance of each layer with re-
spect to the prediction. So, when it finally arrives
at the input layer it has the relevant information for
each input with regard to the prediction. Since the
backward pass flows over the entire network, the
cost of saliency is directly proportional to the size
of the network trained (example, overhead for a
model with 10 layers of depth is more than a model
with 2 layers).

2.3.4 Sampling based
LIME(Ribeiro et al., 2016) adopts a local approach
to the saliency problem. For a specific input at hand
it calculates a locality around the input and then
uses that local sample space to train an inherently
interpretable model. This newly trained model is
then used to make an explanation regarding fea-
ture importance for the input. However, in some
cases like image classification, even these localities
might be too much to be represented by a linear
model, Anchors(Ribeiro et al., 2018) is a method
which counters this issue by instead forming condi-
tions for prediction. This rule/condition fixes the
prediction at local level so changes ant global level.
Thus highlighting the parts in the input that are
enough to classify it. However, since the technique
involves sampling from the training data and also
training a new model (both for each explanation
to any input), such methods are some of the most
expensive saliency methods available.

2.4 Global vs Local Methods

Global methods describe the average behavior of
a machine learning model. Global methods es-
timate expected values based on the distribution
of the data. For example, the partial dependence
plot (Friedman, 2001), a feature effect plot, is the
most expected outcome when all other features are
turned insignificant i.e. it shows the marginal effect
one or two features have on the predicted outcome
of a machine learning model. Since global interpre-
tation methods describe average behavior, they are
particularly useful when the user wants to under-
stand the general mechanisms in the data or debug
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a model.
The counterpart to global methods are local

methods. Local interpretation methods explain in-
dividual predictions. LIME(Ribeiro et al., 2016)
and SHAP(Lundberg and Lee, 2017) are attribu-
tion methods, so that the prediction of a single in-
stance is described as the sum of feature effects.
Other methods, such as counterfactual explana-
tions(Wachter et al., 2017), are example-based.

For this paper, we focus on local explanations,i.e.
look at the individual instances and try to figure
the reason for misclassification for each group of
instances instead of figuring a general trend for all
the misclassification.

3 Methodology

We implement εLRP (epsilon Layerwise Relevance
Propagation) model over a BiLSTM trained model
to find the important features for a particular pre-
diction. This is done with the aim of finding the
reason behind the misclassification in incorrectly
predicted utterances, as that can potentially help
us deduce the reason for misclassification and im-
prove our understanding of the model.

3.1 Intent Classification

For the base model, we use a BiLSTM based
architecture. Bidirectional LSTM (BiLSTM) is
used to model dependencies on the next time step
in the input utterance. These are a combination
of a recurrent layers that propagate the sequence
forward through blocks and a recurrent module
that propagates the sequence backwards through a
different block. The tail model uses a concatena-
tion operation on the penultimate two hidden states
as input for the final layer.

i0,t = sigmoid(Wixt + bi)

ć0,t = tanh(Wcxt + bc)

c0,t = i0,t × ć0,t
o0,t = sigmoid(Woxt + Voc0,t + bo)

h0,t = o0,t × tanh(c0,t)

For training, the Adam optimizer (Kingma and
Ba, 2014) and categorical cross-entropy loss(Zhang
and Sabuncu, 2018) were used. This model had a
depth of 2 with each layer having 256 hidden nodes
and a dropout of 0.5. We went with a batch size of
24 due to memory restrictions.

3.2 Layer-wise Relevance Propagation

LRP works as an adhoc over the final trained model
to calculate the explanation based on the domain
of its inputs. LRP takes the weightage of the final
classification and distribute this value over the pre-
vious layer depending on the contribution/influence
of the neuron in the previous layer. This backward
pass of sorts recursively distributes the classifica-
tion weight to the input features, quantifying their
importance to the task at hand. For example- if a
model predicted the intent to ’flight’ with a con-
fidence of 0.8, this 0.8 is then distributed to the
neurons of the previous model layer depending on
their influence as per equation 1. Recursively this
weight/relevance of 0.8 reaches to the feature input
layer and the relevance is distributed across the in-
put tokens. For better comprehension we normalize
the input token relevance for clarity.

∑

k

ajwjk∑j
0 ajwjk

Rk (1)

Here, j and k denote 2 neurons of consecutive lay-
ers, w is weight, and a is the activation. Finally, R
denotes the relevance of each neuron. ajwjk mod-
els the extent of influence of the neuron j in making
the neuron k relevant. This influence is then used to
distribute the relevance of neuron k to the neurons
in the previous layer.Rk is the relevance of the kth

neuron at current layer. In this paper, we use εLRP
which is a modification of base LRP (equation 2)
that includes ε term in the denominator.

∑

k

ajwjk

ε+
∑j

0 ajwjk

Rk (2)

The role of ε is to still accumulate some rele-
vance even when the influence of the activation of
neuron k are weak or contradictory i.e. ifRk is very
small then each of the relevance it provides to the
neuron(s) j is negligible. The ε term helps to main-
tain mathematical cohesion in case the relevance
reaches zero. As ε becomes larger, only the most
salient explanation factors survive the absorption.
This typically leads to explanations that are sparser
in terms of input features i.e. the weight distributed
is more focused on the important features and all
the irrelevant features(stopwords etc) get near zero
weightage.This makes the weight distribution less
noisy as we can easily focus on the relevant input
features. So in conclusion we can say εLRP results
in sparser and less noisy relevances.
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3.3 Model

The model used in this paper uses BiLSTM to train
the model for the intent classification task and then
employs a LRP model for explanation of the infer-
ences done by the model at testing. The backward
pass implemented is a single step process that goes
over all the layers of the trained model (from fi-
nal prediction to the input features) and distributes
the weight of the prediction over the input features.
Finally, the input feature(s) with highest relative
weight are considered responsible for the output of
the model.

Figure 1: Basic representation of prediction phase (sin-
gle forward pass) and feature relevance phase (single
backward pass) of the BiLSTM + εLRP architecture

4 Dataset and Experimental Setup

In this section, we present the details of the datasets
and experimental setup.

4.1 Dataset

We use the following benchmark datasets for the
experiments.

ATIS: ATIS (Airline Travel Information System)
(Hemphill et al., 1990) is a dataset of airline cus-
tomer service with multiple user utterances and
corresponding Intents. The dataset includes 4,478
utterances in training, 500 utterances for valida-
tion and 893 utterances in the test set. The data is
annotated with 17 intent classes, viz. ’flight’, ’air-
fare’, ’airline’, ’ground service’, ’quantity’, ’city’,
’abbreviation’, ’aircraft’, ’distance’, ’ground fare’,
’capacity’, ’flight time’, ’meal’, ’flight no’, ’re-

striction’, ’airport’, ’cheapest’. We removed 23
instances labeled with more than one intent.

MultiDoGO: MultiDoGO dataset (Peskov et al.,
2019) comprises of six domains, viz. airline, fast-
food, finance, insurance, media and software. The
dataset has two formats, annotated and unannotated.
The unannotated version contains 86K conversa-
tions, while the annotated version contains 15,000
conversations with 2,500 for each domain. We fo-
cus on the user utterances of two sub-domains of
airline and finance for intent classification with 38
classes. We use the training, validation and test sets,
comprising of 29,742, 4,260 and 8,488 utterances,
respectively.

4.2 Experimental Setup
For the experiment, we train the BiLSTM model.
We train the model with epochs set to 5, 10 and
20. This is done to avoid any possible overfitting
scenario. Adam optimizer and categorical cross-
entropy loss were used. To represent the word
vectors, a 256 dimensional (non-pretrained) vec-
tors were used. Inference is then generated on the
test data, where we primarily focus on the misclas-
sification. The εLRP method is then executed on
these misclassification to find why these utterances
were predicted incorrectly.

4.3 Results and Analysis
The BiLSTM model is trained on the above men-
tioned datasets (ATIS airline dataset, MultiDoGO
airline subdomain dataset and MultiDoGO finance
subdomain dataset). We demonstrate the results in
Table 1. Then, εLRP is used as an adhoc model to
gain insights on misclassification. The interesting
cases are highlighted.

Table 1: Results of BiLSTM trained on 3 datasets
(ATIS airline dataset, MultiDoGO airline subdomain
dataset and MultiDoGO finance subdomain dataset)

Dataset Accuracy Precision Recall
ATIS 0.93 0.93 0.93

MultiDoGO 0.91 0.91 0.91
Airline

MultiDoGO 0.89 0.89 0.89
Finance

While we closely look at the misclassified cases,
we see that most of the misclassifications in the
ATIS dataset are a result of being predicted as be-
longing to the ’flight’ class instead of the actual
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class. This can be attributed to the disproportion-
ate training data where 3388 of the 4478 training
utterances are for the ’flight’ class. This misclas-
sification seems to be due to named entities like
locations being taken as a shortcut to classify ut-
terance as intent ’flight’. For example, in Figure 2
one can see that the presence of location tokens (in
blue) collectively lead to misclassification as intent
’flight’ even though the model knows that the to-
kens ’meal’ and ’cities’ (in red) play important role
in the classification process (tokens highlighted
with blue are responsible for current prediction,
the ones with red highlight the second most likely
class). This structure of sentences comprise of 4 of
the 6 test examples for intent ’meal’, all 4 of which
are misclassified. The only 2 correctly classified ut-
terances are the ones that do not mention the cities
i.e. ’are meals ever served on tower air’ and ’are
snacks served on tower air’.

Figure 2: Examples of misclassifications on the ATIS
dataset

For MultiDoGO airline sub domain, majority
of misclassifications seem to arise from the model
paying heavy weightage to the tokens ’ok’ as ’con-
firmation’, and thanks for ’thankyou’ as the intent
class, as shown in Figure 3. There are also a few
cases of model being confused between the intents
’getseatinfo’ (asking for seat details, ex- I want to
know seat no) and ’changeseatassignment’ (change
the curreent seating, ex- I want to get window seat)
due to having similar tokens in the training data.
Also for the utterance ’thank you sir but i would
like to have a middle seat as i do not like a window
seat’ this direct alignment of the word thank to the
intent ’thankyou’ leads to misclassification even
though the model pays attention to the tokens re-
lating to the correct intent ’changeseatassignment’.
We found that this association can be lowered by
introducing more examples of similar structure to
above utterance but that leads to some instances
of ’thankyou’ intent to ’rejection’ intent(ex- thank
you so much nothing more bye). For the first ex-

ample shown the misclassification is negligible in
the context that the same utterance ’ok thanks’ is
labelled as both ’thankyou’ and ’confirmation’ in
the training data.

Figure 3: Examples of misclassifications for the Multi-
DoGO data

For MultiDoGO finance dataset, on the other
hand, is filled with misclassifications that seem
to be right when going through human evaluation.
For example, in Figure 4, examples 1 and 3 can
be said to be somewhat correctly predicted (since
we are looking at them as individual utterances
instead of entire dialogue) even though the actual
intents are different. For example 2, the evaluation
could go either way depending on preferences of
the annotator and the evaluators as all the closing
greeting examples have the word thanks in them
and are very overlapping in their intention.

Figure 4: Examples of misclassification on Multi-
DoGO finance intents

Going through all these datasets, we summarize
that there are a lot of inferences that can be drawn
with respect to the incorrect classification. The is-
sues arising due to the unbalanced dataset results in
forcing the model to pay high attention to some spe-
cific tokens. We see the benefits of saliency based
methods as it highlights the tokens responsible for
the classification. This not only helps us under-
stand the reason for misclassification but also can
highlight cases where the data might be incorrectly
annotated, resulting in the possibility to improve
the quality of dataset along with the classification
process.
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5 Conclusion and Future work

In this paper, we have attempted to build an ex-
plainable intent detection model with the saliency
based methods. The model is able to identify the
appropriate and relevant features used for intent
classification. We also discussed some issues with
these approaches, most of which deal with the fact
that the saliency techniques calculate the feature
importance (which constitute an explanation) as an
adhoc measure.

Saliency does have quite a few benefits of itself.
The modular nature of the implementations pro-
vides a degree of model-agnostic behaviour which
allows us to treat the black boxed nature of the
deep learning models as an afterthought and focus
entirely on the performance. After the model is
trained and tuned, we applied the saliency tech-
niques for determining the feature relevance. This
also ensures that we can apply different saliency
techniques for the same base model and the same
saliency technique to different models allowing for
a high degree of robustness.

However, even for saliency it is not necessary
that the importance assigned to a feature is, in fact,
due to the relevance of the features but could sim-
ply be a result of the underlying issues with the
technique used. For example, in occlusion based
methods, if we remove a feature, it is possible that
the change in the prediction is just the result of
the new input not being in the format the model
expects(Kindermans et al., 2019).

For future work, we plan to use the feature im-
portance information and use it to retrain the model
in such a way to reduce misclassification. One
such method could be to use the important features
of misclassifications to help identify which kind
of data to add, to improve the performance of the
model further. However, such a method needs to be
done in such a way that the incorrect predictions do
not get corrected at the cost of misclassification of
originally correctly predicted utterances. Another
such method could be to identify the nodes which
are more relevant to a highly misclassified intent
and boost those neurons to improve model perfor-
mance. However, this also needs to make sure the
nodes we are associating with a particular intent do
not have high influence on other intents as well, as
that might lower the accuracy of some other intent.
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Abstract

Cosine similarity is a widely used measure
of the relatedness of pre-trained word embed-
dings, trained on a language modeling goal.
Datasets such as WordSim-353 and SimLex-
999 rate how similar words are according to
human annotators, and as such are often used
to evaluate the performance of language mod-
els. Thus, any improvement on the word sim-
ilarity task requires an improved word repre-
sentation. In this paper, we propose instead
the use of an extended cosine similarity mea-
sure to improve performance on that task, with
gains in interpretability. We explore the hy-
pothesis that this approach is particularly use-
ful if the word-similarity pairs share the same
context, for which distinct contextualized simi-
larity measures can be learned. We first use the
dataset of Richie et al. (2020) to learn contex-
tualized metrics and compare the results with
the baseline values obtained using the standard
cosine similarity measure, which consistently
shows improvement. We also train a contextu-
alized similarity measure for both SimLex-999
and WordSim-353, comparing the results with
the corresponding baselines, and using these
datasets as independent test sets for the all-
context similarity measure learned on the con-
textualized dataset, obtaining positive results
for a number of tests.

1 Introduction

Cosine similarity has been largely used as a mea-
sure of word relatedness, since vector space models
for text representation appeared to automatically
optimize the task of information retrieval (Salton
and McGill, 1983). While other distance measures
are also commonly used, such as Euclidean dis-
tance (Witten et al., 2005), for cosine similarity
only the vector directions are relevant, and not

∗These authors contributed equally to this work.
†Corresponding author.

their norms. More recently, pre-trained word rep-
resentations, also referred to as embeddings, ob-
tained from neural network language models, start-
ing from word2vec (W2V) (Mikolov et al., 2013),
emerged as the main source of word embeddings,
and are subsequently used in model performance
evaluation on tasks such as word similarity (To-
shevska et al., 2020). Datasets such as SimLex-999
(Hill et al., 2015) and WordSim-353 (Finkelstein
et al., 2001), which score similarity between word-
pairs according to the assessment of several hu-
mans annotators, have become the benchmarks for
the performance of a certain type of embedding
on the task of word similarity (Recski et al., 2016;
Dobó and Csirik, 2020; Speer et al., 2017; Banjade
et al., 2015).

For ~na and ~nb, the vector representations of two
distinct words wa and wb, cosine similarity takes
the form

cosab =
~na · ~nb
||~na|| ||~nb||

, (1)

with the Euclidean inner product between any two
vectors ~na and ~nb given as

~na · ~nb =
∑

i

~nia~n
i
b, (2)

and the norm of a vector ~na given as

||~na|| =
√
~na · ~na, (3)

dependent on the inner product (Axler, 1997).
Using this measure of similarity, improvements

can only take place if the vectors that represent the
words change. However, the assumption that the
vectors interact using a Euclidean inner product
becomes less plausible when it comes to higher
order vectors. If, differently, we consider that the
vector components are not described in a Euclidean
basis, then we enlarge the possible relationships
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between the vectors. Specifically in the calculation
of the inner product, on which the cosine similarity
depends, we can use an intermediary metric tensor.
By challenging the assumption that the underlying
metric is Euclidean, cosine similarity values can be
improved without changing vector representations.

We identify two main motivations to search for
improved cosine similarity measures. The first mo-
tivation has to do with the cost of training larger and
more refined language models (Bender et al., 2021).
By increasing the performance on a task simply by
changing the evaluation measure without changing
the pre-trained embeddings, we expect that better
results can be achieved with more efficient and in-
terpretable methods. This is particularly true of
contextualized datasets, with benefits not only for
tasks such as word similarity, but also others that
use cosine similarity as a measure of relatedness,
such as content based recommendation systems
(Schwarz et al., 2017), and where it can be particu-
larly interesting to explore the different metrics that
emerge as representations of vector relatedness.

The second motivation comes from composi-
tional distributional semantics, where words of dif-
ferent syntactic types are represented by tensors
of different ranks, and representations of larger
fragments of text are produced via tensor contrac-
tion (Coecke and Clark, 2010; Grefenstette and
Sadrzadeh, 2011a,b; Milajevs et al., 2014; Baroni
et al., 2014; Paperno et al., 2014). This framework
has proved to be a valuable tool for low resource
languages, enhancing the scarce available data with
a grammatical structure for composition, providing
embeddings of complex expressions (Abbaszadeh
et al., 2021). As these contractions depend on an
underlying metric that is usually taken to be Eu-
clidean, improvements have only been achieved,
once again, by modifying word representations
(Wijnholds and Sadrzadeh, 2019). As proposed
by Correia et al. (2020), another way to improve
on these results consists in using a different metric
to mediate tensor contractions. Metrics obtained in
tasks such as word similarity can be transferred to
tensor contraction, and thus we expect this work to
open new research avenues on the compositional
distributional framework, providing a better inte-
gration with (contextual) language models.

This paper is organized as follows. In §2 we in-
troduce an extended cosine similarity measure, mo-
tivating the introduction of a metric on the hypoth-
esis that it can optimize the relationships between

the vectors. In §3 we explain our experiment on
contextualized and non-contextualized datasets to
test whether improvements can be achieved. In §4
we present the results obtained in our experiments
and in §5 we discuss these results and propose fur-
ther work.

Our contributions are summarized below:

• Use of contextualized datasets to explore con-
textualized dynamic embeddings and evaluate
the viability of contextualized similarity mea-
sures;

• Expansion of the notion of cosine similarity,
motivating our model theoretically, contribut-
ing to a conceptual simplification that yields
interpretable improvements.

1.1 Related Literature
Variations on similarity metrics on the contextual-
ized dataset of Richie et al. (2020) have been first
explored in Richie and Bhatia (2021), but only on
static vector representations and diagonal metrics.
Other analytical approaches to similarity learning
have been identified in Kulis et al. (2013). The
notion of soft cosine similarity of Sidorov et al.
(2014) presents a relevant extension theoretically
similar to ours, but motivated and implemented
differently. Using count-base vector space models
with words and n-grams as features, the authors
extract a similarity score between features, using
external semantic information, that they use as a
distance matrix that can be seen as a metric; how-
ever, they do not implement it as in Eq. (4), but
instead they transform the components by creating
a higher dimensional vector space where each entry
is the average of the components in two features,
multiplied by the metric, whereas we, by contrast,
learn the metric automatically and apply it to the
vectors directly. Hewitt and Manning (2019) also
use a modified metric for inner product to probe the
syntactic structure of the representations, showing
that syntax trees are embedded implicitly in deep
models’ vector geometry.

Context dependency in how humans evaluate
similarity, which we based our study on, has been
widely supported in the psycholinguistic literature.
Tversky (1977) shows that similarity can be ex-
pressed as a linear combination of properties of
objects, Barsalou (1982) looks at how context-
dependent and context-independent properties in-
fluence similarity perception, Medin et al. (1993)
explore how similarity judgments are constrained
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by the very fact of being requested, and Goldstone
et al. (1997) test how similarity judgments are in-
fluenced by context that can either be explicit or
perceived.

2 Model

A metric is a tensor that maps any two vectors to
an element of the underlying field K, which in this
case will be the field of real numbers R. This el-
ement is what is known as the inner product. To
this effect, the metric tensor can be represented
as a function, not necessarily linear, over each of
the coordinates of the vectors it acts on. In geo-
metric terms, the metric characterizes the under-
lying geometry of a vector space, by describing
the projection of the underlying manifold of a non-
Euclidean geometry to a Euclidean geometry Rn

(Wald, 2010). The inner product between two vec-
tors is informed by the metric in a precise way, and
is representative of how the distance between two
vectors should be calculated.

A standard example consists of two unit vectors
on a sphere, which is an S2 manifold that can be
mapped onto R3. If the vectors are represented in
spherical coordinates, which are a map from S2 to
R3, the standard method of computing the angle
between the vectors using Eq. (1) will fail to give
the correct value. The vectors need to be trans-
formed by the appropriate non-linear metric to the
Euclidean basis in R3 before a contraction of the
coordinates can take place. To illustrate this, take
as an example a triangle drawn on the surface of a
sphere S2. If it is projected onto a planisphere R3,
a naive measurement of its internal angles will ex-
ceed the known 180 degrees, which corresponds to
a change in the inner product between the vectors
tangents to the triangle corners (see Levart (2011)
for a demonstration). To preserve this inner prod-
uct, and thus recover the equivalence between a
triangle on a spherical surface and a triangle on a
Euclidean plane, the coordinates need to be prop-
erly transformed by the appropriate metric before
they are contracted.

By the same token, we explore here the possi-
bility that the shortcomings of the values obtained
using cosine similarity when compared with hu-
man similarity ratings are not due to poor vector
representations, but to a measure that fails to assess
the distance between the vectors adequately. To
test this hypothesis, we generalize the inner prod-
uct of Eq. (2) to accommodate a larger class of

relationships between vectors, modifying it using a
metric represented by the distance matrix d, once
a basis is assumed, that defines the inner product
between two vectors as

~na ·d ~nb =
∑

ij

~niad
ij~njb, (4)

where ~nia is the ith component of ~na. Using a
metric of this form, the best we can achieve is a
linear rescaling of the components of the vectors,
which entails the existence of a non-orthogonal
basis. The metric d is required to be bilinear and
symmetric, which is satisfied if

dsym = BTB, (5)

such that Eq. (4) can be rewritten as

~na ·d ~nb = (B~na)
T · (B~nb) . (6)

We can thus learn the components of a metric
for a certain set of vectors by fitting it to the goal of
preserving a specified inner product. In the case of
word similarity, the matrix B can be learned super-
vised on human similarity judgments, towards the
goal that a contextualized cosine similarity applied
to a set of word embeddings, using Eq. (6), returns
the correct human assessment. An advantage of
this approach is that the cosine is symmetric with
respect to its inputs, which is a nice property that
this extension preserves by requiring that symmetry
of the metric.

3 Methods

The general outline of our experiment is as fol-
lows. First, we learn contextualized cosine simi-
larity measures for related (contextualized) pairs
of words, and afterwards for unrelated (non-
contextualized) pairs of words. A schematic rep-
resentation can be found in Fig. 1. We then test
whether these learned measures are transferable
and provide improvements on word pairs that were
not seen during training, when compared with the
standard cosine similarity baseline.

3.1 Datasets
For a contextualized assessments of word similar-
ity, we use the dataset of Richie et al. (2020), where
365 participants were asked to judge the similarity
between English word-pairs that are co-hyponyms
of eight different hypernyms (Table 1). Participants
were assigned a specific hypernym and were asked
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  Context dependent datasets

Each hypernym of Richie et al.
(2020) dataset

Human similarity
judgements

Standard Cosine

(Baseline)

Context independent datasets

Entire Richie et al. (2020)
dataset (all hypernyms)
WordSim353
SimLex999
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Word

Representations

Contextual (dynamic)


BERTctxt

Non-contextual (static and
dynamic)


W2V
GloVe
BERT
GPT-2

Results

Metric learning

Early stopping
k-fold 
Learning rate 

Figure 1: Schematic representation of the experiment leading up to the results in Tables 4 and 5.

to rate the similarity between each co-hyponym
pair from 1 to 7, with the highest rating indicating
the words to be maximally similar. The number
of annotators varies per hypernym, but each word-
pair is rated by around 30 annotators, such that for
the largest categories each annotator only saw a
fraction of the totality of the word-pairs. As exam-
ples from the hypernym ‘Clothing’, the word-pair
‘hat/overalls’ was rated by 32 of the 61 annotators,
resulting in an average similarity of 1.469, while
‘coat/gloves’ had an average similarity rating of
3.281 and ‘coat/jacket’ of 6.438, also by 32 annota-
tors. The average similarity was computed for all
word-pairs and rescaled to a value between 0 and
1, to be used as the target for supervised learning.

Besides trying to fit a contextualized similar-
ity measure to each hypernym, we also consid-
ered the entire all-hypernyms dataset, in order to
test whether training on the hypernyms separately
would result in a better cosine measure compared
with when the hypernym information was disre-
garded.

To test whether similarity measures can be
learned if the similarity of words is not assessed
within a specific context, we use the WordSim-353
(WS353) (Finkelstein et al., 2001) and part of the
SimLex-999 (SL999) (Hill et al., 2015) datasets,
where the word-pairs bear no specific semantic re-
lation. From the SL999 dataset only the nouns

Table 1: Number of words, word-pairs and human an-
notators per hypernym.

Hypernym Words Pairs Annotators
Birds 30 435 54
Clothing 29 406 61
Professions 28 378 67
Sports 28 378 61
Vehicles 22 231 28
Fruit 21 210 31
Furniture 20 190 33
Vegetables 20 190 30
All 198 2418 365

were included, resulting in a dataset of 666 word-
pairs. Additionally, we use these datasets to verify
whether the similarity metric learned by training
on the whole dataset of Richie et al. (2020) can be
transferred to other, more general, datasets.

3.2 Word embeddings

To fine-tune the cosine similarity measure, we start
from different pre-trained word representations.
We do that for two classes of embeddings, static
and dynamic.

Static embeddings were obtained from a pre-
trained word2vec (W2V) model (Mikolov et al.,
2013) and a pre-trained GloVe model (Pennington
et al., 2014), each used to encode each word in the
pair. Dynamic embeddings were obtained from two
Transformers-based models, pre-trained BERT (De-
vlin et al., 2019) and GPT-2 models (Radford et al.,
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Representation Corpus Corpus size Dim
word2vec Google News 100B 300
GloVe GigaWord Corpus & Wikipedia 6B 200
BERTbase-uncased BooksCorpus & English Wikipedia 3.3B 768
GPT-2medium 8 million web pages ∼ 40 GB 768

Table 2: Pre-trained embeddings obtained from differ-
ent source language models, with BERT and GPT-2 im-
plemented using the Huggingface Transformers library.

Hypernym Context words
Birds small, migratory, other,

water, breeding
Clothing cotton, heavy, outer, winter,

leather
Professions health, legal, engineering,

other, professional
Sports youth, women, men, ea, boys
Vehicles military, agricultural, motor,

recreational, commercial
Fruit citrus, summer, wild, sweet,

passion
Furniture wood, furniture, modern,

antique, office
Vegetables some, wild, root, fresh, green

Table 3: Five most likely words for masked token pre-
ceding hypernym token using BERT.

2019) (see Table 2). Here the representation of
each word was taken to be the average representa-
tion of sub-word tokens when necessary, excluding
the [CLS] and [SEP] tokens.

The token representations provided by the BERT
model, as a bidirectional dynamic language model,
can change depending on the surrounding context
tokens. As such, additional contextualized embed-
dings were retrieved, BERTctxt, to test whether per-
formance could be improved relative to the baseline
cosine metric by using the hypernym information,
as well as when compared with the hypernym co-
sine metric learned on non-contextualized repre-
sentations. In this way we test whether leveraging
the contextual information intrinsic to this dataset
can in itself improve similarity at the baseline level,
without the need of further training.

The contextualized vectors of BERTctxt were
obtained by first having BERT predict the five
most likely adjectives that precede each hypernym
using ([MASK] <hypernym>), and then using
those adjectives to obtain five contextualized em-
beddings for each co-hyponym, subsequently aver-
aged over. Most of the predicted words were adjec-
tives, and the few cases that were not were filtered
out. For instance, for the category ‘Clothing’, the
most likely masked tokens were ‘cotton’, ‘heavy’,
‘outer’, ‘winter’ and ‘leather’. The contextualized
representation of each hyponyms of ‘Clothing’ was

(a)

(b)

(c)

(d)

Figure 2: Distributions of pairwise human similarity
judgments simhum and cosine similarity measures us-
ing either BERT representations (cos(BERT)) or con-
textualized BERT representations (cos(BERTctxt)). In
(a) and (b) the absolute difference of scores, ordered
per hypernym, is shown, while (c) and (d) represent the
distribution of different similarity scores with respect
to each other. Comparing the first two plots we can
see a regularization effect by contextualizing the repre-
sentations, and between the last two plots we can see a
clustering effect.
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thus calculated as its average representation in the
context of each of the adjectives, so that, for in-
stance, for ’coat’ we first obtained its contextual-
ized representation in ‘cotton coat’, ‘heavy coat’,
‘outer coat’, ‘winter coat’, and ‘leather coat’, per-
forming a final averaging. The full list of context
words can be found in Table 3. Figs. 2a and 2b
show that this transformation reduces the absolute
extreme values of the difference between the val-
ues of the standard cosine similarity and the cor-
responding human similarity assessments, while
regularizing the bulk of the differences closer to
the desired value of 0. We tested other forms of
contextualizing, such as (<hypernym> is/are
[MASK]), but the resulting representations did not
show as much improvement.

The WS353 and SL999 datasets were only
trained with non-contextualized embeddings, since
we cannot obtain contextualized embeddings for
the nouns in these datasets using the same method.
For consistency, the models that were learned with
contextualized representations were not tested on
these datasets at the final step of our experiment.

3.3 Model

A linear model was implemented on the PyTorch
machine learning framework to learn the parame-
ters of B, without a bias, such that a word initially
represented by inputa is transformed to input’a =
Binputa. The forward function of this model takes
two inputs and returns

(input’a)
T · input’b√

(input’a)
T · input’1

√
(input’b)

T · inputb
, (7)

where a and b correspond to the indices of the
words of a given word-pair1.

3.4 Cross-validation

The number of co-hyponyms per hypernym is small
when compared with the number of parameters
in B to be trained, which depends on the square
of the dimension Dim of each representation. To
ensure that the models did not overfit, a k-fold
cross-validation was used during training (Raschka,
2015), which divided each dataset in k training sets
and non-overlapping development sets. Addition-
ally, early stopping of training was implemented
in the event that the validation loss increased for

1https://github.com/maradf/
Contextualized-Cosine

Figure 3: Example of learning curve, showing losses
over epochs, from a fold training on the hypernym
Clothes on the GloVe embeddings. In this case, train-
ing was stopped early at 397 epochs.

ten consecutive epochs after it dropped below 0.1
(Bishop, 2006).

3.5 Hyperparameter selection

Per each dataset h (each hypernym, all hypernyms,
WS353 or SL999) and learning rate lr, k models
Bh

i,lr
were trained, with i ∈ {1, ..., k} and with k

corresponding validation sets vali. The training
was done using two 16 cores (64 threads) Intel
Xeon CPU at 2.1 GHz.

A fixed seed was used to find the best combina-
tion of the learning rate lr (1 × 10−5, 1 × 10−6,
and 1 × 10−7) and the number of folds (5, 6 and
7) for the k-fold cross-validation. The regression
to the best metric was done using the mean square
error loss function and the Adam optimizer. The
maximum number of training epochs was set to
500, as most models converged at that point as per
preliminary learning curve inspection (Fig.3). The
implementation of early stopping resulted in de
facto variation of the number of epochs required to
train each model.

3.6 Testing the model

Each one of the Bh
i,lr

models was tested on the cor-
responding holdout validation set vali, resulting
in two correlation scores between the models’ pre-
dicted similarity scores and the human judgment
scores: a Pearson correlation score rhi,lr(val

h
i ) and

a Spearman correlation score ρhi,lr(val
h
i ). A final

score per k and lr was calculated using the average
performance on the validation sets as
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(a) Pearson correlations.

Dataset (h) BERT BERTctxt GPT-2 word2vec GloVe

Model Base Model Base Model Base Model Base Model Base

Birds 0.311 0.098 0.316 0.042 0.200 -0.023 0.293 0.213 0.215 0.194
Clothing 0.550 0.141 0.515 0.065 0.501 0.349 0.529 0.417 0.574 0.364
Professions 0.501 0.193 0.601 0.073 0.651 0.542 0.635 0.566 0.529 0.529
Sports 0.452 0.175 0.543 0.139 0.556 0.324 0.532 0.418 0.580 0.386
Vehicles 0.496 0.218 0.616 0.123 0.645 0.385 0.738 0.719 0.703 0.567
Fruit 0.315 0.016 0.378 -0.037 0.333 0.203 0.361 0.239 0.571 0.392
Furniture 0.353 -0.018 0.539 -0.035 0.568 0.399 0.368 0.333 0.470 0.462
Vegetables 0.211 -0.059 0.293 -0.044 0.378 0.144 0.577 0.281 0.562 0.290
All hypernyms 0.434 0.100 0.542 0.040 0.508 0.287 0.483 0.400 0.539 0.397
WordSim-353 0.517 0.238 - - 0.651 0.647 0.637 0.654 0.622 0.568
SimLex-999 0.403 0.161 - - 0.555 0.504 0.495 0.455 0.510 0.408

(b) Spearman correlations.

Dataset (h) BERT BERTctxt GPT-2 word2vec GloVe

Model Base Model Base Model Base Model Base Model Base

Birds 0.260 0.102 0.299 0.052 0.190 -0.054 0.250 0.211 0.238 0.201
Clothing 0.436 0.184 0.467 0.059 0.445 0.276 0.510 0.414 0.513 0.384
Professions 0.501 0.248 0.578 0.170 0.560 0.473 0.518 0.410 0.482 0.486
Sports 0.391 0.174 0.526 0.142 0.540 0.291 0.458 0.339 0.478 0.325
Vehicles 0.518 0.238 0.601 0.056 0.626 0.288 0.709 0.687 0.680 0.596
Fruit 0.265 -0.014 0.333 -0.103 0.365 0.173 0.368 0.277 0.491 0.342
Furniture 0.353 -0.032 0.491 -0.120 0.527 0.393 0.442 0.402 0.464 0.451
Vegetables 0.217 -0.028 0.305 0.015 0.363 0.089 0.587 0.290 0.528 0.228
All hypernyms 0.407 0.111 0.504 0.034 0.504 0.242 0.446 0.379 0.477 0.377
WordSim-353 0.543 0.267 - - 0.715 0.705 0.675 0.701 0.624 0.579
SimLex-999 0.416 0.180 - - 0.566 0.513 0.475 0.445 0.500 0.374

Table 4: Best correlation scores between human similarity judgments and similarity scores found by the trained
model, compared with baseline cosine metric values of the same hyperparameters. The underlined correlation
values are the statistical significant values with a p < 0.05, and the bold values correspond to model correlations
that were higher than base correlations.

rhk,lr =
1

k

k∑

i=1

rhi,lr(val
h
i ), (8)

ρhk,lr =
1

k

k∑

i=1

ρhi,lr(val
h
i ). (9)

The baseline results were obtained in a similar
form, but with the model Bstd corresponding to
the identity matrix, returning the standard cosine
similarity rating as

rh,stdk =
1

k

k∑

i=1

rstd(valhi ), (10)

ρh,stdk =
1

k

k∑

i=1

ρstd(valhi ). (11)

The model results shown in Table 4 correspond
to the best correlation values obtained using Eqs.
(8) and (9), with the baselines given as in Eqs. (10)

and (11). The hyperparameters corresponding to
the best results can be found in Table 5, along with
the relative change in correlation performance. As
the seed was fixed, the differences in performance
achieved by models trained on each hypernym
and on all-hypernyms of the contextualized dataset
were not due to randomization errors. The final
correlation per fold on the entire all-hypernyms
dataset was found by first calculating the correla-
tion per hypernym and then averaging over all eight
hypernyms.

To test the transferability of the metric learned
on the all-hypernyms dataset to other datasets, the
model that returned the best correlation scores on
the validation datasets of the all-hypernyms dataset
was tested on the entire WS353 and SL999 datasets.
As the best performing model consists in fact of k
models, each one of these was tested on the entire
datasets, as
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(a) Pearson correlations.

Dataset (h) BERT BERTctxt GPT-2 W2V GloVe

% lr , k % lr, k % lr, k % lr, k % lr, k

Birds 217 10−6,5 652 10−6, 5 770 10−5, 5 38 10−5, 5 11 10−5, 7
Clothing 290 10−6,5 692 10−6, 6 44 10−5, 6 27 10−5, 7 58 10−6, 5
Professions 160 10−6, 5 723 10−6, 6 20 10−5, 5 12 10−5, 7 0 10−5, 5
Sports 158 10−5, 6 291 10−6, 6 72 10−5, 6 27 10−5, 6 50 10−6, 7
Vehicles 128 10−6, 6 401 10−5, 7 68 10−5, 5 3 10−5, 5 24 10−6, 6
Fruit 1869 10−5, 7 922 10−6, 6 64 10−5, 7 51 10−6, 5 46 10−7, 7
Furniture 1861 10−5, 7 1440 10−6, 6 42 10−5, 7 11 10−5, 6 2 10−5, 6
Vegetables 258 10−5, 7 566 10−6, 6 163 10−5, 5 105 10−6, 7 94 10−6, 5
All 334 10−5, 5 1255 10−6, 7 77 10−5, 6 21 10−5, 6 36 10−7, 6
WordSim-353 117 10−6, 7 - - 1 10−5, 7 -3 10−5, 6 10 10−5, 5
SimLex-999 150 10−6, 7 - - 10 10−5, 6 9 10−5, 6 25 10−6, 5

(b) Spearman correlations.

Dataset (h) BERT BERTctxt GPT-2 W2V GloVe

% lr, k % lr, k % lr, k % lr, k % lr, k

Birds 155 10−6, 5 475 10−6, 5 252 10−5, 7 18 10−5, 5 18 10−7, 5
Clothing 137 10−6, 5 692 10−6, 6 61 10−5, 7 23 10−5, 7 34 10−6, 5
Professions 102 10−6, 7 240 10−6, 5 18 10−5, 5 26 10−5, 7 -1 10−7, 6
Sports 125 10−5, 6 270 10−6, 6 86 10−5, 6 35 10−5, 6 47 10−6, 6
Vehicles 118 10−6, 6 973 10−6, 6 117 10−5, 7 3 10−5, 5 14 10−6, 6
Fruit 1793 10−6, 7 223 10−6, 6 111 10−5, 6 33 10−6, 6 44 10−7, 7
Furniture 1003 10−6, 6 309 10−6, 5 34 10−5, 5 10 10−5, 6 3 10−6, 7
Vegetables 675 10−5, 7 1933 10−6, 6 308 10−5, 5 102 10−6, 7 132 10−6, 5
All hypernyms 267 10−5, 5 1382 10−6, 7 108 10−5, 6 18 10−5, 6 27 10−6, 5
WordSim-353 103 10−6, 5 - - 1 10−5, 7 -4 10−6, 5 8 10−5, 5
SimLex-999 131 10−6, 7 - - 10 10−5, 6 7 10−5, 6 34 10−6, 5

Table 5: Change (%) in correlation from Table 4, given by (|Model| − |Base|)/|Base|, at corresponding best
hyperparameters (lr, k). Values in bold indicate the highest increase on a given dataset.

rh,testk,lr
=

1

k

k∑

i=1

rAll−hyp
i,lr

(testh), (12)

ρh,testk,lr
=

1

k

k∑

i=1

ρAll−hyp
i,lr

(testh), (13)

with h ∈ {WS353,SL999}.
The baselines for these results were obtained

by applying Bstd to the entire WS353 and SL999
datasets as

rh,std = rstd(testh), (14)

ρh,std = ρstd(testh). (15)

As the correlation functions are not linear, the re-
sults from Eqs. (10) and (11) for the WS353 and
SL999 datasets are expected to differ from those
obtained using Eqs. (14) and (15) for the same
datasets.

4 Results

The validation results on Table 4 show consistent
improvements over the baselines, with statistical
significance. This confirms that the modification
introduced to the cosine measure worked in a prin-
cipled way, and consistent with the results found by
Richie and Bhatia (2021). On the individual hyper-
nym datasets, ‘Vehicles’ showed the best correla-
tions, except for the Pearson correlation in GPT-2,
in spite of not being the largest hypernym dataset.
On the contrary, the smallest categories showed
the lowest correlations. In general, the relative per-
formance of hypernyms according to the baselines
extends to the model correlations, although with
better performance. With some exceptions, mainly
in the ‘Birds’ hypernym, the best performing rep-
resentation was GPT-2, followed by W2V, but the
relative increase as shown in Table 5 was clearly
superior for the dynamic representations. An im-
portant observation that we make is that the model
trained on all hypernyms had a better performance
than the average performance on the individual hy-
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pernyms. As the seed was fixed, this means that
the performance on the hypernym-specific valida-
tion sets increased if at training time the models
saw more examples, from different categories, in-
dicating that a similarity relationship was learned
and transferred across different contexts. Improve-
ments over baseline also took place if a metric was
learned on datasets where the word pairs did not
share a context, as was the case with WS353 and
SL999, but the percentual increase was lower, as
seen in Table 5.

Comparing the results of BERT contextualized
and non-contextualized, the baseline values of the
contextualized representations were worse than
those obtained with the contextualized embeddings,
although without statistical significance, while the
improvement after training was consistently better
and significant for all datasets with the contextu-
alized representations. Figs. 2c and 2d, show that
the distribution of points using the contextualized
embeddings is more concentrated and collinear,
making it more likely that a metric that acts in the
same way for all points in the dataset will rotate
and rescale them into a positive correlation. The
percentual increases also show that BERT contex-
tualized had the greatest increases from before to
after training, suggesting that there was a cumula-
tive effect in considering the context both in the
representations and in the similarity measure.

Table 6 shows the results of applying the best
model learned on all hypernyms to the WS353 and
SL999 datasets. The baseline values for the static
representations are comparable with the existing
literature (Toshevska et al., 2020). We see that our
model was capable of improving on the correlation
scores on the datasets, for some representations.
Although the improvements did not happen across
the board, they show clear evidence that the notion
of similarity in the form of a modified cosine
measure can be learned in one dataset and applied
with positive results to an independent dataset.

Pearson Spearman

WS353 SL999 WS353 SL999

BERT Model 0.487 0.375 0.519 0.384
Base 0.239 0.151 0.267 0.172

GPT-2 Model 0.635 0.507 0.676 0.513
Base 0.647 0.504 0.709 0.520

W2V Model 0.613 0.472 0.632 0.457
Base 0.653 0.460 0.700 0.452

GloVe Model 0.593 0.431 0.558 0.392
Base 0.578 0.408 0.578 0.376

SOTA 0.704 0.658 0.828 0.76

Table 6: Best model trained on all hypernyms, tested
on SimLex-999 and WordSim-353 datasets. Bold val-
ues indicate correlation scores above baseline, and un-
derlining indicates statistical significance. State of the
art from Recski et al. (2016); Dobó and Csirik (2020);
Speer et al. (2017); Banjade et al. (2015).

5 Conclusion and Outlook

In this paper we tested whether a contextualized
notion of cosine similarity could be learned, im-
proving the similarity not only of the results for the
datasets where it was learned, but of unrelated sim-
ilarities. We showed that this metric improved the
correlations above baseline, and that, when learned
on a contextualized similarity dataset, it had an ad-
vantage when compared to one learned on a dataset
with unrelated word-pairs. We furthermore showed
that this framework has the potential to generalize
the notion of similarity to word-pairs it has not seen
during training. An important future research line
towards interpretability consists in understanding
the properties of the metrics that yielded the best
results, particularly in identifying the distinctive
features of the best metrics, such as their eigen-
systems. Other further directions include apply-
ing these metrics to distributional compositional
contractions, including with dependency enhance-
ments (Kogkalidis et al., 2019), testing this frame-
work on larger contextualized datasets and trying
out more complex, non-linear, metric forms.

Acknowledgements

All authors would like to thank Juul A. Schoevers
for contributions made during the early stages of
the project. A.D.C. would like to thank Gijs Wijn-
holds, Konstantinos Kogkalidis, Michael Moortgat
and Henk T.C. Stoof for the many exchanges dur-
ing this research. This work is supported by the
UU Complex Systems Fund, with special thanks to
Peter Koeze.

136



References
Mina Abbaszadeh, S Shahin Mousavi, and Vahid Salari.

2021. Parametrized quantum circuits of synony-
mous sentences in quantum natural language pro-
cessing. arXiv preprint arXiv:2102.02204.

Sheldon Jay Axler. 1997. Linear algebra done right.
Springer.

Rajendra Banjade, Nabin Maharjan, Nobal B Niraula,
Vasile Rus, and Dipesh Gautam. 2015. Lemon and
tea are not similar: Measuring word-to-word simi-
larity by combining different methods. In Interna-
tional conference on intelligent text processing and
computational linguistics, pages 335–346.

Marco Baroni, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. Frege in space: A program for
composition distributional semantics. In Linguis-
tic Issues in Language Technology, Volume 9, 2014-
Perspectives on Semantic Representations for Tex-
tual Inference.

Lawrence W Barsalou. 1982. Context-independent and
context-dependent information in concepts. Mem-
ory & cognition, 10(1):82–93.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency
(ACM FAccT ‘21), pages 610–623.

Christopher M Bishop. 2006. Pattern recognition and
machine learning. Springer.

M Sadrzadeh B Coecke and S Clark. 2010. Mathe-
matical foundations for a compositional distributed
model of meaning. Lambek Festschirft‚ Linguistic
Analysis, 36(1-4):345–384.

Adriana D Correia, Michael Moortgat, and Henk TC
Stoof. 2020. Density matrices with metric for
derivational ambiguity. Journal of Applied Logics,
2631(5):795.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL ‘19), pages
4171–4186.

András Dobó and János Csirik. 2020. A comprehen-
sive study of the parameters in the creation and
comparison of feature vectors in distributional se-
mantic models. Journal of Quantitative Linguistics,
27(3):244–271.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th Interna-
tional Conference on World Wide Web (WWW ‘01),
pages 406–414.

Robert L Goldstone, Douglas L Medin, and Jamin Hal-
berstadt. 1997. Similarity in context. Memory &
Cognition, 25(2):237–255.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011a.
Experimental support for a categorical composi-
tional distributional model of meaning. In Proceed-
ings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP ‘11),
page 1394–1404.

Edward Grefenstette and Mehrnoosh Sadrzadeh.
2011b. Experimenting with transitive verbs in a
DisCoCat. In Proceedings of the 2011 Workshop
on GEometrical Models of Natural Language
Semantics (GEMS ‘11), pages 62–66.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL ‘19), pages
4129–4138.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Konstantinos Kogkalidis, Michael Moortgat, and Te-
jaswini Deoskar. 2019. Constructive type-logical su-
pertagging with self-attention networks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP ‘19), pages 113–123.

Brian Kulis et al. 2013. Metric learning: A sur-
vey. Foundations and Trends R© in Machine Learn-
ing, 5(4):287–364.

Borut Levart. 2011. Triangles on a sphere. Wolfram
Demonstrations Project.

Douglas L Medin, Robert L Goldstone, and Dedre Gen-
tner. 1993. Respects for similarity. Psychological
review, 100(2):254.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems
(NIPS ‘13), pages 3111–3119.

Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh
Sadrzadeh, and Matthew Purver. 2014. Evaluating
neural word representations in tensor-based compo-
sitional settings. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP ‘14), pages 708–719.

Denis Paperno, Marco Baroni, et al. 2014. A practi-
cal and linguistically-motivated approach to compo-
sitional distributional semantics. In Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics (ACL ‘14), pages 90–99.

137



Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP ‘14), pages 1532–1543.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Sebastian Raschka. 2015. Python machine learning.
Packt publishing.

Gábor Recski, Eszter Iklódi, Katalin Pajkossy, and An-
drás Kornai. 2016. Measuring semantic similarity
of words using concept networks. In Proceedings
of the 1st Workshop on Representation Learning for
NLP (RepL4NLP ‘16), pages 193–200.

Russell Richie and Sudeep Bhatia. 2021. Similar-
ity judgment within and across categories: A com-
prehensive model comparison. Cognitive Science,
45(8):e13030.

Russell Richie, Bryan White, Sudeep Bhatia, and
Michael C Hout. 2020. The spatial arrangement
method of measuring similarity can capture high-
dimensional semantic structures. Behavior research
methods, 52(5):1906–1928.

Gerard Salton and Michael J McGill. 1983. Introduc-
tion to modern information retrieval. McGraw Hill.

Mykhaylo Schwarz, Mykhaylo Lobur, and Yuriy Stekh.
2017. Analysis of the effectiveness of similarity
measures for recommender systems. In Porceedings
of the 14th International Conference The Experience
of Designing and Application of CAD Systems in Mi-
croelectronics (CADSM ‘17), pages 275–277.

Grigori Sidorov, Alexander Gelbukh, Helena Gómez-
Adorno, and David Pinto. 2014. Soft similarity and
soft cosine measure: Similarity of features in vector
space model. Computación y Sistemas, 18(3):491–
504.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI ‘17),
pages 4444–4451.

Martina Toshevska, Frosina Stojanovska, and Jovan
Kalajdjieski. 2020. Comparative analysis of word
embeddings for capturing word similarities. arXiv
preprint arXiv:2005.03812.

Amos Tversky. 1977. Features of similarity. Psycho-
logical review, 84(4):327.

Robert M Wald. 2010. General relativity. University
of Chicago Press.

Gijs Wijnholds and Mehrnoosh Sadrzadeh. 2019. Eval-
uating composition models for verb phrase elliptical
sentence embeddings. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL
‘19), pages 261–271.

Ian H Witten, Eibe Frank, Mark A Hall, and CJ Pal.
2005. Data Mining: Practical machine learning
tools and techniques. Elsevier.

138



Proceedings of the 18th International Conference on Natural Language Processing, pages 139–151
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)

Context Matters in Semantically Controlled Language Generation for
Task-oriented Dialogue Systems

Ye Liu1, Wolfgang Maier2, Wolfgang Minker3 and Stefan Ultes4
1,2,4Mercedes-Benz AG, Sindelfingen, Germany

1,3Ulm University, Ulm, Germany
1ye.y.liu@daimler.com

2,4{wolfgang.mw.maier,stefan.ultes}@daimler.com
3wolfgang.minker@uni-ulm.de

Abstract

This work combines information about the di-
alogue history encoded by pre-trained mod-
els with a meaning representation of the cur-
rent system utterance to realize contextual lan-
guage generation in task-oriented dialogues.
We utilize the pre-trained multi-context Con-
veRT model for context representation in a
model trained from scratch; and leverage the
immediate preceding user utterance for con-
text generation in a model adapted from the
pre-trained GPT-2. Both experiments with
the MultiWOZ dataset show that contextual
information encoded by pre-trained models
improves the performance of response gener-
ation both in automatic metrics and human
evaluation. Our presented contextual gener-
ator enables higher variety of generated re-
sponses that fit better to the ongoing dialogue.
Analysing the context size shows that longer
context does not automatically lead to bet-
ter performance, but the immediate preceding
user utterance plays an essential role for con-
textual generation. In addition, we also pro-
pose a re-ranker for the GPT-based genera-
tion model. The experiments show that the re-
sponse selected by the re-ranker has a signifi-
cant improvement on automatic metrics.

1 Introduction

In a conversation, speakers are influenced by pre-
vious utterances and tend to adapt their way of
speaking to each other (Dušek and Jurcicek, 2016;
Reitter et al., 2006). Furthermore, generating the
responses that fit well to dialogue context facilitates
successful conversation and strengthens the user’s
impression of Spoken Dialogue Systems (SDSs).
Several previous works (Dušek and Jurcicek, 2016;
Kale and Rastogi, 2020; Sankar et al., 2019) have
explored the impact of previous dialogue informa-
tion on the generated language in task-oriented
dialogue. However, how to efficiently infuse the

MR: inform
(type=guesthouse;

stars=4)

Context: My friend
told me about a place

called the Carolina Bed
and Breakfast. Do you

know anything about it?

typical
NLG

contextual
NLG

It is a 4 star guesthouse. Yes, it is a guesthouse
with a 4 star rating.

Figure 1: An example of contextual NLG (red part)
compared with typical NLG (blue part) in our experi-
ments. (More examples with multi-turn context please
find in the Appendix)

dialogue context into a semantically controlled gen-
erator for improving the contextual interactive ex-
perience is still challenging. Such as, the contextual
generator proposed in Dušek and Jurcicek (2016)
has no big improvement without the help of an ad-
ditional re-ranker. The empirical study in Sankar
et al. (2019) demonstrated that both recurrent and
transformer-based seq2seq model can not effec-
tively consider previous dialogue history for gen-
eration. In this work, we propose two contextual
generators, which both utilize pre-trained models
to encode dialogue context. And the experiment
results show that context does matter in semanti-
cally controlled task-oriented Natural Language
Generation (NLG).

The function of NLG in task-oriented SDS is to
generate meaningful output in the form of natural
language with the guidance of meaning represen-
tation (MR). The MR is a formalism of response
semantics and generally represents a dialogue ac-
tion (DA), such as inform or request, along with
one or more slots and their values (See the MR in
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Figure 1). However, this typical NLG only takes
the input MR into account and has no clue on how
to adapt to the dialogue history. This results in
coarse and flat responses (see the blue part in Fig-
ure 1). To enable the contextual interaction in SDS,
task-oriented NLG should not only contain the de-
sired MR information, but also have access to the
dialogue history. The example shown in Figure 1
taken from our experiments: compared with non-
contextual generation, the response with context
guidance adapts better to the preceding dialogue
and is more like a sentence from a real human. In
addition, the contextual NLG models are prone to
generate more diverse responses.

In summary, the main contributions of this paper
are as follows:

• To leverage the contextual nature of the multi-
turn dialogue, we utilize the pre-trained multi-
context ConveRT (Henderson et al., 2020) to
encode dialogue history for the contextual
generator. These contextual embeddings are
then forwarded to the Semantically Controlled
LSTM (SC-LSTM) generator (Wen et al.,
2015). The ConveRT initialized SC-LSTM
is called CSC-LSTM for short in this paper.
With the powerful multi-context encoding of
ConveRT, we also analyse the impact of vari-
able context size on CSC-LSTM. To the best
of our knowledge, we are the first to utilize the
pre-trained conversational model ConveRT
for contextual generation in task-oriented dia-
logue system.

• We leverage only the immediate preced-
ing user utterance for contextual generation.
Adapted from GPT-2 (Radford et al., 2019),
the user utterance and DA guide the contextual
generation as context and semantic informa-
tion respectively. We call Contextually and
Semantically Conditioned GPT CSC-GPT
for short in this paper. The experiments of
GPT-based contextual model show that gen-
eration benefits from dialogue context, even
if only immediate preceding user utterance is
taken into account.

• We propose a BERT-based (Devlin et al.,
2019) Re-ranker (BERT-R) for the CSC-GPT
generator, to select system response that fit
better to the user utterance. Given the top 5
generations of CSC-GPT, several automatic

scores are regarded as contextual basis be-
tween user utterance and system response to
train on a multiple regression task adapted
from BERT. Experiments show that the re-
selected generation has a significant improve-
ment on the performance scores.

The remainder of this paper is structured as fol-
lows: Section 2 shows the related works of our
research. Section 3 introduces the dataset and the
automatic metric scores which are used in this work.
Section 4 describes our proposed three models:
CSC-LSTM, CSC-GPT and BERT-R, as well as
the experiment details. Section 5 shows the experi-
ment results of all models in automatic metrics and
human evaluation. The last Section 6 concludes
and outlines future research.

2 Related Works

For task-oriented NLG, semantically controlled
neural models play a significant role. Wen et al.
(2015) introduced a semantically conditioned
model by adding an additional semantic cell in
LSTM to control the DA, which is defined as the
combination of intent and slot-value pairs, for gen-
eration. Tseng et al. (2018) improved the RNN-
based generator by considering latent information
using the semantically conditional variational au-
toencoder architecture. As the major advantage
and superior performance of pre-trained LMs (De-
vlin et al., 2019; Radford et al., 2019), Peng et al.
(2020b) proposed a semantically controlled gener-
ation model based on GPT-2; Chen et al. (2020)
and Peng et al. (2020a) presented an end-to-end
task-oriented SDS based on the pre-trained GPT-2.
Even though there has been plenty of works on
semantically guided NLG, most approaches fail in
utilizing information of the preceding interaction.

Dušek and Jurcicek (2016) stood out as they ex-
tended the idea of NLG from MRs by adding one
preceding user utterance to their recurrent encoder.
However, we are more interested in the influence
of bigger context sizes in CSC-LSTM contextual
generation. And the model in Dušek and Jurcicek
(2016) was not able to show any improvement for
contextual generation without an additional n-gram
match re-ranker. However, our proposed contex-
tual generators outperform both the baselines even
without re-ranker and the re-ranker in our work can
further highly improve the generation performance
on automatic metrics. Sankar et al. (2019) made an
empirical study to understand how models use the
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available dialog history for generation and found
that both recurrent and transformer-based seq2seq
model can not consider previous dialogue history
effectively. However, the dialogue history in our
work is encoded by pre-trained models and exper-
iments show that the generation in task-oriented
dialogue benefits from dialogue history. Kale and
Rastogi (2020) also examined the role of context
and demonstrated that the generation benefits from
the dialogue history. While their approach highly
relies on manually pre-defined templates which are
costly to create, in this work, all responses are di-
rectly generated without the need of any templates.

3 Dataset and Automatic Metrics

In our work, the automatic metric scores are not
only used for performance evaluation, but also used
for the BERT-R training in Section 4.3. Hence, we
introduce the dataset and the automatic metrics
beforehand in this section.

3.1 MultiWOZ dataset
The original MultiWOZ (Budzianowski et al.,
2018) dataset is a fully-labeled collection of human-
human written conversations spanning over mul-
tiple domains and topics. It contains over 10, 000
dialogues spanning 8 domains, namely: Restaurant,
Hotel, Attraction, Taxi, Train, Hospital, Bus, and
Police. The test and validation sets contain 1, 000
examples each for performance comparison. The
MultiWOZ 2.1 (Eric et al., 2020) and MultiWOZ
2.2 (Zang et al., 2020) both fix some dialogue state
annotation errors and dialogue utterances, resulting
in an improved version of the original MultiWOZ.

The MultiWOZ 2.1 is used for evaluation of
CSC-LSTM in Section 4.1 in accordance with re-
lated work. The MultiWOZ 2.1 and 2.2 are both
used additionally for evaluating CSC-GPT and
BERT-R in Section 4.2 and 4.3.

3.2 Automatic metrics
The following metrics are used for performance
comparison in Section 5 and several are applied for
BERT-R training as target score in Section 4.3.

3.2.1 N-gram matching metrics
BLEU-4 is the 4-gram BLEU score (Papineni et al.,
2002), which is the most widely used metric score
for evaluating the performance of language genera-
tion and machine translation. In this work, BLEU-4
is computed for multiple values of n = (1, 2, 3, 4)
with weights (0.25, 0.25, 0.25, 0.25) respectively

and the scores are averaged geometrically. A
smoothing function is used to avoid that no n-gram
overlaps are found.

The target signal τBLEU-4 in Section 4.3 repre-
sents the BLEU-4 score between system generated
response and gold reference in BERT-R.

Meteor (Banerjee and Lavie, 2005) is a kind of
weighted F-score based on mapping unigrams and
also computes a penalty function for incorrect word
order. Lavie and Agarwal (2007) demonstrated that
Meteor score has high correlation with human rat-
ings.

The target signal τMeteor in Section 4.3 represents
the Meteor score between system generation and
gold reference in BERT-R.

3.2.2 Machine learned metric
BERTScore (Zhang et al., 2019) is a machine
learned automatic evaluation metric for text gener-
ation that has shown a high correlation with human
judgments. BERTScore leverages the pre-trained
contextual embeddings from variants of BERT (De-
vlin et al., 2019) and matches words in candidate
and reference sentences by cosine similarity. More-
over, BERTScore computes precision, recall, and
F1 measure1. Zhang et al. (2019) showed that the
Roberta (Liu et al., 2019) large model has the best-
performing results for English tasks. So the roberta-
large model2 is used for computing BERTScore in
this work.

The target signals τBERTpre , τBERTrec , τBERTf1 in
Section 4.3 represent the precision, recall and F1
of BERTScore between system response and gold
reference respectively in BERT-R.

3.2.3 Other metrics:
ConveRT cosine similarity: ConveRT (Hender-
son et al., 2020) is a light-weight conversational
model pre-trained on the large Reddit conversa-
tional corpus (Henderson et al., 2019). It provides
powerful representations for conversational data
and can be used as a response ranker by compar-
ing the cosine similarity between user utterance
and multiple responses. In this work, we not only
utilize the pre-trained ConveRT for context embed-
ding in CSC-LSTM, but also for a target score in
BERT-R.

The target signal τConveRT-cs in Section 4.3 means

1Only F1 score, which represents a reasonable balance
between recall and precision, is shown in Table 1, Table 2,
Table 4, Table 5 and Figure 2 for performance comparison.

2https://github.com/Tiiiger/bert score
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Figure 2: The curves of BLEU-4, Meteor, BERTScore
and Variation size over CSC-LSTM model with differ-
ent context size (the exact value of metrics please find
in Table 1) show similar tendency: the both ends of ev-
ery curve have better performance than the inner part.

the cosine similarity of ConveRT embedding be-
tween user utterance and system response in BERT-
R.

Variation size measures the variation of the gen-
erated system responses, i.e., how many different
realisations are generated for one DA on average.
The variation size results computed on the full Mul-
tiWOZ test data are shown in the left part of the
results column (/) while the right part shows the
variation size computed only over the instances of
the test data with DA that appear more than once,
i.e., where variation can actually occur.

4 The Proposed Models and Experiment
Details

In this section, our proposed models (two contex-
tual generators, one response re-ranker) and corre-
sponding experiment details are introduced.

4.1 ConveRT initialized SC-LSTM:
CSC-LSTM

We train CSC-LSTM3 on the basis of the SC-
LSTM (Wen et al., 2015), where a semantic con-
trol cell encodes DA into an one-hot embedding
to guide the task-oriented generation that is obliv-
ious about any dialogue history. In our proposed
CSC-LSTM, we apply the pre-trained multi-context
ConveRT4 for encoding the dialogue history and
the contextual embedding is forwarded to initialize
the SC-LSTM generator. Before initialization in
CSC-LSTM, a non-linear transformation5 is applied,
which is shown in Eq. 1, to project the ConveRT

3The architecture of CSC-LSTM is shown in Appendix.
4https://github.com/davidalami/ConveRT
5Using the same hidden size as the dimension of the Con-

veRT embedding, i.e., CSC-LSTM (hidden size 512) without
project function d0 in Eq. 1 results in worse performance.

embedding into the SC-LSTM decoder space:

h0 = tanh(WCe + b) . (1)

h0 ∈ Rdg is the SC-LSTM decoder initial recurrent
state, Ce ∈ Rdc is the ConveRT context embedding
and W ∈ Rdg×dc projects the context level embed-
ding into the decoder space. The W and b are
learnable parameters during the CSC-LSTM train-
ing.

Experiment details of CSC-LSTM: For CSC-
LSTM, the SC-LSTM will be used as baseline with-
out additional context information. This means, for
each utterance generation, the hidden state is ini-
tialized with zeros in SC-LSTM. The MultiWOZ
2.1 (Eric et al., 2020) dataset is used for SC-LSTM
and CSC-LSTM generation models.

The multi-context ConveRT embedding dimen-
sionality is 512, hence, the dc in Eq. 1 is 512 for
CSC-LSTM training. In order to ensure a fair com-
parison, we set the same hyper-parameters for SC-
LSTM and CSC-LSTM: the hidden size to 300 (the
dg in Eq. 1), the learning rate to 5e−3, the batch
size to 128 and beam search decoding in inference
with beam size 10. Early stopping and cross en-
tropy loss are applied during the SC-LSTM and
CSC-LSTM training. The responses in SC-LSTM
and CSC-LSTM are delexicalised text where the
slot values are replaced by its corresponding slot
tokens.

Context size analysis of CSC-LSTM: The pre-
trained multi-context ConveRT does not only en-
code the immediate preceding user utterance but
in addition a maximum of 10 previous dialogue
sentences, i.e., 5 user utterances and 5 system re-
sponses (5u5s). To analyse the effect of this con-
text on the performance of the CSC-LSTM, multi-
ple models with different context sizes have been
trained. And we plot the trend and show exact
values of all metric scores in Figure 2 and Table
1 respectively. The 0u0s in Figure 2 and Table
1 means only immediate preceding user utterance
without extra context is taken into account for con-
textual generator CSC-LSTM training.

4.2 Contextually and Semantically
Conditioned GPT: CSC-GPT

In addition to the contextual generator trained from
scratch in Section 4.1, we also explore contextual
generation adapted from a pre-trained LM model
in this section.
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context size 0u0s 1u1s 2u2s 3u3s 4u4s 5u5s

BLEU-4 (%) 29.59 29.76 29.68 29.50 29.46 29.79
Meteor (%) 51.29 51.11 51.21 50.80 50.92 51.22
BERTScore F1 (%) 59.17 59.24 59.02 59.14 59.06 59.13
Variation size 2.05 2.07 2.01 1.99 2.06 2.11

Table 1: The results for BLEU, Meteor, BERTScore and Variation size of CSC-LSTM model with variant context
size (best results are marked with bold font and worst results are marked with underline) show that the best models
exist in 0u0s, 1u1s and 5u5s, while the worst models exist in 2u2s, 3u3s and 4u4s.

We train CSC-GPT6 on the basis of the pre-
trained GPT-2 (Radford et al., 2019). It adopts
the generic Transformers (Vaswani et al., 2017).
Peng et al. (2020b) already proposed the SC-GPT
model, which was continuously training the GPT-2
on (DA, system response) pairs. However, no con-
text information was taken into account in SC-GPT
for dialogue response generation. In our proposed
CSC-GPT, we leverage the extra user context be-
yond semantic information to guide the generation
process. This means, (user utterance, DA, sys-
tem response) MultiWOZ triplets are continuously
trained on the pre-trained GPT-2 model for contex-
tual generation. Given the extra context size analy-
sis result of CSC-LSTM model (shown in 5.1) and
GPU memory limitation for training the pre-trained
LM, only the immediate preceding user utterance
is used as context information in the CSC-GPT7.

In this work, we tackle the generation problem
using conditional LM. Given the dialogue dataset
D = {(un, dn, rn)}Nn=1 with N samples, the goal
is to build a statistical model parameterized by θ to
characterize pθ(r|u, d), which can be written as the
product of a series of conditional probabilities.

pθ(r|u, d) =
T∏

t=1

pθ(rt|r<t, u, d) (2)

where r<t indicates all tokens before t. The u
represents user utterance; d means the system
DA and r is the system response which includes
(r1, r2, ...rt, ...) tokens with length T .

Experiment details of CSC-GPT: In order to
achieve a robust performance comparison, two
datasets, namely MultiWOZ 2.1 and MultiWOZ
2.2, are used in SC-GPT and CSC-GPT. During

6The architecture of CSC-GPT is shown in Figure 4 in
Appendix

7In the Appendix, we also conduct the CSC-GPT with
different context size: CSC-GPT (0u0s) and CSC-GPT (1u1s).
The performance comparison in Table 4 supports the extra
context size analysis in CSC-LSTM: longer dialogue context
can not linearly improve the generation performance.

training, the batch size is 16, the maximal epoch
is 10, the learning rate is 5e−5 and early stopping
is used. During decoding, we use the top-k (Fan
et al., 2018) and nucleus sampling (top-p) (Holtz-
man et al., 2019) decoding algorithms with top-k
equal to 5 and top-p equal to 0.9. This means, the
next token distribution is filtered to keep maximal
top 5 tokens with highest probability and the cumu-
lative probability above a 0.9 threshold. Due to the
computational expense of running large SC-GPT
and CSC-GPT model, only the top 5 responses are
generated.

4.3 BERT Re-ranker: BERT-R

In this paper, we propose a BERT (Devlin et al.,
2019) Re-ranker (BERT-R) to select the top gen-
eration which is more similar to human sentence
and better fits to user context. As the generated
responses of the CSC-LSTM are delexicalized and
have less variability compared with the CSC-GPT,
we only apply the re-ranker to the CSC-GPT model.
Adapted from pre-trained BERT, the BERT-R is
continually trained with task-oriented dialogue data
and then fine-tuned on a multiple regression task,
where the model learns the relationship between
user utterance and system response from the vari-
ous regression targets defined by multiple metrics
scores.

There are two steps in our proposed BERT-R:
masked LM pre-training and multiple regression
fine-tuning. And the BERT-base-uncased8 model
with 12 layers, 768 hidden units and 12 heads is
used in this work.

Masked LM Pre-training The original BERT
was pre-trained with the BooksCorpus (Zhu et al.,
2015) and English Wikipedia. In order to better
generalize to task-oriented dialogues, we continu-
ally train the BERT model with a dialogue dataset:
DSTC8 (Rastogi et al., 2020), which is a schema-
guided dialogue dataset and consists of over 20k

8https://huggingface.co/bert-base-uncased
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annotated multi-domain, task-oriented conversa-
tions between a human and a virtual assistant. And
Sellam et al. (2020) and Peng et al. (2020b) both
continually trained with task-specific data based
on the pre-trained LMs for better generalisation.
Similar to the masked LM training of the original
BERT, only 15% tokens are randomly masked for
prediction with cross entropy loss.

Multiple Regression Fine-tuning The ideal
generated response should be close to human com-
munication and relevant to preceding user utter-
ance at the same time. The general idea for BERT-
R is straightforward: using multiple widely used
metric scores to guide the model to learn the re-
lationship of user utterance and system response
by a multiple regression task, where the regression
targets are those metric scores. Those multiple
metric scores define how good the generation is
from different perspectives to avoid dominance by
one single score. Hence, we employ two n-gram
matching metrics: BLEU-4 and Meteor score, and
a machine learned score: BERTScore, to define
how similar system response is with respect to gold
reference; and ConveRT cosine similarity to define
how contextual system response is with respect to
user utterance.

In this work, we continually train BERT-R
with the guidance of multiple metric scores.
Define the user utterance u = (u1, ..., ul)
of length l where each ui is a token and
system response r = (r1, ..., rm) of length
m. Let D′ = {(un, rn, yτn)}N

′
n=1 be a train-

ing dataset of size N ′, where τ is a target
signal. yτ represents all metric scores: yτ =
(yτBLEU-4 , yτMeteor , yτBERTpre , yτBERTrec , yτBERTf1 , yτConveRT-cs).
Hence, the size of τ is 6, which means 6 specific
regression layers will be added to the output of
[CLS] token in BERT-R. yτ will guide BERT-R to
learn how similar system response r is with respect
to gold reference and how contextual system
response r is with respect to user utterance u
during the fine-tuning. Given the training data, the
goal of fine-tuning is to learn a multiple regression
function f : (u, r) −→ yτ that predicts different
metric scores.

Given the sentence pair (u, r), the pre-trained
BERT-R returns a sequence of contextualized vec-
tors:

v[CLS], vu1 , ..., vul , vr1 , ..., vrm = BERT-R(u, r)
(3)

where v[CLS] is the BERT-R output representation
for the special [CLS] token, which can be further
fine-tuned for classification or regression task. As
described by Devlin et al. (2019), we add separate
linear layers on top of the [CLS] vector to predict
different metric scores:

ŷτ = f(u, r) = Wτv[CLS] + bτ (4)

where Wτ and bτ are the weight matrix and bias
vector respectively. And we use the Eq. 5, the sum
of all target-specific regression loss to fine-tune
BERT-R.

lfine-tuning =
∑

τ

(
1

N ′

N ′∑

n=1

||ŷτn − yτn||2) (5)

After fine-tuning, the BERT-R is used to select the
top generation with the highest score: the sum of
all regression output of BERT-R, which is shown in
Eq. 6:

SBERT-R =
∑

τ

BERT-R(u, r) (6)

Experiment details of BERT-R: During
masked LM pre-training, batch size is 32, maximal
epoch is 10 and learning rate is 5e−5. And early
stopping is used to avoid over-fitting on the DSTC8
training dataset.

For the fine-tuning of BERT-R, we generate the
top 5 responses for MultiWOZ data with CSC-GPT
model firstly. And in order to clean the system
generated responses, we have the following proce-
dures:

1) The duplicated system responses are removed.

2) The last turn of every dialogue is removed,
where there are always “thank you” and “good
bye”, kind of non-informative sentences.

3) In order to let the network glance what the
human communication looks like, we add the
gold reference for the user utterance in the
training dataset. In addition, we need to re-
move the system responses which are same
as the gold reference beforehand, to comply
with the rule 1).

After finishing the above process, we compute the
target score respectively for the label of different re-
gression layers. During the training of the multiple
regression task, the batch size is set to 32, learning
rate 1e−5, and early stopping is used to save the
best BERT re-ranker.
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MultiWOZ 2.1 MultiWOZ 2.2

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

Variation
size

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

Variation
size

SC-LSTM (Wen et al., 2015) 28.76 49.93 58.71 1.00/1.00 - - - -
CSC-LSTM (5u5s) 29.79 51.22 59.13 1.35/2.11 - - - -

SC-GPT (Peng et al., 2020b) 28.95 50.22 91.96 2.27/6.56 28.53 49.80 91.95 2.78/6.70
CSC-GPT 29.91 51.34 92.08 2.29/6.66 29.41 51.10 92.08 2.81/6.82
BERT-R 32.37 54.01 92.40 2.22/6.34 31.68 53.65 92.39 2.81/6.82

Table 2: The results for BLEU, Meteor, BERTScore and variation size of top one generation in all models demon-
strate that our proposed contextual models in: CSC-LSTM against SC-LSTM and CSC-GPT against SC-GPT, both
outperform the corresponding baseline. Meanwhile, the proposed re-ranker BERT-R also highly improve the metric
scores compared with all other models.

5 The Experiment Results

The experimental results of all models introduced
in Section 4 are presented in this section. To ensure
a consistent performance comparison, we compute
the metric scores based on the top one generation
of all models. Table 2 shows the results of all
automatic metrics.

Furthermore, a human evaluation has been con-
ducted. We randomly sampled 100 dialogues and
their corresponding top one generations from our
proposed models as well as the baselines. We re-
cruited three annotators with relevant background
in SDS to evaluate the responses generated by dif-
ferent models. Each rater was presented the com-
plete preceding dialogue and asked to rate if “The
highlighted system response could plausibly have
been produced by a human” (natural) and if “The
highlighted system response fits well to the previ-
ous dialog” (contextual). Each metric is rated on a
5-point Likert scale, where 1 is “not agree at all”,
5 is “fully agree”. In order to guarantee the strict-
ness of human evaluation, the human judges have
no information about the origin of the utterances,
i.e., which model generated the utterance. Table 3
shows the human evaluation results.

Contextual Natural

SC-LSTM (Wen et al., 2015) 3.96 4.04
CSC-LSTM (5u5s) 4.21∗ 4.16∗

SC-GPT (Peng et al., 2020b) 4.00 4.14
CSC-GPT 4.25+ 4.27+

BERT-R 4.18 4.26

Table 3: The results of human evaluation on natural
and contextual score of all models. (∗: p-value < 0.01,
comparison with SC-LSTM baseline; +: p-value< 0.1,
comparison with SC-GPT baseline) show the superior-
ity of our proposed contextual models.

5.1 Experiment results of CSC-LSTM

The automatic metric scores comparing SC-LSTM
and CSC-LSTM in Table 2 show that CSC-LSTM
has the overall better performance in BLEU-4, Me-
teor, BERTScore and variation size compared to
the baseline. The variation size results show CSC-
LSTM can generate more variant responses per
DA, which may indicate a more contextual fitting
response, while the SC-LSTM only generate the
same utterances each time. The performance com-
parison between SC-LSTM and CSC-LSTM in Ta-
ble 2 support our initial assumption that context
helps to generate good system utterances. Espe-
cially the increase in variation size is of importance
as it indicates that the resulting utterances of CSC-
LSTM indeed be different for different contexts.

This has been validated by the human evaluation
of SC-LSTM and CSC-LSTM in Table 3. It shows
that the variation introduced by CSC-LSTM actu-
ally results in utterances that fit significantly better
to the preceding dialogue and are perceived as sig-
nificantly more natural. Overall, the performance
comparison between SC-LSTM and CSC-LSTM on
automatic metrics and human evaluation demon-
strate the dialogue history contributes to contextual
and variant responses.

The context size analysis of CSC-LSTM demon-
strate that the automatic metric scores are influ-
enced by the length of the context. All metrics
show similar curves over the different contextual
model in Figure 2. The both ends of the curves
have better performance than the inner part. The
Table 1 shows the best BLEU-4 and variation size
are both achieved for context sizes of 5u5s; while
0u0s has the best Meteor and 1u1s has the best
BERTScore. Both show that the contextual mod-
els 0u0s, 1u1s and 5u5s generally outperform the
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2u2s, 3u3s and 4u4s. Hence, the investigation of
the impact of context size for CSC-LSTM genera-
tion indicates that longer context does not linearly
result in better performance, which is further con-
firmed in the performance comparison between
CSC-GPT(0u0s) and CSC-GPT(1u1s) shown in
Table 4 in Appendix. Evidently, all contextual mod-
els achieve better performance than the baseline
(SC-LSTM in Table 2). We therefore conclude that
the immediate preceding user utterance yields the
indispensable information for contextual genera-
tion. With limited memory, using only immediate
preceding user utterance without extra context can
be regarded as a balanced option that we directly
apply for training the CSC-GPT.

5.2 Experiment results of CSC-GPT

All scores between SC-GPT and CSC-GPT in Ta-
ble 2 demonstrate that the CSC-GPT is superior
to the baseline SC-GPT for both datasets, Multi-
WOZ 2.1 and MultiWOZ 2.2. Our assumption is
again confirmed in GPT-based generation model:
dialogue history contributes to contextual and vari-
ant response, even though only one preceding user
utterance is taken into account.

When comparing the human evaluation results
of SC-GPT and CSC-GPT in Table 3, the assump-
tion is further supported: adding context to the
generation process results in more natural and con-
textual responses. The CSC-GPT generator even
achieves the best rating both in terms of natural
and contextual score compared to all other mod-
els. This means that enhancing an already powerful
pre-trained model with context is essential for its
application within dialogue systems.

5.3 Experiment results of BERT-R

Our proposed BERT-R selects the top one response
from 5 CSC-GPT generations with the highest
score in Eq. 6. The metric scores of CSC-GPT
and BERT-R in Table 2 show that the selected gen-
eration by BERT-R has a significant improvement
on BLEU-4, Meteor and BERTScore9, with a little
loss on variation size compared to the top one gener-
ation in CSC-GPT. This is in line with human evalu-
ation results where the CSC-GPT achieves slightly
better scores both in naturalness and contextualness
than BERT-R, even though BERT-R clearly shows
better results compared to the SC-GPT baseline.

9also improvement on ConveRT cosine similarity, which
is shown in the Appendix.

6 Conclusion and Future Work

In this paper, we propose two contextual generation
models: CSC-LSTM trained from scratch and CSC-
GPT adapted from pre-trained GPT-2. Both inte-
grate dialogue context information into NLG for
generating more variant and contextual response in
task-oriented dialogue systems.

In the experiment of CSC-LSTM against SC-
LSTM and CSC-GPT against SC-GPT, our pro-
posed contextual models both improve the gen-
eration performance in automatic metrics, thus
showing that CSC-LSTM and CSC-GPT are able
to capture better the contextual needs resulting in
a higher similarity to the data. This is further un-
derpinned by the number of variations. More vari-
ant responses are generated per DA in CSC-LSTM,
while the SC-LSTM only generates the same ut-
terances each time. Furthermore, the variation
size of GPT-based generators is higher than SC-
LSTM based models. The possible reason is the
pre-trained GPT-2 contributes to more diverse re-
sponses by default. The human evaluation results in
Table 3 not only demonstrate the contextual model
can generate more contextual and natural response
compared with their baseline respectively, but also
show GPT-2 contextual model CSC-GPT is supe-
rior than CSC-LSTM.

An investigation of the impact of context size
for dialogue response generation in CSC-LSTM in-
dicates that longer context does not automatically
result in better performance. However, all vari-
ant CSC-LSTM models have better performance
than baseline, which means the immediate preced-
ing user utterance contains the most contextual in-
formation for generation. This is also verified in
GPT-2 contextual generators, even only immedi-
ate preceding user utterance is taken into account,
the CSC-GPT model outperforms SC-GPT both on
automatic metrics and human evaluation.

In addition to the above mentioned two con-
textual models, we also present a re-ranker for
CSC-GPT contextual model. Adapted from pre-
trained BERT, the BERT-R continually train on
multi-domain dialogues and fine-tune on a mul-
tiple regression task to learn the relationship be-
tween user context and system response by the
metric guidance of BLEU-4, Meteor, BERTScore
and ConveRT cosine similarity. Finally, the top
one generation selected by BERT-R has significant
superiority in BLEU-4, Meteor, BERTScore and
ConveRT cosine similarity compared with top one

146



generation in CSC-GPT. This means, that our pro-
posed BERT-R works from the guidance of metric
scores and can choose the generation with highest
score. However, CSC-GPT slightly outperforms
BERT-R in variation size and human evaluation.
The possible reason is that the existing automatic
metrics still have bias with human judgments (Cha-
ganty et al., 2018).

In the future, we will further explore the per-
formance of BERT-R with the guidance of other
automatic metrics, which have higher correlation
with human judgements. Furthermore, there seems
to be a link between the variation size metric and
the human evaluation scores, which will also be
part of future work.
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Ondřej Dušek and Filip Jurcicek. 2016. A context-
aware natural language generator for dialogue sys-
tems. In Proceedings of the 17th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 185–190.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar,
Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020.

Multiwoz 2.1: A consolidated multi-domain dia-
logue dataset with state corrections and state track-
ing baselines. In Proceedings of The 12th Language
Resources and Evaluation Conference, pages 422–
428.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In ACL (1).

Matthew Henderson, Paweł Budzianowski, Iñigo
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A Appendices

In order to better understand what our proposed
architectures look like, please find the following
Figure 3 and Figure 4. The model CSC-GPT gen-
erates contextual response with the guidance of
immediate preceding user utterance and DA. In the
CSC-LSTM, the SC-LSTM was proposed in Wen
et al. (2015) and an additional cell was introduced
into the LSTM cell to gate the DA information.
The original LSTM cell follows:

it = σ(Wwiwt +Whiht−1)

ft = σ(Wwfwt +Whfht−1)

ot = σ(Wwowt +Whoht−1)

ĉt = tanh(Wwcwt +Whcht−1)

ct = ft � ct−1 + it � ĉt
ht = ot � tanh(ct)

(7)

In SC-LSTM, the d0 starts from an one-hot vector,
at each time step the DA cell decides what infor-
mation should be retained for future time steps and
discards the others. Like:

rt = σ(Wwrwt + α(Whrht−1))

dt = rt · dt−1
(8)

Then, the value cell in Eq. 7 also depends on the
DA,

ct = ft � ct−1 + it � ĉt + tanh(Wdcdt) (9)

Finally, the hidden state is further updated by new
value cell. In our proposed CSC-LSTM, not only
DA cell is added, but the SC-LSTM cell is initial-
ized by contextual ConveRT embedding.

Given the pre-trained model can handle the
longer dialogue context for generation, so we also
trained CSC-GPT contextual model with one more
turn context besides the immediate preceding user
utterance, i.e. 1u1s. And the results comparison
between CSC-GPT (0u0s) and CSC-GPT (1u1s) is
shown in Table 4. We can know that the BLEU-4
and Meteor of CSC-GPT (0u0s) outperforms CSC-
GPT (1u1s), meanwhile, the BERTScore and vari-
ation size have no big difference. This further
demonstrate that longer context can not directly
result in better performance. The maximal length
of input in CSC-GPT (0u0s) is 120, however, CSC-
GPT (1u1s) is 190 with more GPU memory. Hence,
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ht−1

dt−1
SC-LSTM

wt

ht

dt
SC-LSTM

wt+1

ht+1

dt+1

h0 refers to Eq. 1, dialogue context is encoded by ConveRT and projected to decoder space with the Eq. 1
d0 is DA one-hot embedding, like (0, 0, ..., 1, ...) represents “hotel{ request(area=?)}”

wt is the input token at time slot t

Figure 3: The architecture of CSC-LSTM.

GPT-2

un dn rn

rn

un is the immediate preceding user utterance, like “Does it provide free parking?”
dn is the DA, like “hotel {inform (internet=yes; parking=yes)}”
rn is the gold response, like “Yes, free parking and free wifi!”

Figure 4: The architecture of CSC-GPT. The immediate preceding user utterance and MR together guide the
contextual response generation.

we recommend only immediate preceding user ut-
terance is taken into account for contextual genera-
tion in task-oriented dialogue system.

The BERT-R is trained with multiple metric
scores: BLEU-4, Meteor, BERTScore and Con-
veRT cosine similarity. In order to make consistent
comparison of all models, we don’t show the Con-
veRT cosine similarity of BERT-R in the main paper.
The Table 5 shows that all scores get improvement.

There are several use cases in Table 6. And by
system response comparison of SC-LSTM agaist
CSC-LSTM and SC-GPT agaist CSC-GPT given
preceding dialogue context, the Table 6 shows the
importance of dialogue context for natural and con-
textual response.
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MultiWOZ 2.1 MultiWOZ 2.2

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

Variation
size

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

Variation
size

CSC-GPT (0u0s) 29.91 51.34 92.08 2.29/6.66 29.41 51.10 92.08 2.81/6.82
CSC-GPT (1u1s) 29.70 51.02 92.08 2.29/6.67 28.80 50.32 91.94 2.81/6.81

Table 4: The results for BLEU, Meteor, BERTScore and Variation size of top one CSC-GPT (0u0s) generation and
CSC-GPT (1u1s) show that CSC-GPT (0u0s) outperforms CSC-GPT (1u1s) and support the context size analysis
of CSC-LSTM: the longer context in contextual model can not linearly result in better performance.

MultiWOZ 2.1 MultiWOZ 2.2

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

ConveRT
cs

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

ConveRT
cs

CSC-GPT 29.91 51.34 92.08 33.41 29.41 51.10 92.08 33.81
BERT-R 32.37 54.01 92.40 34.70 31.68 53.65 92.39 35.00

Table 5: The results for BLEU, Meteor, BERTScore and ConveRT cosine similarity of top one CSC-GPT gen-
eration and the selected one by BERT-R demonstrate that all target metrics used in BERT-R have a significant
improvement through re-ranking.
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context
User: Hi, I’m looking for a hotel called aylesbray lodge guest house. Do you
have anything with that name?

system response

SC-LSTM: It is a moderately priced hotel in the south. Would you like me
to book it for you?
CSC-LSTM: Yes, it is a hotel in the south in the moderately priced price range.
Would you like to book a room?
SC-GPT: It is a moderately priced hotel in the south area. Would you like me
to book it for you?
CSC-GPT: I do, it is a moderately priced hotel in the south. Would you like
to make a booking?

context

User: I’m looking for a nightclub to go to. Are there any in the centre of town?
System: There are 5 nightclubs in the centre. Ballare is one of them. Would that
work for you?
User: Is there an entrance fee for Ballare?

system response

SC-LSTM: The entrance fee is 5 pounds.
CSC-LSTM Yes, it is 5 pounds .
SC-GPT: The entrance fee is 5 pounds.
CSC-GPT: Yes, it is 5 pounds to get in.

context User: Hi, I am trying to plan my trip and could use some help with a particular restaurant.

system response

SC-LSTM: Do you have a preference for area or price range?
CSC-LSTM: Do you have a certain area or price range in mind?
SC-GPT: Sure, what kind of food are you looking for and what area and price range?
CSC-GPT: I would love to assist you! What type of food are you looking for and
what price range?

context

User: Can you also help me find a train to Bishops Stortford?
System: There are more than 70 trains to Bishops Stratford. Could you tell me
what day you would like to leave, where you would like to leave from, and the times?
User: I am leaving Cambridge on Sunday, can you please tell me the travel time on that ride?
System: Sure, it is a 38 minute trip. Would you like a ticket?
User: I need to leave after 14:45 also.

system response

SC-LSTM: The tr3600 leaves Cambridge at 15:29.
CSC-LSTM: Tr3600 leaves Cambridge at 15:29. Would that works for you?
SC-GPT: Tr3600 leaves Cambridge at 15:29.
CSC-GPT: How about tr3600? It leaves Cambridge at 15:29.

Table 6: System response of different models given preceding dialogue context show that the contextual models:
CSC-LSTM and CSC-GPT, can generate more natural responses that fit better to dialogue history.
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Abstract

The mental disorder of online users is deter-
mined using social media posts. The ma-
jor challenge in this domain is to avail the
ethical clearance for using the user-generated
text on social media platforms. Academic re-
searchers identified the problem of insufficient
and unlabeled data for mental health classifi-
cation. To handle this issue, we have studied
the effect of data augmentation techniques on
domain-specific user-generated text for men-
tal health classification. Among the exist-
ing well-established data augmentation tech-
niques, we have identified Easy Data Augmen-
tation (EDA), conditional BERT, and Back-
Translation (BT) as the potential techniques for
generating additional text to improve the per-
formance of classifiers. Further, three different
classifiers- Random Forest (RF), Support Vec-
tor Machine (SVM) and Logistic Regression
(LR) are employed for analyzing the impact of
data augmentation on two publicly available
social media datasets. The experimental results
show significant improvements in classifiers’
performance when trained on the augmented
data.

1 Introduction

Recent studies over mental health classification
(Salari et al., 2020; Garg, 2021; Biester et al., 2021)
convey that amid COVID-19 pandemic, the num-
ber of stress, anxiety and depression related mental
disorders have increased. As per the recent survey,
the rate of increase of mental disorders is more
than those of physical health impacts on the Chi-
nese population (Huang and Zhao, 2020). In this
context, the early detection of psychological dis-
orders is very important for good governance. It
is observed that more than 80% of the people who
commit suicide, disclose their intention to do so
on social media (Sawhney et al., 2021). Clinical
depression is the result of frequent tensions and

stress. Further, prevailing clinical depression for a
longer time period results in suicidal tendencies.

The information mining from social media helps
in identifying stressful and casual conversations
(Thelwall, 2017; Turcan and McKeown, 2019; Tur-
can et al., 2021). Many Machine Learning (ML)
algorithms are developed in literature using both
automatic and handcrafted features for classifying
Microblog. The problem of data sparsity is under-
explored for mental health studies on social media
due to the sensitivity of data (Wongkoblap et al.,
2017). Multiple ethical clearances are required for
new developments in mental health classification.
To deal with this issue of data sparsity, we have
used data augmentation techniques to multiply the
training data (Turcan and McKeown, 2019; Haque
et al., 2021). The increase in training data may
help to improve the hyper-parameter learning of
textual features and thereby, reducing overfitting.
Data Augmentation is the method of increasing the
data diversity without collecting more data (Feng
et al., 2021). The idea behind the use of Data
Augmentation (DA) techniques is to understand
the improvements in training classifiers for mental
health detection on social media.

In this manuscript, the mental health classifi-
cation is performed for two datasets to test the
scalability of data augmentation approaches for
mental healthcare domain. The classification of ca-
sual and stressful conversations (Turcan and McK-
eown, 2019), and classifying depression and suici-
dal posts (Haque et al., 2021) on social media. We
select a rule based approach which preserves the
original label and diversifies the text. To the best of
our knowledge, this is the first attempt of stuffing
additional data for mental health classification and
there is no such study in the existing literature. The
key contributions of this work are as follows:

• To determine the feasibility and the impor-
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tance of data augmentation in the domain-
specific study of mental health classification
to solve the problem of data sparsity.

• The empirical study for different classifica-
tion algorithms show significantly improved
F-measure.

Ethical Clearance: We use limited, sparse and
publicly available dataset for this study and so, no
ethical approval is required from the Institutional
Review Board (IRB) or elsewhere.

We organize rest of the manuscript in different
sections. Section 2 describes the historical per-
spective of data augmentation and mental health
classification on social media. We discuss the data
augmentation methods and the architecture for ex-
perimental setups in Section 3. Section 4 elucidates
the experimental results and evaluation over the
proposed architecture of experimental setup which
shows the significance and feasibility of data aug-
mentation over mental health classification prob-
lems. Finally, Section 5 gives the conclusion and
future scope of this work.

2 Related Work

Mental health classification can be quite challeng-
ing without the availability of sufficient data. Al-
though the users’ posts can be extracted from the
social media platforms such as Reddit, Twitter and
Facebook, annotating these posts is quite expen-
sive. To address this issue, researchers have pro-
posed different data augmentation techniques suit-
able for Natural Language Processing (NLP) which
varies from simple rule-based methods to more
complex generative approaches (Feng et al., 2021).
The data augmentation tasks is categorized into
conditional and unconditional augmentation task
(Shorten et al., 2021).

2.1 Evolution of textual Data Augmentation

The unconditional data augmentation models
like Generative adversarial networks (Goodfellow
et al., 2014) and Variational autoencoders (Kingma
and Welling, 2014) generates the random texts ir-
respective of the context. We do not use uncon-
ditional data augmentation for this task as it is re-
quired to preserve the context of the information as
per the label. The conditional masking of a few to-
kens in the original sentence was observed to boost
the classification performance in NLP tasks (Li

et al., 2020; Wu et al., 2021). Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019), the pre-trained language mod-
els, are proposed with the objective to capture the
left and right context in the sentence to generate the
masked tokens. The pre-trained autoencoder model
conditional BERT (Wu et al., 2019; Kumar et al.,
2021) is used as a well-established technique for
generating label compatible augmented data from
the original data.

One of the simplest rule-based data augmenta-
tion techniques is proposed as Easy Data Augmen-
tation (EDA) (Wei and Zou, 2019). The authors
proposed four random operations such as random
insertion, random deletion, random swapping and
random replacement on the given text for generat-
ing new sentences. The experimental results give
better performance on five benchmark text clas-
sification tasks (Wei and Zou, 2019), as the true
labels of the generated text were conserved during
the process of data augmentation. A graph based
data augmentation is proposed for sentences using
balance theory and transitivity to infer the pairs gen-
erated by augmentation of sentences (Chen et al.,
2020). The sentence-based data augmentation is
not suitable for the problem of mental health clas-
sification on Reddit data as the posts contain large
paragraphs.

Back Translation (BT) or Round-trip translation
is another augmentation technique which is used as
a pipeline for text generation (Sennrich et al., 2015).
The BT approach converts the A language of text to
B language of text and then back to A language of
the same text. This back-translation (Corbeil and
Ghadivel, 2020) of data helps in diversifying the
data by preserving its contextual information. Al-
though, the interpolation techniques are proposed
for data augmentation (Zhang et al., 2017), it is
minimally used for textual data in existing litera-
ture (Guo et al., 2020).

In our work, we have studied the effect of
all three different augmentation techniques- EDA,
Conditional BERT and Back-translation to increase
the size of training data for the task of mental health
classification.

2.2 Mental Health Classification: Historical
Perspective

The existing literature on mental health detection
and analysis of social media data (Garg, 2021)
shows the problem of automatic labeling as noisy
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labels. To handle this, either the label correc-
tion of noisy labels is required as shown in SD-
CNL (Haque et al., 2021) for manual labeling, or
data augmentation (Chen et al., 2021). Since many
existing datasets for mental health detection like
RSDD, SMHD (Harrigian et al., 2020), CLPsych
(Preoţiuc-Pietro et al., 2015) needs ethical clear-
ance and are available only on request, we intend
to pick small dataset with limited set of instances
which are available in the public domain.

The Dreaddit dataset is manually labelled as
stressful and casual conversation (Turcan and
McKeown, 2019). In SDCNL dataset (Haque et al.,
2021), the posts related to clinical depression and
suicidal tendencies use similar words. Thus, we
hypothesize that experimental results with data aug-
mentation for classifying depression and suicidal
risk may not generate well diversified data. In this
manuscript, we use three data augmentation meth-
ods to text and validate the performance of the
classifiers over both Dreaddit and SDCNL dataset.

3 Background: Data Augmentation
Methods

Data augmentation (Feng et al., 2021) is a recent
technique used for NLP to handle the problem of
data sparsity by increasing the size of the train-
ing data without explicitly collecting the data. In
this Section, we describe three potential textual
data augmentation techniques, problem formula-
tion, and architecture of the experimental setup.

3.1 Textual Data Augmentation
Out of many data augmentation tasks for NLP clas-
sification, very few are related to this problem do-
main of mental healthcare. This limitation is due
to the presence of ill-formed (user-generated) text
and the need to preserve the contextual informa-
tion as per the label of the instances. To handle
this issue, we use three different approaches. The
first approach is based on NLP-based Augmenta-
tion technique (Wei and Zou, 2019), the second is
based on conditional pre-trained language models
such as BERT (Kumar et al., 2021) and the third
approach is based on back translation (Ng et al.,
2019). We briefly explain these methods in this
section.

3.1.1 Easy Data Augmentation
In the previous work (Wei and Zou, 2019), NLP-
based operations have been shown to achieve good
results on text classification tasks. This method of

data augmentation helps in diversifying the training
samples while maintaining the class label associ-
ated with the post of a user at sentence level. The
following four operations have been used in this
work for augmenting the data:

• Synonym Replacement. Randomly n-words
are chosen other than stop words from each
sentence and replaced by one of its synonyms.

• Random Insertion. In this operation, a random
synonym of a random word is inserted into a
random position of a sentence for n number
of times.

• Random Swap. Two words are randomly cho-
sen in a sentence and swapped.

• Random Deletion. A word is deleted from a
sentence with probability p.

3.1.2 Pre-Trained Language Models
Recently, deep bi-directional models have been
used for generating textual data (Kobayashi, 2018;
Song et al., 2019; Dong et al., 2017). These
models are pre-trained with unlabelled text which
can be fine tuned in autoencoder (Devlin et al.,
2019), auto-regressive (Radford et al., 2019), or
seq2seq (Lewis et al., 2019) settings. In autoen-
coder settings, a few tokens are randomly masked
and the model is trained to predict alternative to-
kens. In auto-regressive settings, the model pre-
dicts the succeeding word according to the context.
In seq2seq settings, the model is fine tuned on de-
noising autoencoder tasks. These transformers use
associated class labels to generate the augmented
text which helps in preserving its label. In this
work, we adopt a framework1 defined by (Kumar
et al., 2021) and fine tune pre-trained BERT in
auto-regressive settings.

3.1.3 Back Translation
Back translation (BT) is the data augmentation
technique used for diversifying the information by
changing the language of textual data to some lan-
guage A and changing it back to its original lan-
guage. In this experimental framework, we have
used German as an intermediate language A. We
use BT for the Microblogs by first converting it into
German language using Neural Machine Transla-
tion (Ng et al., 2019) and then converting it back to

1https://github.com/amazon-research/transformers-data-
augmentation
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the English language. It is interesting to note that
ill-formed and user-generated information is con-
verted to the standard English language using BT
and thus, spelling mistakes are reduced. Although
the content is changed, contextual information is
preserved.

3.2 Problem Formulation

Given a dataset D consisting of n-training samples
where each sample is a text sequence x consisting
of m-words and each sequence is associated with a
label y. The objective is to generate an augmented
data Dsyn of n-synthetic samples using EDA, BERT
and Back Translation.

3.2.1 AugEDA: Data augmentation using
Easy Data Augmentation

In our work, 30% words of ith training sample are
randomly chosen for applying any one of the four
EDA operation-Synonym Replacement, Random
Insertion, Random Swap and Random Deletion
(Wei and Zou, 2019). In synonym replacement, the
chosen word is substituted by any one of the ran-
domly selected synonym of this word from Word-
Net(Miller, 1995). In random insertion, j random
positions are chosen for inserting random synonym
of randomly chosen word out of m-words. In ran-
dom swap, two words are randomly chosen from
m-words and swapped with each other. A word is
deleted with 10% probability in random deletion
operation. The new sentence generated after ap-
plying any one of the lexical substitution method
is added to the synthetic dataset Dsyn. The pro-
cess is repeated for n-training samples to create an
augmented dataset of size n.

3.2.2 AugBERT: Data augmentation using
BERT

We use the conditional BERT language model to
generate the augmented data. We consider the label
y and sequence S = S1, S2...SN of n-tokens to
calculate the probability p(ti) = (.|y, S) of masked
token ti unlike masked language models that use
only sequence S for predicting the probability of
masked tokens. As defined by (Kumar et al., 2021),
the conditional BERT model prepends associated
label y to each sequence S in dataset D without
adding it to the vocabulary of the model. For fine
tuning of the model, some tokens of the sequence
are randomly masked and the objective is to predict
the original token according to the context of the
sequence.

3.2.3 AugBT: Data augmentation using
Back-Translation

To generate new textual data using Back-
Translation, each of ith training sample xi is con-
verted into a sentence yi written in German lan-
guage and then yi is converted back to a sentence
zi in English. The generated sentence zi is added
to the augmented dataset Dsyn. This process is
repeated for n training samples to create an aug-
mented dataset of n samples.

3.3 Architecture: Experimental Setup
The architecture of the experimental setup for aug-
menting domain-specific data of mental health clas-
sification from social media posts is shown in Fig-
ure 1. The Microblogs are given as an input for
classifying the mental health of the users. The
idea behind this approach is to generate some se-
quence of sentences and augment some more data
for better training of classifiers. Thus, the number
of instances are increased by using different data
augmentation techniques.

The results are implemented for two publicly
available mental health datasets, namely, Dread-
dit and SDCNL. The dataset is divided into train-
ing and testing data. The training data is given
as an input to the data augmentation methodolo-
gies, namely, EDA (Wei and Zou, 2019), Autoen-
coder conditional BERT (Wu et al., 2019) and
Back-Translation (Ng et al., 2019). These three ap-
proaches are well established approaches for data
augmentation in classification of the textual data.
The original training data is almost doubled in the
process of the data augmentation. The original
and augmented data are fed to different machine
learning classifiers for results and analysis.

4 Experimental Results and Evaluation

In this section, we discuss the datasets and the
experimental results. We further analyze results
for data diversity and statistical significance of the
classifiers over augmented data as compared to the
original data.

4.1 Dataset
The idea behind this study is to improve the train-
ing parameters of the classifier by removing the
limitation of data sparsity. The two sparse datasets
which are used for domain-specific data augmenta-
tion are Dreaddit 2 (Turcan and McKeown, 2019)

2http: //www.cs.columbia.edu/˜eturcan/data/ dreaddit.zip.

155



Figure 1: The Architecture of Experimental Setup for
Data Augmentation

and SDCNL3 (Haque et al., 2021) from existing
literature are explained in this Section.

4.1.1 Dreaddit dataset
The Dreaddit dataset(Turcan and McKeown, 2019)
consists of lengthy posts in five different categories
and is used for classifying stressful posts from ca-
sual conversations. The categories of subreddits
selected by authors having stressful conversations
are interpersonal conflicts, mental illness (anxiety
and PTSD), financial and social.

Dataset Stress Non-Stress
Training data 1488 1350
Testing data 369 346

Table 1: Dreaddit Dataset Statistics

Out of total 187444 posts scraped from these
five categories, the authors have manually labelled
3553 Reddit posts. While selecting the posts for
annotation, the authors selected those segments
whose average token length was greater than 100.
The average tokens per post in this dataset is 420
tokens. This statistics of the Dreaddit dataset is
shown in Table 1.

4.1.2 SDCNL dataset
The SDCNL dataset(Haque et al., 2021) is scrapped
from Reddit social media platform from two sub-
reddits: r/SuicideWatch and r/Depression to carry

3https://github.com/ayaanzhaque/SDCNL

out the study for classifying posts into depression
specific or suicide specific. This dataset contains
1895 posts containing 1517 training samples and
379 testing samples. The dataset contains title, self-
text and megatext of the reddit tweets along with
other fields.

Dataset Depression Suicide
Training data 729 788
Testing data 186 193

Table 2: SDCNL Dataset Statistics

In this dataset, 729 out of 1517 instances are
labelled as depression specific posts as shown in
Table 2. The dataset is manually labelled to reduce
noisy automated labels. The idea behind using this
data is that we hypothesise that this dataset is even
more complex than the Dreaddit dataset due to the
presence of similar domain-specific words in posts.

4.2 Experimental Setup
The original and the augmented dataset used for
experimentation is quite noisy as the posts used in
this data is user-generated natural language text
expressing the feelings of the writer. The pre-
processing steps are applied using the NLTK li-
brary4 of Python (Bird, 2006). The data is trans-
formed before applying the supervised learning
models employed in this work. The posts are
long paragraphs, so in the first step the data is
tokenized into sentences and then sentences are
further tokenized into words. After removal of stop-
words, punctuations,unknown characters from the
extracted tokens, we use stemming and lemmatiza-
tion to extract the root words.

After pre-processing of the data, it is transformed
to a feature vector using Term Frequency- Inverse
Document Frequency (TF-IDF), Word2Vec (Gold-
berg and Levy, 2014) and Doc2Vec (Lau and Bald-
win, 2016). Word2Vec embedding and Doc2Vec
embedding provides dense vector representation of
data while capturing its context. In this research
work, the Gensim library5 is used to learn word em-
beddings from the training corpus using skip-gram
algorithm. A vector of 300 dimensions is chosen
and default settings of Word2Vec and Doc2Vec
models are used for experiments and evaluation.

The learning based classifiers which are used
for this research work are the Logistic Regression

4https://www.nltk.org/
5https://pypi.org/project/gensim/
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(LR), the Support Vector Machine(SVM), and the
Random Forest (RF) with the default settings of
scikit-learn6 (sklearn) library of Python. The hard-
ware configuration of the system which is used to
perform this study is 2.6 GHz 6-core Intel Core i7,
Turbo Boost up to 4.5 GHz, with 12 MB shared L3
cache.

4.3 Experimental Results

We reference (Kumar et al., 2021) for implemen-
tation 7 and use AugBERT, AugEDA, and AugBT
on two datasets- Dreaddit and SDCNL. The dataset
is divided into 75% training and 25% testing set
and the value of Precision (P), Recall(R) and F1
score (F1) are computed on the testing samples
to evaluate the performance of the classifiers with
and without domain -specific data augmentation
for mental health classification. Table 3 and Ta-
ble 4 presents the results achieved for original and
augmented data for Dreaddit and SDCNL using
three different classifiers, namely, Logistic regres-
sion (LR), Support Vector Machine (SVM) and
Random Forest (RF), respectively.

4.3.1 Experimental Results for Dreaddit
As observed from Table 3, the F1 score showed
an average improvement of around 1.4% achieved
by all models with AugBERT as compared to the
original training dataset. It is also found that the
AugEDA gives maximum improvement of around
4% when Word2Vec and Doc2Vec embeddings
were employed with LR. Also, there is negligible
improvement in the results with AugBT.

4.3.2 Experimental Results for SDCNL
In this Section, the results of the experimental study
are presented for the SDCNL dataset. As observed
from Table 4, the average improvement of around
2.3% is observed for all the models as per F1 score
with AugBERT. The AugEDA shows maximum
improvement of more than 5% when Word2Vec
and Doc2Vec embeddings were employed with
RF. The results also indicate a minor improve-
ment of around 1− 2% when classifiers employed
Doc2Vec and TF-IDF embeddings for representing
augmented data using Back Translation.

Due to increase in the size of augmented data, the
input vector representations using TF-IDF requires
higher computational time as compared to other

6https://scikit-learn.org/stable/
7https://github.com/varunkumar-

dev/TransformersDataAugmentation

embeddings. Thus, a few results are shown empty
in Table 3 and Table 4. In healthcare, more precise
results are expected than recall which means that
the content which is identified as stressful must
be correct and matters more than diagnosing the
total number of correct instances. Thus, precision
must improve more than recall values. We have
considered these nuances to examine the results
of classifiers and found that Logistic Regression
gives improved results with the Doc2Vec encoding
scheme.

4.4 Data Diversity of Augmented Data

The diversity of the generated data by different aug-
mentation techniques are measured by the Bilin-
gual Evaluation Understudy (BLEU) score (Pap-
ineni et al., 2002). The BLUE score ranges be-
tween 0 and 1. The lower the value, the better is
the diversity in the data. Thus, the BLEU score is
computed by comparing n-grams of both original
and generated text where n = 2.

As observed from Table 5, the BLEU score for
augmented data varies from 82% - 99%. The train-
ing samples are multiplied by 1.75 to 2.0 times for
data augmentation approaches. The data for Aug-
BERT is more diversified and thus, the results are
significantly improved for AugBERT rather than
AugEDA and AugBT as evident from Table 3 and
Table 4. The experimental results show that the
samples are upto 18% more diverse than those of
original training samples for AugBERT over the
Dreaddit dataset. However, the least data diver-
sity is observed for AugEDA and AugBT over the
SDCNL dataset.

4.5 Statistical Significance

In this Section, to understand the importance of
generating more instances in training data is per-
formed using three different data augmentation
techniques. The statistical student’s t-test was used
to test the significance of the improvement in clas-
sifier using augmented data with p− value as 0.05,
0.10, and 0.15. The resulting value for t-test in
Dreaddit and SDCNL over AugBERT is obtained
as 0.00033 and 0.09241 which shows the overall
significant improvements with 5% and 10% signifi-
cant levels, respectively. The results are improved
in 83%, and 66% in the cases of different encoding
vectors and classifiers which are used as learning
based algorithms for AugBERT and AugEDA data
augmentation techniques, respectively.
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Methods used Original AugBERT AugEDA AugBT

P R F1 P R F1 P R F1 P R F1
RF+Word2Vec+TFIDF 0.68 0.84 0.75 0.69 0.84 0.76 0.68 0.81 0.74 0.67 0.84 0.74
SVM+Word2Vec+TFIDF 0.69 0.75 0.72 0.69 0.79 0.74+ 0.69 0.79 0.74+ 0.74 0.66 0.69
LR+Word2Vec+TFIDF 0.71 0.78 0.74 0.71 0.79 0.75 0.72 0.79 0.75 0.71 0.77 0.74
RF+Doc2Vec 0.65 0.78 0.71 0.62 0.83 0.71 0.65 0.80 0.72 0.63 0.82 0.72
SVM+Doc2Vec 0.74 0.76 0.75 0.73 0.78 0.76 0.74 0.73 0.73 0.73 0.75 0.74
LR+Doc2Vec 0.73 0.75 0.74 0.73 0.78 0.76+ 0.72 0.73 0.72 0.72 0.76 0.74
RF+Word2Vec+Doc2Vec 0.85 0.67 0.75 0.67 0.86 0.75 0.68 0.86 0.76 0.66 0.84 0.74
SVM+Word2Vec+Doc2Vvec 0.75 0.68 0.71 0.70 0.74 0.72 0.73 0.71 0.72 0.71 0.74 0.72
LR+Word2Vec+Doc2Vec 0.76 0.69 0.72 0.71 0.76 0.73 0.75 0.78 0.76+ 0.71 0.76 0.73
RF+TFIDF 0.70 0.73 0.71 0.69 0.79 0.74 0.67 0.84 0.74+ - - -
SVM+TFIDF 0.79 0.68 0.73 0.74 0.78 0.76+ 0.70 0.73 0.72 - - -
LR+TFIDF 0.68 0.82 0.74 0.70 0.80 0.75 0.76 0.75 0.75 - - -

Table 3: Classification Results on Dreaddit Dataset: Precision(P), Recall(R), F-measure(F1) score on the Original
and Augmented Datasets using BERT, EDA and BackTranslation. Text in bold shows the maximum F1 score
achieved by the model. ’-’ indicates no results. ’+’ indicates significantly different results using statistical t-test.

Methods used Original AugBERT AugEDA AugBT

P R F1 P R F1 P R F1 P R F1
RF+Word2Vec+TFIDF 0.68 0.67 0.67 0.69 0.69 0.69+ 0.63 0.66 0.65 0.65 0.68 0.67
SVM+Word2Vec+TFIDF 0.69 0.67 0.68 0.65 0.66 0.66 0.67 0.70 0.69 0.63 0.67 0.65
LR+Word2Vec+TFIDF 0.63 0.70 0.66 0.67 0.73 0.70+ 0.65 0.69 0.67 0.61 0.67 0.64
RF+Doc2Vec 0.65 0.57 0.61 0.63 0.51 0.56 0.64 0.55 0.60 0.59 0.57 0.58
SVM+Doc2Vec 0.65 0.66 0.65 0.66 0.73 0.70+ 0.66 0.70 0.68+ 0.65 0.69 0.67+

LR+Doc2Vec 0.65 0.67 0.66 0.68 0.76 0.71+ 0.68 0.71 0.69+ 0.66 0.69 0.68+

RF+Word2Vec+Doc2Vec 0.63 0.64 0.63 0.63 0.58 0.60 0.67 0.69 0.68+ 0.66 0.67 0.67+

SVM+Word2Vec+Doc2Vec 0.65 0.67 0.66 0.64 0.70 0.67 0.60 0.66 0.66 0.62 0.64 0.63
LR+Word2Vec+Doc2Vec 0.64 0.64 0.64 0.64 0.73 0.68+ 0.59 0.65 0.62 0.61 0.65 0.63
RF+TFIDF 0.61 0.85 0.71 0.63 0.81 0.71 - - - - - -
SVM+TFIDF 0.71 0.75 0.73 0.67 0.85 0.75+ 0.76 0.73 0.75+ 0.71 0.77 0.74
LR+TFIDF 0.70 0.77 0.73 0.68 0.85 0.76+ 0.76 0.75 0.75+ 0.71 0.77 0.74

Table 4: Classification Results on SDCNL Dataset: Precision(P), Recall(R), F-measure(F1) score on Original and
Augmented Datasets using BERT, EDA and Back Translation. Text in bold shows the maximum F1 score achieved
by the model. ’-’ indicates no results.’+’ indicates significantly different results using statistical t-test.

Dreaddit SDCNL
AugEDA 0.97 0.99
AugBERT 0.82 0.97
AugBT 0.88 0.99

Table 5: Data Diversity using BLEU Score

4.5.1 Statistical Significance for Dreaddit

It is evident from Table 6 that AugBERT and
AugEDA show significantly improved results and
there is no effect of AugBT over domain-specific
data augmentation for mental health.

On drilling down the results, it is observed that
the AugBERT based augmented results for SVM
classifier are significantly better than the other clas-
sification techniques. Some more significant im-
provements with the use of LR classifier is ob-
served as shown in Table 3 with as high as 5% for

Dreaddit AugBERT AugEDA AugBT
t-test -4.69041 1.07605 0.75593
p-value 0.00033 0.15247 0.23568

Table 6: Statistical Significance of overall results with
Original Data

AugEDA. The variation of improvement in results
ranges upto 4.1%, 5.5% and 1.3% for AugBERT,
AugEDA and AugBT, respectively.

4.5.2 Statistical Significance for SDCNL
The significant improvements over SDCNL dataset
is observed on the basis of p− value as 0.05, 0.10
and 0.15 as shown in Table 7. The results have
shown that the AugBERT and AugEDA gives bet-
ter results for 10% variation in results and validates
the hypothesis that the augmented data gives sig-
nificant improvements over the original dataset.
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SDCNL AugBERT AugEDA AugBT
t-test -1.42426 -1.6361 0.25118
p-value 0.09241 0.06644 0.40338

Table 7: Statistical Significance of overall results with
Original Data

Similar to the Dreaddit observations, the signifi-
cant improvements with LR classifier are observed
for classifying mental health into clinical depres-
sion and suicidal tendencies. On the contrary, SVM
with Doc2Vec shows much better results with Aug-
BERT, AugEDA and AugBT.

5 Conclusion

In this work, we use the data augmentation ap-
proach for mental health classification on two dif-
ferent social media datasets. The experimental
results using Logistic Regression classifier and
Doc2Vec embedding shows significant improve-
ments in F1 score and Precision with AugBERT.
To tackle the problem of data sparsity and sup-
port the automation of the 3-Step theory over so-
cial media data (Klonsky and May, 2015), the data
augmentation over mental healthcare may give re-
markable results. In future, we are planning to
use other domain-specific libraries and neural ma-
chine translation for explainable and conditional
data augmentation.
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A Appendix

Samples of original and augmented data

Original data Augmented data
(AugEDA)

Augmented
data(AugBERT)

Augmented
data(AugBT)

He said he could run
some more tests, but
he didn't think it would
help.

he talk about my said
run tests but he didnt
think would help

he said he tried run
some more medicine,
but he weren't think it
would help.

he said he could run
some clinical tests, but
he didn't think it would
okay.

Is always adamant
about keeping contact
with the people she
cheated with.

is always headstrong
about contact with the
people me cheated
with

then rather adamant
about keeping contact
featuring the people
she cheated with

is always adamant by
keeping track featuring
strange people she
cheated with

It seemed like a
circulation problem,
and I panicked and of
course ended up in the
ER again.

it seemed as a
circulation problem  i
panicked and of course
finish up in er again

many said like a
relationship collapsed,
and i, and same course
ended up entering the
er again

it seemed had mostly
circulation problem,
and i panicked and of
course ended up in er
again.
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Abstract

Text Style Transfer (TST) aims to alter the
underlying style of the source text to another
specific style while keeping the same content.
Due to the scarcity of high-quality parallel
training data, unsupervised learning has be-
come a trending direction for TST tasks. In
this paper, we propose a novel VAE based
Text Style Transfer with pivOt Words Enhance-
ment leaRning (VT-STOWER) method which
utilizes Variational AutoEncoder (VAE) and
external style embeddings to learn semantics
and style distribution jointly. Additionally, we
introduce pivot words learning, which is ap-
plied to learn decisive words for a specific
style and thereby further improve the overall
performance of the style transfer. The pro-
posed VT-STOWER can be scaled to differ-
ent TST scenarios given very limited and non-
parallel training data with a novel and flexi-
ble style strength control mechanism. Exper-
iments demonstrate that the VT-STOWER out-
performs the state-of-the-art on sentiment, for-
mality, and code-switching TST tasks 1.

1 Introduction

Text style transfer (TST) is an important task in the
natural language generation area, aiming to control
the certain manner of the semantics style expressed
in the generated text. Such styles include but not
limit to emotion, humor, politeness, formality, and
code-switching. For instance, sentiment transfer
is widely seen in sentiment analysis for review-
ing comments (e.g., yelp, twitter), and targets on
converting the original negative/positive comment
into a new comment with same topic but opposite
sentiment (Hu et al., 2017; Shen et al., 2017); for-
mality transfer is commonly used in documenting,
aims at transferring the informal oral expression

Work done during an internship at Amazon Alexa AI.
1The code is available at https://github.com/

fe1ixxu/VT-STOWER.

into a formal written expression (Jin et al., 2020).
In this paper, we also consider code-switching as
a style transfer task, which has not been explored
by previous works. Code-switching is a compli-
cated linguistic phenomenon where a speaker al-
ternates between two or more languages in one
utterance, either inter-sentential or intra-sentential.
The code-switching transfer is a more challenging
task considering cross-lingual alignment and lim-
ited available training data in nature. Examples
of these three style transfer tasks are shown in the
Figure 1.

Because of the scarcity of high-quality parallel
training data, unsupervised learning has become
the mainstream for TST tasks. Existing works on
unsupervised TST learning can be roughly cate-
gorized into Disentanglement (Shen et al., 2017;
Hu et al., 2017; Fu et al., 2018; John et al., 2019)
and Style Attribute Rewriting (Lample et al., 2019;
Dai et al., 2019; Yi et al., 2020). Disentanglement
approaches strip style features from the content
and incorporate the content features with the tar-
get style representation. However, researchers be-
come less focus on disentanglement methods after
Locatello et al. (2019) theoretically proved disen-
tanglement approaches are impossible to represent
style fully with unsupervised learning. The style
attribute rewriting enforces the model to focus on
style-independent words by cycle reconstruction
and rewriting the style attributes with style em-
beddings. Dai et al. (2019) firstly proposed style
transfer model based on the transformer architec-
ture along with target style information. Lample
et al. (2019) reported that a good decoder can gen-
erate the text with the desired style by rewriting the
original style. However, the style strength of the
generated sentences cannot be easily adjusted in
above mentioned works.

Variational autoencoder (VAE) is firstly pro-
posed by (Kingma and Welling, 2014) for gener-
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ation by formatting the latent distribution instead
of feeding a single latent feature to the decoder.
Many TST models have been benefited from the
architecture of VAE. Bowman et al. (2016); John
et al. (2019) showed that the latent space learned
by VAE is considerably smoother and more contin-
uous than the one learned by Deterministic Autoen-
coder (DAE). Hu et al. (2017) proposed a new neu-
ral generative model that combines VAE and holis-
tic attribute discriminators for effective imposition
of the style semantic structures. In this paper, we

Figure 1: Examples of different TST. Including sen-
timent style transfer (negative ↔ positive), formality
style transfer (informal ↔ formal), code-switch style
transfer (single language↔ code-switch sentence).

also leverage the VAE and propose a novel method
called VAE based Text Style Transfer with pivOt
Words Enhancement leaRn-ing (VT-STOWER) for
TST tasks. VT-STOWER utilizes both VAE and
style embeddings to jointly learn the distribution of
content and style features. More importantly, we
boost the performance of TST tasks much more
by inventing pivot words enhancement learning.
Compared with other style-transfer methods, our
proposed VT-STOWER has a bunch of advantages.
In general, the advantages and contributions of the
VT-STOWER can be summarised as follows:

• VT-STOWER integrates the advantages of
both VAE and style embeddings. The former
catches continuous style expression distribu-
tion in language itself while the latter differen-
tiates embedding between original style and
target style.

• VT-STOWER has the flexibility to adjust
the target style strength by granting differ-
ent weights to the auxiliary target style em-
bedding; This allows VT-STOWER to bet-
ter migrate to different style transfer scenar-
ios, which is rarely studied in previous style-
transfer work.

• With the pivot words masking enhancement
mechanism, VT-STOWER is able to focus
more on the pivot words (certain words that
can determine the style of the sentence) and

be aware of which words have higher prob-
ability to be transferred in the TST. This en-
hancement significantly improves the transfer
accuracy while maintaining original topic.

• VT-STOWER can be easily scaled to dif-
ferent types of TST tasks. To the best of
our knowledge, we are the first to consider
code-switching in perspective of style trans-
fer and demonstrate that VT-STOWER can
be successfully applied to the Hindi-Hinglish
code-switching transfer. Therefore, we pro-
vide more potential solutions for the the code-
switching problems beyond translation by
which translating from single language to
code-switching expression is very hard given
limited training data.

• We evaluate VT-STOWER on the benchmark
dataset of sentiment, formality transfer tasks,
and the code-switching style transfer. Experi-
mental results on all tasks demonstrate better
overall performance against state-of-the-art
methods, which highlights effectiveness and
wide application of VT-STOWER.

2 Proposed Method

The training of VT-STOWER consists of two
stages. The training stage I is a VAE reconstruction
task in which the input text x will be reconstructed
together with external style embeddings. The la-
tent space of content distribution is learned by VAE,
and the original and target style mapping will be
learned and saved in style embeddings. The trained
VAE and style embeddings will also be utilized in
the second training stage.

To make the style transfer focus on pivot words
(e.g., emotional words in sentiment TST) while
maintaining other words unchanged (so that the
fluency and semantics can be largely preserved),
we fine-tune the VAE with pivot word masking
in training stage II. The masking is based on the
probability distribution of pivot words for specific
styles, which is learned from a style classification
task.

In the inference stage, VT-STOWER uses the
learned external target style embeddings to adjust
the sampled latent vector of the original input to
the target style. The adjusted sentence vector will
then be input to the decoder to generate the target
style text.
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2.1 Training Stage I: VAE & Style
Embeddings

Figure 2a presents the details of training stage I.
Given a sentence x whose style type is known, we
firstly extract the contextualized vectors through a
pre-trained language model as the input to the VAE
model, since a pre-trained language model (such as
RoBerta (Liu et al., 2019) and XLM-R (Conneau
et al., 2020)) can improve the performance of the
downstream models, especially when the training
data size is small (Peters et al., 2018). After that,
similar to typical VAE structure from Bowman et al.
(2016); John et al. (2019), a multi-layer transformer
is used as the encoder to encode x to a mean vector
u ∈ Rd and a variance vector Σ ∈ Rd to construct
a latent distribution N (µ,Σ). d represents the di-
mension of the latent space. z is the vector sampled
from the latent distribution and will be input to the
decoder (which is also a multi-layer transformer) to
reconstruct the original text. The latent distribution
is assumed to be a normal distributionN (0, I). The
standard loss function of the VAE model is defined
as:

Lvae = −Eq(z|x)[log p(x|z)]+β·KL(q(z|x) ‖ p(z))
(1)

where the first term represents the likelihood of the
reconstruction of the original text x while the sec-
ond term is the Kullback–Leibler (KL) divergence
between the latent distribution and standard normal
distribution. p(z) represents the prior which is the
standard normal distributionN (0, I), and q(z|x) is
the posterior distribution in the form ofN (µ,Σ). β
is the hyperparameter balancing the learning capac-
ity between self-reconstruction and style features
(Higgins et al., 2016).

Style embeddings are also learned in this train-
ing stage. Instead of disentangling style attributes
from latent features (Shen et al., 2017; Hu et al.,
2017; Fu et al., 2018; John et al., 2019), we uti-
lize external style embeddings to learn the orig-
inal and target style representations. The advan-
tage of external style embeddings is that they can
avoid separating latent feature which leads to the
lower capacity of vector representation (Dai et al.,
2019), and can differentiate the space of different
styles. The set of style embeddings is defined as
S = {s1, s2, · · · , sk}, si ∈ Rk×d, where k is the
number of styles (k is commonly to be 2 in TST
tasks). Style embeddings are generated by a linear
forward network whose output dimension is d. This
style embedding network is randomly initialized

and will be updated by minimizing the similarity
between the style embeddings and latent feature of
the input instances.

To minimize such similarity, we calculate the
cosine similarity between style embeddings si
(1 ≤ i ≤ k) and sampled latent feature z as the
style loss. The assumption is that the style embed-
ding should be highly related to the latent feature
encoded from the sentence which belongs to the
same style, e.g., the distance between positive style
embedding and latent vector encoded from positive
sentence should be close to 1, while the distance
should be 0 between positive style embedding and
latent vector from the negative input sentence. The
style loss is defined as follows:

Lstyle = −
k∑

i=1

di log(σ(cos(si, sg(z)))) (2)

For brevity, we only present the loss for a single
style sentence, where di represents the ground truth
distance. Specifically, if ith style is the style of
the input sentence, di = 1, otherwise, di = 0.
σ(·) here is the sigmoid activation function which
controls the range of cosine similarity between 0
and 1. sg(·) is the ‘stop gradient’ function, e.g.,
the feature sg(z) is extracted through the latent
distribution and used as an independent constant
vector for computing the Lstyle. The VAE loss is
slightly modified from Equation 1 by adding style
embedding to hint decoder the style of sentences to
be generated.

Lvae = −Eq(z|x)[log p(x|z + sg(sx))]

+ β ·KL(q(z|x) ‖ p(z)) (3)

where sx is the style embedding of sentence x.
Similarly, the sx is also used as a constant vector.
Therefore, the total loss function is then defined as:

Ltotal = λvaeLvae + λstyleLstyle (4)

where λvae and λstyle are penalty weights, which
are hyperparameters to balance between VAE loss
and style embeddings loss.

2.2 Training Stage II: Pivot Words Masking

In Stage I, we co-train VAE & style embeddings
where we show how to leverage learned style em-
beddings to further improve the VAE model. In
stage II, We further enhance the model by masking
pivot words to prompt decoder to focus on pivot
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(a) Training stage I: VAE & Style Embeddings (b) Training stage II: Pivot Words Enhancement

Figure 2: Workflow of two training stages. a) Training stage I: VAE & style embeddings training. The VAE
structure learns to reconstruct the inputs sentence x, and the style embeddings learn the vector representation of
each style. PTLM represents Pre-Trained Language Model. b) Training stage II: pivot words masking training. The
VAE is further fine-tuned with similar reconstruction task with additional pivot words masking. The frozen style
embeddings are added to the latent vector to reconstruct the original sentence. We frozen the style embeddings in
this step since the style-related pivot words have higher possibility to be masked and latent vector loses the style
information which is the key for style embeddings training.

words, because certain style-related words play cru-
cial roles in TST (Fu et al., 2019). For instance,
the pivot word of the sentence ‘I am disappointed
with the restaurant’ in sentiment transfer is ‘dis-
appointed’ because this word contributes the most
to the negative sentiment. However, other words
such as ”I, was” are anchor words, which are un-
related to the sentiment but affect the semantics
thus should be unchanged during the style trans-
fer. Therefore, this stage of training is important
to enhance the model ability in transferring pivot
words while keeping anchor words. This stage can-
not be merged into training stage I because 1) in
this stage style embeddings have no visibility to the
style-related pivot words so that the style informa-
tion is hard to be learned; 2) the style embeddings
learned in training stage I have auxiliary function in
helping reconstructing masked pivot words during
fine-tuning the VAE.

However, randomly masking words in input sen-
tence and only relying on style embeddings to em-
phasize the pivot words does not achieve ideal
results. A more efficient way is to learn which
words are more possible to be pivot words for a
specific style, and mask them based on the proba-
bility. Similar to Sudhakar et al. (2019), we utilizes
the importance score distribution to indicate the
possibility of words being pivot (a pivot word has
a higher score). Such importance score distribution
is achieved from the attention weights of a style
classifier. Specifically, we train a style classifier

based on a pre-trained language model, appending
with a softmax layer over the attention stack of the
first token. The first token is usually a special sym-
bol that represents the beginning of the sentence
(e.g., ‘<s>’), and also collects other tokens’ atten-
tion weights that correspond to their significance
in identifying the style of the input sentence. The
importance score of a token w in the input sentence
x is defined as follows:

α(w) =
1

L

L∑

i=1

softmaxw∈x(
Q<s>,iK

T
w,i

γ
) (5)

where L is the number of attention heads. Q,K are
quires and keys in the final layer of the language
model (Vaswani et al., 2017). Their subscript <
w, i > represents the vector of token w in ith head.
γ is a hyperparameter ranging in (0,1) to adjust the
sharpness of the score distribution (smaller means
sharper).

After we get the pivot words probability, we
mask words in the input sentences based on this
importance score distribution. Specifically, every
token xi is assigned a random number pi, conform-
ing to the uniform distribution pi ∼ uniform[0,1].
Tokens are masked into a special symbol ‘<mask>’
if their assigned number is smaller than the score
(pi < α(xi)) so that words that possess higher im-
portant scores have higher probability to be masked.
Following the previous example, the input sen-
tence would be masked as ‘I was <mask> with
the restaurant’. In this way, masked sentence pre-
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serves the content but with style attributes removed.
Then the VAE model is fine-tuned to reconstruct
masked sentence to the original sentence by adding
the corresponding style embedding to the latent
feature. The loss function is defined as follows:

Lvae = −Eq(z|x)[log p(x|z + sg(s′x))]

+ β ·KL(q(z|x) ‖ p(z)) (6)

where s′x is the style embedding which has the
same style as input x. Note that we do not up-
date style embeddings in this stage because the
style embeddings are used for assisting fine-tuning
the decoder with style information, and their gen-
eral style representation should not be impacted by
the pivot words reconstruction loss. Moreover, to
prevent the latent space of VAE from shifting or
distorting to unreasonable distribution that only de-
scribes masked sentences, we conduct pivot words
masking in randomly 50% of sentences.

Although Madaan et al. (2020) has a similar
method tagging the source style phrases and gen-
erating the target style sentences by using n-gram
tf–idfs, the core differences of our stage II method
are: 1) each word has a probability of being masked
calculated by the attention scores of the stacked
classifier on a language model, which leads to a
smooth word masking probability distribution; 2)
VAE decoder reconstructs the masked sentences
using both information of latent space and external
style embeddings.

2.3 Inference stage
In the inference stage, the latent representation z
generated from the input sentence x through VAE
will be adjusted before sending to the decoder. In
detail, the latent vector z will be added the target
style embedding and subtracted the style embed-
ding of original style as x. Intuitively, we expect
the injection and removal of style information is
completed by the addition and subtraction oper-
ations of style embeddings. The updated latent
representation is expressed as follows:

z′ = z + w · (st − so) (7)

where st and so are target and original style embed-
dings trained in the stage I respectively. w repre-
sents the style weight that adjusts the style strength
applied to the sentence generation. A higher weight
means stronger style attributes will be injected for
generation.

3 Experiments

3.1 TST Evaluation Tasks and the Settings

We evaluate VT-STOWER with three different TST
tasks: sentiment transfer, formality transfer, and
code-switching transfer.

For sentiment transfer, we adopt the Yelp dataset
(Li et al., 2018), in which each sample is a business
review of a restaurant and is labeled as positive
or negative. For formality transfer, We adopt one
of the largest corpus for formality transfer task,
namely Family and Relationships domain data in
GYAFC (Grammarly’s Yahoo Answers Formal-
ity Corpus) (Rao and Tetreault, 2018). For code-
switching transfer, we evaluate VT-STOWER on a
Hindi→Hinglish transfer task, which is extracted
from the English-Hinglish translation dataset at
LinCE (Linguistic Code-switching Evaluation)
(Aguilar et al., 2020). We first translate English
sentences into Hindi by Amazon Translation Ser-
vice and then transliterate Latin scripts of Hindi
words into Devanagari form by using indic-trans
tool (Bhat et al., 2014) to keep the consistency of
the script of language 2. Note this dataset is very
low-resource, which only contains 7K sentences
for training. Similar to GYAFC set, we shuffle the
training data and treat it as unpaired data. Note
that two of the training sets are transformed from
originally paired dataset instead of directly using
richer unpaired datasets, it is because we want to
make a fair comparison with other referenced ap-
proaches. The training and test set size for each
task is presented in Table 1.

Tasks training set evaluation set test set
Sentiment Transfer (positive/negative) 266K/177K 2K/2K 500/500
Formality Transfer (formal/informal) 52K/52K 2.2K/2.7K 1K/1.3K
Code-Switching Transfer (Hinglish/English) 7K/7K 300/300 300/300

Table 1: Training, evaluation, and test set size of three
evaluation tasks.

Considering that GYAFC and Yelp dataset are
written in English and the code-switching dataset
is in mixed languages of Hindi and English, we use
RoBERTa as the pre-trained language model for
sentiment and formality transfer tasks, and XLM-R
(Conneau et al., 2020) for code-switching transfer.
Also, we fine-tune the style classifier to obtain im-
portant score distribution by leveraging RoBERTa
and XLM-R for the corresponding transfer tasks.

2The output of translator is Devanagari form while the
original script of Hindi in LinCE is Latin.
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More training hyperparameters are shown in Ap-
pendix A.

3.2 Evaluation Metrics

Style Transfer Accuracy (Acc) Style transfer
accuracy (Acc) is defined as the ratio of the number
of successfully transferred sentences and the total
number of input sentences. Following previous
studies (Dai et al., 2019; Sudhakar et al., 2019), we
leverage fastText classifier (Joulin et al., 2017) to
classify whether the original text have been suc-
cessfully transferred to the target style. The clas-
sifier is trained on the same training data used for
style transfer. The three classifiers achieve 97.6%,
85.75% and 99.7% accuracy for sentiment, formal-
ity and code-switching style classification itself,
respectively.

Perplexity (PPL) We also measure the fluency
of the transferred sentences by calculating their
perplexity. The lower the perplexity is, the more
fluent the generated sentences are. For the GYAFC
and Yelp dataset which are in English, we use the
pre-trained language model GPT2 (Radford et al.,
2019) to compute the perplexity, where no further
fine-tuning is conducted. However, GPT2 does
not apply to other languages or code-switching
sentences. Following Samanta et al. (2019), we
train a character-level LSTM (Kim et al., 2016)
on the code-switching training data and utilize this
model to derive the perplexity of generated code-
switching sentences.

BLEU Scores Content preservation is evalu-
ated by the tokenized BLEU scores (Papineni
et al., 2002) between the transferred sentences and
human-authored references, which is calculated
with the multi-bleu.perl. Note that GYAFC
dataset has four human references, so the BLEU for
GYAFC is the mean BLEU scores between the gen-
erated sentences and four references. Because there
is no human reference for code-switching task, we
report BLEU scores between transferred sentences
and original sentences for code-switching transfer
instead.

Geometric Mean (GM) Following Yi et al.
(2020), We also report the geometric mean of accu-
racy, BLEU, 1

ln PPL as the overall performance.

3.3 Main Results

The performance of VT-STOWER and previous
works are shown in Table 2. First of all, we can

Models Acc ↑ PPL ↓ BLEU ↑ GM ↑
Sentiment Transfer (Yelp)

CrossAlignment 74.0 42.91 9.06 5.63
Delete & Retrieve 87.5 40.66 5.99 5.21
B-GST 84.3 25.27 22.82 8.41
Style Transformer 83.9 43.60 28.29 8.57
Deep LatentSeq 83.0 27.08 24.03 8.46
StyIns 91.5 42.60 25.11 8.49
Tag & Generate 87.5 32.98 21.80 8.17
Ours (stage I, w = 4) 91.7 38.35 18.51 7.75
Ours (stage II, w = 2) 91.1 30.78 23.97 8.61
Human Reference 74.1 27.40 100.0 13.08

Formality Transfer (GYAFC)
CrossAlignment 65.35 13.66 1.57 3.40
Delete & Retrieve 53.85 29.70 11.71 5.71
Style Transformer 56.05 48.72 24.67 7.09
Ours (stage I, w = 4) 80.9 31.90 14.19 6.92
Ours (stage II, w = 3.1) 81.0 30.78 15.84 7.21
Human Reference 82.31 28.05 100.0 13.39

Code-Switching Transfer (LinCE)
Style Transformer 99.3 601.45 3.47 3.78
Randomly Replace 1.02 213.24 69.09 2.36
Ours (stage I, w = 0.75) 66.67 29.91 24.30 7.81
Ours (stage II, w = 0.75) 68.70 30.02 26.42 8.11

Table 2: Overall results of our models (VT-STOWER)
and previous methods on three style transfer tasks. The
best scores are bolded in the corresponding metric. ↑
means the higher is better, vice versa.

clearly see the performance improvement brought
by stage II training compared with single train-
ing stage I. In all three transfer tasks, models
trained in stage II lead to lower PPL (or simi-
lar PPL in code-switching transfer) and higher
BLEU scores when we find a w to control them
in a similar Acc, which achieves better overall
performance. For instance, compared with the
model trained in stage I with w = 4 in the sen-
timent transfer, the model fine-tuned in stage II
achieves similar accuracy with w = 2 (91.7% vs.
91.1%). At the same time, the stage II model de-
creases the PPL from 38.35 to 30.78 and increases
the BLEU from 18.51 to 23.97, which demonstrates
that the pivot words masking training is capable of
improving the smoothness of the sentences and the
preserving the content. Note that we cannot use
the same weight w for a direct comparison since
the models in two training stages have different
sensitivity to w. Therefore, we use w that produces
similar accuracy between stage I and stage II for a
fair comparison for the PPL and BLUE.

When comparing our method with several state-
of-the-art references: CrossAlignment (Shen et al.,
2017), Delete & Retrieve (Li et al., 2018), B-GST
(Sudhakar et al., 2019), Style Transformer (Dai
et al., 2019), Deep LatentSeq (He et al., 2020),
Tag & Generate (Madaan et al., 2020) and StyIns
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(a) sentiment transfer (b) formality transfer (c) code-switching transfer

Figure 3: Illustration of style weight w vs. Acc, PPL and BLEU in sentiment, formality and code-switching
transfer tasks. Note there is a trade-off between Acc and PPL/BLEU. With increasing of w, Acc will increase
while BLEU drops down and PPL increases.

Figure 4: Comparison of style transfer outputs of our
models and style transformer in three transfer tasks.
Our models are stage II models in Table 2. Translations
for code-switching sentences are shown in parenthesis.

(Yi et al., 2020), the performance of their methods
is directly evaluated on their provided outputs by
using our metric evaluators. We will further discuss
how w affect the performance in next section. We
can clearly see the overall performance (GM) of
our proposed model is better than all baselines. For
evaluating the success of style transfer, accuracy is
the most critical metrics, for which VT-STOWER
also demonstrates large improvement in sentiment
and formality transfer.

In the sentiment style transfer, our model with
w = 2 (after stage II training) has competitive
accuracy (91.1%), and BLEU (23.97) compared
with the state-of-the-art methods StyIns (Yi et al.,
2020) (accuracy=91.5%, BLEU=25.41) and style
transformer (Dai et al., 2019) (accuracy=83.9%,
BLEU=28.29) but achieve much lower perplexity
(30.78) compared to 42.60 in StyIns and 43.60
in style transformer, which demonstrates that the
sentences generated from our model is closer to
the natural language. VT-STOWER also outper-
forms other previous methods by a large margin
in all three metrics. In the formality transfer, the
most competitive model is the style transformer.
Although it achieves higher BLEU scores (24.67),

our models beats it on higher style transfer accu-
racy (81.0% vs. 56.05%) and significantly lower
PPL (30.78 vs. 48.72) with limited loss of BLEU
scores.

For the code-switching transfer, since there is
no previous TST experimenting on this task, we
train the strongest baseline (style transformer) for
this task. Interestingly, style transformer obtains
a very high accuracy (99.8%) with the costs of
very high PPL (601.46) and very low BLEU score
(3.47). The possible reason is that the style trans-
former is only able to capture partial special style
features from the small dataset (7K) and only trans-
fer sentences based on these features without fully
capturing the nature of languages, resulting in high
accuracy but low fluency and BLEU. However, VT-
STOWER can balance among the accuracy, fluency,
and BLEU to achieve reasonable results even in the
case of the low-resource dataset, which demon-
strates its generalization power. Additionally, we
also design another baseline, i.e., we randomly re-
place 15% Hindi words with English words (Zheng
et al., 2021) based on the MUSE dictionary (Con-
neau et al., 2017), because intuitively, people may
regard code-switching text generation as simply
translating several words. However, this method
only achieve 1.02% accuracy, because simple trans-
lation and replacement cannot accord with the
habit of bilingual expression in code-switching sen-
tences, namely, code-switching has its own style
according to the speakers (e.g., usually noun is
more likely to be replaced with foreign language
than preposition). Intuitively, when we compare the
VT-STOWER with original and other approaches
as shown in Figure 4, the output bilingual sentence
from VT-STOWER reads more fluent and can be
easier understood.
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(a) sentiment transfer (b) formality transfer (c) code-switching transfer

Figure 5: Illustration of the mean attention weights of token ‘<s>’ from all heads at the final layer in three TST
tasks. Higher importance scores are assigned to pivot words, which are depicted as deeper lines in the figures.

3.4 Effect of Style Weights

As shown in Equation 7, the strength of the target
style in z′ is adjusted by the style weight w. In
Figure 3, we present metrics trend with five dif-
ferent w for the models trained in stage II 3, and
demonstrate how the style weight w affects the out-
puts. Taking sentiment transfer task as an example,
when w is increased from 0.5 to 2.5, the transfer
accuracy climbs from 17.3% up to 95.9%, but the
BLEU score drops from 27.44 down to 20.85, and
PPL increases from 24.77 to 32.8. The reason is
when increasing w, more style information is in-
jected into the latent vector that the decoder pays
more attention to the target style feature rather than
the naturalness and content of generated sentences.
Therefore, w is a trade-off hyperparameter between
the transfer accuracy and PPL/BLEU. Examples
of generated sentences transferred from positive
to negative sentiment with w = 1.5, 2, 2.5 are il-
lustrated in Table 3. When w = 1.5, the model
still can find a positive word, ‘enjoying,’ which
makes the sentence ironical. In the case of w = 2,
the ‘enjoying’ is rephrased to ‘avoid’, turning the
sentence into a full negative attitude. If we further
increment w = 2.5, more negative words will be
added regardless of the smoothness of the sentence.
Similar discussions also hold for the formality and
code-switching transfer, where their results versus
various style weights are illustrated in Figure 3b
and 3c.

3.5 Importance Score Distribution

Recall that for the training stage II, the importance
scores are derived from the attention scores of the

3w ranges from 0.5 to 2.5 with an interval of 0.5 for sen-
timent and formality transfer, and from 0.25 to 1.25 with an
interval of 0.25 for code-switching transfer.

Positive→ Negative with various w
Original i will be going back and enjoying this great place !
w = 1.5 i will be going back and enjoying this terrible place !
w = 2 i will be going back and avoid this terrible place !
w = 2.5 i will be going back and worst rude avoid this terrible place !

Table 3: Examples of sentences transferred from pos-
itive to negative sentiment with various settings of w.
The higher w is the more negative words are injected in
the sentences.

BOS token ‘<s>’, which are the mean scores of all
heads from the last layer of a pre-trained encoder.
Figure 5 presents the examples of importance score,
showing how the score value represents the impor-
tance of words in terms of style representation. The
importance scores are higher on ‘comfortable and
welcome’ in the sentiment transfer, these words
represents strong positive emotions. Similarly, the
scores are higher on the informal written words
‘ur’ in the formality transfer, and English words
mixed in a Hinglish sentence in the code-switching
transfer.

4 Conclusion

We proposed the VT-STOWER, a model joinly
trained with VAE and style embeddings for con-
tent distribution and style information. The method
successfully transfers several different text styles,
including the code-switching TST task for the first
time. Taking advantage of the flexibility of style
embeddings, our proposed model has the ability
to adjust the style strength during the transfer by
simply adjusting the style weights. To further en-
hance the transfer accuracy, we propose additional
pivot words masking training scheme, which shows
impressive improvement.
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A Hyperparamerters

The encoder and decoder for sentiment and formal-
ity transfer tasks both are two-layer transformer
(Vaswani et al., 2017), with FFN dimension size of
1024 and 4 attention heads. Due to the limited code-
switching data size, we run smaller encoder and
decoder with 256 FFN dimensions and 2 attention
heads for code-switching transfer task. The neu-
ral networks that formulate the mean and variance
of the latent space are also one-layer transformer
blocks. The dimension of the latent features and
style embeddings is 768. Both penalty weights
λvae and λstyle equal to 1. We set γ as 0.01, 0.03,
and 0.005 for sentiment, formality, code-switching
transfer during importance score calculation, re-
spectively. The β is set as 1. The optimizer is
Adam (Kingma and Ba, 2014) with learning rate
0.0005. The batch size is 8092 tokens.
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Abstract

Artificial intelligence(AI) has come a long way
in aiding the user requirements in many fields
and domains. However, the current AI sys-
tems do not generate human- like response
for user query.Research in these areas have
started gaining traction recently with explo-
rations on persona or empathy based response
selection. But the combination of both the pa-
rameters in an open domain haven’t been ex-
plored in detail by the research community.
The current work highlights the effect of per-
sona on empathetic response. This research pa-
per concentrates on improving the response se-
lection model for PEC dataset, containing both
persona information and empathetic response.
This is achieved using an enhanced multi re-
lationship extractor and phrase based infor-
mation for the selection of response.

1 Introduction

Empathetic response generation refers to the ability
of a system to understand the people mentality or
the feelings of a user and provide an appropriate
response. In the area of NLP, empathetic conver-
sational models have shown a positive impact on
the user compared to normal responses[Liu and Pi-
card (2005);Zhou et al. (2020);Lin et al. (2020);Li
et al. (2021)].Empathetic response creates a per-
sonal connect with the user and achieves signifi-
cantly higher engagement by providing seamless
conversational experience as shown by this exam-
ple 1. You can see how empathetic response aides
in different kind of engagement with the user and
also provide suggestions.

Recent years have seen an increase in explo-
ration on empathetic response generations using
neural conversational models.Lin et al. (2020) have
developed CAIRE to generate empathetic response
using user emotions for better connections with the

∗Samsung R&D Institute India - Bangalore

Figure 1: Normal Chatbot Vs Empathetic Chatbot

user.Li et al. (2021) have used causal emotional in-
formation to understand a particular user emotional
state and correspondingly learn response for each
emotion class. Zhou et al. (2020) have developed
an AI model named XiaoIce for better human un-
derstanding and communication. (Rashkin et al.,
2018) has created custom datasets for the said prob-
lems named EMPATHETICDIALOGUES (ED).
These dataset has proven that pre-trained retrieval
models like BERT and its variants are able to reply
with more empathy when trained with such dataset.

The above explorations doesn’t take into account
the persona of the user.As persona aides in better
conversational response, this area started gaining
traction by the research community.Demasi et al.
(2020) developed Crisisbot where it uses the per-
sona of the user in the conversation to provide com-
plex response to train hotline counselors for sui-
cide prevention task.Song et al. (2019) explored the
way to generate sustainable and coherent response,
using persona in a conversation, where each re-
quest will have many possible responses.Wang et al.

173



(2021) developed an emotion-affective open do-
main chatbot where they use knowledge graph to
extract personal information and incorporate into
the system for consistent personality.

The presence of Persona have shown impact in
the conversational response. Hence, exploration
on the impact of persona on empathetic response
started gaining traction. Persona have shown to
impact empathetic natural language generation ca-
pability. We have noticed that empathetic response
of system is different from two different users for
the same input user utterance or query.Roller et al.
(2020) incorporated persona with empathy on re-
sponse generation for several dataset but the impact
of persona on empathy is not explored. Zhong et al.
(2020) has presented a novel large-scale multi-turn
Persona-based Empathetic Conversation (PEC) us-
ing two contrasting sentimental domains from so-
cial media Reddit. They have proposed novel
Cobert architecture (combination of BERT with
basic Co-Attention mechanism) to select the ap-
propriate response for the post and penalise op-
posite response pairs. This is the first approach
where Persona information is used to influence the
empathetic response selection. The current archi-
tecture takes the full user context, personas and
response for gathering bi-attention and selecting
appropriate response. Co-attention won’t be able
to capture phrase level impact on the response se-
lection. Moreover the influence of the different
phrases from different positions might not be cap-
tured well.

To address this issue, we are proposing multi
relationship extraction using BERT for influencing
the selection of appropriate response and penalising
the un-important ones.

In summary, the contributions of the papers is
summarized as below

• We propose phrase importance planner to ex-
tract n-gram impact of the phrase in unigram.

• We propose multi relationship extraction us-
ing BERT where we use phrase importance
planner along with the entire context to impact
response.

2 Related Work

2.1 Retrieval based Conversational Model

Lots of work have happened in neural conversa-
tional model for response selection task. The task

is approached in 3 stages which are as shown be-
low.

• Encoding The encoding module encodes the
input tokens into contextual vector representa-
tion using encoders like BERT, ELMO or non
contextual vector representations like Glove
embedding.

• Matching The matching module measures
the co-relation between user context and re-
sponse using persona details with different
attention techniques.

• Aggregation The aggregation module aides
in summarising the matching module informa-
tion along the sequence axis to get the final
representation.

Humeau et al. (2019) introduced polyencoders for
handling pairwise comparison between 2 sequences
using the combination of cross encoders and bi-
encoders.Cross-encoders calculates attention over
all the target labels and hence will be slow in cal-
culation. Bi-encoders calculate individual pair at-
tention and will be faster.

3 PEC Dataset

This section explains the high level information
on PEC dataset gathered by Zhong et al. (2020).
For full detailed analysis, please refer to the above
paper. PEC dataset is available in huggingface as 1.

Data Source The data has been collected by the
author Zhong et al. (2020) from Reddit, a discus-
sion forum where users can discuss any topics on
sub-reddits. The data is made from two contrast-
ing sentiments related sub-reddits namely Happy
and Offmychest. Here the comments are more
empathetic than casual conversations.

Conversation Collection Reddit has threads
where there will be a single post containing direct
and indirect comments. These threads are orga-
nized in a tree where the root represent post and
comments are represented as nodes connecting to
parent comment node or root post node. If there
are n nodes then author extracts n-1 conversations
where each conversation starts from root node and
ends at n-1 non root nodes. The author has split
the data into 80:10:10 for training, validation and
testing.

Persona Collection Persona sentences are col-
lected from all the posts and comments that the

1https://huggingface.co/datasets/pec
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user has written. There are strict rules applied to
fetch the persona sentences from the provided posts
which are listed below

• Presence of the word ”i” in the post.

• Presence of atleast one verb

• Presence of atleast one noun or adjective.

• Presence of atleast one content word.

Data Processing We follow the data processing
steps followed by the author Zhong et al. (2020).
These steps are listed below.

• Each conversation has at most 6 most recent
turns.

• Each post is between 2 and 90 words.

• Each comment is between 2 and 30 words.

• Each speaker has atleast one persona sentence.

• The last speaker is different from the first
speaker in each conversation. The reason is
last comment is considered as empathetic re-
sponse rather than reply to the user.

• Remove all special symbols, URLs and image
captions.

• Lowercase all the utterances.

Sample conversation of PEC dataset for happy
and offmychest are present in Table 1

4 Multi Relationship Extractor using
BERT Embedding

This section introduces the task of response se-
lection and briefly explains novel architecture on
addressing the task at hand as shown in Figure 2.

4.1 Task Definition
We denote the training conversational dataset as
DX . DX is a set of n conversations. Each con-
versation is in the format of (UX , PX , YX ) where
UX = UX1, UX2, UX3...,UXn indicates the n user
context utterances, PX = PX1, PX2, PX3, ..., PXp
denotes the p persona sentences for the respon-
dent and Y denotes the target response for the user
context. We can formulate the response selection
problem as f(UX , PX , YX ) where we assign high-
est probability to true candidate YX and lowers the
score of negative candidates given X and P. When
we infer the model, the model will select the best
candidate from the candidate list by selecting high-
est probability.

Conversations
OffMyChest Happy
why is it ok for women
to wear skirts in a
business casual envi-
ronment , but men ca
n’t wear shorts ?

got the best t - shirt ever
today !

skirts generally are n’t
comfortable . you ca
n’t do much in them
other than walk , un-
less they ’re long and
even then ...

prepare your inbox for
pussy puns

my issue is n’t comfort
, it ’s sweating my balls
off . ladies also get to
wear sleeveless shirts !

i do n’t get it ..

... not sweating your
balls off is comfort .

she ’s a girl wearing a
shirt with a cat on it .
you know what , no ...
this has got ta be a troll
attempt

Persona of respondent
i was going to say ”
welcome to being a
woman ”

i have 2 characters .

i just wanted to share . i respond the same way
to gal gadot tickling me

i make lots of male
friends easy .

i know that feel , unfor-
tunately

Table 1: Sample data for OffMyChest and Happy
classes in the PEC dataset.First 4 rows represent Con-
versation and last 3 rows represent Persona details of
the respondent.

4.2 BERT Embedding

This module handles the first stage of retrieval
model namely Embedding step. In this module,
we encode the user context utterances, persona ut-
terances and response utterances using BERT pre-
trained model (Devlin et al., 2018). User context
utterances is obtained by concatenating the list of
sentences uttered by the user in order. Persona ut-
terances are obtained by random ordered concatena-
tion of list of persona utterances for the respondent.
Response utterances are obtained by concatenating
the list of response sentences. When we encode
context utterances, persona utterances and response
utterances using BERT, we get vector representa-
tion of context, persona and response. Context
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Figure 2: Multi Relationship Extractor using
BERT.Information Extractor module address the
importance of phrase or context level learning over
response and vice versa. Phrase Planner handles
phrase importance of user context or persona inputs
by incorporating the importance of bigram and trigram
over unigram.

vector representation will be C εRc×d where c is
the maximum sequence length of the user context
utterances.Persona vector representation will be P
εRp×d where p is the maximum sequence length
of the persona utterances. Response vector repre-
sentation will be R εRr×d where r is the maximum
sequence length of the response utterances. One
important information is that we use different seg-
ment ids for user context utterances and response
utterances. Now Context vector representation and
Persona vector representation will pass through
Phrase Planner Module.

4.3 Phrase Planner Module

This submodule aides in capturing the phrase im-
portance for both Context vector and Persona vec-
tor separately as shown in Figure 3. For Context
vector, this is done by capturing unigram, bigram
and trigram information using 3 different 2d convo-
lution module with sliding window size of 1, 2 and
3 tokens respectively keeping padding same. The
importance of bigram and trigram on unigram is
captured using Multi Head Attention(MHA) mod-
ule developed by Vaswani et al. (2017) as shown
in Figure 4. We use separate MHA module for
calculating different positional bigram importance
on unigram and different positional trigram impor-
tance on unigram. MHA achieves this by dividing
the Query(Q), Key(K), Value (V) input into equal
chunks and process each chunk in parallel. Each
chunk calculates the weights for V using scaled dot
product followed by softmax as shown in Equation
1. The scalar dot product calculates the affinity or

importance of Query on Key.Now we concatenate
each chunk output at last dimension layer to get
final matrix.

Figure 3: Phrase Planner Module.

Figure 4: Multi Head Attention.

Attention(Q,K, V ) = softmax(QKT /
√
d)V

(1)
For bigram, we pass the Query as bigram, Key as
unigram and Value as unigram in this module. Sim-
ilarly we calculate for Trigram importance in uni-
gram. Finally we add unigram, bigram importance
and trigram importance modules to get final matrix
named Context phrase Planner.This module main-
tains the dimension of the input vector. Hence the
output for Context phrase Planner is CPP εRc×d.
Similarly we apply different Phrase Planner Mod-
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ule for Persona vector and generate Persona phrase
planner as PPP εRp×d. Now we pass the Context
phrase Planner,Persona phrase planner, Context
vector, Persona vector and response vector will be
passed through Information Extractor module.

4.4 Information Extractor
This module is responsible for mutual importance
relations projection between the following learn-
ings.

• Context vector C and Response vector R.

• Context Phrase Planner CPP and Response
vector R.

• Persona vector P and Response vector R.

• Persona Phrase Planner PPP and Response
vector R.

This module handles the second stage of retrieval
model namely Matching step.Sample flow of
Information Extractor module is shown in Figure
5 For a given CPP and R, we are calculating

Figure 5: Mutual Information Projector contains 2 in-
ter relations MHA where 1 MHA calculates the im-
portance of Context phrase Planner to response and
other calculates the importance of Response to Context
phrase Planner.

the importance of CPP that should be projected
to R and the importance of R that should be
incorporated on CPP . This is done with the help
of 2 Multi Head Attention modules. The first Multi
Head attention module calculates the importance
of CPP on R by passing Query as CPP , Key as R
and Value as R. The scale dot product attention,
followed by softmax calculates the affinity of
CPP and R to create matrix εRp×r.The weighted

affinity matrix will be multiplied with Value
matrix to get impact of CPP on R for RPP εRp×d.
Similarly we use another Multi head Attention
to calculate the importance of R on CPP . Here
we use Query as R, Key as CPP and Value as
CPP .The scale dot product attention, followed
by softmax calculates the affinity of CPP and
R to create matrix εRr×p.The weighted affinity
matrix will be multiplied with Value matrix to get
impact of R on CPP as CPP

R εRr×d. The same
is applied for Context vector C and Response
vector R, Persona vector P and Response vector
R and Persona Phrase Planner and Response
vector R to get CRεRr×d, RCεRc×d, PRεRr×d,
RP εRp×d, RPPP εRp×dandPPP

R εRr×d. All these
learnings are passed through max pooling layer
which takes the maximum along the sequence
dimension to generate RCPPmaxεRd, CPP

RmaxεRd,
CRmaxεRd, RCmaxεRd, RPPPmaxεRd, PPP

RmaxεRd,
PRmaxεRd, RPmaxεRd.

4.5 Dot Product

We concatenate the response im-
portance learnings as Rf =
RCPPmax;RCmax;RPPPmax;RPmaxεR4d

and Uxf = CPP
Rmax;CRmax;P

PP
Rmax;PRmaxεR4d.

Then we use dot product to calculate final matching
score as shown in equation 2.

f(UX , PX , YX) = dot(Rf , Uxf ) (2)

Model is optimized by reducing the cross en-
tropy loss between target true candidate and final
matching score.

5 Experiments

This section explains the baseline models, experi-
mentation and model comparisons.

5.1 Baseline Models

We compare our models with BoW, HLSTM, Bi-
encoder, Co-BERT for PEC dataset.

• BoW: tri-encoder architecture with average
word embedding for context, response and
persona.

• HLSTM: Makes use of utterance level Bi-
LSTM and context level Bi-LSTM. Also
all encoders share same utterance level Bi-
LSTM.

177



Happy OffMyChest All
Models R@1 R@10 R@50 MRR R@1 R@10 R@50 MRR R@1 R@10 R@50 MRR
BoW 10.2 45.6 85.2 21.8 13.9 51.6 87.1 26.2 15.4 52.9 86.7 27.4
HLSTM 15.7 53.6 91.6 28.1 17.6 55.7 91.8 30.2 22.2 63.0 94.8 35.2
DIM 31.3 67.0 95.5 43.0 40.6 72.6 96.4 51.2 39.3 74.6 97.3 50.5
Bi-encoder 32.4 71.3 96.5 45.1 42.4 78.4 97.6 54.5 42.4 78.4 97.6 54.5
Poly-
encoder

33.7 72.1 96.7 46.4 43.4 79.3 97.7 55.3 42.3 79.2 98.1 54.4

Co-Bert 36.2 73.0 96.9 48.4 47.0 79.7 97.8 58.0 45.1 80.5 98.3 56.7
Our Model 37.8 75.2 97.5 49.6 48.1 81.2 98.3 59.4 46.2 81.2 98.7 57.4

Table 2: Comparison of state of the art models for Happy, OffMyChest and All

• DIM: Makes use of fine grained matching and
hierarchical aggregation to learn rich match-
ing information.

• Bi-encoder: State of the art BERT based
model for empathetic response selection.

• PolyEncoder: gains an understanding of la-
tent attention codes for finer grained match-
ing.

5.2 Evaluation Metrics

We follow the same evaluation metrics proposed
by Zhong et al. (2020). We evaluate the models on
Recall@k where k candidates needs to be selected
from C samples. We abbreviate it as R@k. We
use k as 1, 20 and 50. We use C as 100.We also
measure Mean reciprocal Rank (MRR). MRR cal-
culates the mean of reciprocal of the rank of the
correct response. The rank of the correct response
is calculated by finding the position of the correct
response id inside the list of predicted response ids
sorted in decreasing order by probabilities.

5.3 Baseline Comparison

Table 2 shows the experimentation results of the
models for PEC dataset namely Happy, Offmychest
and All.

From the above table, we are able to observe
that sentence representation is one of the most im-
portant critical factor for response selection. An-
other important factor that is noticebale is the
fine grained matching logic which aides in bet-
ter response selection. Sentence representation
information importance is visible between BoW,
HLSTM, DIM and Bi-encoder where Bi-encoder
model has outperformed other models. CoBert
has performed best amongst all the other models
(except our model) mainly because of first-order

and second-order multi-hop co-attention calcula-
tion which aided in better response, user context
pair with the help of persona. Our model is able to
defeat Cobert model because of additional phrase
level projection of user context and persona on
response. In addition, the mutual information ex-
tractor module aided in better relationship between
persona, user context to response which enhanced
the response selection.

6 Conclusion

We are able to observe that additional phrase level
information flow, both for user context as well as
persona, aided in better relationship building be-
tween response and context as well response and
persona which in turn aided in better response selec-
tion. In addition the Multi head attention aided in
multi phrase positional information capture which
resulted in better learning representation.
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Abstract 

Most Nepali speech recognition systems have 

followed the traditional methods of Speech 

recognition which involve separately trained 

acoustic, pronunciation, and language model 

components. Developing such components from 

scratch requires domain expertise and is also time-

consuming. Similarly, adoption of attention-based 

approaches, which is the latest technology trend is 

also not that popular in Nepali speech recognition. 

The only method found to be applied is the CTC 

method. In this work, we present an End-to-End 

ASR approach, which uses a joint CTC- attention-

based encoder-decoder and a Recurrent Neural 

Network based language modeling through which 

we not only eliminate the need of creating a 

pronunciation lexicon from scratch but also take 

the fullest advantage of the state-of-the-art deep 

learning technologies. We use the ESPnet toolkit 

which uses Kaldi Style of data preparation 

framework. The speech and transcription data used 

for this research is freely available on the Open 

Speech and Language Resources (OpenSLR) 

website. We have obtained a Character Error Rate 

(CER) of 10.3% on 159k transcribed speech (159k 

utterances taken from OpenSLR.   

1 Introduction 

There has been increasing use of Automatic 

Speech Recognition (ASR) technologies in many 

application domains like Hospital Information 

Systems to IoT devices, industrial robotics, 

forensic, defense and aviation, etc. to name a few. 

According to Jelinek (1976), a conventional speech 

recognition system consists of several modules 

that comprise the acoustic, lexical, and language 

models supported by a probabilistic model for 

noisy channels. To build an acoustic model, we 

first need to build a Hidden Markov Model (HMM) 

and a Gaussian Mixture Model (GMM). In 

addition, the system requires linguistic knowledge 

based on a lexical model, usually based on a 

handmade pronunciation dictionary that does not 

have an explicit word limit. The lexical model 

requires language-specific tokenization modules 

for language modeling to develop ASR for new 

languages. Finally, decoding must be done with the 

synergistic action of all the modules, resulting in a 

complex decoding process (Hori, et al., 2017). 

Nevertheless, today’s systems rely heavily on the 

End-to-End architectures that have emerged 

around traditional techniques(Geofferey et al., 

2012). Unlike in the traditional methods like 

Hidden Markov Model (HMM) based model, the 

end-to-end approach addresses a single network 

architecture within a deep learning framework that 

directly maps language features to words or 

characters (Hori et al., 2017). There are two main 

architectures for end-to-end ASR. Connectionist 

Temporal Classification (CTC) allows the training 

of acoustic models without frame-level alignment 

between transcripts and acoustic frames, while 

attention models perform alignment between 

acoustic frames and identifiers (Wang & Li, 2019). 

Kim et al (2017) present a CTC/Attention-based 

collaborative end-to-end ASR that uses the CTC 

objective from loss function during the attention 

model training. The joint CTC-Attention-based 

encoder-decoder utilizes both the benefits of CTC 

and attention during training. The CTC predictions 

are also used in the decoding process. CTC can be 

interpreted as just a loss function used for training 

neural networks such as cross-entropy models. It is 

used in a difficult situation where the availability 

of aligned data is an issue, like in ASR. The 

capability to model temporal correlations with 

appropriate context information can be found in 

Convolutional Neural Network (CNN) (Ying et al., 

2016; Zhang et al., 2017). Also, the language 

model (LM) integration is widely used for the 

HMM-based systems, something that is still 

applicable and effective for End-to-End ASR as 
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well (Mikolov et al., 2010). The attention-based 

approach is used with CTC and Recurrent Neural 

Network-based Language Model (RNN-LM) as a 

joint decoder and a CNN-based shared encoder to 

achieve a state-of-the-art accuracy (Kim et al., 

2017).  

       Most of the works on Speech Recognition for 

Nepali are based on the traditional methods. Nepali 

is written in the Devanagari script, which is 

essentially phonetic, so its pronunciation is very 

similar to how it is written. In Nepali, there are a 

total of 11 vowels and 33 consonants (Bal, 2004).  

    We use an End-to-End Speech Recognition 

Architecture that is based on a joint 

CTC/Attention-based encoder-decoder with a 

Recurrent Neural Network-based language 

modeling developed by Hori et al. (2017). We use 

the ESPnet framework (Watanabe et al., 2018; 

Hayashi et al., 2020; Inaguma, S., 2020; Chenda et 

al., 2021), which is an End-to-End speech 

processing toolkit. It sits on top of the Kaldi speech 

recognition toolkit (Povey et al., 2011) and the 

deep learning frameworks based on PyTorch 

(Paszke et al., 2019).  

This paper is divided into five sections. 

Section I gives an introduction about the problem, 

section II gives an overview of the related works in 

Nepali speech recognition, section III describes the 

methodology for developing RNN-LM and 

CTC/attention-based models, section IV discusses 

the model and presents the experimental results, 

and finally section V presents the conclusion and 

future works. 

2 Related Works 

Some prior works on Nepali ASR in the character, 

word, and sentence level have been conducted. 

Google, for example, provides cloud-based Speech 

Recognition for more than 80 languages including 

Nepali. Unfortunately, there is not any publicly 

available documentation on the underlying 

methods and techniques used for the Project. 

Prajapati et al (2008) analyzed existing models for 

speech recognition and upon finding the 

shortcomings of Dynamic Time Wrapping 

(DTW’s) approach, they proposed a new model 

called the Ear Model. They report to have obtained 

better accuracy than existing methods, but only for 

single alphabets. The classical, most commonly 

used model for Speech Recognition is Hidden 

Markov’s model which is used by Ssarma et al 

(2017) where the authors have obtained a fairly 

good accuracy of 75% for isolated words. 

Similarly,, Regmi et al. (2019) used the RNN-CTC 

model and obtained a CER of nearly about 34% 

accuracy making use of the language model. 

Bhatta et al. (2020) proposed a model comprising 

CNN, GRU, and CTC networks. The dataset used 

by the authors is provided by Open Speech and 

Language Resources. Their build model 

recognizes speech with the WER of 11%. Baral & 

Shrestha (2020) present a comparative study of 

popular speech recognition methods for the Nepali 

language where they built a phonetic dictionary 

from scratch and presented the findings on 50K 

vocabulary for DNN and GMM based techniques 

with speaker adaptation. The experiments were 

carried out in the Kaldi toolkit. The lowest WER 

for different GMM- HMM models were 29.45% 

and similarly, the lowest WER for different DNN 

models using DNN- TDNN-LSTM was 11.55%. 

    Our study reveals that the researches till now, in 

Nepali speech recognition, have used the 

traditional methods except for Bhatta et al (2020) 

and Regmi et al (2019) who have used the CTC 

based End-to-End approach for small vocabulary 

tasks. The main difference between the CTC and 

attention method is that the conditional 

independence assumptions are not employed in the 

attention-based methods whereas CTC requires 

several conditional independence assumptions to 

get the probability of a label sequence. From this 

perspective, the attention mechanism, on the other 

hand, is surprisingly flexible as it allows extremely 

non-sequential alignments. However, for speech 

recognition tasks, the alignment is usually 

monotonic. As a regularization method, Kim et al 

(2017) uses a CTC objective from loss function to 

an attention-based encoder network which 

encourages the alignments’ monotonicity. This 

method improves the accuracy of ASR compared 

to CTC or attention-based methods alone.  

 

3    Architecture for Joint CTC/Attention 

Model 

There are a series of steps involved in a speech 

recognition system requiring different components 

like data collection and preparation, data pre-

processing, feature extraction, model building, 

training and testing, and decoding. For a Machine 

Learning System, clean and processed data are a 
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basic prerequisite and thus represents a very crucial 

resource.  

 
Figure 1: Joint CTC-attention ASR Architecture with 

Deep CNN and RNN-LM. Source: (Hori et al., 2017) 

 

Audio data should basically be collected and 

recorded in a controlled environment, without 

background noise such as coughing, wheezing, and 

throat cleansing, or environmental sounds such as 

beeps, phone rings, and door slams. In the Nepali 

Language, there are some speech corpora provided 

by the Open Speech and Language Resource for 

research purposes. Fortunately, the speech data that 

we use from the aforementioned source is noise-

free and thus ideal for our research. 

    In this research, a CTC-attention based joint 

encoder-decoder is used that takes advantage of 

both CTC and attention during training. For the 

language modeling part, Recurrent Neural 

Network is used. The RNN-LM network shows 

good improvement over the hybrid/HMM model 

and is merged in parallel with the attention 

decoder, which can be trained individually or 

jointly. The training is done with character 

sequences without word-level knowledge. Figure 1 

shows the architecture of a CTC-attention based 

joint encoder-decoder  (Hori et al., 2017). This 

approach’s performance is superior to the different 

state-of-the-art hybrid ASR systems.  

    In the given architecture, at first analog electrical 

signals are converted to digital signals. This is done 

in the feature extraction part where Mel Frequency 

Cepstral Coefficients (MFCC) are used to extract 

audio features to distinguish different sounds or 

letters of a language.  After that, the features are 

passed to a Deep CNN-based encoder that uses the 

Visual Geometry Group (VGG) network. The 

input for the CNN network is the Mel-scale feature 

from the raw speech features. The initial layers of 

the VGG net architecture (K. Simonyan and A. 

Zisserman, 2014) with 6-layer CNN architecture 

are used followed by BLSTM layers in the encoder 

network (Hori et al., 2017). The output is used by 

the CTC and the Attention Decoder as a shared 

encoder. The joint CTC-Attention-based encoder-

decoder utilizes both the benefits of CTC and 

attention during training. The CTC predictions are 

also used in the decoding process. The model 

outputs the L-length character sequence as a set of 

individual characters U.  

U  = {'अ', 'आ', 'इ', 'ई', 'उ', 'ऊ', 'ए', 'ऐ', 'ओ', 'औ', 

'क', 'ख', 'ग', 'घ', 'ङ', 'च', 'छ', 'ज', 'झ', 'ञ', 'ट', 'ठ', 

'ड', 'ढ', 'ण', 'त', 'थ', 'द', 'ध', 'न ', 'प', 'फ', 'ब', 'भ', 'म', 

'य', 'र', 'ल', 'व', 'श', 'ष', 'स', 'ह', '  ँ ', '  ँ  ', 'ँ ', '  ँ ', 'ँ ', 

'िँ', 'ँ ', '  ँ ', '  ँ ', '  ँ ', '  ँ ', 'ँ ', 'ँ ', '  ँ ', 'ॐ', 'ॠ', '।', '०', 

'१', '२', '३', '४', '५', '६', '७', '८', '९', ‘ ’} 

    Out of 129 Unicode characters, 71 characters are 

used which are extracted from the text transcription 

of the speech data used in this research. The 

character set is indexed from 0 to 70. The input of 

CTC is the last hidden layer of the Bidirectional 

Long-Short Term Memory (BLSTM). Joint 

decoding is performed with a one-pass beam 

search algorithm that combines both attention-

based scores and CTC scores to further eliminate 

irregular alignments. Use one tuning parameter to 

linearly interpolate both objectives, the 

multitasking learning (MTL) rate, which is 

typically set to 0.3. For the language modeling part, 

Recurrent Neural Network is used. The RNN-LM 

probabilities of output label prediction are used in 

conjunction with the decoder network because they 

assign a probability to each clause in such a way 

that the more probable strings (in a sense) get a 

higher probability and we tend to choose one. 

Similarly, an additional rescoring step is not 

needed if we combine the LM probabilities while 

decoding (Hori et al., 2017). Thus, this model can 

be viewed as a single gigantic neural network, even 

though its parts are pretrained independently. 
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4    Experiments and Results 

The audio data and the text transcription are 

collected from the openslr.org website which 

contains transcribed audio data for Nepali 

Language Kjartansson et al., Sodimana et al 

(2018). The dataset contains Nepali Speech Data 

containing ~157K utterances and a text file that 

contains the utterance id and the text of the 

respective speech utterances. All speech utterance 

sums up to speech of duration of 9,278 minutes and 

11 seconds. This corpus contains 86,062 unique 

utterances. Nepali Speech corpus from Open 

speech and language resource named "Multi-

speaker TTS data for Nepali (ne-NP)" (SLR43) has 

been also used to the train models. It contains about 

2064 long sentences-based utterance spoken by 18 

different female speakers. All speech utterances 

sum up to speech of duration of 167 minutes and 

45 seconds. This corpus contains 2064 unique 

utterances. Altogether, ~159k utterances are used. 

    For conducting the experiments, RTX 2060 

GPU is used for training the model and Ryzen 9 

CPU with 16 cores is used for the decoding 

process. The dataset was split in the ratio of 8:2 for 

the train and test dataset and from the remaining 

80% of the training data, again it was split for train 

and validation set in a ratio of 8:2. The CNN 

BLSTM encoder uses 80 mel-scale filter banks 

with the delta and delta-delta features as input 

features. A 4-layer BLSTM with 320 units per layer 

and direction is used. To extract the convolutional 

features, 10 centered convolutional filters with a 

width of 100 were used. A 1-layer LSTM with 320 

cells units are used as a decoder network. A single-

layer LSTMs for RNN-LMs are individually 

trained using transcription, combined with a 

decoder network, and optionally retrained in 

collaboration with encoders, CTC networks, and 

decoders. The training is done for 20 epochs with 

the patience of value 2. Here, no extra text data 

were used but the use of additional un-transcribed 

data can further improve the results. The AdaDelta 

algorithm with gradient clipping was used for the 

optimization (Hori et al., 2017). The beam width 

and CTC-weight were set to 20 and 0.3 in decoding 

process. The CER is used as the evaluation metric 

which is defined as the sum of characters that is 

substituted, inserted, and deleted in particular  

 Ground Truth Prediction 

क नपुर भ रतक  सव ािधक क नपुर भ रतक  सव ािधक 

पत्त  लग उनक  ल िग पत्त  लग उनक  ल िग 

२ हज र ३ गर  २००० ३ गर  

छ र हरूक  भिवष्य भन  च र हरूक  भिवष्य बन  

स या चन्द्रम  र प थ्व क  म झ 

उत्पन्न हुन  दुईवट  छ  य ल ई 

र हु र क तु भिनन्छ। 

स या चन्द्रम  र प थ्व क  म झ 

उत्पन्न हुन  द वट  छय ल ई 

र हु र क तु भिनन्छ। 

खस  ब ख्र ल ई घ  स खस  ब ख्र ल ई ग  स 

 

Table 2: Ground truth and prediction for sample test 

data 

 

sentence divided by the entire number of characters 

within the dataset. 

    Table 1 provides the CER for the mixed SLR54 

and SLR43 datasets. This model recognizes Nepali 

speech input data with 10.3% CER. Similarly, 

Table 2 provides a sample of ground truth and 

prediction for the sample test data. There are cases 

where the joint CTC/Attention model with 10.3 % 

CER in test data incorrectly predicts the utterance 

- २ हज र ३ गर  as २००० ३ गर . Here, the 2 हज र is 

predicted as २००० which is not necessarily wrong 

but this can affect the accuracy of the model. We 

also noted that the model sometimes gets confused 

with छ and recognizes as च, भ as ब, and घ as ग. In 

some cases, the characters  ँ  is not recognized by 

the model. The obtained CER can be further 

improved by fine-tuning the parameters i.e, ctc-

weight and multi-task learning rate. 

5    Conclusion and Future Works 

We experimented with the Nepali speech datasets 

using the End-to-End Automatic Speech 

Recognition framework called ESPnet. The 

framework uses CTC, attention, their joint form 

with RNN based LM, transformer, conformer, 

and transducer-based models. In addition, we 

experimented with an advanced architecture that 

 Sub Del Ins Total Total/Total Characters % CER 

Validation 28317 16652 8757 53726 53726/458271 11.7 

Test 31117 18627 9739 59483 59483/576870 10.3 

 

Table 1: CER using joint CTC/Attention model for mixed SLR54 and SLR43 datasets (~159K utterances) 
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includes common decoding, a deep CNN encoder, 

and an RNN-LM network proposed by Hori et al 

(2017). The proposed approach eradicates the 

need of components which are essential in any 

conventional ASR model. We have achieved a 

speech recognition of CER – 11.7% and 10.3% 

for Nepali Language, respectively for the 

validation and the test data using the End-to-End 

model. Also, using substantial amounts of 

unlabeled data in conjunction with a pre-trained 

RNN-LM, this model can be improved further. 

    We recommend future works on End-to-End 

speech recognition for Nepali to be focused on 

employing the transformer, conformer, and 

transducer-based models. In recent studies, the 

conformer (Convolution-augmented Transformer) 

(Gulati et al., 2020) network showed a significant 

improvement and has outperformed the 

performance of Transformer and CNN-based 

models with different ASR standard datasets (Guo 

et al., 2021). It is also recommended to use 

multiple GPUs for fast training and decoding 

time. Additionally, the toolkit “ESPRESSO” 

suggested by Yiming et al. (2019) can be used to 

gain 4x faster accuracy in decoding instead of the 

ESPnet. 
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Abstract
It was shown in (Raikar et al., 2020) that
the measurement error in the microphone po-
sition affected the room impulse response
(RIR) which in turn affected the single chan-
nel speech recognition. In this paper, we ex-
tend this to study the more complex and real-
istic scenario of multi channel distant speech
recognition. Specifically we simulatem speak-
ers in a given room with n microphones speak-
ing without overlap. The n channel audio
is beamformed and passed through a speech
to text (s2t) engine. We compare the s2t

accuracy when the microphone locations are
known exactly (ground truth) with the s2t ac-
curacy when there is a measurement error in
the location of the microphone. We report the
performance of an end-to-end s2t on beam-
formed input in terms of character error rate
(CER) and and also speech intelligibility and
quality in terms of STOI and PESQ respectively.

1 Introduction

The multi-path reflections (attributed by RT60) in
an open enclosure is caused during hands free
speech communication. Such multi-path reflec-
tions along side noise impinging on multiple micro-
phones result in noisy reverberated speech which
has a deteriorating impact on the distant speech
recognition performance (Naylor and Gaubitch,
2010). Further, the quality and intelligibility of
the speech in hands free communication would
also deteriorate (Nathwani et al., 2017, 2016;
Biswas et al., 2021). There is an urgent need
for noise reduction, dereverberation and conjunc-
tion of both during communications. In this con-
text, multi-microphone-based approaches exploit-
ing spatial acoustic cues such as spatial diver-
sity, inter-intensity differences and inter-time dif-
ferences, receives particular interest

Accurate estimation of RT60 plays an impor-
tant role in several applications like (a) sound re-

production of geometry aware room (Betlehem
and Abhayapala, 2005; Tang et al., 2020; Kim
et al., 2019), (b) reconstruction of the room ge-
ometry (Crocco et al., 2014; Moore et al., 2013;
Yu and Kleijn, 2019), (c) robust automatic speech
recognition (ASR) (Yoshioka et al., 2012; Krueger
and Haeb-Umbach, 2010; Heymann et al., 2019)
and (d) speech enhancement (Zhang et al., 2017;
Li and Koishida, 2020; Gannot et al., 2017). In
a single channel (microphone) scenario, several
techniques exist to estimate the room impulse re-
sponse (RIR) (Szöke et al., 2019) when the micro-
phone position is not erroneous. Though, given
the room geometry, RIR computing is non-trivial;
RIR estimates require the exact location of both
the source and the microphone. A comparative
study for blind reverberation time estimation in sin-
gle microphone scenario is explored in (Löllmann
et al., 2019). A slight displacement (due to human
interventions or due to routine maintenance etc.
(Raikar et al., 2020; Muthukumarasamy and Dono-
hue, 2009; Sachar et al., 2002)) in the microphone
position could severely hamper the RIR estimates
(Muthukumarasamy and Donohue, 2009; Sachar
et al., 2002). In particular, the impact of measure-
ment error in microphone position on speech intel-
ligibility and quality is explored in (Raikar et al.,
2020).

In practical applications, a microphone array in
comparison to single microphone, grants more ben-
efits (Nathwani et al., 2013; Stoica et al., 2002)
especially due to the spatial information and associ-
ated applications like directional or arrival (DOA),
location of sound source and room information
(Pavlidi et al., 2013; Chen et al., 2015). However,
as in single microphone case, calibration error be-
cause of displaced microphone array is not trivial to
model in a real time scenarios (Sachar et al., 2004,
2002). This is, primarily because it is computation-
ally expensive and prone to error. In (Muthuku-
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marasamy and Donohue, 2009), a delay and sum
beamforming (DSB) technique is used to model
location errors analytically, they show that the mea-
surement error in microphone position affects the
intelligibility and quality due to change in the over-
all RIR. DSB approach has two drawbacks, namely,
it requires (a) a large number of sensors to improve
the SNR and (b) it cannot adapt to varying noisy
conditions.

To overcome the limitations of DSB, adap-
tive beamformers like capon (Stoica et al., 2002)
and minimum-variance distortionless response
(MVDR) beamformers have been introduced to
perform joint noise and reverberation cancellation.
In (Schwartz et al., 2014), a joint noise cancella-
tion and dereverberation is illustrated in general-
ized side lobe canceller (GSC) framework, while
in (Schwartz et al., 2015), a nested structure in
the GSC framework is proposed. As opposed to
beamforming, there are adaptive filtering based ap-
proaches that do not require spatial information
of the speech source. In (Dietzen et al., 2017), a
multi-channel linear prediction (MCLP) in Kalman
Filtering domain is proposed for blind dereverbera-
tion. However, they fail to perform in the presence
of noise as they focus only on reverberation.

Multi-channel beamformers are prone to mea-
surement error due to change in microphone array
position, which affects the RIR. This brings to fo-
cus, the question, does microphone measurement
error affect beamforming performance? In par-
ticular, the impact of such displacement error, for
single microphone channel, on speech intelligibil-
ity and quality has been explored in (Raikar et al.,
2020). As an extension, it is of interest to explore
and investigate the performance of DSB and adap-
tive beamformer (MVDR) for multi channel distant
automatic speech recognition (ASR), intelligibil-
ity and quality. Towards this study, we simulate
m speakers in a given room with n microphones
speaking without overlap. The output of n channel
audio is beamformed and passed through a speech
to text (s2t) engine.

We compare the s2t accuracy when the micro-
phone locations are known exactly (i.e. ground
truth) with the s2t accuracy, when there is a mea-
surement error in the location of the microphone
location. The experimental results illustrate that
the measurement error in microphone position has
a significant effect on s2t performance. Conse-
quently, the main contribution of this paper is the

formulation of the problem to enable analysis of the
effect of microphone position measurement error
on distant speech recognition as well as speech in-
telligibility and quality. Note that in this paper, we
make no attempt to introduce a new technique or
algorithm to improve the distant speech recognition
and intelligibility scores; rather the experimental
studies reported in this paper should allow for de-
velopment of new techniques in the future.

2 Problem Formulation

Let us assume a room R(L,W,H) of dimension
L × W × H . Let there be N , s1, s2, · · · sN
speakers located at {(xsi , ysi , zsi )}Ni=1 respectively
and M microphones, r1, r2, · · · rM , located at
{(xrj , yrj , zrj )}Mj=1 respectively in the roomR. Let
ui(t) be the utterance spoken by the speaker si at
location (xsi , y

s
i , z

s
i ) and let hkl be the RIR com-

puted for the speaker sk and microphone rl pair.
Let ol be the speech recorded at the microphone rl.
We can now write the output at theM microphones
as [o1(t), o2(t), · · · , oM (t)]T =




h11 h21 · · · hN1

h12 h22 · · · hN2
...

...
. . .

...
hM1 hM2 · · · hNM



∗




u1(t)
u2(t)

...
uN (t)




where ∗ is the convolution operator such that

ol(t) =
N∑

i=1

hil ∗ ui(t). (1)

Note that hkl is the RIR and is a function of c
the speed of sound, fs the sampling frequency of
utterance, L × W × H volume of the room, β
the reverberation time, (xs, ys, zs) the location of
the speaker, and (xr, yr, zr) the rectangular coor-
dinates of the microphone. RIR hkl =

rir gen(c, fs, (x
r
l , y

r
l , z

r
l ), (x

s
k, y

s
k, z

s
k), L, β)

(2)
Standard utilities to simulate h are readily available
(Habets, 2006) and as mentioned in (Raikar et al.,
2020) hkl is prone to measurement errors in the
position of the microphone, namely (xr, yr, zr) as
seen in (2).

Let an error ε = [εx, εy, εz] be made in mea-
suring the position of the lth microphone rl, so
the measured location of the rl is rlε = [xrl +
εx, y

r
l + εy, z

r
l + εz]. Subsequently there is an

error introduced in the RIR, namely, h∗lε =

187



rir gen(c, fs, rlε, s∗, L, β, n). Clearly an error in
measurement of the microphone rlε results in an
error in the output speech, namely,

olε(t) =
N∑

i=1

hilε ∗ ui(t). (3)

The actual output of the lth microphone, if there
were no measurement errors, is (1). Also in all our
experiments we assume ε to be Gaussian N (0, σ2)
with 0 mean and σ2 = 0.1, 0.5, 1 as was done in
(Raikar et al., 2020).

Multi channel distant speech recognition in-
volves beamforming (B) the multi channel speech,
namely, (o1, o2, · · · , oM ) from M microphones, to
form an equivalent of a close microphone (single
channel) speech followed by ASR (s2t). For con-
venience let us represent this process as

T = s2t(B(o1, o2, · · · ol · · · oM )) (4)

As can be seen an error (εx, εy, εz) in measuring
the position of a microphone results in an error at
the output of the microphone, namely, olε (3), this
results in an error in speech recognition output Tε,
namely

Tε = s2t(B(o1ε, o2ε, · · · olε · · · oMε)) (5)

In this paper, we analyze the error in the recognition
(5) of speech because of an error in measurement
of the location of the microphone.

3 Experimental Results and Discussion

3.1 Experimental Setup

We assume1 a room of dimension 5×5×5m3 and
M = 4 microphones and N = 2 speakers. Unlike
in a microphone array setup we assume that the
microphones can be located anywhere in the room,
preferably closer to the walls and the speakers are
inside the room. As an example, the room and the
location of microphone and the speakers is show
in Figure 1 (a) corresponding to the location of
microphones and speakers shown in Table 1.

Let ui(t) be the utterance spoken speaker si
and define λ(t) (Figure 1 (b)) to be an arbitrary
multi-valued function (the number of values de-
pend on the number of speakers, in our case 2 cor-
responding to the two speakers). As seen in Figure

1though not realistic, it is common, in literature to assume
a cuboid room dimension

Table 1: Microphone and Speaker location used in our
Experiments (Figure 1(a)).

Microphone/Speaker Location
r1, r2 (1, 2, 5), (5, 4, 4)
r3, r4 (4, 1, 2), (1, 1, 3)
s1, s2 (2, 2, 3), (3, 2, 3)

1 (b) s1 (s2) is active during the time interval when
λ(t) = 1(λ(t) = 2) where λi(t) is

= 1 for λ(t) = i

= 0 for λ(t) 6= i (6)

Let ūi(t) = ui(t)λi(t) represents the utterance of
speaker si (the duration for which speaker si was
active). In all our experiments we construct the
speech utterance as

U(t) =
∑

i

ūi(t) (7)

Subsequently, we construct the multi-channel out-
put (4 channels) as

oj =
∑

i

ūi(t) ∗ hij for ∀j = 1, 2, 3, 4 (8)

Let Tg = s2t(U(t)) be the transcription of the
utterance U(t) which we consider as the ground
truth. Now we get T = s2t(B(o1, o2, o3, o4))
when there is no error in the measurements of
the location of the microphones. And Tε =
s2t(B(o1ε, o2ε, o3ε, o4ε)) when there is an error (ε)
in measurements of the location of the microphones
as mentioned in Section 2. We experiment with two
different beamformers, namely, (a) delay and sum
(DSB) and (b) minimum variance distortionless re-
sponse (MVDR) (Kumatani et al., 2015; Wei et al.,
2021) (namely, B ∈ {DSB,MVDR}). The MVDR is
an adaptive beamformer which optimizes the de-
sired speech in a given direction by filtering out in-
terfering signal (Wei et al., 2021). This is achieved
by selecting the weights of beamformer with the
idea of minimizing the output power under the con-
straint that the target speech is unaffected. On
the other hand, DSB is a fixed beamformer which
is quite effective when the environment only con-
tains uncorrelated noise between microphones (Wei
et al., 2021) which is the case in our study.

We use an end-to-end transformer based state-
of-the-art speech to alphabet engine for s2t (Hug-
ging Face Team). The s2t inference is based on
the greedy Connectionist temporal classification

188



(a)

(b)

Figure 1: Experimental Setup. (a) Four microphones and two speakers (Table 1) in a room of dimension 5× 5× 5
(we assume a cuboid so that we are consistent with (Raikar et al., 2020)), (b) A sample λ(t) where the x-axis
represents the time (expressed in samples) and y-axis can take a value of 1 or 2 depending on who is speaking.
Note that at any given time only one of the speaker is speaking (no overlap).

(CTC) output without the use of a language model.
We compute the character error rate CER(Tg, T )
(yi Wang et al., 2003) using the state of the art
speech to alphabet engine (Hugging Face Team)
when (a) there is no microphone location measure-
ment error and CER(Tg, Tε) and (b) when there is
a measurement error in the location of the micro-
phone. We hypothesize that the CER degrades with
increased (ε ≡ σ2) measurement error in micro-
phone location. We conducted a number of exper-
iments using the above mentioned experimental
setup. We first assumed the measurement error in
microphone position has a Gaussian distribution
with different variances (σ2). We study the degra-
dation of CER, the speech intelligibility, and speech
quality as a function of the microphone location
measurement error σ2.

3.2 Data

We used the popular LibreSpeech database
(OpenSLR, 2021) to generate real utterances as
mentioned in the experimental setup. We randomly
selected two audio files u1, u2 (when the duration
is less than 5 s we append zeros to make them of
duration 5 s) from the LibreSpeech clean dataset
and constructed U(t) of duration 5 s (see Algo-
rithm 1). All experiments were conducted on 100

audio samples generated in this way and all results
reported (Table 2 and 3) are averaged over these
samples.

Algorithm 1: Constructing U(t) (7).
input :L = 80000 (5 seconds);

u1(t), u2(t)
output :U(t) of length 5 s
ind = round

(
L
6 ∗ [1 : 6]

)
;

t1 = randi([0, ind(1)]);
for ind← 1 to length(ind) do

ti+1 = randi([ind(i), ind(i+ 1)]);
end
U(t) = [u1([1 : t1]);u2([t1 : t2)]);u1([t2 :
t3]);u2([t3 : t4]);u1([t4 : t5]);u2([t5 :
t6]);u1([t6;L])];

3.3 Experimental Validation

We evaluate the distant speech recognition perfor-
mance for the experimental setup (see Figure 1).
The distant speech recognition performance are pre-
sented in the form of CER averaged over 100 audio
samples (Table 2). Further, the validation of CER is
achieved by computing the impact of microphone
position measurement error on intelligibility and
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quality (Table 3).
To measure speech intelligibility, the well

known (a) short time objective intelligibility (STOI)
(Taghia and Martin, 2014) and (b) mutual informa-
tion (MI) (Taghia et al., 2012) are used. STOI can
take a value between 0 (completely unintelligible)
and 1 (perfect intelligibility) and depends on the
average amount of speech information available
to a listener (Taal et al., 2010). The MI scores are
estimated by first transforming the input signals
into 15 sub-bands by using a 1/3 octave band filter
bank. Thereafter, the MI between the amplitude
envelopes of the reference signal (7) and the beam-
formed signal with no microphone position error
(bs, namely, B(o1, o2, o3, o4)) and beamformed sig-
nal with microphone position error (bsε, namely,
B(o1ε, o2ε, o3ε, o4ε)) are computed. MI is estimated
per sub-band to evaluate the auditory perception
(Kumatani et al., 2008). For speech quality assess-
ment, we have used perceptual evaluation of speech
quality (PESQ), signal to distortion ratio (SDR) and
log-likelihood ratio (LLR). In PESQ, the speech sig-
nal is analyzed sample-by-sample after temporal
alignment of corresponding excerpts of the original
signal w.r.t to bsε and bs. In principal, PESQ mod-
els a mean opinion score (MOS) that ranges from
1 (bad) to 5 (excellent). Thereafter, we have used
LLR objective measure which forms the distance
measures. The LLR computes the spectral envelope
difference between the original signal w.r.t bsε and
bs (Gannot et al., 2001).

3.3.1 Speech Recognition Performance
The performance of distant speech recognition is
computed in the form of CER for 100 random runs.
It may be noted that lower values of CER suggest
better performance. From Table 2, it can be seen
that with higher measurement error (higher σ2),
the CER scores increase for both DSB and MVDR

beamformers. We observe a maximum of 3% and
9% change in CER for MVDR and DSB respectively
at σ2 = 1 compared to when there is no measure-
ment error in the microphone (σ2 = 0). Comparing
MVDR and DSB beamformers, it is observed that
MVDR (adaptive beamformer) is not able to achieve
the performance displayed by DSB. This lower per-
formance can be attributed to the fact that MVDR

is highly susceptible to singularity of the inverse
matrix being used to calculate the weight matrix.
This may result in musical noise or artifacts in the
reconstruction. Figure 2 illustrates the box plot
across 100 runs for DSB only (note that DSB out-

performs MVDR in terms of CER). It can also be
noticed that with increased σ2 (0.5 or more), the
variance and outliers in CER increase. Moreover at
σ2 = 1, the variations in CER is significantly high.

Table 2: Mean CER(%) for DSB and MVDR with vary-
ing microphone position measurement errors (σ2 =
0→ no error).

σ2 → 0 0.01 0.5 1
DSB 26.23 27.12 27.58 28.92

MVDR 32.77 33.95 33.42 33.82

Figure 2: Variations of CER with the varying σ2 for
DSB.

Further to study how the microphone position
measurement error compares with ambient or en-
vironmental noise effecting U(t), we computed
CER for noisy U(t). We constructed Uε(t) =
U(t) + n(t), where n(t) is an additive white Gaus-
sian noise with different noise levels. We com-
puted the CER on s2t(Uε(t)) with different noise
levels (Figure 3). As expected, with an increase
in the SNR levels (better signal strength), the CER

scores decrease (better recognition) significantly. It
can be also observed that with better signal (high
SNRs), the outliers and variance in CER (computed
over 100 runs; Figure 3) also decrease significantly,
suggesting consistency in CER performance with
increased signal strength. Also comparing the CER

values in Table 2 and Figure 3, one can hypothesise
that the measurement error in the microphone posi-
tion is equivalent to an ambient noise of between
5 and 10 dB effecting the original signal. To fur-
ther verify the impact of number of random runs
(previously 100), we increased the random runs to
1000. It is observed that there is no difference in
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Figure 3: Variations of CER with the different noise
levels.

CER between s2t(Uε(t)) for increase number of
runs.

It may also be emphasized from Table 2 that
although MVDR being less sensitive to posi-
tion/directional errors, their performance is still not
satisfactory in comparison to DSB. One of the plau-
sible argument is that the locations of microphones
are fixed once the displacement or no displacement
is made in microphone position. Hence it might
be possible that the MVDR beamformer would not
change the weights significantly once the locations
of microphones are fixed. A more extensive anal-
ysis is deferred to future work to understand the
underlying reasons for such a directional behaviour
of MVDR in comparison to DSB.

3.3.2 Speech Intelligibility Performance

With an aim to answer the following question,
namely, (a) Does the change in the microphone po-
sition impact the speech quality and speech intelli-
gibility? (b) Is there any relationship between CER

scores and speech quality (intelligibility) scores?
and (c) How does the intelligibility and quality
vary with respect to the two beamformers? To
address these questions, we measured the speech
intelligibility and speech quality with varying mi-
crophone measurement errors. Table 3 captures
the mean (variance) scores of speech intelligibility
and speech quality for varying microphone posi-
tion measurement errors and for the two different
beamformers (namely, DSB and MVDR). It may be
noted that higher the STOI and MI scores, better
is the intelligibility. On the other hand, higher the
SDR, PESQ and lower the LLR scores, better is the

quality of the speech signal.
From Table 3, it can be observed that DSB holds

better speech quality while on the other hand MVDR

claims better speech intelligibility. However with
increasing microphone position measurement error
(increasing σ2), both MVDR and DSB performances
for intelligibility and quality degrades significantly.
In particular for STOI, the maximum degradation
in DSB and MVDR performances is observed to
25% and 49% respectively, when we move from
no microphone position error (σ2 = 0) to σ2 = 1.
Similarly, this degradation in quality (SDR scores)
for DSB and MVDR goes to 20% and 3% respec-
tively.

Interestingly, it is observed that the quality, intel-
ligibility and CER scores of both the beamformers
do not change significantly, while error in micro-
phone position varies from σ2 = 0.5 to σ2 = 1.
These results indicate that the convergence in the
error in the microphone position is achieved af-
ter σ2 = 0.5. Further, we also able to verify the
claim made in (Loizou and Kim, 2010) that non-
correlation between improvement in quality and
improvement in intelligibility. It is clearly visible
from the MVDR and DSB performances in Table 3.

Similar to Figure 3, we also address how varia-
tion in microphone position error compares with
the effect of environmental noise on intelligibility
and quality. To achieve this, intelligibility and qual-
ity measures are computed betweenU(t) andUε(t).
It can be seen from Table 4 that as SNR increases,
the mean intelligibility and quality scores increase
as expected. Although, the mean scores for STOI

PESQ and SDR vary relatively slower with change
in SNR, than MI and LLR scores. Further, the vari-
ance decreases for STOI and LLR but on contrary it
increases for MI SDR and PESQ scores. Similar to
CER scores, the effective change is observed at 10
dB SNR. This is an indication of an equivalence be-
tween measurement error in microphone position
and original signal effected by ambient noise at 10
dB SNR.

4 Conclusions

In this paper, we addressed the impact of error
in measuring the position of microphone position
on (a) the performance of a multi-channel distant
speech recognition in terms of CER and (b) quality
and intelligibility of beamformed speech with two
well know beamformers, namely, DSB and MVDR.
Experimental analysis showed, that with increased
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Table 3: Mean (variance) of speech intelligibility and quality for different microphone position measurement errors.

BF σ2
Speech Intelligibility Speech Quality
STOI MI SDR PESQ LLR

DSB

0 0.23 (0.07) 4.72 (2.07) -18.08 (0.89) 1.48 (0.19) 1.34 (0.29)
0.01 0.22 (0.07) 4.66 (2.08) -18.03 (2.18) 1.50 (0.21) 1.24 (0.27)
0.5 0.17 (0.07) 2.55 (0.81) -21.70 (2.95) 1.18 (0.22) 3.76 (1.75)
1 0.17 (0.07) 2.51 (0.83) -21.70 (3.80) 1.18 (0.22) 3.74 (1.78)

MVDR

0 0.37 (0.34) 22.14 (36.10) -21.1 (3.75) 1.16 (0.19) 3.82 (1.81)
0.01 0.37 (0.34) 22.05 (37.03) -21.3 (3.88) 1.20 (0.22) 3.51 (1.68)
0.5 0.20 (0.16) 10.55 (36.19) -21.9 (2.86) 1.20 (0.14) 3.76 (1.74)
1 0.19 (0.13) 8.42 (30.17) -21.7 (3.72) 1.17 (0.21) 3.74 (1.81)

Table 4: Variation in speech intelligibility and quality with varying SNRs (in dB)

SNRs
Speech Intelligibility Speech Quality

STOI MI SDR PESQ LLR

0 0.289 (0.04) 1.57 (0.39) -21.47 (1.79) 1.25 (0.08) 5.21 (4.34)
5 0.285 (0.03) 1.72 (0.38) -21.54 (4.17) 1.25 (0.10) 5.02 (4.18)
10 0.291 (0.01) 1.86 (0.41) -21.40 (6.34) 1.27 (0.13) 4.83 (3.99)
20 0.299 (0.00) 2.11 (0.44) -21.39 (8.01) 1.28 (0.16) 4.49 (3.65)

measurement error in the location of microphone
the quality of mult-channel distant speech recogni-
tion deteriorates (higher CER) so does the speech
intelligibility and quality, as expected. We further
showed that the effect of microphone position mea-
surement error on distant speech recognition in
terms of CER is equivalent to a close microphone
speech being effected by an additive environmental
noise in the range of 5 to 10 dB.
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Karan Nathwani, Gaël Richard, Bertrand David, Pierre
Prablanc, and Vincent Roussarie. 2017. Speech in-
telligibility improvement in car noise environment
by voice transformation. Speech Communication,
91:17–27.

Patrick A Naylor and Nikolay D Gaubitch. 2010.
Speech Dereverberation. Springer Science & Busi-
ness Media.

OpenSLR. 2021. Librispeech ASR corpus.
https://www.openslr.org/resources/
12/dev-clean.tar.gz.

Despoina Pavlidi, Anthony Griffin, Matthieu Puigt,
and Athanasios Mouchtaris. 2013. Real-time mul-
tiple sound source localization and counting using
a circular microphone array. in IEEE Transac-
tions on Audio, Speech, and Language Processing,
21(10):2193–2206.

Aditya Raikar, Karan Nathwani, Ashish Panda, and
Sunil Kumar Kopparapu. 2020. Effect of micro-
phone position measurement error on RIR and its
impact on speech intelligibility and quality. In In-
terspeech 2020, pages 5056–5060.

Joshua M Sachar, Harvey F Silverman, and William R
Patterson. 2002. Position calibration of large-
aperture microphone arrays. In IEEE International
Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), volume 2, pages 1797–1800.

Joshua M Sachar, Harvey F Silverman, and William R
Patterson. 2004. Microphone position and gain
calibration for a large-aperture microphone array.
IEEE Transactions on Speech and Audio Processing,
13(1):42–52.

Ofer Schwartz, Sharon Gannot, and Emanuël AP Ha-
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Abstract

Indian English (IE), on the surface, seems
quite similar to standard English. However,
closer observation shows that it has actually
been influenced by the surrounding vernacu-
lar languages at several levels from phonology
to vocabulary and syntax. Due to this, auto-
matic speech recognition (ASR) systems de-
veloped for American or British varieties of
English result in poor performance on Indian
English data. The most prominent feature of
Indian English is the characteristic pronuncia-
tion of the speakers. The systems are unable
to learn these acoustic variations while mod-
elling and cannot parse the non-standard artic-
ulation of non-native speakers. For this pur-
pose, we propose a new phone dictionary de-
veloped based on the Indian language Com-
mon Phone Set (CPS). The dictionary maps
the phone set of American English to existing
Indian phones based on perceptual similarity.
This dictionary is named Indian English Com-
mon Phone Set (IE-CPS). Using this, we build
an Indian English ASR system and compare its
performance with an American English ASR
system on speech data of both varieties of En-
glish. Our experiments on the IE-CPS show
that it is quite effective at modelling the pro-
nunciation of the average speaker of Indian En-
glish. ASR systems trained on Indian English
data perform much better when modelled us-
ing IE-CPS, achieving a reduction in the word
error rate (WER) of upto 3.95% when used in
place of CMUdict. This shows the need for a
different lexicon for Indian English.

1 Introduction

Today, speech processing technology is gaining an
undeniable importance. Automatic speech recogni-

∗These authors contributed equally to the paper

tion (ASR) systems in particular are being sought
after, as smart assistants like Siri, Alexa and Google
Assistant grow in popularity at remarkable rates.
Effective and accurate speech recognition is also
a major concern in India for two major reasons –
firstly, India is home to thousands of spoken lan-
guages, not all of which possess written forms;
secondly, India has a low literacy rate, so a consid-
erable portion of the population can communicate
only via speech. Unfortunately, there is a dearth of
available speech data on many languages spoken
in India, so most ASR systems tend to be inef-
fective at modelling these. In order to both over-
come the drawbacks caused by lack of available
speech data, and leverage the similarities between
the various Indian languages, linguistically moti-
vated approaches are gaining appreciation among
researchers in the field.

Many research groups have started working to-
wards having a good speech recognition system for
all the major Indian languages. To achieve this,
it is necessary to have a good pronunciation mod-
elling block, consisting of a grapheme-to-phoneme
(G2P) system. A G2P is needed by Text-to-Speech
(TTS) systems as well. Nair et al. (2013) work
on building a rule-based G2P on the low-resource
Malayalam language. Parlikar et al. (2016) work
on building a G2P for major Indian languages such
as Hindi, Tamil and Telugu and test it on TTS sys-
tems. Mortensen et al. (2018) build a multilingual
G2P that works for 61 languages out of the box, in
which 7 Indian languages are supported. They also
provide a guideline to integrate any language into
their system. Arora et al. (2020) work on statistical
G2P that predicts schwa deletion in Hindi more
accurately and show improvements over their base-
line models. Wasala et al. (2006) work on Sinhala
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G2P, a language that is closely related to other In-
dian languages, and further, propose rules to handle
schwa epenthesis.

English is also a language with widespread use
in India. Given India’s rich language diversity, En-
glish has largely been adopted in the spheres of the
educated public as a lingua franca (Ng and Hirose,
2012; Kim et al., 2011) like in other parts of the
world. The English spoken in India is influenced by
the other languages with which it exists in constant
contact, affecting its structure and vocabulary as
well as its pronunciation. This means that existing
ASR systems for General American English (GAE)
or British English (BrE) (Ferragne and Pellegrino,
2004) are markedly ineffective when dealing with
Indian English (IE). New ASR systems need to
be created which are capable of processing the va-
riety of English spoken in India, catering to the
accents and language patterns (Jain et al., 2018) of
the people speaking it.

Considering the limited work in this direction
and the impact it may have, we study the major
phonetic variation between Indian English and stan-
dard English, and propose an Indian English lexi-
con which can be used in an IE ASR system. To
show its effectiveness, the performance of the two
different ASR systems is compared on utterances
of Indian English – an American English ASR sys-
tem trained on Librispeech (Panayotov et al., 2015)
and an Indian English ASR system trained on Na-
tional Programme on Technology Enhanced Learn-
ing (NPTEL) speech corpus (described further in
Section 4.1).

The organisation of the remainder of the paper is
as follows. Section 2 describes prior work. Section
3 details the proposed lexicon and the rationale be-
hind the chosen mappings. Sections 4 and 5 explain
the experimental setup and results when using the
new dictionary for ASR. Further discussion on the
need for this lexicon is done in Section 6. Finally,
possible future ventures are briefly mentioned in
Section 7, and the paper is concluded in Section 8.

2 Related Work

ARPAbet is a phonetic transcription code used to
represent the phonemes and allophones of GAE
using distinct ASCII sequences. The CMU Pro-
nouncing Dictionary (CMUdict) (Weide, 2005) is
an open-source pronunciation dictionary which
makes use of a modified form of ARPAbet. Cur-
rently, there has been very limited work done to

replicate such efforts for other languages, or even
other varieties of English. Our proposed lexicon
attempts to fill this gap in the field of language
phonology.

The work by Ganji et al. (2019) is also closely
related to our line of research in this paper. They
collected a Hindi-English code-switched speech
corpus. In addition to releasing that corpus, they
proposed a few measures that could help model
such speech better. One of the measures they pro-
posed was a way to handle the pronunciation model
block for this code-switched corpus that is most
often used in ASR and text-to-speech (TTS) sys-
tems. They proposed a CMUdict-based phone map-
ping with some of the English phones mapped to a
common Indian language phone set (Ramani et al.,
2013) based on perceptual similarity. The paper,
however, did not present any experimental results
for ASR with their proposed pronunciation model.
We explain how we build upon this in greater detail,
in Section 3.

Another study by Huang et al. (2020) com-
pared the phonology of GAE and the phonology of
(Hindi-based) IE and developed a phoneme set for
IE in X-SAMPA (Wells, 1995) similar to that of
GAE. However, the dataset on which they built the
ASR system has its own limitations. It has speech
data from just 10 native Hindi speakers with long-
term exposure to only the English spoken in New
Delhi. As such, the language modelled was a very
specific variety of IE, which is not representative
of a large-scale Indian population.

Yarra et al. (2019) collected a corpus of Indian
English, consisting of 240 hours of recorded speech.
This is called Indic TIMIT. They extensively anal-
ysed Indian English accent and compared it to
standard English. They further came up with var-
ious kinds of rules to improve the pronunciation
model for Indian English speech. However, such
rules needed another complex module – a letter to
phoneme aligner. The letter to phoneme aligner
is used to align a word’s letters to its individual
sound units. Our work eliminates the need for this
module, by applying only those rules which were
exhibited by native speakers of a majority of In-
dian languages. In addition to that, Yarra et al.
(2019) also did not use the now largely standard-
ised phone codes for six major Indian languages
– Hindi, Marathi, Bengali, Tamil, Malayalam and
Telugu – proposed by Ramani et al. (2013), the
Common Phone Set (CPS). This makes Yarra et al.
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(2019)’s work difficult to use in a multilingual or a
code-switched setting where one of the languages is
an Indian language. They also did not compare the
performance of their proposed-lexicon-based ASR
system and CMUdict-based ASR system. There-
fore, it is unclear what benefits their proposed lexi-
con might have to an ASR system.

In addition to the above works, the studies by
Schilk (2010); Bansal (1969); Mohan (2021) were
helpful in providing the general perspective on In-
dian English. They described some specific dif-
ferences made in the pronunciation of English by
Indians, at both the sound and word level. We incor-
porate some of the differences they point out at the
sound level in our lexicon. In addition to the differ-
ences, they also provided insight into the question
of whether Indian English is better treated as a vari-
ety of standard English or as a completely separate
language. This is discussed further in Section 6.

3 Indian English-Common Phone Set
(IE-CPS)

Given the limited availability of annotated IE
speech data, there is need for a mechanism to pro-
vide the pronunciations for this kind of speech.
Our lexicon, Indian English Common Phone Set
(IE-CPS), is able to provide a simple yet effective
solution to this by leveraging the existing CMUdict,
avoiding use of large amounts of data and complex
architectures to model IE speech.

All of the English phones in CMUdict have
been mapped to the existing Common Phone Set
(CPS) phones proposed by Ramani et al. (2013)
(Black et al., 1998). CPS is a language-independent
set of the phones of six major Indian languages
(Hindi, Marathi, Bengali, Tamil, Malayalam and
Telugu) which maps parallel phones to the same
code. Reusing CPS was favoured over creating a
new encoding because it already provides a phone
dictionary for a large set of Indian languages, and is
continuously extended to include a greater number.
Since English, too, is becoming more widespread
in India, extending CPS to include the proposed
Indian English phone dictionary is the logical con-
sequence. While some of the mappings in this
paper are inspired by Ganji et al. (2019), we did
make changes to further reflect the accent that na-
tive Indian language speakers would have when
speaking English. These changes are elaborated on
in Section 3.2.

3.1 Lexicon Construction

Indian English differs notably from standard Amer-
ican or British English. IE speech also exhibits
further variation according to the other languages
prevalent in each region IE-CPS models only those
sound transformations which can be observed
among a majority of the different linguistic regions.
The first of these is the absence of dental fricatives
([D], [T]) and alveolar plosives ([d], [t]) in Indian
languages, replaced by dental plosives ([d”], [t”h])
and retroflex plosives ([ã], [ú]) respectively. The
second notable distinction is the use of long vowels
in place of diphthongs (barring two cases – [aU] and
[aI]). The third is the lack of distinction between the
sounds [v] and [w] in Indian languages. The final
difference is the approximation of vowel sounds to
the nearest vowel in the speakers’ native language.
Additional differences between American English
and Indian English, such as the prosodic features of
GAE and the phonemic aspiration in IE, do not ex-
ist as differences at the phonetic level; hence these
are not reflected in the proposed lexicon.

As Yarra et al. (2019) have already pointed out,
Indians speaking English do not add or delete
phonemes as often as they substitute them. Our
independent analysis also leads to similar numbers
to Yarra et al. (2019)’s work. While deletions hap-
pen very rarely (< 1%), insertions happen a little
more often (< 15%). However, substitutions occur
frequently when Indians speak English (> 30%)1.
Later in this paper, we show that just substitut-
ing phones causes a drastic drop in WER. IE-CPS
describes these substitutions, but has no rules for
insertion or deletion. The advantage of such an ap-
proach is the ability to remove the letter to phoneme
alignment module, which considerably simplifies
the pronunciation model.

We also noticed that the behaviours like inser-
tions differ significantly based on regional accent –
for example, frequent vowel epenthesis by speak-
ers of Hindi. Since such sound changes are not
common among all accents, these rules are re-
quired only when modelling specific regional ac-
cents. Thus, we have not included rules of phone
insertion in our lexicon. Additionally, this also
simplifies the use of the IE-CPS in multilingual
data containing English – IE-CPS can easily be ap-
plied to each variety of Indian English since accent
specific behaviour is not replicated.

1For the remaining pronunciations, no errors were ob-
served.
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3.2 Indian English Common Phone Set

Based on previously mentioned observations, the
changes made to the CMU pronunciation dictionary
are broadly classified into four categories:

• Mapping of English phones to existing
CPS codes. Ganji et al. (2019) introduce new
codes for phones AA and AO, i.e., ao. The IE-
CPS maps these phones to the existing CPS
code, ou. We chose this specific CPS code
because the phone that it denotes is percep-
tually similar, being the closest phone in the
Indian phone inventory. This has the advan-
tage of minimising the need for introducing
new phonetic codes. Along with these, vari-
ous other consonant and vowel sounds have
been mapped to codes in CPS which are per-
ceptually similar but not the same phone.

• Phones with multiple mappings. Some ex-
amples are Z and ZH. Z gets mapped to z and
j. Similarly, ZH gets mapped to three different
CPS codes – z, j and jhq. This is because
while many Indian languages exhibit free vari-
ation between the sounds of j and z, the in-
creasing exposure of Indians to both American
and British varieties of English is resulting in
a new phone (represented by jhq) being grad-
ually realised as a separate phoneme. The use
of multiple allophones is absent in the codes
proposed by Ganji et al. (2019), and both Z
and ZH are mapped to z.

• Addition of new mappings. Huang et al.
(2020); Yarra et al. (2019) explain how the
diphthongs in English (barring ai and au) are
pronounced as a single long vowel when In-
dians speak English. To reflect this, we map
EY and OW to existing CPS codes ee and oo
respectively, which represent long utterances
of the first vowels in their corresponding diph-
thongs. This is in contrast to the use of ei and
o respectively by Ganji et al. (2019), which
are codes for shorter vowel utterances.

• Exclusion of some CPS mappings. English
does not have phones analogous to all the CPS
codes in its phoneme inventory. Those absent
in Indian English (like the phones correspond-
ing to q, txh, lx, etc) have thus not been in-
cluded in the proposed lexicon.

Example CMUdict IE-CPS

ARPAbet IPA Code IPA

odd AA A ou2 O
at AE æ ae æ

hut AH 2 a a
ought AO O ou O
cow AW aU au aU
hide AY aI ai aI
be B b b b

cheese CH Ù c Ù
dark D d dx ã
this DH D d d”
egg EH E e3 E
hurt ER 3~ er @:
wait EY eI ee e:
fin F f f f

game G g g g
hill HH h h H
sit IH I i I
eat IY i ii i:

joke JH Ã j Ã
key K k k k
let L l l l

map M m m m
note N n n n
sing NG N ng N
boat OW oU oo o:
toy OY Oi oy Oi
pen P p p p
read R ô r r
sea S s s s

show SH S sh S
tea T t tx ú
thin TH T th t”h

put UH U u u
food UW u uu u:
villa V v w V
we W w w V
yes Y j y j
zip Z z z z
zip Z z j Ã

seizure ZH Z jhq4 Z
seizure ZH Z z z
seizure ZH Z j Ã

Table 1: The proposed Indian English Common Phone
Set (IE-CPS). The IE-CPS codes marked in bold in col-
umn 4 indicate the phones unique to Indian English.
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The complete set of Indian English phones is
given in Table 1. Each of the phones of GAE, as
provided by CMUdict, has been mapped to exist-
ing phones from CPS. In cases where this was not
possible, additional phones unique to the Indian En-
glish phone set have been added to CPS. This lexi-
con was verified by a trained linguist specialised in
the study of Indian languages.

Word CMUdict IE-CPS

thought TH AO T th ou tx
waited W EY T IH D w ee tx i dx

Table 2: Comparison of CMUdict and IE-CPS with ex-
ample words.

In Table 2, we show the phone break down of
two examples in the case of CMUdict and proposed
dictionary. In the examples taken, i.e, the words
‘waited’ and ‘thought’, one can notice the following
differences:

• Shift in place of articulation. This change
can be seen in several places in the examples
taken. In both the example words, the code
T in CMUdict is mapped to tx in IE-CPS.
tx denotes a retroflex plosive whereas in the
case of CMUdict the place of articulation is
alveolar. As the latter is absent from Indian
languages, the closest phoneme (here, tx) is
substituted. Similar substitution is seen for
the CMUdict codes TH, W and D (replaced by
th, w and dx respectively).

• Diphthong to long vowel. As already men-
tioned, the diphthong in “waited” is pro-
nounced as a long vowel when Indians speak
English. The same is encoded when the code
EY in CMUdict is mapped to ee in IE-CPS

Note here that not all sounds are changed in
the Indian pronunciation of the words. The codes
AO (CMUdict) and ou (IE-CPS) both represent
the same phone [O]. Hence, the vowel sound in
‘thought’ is the same in both American and Indian
varieties of English.

2In CPS, this code is mapped to [oU] but the character this
code represents is also allophonic to [O]. Hence it is used in
the latter sense here.

3Similar to the previous case, the character associated with
this code is mapped to the allophones [e] and [E], the latter of
which is used here.

4Officially this is included in CPS, but in practical use the
character representing this phone is never seen in text, or is
pronounced the same as jh ([dZh]).

4 Experimental Setup

In this subsection, we elaborate on the GAE and IE
speech corpora upon which we ran our experiments.
We also briefly describe two components of the
ASR system – the acoustic model and the language
model. These components have not been changed
in the study, and are only used to highlight the
effectiveness of the IE-CPS as a lexicon for Indian
English ASR.

4.1 Corpora
The experiments are conducted on the following
datasets. The details about the datasets are ex-
plained below:

1. NPTEL Data: National Programme on Tech-
nology Enhanced Learning (NPTEL)5 is an
open-source e-learning platform which is
mainly maintained and organised by top-tier
academic institutes from India (like Indian
Institute of Technology (IIT) and Indian In-
stitute of Science (IISc)). It covers a wide
range of courses, including engineering, basic
sciences, management, law, and personality
development. As part of the challenge con-
ducted by IIT Madras, the organisers released
80 hours of read speech and 200 hours of
recorded lectures (on Computer Science and
Electrical Engineering) from NPTEL6. The
test set contains 12 hours of read speech and
10 hours of lectures (spontaneous speech). We
report the results on both kinds of speech sepa-
rately in Section 5. All of the audio is sampled
at 16Khz. There is no explicit speaker infor-
mation given because the dataset was shared
by the organisers of the ASR challenge. How-
ever, we do confirm that all of the recorded
speech is in Indian English. The speech is well
distributed among several regions and diverse
accents, thus preventing an issue of overfitting
on a single variety of Indian English.

2. Librispeech: This is a corpus of approxi-
mately 1000 hours of 16Khz American En-
glish7 read speech. The dataset is derived
from the audiobooks that are part of the Lib-
rivox project. We take 960 hours of the corpus

5https://nptel.ac.in/
6https://sites.google.com/view/

englishasrchallenge/home
7Strictly speaking this is not fully American English but a

mix. However, most of the audiobooks part of the dataset use
American English.
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for training the model and 5 hours for testing
it. There are no overlapping speakers in the
train and test sets. There are a total of 1166
speakers in this dataset. The dataset is gen-
der balanced to ensure that there is no bias
towards one gender.

4.2 Acoustic Model
The acoustic model (AM) includes a Gaussian Mix-
ture Model-Hidden Markov Model (GMM-HMM),
a hybrid Deep Neural Network (DNN-HMM), and
a Time Delay Neural Network (TDNN) (Peddinti
et al., 2015).

In this work, Mel-frequency cepstral coefficients
(MFCC) features, computed for a 20 ms window
with 10 ms overlap, are fed into the system for
initial speaker-independent GMM-HMM training.
The speaker-dependent GMM-HMM model is built
using Feature space Maximum Likelihood Linear
Regression (fMLLR) features (Gales, 1998). For
DNN-based acoustic model training, we use three
hidden layers. Each hidden layer contains 2000
dimensional hidden units with p-norm activation.
As the input p-norm dimension is 2000, the re-
sultant output p-norm dimension is of 400 dimen-
sions (p = 2 and group size=5). The DNN has
an input layer that takes 360-dimensional input,
and the DNN’s output is 2365 context-dependent
phonemes states.

The outputs are obtained by GMM-HMM align-
ment. The cross-entropy loss is minimised by using
back-propagation with an initial learning rate of
0.01 and a final learning rate of 0.001. In addition
to these 39-dimensional MFCCs, 100-dimensional
iVectors (Dehak et al., 2010) are appended at each
time step. It has been noted that iVectors capture
both speaker and environment-specific information
and are useful for rapid and discriminative adapta-
tion of the neural network. The training data was
increased 3-fold artificially through time-warping
of raw audio (Ko et al., 2015). The training proce-
dure for chain models is a Lattice-Free (LF) ver-
sion of the Maximum Mutual Information (MMI)
(Povey et al., 2016) criterion without the need for
frame-level cross-entropy pre-training.

We use the chain TDNN model comprising
6 layers and 725 Rectified Linear Units (ReLU)
at the input layer. The input features are at the
original frame rate of 100 per second, and the
output frame is reduced by 3 times. The first
splicing is removed before the Linear Discriminant
Analysis (LDA) transformation layer. The

spliced indices in the consecutive layers were
[−1, 0, 1;−3, 0, 3;−3, 0, 3;−3, 0, 3;−6,−3, 0]
with LDA applied to the input features.

4.3 Language Model

The Language Model (LM) predicts the probability
of a hypothesised word sequence by learning the
correlation between words for given text corpora.
In this study, the text data corresponding to the
respective audio is normalised. The SRI Language
modelling toolkit (Stolcke, 2002) is used to train
Kneser-Ney (Chen and Goodman, 1999) smoothed
tri-gram LM on the text corpora. No external text
is used.

All the experiments (both acoustic and language
modelling) have been conducted using the Kaldi
speech recognition toolkit (Povey et al., 2011). The
experiments on Librispeech were conducted using
the standard Kaldi s5 recipe8. The same recipe was
adapted to run experiments on the NPTEL data.
The training was carried out using GeForceGTX
2080 Ti. The metric used for evaluating the ASR
system’s performance is word error rate (WER).

5 Results

This section presents our results and analysis on
IE-CPS for acoustic model training. Further, we
compare and analyse the scenarios in which it out-
performs the existing CMUdict. All the experi-
ments were conducted on Librispeech and NPTEL
data as mentioned in Section 4.1. For evaluating
IE-CPS on a speech recognition task, two sets of ex-
periments were performed with varying conditions,
i.e., read and spontaneous condition.

5.1 Experiments with CMUdict

In the first study, the acoustic model is trained using
CMUdict on both the speech corpora. The obtained
results are shown in Table 3. As expected, the per-
formance of the model trained on the Librispeech
corpus was much better than the performance of
the model trained on the NPTEL database. This
held true for all three architectures of the acoustic
model. The primary reason for this is that Lib-
rispeech is oriented to the American accent, which
was the reference for the pronunciation dictionary.

8https://github.com/kaldi-asr/kaldi/blob/
master/egs/librispeech/s5/run.sh
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Corpus Training Testing Acoustic Model WER (%)

CMUdict IE-CPS

Librispeech Read Read
GMM 7.02 16.72
DNN 4.90 15.85

TDNN 4.43 13.08

NPTEL

Read
GMM 10.64 6.52

Read DNN 8.25 4.89
+ TDNN 6.67 3.76

Lecture
Lecture

GMM 12.45 8.12
(Spontaneous) DNN 10.97 6.48

TDNN 8.85 4.90

Table 3: Comparison of results using CMUdict and IE-CPS.

5.2 Experiments with IE-CPS

In this study, the ASR pipeline uses the proposed
IE-CPS lexicon instead of the CMUdict. The WER
(%) for the same is shown in Table 3. The use of
the IE-CPS improves the performance of the ASR
trained on NPTEL (Indian-English) data. On the
other hand, it performs worse than CMUdict when
the ASR is trained on Librispeech. This further
demonstrates the significant difference between the
Indian and American varieties of English. Table 4
shows an example of how the ASR trained on IE
data has poorer performance when modelled using
CMUdict, a lexicon not specifically designed for
it. The highlighted mistake made with CMUdict is
corrected when using IE-CPS, as a direct result of
applying substitution rules with proper linguistic
foundation.

In the example provided in Table 4, [D] (from
‘th’ in ‘this’) is realised as [d”] in IE speech due
to their phonetic similarity. However, [d”] is also
phonetically similar to [d] (from ‘d’ in ‘disappoint-
ing’). This poorly defined contrast between [D]
and [d] adversely affects the LM when the ASR is
modelled using CMUdict, but since the distinction
is clear in the IE-CPS mappings, the ASR using
IE-CPS is successful at disambiguating such cases.

6 Discussion & Analysis

In this section we investigate the behaviour of the
IE-CPS in more detail by asking the questions de-
tailed below.

If Indian English varies so much with region,
then how can this common lexicon be useful?
It has been mentioned earlier that the regional lan-

guages have a significant effect on spoken English.
This results in several different accents and thus
phoneme inventories. However, IE-CPS is based
on the general speech characteristics observed in
speakers of a range of languages. The rules applied
to map the phones from American to Indian En-
glish are generated from the most prominent and
widespread approximations made by Indians speak-
ing English, such as the transformation from alveo-
lar to retroflex plosives. The notable improvement
demonstrated by experimental results performed
on the NPTEL speech data (consisting of a broad
range of regional Indian accents) also proves the
overall effectiveness of the lexicon despite the vari-
ation in Indian English.

Consequently, it may be extrapolated that such
a lexicon can be applied to the English in regions
where academic effort to model the speech is still
deficient – such as North-East India, with lan-
guages Bodo, Khasi, Assamiya, Meitei, Mizo –
without any extra linguistic expertise on the matter.
Any required region specific tuning also becomes
easier as there are fewer changes to make, which
can be done using the already mostly standardised
encoding of CPS. Furthermore, if there is the need
for a lexicon for multilingual speech (also contain-
ing English), such a pronunciation dictionary with
the phones common to most varieties of Indian En-
glish would serve to better represent the multiple
possible accents.

End-to-End models do not need a lexicon.
What is the need for such a lexicon? With suf-
ficiently large amounts of data, it is possible to
discard pronunciation models entirely and build
end-to-end (E2E) ASR systems. However, as it
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Lexicon Sentence

IE-CPS Its disappointing when you are convinced that there is nothing
CMUdict This appointing when you are convinced that there is nothing

Ground Truth Its disappointing when you are convinced that there is nothing

Table 4: Comparison of Indian English ASR system when using IE-CPS and CMUdict. The words in bold were
the ones confused in the latter case.

is with many Indian languages, if the language
(or the accented language in this case) is low re-
source then E2E models would not be a good so-
lution. In such cases, conventional hybrid sys-
tems perform better. Hybrid systems require us
to explicitly model the pronunciation of the lan-
guage, i.e., a mapping from grapheme to phoneme
(G2P) is required. While one can model this with
sequence-to-sequence (seq2seq) architectures (Gor-
man et al., 2020; Peters et al., 2017), even that
would require relatively large amounts of G2P data.
In cases where even that is not available, rule-based
parsers are the only choice for researchers want-
ing to model a language or an accent. Addition-
ally, even with large training data, seq2seq models
the long tail in the distribution of the data causes
a deterioration in the overall performance. Rule-
based parsers avoid this issue as they do not rely
on learning the data. In such scenarios, the rule-
based IE-CPS can be used to obtain considerable
improvements as shown in Table 3. In fact, the
lexicon can directly be substituted in place of an-
other lexicon in an existing ASR pipeline, making
its integration simpler. The other advantages of
this lexicon are that, being completely rule-based,
it would require no training data or additional com-
putational resources as opposed to seq2seq-based
G2P systems.

7 Future Work

The current IE-CPS generalises several characteris-
tics of spoken Indian English. However, our prelim-
inary analysis reveals that fine-tuning the proposed
lexicon to a particular regional accent of Indian
English, such as Bengali or Malayalam, results in a
better ASR performance when testing on the same
regional accent. For example, a Bengali accent
would cause [a] to be pronounced as [O], and aspi-
ration of consonants would be largely absent for
a Malayalam speaker. Such specific changes can
further be adapted in IE-CPS to reflect regional
varieties of Indian English. Therefore, we plan

to propose different lexicons for different regional
accents of Indian English in the future.

There is a growing amount of interest in mod-
elling code-switched speech, especially in the In-
dian community (Manghat et al., 2020). This
can be seen by how successful the code-switching
subtask was in the 2021 Multilingual and code-
switching (MUCS) ASR challenges for low re-
source Indian languages9 (Diwan et al., 2021). We
also noticed that there is an increased interest in
having a specialised pronunciation block for such
settings. In this direction, we plan to use IE-CPS to
model the Indian English part of the code-switched
speech. This is especially useful because the other
Indian language can be modelled with the same set
of phone codes – CPS. Therefore, such a lexicon
would be easy to integrate into existing frameworks
in such settings.

8 Conclusions

In this paper, we propose a lexicon designed for use
in ASR – the Indian English Common Phone Set
(IE-CPS). The IE-CPS is a lexicon that can be eas-
ily integrated into the existing, (largely) standard-
ised phonetic code for Indian languages – the Com-
mon Phone Set (CPS). We show the improvements
in an Indian English ASR system when IE-CPS
is used as the pronunciation model. This proves
that fine-tuning the pronunciation model to Indian
English when the ASR system is deployed to work
on Indian English speech is the correct way going
forward. This is especially true when the user is
limited by either the available data or the computa-
tional resources to utilise the data.
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Abstract

India is a land of language diversity. There are
approximately 2000 languages spoken around,
and among which officially registered are 23.
In those, there are very few with Automatic
Speech Recognition (ASR) capability. The
reason for this is the fact that building an ASR
system requires thousands of hours of anno-
tated speech data, a vast amount of text, and
a lexicon that can span all the words in the lan-
guages. At the same time, it is observed that
Indian languages share a common phonetic
base. In this work, we build a multilingual
speech recognition system for low-resource
languages by leveraging the shared phonetic
space. Deep Neural architectures play a vi-
tal role in improving the performance of low-
resource ASR systems. The typical strategy
used to train the multilingual acoustic model is
merging various languages as a unified group.
In this paper, the speech recognition system is
built using six Indian languages, namely Gu-
jarati, Hindi, Marathi, Odia, Tamil, and Telugu.
Various state-of-the-art experiments were per-
formed using different acoustic modeling and
language modeling techniques.

1 Introduction

According to the 2011 census, India has 23 consti-
tutionally recognized official languages and 1600
other languages (Wikipedia, 2021). In this era of
digitization, speech technologies for Indian lan-
guages play a pivotal role across various business
domains. Building automatic speech recognition
(ASR) (Reddy, 1976) and text-to-speech (TTS)
(Dutoit, 1997) based interfaces for Indian markets
is big challenge as majority of languages are “low
resourced” (Miao et al., 2013). In general, a lan-
guage is referred to as low resource when there is:
(i) lack of availability of speech, text, transcribed
data, (ii) lack of linguistic expertise in a particular
language, or (iii) lack of pronunciation dictionary

(Lu et al., 2013). In order to build state-of-the-art
ASR systems for Indian languages, tons of training
data is required for achieving human parity. In the
training ASR system, the model expects audio data
and corresponding transcripts as an input. Though
there is a lot of raw speech freely available for In-
dian languages, it is a complex and costly process
to get the corresponding transcription. Hence, very
few efforts were made in these directions over the
past decade.

As Indian languages are syllabic, efforts were
put in generating the pronunciation dictionary from
a simple rule-based parser (Prahallad et al., 2012;
Baby et al., 2016; Ramani et al., 2013; Pandey et al.,
2017). Indian languages have a peculiar attribute
of sharing the same phonetic space. However, they
differ phonotactically1 (Prahallad et al., 2012). So
these attributes could be exploited to build an ASR
system for achieving better performance. With
the introduction of Digital India Mission in 2015,
there have been efforts towards handling these low
resource languages for building speech recognition
technologies.

Different approaches have been proposed in
acoustic modeling over the recent years to address
the low resource speech recognition problem. In
(Swietojanski et al., 2012), the attempt has been
made to use cross-lingual acoustic data to initialize
deep neural network (DNN) based acoustic mod-
els through unsupervised restricted Boltzmann ma-
chine (RBM) pre-training. It showed that unsu-
pervised pre-training remains vital for the hybrid
setups, especially with limited amounts of tran-
scribed training data. The idea of transfer learning
approach was introduced for handling low resource
languages in (Imankulova et al., 2019; Cho et al.,
2018; Das and Hasegawa-Johnson, 2015). Data
augmentation approaches proposed in (Liu et al.,

1In general phonotactic is defined as the study of the rules
governing the possible phoneme sequences in a language.
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2019; Thomas et al., 2020; Cui et al., 2015) were
effective in low resource settings.

A different line of work (Chuangsuwanich, 2016;
Thomas et al., 2012; Rahimi et al., 2019; Xu et al.,
2015), where attempts have been made to extract
multilingual features that help in improving low
resource ASR systems started gaining prominence.
In practice, a language identification (LID) block
is used a front-end wherein it tries to predict the
language first, and later it is mapped to the corre-
sponding monolingual system or the best possible
monolingual system. In this type of approach, the
LID block, which acts as a front-end, should be as
accurate as possible and robust enough to operate
in a multi-thread environment. So to circumvent
this issue, acoustic models where it handles mul-
tiple languages without any prior knowledge of
the language have been proposed (Vydana et al.,
2018). In (Shetty and Umesh, 2021), authors have
explored the benefits of phonetic sound principles
and treated each character unit across the languages
as a separate entities with the help of Common La-
bel Set (CLS) approach.

In this paper, the authors compare and analyze
different Time Delay Neural Networks (TDNN)
variants (Sugiyama et al., 1991) as they seem to be
best suited for such kind of low resource speech
recognition tasks. This paper investigates the ef-
fectiveness of different acoustic models for low
resource multilingual speech recognition for six In-
dian languages (namely Hindi (Hi), Marathi (Mr),
Odia (Od), Tamil (Ta), Telugu (Te), and Gujarati
(Gu)). Among these languages, Hindi, Marathi,
Odia and Gujarati are Indo-Aryan languages, while
Tamil and Telugu fall under the category of Dra-
vidian languages. As mentioned above, the au-
thors considered six Indian languages ie., Hi, Mr,
Od, Ta, Te and Gu, among these languages ex-
cept Hi and Mr all others have different orthog-
raphy (grapheme style). Moreover, every lan-
guages has its own training set they are (XHi,LHi),
(XMr,LMr), (XOd,LOd), (XTa,LTa), (XTe,LTe),
and (XGu,LGu), where X corresponds to the input
acoustic sequence and L represents the label for
target acoustic sequence. Initially, the monolingual
systems are built for each language and trained with
corresponding pairs which is acoustic sequence and
its labels. Later, the authors attempt to show that
the developed multilingual systems offer improved
performance. As a part of multilingual system a
joint acoustic model is trained, for which training

dataset is constructed by pooling data from all the
six languages, i.e., (Xall, Lall) = (XHi, LHi) ∪
(XMr, LMr) ∪ (XOd, LOd) ∪ (XTa, LTa) ∪
(XTe, LTe) ∪ (XGu, LGu). The joint acoustic
model is a single acoustic where the parameters
are shared across all the six languages. This keeps
the authors on similar lines with other research
done on the development of ASR systems for low
resource languages. In this work, a joint acoustic
model-based ASR has been developed using differ-
ent acoustic models. A joint acoustic model (JAM),
which recognizes multiple languages with a single
acoustic model, is widely appreciated. Many re-
search groups have been actively working on this
for the past few years (Chen et al., 2014). The us-
age of the joint acoustic model leverages the cross-
lingual knowledge transfer. It reduces the complex-
ity in the ASR pipeline significantly compared with
the monolingual model as it has to maintain one
model per language. The results show that the mul-
tilingual TDNN system result in lower word error
rates (WER). We use KenLM (Heafield, 2011) and
Recurrent Neural Network (RNN) based language
models (Mikolov et al., 2010a) for decoding and
rescoring respectively.

The organization of the remainder of the paper is
as follows: Section 2 details the proposed lexicon
along with the rationale behind the chosen map-
pings and database analysis. Section 3 explains
the experimental setup. Section 4 discuss experi-
mental results and few of the analysis which we
have carried on. Finally, the study is concluded in
Section 5, with possible future research directions
to explore.

2 Dataset & Lexicon Details

INTERSPEECH 2018 has organized ASR Chal-
lenge as a special session (Srivastava et al., 2018).
As part of the challenge, 40 hours of speech
data has been released for three languages of Gu-
jarati, Telugu, and Tamil. In continuation, INTER-
SPEECH 2021 has extended the challenge to six
languages, i.e., Hindi (Hin), Marathi (Mar), Odia
(Odi), Tamil (Tam), Telugu (Tel) and Gujarati (Guj)
respectively (Diwan et al., 2021). The speech
data statistics for the six languages are tabulated in
the Table 1. To maintain a uniform sampling rate
across all the languages, the authors have down-
sampled all the wave files to 8kHz while building
the multilingual system.
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Table 1: Database statistics for training and test sets (where Trn and Tst indicates Training and Testing sets respec-
tively)

Hindi Marathi Odia Tamil Telugu Gujarati
Trn Tst Trn Tst Trn Tst Trn Tst Trn Tst Trn Tst

fs (KHz) 8 8 8 8 8 8 16 16 16 16 16 16
# Hours 95.05 5.55 93.89 5.0 94.54 5.49 40 5 40 5 40 5

# Utt 99926 3843 79432 4675 59782 3471 39131 3081 44882 3040 22807 3075
Avg dur 5.2 6.0 4.5 5.8 3.9 5.2 3.6 5.8 3.2 5.9 6.3 5.8

2.1 Database Analysis

From Table 1, it is observed that Gujarati has the
least number of utterances when compared to other
languages in the database. Hindi has the maximum
number of utterances when compared to others.
Among the six languages, Hindi and Marathi follow
the same orthography. So, there is a chance that
either of the languages might get benefited while
training together. The text data statistics for all the
six languages are shown in Table 2.

The last row of the table corresponds to num-
ber of graphemes. Among the total number of
graphemes mentioned, for each language, the num-
ber of diacritic marks2 are 16,16,16,7,17,17 respec-
tively for Hindi, Marathi, Odia, Tamil, Telugu, and
Gujarati. In analysis of the text data the authors
found that, for a given word, the transcriptions are
different in some cases. There are very few proper
nouns in the database. In some utterances it is
found that even English words are present but in
the transliterated form. For example, copy→ ,
book→ . So this paper tries to capture such vari-
ations by exploring different models to empirically
see which performs better in the present scenario.
Throughout this paper, the authors use multilingual
approaches to solve the data scarcity problem.

2.2 Lexicon

In building a low-resource speech recognition sys-
tem, the lexicon plays a vital role in providing a
phonetic representation for a given word sequence.
In this section, the authors will be discussing about
the unified parser which was introduced by (Baby
et al., 2016). The proposed parser was primarily
used for speech synthesis task across all the lan-
guages. The parser has two-folds:

• In the first fold, for a given UTF-8 word se-
quence it converts into corresponding sylla-
bles. Recently this type of approach has been

2A diacritical mark is a symbol that tells a reader how to
pronounce a letter.

explored by (Shetty and Umesh, 2021) for
building end-end speech recognition system
to improve the performance of low-resource
Indian Languages.

• Later, in the second fold, letter-to-sound rules
are applied and the corresponding phone se-
quence is generated. This type of parser is
popular in building Indic TTS. The authors hy-
pothesize this will work in their ASR pipeline.
Therefore, in this paper, a similar approach is
followed to build low-resource speech recog-
nition system for Indian languages.

We have come up with a unique parser to generate
the pronunciation sequence for all the words as
shown in Figure 1.

Figure 1: A example of Common Label Set based lexi-
con generated for Indian Languages

3 Speech Recognition Experimental
Setup

In this section, the authors describe the experimen-
tal setup for both the monolingual and multilingual
ASR systems. The word error rate (WER) is the
metric used to evaluate the performance of ASR
systems throughout this paper.

3.1 Language Modeling
The language model (LM) tries to estimate the
probability of a hypothesized word sequence by
learning the words from the text corpora. A Kneser-
Ney (Chelba et al., 2010) trigram LM is built us-
ing SRILM toolkit (Stolcke, 2002) by normaliz-
ing training corpus. Recurrent neural networks
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Table 2: Lexical analysis for training and test sets (where Trn and Tst indicates Training and Testing sets respec-
tively)

Hindi Marathi Odia Tamil Telugu Gujarati
Trn Tst Trn Tst Trn Tst Trn Tst Trn Tst Trn Tst

Uniq sent 4506 386 2543 200 820 65 30329 3060 34176 2997 20257 3069
Uniq words 6092 1681 3245 547 1584 334 50124 12279 43270 10859 39428 10482
OOV (%) 26.17 25.59 17.91 33.19 28.82 17.02

# graphemes 69 61 68 50 64 65

(RNN) based LM helps in preserving the informa-
tion due to its feedback mechanism in its architec-
ture (Mikolov et al., 2010b). It tries to take the
previous information, hi = wi−1, ...., w1 to predict
the current word in sequence wi. RNNLM has an
input layer consisting of history vector hi, previous
word vector wi−1 and vi−2 is the context vector.
The activation function used in this RNNLM is
softmax. The input and output layer calculate the
RNNLM probabilities PRNNLM (wi|wi−1, vi−2)
using this activation function. Similarly, this pro-
cess is repeated for calculating the probability of
the next word.

In this paper, we use a TDNN-LSTM system
for bulding RNNLM. The TDNN-LSTM has three
LSTM layers with 1024 cells, 256 dimension pro-
jection and 9 layers of 1024 neurons. The L2-
regularization for hidden layers is 0.01 and output
softmax is 0.004.

3.2 Acoustic Modeling

Sequence-trained TDNN architecture (Peddinti
et al., 2015) is explored for building the base-
line acoustic model using Kaldi toolkit (Povey
et al., 2011). For training the baseline, the
alignments from Gaussian Mixture Model-Hidden
Markov Model (GMM-HMM) are considered. 13-
dimensional Mel-Frequency Cepstral Coefficients
(MFCC) features are used for mono-phone training.
Next, ∆ and ∆∆ features are used for tri-phone
modeling. The alignments generated from speaker
adaptive training (SAT) based tri-phone models
are used in the training of baseline TDNN. Fea-
ture space Maximum Likelihood Linear Regression
(FMLLR)(Yao et al., 2012) is opted for SAT with
6000 tied states.

The input features to TDNN were 40 dimen-
sional high resolution MFCCs with 100 dimen-
sional iVectors for speaker adaptation (Madikeri
et al., 2016). Initially, a three way speed pertur-
bation is performed on the training data with 0.9,
1.0 and 1.1. Later, a volume perturbation has been

(a) Feed-forward layer in con-
ventional TDNN system.

(b) Factorized layer in low
rank TDNN system

Figure 2: Difference between a normal TDNN and low
rank TDNN

adapted with a random factor between 0.9 to 2.
All these perturbations are extracted for training
iVectors.

Low Rank TDNN based architecture is ex-
plored which is different from the conventional
TDNN. In this low rank TDNN, a bottleneck lin-
ear layer after every affine transformation of batch
normalised ReLU is applied with skip connections.
As it is factorized at every linear layer pair of each
ReLU unit, it is also referred as low rank TDNN.
The low rank TDNN based recipe can be seen in
Kaldi 3. The difference between a normal TDNN
layer and a low rank TDNN layer is shown in Fig-
ures 2a and 2b.

In the low rank TDNN, the dimension for the
linear bottleneck is 256. In general, the skip con-
nection takes the inputs and outputs of the previ-
ous layer and selects other prior layers that are
appended to the previous ones. In this experimen-
tal setup, apart from the output, it receives three
non-consecutive layers as a skip connection. For
example, consider 1280 x (256 x 2) as a dimension
of conventional TDNN; after considering three skip

3egs/swbd/s5c/local/chain/tuning/run_
tdnn_7n.sh
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Table 3: The WER(%) results of monolingual (mono), multilingual (multi) models. The results showing the impact
of the language model (LM) with and without external text data, and different acoustic models are also reported.

Type Model Hindi Marathi Odia Tamil Telugu Gujarati Average

Mono

GMM-HMM 69.03 33.22 55.78 48.81 47.27 28.33 46.88
SGMM 61.01 26.41 51.36 39.68 28.08 28.61 40.85
TDNN 30.16 19.65 35.58 21.89 21.67 17.35 24.80
Low Rank
TDNN 11L
+ External text data

16.30 12.35 13.48 15.36 11.36 13.65 13.73

Multi

SGMM 38.69 30.6 39.68 36.96 35.68 33.65 35.87
TDNN 8L 35.16 31.58 37.6 35.98 34.89 31.62 34.48
TDNN LSTM 26.58 15.62 29.68 20.12 20.02 17.89 21.65
TDNN BLSTM 36.47 15.14 28.89 19.63 20.1 17.02 22.87
TDNN 13L 16.36 12.65 23.22 19.04 19.34 16.88 17.91
Low Rank
TDNN 11L

17.27 10.69 21.65 18.34 18.68 15.08 16.95

Low Rank
TDNN 11L
+External
Telugu text data

17.27 10.69 21.65 18.34 9.86 15.08 15.48

Low Rank
TDNN 11L
+External
6 language text data

8.37 6.35 10.78 9.15 9.86 7.25 8.62

connections, the dimension would be 1280 x (256
x 5).

4 Experimental Results & Analysis

The experiment results for the six languages are
reported in the Table 3. The monolingual results
show that TDNN system with 8 layers and six mil-
lion parameters performs better than SGMM and
GMM-HMM based models for monolingual sys-
tems. The TDNN system consistently improves
the WER performance for all languages. The best
WER is obtained for Gujarati which is 17.35%. We
hypothesize that is due to low OOV%.

A multilingual neural network was trained by
pooling the six languages using common label set.
The JAM was trained with a similar configuration
as the low rank TDNN system described in the
Section 4. The results are reported for the SGMM,
7-layer TDNN, TDNN-LSTM, TDNN-BLSTM, 8-
layer TDNN, 13-layer TDNN and low rank TDNN
respectively. The best performance is observed for
the case of low rank TDNN. The performance of
models trained using SGMM is poorer than the
performance of TDNN based models.

The triphones which are modeled by GMM-

HMM do not share the common distribution among
the six languages. This has led to the poor per-
formance when the JAM is trained using SGMM.
JAM trained using low rank TDNN has yielded
better performance than TDNN and SGMM based
systems. Unlike SGMMs, low rank TDNN and
TDNN acoustic models are trained to model long-
term temporal variations. The variabilities caused
due to the presence of six languages have been ef-
fectively handled using low rank TDNNs due to the
attributes of the architecture like skip connection,
bottleneck linear transformation layer and batch
normalization. From the last row of the Table 3,
it is evident that due to inclusion of skip connec-
tions in low rank TDNN (with and without external
text data), the performance of multilingual ASR
system across all the languages has improved. Ini-
tially external text is collected for Telugu language
and RNNLM is built using this. The authors eval-
uate this on low rank TDNN acoustic model. The
collected external text and lexicon created using
this can be found here 4. The multilingual system

4External crawled data can be found here
https://github.com/mirishkarganesh/icon_
submission
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with the same configurations as before was built
with added external Telugu text. Due to which, as
mentioned in the Table 3, the performance for Tel-
ugu language has improved. Motivated by the im-
provement in performance of ASR for Telugu, this
was extended to all languages. The external text
for other five languages is taken from AI4Bharat5.
Similar improvement is observed for all languages
with added external text.

5 Conclusion & Future Work

In this paper, a TDNN based multilingual ASR sys-
tem for six Indian languages, i.e., Hindi, Marathi,
Odia, Tamil, Telugu, and Gujarati was explored.
Our experiment results show that the multilingual
models achieve comparable results to the mono-
lingual models when the parameters are in a com-
parable range. In few cases, ASR performance
improved by including external text data while
building languages model. CLS is investigated for
studying the effectiveness of JAM for building a
multilingual ASR system for six Indian languages.
It is observed that low rank TDNN has shown supe-
rior performance over conventional TDNNs. Since
most Indian languages are syllabic in nature and
share a common phonetic space, the authors believe
that the CLS approach can be further extended to
more Indian languages in future. The feasibility
of adapting LM along with the AM can also be
explored for improving the performance of low
resource multilingual ASR system. As India is
a multilingual society, it is common occurrence
for code-switching to be observed. In general,
the authors would like to focus on two types of
code-switching; (i) intra-sentential and (ii) inter-
sentential. In the regular conversation, people try
to switch, that is, the language exchange takes place
at the sentence boundaries, and in the latter case,
the languages switch into sentences, thus, creat-
ing a more complex problem. The six language
multilingual model which we have built can deal
with the inter-sentential cases. However, in Hindi
and Marathi both intra and inter-sentential cases
works as these two languages share same grapheme
structure. Therefore, our future work will focus on
recognizing intra-sentential code-switching utter-
ances by exploring different architecture and utiliz-
ing monolingual data. The experimental findings
from this paper will benefit researchers planning

5AI4Bharat text data can be found here https://
indicnlp.ai4bharat.org/corpora/

to build multilingual ASR systems for syllabic lan-
guages. We hope our work will encourage future
research that leverages the findings.
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Abstract

Automatic speech recognition (ASR) has
experienced several paradigm shifts over
the years from template-based approaches
and statistical modeling to the popular
GMM-HMM approach and then to deep
learning hybrid model DNN-HMM. The
latest shift is to end-to-end (e2e) DNN ar-
chitecture. We present a study to build
an e2e ASR system using state-of-the-art
deep learning models to verify the appli-
cability of e2e ASR models for the highly
inflected and yet low-resource Sinhala lan-
guage. We experimented on e2e Lattice-
Free Maximum Mutual Information (e2e
LF-MMI) model with the baseline statis-
tical models with 40 hours of training data
to evaluate. We used the same corpus
for creating language models and lexicon
in our previous study, which resulted in
the best accuracy for the Sinhala language.
We were able to achieve a Word-error-
rate (WER) of 28.55% for Sinhala, only
slightly worse than the existing best hy-
brid model. Our model, however, is more
context-independent and faster for Sinhala
speech recognition and so more suitable for
general purpose speech-to-text translation.

1 Introduction

There are two main architectures in training
the ASR system. They are Statistical ASR
architecture and End-to-End(e2e) Deep Neu-
ral architecture. Statistical ASR was the state
of the art for many years, however after the
year 2015, researchers tend to move towards
e2e ASR systems due to the higher results.
The main difference between these two archi-
tectures is the number of models needed to
create, in training the ASR system. In Statis-
tical ASR, it needs 3 types of models and they
are acoustic models, pronunciation models and
the language model. But in e2e ASR, it will

compress those 3 models into a single Deep-
Neural-Network (DNN) (Wang et al., 2019).

So many research have been done using e2e
architecture for creating ASR systems for dif-
ferent languages since this is a new trending
area of Natural-Language-Processing (NLP)
and speech recognition. And there are previ-
ous researches conducted for English speech
recognition that show better results when us-
ing e2e architecture than the traditional sta-
tistical approach (Park et al., 2019).

Currently, there are previous and ongoing
researches on building ASR systems for Sin-
hala language using statistical ASR architec-
ture, Gaussian mixture model with Hidden
Markov model (GMM-HMM) based models
and Hybrid Deep-Neural-Network with Hid-
den Markov model (DNN-HMM) based mod-
els (Gamage et al., 2020; Karunathilaka et al.,
2020). E2e architecture would be a new ap-
proach for Sinhala ASR and it will help to
improve the available resources as well. Es-
pecially, e2e architecture opens the doorway
to transfer learning, which is the new trending
for low resource speech recognition, to improve
the accuracy. These domains for speech recog-
nition were popular in later 2019 among the
researchers and it is essential to have models
trained in e2e architecture in Sinhala language
to get a generic idea when accessing these do-
mains (Stoian et al., 2020).

In this paper, we present a study on e2e
DNN architecture based ASR systems for Sin-
hala speech recognition using e2e LF-MMI
model. The performances of the e2e model will
be evaluated and compared with the statisti-
cal models such as GMM-HMM, DNN-HMM
and combinational models of SGMM-DNN.

The paper is organized as follows. Section
2 presents the related studies, Section 3 de-
scribes the methodology, data preparation and
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implementation in greater detail. Section 4 de-
scribes the results and evaluation. Section 5
presents the conclusions and the future work.

2 Literature review
More than 30 years later also this methodology
still predominates in ASR. Nowadays, most
practical speech recognition systems are based
on the statistical approach (Wang et al., 2019).

With the improvement of deep learning,
DNN is introduced for creating acoustic mod-
els. The role of DNN is to calculate the pos-
terior probability of the HMM state, by re-
placing the traditional GMM observation prob-
ability. So DNN-HMM models become the
state-of-the-art ASR model by achieving bet-
ter results than GMM-HMM models (Wang
et al., 2019). The training process and decod-
ing process of the HMM-based model deter-
mines whether it faces the following difficulties
in actual use.

• The training process is very complicated
and it is difficult to perform global opti-
mization.

• When constructing HMM based models,
they made an assumption that the 3 mod-
els are independent from each other. This
simplify the model creation but this is not
an actual match (Wang et al., 2019).

Due to the above-mentioned shortcomings
or anomalies in the HMM-based models, more
research was carried out in the e2e architecture
with the trending of deep learning. The end-to-
end model is a system that directly maps input
audio sequence to sequence of words or other
graphemes (Rao et al., 2017). So direct map-
ping of utterances to character sequence is con-
ducted where no intermediate states like cal-
culating posteriors in the output (Wang et al.,
2019).

Data alignment is the major problem in
both HMM based and e2e models but e2e
models require soft alignments where HMM
based models use forced alignments. However,
main problem in e2e architecture is that it re-
quires a large amount of speech data to achieve
higher accuracy in recognition (Wang et al.,
2019). Till year 2018 low resource speech
recognition systems are never used e2e archi-
tecture because this architecture is used in

Large Vocabulary Continuous Speech Recogni-
tio (LVCSR). (Povey et al., 2016) paper shows
that, abundance of training data make the sys-
tem lagged comparable to hybrid DNN sys-
tems when trained on smaller training sets.

Interspeech 2018 Low Resource Automatic
Speech Recognition Challenge for Indian Lan-
guages research conducted by Microsoft Cor-
poration in India created a challenge by giving
50 hours of transcribed speech in each Tamil,
Telugu and Gujarati which are three main in-
dian languages and asked participants to build
ASR systems restricted to this dataset. Evalu-
ation carried out on a blind test set (Srivastava
et al., 2018). The ISI-Billa system presented
to address the above challenge (Billa, 2018)
was an EESEN based end-to-end multilingual
LSTM network trained using the Connection-
ist Temporal Classification (CTC) training cri-
terion . This is the first time to use an e2e
model for south asian languages. Both mono-
lingual and multilingual systems trained using
this model and it outperformed the baseline
models in all three languages (Srivastava et al.,
2018).

After year 2019, transfer learning and unsu-
pervised learning techniques have become fa-
mous in the speech recognition domain. One
of the major improvements was to tackle the
low resource problems researchers are intro-
ducing in these domains (Bataev et al., 2018).
In the Investigation of transfer learning for
ASR using LF-MMI trained neural networks
paper they used weight transfer and multi-
task learning transfer learning techniques to
address the low resource problem (Ghahre-
mani et al., 2017). Meta Learning For End-
to-end Low-resource Speech Recognition pa-
per shows that using multilingual CTC mod-
els can be used to improve the accuracy of
the ASR using Meta learning techniques (Hsu
et al., 2020). In wav2vec: Unsupervised Pre-
training for Speech Recognition paper used a
model is trained using the Auto Segmentation
Criterion. Untranscribed web audio for low
resource speech recognition paper has intro-
duced semi-supervised training is done by us-
ing lattice-free maximum mutual information
(LF-MMI) to untranscribed data (Carmantini
et al., 2019).
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3 Approach

3.1 Data Preparation
Data preparation is the most important task
in the ASR pipeline because to have a reliable
ASR, it highly depends on the consistency and
integrity of the data preparation step (Gam-
age et al., 2020). We used Kaldi toolkit in
the study and data preparation is done ac-
cordingly. Since the training scripts of e2e LF-
MMI models does not allow segment file which
has the length of each utterance in a single au-
dio file, we had to split the audio recored in
praat to have a single audio wave file to a sin-
gle utterance in training models.

3.1.1 Dataset
Here we have used the collected recordings
from Language Technology Research Labora-
tory (LTRL) of University of Colombo School
of Computing (UCSC) which has 40 hours of
training data which have been gathered using
Praat and Redstart tools. Training the models
involves a total data set from 113 native speak-
ers where 79 are female, and 34 are males. The
training data set has audio recordings from 67
females and 27 males speakers, and the total
utterances are 17848 sentences, which is 25h of
speech data. As the validation data set,2002
speech utterances from 8 females and 3 male
speakers are taken for fine-tuning the models.
Testing the models involve a data set from 4 fe-
male speakers and 4 male speakers where they
utter 80 speech sentences altogether. Training
has done in 16kHz sample rate and refer (Gam-
age et al., 2020) for more details. The overall
details about the data sets are given in table
1.

Dataset Male Female Utterances
Train 27 67 17848
Dev 3 8 2002
Test 4 4 80

Table 1: Details of train,validation and test data
sets

3.1.2 Lexicon
Lexicon has the mapping of words with the
relevant spoken phone sequences and it is a
major part of the pronunciation model in a
statistical ASR system (Gamage et al., 2020).

For creating lexicon, ”Sinhala G2P Conver-
sion” (Nadungodage et al., 2018) and ”Subasa
Transliterator” tools are used and please refer
(Gamage et al., 2020) for more details.

3.1.3 Corpus
We used 3 corpora namely, UCSC Novel Cor-
pus (90000 unique sentences), Chatbot Corpus
(388 unique sentences) and the corpus created
using active learning method (20000 unique
sentences) to create the corpus for the study.
By combining the above corpora, a new corpus
is created to generate ngram language models.
Summary of the corpus is available in table
2. SRILM (Stolcke, 2002) toolkit and KenLM
(Heafield, 2011) toolkit are used to create the
n-gram language models. After calculating
perplexities for testing dataset we selected a
4-gram language model through the study. De-
tails of the Language Models are represented
in table 3.

Vocabulary Size 243339
Total number of Sentences 119621
Total number of words 1194940

Table 2: Corpus Statistics

Language Model Perplexity
Witten-Bell 3grams 9.393376
Witten-Bell 4grams 8.108833

Table 3: Perplexities of created Language Models

3.2 Baseline models
Mainly, 4 baseline models are considered in
the study excluding monophone and triphone
models as done for Sinhala language men-
tioned in (Gamage et al., 2020). Those base-
line models are,

• Subspace Gaussian mixture model with
MMI (SGMM+MMI)

• Hybrid System (Dan’s DNN)

• Hybrid System (Keral’s DNN)

• Combination SGMM + Dan’s DNN

Detailed descriptions of creating base-
line models are presented in (Gamage
et al., 2020).Usage of Combinational Acoustic
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Models(DNN-HMM and SGMM) and Identify-
ing the Impact of Language Models in Sinhala
Speech Recognition (Gamage et al., 2020) pa-
per uses 30 hours of training data. Addition-
ally we have used 10 more hours with the same
dataset.

Mel Frequency Cepstral Coefficient (MFCC)
feature extraction is done using 13 MFCC with
downsampling and zero order coefficient as it
is the standard measurement, and features are
extracted every 10ms with the 25ms Hamming
window (Povey et al., 2011). Followed by,
we trained models with monophone training,
triphone training with delta feature compu-
tation, Linear Discriminant Analysis (LDA)
with Maximum Likelihood Linear Trans-
form(MLLT) and Speaker Adaptive Train-
ing (SAT). Alignments of LDA+MLLT+SAT
model are used to train SGMM+MMI models
and Hybrid models. DNN models are influ-
enced by Keral’s recipe and Dan’s recipe men-
tioned in Kadli (Povey et al., 2011). Parame-
ters for above models are mentioned in (Gam-
age et al., 2020), in detail. Results obtained
in baseline models are represented in table 4.

3.3 Proposed E2e Lattice-Free Maximum
Mutual Information (LF-MMI) model

We used the default Neural Network (NN) ar-
chitecture to train WSJ dataset mentioned in
training recipes. We used Factored Time De-
lay Neural Networks (TDNNf) according to
the standard Kaldi WSJ recipe. This neural
network has 13 TDNNf layers and a rank re-
duction layer. The number of units in the
TDDNf consists of 1024 and 128 bottleneck
units. The default hyperparameters of the
standard recipe were used with the number of
epochs 10, 30 and 50. (Hadian et al., 2018).

We chose the phone based training to create
the e2e models. Architecture used to create
e2e LF-MMI models are represented in figure
1.

Unlike in baseline models, 40-dimensional
MFCC features are extracted from 25ms
frames every 10ms because it is the default
used in WSJ recipe (Hadian et al., 2018). Zero
mean and unit variance normalization tech-
niques are used per-speaker basis and no other
feature normalization or feature transform is
used. Unlike in baseline models, we do not per-
form re-alignments during the training here.

Figure 1: e2e LF-MMI model Architecture

Data is augmented with 2-fold speed perturba-
tion in all the experiments because it modifies
the length of each utterance to the nearest of
the distinct lengths (Hadian et al., 2018). Oth-
erwise, we can pad each utterance with silence
to reach one of the distinct lengths.

Unlike in statistical ASR , e2e ASR decodes
the utterance into character sequence. So we
need a phone language for the denominator
graph (Povey et al., 2016) to decode utter-
ances. Then we start training the models
in Kaldi toolkit with NN settings mentioned
above. A different lang directory which con-
tains the information of n-gram language mod-
els, can be used with a wordlist and language
model of our choice to train the models, as long
as phones.txt is compatible. The mkgraph.sh
script helps to train the e2e models using such
language models.

4 Results and Evaluation

The server used for training of all deep neu-
ral architectures and the decoding of the mod-
els contains 4 GPUs - GeForce RTX 2080
Ti of 10.8GB each. All 4 GPUs have been
used when training, Thereby accelerating the
deep learning training process by leveraging
CUDA. The performance of e2e Sinhala ASR
systems are evaluated in terms of accuracy on
the recordings taken with the noise environ-
ment. This accuracy can be obtained by cal-
culating either Word Error Rate (WER) or
Sentence Error Rate (SER). WER is the num-
ber of words that are wrongly identified out of
the total number of words in the audio sam-
ple used for recognition. SER is the number
of sentences that are improperly identified out
of the total number of sentences (Karunathi-
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laka et al., 2020).The WER is widely used to
discrete and compare speech recognition sys-
tems and we also used the WER throughout
the study.

4.1 Baseline models

The combined SGMM+DNN statistical model
is created with 40 hours of training data
mentioned above. As discussed, the hy-
brid DNN model and SGMM+MMI mod-
els are created on top of the alignments of
LDA+MMLT+SAT (tri3) triphone model. In
(Gamage et al., 2020) statistical architecture
achieved 31.72 %WER for only 30 hours of
training data in the combined model. Table 5
represents the comparison of the results with
the same architecture of previous study with
10hours more data.

Model Test set
(WERs)

Dev set
(WERs)

mono 47.43 3.78
tri1 33.08 2.87
tri2 32.78 3.19
tri3 35.80 3.10
sgmm2_4 32.33 2.89
SGMM2 + MMI Training 31.72 2.87
Hybrid System (Dan’s DNN) 27.79 2.29
Hybrid System (Keral’s DNN) 27.95 3.96
Combination SGMM + Dan’s DNN 29.00 2.44
Combination SGMM + Keral’s DNN 28.40 2.95

Table 4: Results of Baseline models with 40 hours
of data

We can clearly identify in table 4 that
Hybrid Dan’s DNN model achieved the best
WER which is 27.79% and it outperformed the
combined model by 0.61% less WER. With 30
hours of training data SGMM2+MMI model
achieved 34.14% WER and within 40 hours
it achieved 31.72% WER with the improve-
ment of 2.42% less WER. And Hybrid Dan’s
model had 35.50% WER with 30 hours of
training data but using 10 hours more data
it achieved 27.79% WER with 5.71% improve-
ment in WER. So we can clearly identify that
with more data, hybrid DNN models perform-
ing well. This is a well known fact that DNN
models have the higher accuracy in Speech
recognition with the higher data available for
training.

Model WERs of
30 hour dataset 40 hour dataset

SGMM2 + MMI
Training 34.14 31.72

Hybrid System
(Dan’s DNN) 35.50 27.79

Hybrid System
(Keral’s DNN) 36.33 27.95

Combination
SGMM + Dan’s DNN 31.72 29.00

Table 5: WER comparison of baseline models after
increasing 10 more hours of auido data to the same
dataset

4.2 E2e LF-MMI Models
Even though LF-MMI model is loosely coupled
with HMM it can act as e2e model with mono-
phones or full bi-phones by removing the con-
text dependency tree alignments. In this study
we use full left bi-phones so every possible pair
of phones have a separate HMM model.

Table 6 represents the WERs achieved in e2e
LF-MMI models and was able to get 28.55%
WER with 10 epochs in Kaldi. When using
GPU for training in Kaldi, it considers avail-
able 4 GPUs as a single GPU using exclusive
mode and we can give higher frames when
training. So for each epochs we used 3 million
frames per iterations.

Ephocs Test set
(WERs)

Dev set
(WERs)

10 28.55 2.27
30 32.18 2.90
50 33.27 2.02

Table 6: WER comparison of e2e LF-MMI models

4.3 Evaluation
Following 3 sentences are taken from 3 ran-
dom persons. Recording of those utterances
have been done in their own environment with
their own equipment and they had 44.1 Hz
sample rate. Hybrid Dan’s model was taken
as the baseline model because it had the low-
est WER among other baseline models.They
are compared with the accurate e2e LF-MMI
model. Recorded utterances are fed into the
above models and resulted outputs are repre-
sented in table 7 to 9.

Test sentence 1 in figure 7 is a news read-
ing and (Gamage et al., 2020) paper shows
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sentence Russia’s first humanoid robot arrives
at International Space Station

Utterance ╍┰යාව ╄┰▌ ප♓ථම වරට හ╦▌වා╽▌ ┫╒මෙනා═▥ ෙරාෙබා්වරයා
ජාත├▌තර අභ├ාවකාශ මධ├┴ථානය ෙවත ළඟා ╅ ▍ෙ╺

Baseline ╍┰යාව ╄┰▌ ප♓ථමවරට හ╦▌වා ╽▌ෙ▌ මා ෙනාෙය☁ ඔයා
ෙබා්╏යා ජාත├▌තර අභ├වකාශ මධ├┴ථානය ෙවත ළඟා ╅ ▍ෙ╺

e2e
LF-MMI

වා┰┭ ╄┰▌ පැ▏╣ හා පහම හාද ෙනා ╅ම ෙනා ═ ඔ┭ ෙපා්මරය
ජාත├▌තර අභ├වකාශ මධ├┴ථානය ෙවත ළඟා ╅ ▍ෙ╺

Table 7: Analysis of test sentence 1

that the current Sinhala ASR system is well
performed in the context of news readings
and number readings. Because training tran-
scriptions are mainly gathered in those areas.
In this sentence also baseline model is well
performed rather than other e2e models but
“┫╒මෙනා═▥ ෙරාෙබා්වරයා” is not identified cor-
rectly. Those two words not being included in
the lexicon and the corpus can be the reason.
But in e2e LF-MMI model, we can see that
it is trying to identify the word “┫╒මෙනා═▥ ”
correctly by looking at ” ” “╅ම ෙනා ═”.

sentence
The Cabinet also decided to provide President Maithripala
Sirisena with his current official residence at Mahagama
Sekara Mawatha, Colombo 7, after his retirement.

Utterance
ජනා▃ප▍ෛම▍♒පාල ┰╋ෙ┴න මහතා දැනට භා╄තාකරන ෙකාළඹ
හත මහගමෙ┴කර මාවෙ░ ╬┫▫█ල█වස ╄ශ♒ාම ගැ▉ෙම▌ ප┲ව
ද ඔ┭ට ලබා ╼මට කැ╶න▯ ම■ඩලය ▎රණයකර═

Baseline
ඇ┴ ජනා▃ප▍ මට ප▌සල මහතා ඇයට භා╄තාකරන ෙකාළඹ හත
මහගමෙ┴කර මාවෙ░ ╬┫▫ █ල█වස ╄ශ♒ාම ගැ▉ෙම▌ ප┲ව ද
ඔ┭ට ලබා ╼මට කැ╶න▯ ම■ඩලය ▎රණයකළහ

e2e

LF-MMI

නාදප▍ෛම▍♒පාල ┰╋ෙ┴න මහතා දැ□ භා╄තාකරන ෙකාළඹ හත
මහගමෙ┴කර මාවෙ░ ╬┫▫ █ල█වසට ╄ශ♒ාම ගැ▉ෙම▌ ප┲ව ද
ඔ┭ට ලබා ╼මට කැ╄┿ බ■ඩනය ▎රණයක

Table 8: Analysis of test sentence 2

“ජනා▃ප▍ ෛම▍♒පාල ┰╋ෙ┴න” and “කැ╶න▯
ම■ඩලය” is not identified correctly in all mod-
els at to some extent. Those words are in-
cluded in both lexicon and corpus but they are
not identified correctly. Problem here is acous-
tic data is not enough to train, to have higher
probability for those words because they are
proper nouns. So n-gram language model
dominated here to have higher probability in
“ජනා▃ප▍ මට” rather than “ජනා▃ප▍ ෛම▍♒පාල”
because in previous study with less data those
two words correctly identified in the baseline
model. E2e model is trying to get the more ac-
curate decoding. So we can identify that there
is a misleading in Statistical models when us-
ing higher data. E2e models use character
level decoding rather than word level decoding
done in statistical architecture so that mislead-
ing is minimum in the e2e models and we can

identify that in the above sentence.

sentence I leave
Utterance මම යනවා
Baseline ╄වර
e2e LF-MMI මම යනවා

Table 9: Analysis of test sentence 3

Test sentence 3 in figure 9 has a normal day
to day talking accent. E2e LF-MMI model
has correctly identify the utterance. Baseline
model completely mis-identifies the utterance
because it is context dependent when decod-
ing and sentences with less number of words
mostly have low accuracy because it uses word
level decoding. Many other sentences had
this observation so that we can identify that
the e2e models are more context independent
rather than statistical models even though the
training data has a context dependency. To
have a general ASR system, e2e techniques are
more suitable.

5 Conclusion and Future Work
Even though there is a slightly better accuracy
in statistical approach, using the e2e approach
we created a less context dependent and faster
model for Sinhala speech recognition for using
general purpose speech-to-text transcription.
We found out that using only statistical mod-
els (GMM+HMM, SGMM, SGMM+MMI) is
not useful in further research conducted for
Sinhala speech recognition that even hybrid
system where DNN uses to calculate the pos-
terior probabilities for the HMM perform far
better than those traditional approaches.

Currently, we were able to achieve 28.55%
WER for Sinhala e2e speech recognition us-
ing e2e LF-MMI implemented on Kaldi toolkit.
This model also can be improved with fine tun-
ing but this study is not going to fine tune
and has used the basic implementations and
recipes available for the WSJ dataset which
have 80 hours of training data. Current do-
main of speech recognition moves toward ad-
dressing the low resource problem. There are
large datasets available for English and France
like languages with the state-of-the-art results.
Common solution for addressing the low re-
source problem is to transfer learning from
high resource language to a low resource lan-
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guage. In e2e LF-MMI technique transfer
learning can be done by using weight trans-
fer and multi-task training (Ghahremani et al.,
2017). So from the results of this study it will
be useful to do the necessary data augmen-
tations and choosing parameters for transfer
learning techniques mentioned above.
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Abstract
Vision-language models can assess visual con-
text in an image and generate descriptive text.
While the generated text may be accurate and
syntactically correct, it is often overly general.
To address this, recent work has used optical
character recognition to supplement visual in-
formation with text extracted from an image.
In this work, we contend that vision-language
models can benefit from additional informa-
tion that can be extracted from an image, but
are not used by current models. We modify
previous multimodal frameworks to accept rel-
evant information from any number of aux-
iliary classifiers. In particular, we focus on
person names as an additional set of tokens
and create a novel image-caption dataset to
facilitate captioning with person names. The
dataset, Politicians and Athletes in Captions
(PAC), consists of captioned images of well-
known people in context. By fine-tuning pre-
trained models with this dataset, we demon-
strate a model that can naturally integrate fa-
cial recognition tokens into generated text by
training on limited data. For the PAC dataset,
we provide a discussion on collection and base-
line benchmark scores.

1 Introduction

Vision-language models combine deep learning
techniques from computer vision and natural lan-
guage processing to assimilate visual and textual
understanding. Such models demonstrate visual
and linguistic knowledge by performing tasks such
as vision question answering (VQA) and image cap-
tioning. There are many applications of these tasks,
including aiding the visually impaired by providing
scene information and screen reading (Morris et al.,
2018).

To perform a vision-language task, a model
needs to understand visual context and natural lan-
guage, and operate in a shared embedding space

Figure 1: Our captioning model accepts tokens from
several upstream classifiers, learns representations for
tokens from different classifiers, and uses each token
appropriately. By using the facial recognition token
‘Bernie Sanders’, our model’s caption is more informa-
tive than previous work which just uses OCR.1

between the two. Approaches in the literature
have improved performance by pre-training models
for both visual context and language understand-
ing (Chen et al., 2020; Lu et al., 2019; Su et al.,
2019; Li et al., 2020; Tan and Bansal, 2019). These
models have yielded accurate and semantically ap-
propriate VQAs or captions. However, the text gen-
erated from these models are general and overlook
content that allow for richer text generation with im-
proved contextualization. For example, they ignore
clearly visible text or the presence of well-known
individuals.

To improve specificity in generated text, recent
work has used optical character recognition (OCR)

1The previous model in Figure 1 is M4C Cap-
tioner (Sidorov et al., 2020) with weights from the M4C repos-
itory.
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to incorporate text that appears in images (Zhu
et al., 2021; Gao et al., 2020b; Mafla et al., 2021;
Hu et al., 2020; Kant et al., 2020; Wang et al., 2021;
Han et al., 2020; Liu et al., 2020; Yang et al., 2021).
In many cases, this significantly enhances the use-
fulness of the generated text (Hu et al., 2020). Such
frameworks include OCR as an additional input
modality. This results in three modalities for VQA
(image, question, and OCR) and two modalities for
image captioning (image and OCR).

While using OCR allows enhancement of some
generated text, specific information that exists in
human-level description may also come from ad-
ditional sources. Without proper nouns or other
specific vocabulary, the generated text is at the risk
of being awkwardly general, demonstrating a lack
of shared knowledge that is expected in society.
For example in Figure 1, arguably the most rele-
vant content in the image is the presence of a well-
known political figure. Consequently, a reasonable
description of the image should include the name
of the well-known figure, which is ‘Bernie Sanders’
is in this case, instead of generic “a man”. This
is notably absent in the caption from the previous
model.

In this work, we propose the special token ap-
proach, a novel method for integrating tokens from
several upstream vision classifiers into image cap-
tions.2 We generalize the OCR input modality to
accept additional helpful outputs from any number
of auxiliary classifiers (Section 3.2). We use a rich
feature representation for upstream tokens that al-
lows the captioning model to learn to differentiate
tokens from different classifiers (Section 3.3).

This method potentially allows a model to lever-
age easily available sophisticated libraries to recog-
nize faces, scene-text, cityscapes, animal species,
etc. We refer to all tokens from upstream sources,
including OCR tokens, as special tokens. In this
work, we focus on using person names and scene-
text as example special tokens.

To facilitate using person names in image cap-
tions, we create a novel image-caption dataset,
Politicians and Athletes in Captions (PAC), which
includes person names in captions in addition to rel-
evant scene-text found on signs, labels, or other en-
tities in the image. PAC has 1,572 images and three
captions per image. A discussion on the dataset is

2While we focus on image captioning, our method could
work for integrating non-generic terms into other vision-
language tasks such as VQA or visual dialogue which we
leave for future work.

provided in Section 4.
By training on PAC in addition to other image-

caption datasets, we create a model that can nat-
urally integrate person names into captions. The
same model still performs well on previous image
captioning benchmarks. Evaluation of the methods
is available in Section 5.

In summary, this paper makes three primary con-
tributions. The special tokens framework is pro-
posed as a method to incorporate tokens from sev-
eral external sources into generated text. The PAC
image-captioning dataset is collected and baseline
results are presented. Lastly, this paper demon-
strates the first model in the literature that inte-
grates both facial recognition and OCR into image
captioning.

2 Related Work

The ubiquitous encoder-decoder architecture di-
vides the image captioning task into two parts. The
encoder acts as feature extractor and the decoder
handles word generation. Early deep learning mod-
els for image captioning used CNN encoders for
feature extraction from the input image as a whole
(Kiros et al., 2014; Karpathy et al., 2014; Vinyals
et al., 2015).

Current models rely on attention (Bahdanau
et al., 2015) to generate high-quality image cap-
tions. The seminal image captioning model, Show,
Attend and Tell (Xu et al., 2015), applied atten-
tion mechanism on input visual features and the
previously generated word (during inference) at
each time step for textual caption word generation.
The majority of current state-of-the-art methods for
image captioning and visual question answering
benefit from the bottom-up and top-down attention
mechanism (Anderson et al., 2018). Bottom-up
attention, a hard attention mechanism, leverages an
object detector, Faster R-CNN (Ren et al., 2015)
to detect the most important regions in the image.
Top-down attention, a soft attention mechanism,
performs modulation over the set of input visual
features from object detection regions. Following
the adoption of bottom-up attention for OCR fea-
tures (Hu et al., 2020), we use the same mechanism
to learn to include features obtained from facial
recognition. Rather than Faster R-CNN, we use
RFBNet (Liu et al., 2018) for facial region detec-
tion. For facial feature extraction, we use ArcFace
(Deng et al., 2019) pre-trained on MegaFace dataset
(Kemelmacher-Shlizerman et al., 2016).
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Figure 2: The architecture of the M4C + Special Tokens model. All tokens from upstream classifiers are received
by the Special Token modality. The captioning model scores each vocab word and special token at each time
step and outputs the highest scoring word. Our method is auto-regressive such that the caption is terminated once
an <end> token in generated. Architecture is based on Figure 2 in Hu et al. and updated according to changes
outlined in Section 3.2.

Several techniques have been proposed to handle
OCR tokens in vision-language tasks. The M4C
algorithm uses an indiscriminate attention layer
followed by a dynamic pointer network (Hu et al.,
2020). The SS-Baseline model uses individual at-
tention blocks for each input modality followed by
a single fusion encoding layer (Zhu et al., 2021).
Several approaches have been proposed to better
handle spatial information about OCR tokens (Gao
et al., 2020b,a; Wang et al., 2021; Kant et al., 2020;
Han et al., 2020; Yang et al., 2021). The MMR
method utilizes spacial information about objects
and scene-text via a graph structure (Mafla et al.,
2021). TextOCR was introduced as an end-to-end
method for identifying OCR tokens (Singh et al.,
2021). TAP was introduced as a method to inte-
grate OCR tokens into pre-training.

More similar to our work, Zhao et al. use an
upstream classifier as input to a captioning model.
They introduce a multi-gated decoder for handling
input from external classifiers (Zhao et al., 2019).
In contrast, we use general OCR and facial recogni-
tion classifiers rather than a web entity recognizer
as an upstream classifier. Our approach is differ-
ent from Zhao et al. in that we use bottom-up
and top-down attention rather than a standalone
CNN for object detection, use a common embed-
ding space rather than a gated decoder for handling
multi-modal inputs, and use rich representations
(see Section 3.3) rather than only textual informa-
tion for handling tokens from upstream classifiers.

MS-COCO (Lin et al., 2014) is a large dataset
for common objects in context used for image cap-
tioning. Similar to MS-COCO, Flickr30k (Young

et al., 2014) is another common dataset used for
image captioning. Google’s conceptual captions
(Sharma et al., 2018) is a vast dataset used for pre-
training multitasking vision-language models and
fine-tuning them on other vision-language down
stream tasks (Lu et al., 2019, 2020). The captions
in these datasets are generic.

To facilitate use of optical character recognition
in the Vision-Language domain, several datasets
have been released, including ST-VQA (Biten et al.,
2019) for scene text visual question answering and
TextCaps (Sidorov et al., 2020) for image caption-
ing with reading comprehension. Along with the
introduction of TextCaps dataset, the M4C model
(Hu et al., 2020) originally used for visual question
answering was adopted for image captioning. We
modify the M4C model so that it includes bottom-
up facial recognition features.

3 Special Tokens

We use the term special token as a placeholder
for extracted relevant information that is identified
in an image by upstream sources. Tokens from
upstream classifiers are special in that they often
are named entities, offering unique descriptors for
generic objects. For example in Figure 1, ‘Bernie
Sanders’ is not a new object, but rather a special
descriptor for an already recognized generic object
(i.e. man). Likewise, ‘this week’ is not a generic
temporal entity. Instead, it can be used to give
more detail about a generic object: a screen that
says ‘this week’, referring to a TV show or event
called ‘this week’.

We call our corresponding method for integrat-
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Figure 3: The representation of a special token where N is the number of tokens and d is the dimensionality. We
adopt the representation from Hu et al. and add the projected one-hot encoding classifier type feature (highlighted
in green box). We are the first to use this representation for facial recognition tokens in addition to OCR tokens.
See Equation 2 for more detail.

ing special tokens into image captions the special
token approach. In our approach, there are two
modalities that hold information about an image.
The first modality corresponds to generic visual
features (yellow box in Figure 2) which are respon-
sible for informing the model of general context
(all vision-language models have a visual modal-
ity). The second modality, special tokens (red
box in Figure 2), is responsible for informing the
model of specific terms that are relevant to the im-
age. The embeddings for the first modality are
calculated from visual features from an object de-
tector. The embeddings from the special token
modality are calculated from visual feature vectors
(Faster-RCNN and a bounding box), textual fea-
tures (fasttext (Bojanowski et al., 2017) and pyra-
midal histogram of characters (PHOC) (Almazán
et al., 2014)), and a source feature (one-hot encod-
ing) as shown in Figure 3. Additionally, special
tokens are made available for direct copy into gen-
erated text which allows for zero-shot inclusion
of words not seen prior. This structure has been
successful on OCR vision-language datasets.

The key hypothesis of this paper is that a model
can learn to differentiate tokens from separate up-
stream classifiers. Subsequently, the model can
learn to use each token type appropriately in gen-
erated text. For example, a caption for the image
in Figure 1 should neither say “A screen that says
Bernie Sanders” nor should it say “ ‘this week’
standing in front of a screen.”

As mentioned in Section 1, this work demon-
strates using two types of special tokens, OCR
tokens and facial recognition tokens. We focus
our experimentation on learning to integrate facial
recognition tokens by training on the PAC dataset.
However, any set of words that can be identified
by some classification or recognition module can
conceivably be a set of special tokens. We leave
integration of more upstream vision classifiers for

future work.

3.1 Trade-Offs

The goal of the special token approach is to in-
tegrate vocabulary tokens from external sources
into generated text. The special tokens approach is
based on several following observations.

1) Different machine learning architectures have
been designed to perform well on different tasks.
For example, tasks such as OCR detection and fa-
cial recognition, benefit from specialized methods
that differ from traditional object detection. OCR
recognizes and combines characters rather than di-
rectly classifying entire words or sentences. In
facial recognition, a regression model is trained to
output face embeddings which are subsequently
compared to embeddings of known individuals.
Even in standard classification tasks, significant
research is put into fine-tuning architectures to
get state-of-the-art results on dataset benchmarks.
Such work can be leveraged by a captioning model
by using these classifiers as upstream sources.

2) The space of all possible vocabulary tokens,
when named entities or proper nouns are included,
is intractably large. By appending special tokens
to the vocabulary at inference time, the captioning
model’s vocabulary is prevented from increasing
vastly.

3) Using non-generic terms does not always in-
crease the syntactic or semantic complexity of the
caption. For example in Figure 1, the name ‘Bernie
Sanders’ is a substitution for what can also be a
generic term such as ‘man’. If a captioning model
can generate a caption such as ‘A person standing
in front of a screen’, the same contextual under-
standing should be able to generate the caption
‘Bernie Sanders standing in front of a screen.’ The
model just needs to know to use the named en-
tity ‘Bernie Sanders’. The special token approach
takes advantage of this by allowing the model to
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learn representations for types of special tokens.
In Section 5.3 we show that our model learns to
represent different token types in different sections
of the embedding space. The model can then im-
plicitly associate sections of the embedding space
with related generic objects.

4) The desired vocabulary may not be con-
stant. For example, after an election cycle, new
politicians become commonplace and a captioning
model may need to adapt accordingly. The spe-
cial token approach is highly practical in this sense.
The captioning model does not need re-training,
only the upstream facial recognition model needs
to be updated.

3.2 Adopting M4C
We utilize the multimodal multi-copy mesh copy
(M4C) model introduced by Hu et al. in order to
copy special tokens into generated text (Hu et al.,
2020). We are the first to utilize this method for
tokens other than OCR. Here, we formalize the
differences between our captioning model and the
M4C captioning model. Figure 2 provides a corre-
sponding architecture diagram.

The input modalities into the M4C captioning
model are object features {xobj1 , ..., xobjM } forM ob-
jects and OCR tokens {xocr1 , ..., xocrN } for N OCR
tokens. We generalize OCR tokens to special to-
kens st such that the inputs are {xobj1 , ..., xobjM } and
{xst1 , ..., xstN} for N tokens in total. M4C captioner
predicts fixed vocab scores {yvoc1,t , ..., y

voc
K,t} where

K is a fixed vocabulary size and t is the decoding
step, and OCR vocabulary scores {yocr1,t , ..., y

ocr
N,t}

where N is the number of OCR tokens. The se-
lected word at each time step wt = argmax(yallt )
where yallt = {yvoct ∪ yocrt }. We substitute ystt =
{yst1,t, ..., ystN,t}, where N is the number of special
tokens, for yocrt such that yallt = {yvoct ∪ ystt }. Spe-
cial token vocabulary scores yst1...N,t are calculated
by combining linear transformations of the decoded
output zdect and the decoded special token represen-
tations zstn as shown below:

ystn,t = (W stzstn + bst)T (W deczdect + bdec). (1)

3.3 Rich Representations
Several types of information may be important for
determining if and how a special token should be
used in generated text. This may include informa-
tion about where a special token is located in an
image, what the token looks like, or how the token
was generated. For example, a known person in the

center of an image is more likely to be relevant than
a small segment of text found on a sign in the back-
ground of an image. Several features are used to
richly encode these features of each special token.
Hu et al. use visual, spatial, and textual features to
calculate OCR tokens embeddings (Hu et al., 2020).
We adopt this representation for all special tokens
and add an additional source feature to differentiate
the upstream classifiers used for identifying special
tokens. A formal description of the special token
embedding calculation is described below and a
visual representation is provided in Figure 3.

Special tokens are represented by a feature vec-
tor xsti , where i = 1...N . xsti incorporates visual
features, textual features, and a source feature. The
visual features include a bounding box xbi and a fea-
ture vector from an object detector xfri . Following
previous work, we use a pretrained Faster-RCNN
with a ResNet backbone to generate xfri from the
RoI created by the bounding box of the token. The
textual features are a fasttext (Bojanowski et al.,
2017) encoding xfti and a pyramidal histogram of
characters (PHOC) (Almazán et al., 2014) encod-
ing xpi . The source feature xsi is a one-hot encoding
between upstream classifiers used for generating
special tokens. xfri , xfti , and xpi are concatenated
together and projected onto a tuned encoding di-
mensionality d by a learned linear transformation
W1. Additionally, xbi and xsi are projected onto
d by learned linear transformations W2 and W3.
These transformations are trained during the same
time as the captioning model. Layer normalization
LN is applied to the three d dimensional vectors.
xspeci is a result of element wise addition of these
three vectors after layer normalization as shown
below:

xspeci = LN(W1([x
fr
i ;xfti ;xpi ]))

+LN(W2x
b
i) + LN(W3x

s
i ).

(2)

3.4 Loss
We do training with decoding binary cross entropy
loss Ldbce such that the model is supervised at each
decoding step t with binary cross entropy Lbce.

Ldbce =
Tend∑

t=1

Lbce(t)
Tend

(3)

where Tend is the number of decoding steps before
<end> is predicted from the vocabulary. A max-
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Figure 4: Samples from the Politicians and Athletes in Captions dataset

imum number of decoding steps Tmax is set such
that Tend <= Tmax.

At each decoding step, sigmoid activation and
binary cross entropy are applied uniformly across
the fixed model vocabulary of sizeK and the vector
of special tokens of size N such that

Lbce = gn ∗ log(σ(yn))+ (1− gn) log(1−σ(yn))
(4)

where n = 1...K+N , yn is predicted value, and
gn is expected value.

4 PAC Dataset

With this paper we create the Politicians and Ath-
letes in Captions (PAC) dataset. PAC is image-
caption dataset consisting of images of well-known
individuals in context. PAC includes 1,572 images
and three captions per image. Samples from PAC
can be seen in Figure 4 and additional samples can
be found in the supplementary materials.

We create PAC with the goal of studying the
use of non-generic vocabulary in image captioning.
The non-generic terms emphasized in PAC are per-
son names and OCR tokens. The PAC dataset offers
several technical challenges: 1) correctly identify-
ing people in a variety of settings, 2) reasoning
about the effect of the presence of the individual.
If a known person is in a scene, the description of
the scene is often based on the known person, and
3) natural integration of a name into a generated
caption.

4.1 Collection
Images were collected from the Creative Commons
image database which are made available under the
CC licence. To find individuals for the dataset
we searched for ‘famous athletes’ and ‘famous
politicians’ and selected 62 individuals. The se-
lected well-known individuals are of various races

and sexes and are from many parts of the world.
For image collection, we searched for each of the
62 well-known individuals and selected images by
manually filtering out duplicates and images with-
out visible faces.

Annotators were instructed to provide a caption
of the image including the name of the individ-
ual which was searched for when collecting the
image. Other famous individuals who happened
to appear in the image may also be mentioned
in the captions. Additionally, annotators were in-
structed to use scene-text if it improved the quality
of the caption. These annotation instructions dif-
fer from those for caption collection of previous
datasets. For example, in the collection of MS-
COCO captions, annotators were instructed to not
use proper nouns (Chen et al., 2015) and annota-
tors for TextCaps were instructed to always use
text in the scene (Sidorov et al., 2020). 658 images
were captioned by college students and 914 were
captioned by Amazon Mechanical Turk. Captions
were scanned for grammar and spelling errors.

4.2 Analysis

PAC includes images 1,572 images with 3 captions
each. All images include at least one famous politi-
cian or athlete. Overlap exists in several images. 62
different individuals are in the dataset for an aver-
age of 25.2 images per person. 23 of the individuals
are politicians while 39 are athletes.

Each caption includes the name of at least one
person name in the image. In 66.1% of images,
there is scene text that is recognized by Google
Cloud OCR (not all photos have scene text). For
35.9% of images, at least one of the captions uses
scene text (as recognized by Google Cloud OCR).
In comparison, 96.9% of TextCaps images have
scene text and 81.3% of captions use scene text.
In the PAC dataset, 96.3% of the images contain
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Figure 5: Captions generated for PAC test set images. Red words indicate tokens from the face recognition module
and blue words indicate tokens from the OCR module. Corresponding metrics found in Table 1.

a face region of interest (RoI) that is detected by
the RFB Net (Liu et al., 2018), the face detector we
use throughout this work (Sidorov et al., 2020).

4.3 Limitations

We identify two primary limitations of the PAC
dataset. The dataset with 1,572 images is small
relative to similar datasets. Due to this PAC cannot
represent the breadth of scenes that is found in
other datasets. It is recommended to use PAC in
conjunction with other dataset in order to mitigate
this constraint.

The second primary limitation is narrow scene
representation. The dataset is of famous athletes
and politicians and therefore overrepresents scenes
in which athletes and politicians are photographed.
The captions also reflect this bias. For example,
the word ‘suit’ is found in 1.82% of PAC captions
while only 0.14% of TextCaps captions and 0.55%
in MS-COCO. The word ‘microphone’ is found
in 1.25% of PAC captions, 0.11% in TextCaps,
and 0.05% in MS-COCO. Training on PAC com-
bined with other datasets can mitigate this limita-
tion while still allowing the model to learn to inte-
grate person names as demonstrated in Section 5.

5 Experiments

In our experiments, we test the special token ap-
proach by training on PAC and TextCaps. We
present baseline results on PAC. Additionally, we
present a visualization for the special token embed-
ding space.

5.1 Implementation Details

For detecting regions in the image with faces, we
use RFB Net (Liu et al., 2018). For facial recog-
nition, we use ArcFace (Deng et al., 2019). Using

ArcFace, we extract facial embeddings for all in-
dividuals in the dataset. At inference, we use l2
distance to compare new embeddings to the pre-
calculated embeddings. For PAC, ground truth face
tokens are known and used during training. The
facial recognition model is not used for TextCaps
images at training or inference because TextCaps
annotators were not instructed to use person names
in captions.

We use Google Cloud OCR for extracting OCR
tokens. We set a limit at N = 50 for the number of
special tokens. Face tokens take precedence over
OCR tokens if over 50 special tokens are identified.
Following previous work, we use a pretrained faster
RCNN (Anderson et al., 2018) with a ResNet-101
backbone to propose RoIs and extract features for
each region. A limit is set at M = 100 object
features. For caption generation, Tmax = 30 is the
maximum number of decoding steps.

All experiments are performed using either PAC
or TextCaps. The captions of these datasets fo-
cus on using special tokens (names in PAC, OCR
in TextCaps) and are therefore suitable for test-
ing our approach. PAC is broken up into the
same 80-20 train-test split for all experiments. We
use the specified training and validation sets for
TextCaps (Sidorov et al., 2020).

For all training, we use a batch size of 128. We
use Adam optimizer with a learning rate 1e−4 and
learning rate decay of .1. We use embedding in-
put dimensionality of d = 768 for inputs to the
encoder.

5.2 Baseline Results
We first compare our approach (M4C+ST) against
the base M4C model. Both models are pretrained
on TextCaps, and then trained to convergence on
PAC. By adding special tokens, we see between

226



Table 1: Baseline scores on the PAC dataset. Our model (M4C+ST) performs significantly better than a baseline
model that does not accept special tokens. For training data, an→ suggests successive training. A ratio in square
brackets represents a sampling ratio for training on both datasets concurrently. We follow previous work and use
five common metrics for comparing results.

PAC Test Set Metrics

# Model Training B-4 M R C S

1 M4C TextCaps→PAC 2.1 6.4 14.3 24.6 4.3
2 M4C+ST TextCaps→PAC 9.1 14.8 30.4 102.6 18.7
3 M4C+ST PAC,TextCaps[1:8] 8.4 14.5 30.3 103.7 17.5
4 M4C+ST TextCaps→PAC,TextCaps[1:1] 5.1 12.8 25.7 73.0 14.8

ST: Special Tokens; B-4: BLEU-4; M: METEOR; R: ROUGUE; C: CIDEr, S: SPICE

112-334% percent improvements across metrics on
the PAC test set (Table 1 Lines 1,2). The vanilla
M4C model only has a slight chance of using the
correct name which results in poor performance on
PAC.

Figure 5 shows corresponding qualitative results
for the these models. We observe that our model
uses person names and OCR tokens appropriately
throughout the captions. The right two images
demonstrate M4C+ST appropriately switching be-
tween model vocabulary, face tokens, and OCR
tokens during caption generation. In comparison,
the M4C model refers to people generically (i.e
‘man’, ‘woman’,‘player’) resulting in less informa-
tive captions. In the second image, vanilla M4C
incorrectly uses ‘Jamie Photography’ (an OCR to-
ken found in the bottom left of image) as the name
of a person. More qualitative samples from these
models can found in the supplementary materials.

In Table 1 Lines 3 and 4, we report scores af-
ter training on different combinations of PAC and
TextCaps. We find that the training procedures
from Table 1 Lines 2 and 3 are the most effective.
Additionally, we find that training on PAC does not
degrade performance on TextCaps. Results on the
TextCaps dataset can be found in the supplementary
materials.

Lastly, we test our model’s ability for zero-shot
use of tokens from unseen individuals. New im-
ages with people not in the PAC dataset are run
through our model. Qualitatively, we observe our
model is able to integrate unseen individuals into
image captions. These samples can be found in the
supplementary materials.

5.3 Special Token Embedding Visualization
To visualize the embeddings of special tokens, we
collect all embeddings during a test set run and
plot them with a t-distributed stochastic neighbor
embedding (t-SNE). The t-SNE plot shown in Fig-
ure 6 allows us to visualize the 768-dimensional
special token embeddings in 2-dimensions. As pre-
viously mentioned, the embeddings are calculated
with Equation 2 in Section 3.3. Both face tokens
and OCR tokens go through same learned linear
transformation (W1..3 from Equation 2), yet the
two different token types are in distinct clusters in
the embedding space. This distinction is not known
to the model before training, therefore during train-
ing the model effectively optimizes W1..3 such that
embeddings from each token type are meaningfully
different for the multimodal transformer. This of-
fers explanation on our observation that our model
can use each token type appropriately in generated
captions.

Figure 6: Projection of 768-dimensional special token
embeddings into 2d space. Embeddings collected from
314 test images including 703 face tokens and 3,151
OCR tokens.
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6 Conclusion

Text generated by vision-language models often
lacks specific terms that would be present in hu-
man level descriptions or answers. We introduce
the special token approach as an adaptable way
to introduce non-generic information to a vision-
language model. Our method utilizes upstream
classifiers to identify information outside of generic
context. The Politicians and Athletes in Captions
dataset consists of image-caption pairs with well-
known individuals. By using the special token
approach and the PAC dataset, we train a model to
integrate person names into image captions. Possi-
ble improvements to the proposed method include
inclusion of more external sources or integration
of open-domain knowledge with special tokens.
Further progression in this direction could result in
captions that are truly interesting, vivid, and useful.
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Abstract

Caption generation is an artificial intelligence
problem that straddles the line between com-
puter vision and natural language processing.
Although significant works have been reported
in image captioning, the contribution is limited
to English and few major languages with suffi-
cient resources. But, no work on image caption-
ing has been reported in a resource-constrained
language like Assamese. With this inspiration,
we propose an encoder-decoder based frame-
work for image caption generation in the As-
samese news domain. The VGG-16 pre-trained
model at the encoder side and LSTM with an
attention mechanism are employed at the de-
coder side to generate the Assamese caption.
We train the proposed model on the dataset
built in-house consisting of 10,000 images with
a single caption for each image. We explain
the experimental results in terms of quantitative
and qualitative outcomes that support the use-
fulness of the caption generation model. The
proposed model shows a BLEU score of 12.1
outperforming the baseline model.

1 Introduction

Image caption generation is a new and exciting
topic in artificial intelligence that has sparked much
interest and has been studied extensively in recent
years. To interpret the visual contents, computer vi-
sion and natural language processing are necessary.
As a result, both semantic and linguistic informa-
tion about the image is required. Expressing the
semantic content like human and grammatically
correct is a challenging task. Caption generation
has a wide range of potential real-world applica-
tions. It is helpful for visually impaired people to
understand the content of the image. It can also be
employed in self-driving automobiles and image
search engines. This puts a halt to a slew of impor-
tant real-world applications, prompting researchers
to develop a better model for generating captions

in the same way that humans do. Journalists can
use news image captioning to describe the contents
of the news as well as multimedia analytics.

Image captioning requires recognizing the impor-
tant objects, attributes, and relationships in an im-
age to generate syntactic and semantically correct
description. Earlier caption generation works are
based on template and information retrieval. The
template-based approach generates the captions by
extracting the actions, objects and other attributes
in an image and filling them into a pre-defined
template. In comparison, the information retrieval-
based approach needs a large image database that
extracts the visually similar image and generates
an image caption by using the caption of the re-
trieved image. Nowadays, most models are based
on deep learning architecture (Bai and An, 2018).
The study found that the caption generated using
the deep learning approach is more expressive and
fluent than the traditional caption generation ap-
proaches.

Several significant image caption generation
works are proposed in English using deep learning
approach. According to our study, image caption
generation in Assamese language is still at infancy
stage. The Assamese language belongs to the Indo-
European language family and it is spoken mainly
in the state of Assam in India by approximately 15
million people. In this paper, we propose a cap-
tion generation model based on encoder-decoder
architecture on news images. At the encoder side, a
VGG-16 pre-trained model is used to represent the
visual features of an image and to generate the As-
samese caption, an LSTM layer with an attention
mechanism is employed at the decoder side.

A large set of images and good-quality cap-
tions are required for a caption generation system.
Existing English datasets are Flickr8K (Hodosh
et al., 2013), Flickr30k (Plummer et al., 2015), MS-
COCO (Lin et al., 2014), Lifelog (Dang-Nguyen
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et al., 2017), Visual Genome (Krishna et al., 2017),
Multi30k (Elliott et al., 2016) etc. However, there
is currently no comparable annotated dataset ac-
cessible in Assamese. Dataset scarcity is a ma-
jor challenge, particularly for a morphologically
rich (Saharia et al., 2012) language like Assamese.
Therefore, we present an annotated dataset for cap-
tion generation in the news domain and forward
it for future research. First, we collect the news
articles consisting of both images and text from the
local Assamese newspapers. We pre-process the
data as an initial step after the collection. After that,
each news image is manually annotated with one
description. Furthermore, we evaluate the model
using both quantitative and qualitative parameters.
The proposed system is one of the earliest reported
Assamese news image caption generation model
and the experiment results of the developed model
are promising. The objectives of this paper are:

1. The goal at hand is to build a news image
caption generation model for the Assamese
language in a low-resource scenario. An at-
tention mechanism-based model is compared
to the baseline model. The model is evalu-
ated against predefined metrics to describe the
news image.

2. We trained the proposed model using an in-
house built dataset containing 10,000 images
with single caption for each image.

2 Related Work

Fang et al. (2015) suggested a caption generation
system on the MS-COCO dataset, which received
a BLEU-4 score of 29.1. A visual recurrent rep-
resentation model was suggested by Chen and
Lawrence Zitnick (2015) for image caption gen-
eration on the MS-COCO, Flickr 8K and 30K and
PASCAL 1K datasets. To describe and visualize
the image caption, a bi-directional mapping be-
tween images and sentence-based descriptions was
carried out. Karpathy and Fei-Fei (2015) also de-
scribed the image region using a multimodal re-
current neural network on Flickr8K, Flickr30K
and MS-COCO datasets. A Chinese image cap-
tion generation model was introduced by Peng and
Li (2016) on Flickr30k and MS COCO dataset.
They demonstrated that a character-level strategy
is more effective than a word-level one. Soh (2016)
reported a top-down caption generation strategy
employing CNN-LSTM architecture on the MS

COCO dataset with a 3.3 BLEU score. Miyazaki
and Shimizu (2016) proposed a deep recurrent
network based image caption generation model
on the cross-lingual domain. The YJ Captions
26k Dataset, a Japanese version of the MS-COCO
dataset, was built for this purpose. Amritkar and
Jabade (2018) reported an image caption genera-
tion with CNN and RNN architecture on Flickr8k
and MS COCO datasets.

An attention-based remote sensing image cap-
tioning system was reported by Lu et al. (2017) on
their own built remote sensing caption generation
dataset. They employed both hard and soft atten-
tion mechanisms to train the model. They found
that the hard attention mechanism performed bet-
ter than the soft attention mechanism. Dhir et al.
(2019) used attention-based architecture to report
a Hindi caption generation approach. They man-
ually translated the MS COCO dataset into Hindi
for the dataset. You et al. (2016) developed a se-
mantic image attention model to concentrate on the
linguistically significant image object.

Batra et al. (2018) proposed an encoder-decoder-
based news image caption generating architecture
on the BBC news data. The model takes an image
from the news related to news documents as input
and outputs an appropriate image caption.

Rahman et al. (2019) introduced Chittron, a
Bangla image captioning model. A total of 16,000
images was collected and has been manually an-
notated by two native Bangla speakers. Next,
a VGG-16 image embedding model integrated
with a stack LSTM layer is used to train the
model. The proposed model has gained a BLEU
score of 2.5. Again Kamal et al. (2020) used
deep learning techniques to create an automated
Bangla caption generation system called TextMage
on the BanglaLekhaImageCaptions dataset. The
TextMage model could understand the visual
scenes that belong to the Bangladeshi geograph-
ical context. The proposed model is trained on the
BanglaLekhaImageCaptions dataset consisting of
9,154 images along with two descriptions for each
image. The use of Visual Genome image caption-
ing in a multimodal machine translation challenge
was reported by Meetei et al. (2019b). The genera-
tion and evaluation of Hindi image caption on the
Visual Genome dataset were carried out by Singh
et al. (2021a). Additionally, attention based im-
age and video caption generation framework were
carried out by Singh et al. (2021c), Singh et al.
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Table 1: Statistics of the dataset

Data set Image Caption
Train 8000 8000
Development 1000 1000
Testing 1000 1000
Total 10000 10000

(2021b). Meetei et al. (2019a) reported a work on
identifying the Manipuri and Mizo texts in an im-
age that is a crucial challenge in image captioning.

3 An Assamese Multimodal Dataset

Several benchmark datasets for caption generation
are Flickr8K, Flickr30K and MSCOCO, available
in English, but none are accessible for resource-
constrained languages, including Assamese. So,
we built an Assamese multimodal dataset from the
news domain. We carried out the following dataset
preparation steps:

1. Collection of data

2. Image pre-processing

3. Image annotation

3.1 Data collection
The preparation of a standard dataset is one of the
most challenging parts of a deep neural network
model. A newspaper has both images and text,
making it a valuable source of information. To
address the data set availability problem, we col-
lected 10,000 Assamese news images from three
Assamese local e-newspapers, namely Ganaad-
hikar1, Niyomia Barta2 and Asomia Pratidin3. The
data is collected during June 2020 and April 2021.
After pre-processing and annotation, the raw infor-
mation is used to train our model. Each news image
is manually annotated with an insightful narrative
relevant to the news event by two native Assamese
speakers. A statistics of Assamese news caption
dataset is presented in Table 1.

3.2 Image pre-processing
Based on the news event, the original image is man-
ually cropped to highlight the essential portion of
the image to extract the relevant part of the im-
age. The specific object features of images must

1http://ganaadhikar.com
2https://niyomiyabarta.org/home/
3https://www.asomiyapratidin.in/

be combined in the correct order to correlate with
the caption. A sample data is shown in Figure 1
where the news is about the baby; therefore, we
crop the image wherein the Figure 1B focus on the
baby only.

3.3 Image annotation

Describing the image content is one of the impor-
tant tasks of a caption generation model. Each
image has been manually annotated with one im-
age caption from the news content by two native
Assamese speakers. At times, the content and the
image cannot convey the same meaning. As a re-
sult, the annotators have labeled each image with
a more appropriate news caption to the event as
part of the post-editing process. Some news arti-
cles have only the logo or file images which are
not relevant for the image. These irrelevant images
are filtered out. Then, we put a correct news de-
scription by performing a manual post-editing of
the captions for a better captioning model. Figure
2 shows one sample of the Assamese news caption
dataset.

4 System Architecture

The first stage of an image caption generation
model is image feature extraction, and the second
part is image description generation. A convolu-
tional neural network is used to extract the image
features at the encoder side and LSTM layers are
used to train the language model for image descrip-
tion at the decoder side. This paper describes the
development of an encoder-decoder based image
caption generation framework using CNN-LSTM
architecture with attention mechanism in the As-
samese language news domain. The proposed
model consists of three phases:

1. Text pre-processing

2. Image feature extraction

3. Caption generation

4.1 Text pre-processing

Before feeding the text input to the neural network,
it is important to pre-process the text data and trans-
form it into a numerical form. For input text rep-
resentation, a word embedding layer is used. It
provides a dense representation of the input text
and then passes it to the next LSTM layer.
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(A one-year-old baby earns 75,000)

(A) (B)

Figure 1: Image cropping

 

আন্তঃৰাষ্ট্ৰীয় সৌন্দৰ্য্য  প্ৰতিযোগিতাত ডু বাইৰ ৰাণী
খিতাপেৰে জিলিকিল অসম সন্তান সাগৰিকা

(In International Beauty Contest, Assam girl Sagarika
wins the glory of Queen of Dubai.)

CaptionImage

কাজিৰঙাত পহিলা নৱেম্বৰৰ পৰা   পৰ্য টকৰ দৰ্শ নৰ
সুবিধাৰ্থে  এলিফেন্ট ছাফাৰী মুকলি কৰিব

(The Elephant Safari will be opened in Kaziranga from
November 1st for the convenience of tourists)

(A)

(B)

Figure 2: An example of Assamese caption dataset
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Figure 3: A graphical representation of proposed architecture

4.2 Image feature extraction

A convolutional neural network (CNN) is deployed
to extract the image features. It encodes an im-
age into an intermediate vector representation. To
extract a feature set vectors, CNN is employed as
an encoder. In this framework, we use VGG-16

(Simonyan and Zisserman, 2014) pre-trained CNN
model as an encoder. VGG-16 model is trained
on the ImageNet 4 dataset. It encodes the input
image into a fixed-length vector for further process-
ing to generate the image description. For image

4https://image-net.org/
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feature extraction, the input image is resized into
224 × 224 dimensions. We discard the output of
the last layer and stored the output of 6th layer. The
dimension of each feature vector is 7× 7 × 512.

4.3 Caption generation
To solve the vanishing gradient problem, the long
short-term memory (Hochreiter and Schmidhuber,
1997) is employed as a decoder that can learn long-
term dependencies. It is used for language mod-
eling trained on text data to predict the next word.
LSTM is trained so that it can produce the caption
by generating one word for every time step con-
ditioned on a context vector, the previous hidden
state and the previously generated words. First, the
captions are tokenized to create a lexicon of unique
words. The size of our vocabulary is 8558. The
model understands the start and end of each caption
since each sentence is concatenated with the “start”
and “end” tags.

4.4 Attention Mechanism
The fixed-length context vector in a sequence to
sequence (seq2seq) model fails to remember long
sentences. As a result, an attention mechanism (Xu
et al., 2015) is utilized to solve this problem. The
attention mechanism works on the relevant parts
of the input image and ignores the rest. Rather
than compressing an entire image into a static rep-
resentation, attention allows the salient features to
dynamically come to the forefront as needed. In
simple terms, the context vector is a dynamic rep-
resentation of the relevant part of the image input
at time t. The attention mechanism considers the
relevant part of the image when the LSTM gen-
erates a new word, so the decoder only uses that
part of the image. An attention mechanism is clas-
sified into local and global attention mechanisms.
Global attention is defined as paying attention to all
source parts of an image (Luong et al., 2015). Lo-
cal attention focuses to only a few source positions
(Bahdanau et al., 2014).

In this current work, we employ a global atten-
tion mechanism that is placed in all source posi-
tions. In between CNN and LSTM, we use the
attention mechanism to help the decoder to focus
the important parts of the image. The global atten-
tion mechanism considers all the hidden states of
the encoder while deriving the context vector ct.
In order to compute the context vector ct, we first
compute the variable-length alignment vector at.
The variable-length alignment vector at whose size

equals the number of time steps on the source side
is derived by comparing the current target hidden
state. The encoder hidden states and their respec-
tive alignment scores are multiplied to calcuate the
context vector. The formula for calculating the con-
text vector, alignment vector and score are listed in
equations 1, 2, 3 and 4, respectively.

ct = h̄s ∗ at(s) (1)

In equation 1, global context vector ct is computed
as the weighted average of the encoder hidden
states h̄s and alignment vector at.

at(s) = align(ht, h̄s) (2)

=
exp(score(ht, h̄s))∑
s exp(score(ht, h̄s))

(3)

From the equations 2 and 3, the variable-length
alignment vector at is derived by computing the
similarity between current target hidden state ht
with each source hidden state h̄s.

score(ht, h̄s) =





hT
t h̄s dot

hT
t wah̄s concatenate

vT
a tanh(wa(ht, h̄s)) general

(4)

Again in equation 4, score is referred as a content-
based function for which we consider three differ-
ent alternatives like dot, concatenate and general,
respectively.

4.5 Beam Search

Beam search is an optimization search strategy for
reducing memory requirements. The search tree is
built using a breadth-first search approach. We use
the beam search method to evaluate the captions.
For generating sentences of size t + 1, the beam
search approach inspects the top k sentences and
holds the highest probability one until it reaches the
“end” tag or the maximum length of the caption.

Table 2: Adequacy and fluency rating scale

Rating Adequacy Fluency
5 All Flawless
4 Most Good
3 Much Non-native
2 Little Disfluent
1 None Incomprehensive
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Reference Caption Generated Caption  Adequacy Fluency

কৰোনা ভাইৰাছৰ সংক্ৰমণ বাবে দেশজুৰি 
লকডাউন ঘোষণা কৰা হৈছে

(A nationwide lockdown has been
announced for the corona virus)

ভাইৰাছৰ সংক্ৰমণ বাবে লকডাউন    ঘোষণা কৰা
হৈছে

(A lockdown has been announced for the  virus)

Sl No.

2
4 4

অসমবাসীলৈ ৰঙালী বিহু ৰ শুভকামনা জনালে
আমেৰিকাৰ ৰাষ্ট্ৰপতি জ’ বাইডেনে

অসমবাসীলৈবিহু ৰশুভকামনাজনালে  আমেৰিকাৰ
ৰাষ্ট্ৰপতি জ’ বাইডেনে


1

(US President J. Biden wishes Rangali
Bihu to the people of Assam)

(US President J. Biden wishes happy bihu to
the people of Assam)

4

নগাঁ ৱৰ বঢ়মপুৰৰ দুৰ্গ ম পাহাৰত শোকাৱহ
ঘটনা

(Tragedy in the remote hills of Barampur in
Nagaon)

3

পৰা সংঘটিত হয় এই ঘটনা
(From occur this incident)

1 1

5

এই ঘটনা
This incident

1 1

Proposed system

Baseline system

(President J. Biden wishes bihu to the people of
Assam)

3 2
অসমবাসীলৈ বিহু ৰ জনালে ৰাষ্ট্ৰপতি জ’ বাইডেনে

Proposed system

Baseline system

ভাইৰাছৰ সংক্ৰমণ বাবে ঘোষণা কৰা হৈছে

(A has been announced for the virus)
3 3

Proposed system

Baseline system

Figure 4: Rating score based on adequacy and fluency

4.6 Training Details

The input of the VGG-16 convolutional neural net-
work is 224x224 RGB images, which produces a
vector of size 49x512 for each image. Again the
captions are fed into the word embedding layers
with 256 neurons. We train our model with 0.5
dropout rate, softmax cross-entropy loss function
and Adam optimizer (Kingma and Ba, 2014) with
batch size of 64 for 25 epochs. For training, we use
8000 images, and for development and testing, we
use 1000 images each. The experimental results
demonstrate that the LSTM with attention mecha-
nism as a middle layer showed more effectiveness
in generating the image captions.

5 Experimental Results and Discussion

The quantitative and qualitative analysis of the pro-
posed system is covered in this section.

5.1 Quantitative analysis

For quantitative analysis, the BLEU (Papineni et al.,
2002) metric is used. It checks the similarity of
a generated output sentence corresponding to a
reference sentence. We report the BLEU scores of
the baseline and proposed models in Table 3. The
formula for calculating the BLEU score is listed in
equations 5 and 6.

BP =

{
1 if c>r

0 if c<=r
(5)

BLEU = BP ∗ exp(
N∑

n

wn logPn) (6)

where,
c is candidate sentence length
r is reference sentence length
Pn is n-gram precision
wn is weight

5.2 Qualitative Analysis
To verify the correctness of the machine-generated
output, two native speakers of Assamese evaluate
the generated captions by using the criterion set
by linguistic data consortium(LDC) (Denkowski
and Lavie, 2010). A sample example based on ade-
quacy and fluency rating scale is shown in Figure 4
and it is found that most of the captions are flawless.
According to LDC, human judgment is classified
into adequacy and fluency categories (Table 2).In
comparison to the source text, adequacy refers to
how much meaning the target text can express. Flu-
ency is the capability to describe a grammatically
correct target text. To calculate the adequacy and
fluency score, we randomly pick 100 sentences
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Table 3: BLEU score of our proposed and baseline architectures

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4
Baseline 31.8 25.3 20.5 11.4
Proposed 40.4 31.6 21.8 12.1

অনুশীলনত মগ্ন কোহলিটীম ইণ্ডিয়াৰ তাৰকা বিৰাট কোহলি কঠোৰ
অনুশীলনত মগ্ন হৈ আছে৷

বিৰাট কোহলি

ভাৰতত কৰোনাত আক্ৰান্ত হৈ মৃতু ৎ হোৱা লোকৰ
সংখা বৃদ্ধি

ভাৰতত কৰোনাত মৃতু ৎ লোক বৃদ্ধি

কৰোনা 

অগ্নিগৰ্ভা নাগালেণ্ডত আৰক্ষী নিহতৰ
সংখ্যা ১৪জনলৈ বৃদ্ধি

ভয়াবহ অগ্নিকাণ্ড আৰক্ষী নিহত

 ভয়াবহ অগ্নিকাণ্ড

নৰেন্দ্র মোদী আজি দেশৰ উদ্দেশ্যে ভাষণ
দিছে নৰেন্দ্র মোদীৰ সংবাদমেল

মোদীৰ বৈঠক

(Narendra Modi is addressing the
nation today)

(Conference of Narendra Modi)

(Conference of  Modi)

(Firefight death toll rises to 14 in Nagaland)

(Horrific fire kills police)

(Horrific fire)

(Team India's star Virat Kohli is immersed
in rigorous training.)

(Kohli immersed in practice)

(Virat Kohli)

(In India, the number of death troll due to
corona is increasing)

(Death toll due to corona rises in
India)

(corona)

News image Reference caption Generated caption

(A)

(B)

(C)

(D)

Proposed system

Baseline system

Proposed system

Baseline system

Proposed system

Baseline system

Proposed system

Baseline system

Figure 5: Generated captions by the proposed and baseline models

Table 4: Human evaluation results

Model Adequacy Fluency
Baseline 1.48 1.96
Proposed 1.91 2.05

from the test dataset. Table 4 shows the scores for
adequacy and fluency respectively.

5.3 System Comparison

Till today, no model has been reported in As-
samese news image captioning to the best of our
knowledge. To make a fair comparison, we pro-
pose a baseline model of CNN-LSTM architecture
(Vinyals et al., 2015) and compared with the pro-

posed model as shown by Table 3.

5.4 Discussion

Figure 5 shows the sample input and output for
the image caption generating model. From the
Figure 5A, the model can detect the named entity,
i.e., “Narendra Modi” and also generate the cap-
tion about conference, which is a good result. The
caption that is generated is meaningful, although it
is less fluent. Therefore, the adequacy and fluency
are considered as 4 and 3, respectively, from the
point scale rating (Table 2). As shown in Figure 5B,
the model can also show a good result. The model
can detect the “fire” and the “army” as part of the
image. The machine-generated caption can convey
the meaning. In this example, the adequacy and
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fluency scores are 5 and 4, respectively. As shown
in Figure 5C, the model identifies the named entity,
i.e., “Virat Kohli” and also generated caption says
about the action. Thus, the generated caption can
convey the meaning and is fluent. As a result, both
adequacy and fluency receive a 5 on the point scale.
After seeing the “PPE kit”, costume, the model can
generate about the “corona” in Figure 5D. But the
generated caption is not fluent. So the adequacy
and fluency rating is 3 and 2, respectively.

5.5 Error analysis
There are couple of reason why the generated cap-
tions are imperfect. Poor caption quality can be
a major reason for erroneous caption generation.
Some image captions and news images are the least
connected, which is unusual. As a result, some ar-
ticles contain merely logo images or image files
unrelated to current events. The absence of specific
functional tokens in the training caption is another
reason for poor quality generated caption.

6 Conclusion and Future Work

In this paper, we report a CNN-LSTM based frame-
work with an attention mechanism for Assamese
caption generation on the multimodal news dataset.
The attention mechanism decides where to pay at-
tention in order to generate a meaningful caption.
We also report the findings of the investigation
of caption generation on the Assamese language
on low resource setting. To assess model perfor-
mance, we used both qualitative and quantitative
approaches. It is observed that the proposed frame-
work outperforms the baseline model. In future,
various architectures such as ResNet with mBERT
or Indic BERT may be explored for any significant
improvement of the system results further. We in-
tend to expand the dataset in the future with a more
diverse and wide collection of images of various
domain-specific events, each with several appro-
priate descriptions, in order to build a human-like
caption.
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Abstract

Describing a video is a challenging yet attrac­
tive task since it falls into the intersection of
computer vision and natural language gener­
ation. The attention­based models have re­
ported the best performance. However, all
these models follow similar procedures, such
as segmenting videos into chunks of frames or
sampling frames at equal intervals for visual
encoding. The process of segmenting video
into chunks or sampling frames at equal inter­
vals causes encoding of redundant visual infor­
mation and requires additional computational
cost since a video consists of a sequence of
similar frames and suffers from inescapable
noise such as uneven illumination, occlusion
and motion effects. In this paper, a boundary­
based keyframes selection approach for video
description is proposed that allow the system
to select a compact subset of keyframes to en­
code the visual information and generate a de­
scription for a video without much degrada­
tion. The proposed approach uses 3 ∼ 4
frames per video and yields competitive per­
formance over two benchmark datasets MSVD
and MSR­VTT (in both English and Hindi).

1 Introduction

In recent years, we witnessed the exponential
growth in multimedia data (especially video) over
the Internet (Singh et al., 2019). This large volume
of data creates a need for automatic video under­
standing systems that can describe the video’s con­
tent, event and action with a short textual descrip­
tion. There are many applications of automatic
video description generation such as efficient con­
tent indexing and searching, storytelling, the amal­
gamation of speech with the video description can
also help visually impaired people and if the video
description approaches are successful in generat­
ing a short textual description of the real­world
scenes, then the robots can converse with humans

effectively (Singh et al., 2020a; Aafaq et al., 2019).
The task of generating image and video descrip­
tions are very closely related. But the presence
of both temporal and spatial information, which
varies with the time in a video, makes the task
of video description generation more challenging
than image description. So for generating an infor­
mative and visually related video description, the
efficient encoding of both spatial and temporal fea­
tures of the video is the basic step in any video de­
scription framework.
Being an interdisciplinary problem of both com­

puter vision and natural language processing, re­
searchers form both domain have proposed a nu­
merous approach for describing a video precisely,
but still, much work is needed to be done. A video
consists of a sequence of similar frames, but var­
ious editing effects are included in the video due
to the recent advancements in technologies and
these editing effects affect the process of select­
ing informative frames from the video. Existing
approaches such as (Singh et al., 2021b; Nabati
and Behrad, 2020b; Venugopalan et al., 2014; Gao
et al., 2020) encode the visual features of the video
either by segmenting the video in the interval of
some arbitrary value k (most of time k = 16) or
by selecting first n frames. Meanwhile, the pro­
cess of encoding visual features by equal interval
sampling does not guarantee that all the selected
frames are informative because, in a video it is pos­
sible that the selected frames are suffering from dif­
ferent types of noise such as uneven illumination,
motion blur, occlusion and object zoom­in/out ef­
fects (Chen et al., 2018). In this paper, we ad­
dress the issue of selecting informative frames by
using color information based shot boundary de­
tection followed by keyframe selection from each
shot. A shot in a video is a set of continuous
similar frames captured uninterruptedly and when
the content of these frames get changed, it creates
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two types of boundaries (transitions) in the video
namely ­ abrupt and gradual transition. The novel
contribution of the proposed work are:

i. We propose a plug­and­play keyframe selec­
tion module based on visual color informa­
tion of the input frames by employing a long
video temporal segmentation algorithm. This
module is designed by considering the three
basic requirements of any video understand­
ing model: flexibility, efficiency and effec­
tiveness.

ii. In the proposed framework, a temporal soft at­
tentionmechanism is employed that will focus
more on the responsible keyframes from the
set of selected keyframes for an input video at
every time step.

iii. We perform a detailed qualitative and quanti­
tative analysis on the results generated by the
framework for MSVD, English MSR­VTT1
and Hindi MSR­VTT2 datasets.

The organization of the remaining part of the paper
is as follows. Section 2 report a review of related
work on video description. Section 3 discussed the
proposed approach. A detail experimental studies
is reported in Section 4 followed by conclusion in
Section 5.

2 Related Work

Earlier, the process of bridging the gap between
visual content and natural language was consid­
ered a challenging task. However, with the suc­
cess of deep learning approaches in recent years,
the gap has been reduced. Till now, the approaches
proposed for video description can be categorised
into three phases: classical method based phase,
statistical method based phase and deep learning­
based phase (Aafaq et al., 2019). Further, the
related work in this section is divided into three
subsections based on the type of approach is em­
ployed: Sequence­to­Sequence based approaches
(S2S), attention­based approaches and boundary­
based approaches.

1http://ms-multimedia-challenge.com/2017/
challenge.

2https://github.com/alokssingh/
MSR-VTT-Hndi-captionig

2.1 S2S video description approaches

In the early stage of the video description task,
most of the approaches proposed for video de­
scription are motivated by image description ap­
proaches (Singh et al., 2021b). The pioneering
work in video description is based on the predic­
tion of SVO (Subject, Verb and Object) and fill
them into a predefined templates (Aafaq et al.,
2019; Singh et al., 2020a). Recently, the encoder­
decoder based framework gains more popularity.
Venugopalan et al. (2014) proposed a sequential
Convolutional Neural Network (CNN) and Long
Short Term Memory based model (CNN­LSTM)
for video description. In this framework, Venu­
gopalan et al. (2014) extracted frame­level features
for each sampled frame (1 in every ten frames) us­
ing a pre­trained model and then passed all the ex­
tracted features through a mean pooling layer to
get a single vector representation for the whole
video. Finally, a description for an input video is
generated by employing a two stacked LSTM. Al­
though the proposed approach outperforms the pre­
vious SVO based baseline models, the model has
few drawbacks such as, it does not preserve the
temporal relationship among the frames and rep­
resent the whole video with a single features vec­
tor which reduces the task of video description to
image description due to which lots of vital visual
information get lost. To address the issues of pre­
vious model Venugopalan et al. (2014) proposed a
end­to­end sequential model (Venugopalan et al.,
2015) which consists of two LSTM layer. The
first LSTM layer encodes the extracted visual fea­
tures and the second LSTM layer receives the
null padded input word concatenated with hidden
representation from the first layer and generates
an output description. Using a multi­stage re­
fining algorithm (Nabati and Behrad, 2020a) pro­
posed video description framework with content­
oriented beam search. This approach involves
three stages, namely feature extraction, content­
oriented beam search and sentence refining. Wang
et al. (2020) proposed a sequential model for en­
coding spatio­temporal visual representation. Un­
like other sequential frameworks in this model,
the sequential frame is encoded at every time step
and generates the most related word at each step.
In this approach, a “Real­Time Encoder” is intro­
duced that uses history information of previous
time steps to extract informative spatio­temporal
visual representation. Recently, the work on de­
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scribing a visual entities into multiple languages
gained more popularity with the Hindi image cap­
tioning (Singh et al., 2021c,a), multi­modal ma­
chine translation (Meetei et al., 2019; Singh et al.,
2021d) and the release of novel Video to Text (VA­
TEX) (Wang et al., 2019) multilingual dataset (in­
cluding Chinese and English) for video descrip­
tion. Furthermore, Singh et al. (2020b) proposed
a pLSTM framework in the VATEX video cap­
tioning challenge. In this framework, two paral­
lel LSTM are employed, which receives the input
in different manners. The pLSTM framework was
unable to outperform the baseline VATEX model
(Wang et al., 2019) in the VATEX dataset.

2.2 Attention based approaches
On observing the effectiveness of soft attention
(Xu et al., 2015) and bottom­up, top­down atten­
tion (Anderson et al., 2018) in generating visually
related words at every time step in image caption­
ing, some approaches based on attention are also
proposed in the video description. Yao et al. (2015)
proposed an approach that utilizes both temporal
and spatial structure of the video for extracting vi­
sual features. They employed a temporal atten­
tion mechanism for selecting a relevant segment
from the video. This approach only considers the
first 240 frames of the video, which is the short­
coming of the proposed approach. A hierarchical
Recurrent Neural Network h­RNN is proposed by
Yu et al. (2016), it exploited the temporal and spa­
tial attention for extracting visual features using
Gated Recurrent Unit (GRU). Few other attention­
based video captioning frameworks are proposed
in (Li et al., 2018; Xiao et al., 2020). Apart from
temporal attention, semantic attention is also used
for generating temporally and semantically cor­
rect video descriptions. Gao et al. (2020) and Xu
et al. (2019) proposed a method for video descrip­
tion by exploiting the combination of both seman­
tic and temporal attention. Recently, Singh et al.
(2021b) proposed hybrid attention mechanize for
Hindi video captioning by utilizing the concept
of visual sentinel gate (Lu et al., 2017) proposed
for image captioning. The approach proposed in
Singh et al. (2021b) differs from Lu et al. (2017) in
terms of the implementation of the attention block.

2.3 Boundary aware approaches
An open domain video contains many editing ef­
fects, which generates a large number of shots in a
video. A video consists of a large number of re­

dundant frames and to minimise the redundancy
and improve the computation time, various bound­
ary aware approaches are proposed. (Baraldi et al.,
2017) proposed a novel LSTM cell for detecting
the temporal boundaries in a video and generates
a visual feature vector for the whole video. (Shin
et al., 2016) proposed SBD based method for the
generation of the multiple sentence video descrip­
tion. In this method, the video is divided into shots
by employing sliding windows of different lengths.
Based on the assumption that selection of infor­
mative frames can improve generated description
and reduce computational time (Chen et al., 2018)
proposed a plug­and­play PickNet model for se­
lecting relevant frames using reinforcement learn­
ing, then finally descriptions are generated for each
video. (Sah et al., 2020) proposed a video de­
scription approach for a video surveillance system.
In this approach for the multi­stream hierarchical
video description model, a recurrent layer with a
soft attention mechanism is employed with dynam­
ical detected abrupt transitions. Real­time analy­
sis is performed in support of the statement that a
video descriptionmodel could be useful for a video
surveillance system. Few other recently proposed
boundary­based video description approaches are
(Shi et al., 2020; Jin et al., 2020).

3 Proposed Approach

The proposed approach consists of two modules:
Boundary detection and Keyframe selection mod­
ule (Sec 3.1) and Description generation module
(Sec 3.2).

3.1 Boundary detection and keyframe
selection phase

Themain objective of boundary detection is to spot
the position at which the content of the video gets
changed. In this paper, we are focusing on spot­
ting these abrupt transitions. A color histogram­
based approach proposed in Mas and Fernandez
(2003) is adopted to detect the temporal discontinu­
ity in a video. The color histogram­based approach
is computationally efficient and prevalent in vari­
ous computer vision­related tasks. In boundary de­
tection and keyframe selection algorithm initially,
the color histogram of each frame is computed and
then the histogram difference (∆i) is computed be­
tween the histogram of consecutive frames using
Equation 1 whereM is the number of bins and hi
is the color histogram of ith frame in a video se­
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Figure 1: Pictorial representation of whole boundary based video description framework

quence.

∆i =




M∑

j=1

(hi(j)− hi−1(j))
2




1
2

(1)

After the computation of histogram difference,
to declare temporal boundary at a particular loca­
tion an adaptive threshold γ (γ = mean(∆)+k×
stdev(∆)) employed in Singh et al. (2019) is used,
here the value of constant k is set to 5.2 after fine
tuning. The mathematical expression for the decla­
ration of temporal boundary is shown in Equation
2, where Bi record the boundary locations.

Bi =





i, (∆i ≥ γ)&&(∆i > ∆i−1)

&&(∆i > ∆i+1)

continue, Otherwise
(2)

Keyframe selection: After detecting the tem­
poral boundaries, a video is divided into different
segments containing similar frames within it. A
simple and computationally efficient approach for
video description is the utilization of information

present in keyframes of the video rather than us­
ing several redundant frames. In the proposed ap­
proach, a keyframe is selected from each segment
which we get after temporal segmentation. The
frame which is selected as a representative frame
has aminimum distance to the other frames present
in the same shot (segment). This approach is also
adopted by Li et al. (2017) for video summariza­
tion. Mathematically, it can be described as follow:

min
i∈[1,nf ]




nf∑

t=1,t̸=i

Euclidean(h̃i − h̃t)


 (3)

Where nf is the number of frames in a shot, h̃i is
color histogram of the selected frame and h̃t repre­
sent the histogram of other frames within the shot.
In this way, a keyframe of each shot is selected
based on the visual similarities within the shot.

3.2 Description generation phase
After selecting keyframes for an input video of N
frames, we extracted three types of features that
are visual appearance features (vf ) which are ex­
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Algorithm 1 Temporal segmentation of video with
key frame selection
Input: Video, V
Output: Boundaries,Keyframes
1: procedure shot_detection(V )
2: F ← cv2.V ideoCapture(V )
3: hist0 ← cv2.calcHist(vid.read(F (0)), ch,m, hs, r)
4: for i = 1 to length(F ) do
5: histi ← cv2.calcHist(vid.read(F (i)), ch,m, hs, r)

6: ∆i ←
(√∑M

j=1(histi(j)− histi−1(j))2
)

7: histi−1 ← histi

8: for i = 1 to length(∆)− 1 do
9: if ∆i ≥ γ&&(∆i > ∆i−1)&&(∆i > ∆i+1) then
10: Bi ← record ith

11: else
12: continue

1: FunctionKeyframe_sel(frames,B)
2: for k = 1 to S do ▷ i, j ∈ [1,nf], i ̸= j
3: for i = 1 to nf do
4: for j = 1 to nf do
5: diff(i,j) ← record total dissimilarity difference

6: Keyfrm[k]← min(diff(i,:))

7: return Keyfrm

tracted using 2D CNN (He et al., 2016a), motion
features (vm) using 3D CNN and object features
(vr) extracted using R­CNN (Ren et al., 2015).
Then, the appearance and object features (vf and
vr) are post­processed using Bi­LSTMs.

3.2.1 Context rich encoding with self
attention

Since a video has multiple actions and events, so
some the events in earlier frames are responsible
for the occurrence of other related events in forth­
coming frames. Considering this fact, the post­
processed appearance features are passed through
a self­attention layer to get more context rich en­
coded visual features. Self­attention allows the
model to look at the visual features of other se­
lected keyframes for better visual encoding. So,
initially using the visual features v (v = vf) the
value of keyK(v), valueV (v), and queryQ(v) are
computed using Equation 4 whereWk,Wq andWv

are the weight metrics to be trained.

K(v) = Wkv V (v) = Wvv

and Q(v) = Wqv
(4)

Then, to compute context­rich self­attention fea­
ture maps (Oj...S) dot­product attention is applied
as follow:

Oj = Wg

(
S∑

i=1

αi,jV (vi)

)

where, αi,j = softmax(
K(v)TQ(v)

dk
)

(5)

In the Algorithm 1, ch = channels, m = mask, hs = hist­
Size and r = ranges

In the above equations, S is total number of shots
(segments), vf ∈ RS×l, Wk,v,q,g ∈ Rl×l̃ and the
dimension of K(v), V (v) and Q(v) is set to 64
and dk = 8 following the work of Vaswani et al.
(2017) for effectiveness of Self attention mecha­
nism. For the encoding of words in the reference
caption, the dense embedded representation which
is obtained from a word embedding layer is passed
to an encoder LSTM (eLSTM). The eLSTM takes
the word embedding of input word (x) at current
time step, global visual features (vg) and decoder
LSTM’s hidden state of last time step as shown
Equation 6.

ht = eLSTM(xt−1, vg, h
d
t−1) (6)

3.2.2 Decoder
After getting encoded contextually rich represen­
tation of input word (ht) and visual appearance
features (Oj) they are passed to the decoder along
with motion features (vm) and object features (vr).
Before passing the self attentive appearance fea­
tures (Oj) and object features (vr) to decoder
LSTM (dLSTM) they are passed through an atten­
tion layer (Attn(Vx, h)) as shown in Equation 7
where V (V = Oi or vr) is encoded features and
W∗ (∗ = h, v) are trainable weights and bt is bias.

Attn(Vx, h) = ϕ(Vj , αi) where, ϕ =

k∑

i=1

αiVi,j

and, αi = softmax(Watanh(WvV + Whht−1 + bt))

(7)

After getting attentive appearance features and ob­
ject features from the attention layer they are con­
catenated with motion feature (vm) and passed to
decoder LSTM (dLSTM) as shown in Equation 8
where [; ] denotes concatenation and hdt is used in
Equation 6.

ft = [Attn(Oj , ht);Attn(vr, ht); vm]

hdt , c
d
t = dLSTM([ft;ht])

(8)

Further, the word probability st at every time step
is decoded as follow:

st = softmax(MLP ([ft;h
d
t ;ht])) (9)

The cost function used for maximizing the likeli­
hood of the correct word and minimizing the loss
of the model is given by Equation 10.

Loss = −
T∑

t=0

logPr(st|st−1, . . . s0;F ) (10)
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Table 1: Results of proposed approach on MSVD dataset and its comparison with other approaches.

Methods BLEU­4 METEOR CIDEr ROUGE
Mean pooling
­AlexNet (Venugopalan et al., 2014) 31.20 26.90 ­ ­
­AlexNet (COCO) (Venugopalan et al., 2014) 33.30 29.10 ­ ­
Attention
­ SA (Yao et al., 2015) 40.28 29.00 ­ ­
­MMN (Li et al., 2018) 48.00 31.60 68.80 ­
­BP − LSTM (Nabati and Behrad, 2020b) 42.90 32.00 62.20 68.30
Boundary + Attention
­Boundary − aware (Baraldi et al., 2017) 42.50 32.40 63.50 ­
­PickNet (Chen et al., 2018) 46.10 33.10 69.20 69.20
­MHB (Sah et al., 2020) 43.00 33.20 71.10 68.70
Proposed (vf ) 45.55 30.37 68.73 66.44
Proposed (vf+vm) 48.66 29.90 68.33 65.97
Proposed (vf+ vm+ vr) 50.75 32.50 71.13 70.44

4 Experimental result and discussion

4.1 Datasets

To manifest the effectiveness of the proposed ap­
proach, three benchmark datasets are employed
that are: Microsoft research video description cor­
pus (MSVD) (Chen and Dolan, 2011), English Mi­
crosoft research video to text (MSR­VTT) (Xu et al.,
2016) and Hind Microsoft research video to text
(hi­MSR­VTT) (Singh et al., 2021b). The hi­MSR­
VTT dataset is recently released dataset for mo­
tivating the research on generating video descrip­
tions in the native language. The MSVD dataset
include 1, 970 videos with on average 40 descrip­
tions for each video while the en­MSR­VTT and
hi­MSR­VTT dataset include 10K videos with cor­
responding 20 descriptions. Table 2 reports the de­
tailed statistics of all the datasets.

Table 2: Detail statistics of all the datasets

Datasets #Training #Val #Test
videos videos videos

MSVD 1200 100 670
MSR­VTT 6513 497 2990
hi­MSR­VTT 6513 497 2990

4.2 Metrics

For the validation of the generated descriptions, we
employs Bilingual EvaluationUnderstudy (BLEU)
(Papineni et al., 2002), Metric for Evaluation of

Translation with Explicit Ordering (METEOR3)
(Banerjee and Lavie, 2005), Consensus­based Im­
age Description Evaluation (CIDEr) (Vedantam
et al., 2015) and Recall Oriented Understudy of
Gisting Evaluation (ROUGE­L) (Lin, 2004). For
generating the scores for above discussed auto­
matic evaluation metricsMicrosoft COCO4 toolkit
is employed.

4.3 Parameter setting and model
implementation

As discussed in section 3.2 for experimentation
we employ ResNet152 (He et al., 2016b) as 2D
CNN model for extracting appearance features of
keyframes and C3D model (Karpathy et al., 2014;
Tran et al., 2015) as 3D CNN for extracting the
motion features. For extracting the region features
Faster­RCNN (Ren et al., 2015) trained by (Ander­
son et al., 2018) is employed, this model extract 36
region features for each keyframes. The model is
trained with ADAM optimizer with learning rate
1e­4 and the learning rate is divided by 10 at every
10th epoch. The number of LSTM hidden units
is set to 512 and during training, the model having
the bestMETEOR score is saved. To avoid over­
fitting, a dropout of 0.3 is employed. In the pro­
posed work, we tried to search optimal parameters
that work comparatively better than other baseline
models in all the datasets, which will minimize the
time and effort required to search the best parame­

3The METEOR score for Hindi text is generated using:
https://github.com/anoopkunchukuttan/meteor_
indic

4https://github.com/tylin/coco-caption
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Table 3: Results of proposed approach on en­MSR­VTT dataset and its comparison with other approaches.

Methods BLEU­4 METEOR CIDEr ROUGE
Mean/Max pooling
­LSTM −GAN (Yang et al., 2018) 36.00 26.10 ­ ­
Attention
­M3 (Wang et al., 2018) 38.13 26.58 ­ ­
­MMN (Li et al., 2018) 37.50 26.40 ­ ­
­ReBiLSTM (Bin et al., 2018) 33.90 26.20 ­ ­
­BP − LSTM (Nabati and Behrad, 2020b) 36.60 27.00 40.50 58.70
­MCTA (Wei et al., 2020) 38.50 26.90 43.70 ­
Boundary + Attention
­Boundary − aware (Baraldi et al., 2017) 36.80 26.70 41.20 58.50
­PickNet (Chen et al., 2018) 38.90 27.20 42.10 59.50
Proposed (vf ) 35.42 25.21 35.36 57.83
Proposed (vf+vm) 35.95 25.39 35.66 57.38
Proposed (vf+ vm+ vr) 37.18 26.17 40.90 59.41

ters according to the dataset. All the parameter set­
tings are the same throughout the experimentation
for all the datasets. A beam search approach with
beam size 7 is employed during testing to generate
the final description.

4.4 Results and discussion

Comparison with existing methods: To analyse
the performance proposed keyframe based video
captioning approach we compare proposed ap­
proach with existingmethods. For the better under­
standing and fair comparison all the existing meth­
ods are categorised into three type of captioning
approaches that are mean/max pooling, attention
and boundary+attention. The approaches such as
AlexNet, LSTM­GAN and pLSTM are mean/max
pooling based approaches, MMN, BP­LSTM, M3,
ReBiLSTM and MCTA are attention based while
the PickNet, Boundary­aware andMHB are bound­
ary based approaches which employ attention as
well.
Table 1, 3 and 4 report quantitative results on

MSVD, en­MSR­VTT and hi­MSR­VTT datasets.
Our proposed approach outperforms other exist­
ing methods on the MSVD and the hi­MSR­VTT
dataset, on 3 out of 4 metrics by a reasonable
margin. While on the en­MSR­VTT dataset, our
model reports comparable scores, although the
PickNet model reports high scores, but in terms of
the average number of frames used to achieve com­
petitive performance, the proposed approach out­
performs PickNet model. Our model uses 3 ∼ 4
frames per video whereas the PickNet model em­

ploy 6 ∼ 8 frames per video.
Ablation study: The proposed approach con­

sist of two stage: boundary detection and descrip­
tion generation phase. To evaluate the effective­
ness of all the employed visual features the pro­
posed model is experimented with different vari­
ations such as with only appearance features, with
appearance and motion features and with all three
appearance (vf ), motion (vm) and region features
vr. Table 1, 3 and 4 reports the score of proposed
model with all the variation. The effectiveness of
proposed method increases when all three features
are employed which can be clearly seen in table 1,
3 and 4. In order to validate that whether the pro­
posed model generates more fluent and adequate
description along with high automatic scores, we
perform a qualitative analysis. Figure 2 shows the
description generated by the proposedmodel along
with the output generated by BP − LSTMs and
ground truth (GT). On observing the output gener­
ated by the proposed model for the videos shown
in Figure 2, it is clear that the keyframes based ap­
proach can generate better description than BP −
LSTM , which employ n frames for visual encod­
ing.

4.4.1 Analysis of picked keyframes
We also analysed the efficiency of the boundary
based keyframe selection algorithm for selecting
the most representative frame from multiple seg­
ments of the video. Figure 3 shows the distribu­
tion of keyframes selection for both the datasets.
From Figure 3 it is observed that for themajority of
videos, less than 8 frames are picked as a keyframe
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Table 4: Results of proposed approach on hi­MSR­VTT dataset and its comparison with other approaches.

Methods BLEU­4 METEOR CIDEr ROUGE
Mean/Max pooling
­pLSTM (Singh et al., 2020b) 26.10 33.00 28.50 51.20
Attention
­V A+ SA(Singh et al., 2021b) 36.20 39.30 36.90 59.80
­RNM (Tan et al., 2020) 38.80 39.10 36.00 60.70
Proposed (vf ) 34.02 38.40 30.76 58.09
Proposed (vf+vm) 36.11 39.95 31.12 58.95
Proposed (vf+ vm+ vr) 41.01 44.10 32.85 60.80

BP­LSTMs: A man is doing tennis match
Our: two men are playing table tennis
Our hi: एक आदमी टेिनस खेल रहा है
GT: two men compete in a game of table tennis

(a) MSR­VTT ­ video7600

BP­LSTMs: a man is going through a room
Our: a man is walking
GT: a man is walking with trolley

(b) MSVD ­ video1929

Figure 2: Sample videos selected from each dataset with their ground truth (GT) and generated output
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Figure 3: Statistic of picked keyframes for both the
datasets

which is due to shorter video length. A video can
have a single shot or multiple shots. For a single­
shot video, 4 keyframes are selected at the inter­
val of 16 and for a multi­shot video, the keyframe
is selected using an approach discussed in section
3.1. From Figure 3, it is clearly observed that
around 39% and 28% of videos in MSR­VTT and
MSVD respectively, are single­shot videos. The
average number of keyframes selected per video

is 3 ∼ 4 for both MSVD and MSR­VTT dataset,
which helps in avoiding unnecessary visual encod­
ing of redundant frames and signify the efficiency
of the proposed approach. Sample examples of
picked keyframes are included in supplementary
file.

5 Conclusion

In this paper, we employ a boundary­aware
keyframe selection framework that acts as a plug­
and­play module for downstream video­related
tasks, such as video description and video clas­
sification. The objective of the boundary aware
keyframe selection framework is to select a com­
pact subset of keyframes for input video, which
minimises the unnecessary processing of visually
similar frames and ensures no degradation in the
quality generated description. In the proposed ap­
proach, 3 ∼ 4 frames are selected for an input
video, which is more efficient than the existing
PickNet model, which picks 6 ∼ 8 frames for
each video. The experimental results show that the
keyframes­based approach can outperform exist­
ing methods by picking keyframes and extracting
different visual features such as appearance, mo­
tion and region features.
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Abstract

Image captioning is a prominent research area
in computer vision and natural language pro-
cessing, which automatically generates natu-
ral language descriptions for images. Most
of the existing works have focused on devel-
oping models for image captioning in the En-
glish language. The current paper introduces
a novel deep learning architecture based on
encoder-decoder with an attention mechanism
for image captioning in the Hindi language.
For encoder, decoder, and attention, several
deep learning-based architectures have been
explored. Hindi is the third-most spoken lan-
guage globally; it is extensively spoken in India
and South Asia; it is one of India’s official lan-
guages. The proposed encoder-decoder archi-
tecture employs scaling in convolution neural
networks to achieve better accuracy than exist-
ing image captioning methods in Hindi. The
proposed method’s performance is compared
with state-of-the-art methods in terms of BLEU
scores and manual evaluation. The results show
that the proposed method is more effective than
existing methods.

1 Introduction

Caption generation from images is a complex job
as it necessitates object recognition and articulat-
ing the object’s relationship in natural language.
Caption generation is challenging in comparison to
object recognition and image classification, which
have been the primary research focus in computer
vision. Nowadays, Deep learning-based architec-
ture has emerged as a result of recent developments
in machine translation. Recent advances in lan-
guage modeling, object recognition, and image
classification opened up new possibilities. A gener-
ated image caption can assist visually challenged
individuals to perceive the web content (MacLeod
et al., 2017). The architecture based on encoder-
decoder has been widely employed to solve the

image captioning problem (Karpathy and Fei-Fei,
2015) (Anderson et al., 2018) (Feng et al., 2019).
In the literature, two different approaches have
been used for caption generation ; the top-down
approach (Bahdanau et al., 2014)(Wu et al., 2016)
(Vinyals et al., 2015) (Zhou et al., 2020), (Cornia
et al., 2020), and the bottom-up approach (Elliott
and Keller, 2013)(Kulkarni et al., 2011)(Farhadi
et al., 2010).

In this paper, We built a model of caption gen-
eration from images in the Hindi language, which
is spoken throughout India, South Asia, and other
parts of the world as well. It is one of the world’s
ancient languages and the third most spoken lan-
guage globally. It originated from the Sanskrit lan-
guage (Gary and Rubino, 2001). In the literature,
there are just a few works on Hindi image caption-
ing (Dhir et al., 2019; Mishra et al., 2021a,b; Singh
et al., 2021). The first work was carried out in
(Dhir et al., 2019), RESNET 101 (He et al., 2016),
and GRU (Cho et al., 2014) is employed in the ar-
chitecture. In (Mishra et al., 2021a), authors had
employed various attention models. In this paper,
the authors had explored several architectures with
various attention. Authors of (Mishra et al., 2021b)
proposed a architecture using transformer. The
transformer is employed here as a decoder. This
work also utilizes deep-learning based architectures
for generating captions of images in the Hindi lan-
guage. The key contributions of this work are as
follows:

• This work is the first of its kind for image cap-
tioning in Hindi, which utilizes EfficientNet
(Tan and Le, 2019) as an encoder and GRU
(gated recurrent unit) (Cho et al., 2014) as a
decoder with Bahdanu attention (Bahdanau
et al., 2014).

• Ablation study has been conducted with vari-
ous encoder-decoder and attention technique
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like X-linear attention (Pan et al., 2020), Bah-
danu attention (Bahdanau et al., 2014), , Lu-
ong attention (Luong et al., 2015), spatial at-
tention (Lu et al., 2017), Visual Attention (Xu
et al., 2015).

• We explored various language model with
the proposed architecture like Transformer
(Vaswani et al., 2017), LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Cho et al.,
2014).

• We experimented with the newly introduced
dataset for image captioning in Hindi (Mishra
et al., 2021a) and showed a comparative
study between model trained on Hindi dataset
and post-processing model. Here, the post-
processing model is trained on an English cor-
pus that generates an English caption that is
ultimately translated into Hindi. We demon-
strated the efficacy of the proposed method by
comparing it with the post-processing method.

2 Related Work

In the past, two approaches for image captioning
have been used; the first is the top-down approach
(Wu et al., 2016)(Sutskever et al., 2014) (Bahdanau
et al., 2014), and second approach is an older ap-
proach i.e. bottom up approach (Elliott and Keller,
2013)(Kulkarni et al., 2011)(Farhadi et al., 2010).
In the first approach, the input image is turned into
words, but in the second approach, words define
the many features of an image; words are joined to
form an image caption. The architecture’s parame-
ters are learned in top-down methodology, which
comprises end-to-end learning for caption genera-
tion.

The language model combines the object char-
acteristics, vocabulary, visual description, and sen-
tences, etc., in the bottom-up approach. Associa-
tion of the appropriate sentence to an input image
is explored in (Farhadi et al., 2010); this sentence
is considered as the input image’s caption. In (El-
liott and Keller, 2013), a template-based method
was utilized, it uses visual dependency modeling
to record the links among objects.

For image captioning nowadays, the top-down
method is very popular. Authors of (Mao et al.,
2014) had developed the captioning architecture
using the multimodal RNN to generate the caption.
A probability distribution model is employed to

generate the word based on prior words and an im-
age. The probability distribution is used to generate
the image caption. It is analogous to the approach
of machine translation employing encoder-decoder
architecture. In (Vinyals et al., 2015), authors have
used a generative model using an RNN trained to
optimize the likelihood of the target sentence given
an input image. Authors of (Karpathy and Fei-Fei,
2015) have proposed an image captioning model
by using a combination of CNN and RNN over
image region utilizing the alignment model. They
used bidirectional RNN for language modeling and
a structured, objective function aligning two modal-
ities through a multimodal embedding. A language
pre-training model unified version is investigated
in (Zhou et al., 2020). A meshed memory trans-
former (Cornia et al., 2020) is utilized for image’s
feature extraction and language modeling; it learns
a multi-level relationship between previous infor-
mation and regions of the image. Authors of (Liu
et al., 2020) have proposed an image captioning
model using generative adversarial networks us-
ing retrieval and ensemble based approaches. The
method given by (Deshpande et al., 2019) has an
image captioning structure using variational gen-
erative adversarial network and variational autoen-
coder; the approach generates an image caption
based on an image summary. The authors also
used part-of-speech as a description that assists in
generating the description of the image.

Most of the relevant works for image caption-
ing in the literature are published particularly for
the English. Only a limited number of attempts
have been made for image caption generation in
the Hindi language. In (Dhir et al., 2019), the first
attempt for image captioning in the Hindi language
is made. A transformer-based image captioning
model has been proposed in (Mishra et al., 2021b).
In (Mishra et al., 2021a), authors have investigated
a variety of architectures with various attention
methods for caption generation from images.

3 Proposed Methodology

We employed the encoder-decoder framework with
attention for image captioning in the proposed
framework (as shown in Fig 1).

3.1 Encoder-Decoder Framework

We explore the encoder-decoder based architecture
for caption generation of an image. Given an image,
it maximizes the correct description’s probability
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Figure 1: Network architecture of the proposed method

as follows:

θ∗ = argmax
θ

∑

(I,S)

log p(S|I; θ) (1)

In the above equation, θ specifies model parame-
ters, I represents the image and y = y1, y2, ........yt
is the related caption. The generated caption y is
obtained by chain law. The joint probability dis-
tribution’s log-likelihood may be calculated as fol-
lows:

log p(y) =
N∑

t=0

log p(yt|y0, y1, ...........yt−1, I)

(2)
For clarity, the model’s parameter dependence

has been discarded. The architecture based on
RNN is as follows:

log p(yt|y0, y1, ...........yt−1, I) = f(ht, ct) (3)

Here f is a non-linear function finds the next
word’s output probability. ht and ct represents
the hidden state and context vector extracted vec-
tor of the image at tth time step of recurrent neu-
ral network. The context vector ct is an essen-
tial characteristic in this case since it offers ver-
ification throughout the caption generating pro-
cess. (You et al., 2016)(Xu et al., 2015)(Mao et al.,
2014)(Vinyals et al., 2015). ct is dependent on both
the encoder and decoder architectures. Its been
demonstrated in prior publications; attention helps
in increasing the efficiency of the image captioning
model (Xu et al., 2015).

3.2 Convolutional Neural Networks as an
Encoder for Feature Extraction

The proposed method encodes an input image I
into a vector representation of fixed size; the en-

coded image feature sets the decoder RNN’s start-
ing state. We conducted an ablation investigation
using encoders such as EfficientNet, Inception V4,
and RESNET 101.

3.2.1 EfficientNet
EfficientNet is a group of convolutional neural net-
works(CNNs) architectures proposed by authors
(Tan and Le, 2019) to optimize the accuracy for
image classification given a computational cost. It
employs the model scaling to find the best com-
bination of resolution, width, and depth in CNNs.
There are eight models from B0 to B7 in the Effi-
cientNet, with each subsequent model number re-
lating to variants with more parameters and higher
accuracies. We have used the B5 model trained
on ImageNet for feature extraction from the input
images. More details can be found in the paper
(Tan and Le, 2019).

3.2.2 RESNET 101
RESNET101 (Residual Neural Network) (He et al.,
2016) is employed for image encoding and ex-
tracting features. It consists of 101 layers that are
trained on the ImageNet dataset.

3.2.3 Inception V4
This CNN architecture proposed in (Szegedy et al.,
2017). It has a greater number of inception com-
ponents comparing Inception-V3. This is a true
Inception variation with no residual links. On Ima-
geNet’s test set classification challenge, this model
earned a top-5 error of 3.08%.

3.3 Attention Mechanisms

The encoder-decoder model uses a fixed-length
context vector which is incapable of remembering
long input sequences. The attention mechanisms re-
solve this problem. Attention mechanisms focus on
the crucial part of the image while generating the
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caption. Proposed encoder-decoder model makes
use of, recently introduced X-Linear attention (Pan
et al., 2020), Spatial Attention (Lu et al., 2017),
Visual Attention (Xu et al., 2015), Luong Atten-
tion (Luong et al., 2015), and Bahdanau Attention
(Bahdanau et al., 2014).

3.3.1 Bahdanau Attention
This architecture introduced in (Bahdanau et al.,
2014) is a well known architecture for sequence to
sequence model. This is a kind of additive atten-
tion; here context vector is calculated as follows:

ct =

N∑

i=1

αtivi (4)

the weight αti for each feature vi is determined
as :

αti =
exp(eti)∑N
i=1 exp(eti)

(5)

where

eti = f(ht, vi) (6)

Here, the proposed feed forward neural network
(Bahdanau et al., 2014) is denoted by f which is
jointly trained on all parameters, vi denotes image
feature, ht is RNN’s hidden state at time step t and
N is the generated caption’s length.

3.3.2 Luong Attention
This attention mechanism (Luong et al., 2015)
is commonly referred as multiplicative attention,
which is built upon the Bahdanu attention. Here, ct
denotes the model vector is determined as follows:

ct =

N∑

i=1

αtivi (7)

In this case, the weight αik is determined for
each feature vk as :

αti =
exp(eti)∑N
i=1 exp(eti)

(8)

where

eti = ht × w × vi (9)

eti represents content based function (Luong
et al., 2015), vi is the image feature vector, N is the
length of the generated caption, ht denotes hidden
states at time step t, and w represents the learnable
parameters.

3.3.3 Visual Attention
Authors of (Xu et al., 2015) demonstrated an at-
tention technique for focusing on the appropriate
portion of the image while generating a caption.
Here, the context vector is computed using:

eti = f(vi, ht) (10)

αti =
exp(eti)∑N
i=1 exp(eti)

(11)

ct = ϕ(vi, αti) (12)

Here, d dimensional feature vectors of different
parts of the images are V = [v1, v2........vk], viϵRd

is the spatial image feature. ht denotes the hidden
state of recurrent neural network at tth time step.
αti denotes the weight which is computed for each
image feature vector, vi, at every time step by a pro-
posed attention architecture, f (Xu et al., 2015). It
employs a multilevel perceptron applied on hidden
state, ht, and context vector, ct. The function ϕ re-
turns a single vector corresponding to their weights,
further ht and ct are jointly utilized to anticipate
the succeeding word as given in Equation 3.

3.3.4 Spatial Attention
This is generated from the residual network (He
et al., 2016). This mechanism utilizes residual con-
nection (He et al., 2016); authors have introduced
a new technique of determining the context vector,
it is regarded as the present hidden state’s residual
visual information.

ct = g(V, ht) (13)

Here attention function is represented by g and
V = [v1, v2........vk], viϵRd represents d dimen-
sional feature vector of image. vi and ht represent
parts of image and RNN’s hidden state at time step
t, respectively.

3.3.5 X-Linear Attention
The conventional attention module primarily
uses first-order interaction for image captioning,
which has limited multi-modal reasoning capac-
ity. Second-order interaction (bilinear pooling) has
been demonstrated to be helpful in visual recogni-
tion by the authors of (Gao et al., 2016), and (Yu
et al., 2018). This mechanism has been utilized by
the authors of (Kim et al., 2018), and (Fukui et al.,
2016) for visual question answering. X-linear atten-
tion uses bilinear pooling that boosts the attended
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feature’s capacity of representation by utilizing the
higher-order interaction between uni-modal and
multi-modal features.

Let’s suppose that Q ∈ RDq represent the query,
K = {ki}Ni=1 represent the keys and V = {vi}Ni=1

denote the set of values, where vi ∈ RDv and k ∈
RDk are ith value and key pair, respectively. Lower
rank bi-linear pooling is used by X-linear attention
to obtain a query-key representation, Bk

i ∈ RDB ,
between query, Q, and each key, ki.

Bk
i = σ(Wkki ⊙ σ(W k

q Q)) (14)

W k
q Q and Wk ∈ RDB×Dk are the embedding

matrices, sigma (σ) depicts the relu activation func-
tion and ⊙ is the multiplication of elements. Here
Bk

i specifies learned bi-linear query representation,
and it represents an interaction between the key and
query on a second-order level.

Furthermore, two types of bi-linear distribu-
tions of attention are calculated to aggregate both
channel-wise and spatial information across all val-
ues. Two embedding layers are used to get the
distribution of spatial attention. The bi-linear query
representation is then projected into corresponding
attention weight using a softmax layer.

B
′
i

k
= σ(W k

BB
k
i ) (15)

bsi = WbB
′
i

k
(16)

βs = softmax(bs) (17)

Where Wb and W k
B ∈ RDc×DB are the embed-

ding matrices. B
′
i

k
represents bi-linear query-key

representation and bsi denotes the ith element in
bs. Each of the elements βs

i in βs represents a
key/value pair’s attention weight. Further squeeze-
excitation (Hu et al., 2018) is performed over
all transformed bi-linear query representations,
{B′

i

k}Ni=1, for attention measurement in channel
wise manner. The squeeze operation uses average
pooling to aggregate all of the modified bi-linear
key and query representations, yielding a global
channel descriptor, B, as follows:

B =
1

N

N∑

i=1

B
′
i

k
(18)

Further, channel wise attention distribution is
derived by excitation operation, βc, by using the

self gating with sigmoid activation function over
the global channel descriptors, B.

bc = WeB (19)

βc = sigmoid(bc) (20)

The embedding matrix is We ∈ RDB×Dc in this
case. Finally, the X-Linear attention module pro-
duces the attended features of images by combining
improved bi-linear values with channel-wise and
spatial attention to form the attended feature.

v̂ = FX−linear(K,V,Q) = βc ⊙
N∑

i=1

βs
i β

v
i (21)

Bv
i = σ(Wvvi)⊙ σ(W v

q Q) (22)

Where Wv ∈ RDB×Dv and W v
q ∈ RDB×Dq are

the embedding matrices, Bv
i represents the bi-linear

pooling’s enhanced values on query, Q, and value,
vi. In contrast to the traditional attention frame-
work that utilizes only the first-order interaction,
the X-linear attention model utilizes the second-
order interaction via bi-linear pooling. Therefore,
it has more representative attended features than
the traditional attention framework.

3.4 Decoder for Language Modeling

We have used various decoder models for ablation
study and to determine the best possible architec-
ture. The language modeling RNN has the chal-
lenge of exploding and vanishing gradient (Hochre-
iter and Schmidhuber, 1997). This problem can be
resolved employing gated recurrent unit (Cho et al.,
2014), and Long Short-Term Memory (Hochre-
iter and Schmidhuber, 1997). We have included
a bi-directional variation in addition to the uni-
directional GRU and LSTM, which enables the
networks to have forward and backward sequence
information. We have also incorporated the trans-
former (Vaswani et al., 2017) as a decoder; apart
from attention, to enable optimization easier and
quicker, it employs positional encoding, residual
connection, and layer normalization.

4 Experimental Setup

This section covers the methods employed to create
the dataset and evaluate the proposed methodology.

255



4.1 Dataset

The authors of (Mishra et al., 2021a) generated the
Hindi variant of the MSCOCO dataset. This is a
popular dataset for caption generation from images.
In this dataset, each image has five captions. There
are 82573, 811, 811 images for training, testing,
and validation. The captions in the training set, val-
idation set, and test set are about 4 lakh, 4000, and
4000, respectively. Despite the fact Google Trans-
late is employed for the translation, the following
difficulties have been experienced when translating
from English to Hindi:

• Because Google Translate lacks a system to
assess the context of the statement, the con-
text of the translated caption is lost during
translation.

• In certain cases, Google Translator’s transla-
tion is grammatically imprecise.

• Google Translator’s accuracy is not standard-
ized because it depends on the source and
target languages.

Therefore, human annotators are employed to
correct Google translated sentences to remove er-
rors. The inter-annotator agreement was 87% be-
tween two annotators. Figures 2 and 3 display a
sample from the dataset that was created.

Figure 2: Example Image for Dataset Preparation

English Caption Google Translated 

Caption in Hindi 

Corrected Caption in Hindi 

A long empty, minimal 

modern skylit home 

kitchen. 

एक लंबा खाली, नू्यनतम 

आधुननक स्काईलाइट होम 

नकचन। 

एक लंबा खाली, छोटा आधुननक 

रोशन दान युक्त घर की रसोई | 

A picture of a modern 

looking kitchen area. 
आधुननक नदखने वाले रसोई 

के्षत्र की एक तस्वीर | 

आधुननक नदखने वाले रसोई के्षत्र 

की एक तस्वीर | 

A narrow kitchen ending 

with a chrome 

refrigerator. 

क्रोम रेनिजरेटर के साथ 

समाप्त होने वाली एक संकीर्ण 

रसोई। 

क्रोम रेनिजरेटर के साथ समाप्त 

होने वाली एक संकीर्ण रसोई। 

A narrow kitchen is 

decorated in shades of 

white, gray, and black. 

एक संकीर्ण रसोईघर सफेद, गे्र 

और काले रंग के रंगो ंमें 

सजाया गया है। 

एक संकीर्ण रसोईघर सफेद,  

भूरा और काले रंग के रंगो ंमें 

सजाया गया है। 

a room that has a stove 

and a icebox in it. 
एक कमरा नजसमें एक स्टोव 

और एक आइसबॉक्स है | 

एक कमरा नजसमें एक चूल्हा  

और एक बफण  रखने का निब्बा  

है | 

 

Figure 3: Example of Dataset Preparation

4.2 Evaluation Metric

We employed the BLEU score (Papineni et al.,
2002), a standard evaluation measure used in image
captioning and machine translation etc.

4.3 Hyperparameters Used

EfficientNet extracts feature from 224 ∗ 224 input
images and transform them into 49 ∗ 512 feature
vectors. Embedding layer size is 512 neurons, 0.4
dropouts are employed to prevent over-fitting. The
batch size is fixed to 128, and the epochs are set
to 15. Softmax cross-entropy is employed as a
loss function. The Adam optimizer with a 4e− 4
learning rate is used for optimization. It takes 14
hours to train; a caption for the image needs around
30 to 40 seconds to generate.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4
Proposed Methodology (EN + BA + GRU) 67.3 48.5 33.1 22.0

EN + BA + LSTM 66.7 47.6 32.4 21.8
EN + VA + GRU 66.5 47.3 32.1 21.4

EN + XLA + GRU 66.8 47.8 32.1 21.0
EN + XLA + LSTM 67.2 48.0 32.7 21.9

EN + XLA + Bi-GRU 66.1 47.0 31.5 20.6
EN + XLA + Bi-LSTM 66.7 47.6 32.1 21.2

IV4 + SA + GRU 55.7 38.4 25.9 16.8
EN + Trans 62.7 43.7 28.8 18.2

RN101 + SA + LSTM 56.4 38.8 26.3 17.2
IV4 + SA + LSTM 56.3 38.4 25.8 16.9
EN + LA + GRU 67.0 48.4 32.4 21.0
EN + SA + GRU 66.0 46.7 31.4 20.5

Mishra et al.(Mishra et al., 2021a) 67.0 47.8 31.9 21.2
Mishra et al. (Mishra et al., 2021b) 62.9 43.3 29.1 19.0

Dhir et al. (Dhir et al., 2019) 57.0 39.1 26.4 17.3

Table 1: The score obtained with various architectures
and comparison with existing methods. Here Trans,
Bi-LSTM, LSTM, Bi-GRU, GRU, SA, LA, BA, VA,
XLA, IV4, RN101, and EN represents Transformer,
Bi-directional Long Short-Term Memory, Long Short-
Term Memory, Bi-directional Gated Recurrent Unit,
Gated Recurrent Unit, Spatial Attention, Luong Atten-
tion, Bahdanu Attention, Visual Attention, X-Linear
Attention, Inception V4, RESNET101, and EfficientNet

Figure 4: Captions generated by different models of test
images. Generated caption, Gloss and Transliteration
are denoted by I,II, and III.

5 Results and Discussions

A comprehensive overview of obtained results and
generated captions are discussed in this section.
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Table 2: Adequacy and fluency measurement scale

Figure 5: Generated qualitative results on test images. Generated caption, Gloss and Transliteration are denoted by
I,II, and III.

Figure 6: Qualitative results to show error analysis on test images. Generated caption, Gloss and Transliteration are
denoted by I,II, and III.

5.1 Comparisons with existing methods for
Image Captioning in Hindi

The following works have been undertaken for im-
age captioning in Hindi as per our understanding:

• In (Dhir et al., 2019), author have proposed
the architecture for caption generation, where
they had used RESNET 101 (He et al., 2016)
and GRU (Cho et al., 2014).

• A transformer-based architecture introduced
in (Mishra et al., 2021b), where transformer
is utilized for language modeling.

• (Mishra et al., 2021a) investigates a variety of
architectures with various attention methods
for Hindi image captioning.

As a result, we evaluated our technique to these
approaches, Table 1 show that our approach beats
the existing method and baselines of the ablation
study.

5.2 Qualitative Analysis

We cover the qualitative examination of our ap-
proach using test images in this section. The cap-
tions for the test images that were generated are
shown in Fig 5. Gloss annotations and translitera-
tions are added for non-Hindi speakers; they help
comprehend the captions in Hindi. It is obvious
that the produced captions are mostly accurate and
can appropriately signify the items and activities
depicted in the images.
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5.3 Quantitative Analysis
The efficiency of the proposed method was as-
sessed using BLEU scores, as can be seen in Table
1. This table depicts that our method surpasses ex-
isting approaches considering BLEU. This demon-
strates the effectiveness of our approach.

5.3.1 Human Evaluation Based on Adequacy
and Fluency

These metrics are widely employed in various nat-
ural language processing problems, for-instance
summarization, question-answering, and machine
translation. Adequacy measures information re-
tained in the caption generated and fluency tests
generated caption in terms of grammatical norms.
These metrics were evaluated on a scale of 0 to 4
(as indicated in Table 2). Two human annotators
have accomplished this task with an agreement of
87% between them.

The generated captions of two approaches have
been measured here:

• The approach employs a dataset including
Hindi corpora in the training phase. The
trained model generates captions in Hindi.
This yields a score of 3.112 for adequacy and
3.233 for fluency.

• Another approach uses an English corpus for
training and generates captions in English.
The Google Translator is being used to con-
vert the produced English caption into Hindi.
This yields a score of 2.142 for adequacy and
2.761 for fluency.

Our methodology is superior to the post-
processing procedure (The Hindi captions are
formed by translating the English captions gener-
ated by the trained model with the English corpus.).
The generated captions are presented in Fig 4, and
the result is that the model trained on the Hindi
dataset beats the post-processing procedure, which
highlights the need for a Hindi dataset.

5.4 Error Analysis
There are some challenges for the image caption-
ing framework that results in errors during caption
generation (as shown in Fig 6). These challenges
could be categorized as following:

• Recognition of activity: As can be observed
in Fig 6 (a), a zebra is really sprinting, yet
the model predicted that it would be standing.’

This might be because the bulk of the images
in dataset has a standing zebra.

• Objects counting: There are two animals
in the picture in 6 (b), however, the model
predicted ’herd of cattle.’ This might be due to
trained CNN’s inability to detect the number
of objects.

• Occlusion: It occurs when objects are par-
tially visible or so near that the machine learn-
ing model can’t recognize them. As can be
observed in Fig 6 (c), In the caption, the model
predicted ’boat’ rather than ’aeroplane.’

6 Conclusion and Future Work

We present a novel approach for caption generation
from images in Hindi that employs an encoder-
decoder model based on EfficientNet and GRU,
as well as attention techniques. We use Effcient-
Net as an encoder because its efficacy outperforms
state-of-the-art CNNs for image classification and
feature extraction. We use a gated recurrent unit
as a decoder for language modeling as it is less
computationally expensive and it achieves state-of-
the-art efficacy for language modeling. Further, the
use of Bahdanau attention makes the system robust.
Aside from that, we undertake an ablation analysis
to find the ideal architecture. The proposed method-
ology could be expanded for image-to-paragraph
generation and dense image captioning.
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Abstract

Social media platforms like Facebook, Twitter,
and Instagram have a significant impact on sev-
eral aspects of society. Memes are a new type
of social media communication found on so-
cial platforms. Even though memes are pri-
marily used to distribute humorous content,
certain memes propagate hate speech through
dark humor. It is critical to properly ana-
lyze and filter out these toxic memes from so-
cial media. But the presence of sarcasm and
humor in an implicit way makes analyzing
memes more challenging. This paper proposes
an end-to-end neural network architecture that
learns the complex association between text
and image of a meme. For this purpose, we
use a recent SemEval-2020 Task-8 multimodal
dataset. We proposed an end-to-end CNN-
based deep neural network architecture with
two sub-modules viz.(i) Coattention based sub-
module and (ii) Multimodal Factorized Bilin-
ear Pooling(MFB) submodule to represent the
textual and visual features of a meme in a
more fine-grained way. We demonstrated the
effectiveness of our proposed work through
extensive experiments. The experimental re-
sults show that our proposed model achieves a
36.81% macro F1-score, outperforming all the
baseline models.

1 Introduction

Social media such as Facebook, Twitter, Instagram,
etc., are interactive platforms that accelerate the
idea of creating and sharing information. This in-
formation made an enormous impact in different
fields of society more powerfully and effectively.
But on the other hand, we observe a significantly
large amount of offensive content in the various so-
cial networking sites, which spread hatred, rumors,
etc., between the different communities, groups, or
individuals. Meme (Dawkins, 2016) is the form of
multimodal media that has been initially created

to spread humorous content, but due to its multi-
modal nature, some memes help users to spread
hate speech in the form of dark humor. On social
media, posting such memes to troll, cyberbully,
or targeting someone is increasing rapidly. Un-
like other multimodal tasks (e.g., Visual Question
Answering, Image Captioning, etc.), in sentiment
analysis for memes, textual and visual information
are very weakly semantically aligned. In such a
situation, we cannot uncover the complex mean-
ing of hateful content until we get to know both
the modalities and their contributions in any con-
tent hateful. Analysis of such memes can bring
valuable insights that are not explored yet. For
example, if there is a meme with text containing
“Look how many people love you.” The sentiment
of this meme can, itself, be positive, negative, or
neutral. The sentiment can only be found if and
only if we add an image to it (c.f. Figure 1). Some
memes are purely humorous, while others spread
offensive content in the form of dark humor, sar-
casm, mockery, etc. Sentiment analysis of memes
in a more effective way will facilitate combating
such social media issues.

Figure 1: A meme where only after focusing on both
text and image, negative sentiment can be identified.

With the phenomenal growth of social media
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networks, sentiment analysis plays a significant
role in handling various aspects of political and
religious views of society. Sentiment analysis
research has been a progressive area in Natural
Language Processing (NLP). It is ranging from
document-level classification (Lin and He, 2009;
Mouthami et al., 2013) to learning the word and
phrase polarity(Hatzivassiloglou and McKeown,
1997; Esuli and Sebastiani, 2006). Several
supervised machine learning and feature-based
techniques have been used to tackle this problem
(Lai et al., 2015; Kouloumpis et al., 2011). How-
ever, deep learning-based techniques have gained a
lot of popularity in recent years (Truong and Lauw,
2019). A significant amount of works have been
done which includes the analysis of opinions about
hotel reviews ((Kasper and Vela, 2011; Shi and
Li, 2011)), product reviews ((Cernian et al., 2015;
Wei and Gulla, 2010; Fang and Zhan, 2015)) etc.
Initially, sentiment analysis has been carried out
mostly using text (Badjatiya et al., 2017; Davidson
et al., 2017; Fortuna et al., 2019). Recently due
to the growth of multimedia contents in social
media, we also need to develop robust models
that would deal with multimodal content. There
have been very few attempts towards analyzing
the sentiment of memes by researchers. However,
research shows that there is a far way to go if we
compare the system-generated output to the human
evaluation. There can be several reasons for this,
such as hateful meaning hidden behind humor,
sarcasm, the use of very twisted words, or image
to spread hate (Sharma et al., 2020). Lack of
annotated datasets can also be one of the reasons
for this kind of failure.

The key attributes of our current work can
be summarized as follows: (i) We develop a
deep neural network-based architecture to explore
the idea of co-attention to identify the impact of
text and image simultaneously for predicting the
correct sentiment of a given meme.(ii) We also
explore the concept of Multimodal Factorized
Bilinear pooling to represent the textual and visual
features in a internet meme analysis dataset. We
test the significance of our proposed method
on SemEval2020 (Sharma et al., 2020) dataset.
Evaluation results the accuracy and macro-F1 of
54% and 36.81%, respectively, which are higher
than the baseline model for the given task.

2 Related Work

This section briefly discusses the review related to
two aspects: a) Sentiment analysis for unimodal
data, b) Sentiment analysis for multimodal data.

2.1 Sentiment analysis in unimodal data

With the emergence of social media and vast in-
ternet content, Sentiment analysis has received
much attention in the Natural Language Process-
ing (NLP) community. It is very useful on topical
categorization task to sort documents according to
their subjects such as economics or politics ((Ali
et al., 2019; Ilyas et al., 2020)). The work reported
in (Kouloumpis et al., 2011) investigated the use-
fulness of some linguistic features and other fea-
tures to get an idea about the informal and creative
language used in microblogging. Similarly, au-
thors in (Agarwal et al., 2011) proposed to use Part-
of-Speech (PoS)-specific prior polarity features to
examine sentiment analysis on Twitter data. (Hu
and Flaxman, 2018) pioneered HEMOS (Humor-
EMOji-Slang-based), a kind of fine-grained senti-
ment analysis system for the Chinese language to
investigate the significance of perceiving the im-
pact of humor, pictograms, and slang to affect users
on social media. To address the challenge of senti-
ment reflection prediction in visual content,(Borth
et al., 2013) initiated a data-driven systematic ap-
proach by using psychology theories to construct
a Visual Sentiment Ontology(VSO) which is a col-
lection of 3,000 Adjective Noun Pairs (ANP) to
construct SentiBank, a mid-level concept represen-
tation of each image to characterize the sentiment
reflected in any visual content. Similarly, we also
see a few works on aggression detection from the
given textual data (Kumar et al., 2018; Xu et al.,
2012).

2.2 Sentiment analysis in multimodal data

Although multimedia content is significantly grow-
ing on social media, it is a great challenge to un-
cover the underlying sentiment mentioned in these.
Multimodal sentiment analysis for detecting the
polarity of image and text is similar to finding out
the hateful content in internet memes. It is also ob-
served that deep learning techniques significantly
outperform when it is compared to the traditional
machine learning approaches on multimodal data
(Kumar et al., 2020; Tran and Cambria, 2018). Vis-
taNet (Lecun et al., 2015) shows the significant
importance of visual knowledge in the visual and
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Figure 2: Textual and image feature after applying self-attention

textual content for detecting a sentiment of a docu-
ment. The research reported in (Yang et al., 2019)
tried to explore several deep learning techniques to
integrate textual and visual parts of a meme.

The authors in (Yu et al., 2019) pioneered
a cascade of Modular Co-Attention Network
(MCAN) with a cascade of modular co-attention
(MCA) layers, each of which consists of the
self-attention and guided-attention units to model
the intra and inter modal interactions synergis-
tically. Furthermore, a Dynamic Co-attention
Network(DCN) for VQA was introduced in (Xiong
et al., 2018). In a paper, (Sabat et al., 2019)
reported how visual modality can bring more
information than linguistic information for the
hateful memes classification task. A hierarchical
method for multimodal processing of features
using deep learning techniques has shown good
result(Majumder et al., 2018). Authors in a paper
(?) introduced the idea of multimodal factorized
bilinear pooling with co-attention to demonstrate
that MFB with co-attention on the real-world VQA
dataset achieves new state-of-the-art performance.

Based on the above literature survey, we un-
derstood the need to develop such a robust model
that can quickly identify the sentiment of a given
meme. In our work, we explored the significance
of the co-attention and MFB mechanism on the
multimodal sentiment analysis task.

3 Methodology

Our current task aims at determining the sentiment
of a given meme in a multimodal dataset. The prob-
lem can be defined as follows: Given every meme
Mi in the dataset which is a combination of text
Ti = (ti1, ti2, ...., tik) and image Ii with the shape
(224,224,3) in RGB pattern, our task is to create
one classifier that should predict one correct label
Y ⊆{neg,neu,pos} for Mi i.e. predict the correct

sentiment whether a given meme is negative, neu-
tral or positive. The respective optimizing goal is
then to learn the parameter θ and get the optimum
loss function L(Y |M, θ).

At first, we develop a unimodal baseline system
for text and image each. Finally, different multi-
modal approaches for the fusion of both modalities,
i.e., textual and visual, have been described in the
following sections:

3.1 Embedding Layer

At first, the pre-processing is performed on the
texts, which include stop-word removal and lower-
casing of tokens.After pre-processing, every word
of each sentence Si = (wi1, wi2, ...., wik) where
k is the max length of the sentence, is represented
using its semantic representation. Each word wij

is transformed into a pre-defined size of the vec-
tor, which contains the semantic meaning of that
word, known as the word embedding vector. In our
experiment, we use FastText (Bojanowski et al.,
2017) word embedding for the same purpose. This
embedding vector is passed through a deep neural
network-based classifier for the sentiment analysis
task further.

3.2 Textual Features

We use the convolutional neural network(CNN)
(Simonyan and Zisserman, 2015) architecture for
identifying the sentiment of a given textual part
of the meme. The CNN model consists of three
layers, namely convolutional, pooling, and fully
connected layers. Textual features are extracted
from the fully connected layer. For our experiment,
we use three convolution layers with filter sizes
2, 3, and 4. Each convolution layer consists of
128 filters. Equation 1 shows the textual feature
vector Ti of a sentence Si after passing it through
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Figure 3: Our proposed co-attention with Multimodal Factorrized Bilinear Pooling based Model

convolution neural network.

Ti = (t1i , t
2
i , .....t

d
i ) (1)

3.3 Textual Features with self-attention
On top of this textual feature, we use the attention
mechanism. For a given sentence S, the attention
model finds out the most important words with the
help of attention weights, which is beneficial for
the decision-making purposes.

The text feature after applying attention is the
weighted sum of all the words present in the sen-
tence Si. It uses attention weights of each source
word, as given in equation 2.

cki =

d∑

j=1

αijhj (2)

We find out the attention score αj
i for every feature

representation wij of each word tji in the sentence
Si which is given in equation 3.

αj
i =

exp(eji )∑d
j=1 exp(e

j
i )

(3)

where,
eji = θ(Wtji + b) (4)

3.4 Visual Features
For extracting the visual features, we use the pre-
trained VGG-19 model, which is trained on Im-
agenet (Simonyan and Zisserman, 2015) dataset.
Image with the input shape (224*224) is given to
the VGG19 architecture. In VGG19, we kept all

the lower layers frozen and extracted the output of
the block5− conv4 layer. The extracted output has
196 regions, and 512 dimensions represent each
region. So, finally, we obtain a region feature with
(196*512) dimensions passed to one dense layer
with 250 neurons.

3.5 Visual Features with self-attention

The output from the dense layer mentioned in Sec-
tion 3.4 is passed through the attention layer to
obtain the most important regions that play a vital
role in image classification.

Equation 5 shows the region feature of an image
Ii

Ri = (R1
i , R

2
i , ..., R

k
i ) (5)

We apply attention on top of the textual features
in Section (3.2). Similarly, we use attention on the
top of the region feature Ri of an image. After
attention, the visual feature is the weighted sum of
all the regions present in the Image Vi. It uses at-
tention weights of each region, as given in equation
6.

cki =

d∑

j=1

βijRj (6)

We find out the attention score βji for every region
Rj

i in Ri which is given in equation 7.

βji =
exp(hji )∑d
j=1 exp(h

j
i )

(7)

where,
hji = θ(WRj

i + b) (8)
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Table 1: Result of models

Model Modality Fusion F1-Score Accuracy
Model 1 SemEval2020 baseline - 0.2176 –
Model 2 Only Text - 0.3278 0.40
Model 3 Text+Self-Attention - 0.3397 0.49
Model 4 Only Image - 0.2936 0.34
Model 5 Image+Self-Attention - 0.3166 0.37
Model 6 Text+ Image early fusion with concatenation 0.3222 0.51
Model 7 Proposed Model1 Co-attention model Bilinear Pooling 0.3532 0.52
Model 8 Proposed Model2 Co-attention with MFB 0.3681 0.54

(Keswani et al., 2020) SemEval2020(SOTA) - 0.3546 –

T∑

t=1

P (ŷ0(x, t)|x).s(ŷ0(x, t)) (9)

3.6 Fusion of textual and visual features for
baseline model

After extracting the textual and visual features sep-
arately, we use a fusion technique for our baseline
model where we merely concatenate both textual
Ti and visual feature Vi. This concatenated feature
vector is passed through one dense layer which fol-
lows one softmax layer. The softmax layer gives
the probability distribution for each class to classify
the given meme into pre-defined categories.

3.7 Proposed model
Co-attention: Along with self-attention for textual
and visual features, we also explore the concept of
co-attention to introduce a natural symmetry be-
tween text and image where image representations
guide the textual attention and textual representa-
tion guide the visual representation(Lu et al., 2016).

For a given textual feature T ∈R(d×T ) and given
a visual feature T ∈R(d×V ), we calculate a similar-
ity matrix representation called as affinity matrix
A ∈R(T×V ) as follows:

A = tanh (T TWbV ) (10)

Using the affinity matrix A in equation 10, we
calculate the textual and visual attention maps in
the following way:

HV = tanh ((WtT )A+WvV )

aV = softmax(wT
hvHV )

(11)

HT = tanh ((WtT + (WvV )AT )

aT = softmax(wT
htHT )

(12)

Here, Wt,Wv ∈R(k×d) and wT
ht, w

T
hv are weight

matrix. aV and aT are the attention probabilities
of image and textual part, respectively.

After that, we calculate the textual (TV ) and
visual (IV ) attention vector, which is the weighted
sum of textual and visual features.

TV =
T∑

t=1

aTi Ti (13)

IV =

N∑

i=1

aVi Vi (14)

3.7.1 Fusion of textual and visual features
with bilinear Pooling

In the earlier fusion techniques (e.g.concatenation
of both feature vectors, element-wise multiplica-
tion), the system could not fully interact with mul-
timodal features. In the case of bilinear pooling,
the system fully captures the complex association
between image and textual features to get a more
fine-grained classification decision. Each element
of the textual feature interacts with every element
of the visual feature using an outer product. The
outer product of two vectors Ti = (t1, t2, .....tm)
and Vi = (v1, v2, ...vn) can be defined as ⊗ which
results in a matrix P ∈R(m×n). Here, Ti in Rm is
the textual feature vector, and Vi in Rn is the visual
feature vector.

M = Ti ⊗ Vi = Ti × V T
i (15)

where Mm∗n is the output of the bilinear model.

3.7.2 Fusion of textual and visual features
with Multimodal Factorized
Bilinear(MFB)

Although bilinear pooling adequately captures
element-wise interactions between feature dimen-
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sions, it does so at the expense of a set of pa-
rameters, which can result in significant comput-
ing costs and the risk of over-fitting. The Multi-
modal Factorized Bilinear(MFB) module may be
used to fix this problem effectively. The associa-
tion between textual and visual feature represen-
tations is maximised using this fusion mechanism.
Given two feature vectors Ti = (t1, t2, .....tm) and
Vi = (v1, v2, ...vn), where Ti is textual feature and
Vi is visual feature of a meme. We can easily com-
pute the bilinear pooling of these two vectors as
follows:

M = T T
i WiVi (16)

where Wi∈R(m×n) is a projection matrix and Mi

is the output of the bilinear model.
Furthermore, the projection matrix Wi in Eq.16

can be easily factorized into low-rank matrices.

M = T T
i XiY

T
i Vi =

k∑

d=1

T T
i xdy

T
d Vi

= 1T (XT
i Ti ◦ Y T

i Vi)

(17)

where k is the latent dimensionality of the
factorized matrices Xi=[x1, x2, ..., xk] Yi =
[y1, y2, ..., yk], ◦ is the Hadamard product of two
vectors, 1∈Rk an all-one vector. In order to
obtain the output feature MTV ∈Ro by Eq.17,
weights to be learned are two three-order ten-
sors X = [X1, X2, ..., Xo] ∈R(m×k×o) and Y =
[Y1, Y2, ..., Yo] ∈R(n×k×o). We can easily reformu-
late X and Y vectors in 2−D matrices X’∈Rm×ko

and Y’∈Rn×ko easily with simple reshape opera-
tion. We can then write Eq.17 as the following:

MTV = AvgPool(XT
i Ti ◦ Y T

i Vi, k) (18)

MTV = sign(MTV )|MTV |0.5 (19)

MTV = (MTV )
T /||MTV || (20)

where AvgPool in Eq.18 is the average pooling
over MTV . Furthermore, to reduce the cost of vari-
ation in the magnitude of output neurons due to
element-wise multiplication, Power-Normalization
in Eq.19 and l2-Normalization in Eq.20 is intro-
duced to the MFB module. These operations re-
strict the model to go under the state of local min-
ima.

We can formulate the class prediction for a given
meme Mi using Softmax as the activation function
in the final output layer as:

ŷ = P (Yi|Mi,W, b) = softmax(MiWi + bi)
(21)

where, ŷ is the prediction probability of selecting
the ith class (Yi) given Mi, bias bi, and weight ma-
trix Wi (i ∈(neg,neu,pos)). We use the categorical
cross entropy as loss function with the following
formula:

L = −
∑

[y log ŷ + (1− y) log(1− ŷ)] (22)

where, y is the original class and ŷ is the predicted
class of the meme.

3.8 Models
For our experiment, we develop the following mod-
els. The first is the official baseline model from
SemEval, whereas the others are different varia-
tions of our proposed system.

Model 1 (Baseline Model) This model is the
baseline model reported in SemEval2020 Task8
Subtask-A paper(Sharma et al., 2020). This model
uses CNN + BiLSTM framework to extract the
textual features and VGG-16 to extract the visual
elements.

Model 2 (Only Text) The first model is the base-
line model for the text part of memes. We use the
CNN architecture to obtain the textual features.
The framework of this model is discussed in Sec-
tion 3.2. This textual feature is passed through the
output layer with one softmax activation for the
final prediction.

Model 3 (Text+ self-Attention) In this model,
we use self-attention on the top of text features. The
framework of this model is described in Section
3.3. The attended textual feature is passed through
one dense layer, following a softmax layer with the
final prediction.

Model 4 (Only Image) The architecture of this
model is given in Section 3.4. This model uses a
pre-trained VGG19 framework to obtain the region-
specific features without attention to classify a
meme into a specific category. Extracted visual
features are fed to the output layer having softmax
activation for the final prediction.

Model 5 (Image+ self-Attention) In this model,
attention is used on the top of the visual features as
mentioned in Section 3.5. After applying attention
to the visual feature, it is passed through a softmax
layer with three output neurons.
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Input image
(a) (b) (c)

True label negative neutral negative
Model2 positive neutral positive
Model3 neutral neutral neutral
Model4 negative positive positive
Model5 negative negative positive
Model6 neutral positive neutral
Model7 positive positive neutral
Model8 negative neutral negative

Figure 4: Outputs from different models

Model 6 (Text + Image with self-attention) In
this model, we concatenate both textual Ti and vi-
sual feature Vi (c.f. Section 3.6). After obtaining
a concatenated feature vector, we pass it through
one dense layer. The dense layer follows the out-
put layer with one softmax activation for the final
prediction.

Model 7 (Proposed Model-1 (Text + Image
with co-attention and bilinear pooling)) This is
our first proposed model, described in Section
3.7.1.

Model 8 (Proposed Model-2 (Text + Image
with co-attention and MFB)) This is our sec-
ond proposed model which is described in Section
3.7.2.

Table 2: Data statistics

Data Class Statistics Distribution

Train
Positive 4160 59.5%
Neutral 2201 31.5%

Negative 631 9.0%
Total 6992 100%

Test
Positive 831 59.56%
Neutral 439 31.44%

Negative 126 9.02%
Total 1396 100%

4 Datasets and Experiments

4.1 Datasets

To assess the significance of our proposed frame-
work, we use a multimodal dataset given in Se-
mEval2020 Task8 Sabtask A (Sharma et al., 2020).
The dataset consists of 6,992 memes for training,
where 10% is selected for validation, and testing
is done on 1396 memes. Table 2 presents the sum-
mary of the dataset used.

4.2 Experimental Setup

For the experimental setup, we use keras with ten-
sorflow at the backend. From the dataset distribu-
tion, it is visible that the dataset is skewed towards
a positive class. To tackle this problem, we use the
class weights for each class during implementation.
We evaluate our system performance on the batch
size of (16,32,64) and dropout rate as (0.2,0.3,0.4).
We obtained the best performance using the batch
size of 64 and the dropout rate of 0.4. During the
training time for every model, we use the Adam op-
timizer with lr=3e-5, beta1=0.9, and beta2=0.999
for the loss optimization.

4.3 Result and Analysis

In this section, we discuss the performance of each
model described in the above section. We report
the results in the form of accuracy and F1-score. In
Table 1, results of all the models are shown. The
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Input image
True label negative negative negative
Model 8 neutral positive neutral

Figure 5: Examples of miss-classification by the proposed framework

baseline model for text data obtained 49% accu-
racy with 32.78% F1-score. In contrast, when we
applied attention to the top of the textual feature
reported in Model 3, it gave us a decent baseline
with 49% and 33.97% accuracy and F1-score, re-
spectively. Similarly, Model 4 is a decent base-
line model for only an image as an input with re-
ported 29.36% accuracy and 34% F1-score. Fur-
thermore, the visual attention model, i.e., Model
5, also demonstrates a comparatively good perfor-
mance with a reported accuracy of 31.66%.

Table 3: Confusion matrix of the proposed model

Negative Neutral Positive
Negative 26 18 82
Neutral 70 114 256
Positive 126 190 514

Model 6 is the framework where we merely con-
catenate the attended textual and visual feature vec-
tors. We can observe in Table 1 that simple con-
catenation does not help the classifier to classify
memes into its’ right category effectively. The re-
ported accuracy and F1-score for this model are
51% and 32.22%, respectively, which are −1.75%
and +0.56% points increments (in terms of F1-
score) when compared to Model 3 and Model 5,
respectively.

To obtain a more robust multimodal classifier,
we use our proposed deep learning framework men-
tioned in Section 3.7. Our model reported in Sec-
tion3.7.1 i.e Model 7 performs better than all previ-
ously reported models. It shows +3.1% improve-
ment in F1- score in comparison to Model 6. Fur-
thermore, the significant growth in the accuracy as
well as in the F1-score clearly shows the effective-
ness of our proposed Model 8 mentioned in Section

3.7.2. We found the performance of Model 8 to
have increased significantly in terms of F1-score by
+4.59% and +1.49% when compared with Model
6 and Model 7, respectively. We find this improve-
ment statistically significant as we performed the
significance t-test conducted at a 5% significance
level.

4.4 Detailed Analysis
We perform detailed quantitative and qualitative
analysis of the output generated from our models
to understand where our model succeeds and where
our model fails. Results of all models are shown
in Table 1. We take some example cases in Figure
4 where we evaluate the performance of all the
models.

• For example (a), we can see that the visual
model and our proposed model (text + visual)
performs better than the other models.

• For example (b), it is shown that the textual
model and our proposed model (text + visual)
3.7.2 performs well.

• In a similar way, for a given example (c), only
the proposed model 3.7.2 shows the accurate
output.

In Table 3, we report the confusion matrix of
our proposed model. From the confusion matrix,
we can identify the effectiveness of our proposed
model. We can observe that using co-attention and
an effective MFB based fused feature representa-
tion, the system can correctly capture the complex
association between visual and textual representa-
tion.

We also perform qualitative analysis on the
dataset to analyze the output from our proposed
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model. We observe that due to the implicit na-
ture of negative polarity memes, in few cases, our
proposed multimodal system couldn’t relate the tex-
tual and visual features properly, which results in
miss-classification. We encountered a few complex
examples where both textual and visual parts were
neutral separately, but it became negative when we
combined both the modalities. In such cases, our
model was not able to produce a good result (c.f.
Figure 5).

5 Conclusion

In this work, we have proposed an end-to-end
CNN-based deep neural network that consists of
co-attention that jointly reasons about textual and
visual representation. Additionally, we incorpo-
rated one common portrayal of a meme by utilizing
the multimodal factorized bilinear pooling of tex-
tual and visual features. By introducing these joint
representations, we obtain more effective multi-
modal features to identify the sentiment of a given
meme. From the quantitative and qualitative er-
ror analysis on the recently released SemEval-2020
Task-8 (Sharma et al., 2020) dataset, we observed
that our proposed method produces promising re-
sults with respect to the baseline models. In the
future, we will investigate more fusion strategies to
combine both the modalities effectively; and inves-
tigate methods to extract essential objects from the
meme.
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Abstract

The presence of sarcasm in conversational sys-
tems and social media like chatbots, Facebook,
Twitter, etc. poses several challenges for down-
stream NLP tasks. This is attributed to the
fact that intended meaning of a sarcastic text
is contrary to what is expressed. Further, the
use of code-mix language to express sarcasm
is increasing day by day. Current NLP tech-
niques for code-mix data have limited success
due to the use of different lexicon, syntax,
and scarcity of labeled corpora. To solve the
joint problem of code-mixing and sarcasm de-
tection, we propose the idea of capturing in-
congruity through sub-word level embeddings
learned via fastText. Empirical results show
that our proposed model achieves F1-score on
code-mix Hinglish dataset comparable to pre-
trained multilingual models while training 10x
faster and using lower memory footprint.

1 Introduction

Sarcasm is defined as a sharp remark whose in-
tended meaning is different from what it looks like.
For example, “I am not insulting you. I am de-
scribing you.” could mean that the speaker is in-
sulting the audience, but the receiver does not get
it. Sarcasm usually involves ambivalence (also
known as incongruity which means words/phrases
having contradictory implications (Xiong et al.,
2019) and difficult to comprehend. Though En-
glish is used as a way to communicate and ex-
change messages, majority of the people still use
the mother language to express themselves on so-
cial media (Danet et al., 2007). According to one
study (Hong et al., 2011), more than 50% posts
on Twitter are written in a language other than
English. Code-switching (also known as code-
mixing) is a writing style in which the author uses
words from different languages either in the same

∗Work done while the author was an intern at IIT Indore

sentence (called intra–sentential) or different sen-
tences (called inter–sentential) switching. An ex-
ample of code-switching is:“he said kal karte hai
kaam”” (Gloss: he said tomorrow we’ll do the
work). The studies such as (Vizcaı́no, 2011; Siegel,
1995) show that people use code-switch language
when trying to convey comicality, satire or humor.
Motivated by previous studies, we plan to detect
sarcasm in code-mix languages. Though many
studies exist to detect sarcasm in unimodal and
multimodal data (Joshi et al., 2015, 2017; Carvalho
et al., 2009; Xiong et al., 2019; Cai et al., 2019),
methods to detect sarcasm in code-mix data are
limited and have not been explored much. (Bansal
et al., 2020; Aggarwal et al., 2020; Swami et al.,
2018). It is due to several challenges such as
ambiguous words, variable lexical representation,
word-level code-mixing, reduplication, and word-
order.

To solve some of these issues, we present a
deep-learning based architecture to capture incon-
gruity in code-mix data. Our proposed model
achieves competitive performance as compared to
pre-trained multilingual models (fine-tuned on the
code-mix sarcasm detection task) with significantly
fewer parameters and faster training time. Our con-
tributions are as follows:

• Propose a deep learning based architecture
along with sub-word level features to capture
incongruity for sarcasm detection.

• Evaluate the performance of the proposed
model on the Hindi-English (Hinglish) code-
mix Twitter data that we collected. We further
analyze existing multilingual models on the
same. Our code+data will be available on 1.

• We will release the benchmark sarcasm
1https://github.com/likemycode/codemix
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dataset for Hinglish language to facilitate fur-
ther research on code-mix NLP.

2 Related Works

2.1 Learning Representation for Code-Mix
Data

Models developed for multilingual representation
learning have been explored for code-mix data rep-
resentation by several authors (Winata et al., 2021;
Khanuja et al., 2020; Aguilar et al., 2020a; Winata
et al., 2018). Character-level representations have
been utilized to address the out-of-vocabulary
(OOV) issue in code-switch text (Winata et al.,
2018), hand-crafted features were used in (Aguilar
et al., 2019) for handling low-resource scenar-
ios. Fine-tuning multilingual models like mBERT
has shown to yield good results for various NLP
tasks like Named-entity recognition (NER), part-
of-speech (POS) tagging, etc., in (Khanuja et al.,
2020), and surprisingly outperforms cross-lingual
embeddings. Meta-embedding and hierarchical
meta-embeddings have been found to be useful
for closely-related language pairs in code-mix data
(Winata et al., 2021) and usually outperform the
mBERT (Khanuja et al., 2020). Char2Subword
model proposed by (Aguilar et al., 2020b) builds
representations from characters out of the subword
vocabulary, and uses them to replace subwords in
code-mix text (Winata et al., 2018), hand-crafted
features were used in (Aguilar et al., 2019) for
handling low-resource scenario. A centralized
benchmark for Linguistic Code-switching Evalua-
tion (LinCE) is released in (Aguilar et al., 2020a;
Khanuja et al., 2020). Both of these works present
results on several NLP tasks but sarcasm detection.

2.2 Sarcasm Detection in Code-Mix Data

There exists only a few works targeted towards sar-
casm detection in code-mix data. In (Aggarwal
et al., 2020), the author experiments with FastText
(Joulin et al., 2016) and Word2Vec embeddings
on two kinds of data: (1) Hinglish (Hindi-Eng)
tweets, and (2) Hinglish+English tweets. They
find that that Hinglish+English combination pro-
duces better results and achieves best F1 score
of 79.4%. Various hand-crafted features, such as
char n-grams, word n-grams etc., combined with
random-forest/SVM are explored in (Swami et al.,
2018) for sarcasm detection in code-mix, data and
achieve F1-score of 78.4%. However, the dataset
used is highly imbalanced with just 10% of sarcas-

tic tweets and rest non-sarcastic. In such a scenario,
the model might be biased towards predicting non-
sarcastic tweets, and hence the evaluation results
are quite skewed. Along similar lines, different
switching features are used to form feature-vector
and fed into a hierarchical attention network in
(Bansal et al., 2020). They find that switching
feature is a good indicator for irony/sarcasm/hate
speech detection. However, none of these works
handles incongruity explicitly or implicitly which
has shown to achieve impressive results in sarcasm
detection (Xiong et al., 2019).

3 Model Architecture

Code-mix language contains noisy words mixed
with different languages and this might lead to
out-of-vocabulary < OOV > tokens. So, we use
FastText skipgram (Bojanowski et al., 2016; Grave
et al., 2018) for learning subword level representa-
tion from the code-mix data. We hypothesise that
subword level representation is able to handle am-
biguous words, variable lexical representation, and
word-level code-mixing. For example, the ambigu-
ous word “to” may be present in both Hindi and En-
glish language. Learning subword representation
alleviates the problem of encoding the word “to”
differently for both the languages. Further, variable
length words like {“gharr”, “gharrr”, “gharrrr” will
be split into tokens {“gha”,“har”, “arr”,“rrr” } and
uniquely represented using only these subwords
tokens. Code-mix words like “chapless” (Mix of
Bengali “chap” and English “less”) are also rep-
resented via sub-words “chap” and “less”. The
proposed model architecture is shown in Fig. 1.

Each sentence s is represented by its embedding
E = [eT1 , e

T
2 , . . . , e

T
n ], where ei ∈ Rd is the em-

bedding vector and n is the length of the sentence.
Inspired by the work of (Xiong et al., 2019), we pro-
pose the use of self-matching network in order to
capture incongruity within the code-mix sentence.
Specifically, for word-embedding pairs (ei, ej), we
first calculate the joint feature vector mi,j via

mi,j = GELU(eTi ·Mi,j · ej) (1)

where Mi,j ∈ Rd×d is the weight parameter ma-
trix (learnable) and GELU (Hendrycks and Gimpel,
2016) is Gaussian Error Linear Unit activation func-
tion. Instead of tanh as used in (Xiong et al., 2019),
we use GELU as it provides well-defined gradients
in the negative region. Compared to RELU, since
GELU is differentiable for all input values so it is
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Figure 1: The model architecture

widely used in state-of-the-art NLP architectures.
Our findings suggest that GELU activation yields
better results for attention based mechanisms. Note
that the above formulation is a form of bilinear
similarity popularly used in metric learning. To
calculate the attention score αi, i ∈ (1, 2, . . . , n)
for each word, we take the mean of each row (con-
trary to max of rows as in (Xiong et al., 2019)) and
apply the softmax for normalization.

αi = softmax(µ(m1,i), µ(m2,i), . . . , µ(mn,i))
(2)

where µ() is the mean function, m1,i captures the
incongruity of the first word with every other ith

word in the input text. Using the mean of all at-
tention scores considers all the incongruous words
present in the sentence for the computation. This
helps the model to attend and learn from much
larger span of incongruity. These attention scores
denote how much weight should be assigned to
each incongruous word. Next we calculate the
weighted sentence attention vector v by:

v = αTE (3)

Self-attention approach though captures the incon-
gruity in the sentence, it misses the sentence’s com-
positionality which is essential for sarcasm detec-
tion as suggested in (Tay et al., 2018). Therefore,
sentence embedding is passed to the BiLSTM en-
coder (Graves et al., 2013) and the hidden states
of the forward LSTM and backward LSTM are
concatenated as

hi = [
−−−−→
LSTM(ei),

←−−−−
LSTM(ei)],∀i ∈ (1, 2, . . . , n)

(4)
The output of the BiLSTM is concatenated with
the sentence attention vector v and passed through

the MLP layers with dropout. Finally, we pass it
through softmax to predict the distribution over the
binary labels (sarcasm vs non-sarcasm).

ŷ = softmax(MLP ([v, hn])) (5)

where hn is the hidden state corresponding to the
last word in the forward and backward LSTM.

4 Experiments

4.1 The Dataset
The code-mix dataset used by (Aggarwal et al.,
2020) is highly imbalanced with just 10% of sar-
castic tweets and rest non-sarcastic. So, we create a
dataset using TweetScraper built on top of scrapy 2

to extract code-mix hindi-english tweets. We pass
search tags like #sarcasm, #humor, #bollywood,
#cricket, etc., combined with most commonly used
code-mix Hindi words as query. All the tweets with
hashtags like #sarcasm, #sarcastic, #irony, #humor
etc. are treated as positive. Non sarcastic tweets
are extracted using general hashtags like #politics,
#food, #movie, etc. The balanced dataset com-
prises of 166K tweets. We preprocess and clean
the data by removing urls, hashtags, mentions, and
punctuation in the data.

4.2 Baselines
The following baselines are used for comparison.
(a) Attention BiLSTM (Aggarwal et al., 2020):
The text features are extracted using word2vec
and FastText which is fed to Series CNN, Parallel
CNN, LSTM, Bi-LSTM and Attention Bi-LSTM,
(b) Multilingual Models: To showcase the com-
petitiveness of the proposed approach, we also com-
pare with the state-of-the-art multilingual models
like XLM-RoBERTa3 and mBERT4 from Hugging-
face library (Wolf et al., 2019). Specifically, we
first fine-tune these models on the preprocessed
code-mix corpus for mask language modeling task.
Next, we use trained model by attaching a dense
layer on top of it for detecting sarcasm in the code-
mix tweets.

4.3 Experimental setup
For all the experiments, we use a train/valid/test
split of 65:15:20. Categorical cross-entropy loss
is minimized using adam optimizer for 15 epochs
and learning rate of 5e-4 with step wise learning

2https://github.com/jonbakerfish/TweetScraper
3https://tinyurl.com/ydseww9d
4https://tinyurl.com/2dafn48n
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Table 1: Comparative evaluation of the proposed approach.

Model Recall Prec. Acc. F1 Params GPU Train time
Attn. BiLSTM 77.34 81.24 80.21 79.34 21M 68 MB 0.8Hr
XLM-RoBERTa 86.17 91.48 89.04 88.75 278M 575 MB 8 Hr
mBERT 83.20 94.55 89.17 88.51 167M 483 MB 7 Hr
SelfNet (Ours) 88.12 88.25 89.04 88.89 35M 80 MB 1 Hr

(a) Sarcastic (b) Non Sarcastic

Figure 2: Incongruity visualization via attention matrix

rate scheduler. FastText embedding size is 100 and
the number of hidden units in BiLSTM and MLP
layers are 256. We apply dropout of 0.4 along with
gradient clipping of 0.3.

4.4 Results
The comparative evaluation results are shown in
Table 1. We can see that the proposed approach
achieves better F1 score than the baselines on the
Hinglish code-mix data. In particular, our approach
achieves around 10 points more F1 score than the
Attn. BiLSTM of (Aggarwal et al., 2020). Addi-
tionally, it achieves slightly better F1 score than the
pre-trained multilingual models.

Further, we also provide a comparison among all
the 4 models in terms of the trainable parameters,
GPU memory and training time in Table 1. As it
can be seen that multilingual models require much
larger memory and use almost 10x more parameters
than our approach. Also, it is worth noting that the
dataset size used to train our model is significantly
less than the dataset size used to train multilingual
models. Based on the comparison, we observe
that our proposed model achieves a good balance
between performance and model size for code-mix
sarcasm detection. Figure 2 illustrates the output
raw attention matrix P obtained before applying
activation to visualize incongruous words.

As we can see from the Figure 2a, the words
bharat, mein, and bhukhmari hold the highest in-
congruity (negative values). These 3 words define
the semantics of the sentence and our model cor-
rectly attends to those words while finding the in-

congruity. Similarly for Figure 2b, there’s no such
incongruity present in the text. Thus the model
does not assign high negative scores to this matrix.

4.5 Ablation Study

To evaluate the effectiveness of the network, we
conduct an ablation study on the proposed architec-
ture. This is summarized in Table 2. We test the
self matching network proposed by (Xiong et al.,
2019) which is referred to as Self Matching Net.
Next, we replace biLSTM in our model with XLM-
RoBERTa and mBert. The resulting models are de-
noted by “with XLM-RoBERTa” and “with mBert”
respectively. The original Self Matching network
does not perform so well on code-mix data as it
only considers the most incongruous word pairs for
prediction. Using mean operation helps to capture
all the incongruous words which results in perfor-
mance gain. Next when we replace BiLSTM with
the multilingual models, the resulting approaches
do not perform better than the proposed model. Al-
though these models are trained on huge multilin-
gual corpus, our study suggests that we can capture
nuances of code-mix language using self-attention
and simpler models like BiLSTM in a better way.

Table 2: Ablation Study

Models Recall Prec. Acc. F1
Self Matching Net 81.68 81.55 81.7 81.68
with XLM-RobertA 87.71 87.73 87.81 87.81
with mBERT 86.94 86.72 86.85 86.94
SelfNet (Ours) 88.12 88.25 89.04 88.89
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5 Conclusion & Future work

In the present work, we propose the significance of
incongruity in order to capture sarcasm in code-mix
data. Our model effectively captures incongruity
through FastText sub-word embeddings to detect
sarcasm in the text. Empirical results on code-
mix sarcasm data show that our approach performs
satisfactorily compared to the multilingual models
while saving memory footprint and training time.
In future, we plan to work on a generalized model
for other code-mix NLP tasks (NLI, NER, POS,
QA etc) as well as test other code-mix languages
like English - Spanish, English - Tamil, English -
French etc.
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Abstract

Learning sentence representations which cap-
ture rich semantic meanings has been crucial
for many NLP tasks. Pre-trained language
models such as BERT have achieved great
success in NLP, but sentence embeddings ex-
tracted directly from these models do not per-
form well without fine-tuning. We propose
Contrastive Learning of Sentence Representa-
tions (CLSR), a novel approach which applies
contrastive learning to learn universal sentence
representations on top of pre-trained language
models. CLSR utilizes semantic similarity of
two sentences to construct positive instance
for contrastive learning. Semantic informa-
tion that has been captured by the pre-trained
models is kept by getting sentence embeddings
from these models with proper pooling strat-
egy. An encoder followed by a linear projec-
tion takes these embeddings as inputs and is
trained under a contrastive objective. To eval-
uate the performance of CLSR, we run experi-
ments on a range of pre-trained language mod-
els and their variants on a series of Semantic
Contextual Similarity tasks. Results show that
CLSR gains significant performance improve-
ments over existing SOTA language models.

1 Introduction

Learning sentence representations that can encode
semantic information is crucial for many Natural
Language Processing (NLP) tasks such as question
answering, summarization, machine translation.
Many attempts have been made to learn general
purpose sentence embeddings (Le and Mikolov,
2014; Kiros et al., 2015; Hill et al., 2016; Conneau
et al., 2017; Arora et al., 2017; Logeswaran and
Lee, 2018; Cer et al., 2018; Subramanian et al.,
2018; Pagliardini et al., 2018). Since transformer-
based pre-trained language models such as BERT
are introduced and achieve the state-of-the-art re-
sults in many NLP tasks, several methods have

been proposed to generate sentence embeddings
with some pooling strategy such as mean, max from
word level embeddings and fine tune these mod-
els on downstream tasks (Reimers and Gurevych,
2019) or train to calibrate these models for isotropic
embeddings (Li et al., 2020; Su et al., 2021).

Inspired by the recent development of con-
trastive learning in learning visual representations
(Chen et al., 2020), we design a contrastive learning
based architecture to learn high-quality semantic
sentence representations and show this approach
can significantly improve the sentence represen-
tations. We integrate both pre-trained language
models and contrastive learning and call our archi-
tecture Contrastive Learning of Sentence Represen-
tations (CLSR). Different from previous methods
of using data augmentation to construct positive
pairs in contrastive learning (Chen et al., 2020), we
use semantic similarity or entailment relation of
two sentences to build positive pairs. By sending
two similar sentences into a pre-trained language
model and then generate vector representations by
pooling, CLSR is able to keep the rich information
captured by these pre-trained models. A contrastive
objective is used to train an encoder followed by
a linear projection to further learn the embeddings
in an unsupervised way. CLSR is model-agnostic.
The initial sentence embeddings it takes as inputs
can come from any pre-trained model.

2 Related Work

Learning sentence embeddings has attracted a lot
of interest. Paragraph Vector (Le and Mikolov,
2014) and Skip-Thought (Kiros et al., 2015) learns
generic, distributed sentence representations in
an unsupervised fashion, one by proposing two
log-bilinear models and the other one by training
an encoder-decoder model to reconstruct the sur-
rounding sentences of an encoded passage. Hill
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et al. (2016) proposed Sequential Denoising Au-
toencoders and FastSent to learn sentence repre-
sentations from unlabelled data. InferSent (Con-
neau et al., 2017) performs the learning in a super-
vised way by training a Siamese BiLSTM network
on Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015). Universal Sentence
Encoder (Cer et al., 2018), with two variants, com-
bines both by training with transfer learning on
unsupervised data and being augmented on super-
vised data from the SNLI corpus (Bowman et al.,
2015).

Recently there have been several attempts to im-
prove sentence embeddings from pooled outputs
of pre-trained language model such as BERT (De-
vlin et al., 2019). Sentence-BERT (Reimers and
Gurevych, 2019) trains a Siamese network to fine-
tune BERT and its variants. BERT-flow (Li et al.,
2020) learns more smooth and isotropic embed-
dings by applying normalizing flow (Kumar et al.,
2020) to convert BERT sentence embedding distri-
bution into a Gaussian distribution. SBERT-WK
(Wang and Kuo, 2020) improves Sentence-BERT
by incorporating the pattern of layer-wised word
representations in subspace. Su et al. (2021) ap-
plied whitening technique to enhance the isotropy
of sentence representations.

Since contrastive learning has achieved great
success in unsupervised representation learning in
computer vision, it also has gained much interest
in NLP including sentence representation learning.
The following are some recent or concurrent work,
many of which have explored different data aug-
mentation strategies. IS-BERT (Zhang et al., 2020)
learns through maximizing the mutual information
between the global sentence representation and its
local token representation. CERT (Fang and Xie,
2020) augments sentences using back-translation
(Edunov et al., 2018). DeCLUTR (Giorgi et al.,
2020) applies a contrastive objective on textual seg-
ments sampled from nearby in the same document.
CLEAR (Wu et al., 2020) uses multi sentence-level
augmentation to construct positive pairs. Carlsson
et al. (2021) proposes Contrast Tension which coun-
ters the task biases in pre-trained language models
by contrasting the noise between the output from
two independent models. ConSERT (Yan et al.,
2021) explores several ways to augment data such
as adversarial attack, token shuffling etc. SimCSE
(Gao et al., 2021) constructs positive instances by
taking different outputs of the same sentence from

the same pre-trained language model using dropout.
Besides treating the task as unsupervised learning,
although some of the above work such as Yan et al.
(2021), Gao et al. (2021) also explore it as super-
vised learning, our method is mainly to show, by
simply using sentence pairs with high similarity
or entailment relation in existing labeled corpus to
construct positive instances, contrastive learning
can still further significantly improve the quality
of sentence embeddings on top of any pre-trained
language model.

3 Model

v′a v′b

Projection
Head (h)

Projection
Head (h)

va vb

Encoder (e) Encoder (e)

Pretrained
Model (m)

Pretrained
Model (m)

Sentence A Sentence B

minimize distance

sentence embedding

ua ub

Figure 1: Contrastive learning of sentence representa-
tions. Two semantically similar sentences A and B (a
positive pair) are sent to the same pre-trained model m
(e.g., BERT). Each sentence embedding from m goes to
an encoder e and a projection function h. A contrastive
loss is applied to minimize the distance of two sentence
embeddings. Output from e is used as the sentence rep-
resentation for downstream tasks.

Contrastive learning has been a promising ap-
proach in self-supervised learning. It learns generic
representations by contrasting positive pairs against
negative pairs. SimCLR (Chen et al., 2020) is a
simple framework for contrastive self-supervised
learning of visual representations without using
specialized architectures or a memory bank.

CLSR adopts contrastive learning framework
SimCLR (Chen et al., 2020) to learn sentence se-
mantic representations as shown in Figure 1. CLSR
consists of:
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• A pre-trained language model or pre-trained
sentence encoder takes a raw sentence as in-
put and output the sentence embedding, pool-
ing may be applied. For example, pre-trained
BERT with average pooling could be used
to generate a vector representation for a sen-
tence. Two sentences with high similarity are
sent into the pre-trained model respectively to
generate two sentence embeddings. They are
considered as a positive pair. One is treated
as a positive instance of the other. This step
is different from SimCLR. We do not apply
data augmentation technique to construct pos-
itive instance due to natural languages being
highly discrete semantically. Instead, we use
the property of semantic similarity.

• A neural network based encoder e further
encodes sentence pairs into vectors respec-
tively. This encoder could be of any structure.
Since a well-pre-trained language model has
been applied in the first step, in our setting,
a simple Multi-Layer Perceptron (MLP) with
1 hidden layer and ReLu nonlinearity on the
output is used to further encode information
learned through contrastive learning without
fine-tuning. The representation from this en-
coder is used for downstream tasks.

• A linear projection head h is applied to map
sentence embeddings to a new representation
space by training with contrastive objective.
We follow the design in (Chen et al., 2020)
which shows that a projection head can im-
prove performance on downstream tasks.

• A contrastive loss function is defined as fol-
lowing: for a given set of sentences {sm} that
contain positive sentence pair sa and sb with
high semantic similarity, the contrastive learn-
ing process is to find sb in {sm}b 6=a.

After randomly sampling m sentence pairs into
a mini batch, this batch contains 2m sentences.
Each sentence pair is treated as a positive pair, and
the rest of sentences in the batch are treated as in-
batch negatives (Chen et al., 2020; Henderson et al.,
2017). We hypothesize that the probability of hav-
ing one or more sentences in the negative samples
that are highly semantically similar with that in the
positive pair is very low and thus is ignored. Then
the loss function of a positive sentence pair (sa, sb)

Base Model CLSR-STSB CLSR-NLI
BERT-base 59.32 64.94 76.74
BERT-large 57.77 63.84 78.75
SBERT-base 77.12 80.15 81.93
SBERT-large 79.19 80.19 83.76

Table 1: Spearman correlations on STS-B development
set. The 1st column includes 4 base models and their
performance on STS-B. The 2nd and 3rd columns in-
clude the performance of CLSR built on each base
model and trained on STS-B or NLI data respectively.

Batch Size 64 128 256 512 1024
STS-B 64.93 67.38 69.78 76.74 78.55

Table 2: Spearman correlations on STS-Benchmark de-
velopment set to show the effect of batch size. CLSR
is built on BERT-base-uncased and trained on STS-B.

is defined as:

`sa,sb = −log
esim(va,vb)/τ

∑2m
i=1 I(a,i)e

sim(va,vi)/τ
, (1)

where τ is the temperature hyper-parameter,
sim(va, vb) is a function measuring similarity be-
tween two given sentence vectors. We use cosine
similarity for measurement. I is an indicator func-
tion to determine if a sentence si is included as a
negative sample or not. If i 6= a, it returns 1; other-
wise, 0. The final loss is computed across all the
positive sentence pairs in a mini batch. Positive
pairs (sa, sb) and (sb, sa) are both included.

4 Experiments

4.1 Experiment Settings
Datasets: We use two types of training data. One
is Semantic Textual Similarity (STS) in which STS-
Benchmark is chosen. It comprises 8,628 sentence
pairs with similarity score 0-5. We pre-process the
data by keeping sentence pairs with scores higher
than 4 which indicate high similarity. This gives us
totally 1,406 pairs. The other one is Natural Lan-
guage Inference (NLI) data. We follow Sentence-
BERT (Reimers and Gurevych, 2019) to concate-
nate two NLI datasets: SNLI (Bowman et al., 2015)
and Multi-Genre NLI (Williams et al., 2018). SNLI
dataset contains 570k English sentence pairs la-
beled with entailment, contradiction, and neutral.
While Multi-Genre NLI is a collection of 433k sen-
tence pairs annotated with the same three labels.We
pre-process them by only selecting sentence pairs
with label entailment. This leads to total 314,315
samples used in our training.
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Model STS12 STS13 STS14 STS15 STS16 STS-B Avg.
BERT-base 45.61 56.57 57.15 62.94 64.74 64.48 58.58

CLSR-BERT-base 59.83 66.16 63.80 70.11 69.71 70.03 66.61
BERT-large 46.98 52.88 49.56 56.63 61.64 65.37 57.51

CLSR-BERT-large 60.02 63.19 62.74 68.81 71.78 73.53 66.68
SBERT-base 66.35 73.76 73.88 77.33 73.62 73.63 73.10

CLSR-SBERT-base 66.38 74.96 73.81 77.93 75.22 70.35 73.11
SBERT-large 68.79 75.71 75.12 80.29 75.91 75.35 75.20

CLSR-SBERT-large 69.49 76.74 74.64 78.90 77.84 76.84 75.74

Table 3: Comparison of CLSR models and their corresponding base pre-trained models on the series of STS tasks.
Spearman correlations multiplied by 100 are reported. SBERT-base and SBERT-large refer to Sentence BERT built
on BERT base or large and trained using NLI datasets with mean pooling strategy.

4 SOTA models for comparison: For an accu-
rate assessment, BERT-base, BERT-large, SBERT-
base, SBERT-large are selected to compare with
CLSR. BERT models are selected due to their good
performance and popularity in NLP. SBERT mod-
els are popular pre-trained sentence embedding
models and represent the best SOTA performance.

6 STS tasks for evaluation: Since CLSR can
take sentence embeddings from any base models
such as BERT as input, we evaluate its effective-
ness by comparing CLSR and its base models on
the same task. For example, when we perform
evaluation on STS-B, if CLSR is trained by taking
embeddings from pre-trained BERT base model
with mean pooling over its last layer, we run both
BERT and CLSR models on STS-B. As Pearson
correlation is shown to be not suitable for STS
(Reimers et al., 2016), we report the results of
Spearman correlation between the cosine similarity
of a sentence pair and the ground truth label. We
evaluate our model on 6 Semantic Textural Similar-
ity tasks that include STS12-STS16 (Agirre et al.,
2012, 2013, 2014, 2015; Artetxe et al., 2016), the
STS-Benchmark (Cer et al., 2017).

Model setting and hyper-parameters: To fully
assess the computation efficiency of our approach,
we use a simple MLP with only 1 hidden layer
and a 768-dimensional output layer as the encoder
network, and a linear projection head to project the
presentation to a latent space but with the same
dimensions. We train at batch size 512 for 2000
epochs. Learning rate is 0.5 with the decay rate
of 0.0001. Temperature is 0.1. We adopt linear
warmup in the first 10 epochs and decay learning
rate with cosine decay schedule without restarts
(Chen et al., 2020; Loshchilov and Hutter, 2016).

4.2 Training Set Construction

To construct positive instances for contrastive learn-
ing, sentence pairs with high similarity in STS tasks

Pooling Strategy STS-B
CLS 61.34
mean 76.74

Table 4: Comparison on STS Benchmark development
set to show the effect of different pooling strategy. The
CLSR is built on BERT-base-uncased.

can be naturally used. Sentences with entailment
relation in NLI tasks can be an alternative option.
In order to decide which training dataset performs
better, we run an experiment on selection of train-
ing data. CLSR are trained with the 4 base models
on STS-B and NLI datasets respectively. Following
convention, Spearman correlations are reported on
the STS-B development set. As shown in Table
1, compared with base pre-trained models, CLSR
built on those models achieve significant improve-
ments overall. Models trained on NLI dataset per-
form much better than those trained on STS-B with
15 points increment over BERT-base. Based on this
result, we will report results only on NLI dataset
due to space limitation.

4.3 Results on STS Tasks

We evaluate CLSR framework on a series of STS
tasks. We run a CLSR model and its base pre-
trained model on the tasks respectively. Spearman
correlations are reported in Table 3.

Compared with pre-trained BERT base and large
models, the corresponding CLSR models increase
the performance on all STS tasks by large margins.
Compared with SOTA SBERT models, CLSR also
shows solid improvement. It’s reasonable to infer
that such an improvement could be more significant
with more training data, as we only train the CLSR
model using roughly 1/3 of the NLI data, while
SBERT fine-tunes the BERT models using all the
data from the same dataset. The pre-trained BERT
models are not fine-tuned and only a simple 2-layer
MLP is designed to further encode the sentence
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embedding. Surprisingly this simple approach can
still slightly improve performance on several tasks
compared with SBERT. This further validates the
effectiveness of contrastive learning approach.

4.4 Ablation Study

Effect of batch size. Effect of batch size is shown
in Table 2. The performance on STS-B develop-
ment set shows that larger batch size brings better
performance. This is consistent with the previous
finding that contrastive learning benefits from large
batch size (Chen et al., 2020). Since there are 2(n-
1) negative instances in a mini-batch with size n, the
change of batch size affects the number of negative
instances more than that of positive instances. Thus
it can be further inferred that, contrastive learning
in the proposed framework learns more from larger
number of negative instances.
Effect of pooling strategy. Previous work has
shown the effect of pooling strategy (Xiao, 2018;
Reimers and Gurevych, 2019). More specifically,
taking the average of all the output word embed-
dings outperforms usage of the CLS token embed-
ding as sentence embedding. This is also confirmed
in our model as shown in table 4. By taking the
mean of all the work embeddings from the last
layer in BERT-base as input for CLSR, its perfor-
mance on STS-Benchmark task increases as much
as 15 points over the CLS token embedding.

5 Conclusion and Future Work

This paper presents a novel approach of applying
contrastive learning on pre-trained language mod-
els to learn generic sentence representations. The
evaluation on a series of STS tasks shows that our
approach outperforms the pre-trained SOTA lan-
guage models significantly. How to construct multi-
ple positive instances and further integrate the idea
of contrastive learning will be explored in future.
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Abstract 

The Quran, as a significant religious text, 

bears important spiritual and linguistic 

values. Understanding the text and 

inferring the underlying meanings entails 

semantic similarity analysis. We classified 

the verses of the Quran into 15 pre-defined 

categories or concepts, based on the 

Qurany corpus, using Doc2Vec and 

Logistic Regression. Our classifier scored 

70% accuracy, and 60% F1-score using the 

distributed bag-of-words architecture. We 

then measured how similar the documents 

within the same category are to each other 

semantically and use this information to 

evaluate our model. We calculated the 

mean difference and average similarity 

values for each category to indicate how 

well our model describes that category. 

1 Introduction 

The richness of the Quran and the deep layers of its 

meaning offer immense potential for further study 

and experiments. The knowledge in the Quran was 

presented using different approaches, mainly using 

the tree-structure hierarchy (Ta’a et al., 2014). As a 

result, determining a concept's true meaning in the 

Quran is difficult. We want to classify the Quran 

verses based on topics or meanings to assist users 

in identifying the religious knowledge explained in 

the Quran. There has been previous work on 

classifying textual documents and sentences in 

English and Arabic (Al-Kabi et al., 2013). 

However, only a few studies in the literature 

attempt to classify the verses of the Holy Quran 

(Al-Kabi et al., 2013; Al-Kabi et al., 2005; Ta’a et 

al., 2014; Akour et al., 2014).  

                                                 
1https://radimrehurek.com/gensim/models/doc2vec.html  

Therefore, using NLP combined with ML, this 

paper presents an approach to classifying the 

Quran based on topics and meanings. 

 To do so, we need to compute the similarity in 

meaning between its passages. We focus on 

sentence/ paragraph levels. Therefore, we 

represent the verses of the Quran as vectors of 

features and compare them by measuring the 

distance between these features. We use Doc2ve1 

to compute features that capture the semantics of 

the Quranic verses. We then train a logistic 

regression classifier in a supervised way to learn 

the underlying meanings and classify the verses of 

the Quran into fifteen predefined classes or 

categories. We then use the cosine similarity 

measure on the vectors to examine how 

semantically similar the verses are in each class.  

We compute two metrics: average similarity and 

mean similarity difference to inspect the relation 

between the verses in the same class and other 

classes. This information indicates how more 

similar same-category documents are to each other 

than to documents from different categories. A 

higher average similarity indicates how similar the 

documents are in each category. A higher mean 

difference implies that the model can identify those 

documents in one class are more distinct from 

those in other classes. Since we are interested in a 

topical classification, we use the Qurany corpus to 

train and evaluate our model. 

 

The rest of the paper is organized as follows: 

Section 2 presents studies related to the 

classification of the verses of the Quran. Section 3 

describes our approach to classifying the Quranic 

verses and our experiments. Section 4 presents our 

evaluation and results. Finally, section 5 states our 

conclusions and future research directions. 
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2 Related Work 

This section briefly reviews previous work 

conducted on the topical classification of holy 

Quran verses.  

Hamed and Ab Aziz (2018) proposed a Quran 

classification using the Neural Network classifier 

based on the predefined topics. The study used the 

English translation of the Holy Quran. They 

applied the classification to Al-Baqarah chapter as 

it contains many commands and topics. They 

classified the verses of Al-Baqara into two classes, 

Fasting, and Pilgrimage. The thesis of Al-Kabi et 

al. (2013) is restricted in topical classification of 

only two Quran chapters: Fatiha (7 verses) and 

Yaseen (83 verses). Another study (Al-Kabi et al., 

2005), evaluated the effectiveness of four well-

known classification algorithms: Decision Tree, K-

Nearest Neighbor (K-NN), Support Vector 

Machine (SVM) and Naïve Bayes (NB), to classify 

Quran verses according to their topics. They used 

the manual topical classification of Quranic verses 

by (Abu Al-Khair and Kabbani , 2003) to train and 

evaluate the four classifiers. Three selected topics 

(classes) are used, and 1,227 verses were used in 

this study out of 6236 verses in the whole Quran. 

Another classification has been presented by 

Qurany (Abbas, 2009). This project annotates the 

verses of the Qur'an with a comprehensive index of 

nearly1100 topics; it classifies the Qur'an into 

fifteen main themes and subdivides the main 

themes into sub-themes.  

In this work, we exploit the distributed 

representation of text to capture the semantic 

properties of the 6236 Arabic verses of the Quran. 

We transformed the verses of the Quran into a 

numerical form, which can be used as input to ML 

methods to examine the semantic similarity 

between the Quranic verses and classify them into 

topical classes. 

3 Methodology 

The objective of this experiment is to evaluate our 

model in capturing the semantic properties of 

verses of the Quran. Therefore, we examine our 

model on the following tasks: 

 

                                                 
2 http://quranytopics.appspot.com  

1. Classify the verses of the Quran into 15 pre-

defined categories or classes using Doc2Vec 

and Logistic Regression. 

2. Measure how similar the verses within the 

same category are to each other 

semantically, and use this information to 

evaluate our model. 

3.1 The Data 

For the purpose of training and testing our model, 

we create a dataset that contains the 6236 verses of 

the Quran categorized into 15 main topical themes; 

based on Qurany2 corpus. Table 1 shows the high –

level concepts from Qurany corpus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each verse is annotated with a sequence of 

concepts besides the main concept/theme. The 

verses are split into training and test sets. Table 2 

shows an example of the dataset. 

 

 

 

 

 

Main Concept English Concept 

 Pillars of Islam أركان الإسلام

 Faith الإيمان

 The Stories and The القصص والتاريخ

History 

 The Holy Quran القرآن الكريم

 The Work العمل

 Man, and The Moral والعلاقات الأخلاقية الإنسان

Relations 

 Man, and The Social والعلاقات الاجتماعية الإنسان

Relations 

 Jihad الجهاد

 Science and Art العلوم والفنون

 Religions  الديانات

 Organizing Financial تنظيم العلاقات المالية

Relationships 

 The Call for Allah الدعوة إلى الله

 Judicial Relationships العلاقات القضائية

والزراعة والصناعة  التجارة

 والصيد

 

Trade, Agriculture, 

Industry and Hunting 

 General and Political والعامة العلاقات السياسية

Relationships 

Table 1: The high-level concepts from the Qurany 

corpus 
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3.2 Classifying the Quran Verses using 

Logistic Regression 

Following our approach in (Alshammeri et al., 

2020), we map the verses of the Quran to 

numerical vectors. We use ML model on our 

vectorized verses to classify the Quran verses into 

the associated concepts or classes. We set up the 

train/ test documents, pre-process them to be ready 

for training and classification. We train the 

Doc2vec model using the training set and generate 

the vectors. We then build the vector 

representations for the classifier; we infer vectors 

for the documents in the test set using the trained 

model. Then we train the logistic regression 

classifier.  

3.3 Testing Category-Wise & Cross-

Category Verses Similarity 

Documents belonging to the same category would 

seem to be more similar than documents belonging 

to different categories, intuitively. And that's how 

we judge our model: a good model should generate 

higher similarity values for verses in the same 

category than for verses from different categories.  

4 Evaluation and Results 

4.1 Classification Results 

We pre-processed the documents and transformed 

them into a numerical, vectorized form by training 

a Doc2vec model on our data. We inferred new 

vectors for unseen verses/documents from the test 

set. We tried different configurations for the 

hyperparameters of the Doc2vec model, we then 

trained the classifier with the different versions of 

the embeddings. Using 80% of the data set to train 

doc2vec classifier for the Quran verses 

classification, we achieved 68% accuracy, and 

56% F1-score; using the distributed bag of words.  

We have noticed that changing the vector size did 

not have a big impact on the classifier 

performance, but with more training data, the 

accuracy rises to 70%, and F1- score to 60%. Table 

3 shows the classifier performance results using 

different settings of the model: Distributed Bag-of-

words (PV-DBOW) and Distributed Memory (PV-

DM). 

4.2  Categories Similarity Results 

To inspect relationships between the verses 

numerically, we calculated the cosine distances 

between their inferred vectors from the trained 

Doc2vec model. We used this information to 

calculate the average similarity scores and the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mean difference for each category. We want to 

know how much more similar the same-category 

documents are to each other than to documents 

from other categories. Therefore, we created sets of 

verses pairs for all categories. More precisely, 

given our fifteen categories which we denoted by 

C₁, . . ., C15, where each category is a set of verses. 

Hence, we derived 15 average similarities per each 

category; one for same-category documents and 14 

for cross-category documents. Finally, we 

calculated the mean similarity differences between 

the cross-category average similarities and the 

same-category average similarity. A higher mean 

difference implies that the model is able to identify 

documents in one category are more distinct from 

those in other categories. We experimented with 

the two architectures of Doc2vec model.  

 

 

Chapter Ayah Verse Text 

الذين يؤمنون بالغيب  3 2

ويقيمون الصلاة ومما 

 رزقناهم ينفقون

Translation Class Trans 

Who believe in the 

Unseen, and establish 

worship, and spend of 

that We have bestowed 

upon them; 

أركان 

 الإسلام

Pillars of 

Islam 

Table 2: Example of the verse annotation from 

the dataset 

 

 

Train set: 80%     / Test set: 20%                                                

Doc2vec 

model  

Vector 

size 

Testing 

Accuracy 

Testing 

F1score 

PV-

DBOW 

50 0.68 0.56 

100 0.68 0.55 

PV-DM 

 

50 0.64 0.54 

100 0.64 0.54 

Train set: 90%     / Test set: 10% 

Doc2vec 

model 

Vector 

size 

Testing  

Accuracy 

Testing  

F1score 

PV-

DBOW 

50 0.70 0.60 

100 0.70 0.58 

PV-DM 

 

50 0.64 0.55 

100 0.64 0.54 

Table 3: Classification Performance Results 
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Here, we show the results of PV-DBOW 

architecture, with vector size of 50. We didn’t 

include the results using vectors size of 100 as no 

impact were noticed. The result of the evaluation 

can be summarized as in Table 4. 

5 Conclusion 

We used NLP combined with ML to classify the 

verses of the Quran into 15 predefined classes. The 

semantics of the verses were captured using 

Doc2vec embeddings that were used to group 

similar documents. Our model achieved a 

classification accuracy of 68% and 56% F1 score. 

The results confirmed that the classifier scored 

higher accuracy with the distributed bags of words 

architecture of the Doc2vec model. Next, we 

evaluated our model by examining the semantic 

similarity of the Quranic verses. Derived classes 

showed relatively high average similarity for some 

classes using the distributed bags of words 

architecture. The three top classes that achieved 

higher average same-category similarity and 

mean-difference are Faith, Pillars of Islam, and 

Religions. The three classes scored top values 

consistently for both metrics with different runs 

(500, 700, 900, 1100 test samples). The two 

metrics are not relatively high for some classes. We 

contribute that to some classes’ documents similar 

to those of another class. Besides, some verses in 

the Quran discuss more than one concept/ topic. 

The uniqueness and complexity of the Quran 

language could also be a significant reason 

reflected in our results. Table 5 shows an example 

of an instance where a verse belongs to different 

classes/ topics. The results confirmed that the class 

“Faith” has achieved the highest average similarity 

and mean difference.  

 

In the future, we may incorporate subtopic chains 

from Qurany corpus, and we may consider creating 

unique classifications of Quran verses using 

existing knowledge resources, and test our model 

using them. We may consider other approaches for 

computing the semantic similarity, investigate their 

performance, and how they compare to our 

approach. 
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English Category (Mean Difference, 

Same-category 

Avg. Similarity) 

Pillars of Islam (11%, 15%) 

Faith (21%, 26%) 

Man, and The Moral 

Relations 

(2%, 0.74%) 

Stories and History (5.4%, 5.6%) 

The Holy Quran (2.8%, 3.7%) 

The work (2.9%, 6.6%) 

Man, and The Social 

Relations 

(3.8%, 7.8%) 

Jihad (0.92%, 0.16%) 

Science and Art (7.2%, 5.3%) 

Religions (13%, 19%) 

The Call for Allah (3.2%, 6.5%) 

Trade, Agriculture, 

Industry and Hunting 

(8.6%, 8.7%) 

Judicial Relationships (4.5%, 8.2%) 

Organizing Financial 

Relationships 

(2.6%, 4.9%) 

General and Political 

Relationships 

(1.5%, 2.7%) 

Table 4: Evaluation Results using PV-DBOW, 

Vector-size =50, # of test samples = 1100. 

 

Verse Al-Nahl / سورة النحل 

(16, 94) 

Arabic Verse “ َوَلاَ تتََّخِذوُاْ أيَْمَانَكُمْ دَخَلاً بيَْنَكُمْ فتَزَِلَّ قَدَمٌ بَعْد

وَتذَوُقوُاْ الْسُّوءَ بمَِا صَدَدتُّمْ عَن سَبيِلِ ثبُوُتِهَا 

ِ وَلَكُمْ عَذاَبٌ عَظِيمٌ   ”اللّه

English 

Translation 

And make not your oaths a 

means of deceit between you, lest 

a foot should slip after its 

stability, and you should taste 

evil because you hinder (men) 

from Allah's way and grievous 

chastisement be your (lot).  

Topic -Judicial Relationships 

-Jihad 

Table 5: An example of an instance where a verse 

belongs to different classes/ topics. 
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Abstract

Abbreviations and contractions are commonly
found in text across different domains. For
example, doctors’ notes contain many contrac-
tions that can be personalized based on their
choices. Existing spelling correction models
are not suitable to handle expansions because
of many reductions of characters in words. In
this work, we propose ABB-BERT, a BERT-
based model, which deals with an ambiguous
language containing abbreviations and contrac-
tions. ABB-BERT can rank them from thou-
sands of options and is designed for scale. It
is trained on Wikipedia text, and the algorithm
allows it to be fine-tuned with little compute to
get better performance for a domain or person.
We are publicly releasing the training dataset
for abbreviations and contractions derived from
Wikipedia.

1 Introduction

We use abbreviations and contractions (called
”short forms” in this paper) while quickly typing
on digital apps. They are used to save time or ef-
fort in typing and may be unique to us; therefore,
sometimes, only we can understand them. There is
no reliable dictionary of short forms to be referred
because it can be specific to a context or a person.
The short forms often have multiple meanings de-
pending on the domain or the person. In Table 1,
consider the sentence ”The doctor saw an AS cd at
tl” written in a notepad by sales representative at
pharmaceutical company or local news reporter in
Las Vegas. It may be a shorthand for ”The doctor
saw an Ankylosing Spondylitis candidate at trial”
for the sales representative or ”The doctor saw an
Ace of Spade card at the table” for the news re-
porter. Applying downstream NLP AI Algorithms

∗ Correspondence to: prateek.kacker@novartis.com
† Part of work was done during employment at Novartis

Text notes
Notes 1 The doctor saw AS cd at tl
Notes 2 The doctor saw AS cd at tl

Ground Truth
Notes 1 The doctor saw Ankylosing Spondylitis

candidate at trial
Notes 2 The doctor saw Ace of Spades card at

the table
ABB-BERT input

Notes 1 The doctor saw at [ABB] [ABB] at
[ABB]

Notes 2 The doctor saw at [ABB] [ABB] at
[ABB]

ABB-BERT outputs (sorted list on rank)
Notes 1 [ABB]- [Ankylosing Spondylitis, ...]

[ABB]- [candidate, ...]
[ABB]-[trial,...]

Notes 2 [ABB]-[Ace of Spades,...]
[ABB]-[card,...]
[ABB]-[table,...]

Table 1: Text notes made by one can be ambiguous for
others. Notes 1 was written by pharmaceutical sales,
and Notes 2 was written by local news in Las Vegas.
ABB-BERT can suggest the best replacement using a
fine-tuned model for a domain

to this shorthand text gives poor performance be-
cause they have not been trained on personalized
shorthand text. To build better AI systems, we
should expand the short forms in the sentences for
the domain or the user before using it downstream.
Since there is no correct answer for expansions and
numerous right choices based on the domain and
the user, ranking is the better way to handle short
forms text in real-world AI applications.

The definition of abbreviation is simple, and ev-
eryone understands it. For example, USA stands for
the United States of America, or MS stands for Mul-
tiple Sclerosis. On the other hand, a contraction is
a misspelling or shortening of any word, such as dr,
drs, dctr etc., for a doctor or ptnt, pnt, pt etc., for a
patient. Current spelling correction models fail to
capture the correct form for all possible scenarios
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because of the many reductions of characters in
short forms.

Large NLU language models like BERT (Devlin
et al., 2019a), RoBERTa (Liu et al., 2019), AL-
BERT (Lan et al., 2020), or DeBERTa (He et al.,
2020) are trained on normalized data from differ-
ent domains but not with personalized or domain-
specific short forms and hence reduce the model
performance in downstream NLP tasks. For ex-
ample, in a classification task, the contractions or
abbreviation might be critical in determining the
class and can lead to a wrong classification (false
positive or false negative). To solve this problem,
ABB-BERT can normalize the text by ranking the
options to find the best choice for abbreviation or
contraction, leading to better downstream perfor-
mance.

In the past, much work has been done on nor-
malizing text data. Misspellings (simple spelling
mistakes) have been handled well by AI models.
Recent work by Tan et al. (2020) introduced TNT,
a model that was developed to learn language rep-
resentation by training transformers to reconstruct
text from operation types typically seen in text ma-
nipulation, which they show is a potential approach
to misspelling correction. Another AI algorithm
Neuspell (Jayanthi et al., 2020) is a spelling correc-
tion toolkit that captures the context around the mis-
spelled words. We have noticed that misspelling
AI models do not perform well with contractions
because of loss in information due to contraction
and the number of possible variations for the right
choice based on domain.

Kreuzthaler et al. (2016) introduced a data-
driven statistical approach and a dictionary-based
method for the task of abbreviation detection. They
show some success of these approaches; however,
as their approach depends on a dictionary with a
limited number of entries, it cannot be scaled or
extended to other domains. Joopudi et al. (2018)
trained Convolutional Neural Network (CNN) mod-
els to disambiguate abbreviation senses and found a
1–4 percentage points higher performance for CNN
compared to Support Vector Machines. These re-
sults were robust across different datasets.

Li et al. (2019) showed that topic modeling com-
bined with attention networks could help get better
results on abbreviation disambiguation because top-
ics provide the context for the neural networks. To
improve the performance on bio-medical data, Jin
et al. (2019b) utilized pre-trained model BioELMO

Algorithm 1 contraction
Input: word
Output:List of possible contractions

1: Remove any other characters except a−z,A−
Z and lower case the word

2: Remove all the vowels a, e, i, o, u
3: Select all characters except 1st character
4: Find all possible combinations of selected char-

acters without changing order
5: Append the first character to each item in the

list
6: Return list

Algorithm 2 abbreviation
Input:sentence
Output:List of tuples (Abbreviations,expansions)

1: Identify capitalized word in sentence and their
location

2: Identify capitalized word sequences with
length two or more

3: If two sequences are seperated by prepositions
or conjuctions then connect them to form a
sequence

4: Create a list of tuples (initals of uppercase
words in sequence, sequence)

5: Return list

(Jin et al., 2019a) which gets better-contextualized
features of words. Then the features are fed into
abbreviation-specific bidirectional LSTMs where
the hidden states of the ambiguous abbreviations
are used to assign the exact definitions. Recently,
Pan et al. (2021) proved that BERT-based algo-
rithms combined with training strategies like dy-
namic negative sample selection and adversarial
training are very effective in Scientific AI domain
acronym disambiguation datasets (SciAD) (Veyseh
et al., 2020).

The contribution of this paper is threefold. First,
we propose ABB-BERT which uses a ranking al-
gorithm by combining BERT (Devlin et al., 2019b)
and architecture by LaBSE in Feng et al. (2020)
on short forms options based on context. We in-
troduce a new token [ABB] that replaces all short
forms. Second, we show that ABB-BERT is a prac-
tical and scalable way to deal with un-normalized
text across domains. Third, we publicly release the
dataset and code 1 for ABB-BERT for future work.

1Dataset and code available at https://github.com/prateek-
kacker/ABB-BERT
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Figure 1: Graphical representation of the training and inference on ABB-BERT. The sentence written by the sales
rep is ”The doctor saw the AS ptnt” but for training, the sentence is modified to ”The doctor saw the [ABB] [ABB]”.
The model is trained to minimize the additive softmax loss of [ABB] corresponding to AS and ptnts. The ground
truth for the above example is ”The doctor saw the Ankylosing Spondylitis patient”. During inference, ABB-BERT
ranks the several options given per [ABB]. ABB-BERT can be fine-tuned to improve the performance of a domain.

Key Value Number
of
choices

ptnt patient, patent, potent, potential
...

4736

dctr doctor, director, documentary,
declaratory ...

2555

tl table, trial, tool, tuberculosis ... 81236

Table 2: Selected examples of key-value pairs in
dict cont.

Key Value Number
of
choices

as Ankylosing Spondylitis, Ace of
Spades, Astronomy and Space
...

89119

acl Association for Computational
Linguistics, Avant Co. Ltd., Al-
bany Club in London ...

2259

usa United States of America, Ur-
ban Songwriter Award, Ultimate
Sports Adventure ...

1608

Table 3: Selected examples of key-value pairs in
dict abb.

2 ABB-BERT

The goal of the algorithm is to rank the options
for short forms. As shown in 1, the input sentence
X may contain one or more short forms. We as-
sume that short forms’ location in the sentence and
the character composition is known for training

Original Sentence With contractions and
abbreviations

When I got to the house,
Mrs. Everett, the
housekeeper, told me
that Hermione was in
her room, watching her
maid pack.

WI got to the house,
ME, the hs told me
that Hermione was in
her room, watching her
maid pack.

The Sydney area has
been inhabited by
indigenous Australians
for at least 30,000
years.

The Sydney area has
been id by ig Aus-
tralians for at least
30,000 years

Bosnian claims of
Serbian annexation
attempts in 1993 were
brought to the World
Court.

Bosnian cs of Serbian
annexation attempts in
1993 were brought to
the wc.

Table 4: Selected examples of GLUE Benchmark
datasets. They have been manually edited to create
training data for ABB-BERT

purpose. A typical example of sentence with short
form can be seen in Table 4. We substitute the short
forms with [ABB] and the algorithm uses charac-
ter composition to get several options for short
forms, create embeddings and calculate scores to
rank each option.

2.1 Lookup Tables for Options

ABB-BERT ranks options based on thousands of
choices for expansions for short forms present in
the lookup tables dict cont and dict abb. To create
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these tables, English Wikipedia has been parsed
for words for contractions and full forms for ab-
breviations using the rule-based methods in Algo-
rithm 1 and Algorithm 2, respectively. After ob-
serving thousands of short forms used in real-world
datasets, these rules were created, which we can-
not share publicly. Using these rules, we created
key-value pairs for lookup tables, dict cont and
dict abb, from words and abbreviations extracted
from English Wikipedia. Given an abbreviation or
contraction, these lookup tables list words that can
be the possible expansion. We can see the output
of Table 2 and Table 3, and this list can be huge;
hence scalability is crucial for ABB-BERT.

2.2 Model
ABB-BERT is based on the BERT architecture. In
order to make it lightweight, it is pre-trained on an
uncased BERT base model. ABB-BERT requires
that every contraction and abbreviation be replaced
with [ABB] token. Since [ABB] is not present in
the default vocabulary of BERT, the vocabulary
has to be modified to include this special token.
Consider a sentence X in dataset D. After the tok-
enization ofX , a sequence of tokens (x1, x2, ...xn)
is generated. In this setup, x1 is the [CLS] token
for every sentence. We have already replaced the
short forms with the [ABB] tokens hence we know
their exact locations. For simplicity, let (xa, xb, ...)
represent the [ABB] token corresponding to indices
I = (a, b...) . The BERT output z1, z2, ...,zn
corresponding to each token x1, x2, .., xn can be
represented as

z1, z2, ...,zn = BERT (x1, x2, ..., xn) (1)

On top of the BERT model, there is a feed-
forward neural network f(.). The output vectors
from BERT, zi, go through this neural network
such that yi = f(zi). The final combined repre-
sentation of the output is

y1,y2, ...,yn = ABB BERT (x1, x2, ..., xn)
(2)

y1 is the corresponding output for always the token
representing from [CLS] and ya,yb... for [ABB]
because of the indices I .

We do similar exercise for short forms. Each
short form at [ABB] can have thousands of options
and can be found from dict cont and dict abb ta-
bles. For location a, the options are denoted by
Sa which is list of options [S1

a, S
2
a, ..., S

oa
a ] and

length of the list is denoted by oa. The tokenizer

converts S1
a , the first option to (s1,1a , s1,2a , ..., s1,na )

and similarly for other options S2
a, ..., S

oa
a . Simi-

lar to X , every option Sa is propogated through
ABB BERT . The output is represented for S1

a

is represented as:

(t1,1a , t1,2a , ..., t1,na ) = ABB BERT (s1,1a , s1,2a , ..., s1,na )
(3)

The equation 3 is applied to other options in Sa

also. For options, there will not be any [ABB].
[CLS] is the first and the only relevant token hence
the notations can be simplified by dropping the
location information. For instance, s1,1a to s1a, s2,1a
to s2a etc and similarly for t1,1a to t1a, t2,1a to t2a etc.
The algorithm uses additive margin softmax loss,
discussed in the next section, to rank the outcomes.

2.3 Dual Encoder with Additive Margin
Softmax Loss

The architecture of ABB-BERT with additive mar-
gin softmax loss is shown in figure 1. The architec-
ture is similar to the one used by Feng et al. (2020).
We use dual-encoders which feeds a scoring func-
tion and determines the rank of the alternatives
based on the cosine similarity measure, and hence
such models are well suited for ranking problems.
We use the additive margin softmax loss function
introduced in Wang et al. (2018b). Later on, Yang
et al. (2019) used a slightly modified version of
this loss, and Feng et al. (2020) used it in their
language-agnostic LABSE model.

For this paper, the short forms disambiguation
problem is modeled as a ranking problem to find
the best option Sa for short form at index a in
sentence X where Sa is one of the alternatives
in [S1

a, S
2
a, ..., S

oa
a ]. The ranking of the options is

evaluated by the cosine similarity score φ . For
ABB-BERT, φ scores for all the options at loca-
tion a, is calculated by calculating cosine similar-
ity φ between ya and t1a, t

2
a, ..., t

oa
a for options

S1
a, S

2
a, ..., S

oa
a . Ranking of the options at location

a is done by sorting φ scores.
To train the algorithm, we find the conditional

probability P (S|X) for options and for all loca-
tions. For example, S1

a , the first option at location
a will have P (S1

a|X) as:

P (S1
a|X) =

eφ(t
1
a,ya)

∑oa
i=1 e

φ(tia,ya)
(4)

This can be extrapolated to other options and
other locations. For training purposes, for each
location, the first option is the ground truth option.
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Metrics Results A Results B Results C
COLA Matthews corr. 52.6 22.8 48.1
SST2 acc 93.6 20.4 92.9
STS-B Pearson/ Spearman corr 84.9/83.4 62.5/61.2 75.0/73.8
QQP acc./F1 71.6/89.2 54.5/84.9 65.4/88.3
MNLI
Matched

acc. 84.5 71.3 77.9

MNLI
Mis-
matched

acc. 83.4 72.0 77.1

MRPC acc./F1 86.6/81.6 79.8/75.4 75.9/71.5
QNLI acc. 90.9 83.4 82.6
RTE acc. 64.4 56.7 57.8
WNLI acc. 57.5 61.0 58.2

Table 5: Results of inference of downstream task trained on a single BERT-base-uncased model on GLUE Dataset
on the respective tasks. Results A are obtained on the original test datasets. Results B are obtained on test datasets
manually edited by introducing short forms. Results C are obtained on the test datasets improved by ABB-BERT by
selecting 1st option

Additive margin softmax extends the cosine sim-
ilarity φ by introducing a large margin, m, only
around correct option. The margin improves the
separation between the correct option and other op-
tions. Moreover, we scale the cosine values using
a hyper-parameter s in the equation 5. We select
a large value, which accelerates and stabilizes the
optimization (see (Wang et al., 2018b)). Equation 5
represents the loss function and is optimized during
training.

Substituting for the new scoring functions, the
objective loss function for single sentence X be-
comes:

L = − 1

N

I∑

i=a,b,..

ni∑

o=1

es(φ(t
o
i ,yi)−m)

∑ni
k=1 e

s(φ(tki ,yi)−m)
(5)

where

m =

{
1 ≥ m ≥ -1 o=1 or k=1
0 otherwise

s� 1

2.4 Scalable and personalized ABB-BERT
ABB-BERT might have to work real-time during
inference in some applications to generate options
for downstream tasks, though forward pass through
BERT over thousands of alternatives can be expen-
sive and time-consuming. Once ABB-BERT gets

% Correct out-
comes (longest
contr.)

% Correct out-
comes (short
contr.)

Wikipedia 63.7 11.2
Covid
Dataset

61.7 11.0

Apps Re-
view

54.4 0.0

US Bill 58.9 0.67
ECTHR 70.0 13.9

Table 6: Neuspell results on test sets of different do-
mains on contractions. The model performs well with
the longest contraction because it has the most number
of words. The performance of Neuspell on abbrevia-
tions was close to 0 for all datasets.

deployed, it is expected to get better in ranking
for a domain, a user, or group of users with new
annotations and training runs; hence there should
be a personalization phase equivalent to finetuning
the model for a person or a domain. In the person-
alization phase, it is not computationally possible
to perform a forward pass on an entire list of op-
tions or retrain ABB-BERT again as the inference
may be on a device with limited compute. To pre-
pare for the personalization phase and to reduce
the inference time, dict cont and dict abb is parsed
for expansions for all possible options and ABB-
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BERT embeddings ti are stored in a lookup table
dict embed for each expansion. The parameters
for ABB-BERT and the table dict embed are then
frozen. ABB-BERT is modified by adding a single
feed forward layer g(.) parametrized by θ such that
for embeddings yi for sentences from equation 2
and embeddings tox for options from equation 3, is
modified. Training is done only on layer g(.) to
reduce training time.

uo
i = g(toi , θ)

and i ∈ I and for input sentences yi

zi = g(yi, θ)

Here uo
i and zi replaces toi and yi respectively in

equation 5. The model parameters are initialized
by θ0 such that x = g(x, θ0). During the personal-
ization phase, only parameters θ are trained which
is not computationally expensive and can be done
on the device. During inference, ABB-BERT does
a forward pass only for input sentence yi. ABB-
BERT does not need to do a forward pass on op-
tions and it can get embeddings toi directly from
dict embed and a forward pass with parameters θ.

3 Experimental Setup

3.1 Data Preparation and Pre-training
ABB-BERT

Training of ABB-BERT requires significant prepa-
ration of train, test, and validation data. We have
taken English Wikipedia and extracted random sen-
tences for datasets. We know that Wikipedia does
not have contractions as it is a very clean dataset.
Hence we had to create the datasets manually for
ABB-BERT based on short forms in algorithm 1
and algorithm 2 respectively. For contractions,
15% of words in a sentence are selected at ran-
dom. Using algorithm 1, a random contraction
is selected to get options from dict cont. Train,
test and validation datasets contains >1M, >100K
, >100k [ABB] tokens respectively. The ground
truth, which is the correct expansion, is always the
first word of the options in training, test, and vali-
dation datasets. In all the datasets, we have only 50
options per [ABB]. In real-world scenarios, there
will be thousands of options. Pre-training of ABB-
BERT was done on NVIDIA K80 GPUs for a week
on Wikipedia training data with Adam optimizer
and a lr equal to 5e − 06. After hyper parameter
optimization, m was chosen to be 0.8, and s was
30.

3.2 Results
Each sentence in ABB-BERT can have multiple
[ABB] and performance is calculated at each loca-
tion at I = (a, b, ...) There are two metrics relevant
to this experiment. First is the average of rank (R)
of the correct ground truth option, and second is av-
erage of difference (Dif ) between cosine value (φ)
of input sentence [ABB] & correct option which is
the first option in training data and average cosine
value of the input sentence [ABB] & rest of the
options

Dif = φ(t1a,yi)− (

oa∑

n=2

φ(tna ,yi))/(oa−1) (6)

We understand that the best average rank of the
model outcome on the test set is 1, and Dif should
be close to m on average. The larger the value
of Dif , the better ABB-BERT is in predicting the
outcome.

In the first experiment, we evaluate the impact
of short forms on any downstream task. In order
to model the impact, we took GLUE Benchmark
(Wang et al., 2018a) tasks as a downstream task. Ta-
ble 5 column Results A show the performance of
the BERT-base-uncased model on each task with-
out any changes to test data. We manually intro-
duced short forms in test sets of each task using
techniques mentioned in section 3.1. There is a
marked reduction of performance in most datasets,
as shown in table 5 in column Results B. Then
we corrected each test set with ABB-BERT pre-
dictions selecting only the 1st rank option from
50 options. The performance of the new test set
is shown in the table 5 in column Results C. In
the second experiment, we wanted to measure the
model performance improvement after the person-
alization phase. Hence we tested it out on three
domain datasets which were bio-medical, legal,
and reviews datasets. For the biomedical domain,
the Covid-19 QA dataset by Möller et al. (2020)
was used. For the legal domain, US Legislation
Corpus by Kornilova and Eidelman (2019) and Eu-
ropean Court for Human Rights (ECTHR) database
by Chalkidis et al. (2019) was used. For the tech-
nical domain, the Android Applications User Re-
view dataset by Grano et al. (2017) was used. Sen-
tences from paragraphs were extracted for train,
validation, and test datasets. The lookup tables
dict cont and dict abb were used to create short
forms for all the datasets and parameters θ of g(.)
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Pre-personalization Post-personalization
Avg.
Rank
over 50
options

[ABB]
count

Avg.
Diff

%(Top
3 ranks)
in test
set

Avg.
Rank

Avg.
Rank
improve-
ment

count of
[ABB]
Rank
increase

Avg.
Rank de-
crease

count of
[ABB]
Rank de-
crease

Wikipedia
(Pre-
training)

1.45 125079 0.67 - - - - - -

Covid
Dataset

1.58 16218 0.61 95.7 1.57 2 174 1.18 130

Application
Review

1.42 9150 0.67 97.7 1.32 8.89 140 1.6 164

US Bill 1.51 29470 0.64 96.5 1.46 5.17 396 1.49 332
ECTHR 1.26 22295 0.67 98.5 1.25 3.24 144 1.2 254

Table 7: ABB-BERT performance on different domain data pre and post personalization phase. In pre-personalization
phase, ABB-BERT was used without any domain training. The results are for short forms identified together in a
sentence. m is 0.8 and Avg Diff is very close to it. The average rank without training is very high leaving little scope
of big improvement. However there is improvement seen in rank of the correct option in post-personalization phase

were trained keeping ABB BERT parameters
static for this experiment. The number of options
for every [ABB] was 50 for every dataset.
ABB-BERT performance results on a test set are
shown in table 7. Without any training of pa-
rameter θ, ABB-BERT does very well in the pre-
personalization phase. The performance on the test
set in post-personalization gets better though not
noticeable because the average rank is close to 1 in
pre-personalization phase.
In the third experiment, we wanted to compare
our work with existing work. We could not find
the exact equivalent for this work, but we still de-
cided to baseline this work for contractions using
NeuSpell by Jayanthi et al. (2020). Neuspell is
an excellent algorithm for misspellings, but when
exposed to contractions, it makes many mistakes.
Results of the baseline can be found in table 6. As
expected, NeuSpell does well for lengthiest contrac-
tions than shortest contractions. The performance
of Neuspell was close to 0 for all the abbreviation
datasets. Hence, the results are not shown in the
table 6.
For abbreviations, we tested out the algorithm on
the SciAD dataset from Veyseh et al. (2020). ABB-
BERT, without training, gives an average rank of
1.76, which is lower compared to the best model by
Jin et al. (2019b). It is because the loss function of
the algorithm is designed for ranking on large num-
ber of options. However, the performance improves
after the personalization phase, with an average

ranking of 1.55.

3.3 Visualizing ABB-BERT results

In the datasets, ABB-BERT is given only 50 op-
tions. It does a great job in predictions with more
than 90% performance for the top 3 choices. If we
look at the results, we see that most of the time, the
one of top choices can make a correct substitution
for [ABB] in a sentence. Table 8 shows the options
that scored high and make much sense. It shows
that model can learn grammar and understands lan-
guage well. However, the model does not consider
commonsense or missing context in ranking. Ta-
ble 9 shows where the model makes mistakes in
predictions because of inherent challenges in this
task.

4 Conclusions and future work

In this work, we propose ABB-BERT for abbrevia-
tion and contraction disambiguation. ABB-BERT
tackles both of these irregularities in the text si-
multaneously and has the advantage that it takes
into account the context in the sentence when rank-
ing the possible alternatives. We designed it on
Wikipedia and tested it on domain data also. The
model may have a hard time getting the right op-
tions if they are grammatical appropriate based on
context but maybe wrong by commonsense. Future
work can help improve the model and suggest all
[ABB] at the same time based on commonsense and
missing context like geographical location, history
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Original Sentence With [ABB] top 5 alternatives and cosine scores
Young redheaded man holding
two bicycles near beach.

Young redheaded man holding
[ABB] [ABB] near beach.

ABB1:(two, 0.99), (twag, 0.20),
(twili,0.20), (tmfw,0.20), (townian,0.20)
ABB2:(bicycles: 0.86), (berchy: 0.20),
(binchy: 0.20), (bakley: 0.20), (besyde:
0.20)

This problem has been previ-
ously studied for zero-shot ob-
ject recognition but there are
several key differences.

This problem has been [ABB]
studied for zero-shot object
[ABB] but there are several key
differences.

ABB1:(previously, 0.99), (provincial,
0.98), (privateering, 0.2), (pāval, 0.2),
(primavera, 0.2) ABB2: (recognition,
0.99), (recréation, 0.26), (retroactive,
0.21), (rectification, 0.21), (revoluction,
0.20),

a vivid cinematic portrait. a [ABB] [ABB] portrait. ABB1:(vivid, 0.99), (vmvs, 0.20), (vhvi,
0.20), (vitruvius, 0.20), (vouvantes,
0.20) ABB2: (cinematic, 0.99), (chris-
tini, 0.20), (ciston, 0.20), (coeffient,
0.20), (clairant, 0.20)

Table 8: Selected examples of GLUE Benchmark datasets. The models made an accurate predictions on the options
it was given. The model understands grammar and takes in context in the sentence

Original Sentence With [ABB] top 5 alternatives and cosine scores
”It’s our judgment that the pos-
sible avenues to a peaceful res-
olution were not fully explored
at the Tokyo conference,” U.S.
State Department spokesman
Richard Boucher said.

” It’s our judgment that the pos-
sible avenues to a peaceful res-
olution were [ABB] fully ex-
plored at the Tokyo conference,”
[ABB] spokesman [ABB] said.

ABB1: (not ,0.99), (nudator, 0.204), (nafat, 0.204),(ndkt,
0.204), (nonotic, 0.203) ABB2:(United States
Delegation, 0.99), (Ukrainian Second Division,
0.99),(Ukrainian Soviet Division, 0.99), (Ukrainian
Social Democratic, 0.99), (Union of Social Democrats,
0.99), ABB3: (road between,0.99), (Rob Bradley, 0.99),
(Rosario Blanco, 0.99), (Ralph Barbara,0.99), (Roger
Barclay,0.99)

Maude and Dora saw a train
coming

[ABB] saw a [ABB] coming ABB1:(Mountain Daughter,0.99), (Mo Due, 0.99),
(Molino Dam, 0.99), (Mustard Digital, 0.99), (Maude
and Dora, 0.99) ABB2:(train, 0.99), (tegne, 0.20), (tan-
shi, 0.20), (thunderer, 0.20), (trumain, 0.20), (tenelea,
0.20),

Alan J. Konigsberg is related
to Levy Phillips & Konigsberg

[ABB] [ABB] related to [ABB] ABB1:(All Japan Kick,0.99), (Archbishop John
Kemp,0.52), (Arbab Jehangir Khan,0.35), (Ameri-
can John Kendrick,0.3), (Albert James Kingston,0.29)
ABB2:(is, 0.99), (istd, 0.20), (isthmo, 0.20), (inscs,
0.20), (istres,0.20), ABB3:(Lord Palatine of Kyiv, 0.99),
(Liverpool Park Keepers, 0.99), (La Palabra Kilomet-
ros, 0.99), (Long Pine Key, 0.99), (Lalitha Priya Ka-
malam,0.91)

Table 9: Selected examples of GLUE Benchmark datasets. The sentences are hard to predict because of the model
outcome might be correct grammatically but does not match the ground truth. Is some cases enough information is
not provided as input to make a correct prediction

of notes etc.
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Abstract

Fine-tuning self-supervised pre-trained lan-
guage models such as BERT has significantly
improved state-of-the-art performance on nat-
ural language processing tasks. Similar fine-
tuning setups can also be used in commer-
cial large scale Spoken Language Understand-
ing (SLU) systems to perform intent classifi-
cation and slot tagging on user queries. Fine-
tuning such powerful models for use in com-
mercial systems requires large amounts of
training data and compute resources to achieve
high performance. This paper is a study on
the different empirical methods of identifying
training data redundancies for the fine tuning
paradigm. Particularly, we explore rule based
and semantic techniques to reduce data in a
multilingual fine tuning setting and report our
results on key SLU metrics. Through our ex-
periments, we show that we can achieve on
par/better performance on fine-tuning using a
reduced data set as compared to a model fine-
tuned on the entire data set.

1 Introduction

In recent years, a variety of smart voice assistants
such as Apple’s Siri, Samsung’s Bixby, Google
Home, Amazon Echo, Tmall Genie, have been de-
ployed and achieved great success. These voice as-
sistants facilitate goal-oriented dialogues and help
users to accomplish their tasks through voice inter-
actions. One component of such spoken language
understanding (SLU) systems is Natural Language
Understanding (NLU) which aims to extract the
intent of the query (intent classification) and se-
mantically parse the user utterance (slot tagging).
As an example, if a user requests "play madonna"
to the voice assistant, SLU would classify the intent

∗equal contribution
†work done while interning with Alexa AI

as PlayMusic with slot filling of tokens "play" as
Action and "madonna" as Artist.

As in many other language processing fields, pre-
trained language models have seen major success
for natural language understanding. Pre-trained
language models (Radford and Narasimhan, 2018;
Howard and Ruder, 2018; Baevski et al., 2019;
Dong et al., 2019) are generic language models
learned in a semi-supervised fashion whose un-
derlying large scale knowledge is then leveraged
for fine-tuning towards down-stream tasks (Ruder
et al., 2019). BERT (Devlin et al., 2019) is one
such example of a language model based on the
Transformer Network architecture (Vaswani et al.,
2017), pre-trained on a corpora of 3300M words
extracted from publicly available unannotated data
and then fine-tuned on smaller amounts of super-
vised data for specific tasks, relying on the induced
language model structure to facilitate generaliza-
tion beyond the annotations. It provides power-
ful and general-purpose linguistic representations,
triggering strong improvements and significant ad-
vances on a wide range of natural language pro-
cessing tasks. Chen et al. (2019) also observed the
success of BERT to jointly learn intent classifica-
tion (IC) and slot filling (SF) tasks by leveraging
pre-trained representations. Leveraging this joint
IC and SF set up to interpret user utterances in
commercial SLU systems requires large volume of
annotated training data (Ezen-Can, 2020), compute
resources (such as GPUs) and model build time to
cover the variability of customer utterances. Such
resources (human and compute) are not only ex-
pensive but also time consuming, unscalable and
may not be fully optimized to achieve the same
performance.

In this paper, we perform an empirical analy-
sis on identifying subsets of multilingual training
data which can achieve on par or better perfor-
mance as compared to the same model trained
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Figure 1: IC/SF Bert architecture

on the full data-set for the same task. In partic-
ular, we fine-tune a Lean-BERT sized model (Con-
neau et al., 2020), on the IC-SF task for Hindi and
English SLU data. Such mutlilingual large scale
pre-training is known to effectively promote cross-
lingual generalization (Choi et al., 2021; Pires et al.,
2019) giving rise to an opportunity to exploit la-
tent space similarities of such languages to identify
redundancies in training data for fine-tuning. We
experiment with various semantic and rule based
data reduction approaches and report fine-tuning
performance on key SLU metrics.

2 Related work

Finding the right data reduction technique for
BERT fine tuning while maintaining evaluation per-
formance can be considered as a part of two major
classes of problems - fine tuning regime in the low
resource setting to leverage insights from incorpo-
rated best practices, and the few shot classification
class of problems where the model is trained using
only a few samples from each class. Note that the
above two classes of problems are not disjoint and
is concurrently explored in this work.

2.1 Low resource fine tuning
A newly discovered approach to fine-tune a trans-
former based model using low resource data is pre-
finetuning, introduced in Aghajanyan et al. (2021).
In pre-finetuning, the BERT based model under-
goes large-scale multi-task learning between lan-
guage model pre-training and fine-tuning to en-
courage learning of representations that generalize
better to many different downstream tasks. Pre-
finetuning gains are particularly strong in the low
resource regime, where there is relatively little
labeled data for fine-tuning. Our proposed ap-
proaches can be used as an extension on top of

pre-finetuning to use the gains of the pre-finetuning
and benefit from smaller data-sets during the real
finetuning.

Active learning is also a widely popular space
involving few shot learning where the number of ex-
amples to learn a concept are much lower than that
required in a normal supervised learning setting.
Grießhaber et al. (2020) explore active learning in
conjunction with BERT finetuning in the low re-
source setting with less than 1000 data points. The
method involves using Bayesian approximations of
model uncertainty (Gal and Ghahramani, 2016) to
efficiently select unannotated data for manual label-
ing. The method utilizes pool-based active learning
to speed up training while keeping the cost of la-
beling new data constant. They also demonstrate
the benefits of freezing layers of the pre-trained
language model during fine-tuning to reduce the
number of trainable parameters, making it more
suitable for low-resource setting. Drawing inspi-
ration from this, we conduct our experiments by
initially freezing the input embedding layer and
gradually unfreezing it by applying an increasing
fraction of the learning rate over the training steps.

Shnarch et al. (2021) introduce a new unsuper-
vised learning layer between pre-training and fine-
tuning called the Clustering Layer which helps train
BERT on predicting cluster labels and can signifi-
cantly reduce the demand for labeled examples for
topical classification tasks. This technique however
affects the overall latency of the model in real time
systems and we only wish to consider those tech-
niques which modify the input training data rather
than the model itself.

Zhang et al. (2021) explore commonly observed
instabilities in few-sample scenarios for fine-tuning
BERT. Several factors which were identified as
causes of instability were the limited applicability

299



of significant parts of the BERT network for down-
stream tasks and the prevalent practice of using a
pre-determined small number of training iterations.
We have leveraged insights from this work and
accordingly tuned the various hyper parameters of
our model.

2.2 Few shot classification & entity
recognition

While few shot and one shot learning techniques
are very popular in computer vision for tasks
such as image recognition (Koch, 2015), in NLP
Lampinen and McClelland (2018) was the first to
introduce one-shot and few-shot learning for word
embeddings. Geng et al. (2019) explore leverag-
ing the dynamic routing algorithm in meta-learning
(Yin, 2020) to simulate the few-shot task and intro-
duce a novel Induction Network to learn general-
ized class-wise representations. Huang et al. (2020)
explore few shot learning for the entity recognition
task with meta learning, supervised pre-training
(similar to BERT) and self-training to leverage un-
labeled in-domain data. Yang and Katiyar (2020)
explore entity recognition in the nearest-neighbour
paradigm.

The first works in data reduction techniques in
Machine Learning (Wilson and Martinez, 2004;
Arnaiz-González et al., 2016) are based on instance
selection methods broadly classified into two cate-
gories. The first is the incremental method which
begins with an empty set and the algorithm keeps
adding instances to the this subset by analyzing in-
stances in the training set. The decremental method,
on the contrary, starts with the original training data
set removes those instances that are considered su-
perfluous or unnecessary. We would consider our
approach of selecting the subset of data as a decre-
mental method since we start from the original set
and proceed to extract a smaller set from it.

Koh and Liang (2020) introduced the concept
of influential data instances - those training points
which are most responsible for a given prediction -
and how to identify them. However, this approach
can only be applied to machine learning models
trained on convex losses and is also not scalable due
to the computationally heavy Hessian matrix mul-
tiplication involved. Pruthi et al. (2020) extended
this concept to estimate training data influence by
tracing its gradient descent. Using first-order ap-
proximation for Hessian computation and extend-
ing the algorithm to mini-batches, they made this

approach scalable and showed results on an im-
age classification task. This is however unexplored
in the language processing setting for joint intent
classification and slot filling task which is more
complex than binary classification.

3 Method

In this paper, we first describe the SLU architecture
used for the IC-SF task and the four methods for
data reduction.

3.1 SLU model Architecture
We use a common SLU architecture (Chen et al.,
2019) for joint intent classification and slot fill-
ing, which is depicted in figure 1. It consists of a
BERT based encoder, an intent decoder and a slot
decoder. The BERT encoder’s outputs at sentence
and token level are used as inputs for the intent
and slot decoders, respectively. The intent decoder
is a standard feed-forward network including one
standard task specific layer and a softmax layer
on top. Meanwhile, the slot decoder uses a CRF
layer on top of one task specific layer to leverage
the sequential information of slot labels. During
the training, the losses of IC (cross-entropy loss)
and SF (CRF loss) are optimized jointly with equal
weights as in Chen et al. (2019)

3.2 Data reduction approaches
We define terminologies that we use throughout the
paper as the following - Let an utterance ui ∈ S,
where S is the set of all utterances in the training
data, have an intent intenti ∈ I and annotation
ai ∈ A, where I and A is the set of all intents and
annotations and ai ∈ A is a string of tokens with
each token annotated with a slot label. From our
previous example, ui = "play madonna", intenti =
PlayMusic, ai = "play<Action> madonna<Artist>"

3.2.1 Baseline
In the baseline, we fine-tune model on the entire
data set (S, I, A) without any modifications.

3.2.2 Unique
In this method, for an utterance ui ∈ S, we extract
unique utterance annotations filtered using anno-
tation ai ∈ A as a key. This helps in uniformly
representing variations in SLU data by removing
any bias due to frequency of occurrence.

3.2.3 Log N
In Log N reduction, if an utterance ui ∈ S has a
frequency of occurrence ni, we downsample the
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Domain Unique Log Clustering 70% Singular Score
Music -55% -38% -30% -25%

Shopping -51% -40% -30% -35%
Video -44% -24% -27% -18%

Notifications -52% -36% -33% -11%
Weather -53% -38% -20% -3%

Table 1: Reduction achieved by different techniques.

utterance to have a frequency log2(ni). This main-
tains the utterance distribution as in the original
dataset but reduces the absolute magnitude of the
frequency. This way the model learns the original
input distribution of the SLU data but the reduced
representation helps avoid overfitting the model to
the more prevalent classes. We experimented with
other variants of Log N subsampling such as k-Log
N where k ∈ N and would involve scaling the fre-
quency to k times log2(ni) ∀ui ∈ S but we did not
see any significant gains in this approach.

3.2.4 Clustering
The first two methods described above only ac-
count for the frequency statistics of the utterance
in the training data and is language agnostic. In
the clustering approach, we try to reduce the data
distribution semantically.

The steps in the clustering approach are as fol-
lows:

• Identify a subset of intents I ′ ⊆ I by filter for
those where the number of utterances ui ∈ S
labeled with intenti ∈ I ′ is greater than 1000.
This is done so that we do not reduce the data
from underrepresented intents.

• Extract unique utterances for all utterances
having intenti ∈ I ′ using ai as the key. Rep-
etitions of utterances in the data will have the
same word embedding representation and cre-
ates redundancy in the input to the clustering
algorithm and a compute resource bottle neck.

• Extract embedding representation ei ∈ Rm

having dimensions m for these unique utter-
ances from the max pooling representation
of the model’s [CLS] token. (Devlin et al.,
2019).

Mn×m =




e1
e2
.
.
en




• Condense these unique utterance’s embedding

representations into a smaller number of di-
mensions d < m by computing SVD on the
input matrix

Mn×m = Un×mΣm×mVm×n

Mn×mV̄ T
m×d = Un×mΣ̄m×d

where V̄ T
m×d and Σ̄m×d are simply the first

d < m columns of V and Σ.
• Obtain the condensed representation for each

unique utterance’s data point in the rows of
Un×mΣ̄m×d. Note that unlike PCA we do not
normalize the input here since it is computa-
tionally expensive.

• For each intenti ∈ I ′, perform k-means clus-
tering from the extracted and condensed ut-
terance embedding representations and find
the optimal number of clusters K using the
Elbow Method.

• Restore the frequency of the clustered utter-
ances to the original frequency as observed in
the full dataset S.

• Per cluster ki ∈ K where the clustered ut-
terances have their original frequency of ut-
terance, randomly sub-sample 30% of the ut-
terances and use the remaining 70% as the
training set.

Note that we experimented with choosing a sub-
set by randomly subsampling [10%, 20%, 30%,
50%] of the data and observed that subsampling
30% of the data had the best balance with respect
to amount of reduction versus performance drop.

3.2.5 Singular Score
Golub and Reinsch (1971) introduced Singular
Value Decomposition (SVD), a technique to fac-
torize the matrix into two unitary matrices and a
diagonal matrix. The diagonal values of this matrix
are the singular values. This approach has been
used extensively in multiple fields since its onset
in 1970s such as the work described in (Kabsch,
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(a) Our dataset

(b) Multi ATIS++ dataset

Figure 2: Singular Scores Distribution

1978), which uses SVD to compute an ideal rota-
tion matrix for 3-D molecular comparisons. (Wal-
ton et al., 2013) explores the decomposition offered
by SVD to reduce the degrees of freedom and in-
terpolate the flow problem to lower complexity,
with minimal loss in accuracy of representation.
In the field of Statistics and Machine Learning, it
has been primarily used to achieve dimensionality
reduction with minimal loss in information con-
tent. One such application in field on Information
Retrieval is Latent Semantic Analysis (LSA) (Fur-
nas et al., 1988) where sparse representations of
documents were reduced significantly to a few di-
mension that hold most information and these were
used as representations for the original documents.

For this work, we explore using SVD on subsam-
pling data-points instead of subsampling dimen-
sions as in regular applications. As seen in equation
1, M is the embedding matrix with n datapoints
and m dimensions per datapoint. We performed
experiments with treating data-points analogous to
dimensions and subsampling them. However, this
wasn’t favorable as the datapoints being treated as

dimensions for reduction were very large in num-
ber and did not have the correlation factor as seen
with regular dimensions of embeddings.

Mn×m = Un×mΣm×mV T
m×m (1)

B = MV = UΣ (2)

We instead analyse the projection of each ut-
terance on principal axes and formulate a score,
which we will refer to as the Singular Score going
forward. We use this score value to quantize the
dataset into buckets and apply appropriate down-
sampling methods per bucket, giving up to 25%
reduction in the data while also showing improve-
ments in the SemER and Intent Classification met-
ric consistently.

From equation 2 we can see that MV , which is
the projection of embedding matrix along principal
components is the same as UΣ. This is because
U , V are unitary matrices and V V T = V TV = I .
Each row in this matrix B = MV represents the
projection of corresponding input embedding along
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principal axes. We use absolute sum ( i.e L1 norm,
or Manhattan distance from origin) of each row in
B as the Singular score corresponding to the data
point ui ∈ S.

scorei =
m∑

j=1

|Bij | (3)

We conducted experiments on the representation
power of this score and find interesting observa-
tions.

Correlation with frequency: As shown in figure
2a we find that there is a correlation between the
frequency of an utterance and the score it gener-
ates where the lower ranges of scores represent
more than 60% of the data. We also performed
this experiment on the English and Hindi subset of
the Multi-Atis++ data (Xu et al., 2020) to verify
our observations. The Multi-Atis++ dataset is an
extension of the ATIS (Air Travel Information Ser-
vices) dataset (Upadhyay et al., 2018) developed
to support the research and development of speech
understanding systems. This data comprises of
5928 user spoken utterances (4488 English, 1440
Hindi) of which 5621 (94%) utterances are unique.
These utterances are based on various hypotheti-
cal travel planning scenarios and are obtained by
users interacting with a partially or completely au-
tomated ATIS system which is then recorded and
transcribed. As shown in figure 2b we see that
due to the unique utterance composition of Multi-
Atis++ Hindi and English subset, the singular score
distribution of the graphs remain majorly the same.

Correlation with Sparsity: We also observe that
singular scores are a loose indicator of sparsity in
the principal axis space as shown in figure 3. A
datapoint with higher singular score is observed to
have dense representation in its projection along
principal axes while an utterance with low singular
score has a representation on one or two of the
first few axes only. Since the first few principal
axes in SVD indicate the spread of the data on
those axes, lower singular scores which primarily
contain scores in the first few axes belong to those
utterances which are common in the data.

Figure 3: Singular Score Comparison

Compounding these two observations, and based
on the pattern we observe in figure 2a we use the
Singular Scores to quantize the utterance bins into
three and apply different degrees of subsampling
to each bucket. For an utterance ui ∈ S with
frequency ni and singular score value scorei:

• Head: Utterances with low singular scores,
(scorei ≤ 7.7) which have a higher degree
of repetition. The frequency ni is reduced to
10 ∗ log2(ni)

• Mid: Utterances with medium singular scores
(7.7 < scorei ≤ 10) has its frequency ni

reduced to log2(ni)

• Tail: Utterances with high singular scores
(scorei > 10) which have almost negligible
repetitions have their frequency retained.

The amount of reduction achieved by the Unique,
Log N, Clustering 70% and Singular Score ap-
proaches is summarized in table 1.

4 Experimental Setup

4.1 Data

Since we present approaches with practical appli-
cations to real-world SLU modelling systems, we
present results on real world data. In particular, use
3 months of data from an internal de-identified data
authority and include a random sample from the
remainder of the year to account for seasonality in
the utterance requests. We use English and Hindi
data from five domains, i.e. Music, Video, Weather,
Notifications, and Shopping.

Data statistics are shown in table 3; for each
domain, we have atleast 100k training samples of
English and Hindi data in equal distribution and
use 90% for training and 10% for validation.
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Domain Unique Log N Clustering 70% Singular Score
SemER IC SemER IC SemER IC SemER IC

E
ng

lis
h

Music -6.18 -18.24 -3.77 -14.46 -2.48 -8.83 -3.08 -14.45
Shopping -3.52 -3.29 -2.88 -3.84 -4.19 -4.53 -3.79 -4.97

Video +9.90 +10.04 +4.40 +4.45 +6.31 +5.70 +3.80 +4.05
Notifications -1.10 -0.19 -1.90 -0.62 -1.00 -0.08 -1.15 -2.56

Weather -4.40 -9.25 -2.20 -4.29 -5.28 -7.86 -8.05 -17.14

H
in

di

Music -6.60 -24.48 -4.66 -20.74 -2.32 -10.77 -4.51 -20.11
Shopping -7.20 -9.71 -4.45 -3.83 -2.23 -3.87 -5.13 -6.63

Video +9.54 +10.96 +5.29 +6.62 +1.76 +6.16 -0.00 +6.16
Notifications -2.72 -6.21 -2.16 -7.45 -3.47 -13.69 -2.60 -11.20

Weather -1.56 -28.21 -0.00 -15.38 -1.12 -25.64 -1.12 -23.08

Table 2: Relative change results

Domain Intents Slots
Music 27 103

Shopping 25 45
Video 36 73

Notifications 24 47
Weather 4 18

Table 3: Dataset distribution

4.2 Model parameters

We use an in-house distilled multilingual Lean
BERT (Conneau et al., 2020) sized model
(50Mparameters) pre-trained on multiple languages
including English and Hindi on a large variety of
tasks. We use max-pooling for sentence represen-
tation. Each of our decoders, i.e. for IC and slot
filling components, have one dense layer of size
128 and 256 with relu and gelu activation each
respectively. The dropout values used in IC and
SF decoders are 0.1. For optimization, we use
Adam optimizer with learning rate 10e−4 with a
step scheduler. We trained our model for 15 epochs
with batch size of 64 and gradually unfreeze the
initial embedding layer (Howard and Ruder, 2018)
over 5000 steps.

4.3 Metrics

We evaluate our models on two standard SLU met-
rics - Intent Classifcation accuracy (IC) and Seman-
tic Error Rate (SemER) following Gaspers et al.
(2018), which jointly measures IC and SlotF1 and
is defined as

SemER =
#(slot + intent_errors)
#slots_in_reference + 1

(4)

5 Results & Discussion

For each domain, we build four SLU models
trained on the combined English and Hindi data,
each named after the data reduction approach ap-
plied to the training data fed to it: Baseline, Unique,
Log N, Clustering 70%, and Singular Score. We
report the performance for each model on SemER
and IC accuracy metrics in table 2

We break down our results into three categories:
discussion on Video domain degradation, perfor-
mance analysis of various data reduction technique
and performance comparison across metrics.

5.1 Video domain degradation
Video domain consistently sees degradation in Se-
mER metric as compared to the baseline model
trained on the complete dataset. This is an indicator
that subsampling data is not always beneficial and
should be leveraged to make decisions on whether
the data slice should be subsampled or not. How-
ever, degradation was also observed to be the least
in the Singular Score approach, with 0% delta for
Hindi SemER and the least IC degradation score.
The Video domain training data singular scores
captures the essence of frequency and semantic
variety in training data which the Unique, Log N
and Clustering 70% methods individually could
not, furthering concreting our belief in the intuition
behind these scores.

5.2 Data reduction techniques
The method of uniquing the input data performs
well across languages and metrics as compared to
the other approaches. However, this is not practical
for commercial SLU systems where the natural dis-
tribution of utterance weights is determined by its
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frequency of occurrence. Similarly, for the Log N
approach, we see consistent improved performance,
yet this approach affects tail frequency utterances
which are already under represented. We can per-
form Log N reduction on only the top few most
frequent utterances and generate a uniform repre-
sentation from the long tail distribution of data, but
that would be a scaled version of the unique exper-
iment and we expect results to be pretty similar.

An interesting observation we extract from the
results table is that for the Singular Score approach,
across most domains, most metric values have the
behaviour

Sing. Score ≤ min(Log N,Clust. 70%)

Singular Score method shows combined im-
provements from Log N and Clustering 70% in-
dicating that the Singular Score approach factors in
frequency response as well as semantic similarity
in its reduction step. Singular Score can be com-
putationally heavy as it calculates the SVD of the
input embedding and will scale exponentially as
the input dimension size increases.

5.3 Metrics
Intent Classification benefits from all data reduc-
tion techniques across different languages. This
indicates that the model has abundance of train-
ing data for intent classification given the simpler
nature of the task as compared to Slot Filling. In
the joint IC/SF BERT model context, we see that
intent classification accuracy improves while also
showing improvements in SemER indicating no
compromise on the Slot Filling task.

6 Conclusion

In this paper, we investigated various inexpensive
approaches for identifying data redundancy in train-
ing data used to fine-tune BERT based models in
SLU systems for the IC and SF task. To the best
of our knowledge, this work is the first step in the
direction of identifying inexpensive techniques to
fine-tune BERT model without affecting offline
metrics. We presented empirical results on a real-
world SLU dataset, showing that data reduction
techniques benefit SemER and Intent Classifica-
tion metrics. In particular, we proposed a novel
data redundancy identification and reduction tech-
nique which we call the Singular Score approach.
This method helps jointly filter utterances based

on their frequency and semantic representation and
also helps achieve one of the best results among the
techniques experimented with. Future work may
target more complex forms of identifying train-
ing data redundancy such as influential instances
(Pruthi et al., 2020; Koh and Liang, 2020) or active
learning Grießhaber et al. (2020)
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Abstract

Identification of the checkable claims is one of
the important prior tasks while dealing with an
infinite amount of data streaming from social
web and the task becomes a compulsory one
when we analyze them on behalf of a multi-
lingual country like India that contains more
than 1 billion people. In the present work,
we describe our system which is made for
detecting check-worthy claim sentences in re-
source scarce Indian languages (e.g., Bengali
and Hindi). Firstly, we collected sentences
from various sources in Bengali and Hindi
and vectorized them with several NLP features.
We labeled a small portion of them for check-
worthy claims manually. However, in order
to label the rest of data in a semi-supervised
fashion, we employed the Expectation Maxi-
mization (EM) algorithm tuned with the Mul-
tivariate Gaussian Mixture Model (GMM) to
assign weak labels. The optimal number of
Gaussians in this algorithm is traced by using
Logistic Regression. Furthermore, we used
different ratios of manually labeled data and
weakly labeled data to train our various ma-
chine learning models. We tabulated and plot-
ted the performances of the models along with
the stepwise decrement in proportion of man-
ually labeled data. The experimental results
were at par with our theoretical understand-
ing, and we conclude that the weak labeling of
check-worthy claim sentences in low resource
languages with the EM algorithm has true po-
tential.

1 Introduction

Misinformation has taken over the internet and it is
now a well-recognized problem all over the world.
Governments, news agencies, information security
people all are trying to fight this menace with the
helping hands from the researchers of social net-
works, natural language processing, data science
and many more. With the exponential rise in in-

formation or news, making automated systems of
fact-checking becomes a necessity. Researchers
have made significant achievements in this field.
But most of the research is in high resource lan-
guages like English. However, misinformation or
fake news doesn’t stop in the high resource lan-
guage. Fake news is spreading far and wide in low
resource languages as well, like in the Indian lan-
guages of Bengali and Hindi (Majumder and Das,
2020). A lot more research needs to be done in this
arena and our present work we have contributed
towards it.

It is a common practice in machine learning
to use a semi supervised approach to weakly la-
bel data when labeled data is scarce (Xuan et al.,
2010). On the other hand, filtering out check wor-
thy claim sentences has been attempted by many
teams as mentioned in (Hassan et al., 2015), (Dhar
et al., 2019). While (Hassan et al., 2017) has made
a generic and large system, (Anand et al., 2018)
worked on twitter feeds. However, the problem of
identifying claim sentences in Indian languages has
not been attempted much and thus doesn’t have a
lot of labeled data. So here, we use the Expectation
Maximization (EM) (Dellaert, 2003), a semi super-
vised algorithm to assign weakly labels to a lot of
unlabeled data in Indian languages.

Suggested by (Hassan et al., 2015), automated
fact checking is a two-fold task: 1) identification
of check-worthy sentences, and 2) checking their
trustworthiness based on some reliable sources.
As checking the trustworthiness or veracity is a
very resource intensive and computationally expen-
sive job, identification or filtering out the check-
worthy sentences becomes very important. In this
work, we have used the semi supervised Expecta-
tion Maximization (EM) (Dellaert, 2003) algorithm
to weakly label check-worthy sentences in the low
resources Indian languages, Bengali and Hindi. Us-
ing semi supervised algorithms to label a lot of
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# web pages
crawled

# sentence (labeled) # sentence
(unlabeled)

Average length of
sentence in Words

Bengali 400 1500 8568 11.40
Hindi 270 902 13537 13.70

Table 1: Statistics of our data.

unlabeled data is a common practice in Machine
Learning and NLP. But, using EM or similar al-
gorithms to weakly label check-worthy sentences
has rarely been tried, and has certainly never been
attempted in the context of Indian languages.

The rest of the Sections are organized as follows.
Section 2 gives the approaches in developing the
datasets while Section 3 and Section 4 describe the
algorithms of Expectation Maximization (EM) and
GMM, respectively. The experimental results are
shown in Section 5 along with important observa-
tions. Finally, Section 6 concludes the draft.

2 Data Set Preparation

We prepared our own data for this work. We
crawled sentences (mostly news) from various
web sources and manually labeled some of
them. We crawled Bengali sentences from ‘ABP
Ananda’ (https://bengali.abplive.com/) and
Hindi sentences from ‘Abp News’ (https://www.
abplive.com/) and ‘Aajtak’ (https://aajtak.
intoday.in/), as well as ‘Twitter’ (https://
twitter.com/?lang=bn/hn).

We manually labeled a portion of the data (about
1500 for Bengali, and about 900 for Hindi). There
were two classes. Class 1 refers to check-worthy
claims, whereas class 0 refers to not-check-worthy
sentences(that is, the rest of the sentences). Only
the sentences, which is a fact checkable claim, with
a clear context, are put in class 1. For example the
sentence (‘It is to be mentioned that in 2014, Rahul
defeated Smriti Irani by 1 lakh 6 thousand votes
in Amethi constituency.’) is considered a check-
worthy claim and hence would be labeled as class
1. Whereas the sentence (‘The court summoned
him on Thursday for this issue’) is not considered
a check-worthy claim and hence would be labeled
as class 0.

We extracted tf-idf scores, unigram, bi-gram and
part of speech tags, as features for both the lan-
guages. It has to be mentioned that the fitting of
data in a Multivariate Gaussian Mixture Model is
a very computationally expensive job. Experimen-
tation by using all the thousands of features in our

Gaussian Mixture Model (19907 for Bengali, and
27928 for Hindi) was not possible in our available
hardware setup. Therefore, we used Principal Com-
ponent Analysis (PCA) to reduce the dimension-
ality of the data to 1000. For Bengali we retained
92.9% data whereas in Hindi we retained 96.6%
data.

3 EM - Semi-Supervised Algorithm

It is described in (Dellaert, 2003) that EM is an
iterative optimization method to estimate some un-
known parameters Θ, given measurement data U.
However, we are not given some “hidden” nui-
sance variables J, which needs to be integrated out.
In particular, we want to maximize the posterior
probability of the parameters Θ given the data U,
marginalizing over J:

Θ∗ = arg max
Θ

∑
J∈τn P (Θ, J |U)

(Dempster et al., 1977) describes it from a statis-
tical point of view in detail and (Little and Rubin,
2014) states its proof. The EM algorithm seeks
to find the Maximum Likely Estimation of the
marginal likelihood by iteratively applying the two
steps namely Expectation and Maximization.

The EM algorithm needs a mixture model to
represent the data. Here, we use ‘Multivariate
Gaussian Mixture Models’ to represent the data.
A Gaussian mixture model is a probabilistic model
that assumes all the data points are generated from a
mixture of a finite number of Gaussian distributions
with unknown parameters. ‘Multivariate Gaussian
Mixture Models’ are Gaussian Mixture Models in
a multivariable or multidimensional vector space.

4 Experimental Setup

Firstly, we separated out the validation and the
test sets from the manually labeled data with
a train-validation-test split of 60%-20%-20% in
ratio. Then, we made the training set using
(strongly/human) labeled training data plus some
of the unlabeled data while the validation and the
test set consist of entirely labeled data. In each step
of Expectation Maximization, we fit the training
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No. of
Gaussian Class

Results on validation data
Bengali Hindi

precision recall F1 precision recall F1

8
0 0.78 0.53 0.63 0.75 0.56 0.64
1 0.38 0.66 0.48 0.40 0.60 0.48

16
0 0.72 0.59 0.65 0.75 0.53 0.62
1 0.41 0.56 0.47 0.38 0.61 0.47

32
0 0.78 0.53 0.63 0.78 0.65 0.71
1 0.38 0.66 0.48 0.48 0.62 0.54

64
0 0.78 0.53 0.63 0.81 0.53 0.64
1 0.38 0.66 0.48 0.42 0.74 0.54

Table 2: Results on validation data given different number of Gaussian

Figure 1: Single variable Gaussian mixture model with
3 Gaussian.

set to a Gaussian Mixture Model with a chosen
number of Gaussians and assign the weak labels
to the unlabeled data. Then, we measured the effi-
ciency of the Gaussian Mixture Model by training
a logistic regression component and evaluated on
the validation set. We repeat this step and select the
GMM which gives the best results on the valida-
tion set. At last, we report the performance of the
selected GMM on the test set by modeling various
Machine Learning models using human labeled
data plus weakly labeled data. In addition, we have
also explored this for various proportions of human
(strongly) and weakly labeled data, and observed
the performances with respect to the change in pro-
portion. The details of each step are given in the
following subsections as pseudo-code. (Note that
we denote check-worthy claim sentences as class
‘1’ and rest sentences as class ‘0’) (shown in Figure
2).

4.1 Pseudo-code of the EM algorithm

• X train = X train labeled + X train unlabled

• threshold = (number of claim in labeled data)

/ (number of labeled data)
#threshold is the proportion of claims in la-
beled data. Later we will mark a set to be
claim set, if it has higher proportion of claims
than threshold

• choose ‘gaussianNumber’ as the number of
Gaussians in our GMM.

• gModel = fit GMM with X train

• get which training example is assigned to
which Gaussian:
yGaussian = gModel .predict(X train)

• from yGaussian calculate number of strongly
labeled ‘0’ and ’1’ that fell under each Gaus-
sian:
for each Gaussian:

– gy[0] = number of strongly labeled ‘0’ in
the Gaussian

– gy[1] = number of strongly labeled ‘1’ in
the Gaussian

• calculate proportion of strongly labeled ’1’ in
a Gaussian from gy
for each Gaussian:

– gRatio = gy[1] / (gy[0] + gy[1])

• put a label on each Gaussian:
for each Gaussian:

– if gRatio > threshold, then gaussianLa-
bel = 1

– else gaussianLabel = 0

• weakly label unlabeled data:
y train weak labled = ‘gaussianLabel’ of the
Gaussian assigned to the sample.
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Figure 2: Architecture of the system including the EM
algorithm.

• y train = y train labled + y train weak labled

• LModel = Logistic Regression model trained
by(X train, y train)

• predicted validation = predict value on valida-
tion set by LModel

• classification report(true validation, pre-
dicted validation)

5 Experiments and Evaluation

We considered various Gaussian Mixture Models,
with different numbers of Gaussian and selected
the model which has the best performance on the
validation data. We enlist the precision, recall, and
the F1 score of the models on the validation data
for both the classes and both the languages in Table
2. We manually observed these results and tried to
determine the optimum number of Gaussians. We

have noticed that the Gaussian mixture model with
16 numbers of Gaussians has the most promising
results for Bengali while for Hindi a model with 32
numbers of Gaussian achieves the best result.

5.1 Training and Testing
After fixing the optimal Gaussian mixture model
with the help of logistic regression, we train vari-
ous machine learning models with human labeled
data merged with semi-supervised weakly labeled
data. However, we have fixed the number of hu-
man labeled data in the training set throughout the
experiments. While we take various amounts of
weakly labeled data and add them into the training
set for identifying the impacts on utilizing varia-
tions in size of the weakly labeled data. We trained
a logistic regression as well as Support Vector Ma-
chine (SVM) classifiers which are the classic ma-
chine learning models along with a neural network
(Multi Layer Perceptron), and compared the results.
For the neural networks, we used various MLP
and chose the one giving the best results. In Table
3.1 and 3.2, we noted the performances of various
classifiers on the validation set vs. size of weakly
labeled data in the training set. (Note that class 1
is check-worthy claims, and class 0 is not-check-
worthy claims) The number of weakly labeled data
vs. the F1 score obtained in the test set is plotted
in Figure 3, for both the languages and both the
classes.

5.2 Observations
We observed that the performances of the models
decrease with respect to the reduction in the pro-
portion of human annotated data in the training set.
This is also very much expected, as any machine
learning algorithm’s performance is supposed to
deteriorate as the quality of its training data deteri-
orates.

This decrease in performance with increase in
proportion of weakly labeled data is steeper in case
of Hindi while for Bengali, it is more gentle. The
gentle decline of performance with the increase in
proportion of weakly labeled data for the Bengali
dataset is an important observation. It shows that,
annotating a lot of data with weak labels by em-
ploying a semi supervised algorithm, for detecting
fact checkable claims is possible.

In the case of Bengali for both the classes, the
performances of the classifiers like LR and SVM
started improving while adding a weakly labeled
data of size 1K to 2K while the neural networks
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Size of Weakly
Labeled Data

class LR SVM Neural
network

No. of sample
in support

0
0 0.79 0.73 0.82 210
1 0.54 0.49 0.54 90

1000
0 0.69 0.70 0.70 210
1 0.45 0.40 0.49 90

2000
0 0.72 0.74 0.68 210
1 0.46 0.44 0.47 90

4000
0 0.63 0.72 0.67 210
1 0.38 0.44 0.46 90

8568
0 0.65 0.68 0.63 210
1 0.43 0.44 0.46 90

Table 3: F1 score for different classifiers with respect to different amounts of weakly labeled data in Bengali.

Size of Weakly
Labeled Data

class LR SVM Neural
network

No. of sample
in support

0
0 0.77 0.73 0.84 123
1 0.60 0.56 0.62 58

1000
0 0.82 0.74 0.83 123
1 0.61 0.55 0.68 58

2000
0 0.77 0.74 0.76 123
1 0.63 0.51 0.61 58

4000
0 0.71 0.71 0.73 123
1 0.60 0.47 0.54 58

Table 4: F1 score for different classifiers with respect to different amounts of weakly labeled data in Hindi.

(a) Bengali class 0 (b) Bengali class 1

(c) Hindi class 0 (d) Hindi class 1

Figure 3: F1 score on test set vs No. of weakly labeled data in training set.
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started degrading. In contrast, LR and neural net-
works started improving in case of Hindi data in the
range of 500 to 1K except SVM. This is probably
due to the fact that most machine learning algo-
rithms perform better with more data. Thus, when
a little amount of weakly labeled data is added to
the training set, the performance of some of the
models are improved. But, the performances of
some of the models do not improve owing to the
fact that the data we are adding is ultimately weakly
labeled, and not by a human annotator.

6 Conclusion

In the present work, we have attempted to filter
out check-worthy claims, which is the first step of
fact-checking. Since there is a lot of information,
and little intelligent labour available for manually
tagging check-worthy sentences, we have used a
semi-supervised algorithm to quickly tag a lot of
check-worthy sentences by achieving a satisfied
level of accuracy. We used the semi supervised Ex-
pectation Maximization algorithm with Gaussian
Mixture Models, to weakly label the unlabeled data.
We crawled a lot of data from the web and weakly
labelled them using the Expectation Maximization
algorithm. We trained some classification models
with this weakly labeled data and observed the re-
sults on human annotated data. We find that the
performance is very close to the performance by
training with manually labeled data. Therefore, we
can conclude that our semi supervised algorithm
works well in the task of identifying fact checkable
sentences.

We expect the efficiency will increase in future
with more complicated models and more labeled
data. For the Expectation maximization algorithm,
computation power is also a concern. It is difficult
to fit Gaussian Mixture models with high dimen-
sions with currently available hardware. However
we did proof that this approach works for identify-
ing a lot of check-worthy claims with fair accuracy
in Indian languages.
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Abstract

We consider the task of automatically clas-
sifying the persuasion strategy employed by
an utterance in a dialog. We base our work
on the PERSUASION-FOR-GOOD dataset,
which is composed of conversations between
crowdworkers trying to convince each other
to make donations to a charity. Currently, the
best known performance on this dataset, for
classification of persuader’s strategy, is not de-
rived by employing pretrained language mod-
els like BERT. We observe that a straightfor-
ward fine-tuning of BERT does not provide sig-
nificant performance gain. Nevertheless, non-
uniformly sampling to account for the class
imbalance and a cost function enforcing a hi-
erarchical probabilistic structure on the classes
provides an absolute improvement of 10.79%
F1 over the previously reported results. On the
same dataset, we replicate the framework for
classifying the persuadee’s response.

1 Introduction

With the advancement of artificial intelligence,
there has been a tremendous rise in its usage in
the daily lives of people. Birth of conversational
agents has made life a lot easier for organizations
looking to achieve certain tasks. These agents, like
as mentioned in (Luger and Sellen, 2016; Bick-
more et al., 2016; Graesser et al., 2014), are goal-
oriented, i.e., they try to engage users in mean-
ingful conversations and thereby aim to achieve
their tasks. At times, they require different strate-
gies of persuasion in order to mould people into
their way of thinking, thereby changing their spe-
cific attitude or behaviour (Shi et al., 2020). Wang
et al. (2019) proposed the foundation on building
an automatic personalized persuasive dialogue sys-
tem. They created the PERSUASION-FOR-GOOD
dataset, which is composed of conversations be-
tween crowdworkers trying to convince each other
to make donations to a charity. They annotated
the utterances with persuasive strategy labels and

proposed a baseline method for persuasive strategy
classification.

Until recently, the dominant prototype in ap-
proaching any natural language processing tasks
has been to focus on designing neural network ar-
chitectures, using task specific data and word em-
beddings such as GloVe (Pennington et al., 2014).
The NLP community is witnessing a paradigm shift
towards pre-trained deep language representation
model which achieves the SOTA in question an-
swering, sentiment analysis and other NLP tasks.
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2018) represents
one of the latest developments in this field. It sur-
passes its predecessors, ELMo (Peters et al., 2018)
and GPT (Radford et al.) by a significant margin on
numerous NLP tasks. There is not much literature
on exploring BERT for tasks related to persuasive
dialogues.

In this work, we introduce a BERT-based ap-
proach to automatically classify the persuasion
strategy employed by an utterance in a dialog. We
also use the same approach to classify the type
of the response of the persuadee’s utterance. We
base our work on the PERSUASION-FOR-GOOD
dataset. Since the amount of annotated dialogues in
this dataset are very less, we experiment to evaluate
the efficacy of pretrained BERT in achieving better
performance for the said task. The main contribu-
tion of this work is : 1. Creating a BERT-based
hierarchical classification setup for classification
of Persuader’s strategy . 2. Creating a benchmark
setup for the Persuadee’s response classification
3. Additional analysis for the dataset introduced by
(Wang et al., 2019).

The baseline performance for strategy classifica-
tion on PERSUASION-FOR-GOOD is an F1 score
of 59.6% and 74.8% accuracy (Wang et al., 2019).
We observe that a straightforward fine-tuning of
BERT does not provide significant performance
gain: 60.60% F1 and 75.85% accuracy. Never-
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theless, non-uniformly sampling to account for
the class imbalance does improve performance to
68.1% F1 and 77.69% accuracy. We further em-
ployed a cost function which enforces a hierarchi-
cal probabilistic structure on the classes, namely
a utterance is Persuasive or Not, and if persuasive,
the strategies further belong to coarser classes of
Appeal or Inquiry. This step improves the perfor-
mance to 70.39% F1 and 79.50% accuracy, which
is an absolute improvement of 10.79 F1 over previ-
ously reported results.

The remainder of this paper is organized as: We
review the related work in Section 2. In Section
3 we conduct data analysis. In Section 4 we de-
scribe our methodology. We analyze the results
and present our observations in Section 5. Finally,
we summarize the key conclusion in Section 6.

2 Related Work

2.1 Persuasive Conversation

Several previous works have looked at detecting
persuasion in online forums and social networks.
(Yu et al., 2019) performed fine-grained analysis
of texts by detecting all fragments that contain pro-
paganda techniques as well as their type in news
articles. (Morio et al., 2019), (Tan et al., 2016)
(Hidey and McKeown, 2018) worked on persua-
sion detection on online forum by modeling ar-
gument sequence in social media. (Yang et al.,
2019) focuses on persuasive strategy detection in
semi supervised fashion for sentences of posts on a
crowd funding platform. Meanwhile, the number
of papers which have attempted mining persuasive
strategies in dialog conversations have been lim-
ited. (Keizer et al., 2017) evaluated persuasion as a
strategy for negotiating dialog agent. However, we
believe that the recent work by Wang et al. (2019)
is a first attempt to explicitly collect corpus of per-
suasive conversations. They collect a persuasive
conversation dataset(PERSUASION-FOR-GOOD)
for charity donation with persuasive strategy an-
notations. Our work in this paper is based on this
dataset. In recent years there has also been in-
terest in generating persuasive utterances and slo-
gans. (Munigala et al., 2018) generate persuasive
captions for fashion items on an e-commerce web-
site. (Li et al., 2019) generate dialogs based on the
PERSUASION-FOR-GOOD dataset. Meanwhile,
(Shi et al., 2020) have developed a retrieval based
persuasive dialog agent with the same dataset. The
scope of this work is however limited to strategy

classification.

2.2 Hierarchical Classification

There are multiple ways the literature has exploited
the hierarchical structure of the labels to improve
the performance. (Kowsari et al., 2017) uses local
models, viz. one for each node in the label hierar-
chy, where the lower level classifiers are stacked
on top of the higher level. The inference is made
using top-down strategy. There are flat approaches
(Charuvaka and Rangwala, 2015; Xu and Geng,
2019), which employ one model per leaf node.
They perform cost-sensitive classification by penal-
izing the mis-classification of negative examples as
per their distance from the training class in the hi-
erarchy. These approaches require multiple models
for classification. Hence, using these approaches
with the BERT based classification technique we
have employed would be resource intensive.

There are techniques which take label embed-
dings into consideration. For example, (Rios and
Kavuluru, 2018; Pal et al., 2020) approach of docu-
ment classification, uses variants of Graph Neural
Networks to embed the hierarchical information of
the label space and employs information retrieval
setting to match these label embeddings with the
document vectors. In our method, Multilabel Clas-
sification with Probabilistic Structure (MLPS) de-
scribed in section 4.2, we enforce the hierarchi-
cal probabilistic structure on the class predictions
rather than the label embeddings.

Some local approaches (Gopal and Yang, 2013;
Peng et al., 2018) employ regularization technique
by constraining the parameters of the parent and
child classifiers to be similar. Instead of using dis-
tinct set of parameters for the parent and the child,
Banerjee et al. (2019) introduce inductive bias by
initializing the parameters of the finer level classi-
fiers with the parameters of the coarser level clas-
sifier and further fine-tuning them on the finer cat-
egory classification. Our current baseline method
for multil-label classification (ML), as described in
section 4.2, does not take the advantage of the label
hierarchies. In future we would like to extend this
method to be on the lines of (Molino et al., 2018;
Patidar et al., 2018), which model the label depen-
dencies by using a sequential decoder to predict a
branch of the labels in the hierarchy.

3 Dataset

Wang et al. (2019) designed an online task to col-
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Binary Coarser Label Ternary Coarser Label Strategy Label
Persuasive Persuasive Appeal 1) Emotional-appeal

2) Foot-in-the-door
3) Logical-appeal
4) Personal-story
5) Credibility-appeal
6) Donation-information
7) Self-modeling

Persuasive Inquiry
8) Task-related-inquiry
9) Personal-related-inquiry
10) Source-related-inquiry

Non Persuasive Non Persuasive 11) Non-strategy

Table 1: Persuader Strategy Label Hierarchy.

Coarser Label Actual Label
Ask 1) Ask-org-info, 2) Ask-donation-procedure
Positive 3) Positive-to-inquiry, 4) Positive-reaction-to-donation, 5) Agree-donation
Negative 6) Disagree Donation, 7) Disagree Donation more, 8) Negative reaction to

donation, 9) Negative to inquiry
Neutral 10) Neutral to inquiry, 11) Neutral reaction to donation
Greeting 12) Greeting
Other 13) Other, 14) Off-task, 15) Acknowledgement, 16) closing, 17) you-are-

welcome, 18) thank
Task-related-inquiry 19) Provide donation amount, 20) confirm donation, 21) task-related-

inquiry
Personal-related-inquiry 22) Ask persuader donation intention, 23) personal-related-inquiry

Table 2: Persuadee Response Label Hierarchy.

lect the persuasive dialog data. The main objective
of the task was to persuade the other person to
donate some amount for the charity Save the Chil-
dren1. This task was performed by two participants,
where one person who tries to persuade the other
person for donation is termed as the persuader and
the other person who donates is referred to as the
persuadee. The persuader was instructed to use
different types of strategies for persuading the per-
suadee. After the dialogue is over, both persuader
and persuadee can choose to donate amount for
charity. The chosen amount gets deducted from
their task payment on Mturk.

This data collection process involved 1285 par-
ticipants acting as either persuader or persuadee.
After collecting the data, the authors annotated 300
dialogues out of 1017 with labels of persuasive
strategy for each of the persuader’s utterances in
a dialogue. The annotated dataset consists of 10
persuasive strategies and one non-strategy class

1https://www.savethechildren.org/

corresponding to persuader’s utterances. The per-
suasive strategies listed in Table 1 were broadly
categorized as persuasive appeal and persuasive
inquiry. Each response of a persuadee was also
annotated into one of the 23 different classes listed
in Table 2.

The 300 dialogues annotated in Wang et al.
(2019) are used to setup a persuasion strategy clas-
sification task. Each sample consists of the current
persuader utterance and prior persuadee utterance
which is considered as context. The sample has
been labeled with one of the 11 strategy classes.
We use these labels to associate coarser labels with
each samples in accordance to Table 1. For e.g,

Context : That’s so important. How do you raise
donations?

Input : Do you currently donate to your charity?

Strategy label : Task-related inquiry

Coarser labels : Persuasive, Persuasive Inquiry

Wang et al. (2019) have provided a 5-fold data-split
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such that the training set contains 3450 utterances
and the validation set contains 863 utterances. The
results presented in this paper, unless specified oth-
erwise are based on these exact data splits.

We also address another task of Persuadee’s re-
sponse classification. We have created 5-fold splits
from 300 annotated dialogues for persuadee re-
sponse classification task in the manner similar as
for Persuader’s strategy classification. This con-
tains 3877 samples in the training set and 970 sam-
ples in the validation set. Following is an example
for such a task:

Context : Would $2.00 be too much to ask?

Input : No, I can do it.

Response type : Agree-donation

Coarser Label : Positive

3.1 Dataset Analysis

3.1.1 Dialog Independence
Wang et al. (2019) conducted a survey to categorize
the personalities of the crowd workers, and did not
notice a significant correlation with the choice of
strategy. Nevertheless, if a human participates in
several conversations then one could learn identity
specific preferences for language usage and dialog
strategy. We found out that 524 participants acted
as only persuader, 584 acted as only persuadee and
177 participants acted as both. Figure 1 shows the
count of conversation a participant participated in
based on the acted role. This depicts that there
are few participants which took part in more than
one conversation. Hence, even though we believe
that the modeling of identities can help personalize
persuasion understanding, in this work, we do not
take identities as input to our models, and train a
single model which works only on utterances.

Figure 1: User role wise conversation participation
count.

3.1.2 Interdependence of Responses
We also investigated for dependency among labels
for both persuader and persuadee as well as current
utterance and prior utterance labels individually
for persuader and persuadee. We merged the per-
suadee class labels together to form 8 coarser class
labels in the similar fashion as it was done for per-
suader strategies. Table 2 depicts the coarser label
and the corresponding actual labels. We found out
the sample mutual information by considering 8
persuadee class labels and 11 persuader strategy la-
bels. The mutual information between persuader’s
current and prior utterance label is 0.1091 which
indicates that persuader’s current strategy is not in-
fluenced by prior strategy. The mutual information
between persuadee’s current and prior utterance la-
bel is 0.1222 which indicates that persuadee’s cur-
rent utterance response is not influenced by prior
response. The mutual information between the per-
suader’s current utterance label and persuadee’s
prior utterance label is 0.1452 which also indicates
that persuader’s strategy is not highly influenced
by persuadee’s response. These observations are
reflected in our results section, where we did not
observe significant advantages by including dialog
history for classifying a particular utterance.

3.1.3 Truthfulness of Dialogues
We found that out of 643 persuadees participating
in single conversation; only 355 donated and 288
did not donate. Further, out of the remaining 118
persuadees participating in more than one conver-
sation; 41 donated in each of the conversation, 46
did not donate at all and rest donated in some of the
conversations. Similar analysis was done for per-
suader’s role as persuader can also agree to donate
in conversation in order to persuade persuadee. We
have found that out of 575 persuaders participating
in single conversation; only 242 donated and 333
did not donate. Further, out of the remaining 126
persuaders participating in more than one conver-
sation; only 39 donated in each of the conversation
and 66 did not donate at all and rest donated in
some of the conversations. In a dataset such as
this, a particular conversation should ideally be
considered persuasive in nature if and only if the
persuadee donated amount for charity because of
participating in the dialogue with persuader. Such
causal analysis may prove particularly challenging
as based on manual inspection of the data we noted
that few workers did not make donations despite
agreeing to do so in the conversation.
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4 Methodology

4.1 BERT
The model architecture of BERT is a multilayer
bidirectional Transformer encoder based on the
original Transformer model (Vaswani et al., 2017).
The input representation of the BERT can distinctly
represent a pair of sentences as a sequence of to-
kens. For each token, its input representation is
constructed by summing the wordpiece embedding
(Wu et al., 2016), segment and the position em-
beddings. Segment embeddings help to distinguish
one sentence from the other in the pair. A special
classification [CLS] token is inserted in the begin-
ning of the sequence. A separator [SEP] token is
inserted at the end of each sentence in the pair. Fi-
nally, the final hidden state representation of the
[CLS] token of each sequence can be used for the
sentence classification tasks.

4.2 Multilabel Classification with
Probabilistic Structure

Figure 2: MLPS approach.

In persuader strategy classification task, input to
BERT consists of the prior persuadee utterance as
context and the current persuader’s utterance. As
shown in Figure 2 we use the final hidden state
representation corresponding to the special [CLS]
token as the aggregate representation of the input
and pass it to a linear layer with softmax as its acti-
vation function. Finally, the posterior probability of
each strategy is estimated by the softmax function
P = softmax(WZT ) where W is the weight matrix,

W ∈ Rd×k where k is the total number of strate-
gies, d is the dimension of the [CLS] representation
and Z is the representation of the final hidden state
of the [CLS] token.

Softmax output is a k-dimensional vector, from
which we choose the strategy corresponding to the
highest value as our desired output. The first ten
elements of this vector correspond to the persua-
sion strategies while the eleventh is the estimate
for the probability that the utterance does not con-
tain any persuasion. Furthermore, the first seven
elements correspond to persuasive appeals. The
posterior probabilities for the coarser labels can
thus be estimated as:

P (Appeal) = Σk=1:7P k (1)

P (Inquiry) = Σk=8:10P k (2)

P (Persuasive) = Σk=1:10P k (3)

During inference, at each label granularity, the la-
bel with largest estimate for the posterior proba-
bility is chosen. We highlight that one can train
only on the 11 fine granular strategy classes, and
yet conduct inference for all the coarser labels. We
consider three label sets for training (a) λ(11, , )

where only the 11 fine-granular strategy labels are
used for training (b) λ(11, ,2) where we additionally
use the coarser binary label persuasive or not (c)
and finally λ(11,3,2) where we further utilize the
ternary labels (appeal, inquiry or non-persuasive)
for training. The total loss is a weighted sum of
the cross-entropy loss over labels at each granular-
ity. Without loss of generality we enforce that the
weights sum to one, and perform a grid search to
identify the best performing weight combinations
for above approaches (b) and (c). We restrict our
search to the part of the grid where the weight for
the binary classification is the highest. The intu-
ition behind this is that if the network, once learns
to correctly predict binary label as it is at coarser
level, would further improve the multi-class fine
granular prediction. In the remainder of the paper
we refer to approaches (b) and (c) as multilabel
classification with probabilistic structure (MLPS).
A similar approach has been adopted for classifi-
cation of Persuadee responses, and the output of
softmax for 23 classes is binned together in ac-
cordance to Table 2. We consider an additional
approach as shown in Figure 3 to create a base-
line for multilabel classification, to understand the
utility of specifically including hierarchy or label
interdependency. In this baseline the output of the
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[CLS] pin is given to label specific linear layers
with dimension equal to number of classes associ-
ated with the label. In the remainder we refer to
this approach as multilabel classification (ML).

Figure 3: ML approach.

4.3 Turn Embedding

Figure 4: Architecture of Bert FT + Context + Turn

Wang et al. (2019) have shown that the distribu-
tion of employed strategies changes with the turn
in a dialogue. We consider an ablation where we
explore the utility of the turn side-information as
an additional input to the persuader strategy clas-
sifier model. We consider a simple model where

the 1-hot encoding for the turn is given to a hidden
layer, which is concatenated to the [CLS] output of
the final layer, before being fed to the linear layer
before softmax. Turn embeddings did not prove
beneficial when used in such a fashion, hence we
did not consider them for multilabel classification.
However, in future, it may be worth considering
other approaches for embedding the turn informa-
tion. Figure 4 refers to the approach which uses
turn embedding.

5 Results and Analysis

5.1 Training Details

We use the pre-trained uncased BERT-base2 model
for fine-tuning. It consists of 12 Transformer
blocks, its hidden layer size is 768, the number
of self-attention heads present is 12, and the total
number of parameters for the pretrained model is
110M. When fine-tuning, we keep the dropout rate
to be 0.5, batch size to be 32 and the learning rate
to be 2e -5. w1, w2 and w3 are the weights of the
loss functions, chosen in such a manner that they
sum to 1. To tackle class imbalance, we have used
Weighted Random Sampling (Efraimidis and Spi-
rakis, 2008). We assign weights to the sampler such
that each target label is assigned a weight equal to
the reciprocal of the number of instances in the
training set belonging to that target label. We have
used Pytorch (Paszke et al., 2019) library while cod-
ing in python. Sequences of context and utterance
having length greater than the maximum sequence
length are truncated till 128. Shorter sequences are
padded till the maximum sequence length. We use
Early stopping in order to prevent over-fitting.

Our grid search revealed that: For persuader
strategy classifier (a) for MLPS approach with train-
ing labels (11, ,2) best w1 and w2 are 0.4 and 0.6 re-
spectively (b) for ML approach with training labels
(11, ,2), w1 and w2 are 0.5 and 0.5 respectively (c)
For MLPS approach with training labels (11,3,2),
best result is found when w1, w2 and w3 are 0.1,
0.3 and 0.6 respectively. (d) Similarly for ML ap-
proach with training labels (11,3,2), best result is
obtained when w1, w2 and w3 take the values 0.3,
0.3 and 0.4 respectively. For persuadee response
classification (a) For MLPS approach, with training
labels (23,8, ), best result is obtained when w1 and
w2 are 0.1 and 0.9 respectively. (b) When w1 and

2https://storage.googleapis.com/bert_
models/2018_10_18/uncased_L-12_H-768_
A-12.zip
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Persuader’s Strategy Classifier

Method # Training
Labels Acc-11 F1-11 Acc-3 F1-3 Acc-2 F1-2

Hybrid RCNN (Wang et al., 2019) 74.8% 59.6%
Bert FT 11, , 74.65% 66.36% 89.36% 88.13% 89.59% 88.69%

Bert FT + Context 11, , 77.69% 68.1% 89.48% 88.78% 90.46% 89.94%
Bert FT + Context + ML 11, ,2 77.82% 68.69% 89.39% 88.5% 89.88% 89.23%
Bert FT + Context + ML 11,3,2 78.41% 69.30% 89.81% 88.71% 91.11% 90.6%

Bert FT + Context + MLPS 11, ,2 78.61% 68.99% 90.11% 89.11% 91.13% 90.73%
Bert FT + Context + MLPS 11,3,2 79.50% 70.39% 90.59% 90.07% 91.49% 91.08%

Persuadee’s Response Classifier

Method # Training
Labels Acc-23 F1-23 Acc-8 F1-8

Bert FT + Context 23, , 57.66% 46.05% 68.00% 59.48%
Bert FT + Context + ML 23,8, 56.60% 47.08% 68.71% 62.44%

Bert FT + Context + MLPS 23,8, 61.80% 54.18% 71.5% 66.63%

Table 3: Persuader Strategy Classification and Persuadee Response Classification Results (Acc-N: Accuracy for N
classes, F1-N: F1 Score for N classes).

w2 both take the value of 0.5, we get the best result
with ML approach.

5.2 Ablation Study

Experiments Acc F1
Without sampler 75.85% 60.60%

With sampler 77.69% 68.1%
Only Utterance
and no Context

74.65% 66.36%

Without Turn 76.03% 67.23%
With Turn 75.51% 67.64%

Persuasive/Non-persuasive
classification with

Utterance and History
88.63% 88.20%

Table 4: Results of ablation experiments for BERT base-
line for single label.

We have conducted various ablation studies with
the baseline Bert based classifier for persuader strat-
egy classification. Table 4 shows the results of this
study. We have trained model with and without
weighted random sampler. As the dataset is highly
imbalanced, we observed that non-uniform sam-
pling improves F1-score significantly. Thus, all
the experiments reported in Table 3 are with sam-
pling using (Efraimidis and Spirakis, 2008). We
have also seen the importance of context alongside
the current utterance as input. There has been an
improvement of 3.04% in accuracy and 1.74% in
the F1-score. We have also incorporated turn in-
formation as shown in Figure 4 and observed no

significant improvement. Finally, we trained the
model only for binary classes and observed that the
result improves when trained jointly with multil-
abel as reported in Table 3.

5.3 Multilabel Strategy classification
Table 3 presents the results for our experiments
on multilabel classification. We observe that with
non-uniform class sampling the baseline training
for BERT on the 11 persuasion strategy classes,
provides a performance of 66.36% F1. This is
an improvement of 6.76% over the previously re-
ported result. We also observe that even if label
inter-dependencies are used only at inference time
for the coarser labels, one can still get a perfor-
mance comparable to directly training just for that
label. The performance of both multiobjective ap-
proaches, ML and MLPS, was observed to be better
than the BERT baseline approach. Thus including
additional structure during training helps perfor-
mance for all labels. We further observe that MLPS
provides a performance better than ML demonstrat-
ing the utility of including probabilistic structure
in the cost function. The best performance for clas-
sification on 11 persuasion strategies was observed
to be 70.39% F1, with MLPS and labels (11,3,2).
This is an improvement of 10.79% over the previ-
ously reported result, of 4.03% F1 over the BERT
baseline and of 1.09% over the multilabel baseline.

As illustrated in Table 5, we calculated the class-
wise F1-scores for persuader strategy classification
with the baseline BERT-FT model, as well as ML
and MLPS with λ(11,3,2) label set. We made the
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Class Label BERT-
FT

ML
(11,3,2)

MLPS
(11,3,2)

Personal story 27.58% 43.25% 40.99%
Logical-appeal 46.47% 58.31% 58.89%
Task. inquiry 51.35% 54.99% 51.57%
Self-modeling 56.17% 74.01% 70.03%
Personal. inquiry 65.51% 67.31% 70.53%
Foot-in-the-door 68.75% 68.6% 67.44%
Emotional-appeal 74.13% 76.38% 73.89%
Donation info. 76.43% 78.47% 77.74%
Credibility-appeal 81.67% 83.61% 85.2%
Non-strategy 86.81% 85.76% 88.31%
Source. inquiry 87.09% 86.32% 90.68%

Table 5: F1 score for each of the class label in Per-
suader’s strategy classification

following observations: (i) % change in F1-score
over the baseline is positive for most of the classes
for both MLPS and ML indicating both the meth-
ods provide a performance gain across classes (ii)
the % gain in F1-score for MLPS is more evenly
distributed across all the classes as compared to
the gain for ML, and (iii) the classes with lower
baseline F1-scores are roughly getting benefited
more in MLPS setting than the ones with higher
baseline F1-score. These observations for MLPS
are consistent with those made in (Banerjee et al.,
2019; Peng et al., 2018), which say that exploiting
the hierarchical structure benefits all fine granular
classes.

5.4 Response classification

Wang et al. (2019) have not provided any base-
line for automatic classification of Persuadee’s re-
sponses. We observe that the use of BERT with
weighted sampling for class imbalance provides
an accuracy of 57.66 % and F1 score of 46.05%
over the 23 response classes. MLPS provides an
improvement of 4.14 % in accuracy and 8.13 %
in F1. MLPS also improves over the bases for
the 8 coarser classes. The improvement in accu-
racy is 3.5 % and 7.15 % in F1. ML provides an
improvement of 1.03% in F1 while the accuracy
has slightly decreased for 23 classes. However
for the coarser classes, accuracy has increased by
0.71% and F1 has improved by 2.96%. On the sim-
ilar lines of persuader strategy classification, we
calculated the class-wise F1-scores for persuadee
response classification. We observed that the %
gain in the F1-score is more evenly distributed (i.e.

lower standard deviation) across all the labels for
MLPS when compared to ML.

5.5 Comparative Analysis with Examples

There have been several instances where one ap-
proach outperforms another approach as shown in
Table 5. This section provides some of the ex-
amples, in Persuader’s strategy classification task,
which highlight the performance of both the ap-
proaches for a given input.

Scenario where MLPS works better than ML

1. Context : < Start >
Input : How much money do you spend daily
on extras like a coffee or treat?
Ground Truth : personal-related-inquiry
MLPS : personal-related-inquiry
ML : task-related-inquiry

2. Context : .60 still sounds good to me. Lets
leave it at that.
Input : I also want to assure you that Save
the Children Makes huge impact on childrens
lives internationally. They are extremely
professional and your donation will go to a
trustable fund.
Ground Truth : credibility-appeal
MLPS : credibility-appeal
ML : logical-appeal

3. Context : I wish there was a long-term
solution to these problems.
Input : We all do, but for now, there are
children in need and this organization does
amazing work.
Ground Truth : logical-appeal
MLPS : logical-appeal
ML : credibility-appeal

4. Context : Hi! Doing good. How are you?
Input : I was wondering if I could talk to you
about donating to Save the Children today?
Ground Truth : source-related-inquiry
MLPS : source-related-inquiry
ML : task-related-inquiry

5. Context : I could donate 10 cents. I wish I
could more but I am trying to pay my bills
with what I make here.
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Input : The children will thank you, do you
think you can do a little more?
Ground Truth : non-strategy
MLPS : non-strategy
ML : task-related-inquiry

Scenario where ML works better than MLPS

1. Context : We sponsor a child in El Salvador,
we have been going it a number of years.
Input : I donate money to save the children.
Ground Truth : personal-story
MLPS : self-modeling
ML : personal-story

2. Context : I spend about 5 dollars a day, you?
Input : Do you think that amount of money
would make a difference in a needy child’s
life?
Ground Truth : task-related-inquiry
MLPS : personal-related-inquiry
ML : task-related-inquiry

3. Context : I will donate 10 cents of my 30 cent
payment. You should type the same thing and
if perhaps if you know anything about the
charity, share it?
Input : This is a great charity and I will match
you .10 cent payment.
Ground Truth : self-modeling
MLPS : non-strategy
ML : self-modeling

4. Context : I’ll donate but not that much
Input : That’s fine any amount helps.
Ground Truth : foot-in-the-door
MLPS : logical-appeal
ML : foot-in-the-door

6 Conclusion

We summarize the conclusions of our work as: Pre-
trained languages models like BERT may prove
useful for natural language understanding of per-
suasion strategies even when data is scarce and
imbalanced. Multilabel training which enforces a
structure on the persuasion strategy class labels can
help improve performance. A cost function based
only on probabilistic structure was observed to pro-
vide the best performance. Probabilistic structure,

even when used only during inference time, can
provide competitive performance for coarser labels,
which were not included in training. The perfor-
mance gains due to MLPS were even more signif-
icant for classification of Persuadee’s responses.
MLPS offers more evenly distributed benefit for all
the classes as compared to ML which can be more
biased towards certain classes.
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Abstract
This paper concerns the problem of topic pre-
diction in target-guided conversation, which
requires the system to proactively and natu-
rally guide the topic thread of the conversa-
tion, ending up with achieving a designated
target subject. Existing studies usually resolve
the task with a sequence of single-turn topic
prediction. Greedy decision is made at each
turn since it is impossible to explore the topics
in future turns under the single-turn topic pre-
diction mechanism. As a result, these meth-
ods often suffer from generating sub-optimal
topic threads. In this paper, we formulate
the target-guided conversation as a problem
of multi-turn topic prediction and model it un-
der the framework of Markov decision process
(MDP). To alleviate the problem of generat-
ing sub-optimal topic thread, Monte Carlo tree
search (MCTS) is employed to improve the
topic prediction by conducting long-term plan-
ning. At online topic prediction, given a tar-
get and a start utterance, our proposed MM-TP
(MCTS-enhanced MDP for Topic Prediction)
firstly performs MCTS to enhance the policy
for predicting the topic for each turn. Then,
two retrieval models are respectively used to
generate the responses of the agent and the
user. Quantitative evaluation and qualitative
study showed that MM-TP significantly im-
proved the state-of-the-art baselines.

1 Introduction

Although impressive efforts have been made to
integrate background knowledge into the conver-
sation systems (Fang et al., 2018; Qin et al., 2019;
Liu et al., 2018), existing open-domain conversa-
tion systems still suffer from creating generic re-
sponse (Yi et al., 2019) and struggle to perform en-
gaging conversations (Ram et al., 2018). Moreover,
there exists a strong demand in real-world applica-
tions to integrate the goals and strategies into the

∗ Corresponding author

Target : job Topic Response
A: Hi, how are you today? 
U: Pretty good. Chilling and listening to some music.
A: Cool, I’m listening to some old rock music.
U: Awesome, which kind of music is your favorite?
A: Hank Williams. I grew up on country music.
U: Cool. Not much of a singer.

listen

music

job A: When I was a child, I had to get a job to help my parents.

Turn: 2

Turn: 3

Turn: 4

Turn: 1

Figure 1: An example conversation conducted between
the single-turn topic prediction conversational system
agent (A) and user (U).

open-domain conversation systems, to make them
achieve some specific goals such as recommend-
ing an item or accomplishing nursing goals. Faced
with these problems, target-guided open-domain
conversation (Tang et al., 2019; Sevegnani et al.,
2021) has attracted increasing research attentions.

Different from traditional open-domain conver-
sation, target-guided open-domain conversation re-
quires the system to proactively and naturally guide
the conversational thread, and end up with recom-
mending a target item or mentioning a target word.
Existing studies (Tang et al., 2019; Qin et al., 2020;
Zhong et al., 2020) usually resolve the task with a
sequential of single-turn topic predictions and re-
sponse generations. At each turn, the model firstly
selects a topic from the candidate topic set based on
the history context, and then retrieves response ac-
cording to the selected topic. Since the single-turn
topic prediction mechanism has no ability to plan
the topics in the future turns, greedy decision has
to be made at each turn. As a result, these methods
usually suffer from generating sub-optimal topic
threads.

Figure 1 illustrates an example conversation be-
tween user and the Kernel agent (Tang et al., 2019),
which utilizes single-turn topic prediction model
to select topics. At the third turn, the sub-optimal
topic “music” was selected. Though it is strongly

324



relevant to the topic “listen” in the second turn, it
is irrelevant to the final target topic “job”. The
example verified that the greedy decisions in the
single-turn topic prediction cannot naturally guided
the conversation to achieve the target.

To deal with the issue, we propose to formulate
target-guided conversation as a multi-turn topic pre-
diction problem, and model it with Markov deci-
sion process (MDP). In the MDP, the environment
is responsible for collecting the conversational his-
tory as the states, and the conversational system
agent is responsible for selecting action as topic for
each turn. Inspired by the reinforcement learning
method of AlphaGo Zero (Silver et al., 2017), we
utilize Monte Carlo tree search (MCTS) to make a
long-term planning by considering the topics in the
future turns and then generate topic for the current
turn. Given a pre-defined target topic and a ran-
domly selected start utterance, the proposed model,
referred to as MM-TP (MCTS-enhanced MDP for
Topic Prediction), iteratively generates topic se-
quence and guides the conversation to achieve the
target topic. At each turn, MCTS is firstly utilized
to enhance the raw policy and predict the topic of
this turn. Two retrieval models are then respectively
employed to generate the responses of the agent
and the user. In this way, the problem of generating
sub-optimal topic threads could be alleviated by
the MCTS at a certain extent.

We conducted experiments on two popular
target-guided open-domain conversation bench-
marks. Quantitative results show that MM-TP out-
performed the state-of-the-art baselines by achiev-
ing the target more accurately and providing more
smooth topic transition. Qualitative study also
show that our MM-TP improved baseline meth-
ods by making long-term planning of the topics.
The major contributions of the paper are three-fold:

• To the best of our knowledge, it is the first time
that the target-guided conversation is formal-
ized as a multi-turn topic prediction problem
and solved under the framework of MDP.

• We adapt the traditional MCTS for the target-
guided open-domain conversation, to alleviate
the sub-optimal topic threads generation prob-
lem by performing long-term planning.

• The proposed MM-TP model outperformed
the baseline methods in terms of achieving
the targets more accurately and making more
smoothly topic transition.

System Initial utterance 𝑥"#

Target keyword

User

Generate 
Response 𝑥$%

Generate 
Response 𝑥$#

Select 
Topic	𝑎$

System action

User action

Loop

②

③ ④

①

End

Start

Figure 2: Workflow of Multi-turn Target-guided Open-
domain Conversation

2 Task Definition: Multi-turn
Target-guided Topic Prediction

As shown in Figure 2, a multi-turn target-guided
open-domain conversation system starts with ran-
domly selecting a specific target topic and the start
utterance (step 1) by the simulator. The user gen-
erates an appropriate response (step 2). Then, the
system repeats several conversational turns before
achieving the ends. At each turn, the system first
accesses to conversational history utterances and
predicts a topic (step 3) satisfying both transition
smoothness and target achievement. Then the agent
and user generate responses respectively according
to the predicted topic (step 4 and step 2). During
the conversation, the target word is only presented
to the agent and is unknown to user. The system
consists of two components which are topic predic-
tion module and response generation module.

Formally, let’s useA and X to denote the sets of
candidate target topics and responses, respectively.
Following the practices in (Tang et al., 2019; Qin
et al., 2020), each target topic a ∈ A is defined as
a word/phrase (i.e., an entity name or a common
noun), and the candidate utterance set X is derived
from the PersonaChat corpus (Zhang et al., 2018).
Suppose that the agent e starts a conversation (1st
turn) with utterance xe

1 and its target topic is a∗.
The user retrieval model Gu generates a response
xu

1 . Then, at each turn i ∈ {2, · · · ,m}, the topic
prediction module takes previous utterance context
Xi = {xe

1,x
u
1 , · · · ,xu

i−1} as input and outputs the
predicted topic ai. Then, the retrieval model Gu for
user u and Ge for system agent e select a response
from the candidate set X respectively. As an appro-
priate measurement of the success rate, the target
is regarded as achieved when the predicted topic
am is similar enough to the target topic a∗.
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3 The Proposed Model: MM-TP

3.1 Model overview
In this work, we focus on formulating Multi-turn
Target-guided Topic Prediction as an MDP and
utilizing the MCTS-enhanced policy to select the
topic for each turn with a long-term planning. For
the response generation process, we utilize the sim-
ulator constructed in (Tang et al., 2019), and em-
ploy kernel-based retrieval model as Ge and conven-
tional retrieval model as Gu to generate responses
by agent and user respectively. Figure 3 illustrates
the architecture of the proposed MCTS-enhanced
MDP for Topic Prediction (MM-TP) model. Given
the target word a∗ and the start utterance xe

1, our
model iterates several turns for guiding the conver-
sation thread. For each turn, MM-TP first applies
MCTS to select topic for the current turn, and then
utilizes the retrieval models Ge and Gu to generate
agent and user response respectively.

3.2 MDP formulation of Multi-turn
Target-guided Topic Prediction

MM-TP models the Multi-turn Target-guided Topic
Prediction as a process of sequential decision mak-
ing with MDP, in which each time step corresponds
to a conversational turn. The states, actions, tran-
sition function, rewards, value function and policy
function of the MDP are defined as:

States S: The state of each turn is defined as
a tuple st = [Xt = {xe

1,x
u
1 , · · · ,xu

t−1},Yt =
{a1, . . . , at−1}] where Xt is the sequence of con-
textual utterances and Yt is the sequence of pre-
dicted topics in previous t−1 turns. For the second
turn, the state is initialized as s2 = [{xe

1,x
u
1}, ∅],

where {xe
1,x

u
1} denotes the randomly selected start

utterance and the first response of user. ∅ denotes
the empty topic sequence.

Actions A: At each turn t, the A(st) ⊆ Y is the
set of actions the agent can choose from, which
means the action at ∈ A(st) is the predicted topic
at ∈ Y for the current turn.

Transition function T : The transition function
T : S ×A → S is defined as: st+1 = T (st, at) =
T ([Xt,Yt], at) = [Xt+1,Yt ⊕ at], where ⊕ ap-
pends the selected action at to Yt. At each turn t,
based on state st, the system predicts a topic at for
this turn, moves to the turn t + 1 and transits the
state to the next state st+1: first, the conversational
utterance context Xt is updated by appending the
generated agent and user responses; second, the
system adds the predicted topic to the end of Yt,

outputting a new topic sequence.
RewardsR: The reward is defined to reflect: (1)

target achievementRta: we calculate the similarity
between the predicted topic of each turn and the tar-
get to determine whether the topic has achieved the
target; (2) local smoothnessRls: we calculate the
average WordNet similarity between topics of adja-
cent turns to measure the topic transition smooth;
(3) target similarityRts: we calculate the similarity
difference between the adjacent topics and the tar-
get, to make the predicted topic in each turn is more
similar to that in the preceding turns.The overall
reward is defined as the weighted summation these
three parts as:

R = α · Rta + β · Rls + γ · Rts

where α, β, γ are weight parameters for three kinds
of rewards respectively.

Value function V: The value function V is a
scalar evaluation which is learned to estimate the
the quality of topic assignments and fit the real
evaluation measure. In this work, we utilize a hi-
erarchical GRU network to map the context Xt to
a real vector, and then define the value function as
a nonlinear transformation of the weighted sum of
the MLP’s outputs g(s) and the current candidate
action in one-hot representation at as:

V(s) = σ(〈Wvg(s), at〉),

where Wv ∈ R|A(s)|×|g(s)| is the weight vector to
be learned during training. 〈·, ·〉 is dot product op-
eration, and σ(·) is the nonlinear sigmoid function.
The context state g(s) is obtained as:

g(s) = MLP(l(s)),

l(s) = [HierarchalGRU(Xt)].

The hierarchical GRU network takes in
a sequence of contextual utterances Xt =
{xa

1,x
u
1 , · · · ,xu

t−1} and utilizes the word-level
GRU to encode each utterance and output a repre-
sentation of the utterance. Then, the sequence of
utterance representations are fed into a utterance-
level GRU for obtaining a conversational context
representation l(s).

Policy function p: The policy function p(s)
takes the context representation g(s) as input and
outputs a distribution over all possible actions
a ∈ A(s), in which each element represents the
probability of selecting this keyword as:

p(a|s) = softmax(Upg(s)),
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Figure 3: Overview of MM-TP. The agent guides the conversation to achieve the target by multi-turn topic pre-
diction, which is formulated as an MDP process. For each turn, the model first encodes the previous conversation
context, and then updates the search policy π to predict the topic for the next turn.

where Up ∈ R|A(s)|×|g(s)| is the parameter. The
policy function is obtained as:

p(s) =
〈
p(a1|s), · · · , p(a|A(s)||s)

〉
. (1)

At online topic sequence prediction stage, the
environment collects the conversational history ut-
terances and the predicted topic sequence as the
states st, and then pass them to the system agent.
Once received states, the agent firstly encodes them
through the hierarchical GRUs and then performs
MCTS to update the search policy π, guided by
the policy function p and value function V. The
updated policy π is used to select action as the
predicted topic for this turn.

3.3 Improve raw policy with MCTS

Predicting the topic for each turn with the raw pol-
icy p (Eq. 1) only considers the past states and
often leads to sub-optimal results. To alleviate the
issue, we conduct lookahead search with MCTS
for each turn and output a improved search policy
π to select the topic.

Specifically, MCTS takes a root node sR, value
function V and policy function p as input, and
iterates K times to output a improved search pol-
icy π which selects a topic for the current turn.
Each tree node corresponds to an MDP state. Each
edge e(s, a) stores an action value Q(s, a), visit
count N(s, a) and prior probability P(s, a). For
each iteration, the raw policy p is improved by
four steps: (1) Selection: Each iteration starts from
the root node sR and iteratively selects a topic for
each turn to maximize action value plus a bonus

as at = arg max
a

(Q(st, a) + λU(st, a)), where

λ ≥ 0 is the tradeoff coefficient, and the bonus

U(st, a) = p(a|st)
√∑

a′∈A(st)
N(st,a′)

1+N(st,a) is propor-
tional to the prior probability but decays with re-
peated visits to encourage exploration. (2) Evalua-
tion and expansion: When the traversal reaches
a leaf node sL, the node is evaluated with the
value function V. Then, the leaf node sL is ex-
panded by constructing edge from it to the node
T(sL, a), corresponding to each action a ∈ A(st).
(3) Back-propagation and update: At the end of
evaluation, the action values and visit counts of all
traversed edges are updated, while the prior proba-
bility P(s, a) is kept unchanged. (4) Calculate the
improved search policy: After iterating K times,
the improved search policy π(a|sR) corresponds
to each a ∈ A(sR) for the current root node sR

is calculated based on the visit counts N(sR, a) of
the edges starting from sR. The details of MCTS
process is described in Algorithm 1.

3.4 Model training and inference

MM-TP has some parameters Θ to learn includ-
ing Wv,Wg,Up, bg and parameters in hierarchical
GRUs. Suppose we are given N target topics and
ground-truth topic threads that achieved the corre-
sponding target topics: D = {(a∗(n),Y(n))}Nn=1.
Firstly, the parameters Θ of the model are initial-
ized to random weights in [−1, 1]. Then for each
sample (a∗,Y) ∈ D, a topic sequence is predicted
as: for each turn, the MCTS is executed and a
topic at is selected by the search policy πt. The
topic prediction process terminates after m turns,
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Algorithm 1 TreeSearch
Input: root sR, Value function V, policy function

p, search times K
1: for k = 0 to K− 1 do
2: sL← sR

3: {Selection}
4: while sL is not a leaf node do
5: a← arg maxa(Q(st, a) + λU(st, a))
6: sL ← child node pointed by (sL, a)
7: end while
8: {Evaluation and expansion}
9: v ← V(sL) {simulate v with V}

10: for all a ∈ A(sL) do
11: Expand e to s = [sL.Xt+1,Yt ⊕ {a}]
12: e.P← p(a|sL); e.Q← 0; e.N← 0
13: end for
14: {Back-propagation}
15: while sL 6= sR do
16: s← parent of sL

17: e← edge from s to sL

18: e.Q← e.Q×e.N+v
e.N+1

19: e.N← e.N + 1; sL ← s
20: end while
21: end for
22: for all a ∈ A(sR) do
23: π(a|sR)← e(sR,a).N∑

a′∈A(sR) e(sR,a′).N

24: end for
25: return π

and a topic sequence Ŷ = {a1, . . . , am} is out-
putted. The overall evaluation metric r of Ŷ is
calculated according to the success rate of the tar-
get achievement. The data generated at each turn
E = {(st, πt)}mt=1 and the reward R are utilized
as the signal for adjusting the value function. The
training objective is to minimize the error between
the predicted value V(st) and evaluation metric r,
and to maximize the similarity between the raw
policy p(st) and the search policy πt as:

l(E, r) =

|E|∑

t=1

((V(st) − r)2

+
∑

a∈A(st)

πt(a|st) log
1

p(a|st)
).

(2)

Algorithm 2 shows the details of the training pro-
cess. The inference process of the MM-TP model
is similar to the training stage. Given the selected
target topic, the state is initialized as s2 = [X1,Y1].
For each turn t ∈ {2, · · · ,m}, the agent receives

Algorithm 2 Train MM-TP model
Input: Labeled data D, learning rate η, search

time K, pre-defined number of turn m
1: Initialize Θ as random values in [−1, 1]
2: repeat
3: for all (X,Y) ∈ D do
4: s2 = [X1,Y1]; E← ∅
5: for t = 1 to m do
6: π ← TreeSearch (s,V,π,K)
7: a = arg maxa∈A(s)

π(a|s)
8: E← E⊕ {(s, π)}
9: s← [s.Xt+1, s.Yt ⊕ {a}]

10: end for
11: r ←Metric(Y, s.Ym)
12: Θ← Θ− η ∂`(E,r)

∂Θ {see ` in Eq. 2}
13: end for
14: until converge
15: return Θ

the state st = [Xt,Yt] and updates the search pol-
icy π with MCTS. Then, MM-TP selects an action
at for this turn and moves to the next turn whose
state becomes st+1 = [Xt+1,Yt+1].

3.5 Implementation details

We adapt the MCTS algorithm according to our
task. Following existing practice (Tang et al., 2019;
Qin et al., 2020), in order to guide the topic thread
to achieve the target keyword, we shrink the ac-
tion space in each conversational turn. Specifically,
we mask the candidate topics which have been se-
lected in preceding turns, and the candidates that
are not as similar to the target as the topics in pre-
ceding turns. The tree nodes corresponding to these
masked nodes thus will not be achieved during the
update process of search policy π. Moreover, we
also load the parameters of pre-trained single-turn
topic prediction model (Tang et al., 2019) to initial-
ize the policy and value network, and the parame-
ters are also updated during training process.

4 Experiments

4.1 Experimental settings

Datasets: We evaluated the performance of
MM-TP on two popular conversation benchmarks:
Target-Guided PersonaChat dataset (TGPC) and
Chinese Weibo Conversation dataset (CWC). The
TGPC dataset (Tang et al., 2019) is derived from
the PersonaChat corpus which covers a abroad
range of topics. Following (Tang et al., 2019),
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CWC TGPC

Dataset Train Test Train Test

#Conversations 824,742 45,763 8,939 500
#Utterances 1,104,438 60,893 101,935 5,317
#Keyword types 1,760 1,760 2,678 1,571

Table 1: Statistics of training and test sets on two con-
versation benchmarks.

we take 500 conversations with relatively frequent
keywords as the test set. The CWC dataset (Qin
et al., 2020) is a Chinese conversational dataset that
derived from corpus crawled from Sina Weibo palt-
form. It matches the real-word scenarios better and
more efficient for the model to learn dynamic topic
transition. The statistics of these two benchmarks
are reported in Table 1.
Baselines: Existing target-guided open-domain
conversation systems are used as baselines: (1) Re-
trieval (Wu et al., 2017) is a conventional retrieval-
based chitchat system that used to provide refer-
ence performance in terms of different metrics;
(2) Retrieval-Stgy (Tang et al., 2019) which aug-
ments the above Retrieval system with the target-
guided strategy and permits the system to retrieve
a response containing more than one keyword; (3)
PMI (Tang et al., 2019) which constructs a keyword
pairwise matrix, and calculates the association be-
tween keywords by pointwise mutual information;
(4) Neural (Tang et al., 2019) which utilizes a neu-
ral network to encode the conversation history and
then employs a prediction layer to select a key-
word for the next turn. (5) Kernel (Tang et al.,
2019) which firstly measures the similarity between
the current keyword and candidate keywords, and
then utilizes a kernel layer to predict the candi-
date probability distribution; (6) DKRN (Qin et al.,
2020) which uses the semantic knowledge relations
among candidate keywords to mask the candidates
uncorrelated to the conversational history.
Training Details: Following (Tang et al., 2019;
Qin et al., 2020), we used GloVe (Pennington et al.,
2014) to initialize word embeddings for English
conversation corpus TGPC and Baidu Encyclope-
dia Word2Vec (Li et al., 2018) to initialize word
embeddings for Chinese conversation corpus CWC.
The number of conversational turns m was set as
8. The hierarchical GRU network utilized a hidden
layer of 200 units. We used the AdaGrad (Duchi
et al., 2011) optimizer to update the parameters
during the training process, with a learning rate η

TGPC CWC

Model Succ.(%) Turns Succ.(%) Turns
Retrieval 7.16 4.17 0 -
Retrieval-Stgy 47.80 6.7 44.6 7.42
PMI 35.36 6.38 47.4 5.29
Neural 54.76 4.73 47.6 5.16
Kernel 62.56 4.65 53.2 4.08
DKRN 89.0 5.02 84.4 4.20
MM-TP 91.23 4.82 86.3 4.15

Table 2: Results of our MM-TP and baseline conversa-
tion systems in terms of successful rate (“Succ.%”) and
average turns of target achievement (“Turns”).

as 0.001. The search time K in MCTS was set to
1600, and the tradeoff coefficient λ was set to 80.0.
Two retrieval systems Ge and Gu were implemented
with the toolkit Texar (Hu et al., 2019).

4.2 Self-play simulation evaluation

We first conducted simulation-based evaluation of
our MM-TP and baseline systems in the multi-turn
target-guided conversation setup. Same as (Tang
et al., 2019; Qin et al., 2020), we employed the con-
ventional retrieval system to play the role of human.
The baseline models and our MM-TP played the
role of system agent aiming to guide the conversa-
tion to achieve the target topic. During the train-
ing process, we generated the ground-truth topic
threads by iteratively appending the keyword se-
quences from the consecutive single-turn keywords
prediction samples in existing work (Tang et al.,
2019). In the testing phrase, the simulator ran-
domly selected a target from the candidate topic set
and the start utterance from the corpus. The experi-
ment was evaluated by measuring the success rate
of achieving the target (Succ.%), and the average
number of turns used to reach the target (Turns).
The target topic is considered as achieved when any
item of the predicted topic sequence takes a similar-
ity score with the target higher then 0.9, measured
by WordNet (Fellbaum and Miller, 1998).

Table 2 reports the results of our MM-TP as
well as the baselines on TGPC and CWC. From
the results, we can see that our proposed model
outperformed the baselines in terms of success rate
on both of the datasets. We attribute this to that
MM-TP takes a long-term planning to select the
topic by considering the topics in next several turns.
Moreover, the average turns of MM-TP to achieve
the target is comparable to baseline methods since
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Model Smoothness
Retrieval-Stgy 0.08
PMI 0.21
Neural 0.25
Kernel 0.23
DKRN 0.31
MM-TP 0.35

Table 3: Results of MM-TP and baseline methods in
terms of transition smoothness.

the long-term planning explores an optimized topic
thread to achieve the target.

4.3 Effects of Monte Carlo tree search

The search policy π usually performs better than
the raw policy p since MCTS is employed to con-
sider the topics in next several turns. Except the
policies, the value function V can also be used to
select topic at each turn. To explore the effective-
ness of these three components, we applied them
to predict the topic sequence on the test set re-
spectively after every 20 training epochs during
the online training phrase, and records the aver-
age success rate of target achievement. Figure 4
illustrates the success rate curves of the raw pol-
icy p, search policy π, and value function V. We
can see that: (1) The topic sequences generated by
the search policy π achieves higher success rate of
target achievement than that generated by the raw
policy p, which demonstrates that MCTS improved
the raw policy. (2) The results predicted by both π
and p are better than results predicted by the value
function V. The reason is that the raw policy p
and value network V greedily select topic at each
conversational turn, which makes the results are
not as good as that predicted by the search policy
π. Moreover, the quality of topic assignment is not
easy to estimate by value function.

4.4 Transition smoothness evaluation

We further explore how our MM-TP accomplishes
transition smoothness, which is also an important
objective of target-guided conversation for measur-
ing how naturally the conversation is guided. We
evaluate our proposed model and baseline meth-
ods in terms of transition smoothness. Specifically,
the transition smoothness (Smoothness) of each
model is calculated by the average WordNet infor-
mation content similarity between topics in adja-
cent turns. Table 3 shows the results of transition
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Figure 4: Success rate w.r.t. training process, when the
actions were selected with raw policy p, search policy
π, and value function V.

smoothness of our proposed MM-TP and baseline
methods. We can see that MM-TP achieves higher
transition smoothness compared with baseline sys-
tems. We contribute this to that the baseline meth-
ods are only constrained to select a topic at each
turn which is strictly more closer to the target topic
than those in preceding turn, while the transition
smoothness between the topics in adjacent turns is
overlooked. The proposed MM-TP improves these
methods by modeling the transition smoothness be-
tween topics in adjacent turns as local rewards, and
the performance of transition smoothness can be
controlled by adjusting the weight parameter β of
local smoothness.

4.5 Qualitative study

To dive a bit deeper and look at the performance
of our MM-TP on topic sequence prediction, we
compare the examples outputted by different con-
versational systems, and the results are shown in
Figure 5. The three agents are given the same target
topic and start utterance, and the task is considered
as successful when the predicted topic is similar
enough to the target. We can see that the Kernel
agent (Tang et al., 2019) employs single-turn key-
word prediction and utilizes the rule strategy to
make the topic predicted at each turn is strictly
closer to the target than topics selected in preced-
ing turns. As a result, the topics predicted in adja-
cent turns are distantly related and leading to poor
smooth transition. The DKRN agent (Qin et al.,
2020) improves the Kernel agent by considering the
relations between candidate keywords, and leads
to better smooth transition. However, the method
still suffers from predicting sub-optimal topics as it
overlooks topics in next several turns. For example,
in the conversation produced by DKRN, the top-
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Agent: Kernel              Target: car
A: Hi, stranger, how are you doing?
U: Pretty good. Listening to some music.
A: That sounds relaxing. I am about to settle 
down and read some poetry.
U: What book? I hate reading.
A: Well, former truck driver, like my dad, but 
now I just fix them.
U: I’ve never been an artist type.
A: Me too, I also love to race cars.

sound/0.60

truck/0.80

car/1.0
Agent: DKRN              Target: car
A: Hi, stranger, how are you doing?

A: I enjoy bingo, we have a game once a week.

play/0.56

game/0.66

music/0.69
A: Wonderful to spend time listening music 
and away from writing poems.

A: I understand that. I got back from playing
piano at my father’s funeral.
U: I am watching my favorite show.

U: My hobby is watching movie.

U: Awesome, I also enjoy writing.

U: A bit stressed but alright.

car/1.0 A: That is cool. The car is leased anyway so it 
isn’t that impressive.

topic/score

Agent: MM-TG              Target: car
A: Hi, stranger, how are you doing?
U: I feel a little uncomfortable, want to sleep.

sick/0.53
A: Sorry to hear, are you sick?
U: Yes, I am just recovering from an asthma 
attack and cannot go out.
A: Sorry to hear that, does someone come 
to help you?
U: Yes, luckily my friend found that I was ill.

help/0.66

A: Did he take you to the hospital by car?car/1.0

Figure 5: Example conversations between user (U) and
three different agents (A) with the same target topic
(car) and start utterance.

ics are smoothly transitioned in first four turns but
changed sharply from “music” to “car” in the fifth
turn in order to achieve the target. In contrast, our
MM-TP takes a smooth transition from the start
topic to the target as “the stranger is sick and his
friend helps him to hospital by car”. We contribute
this to that MM-TP searches the topic thread that
will be selected in next several turns by MCTS and
then makes prediction.

4.6 Error Analysis

Besides conducting self-play simulation evaluation
and performing qualitative evaluation by case study,
we also investigate some typical mistakes made by
our MM-TP. For example, in Figure 6, the agent
communicates with the user for eight turns and fi-
nally fail to achieve the target. We attribute this to
that the model lacks some common sense knowl-
edge (e.g., knowledge graph of topic) and attempt

A: Hi, how are you today?
U: Fine. Just finishing up my homework.
A: Oh, Do you like reading ?
U: Yes, I enjoy reading romantic stories.
A: That sounds helpful for writing
U: Yeah, but I do not good at writing articles
A: Oh cool! I really like music and singing.

reading/0.13

U: That’s great. My favorite singer is Taylor Swift.

writing/0.15

singing/0.16

A: Fine. Sometimes I also like riding in the countryside.
U: That sounds relaxing. I love the outdoors.riding/0.26

A: Do you like swimming?
U: I often walk along a long black river, but I cannot swim.swimming/0.29

A: I also love dancing, although I cannot dance well.
U: Music is life. Dancing to anything with a beat is the best.dancing/0.24

A: I also like playing football on weekends. 
U: I hope I could paly with you. playing/0.55

Target: Baseball Agent: MM-TGtopic/score

Figure 6: Example errors made by MM-TG.

to select a near-synonym for the next turn. Specif-
ically, according to the definition of Reward in
MM-TP, the transition between topics of consec-
utive turns should satisfies smoothness transition
and target similarity. However, as not any common
sense knowledge are injected into our model, the
search policy of MCTS is just trained to select a
topic similar to that in the previous turn and more
closer to the target. Whether the selected topic is
logically related to the topic in the previous turn
and can leading the topic thread to the target is
overlooked.

5 Related Work

Existing research of dialogue system can be
broadly concluded as two categories, which are
task-oriented dialogue systems and open-domain
dialogue systems. Task-oriented dialogue system
aims to accomplish some pre-defined goals (Lip-
ton et al., 2018), conduct negotiation (Cao et al.,
2018) or perform symmetric collaborations (He
et al., 2017). Open-domain dialogue systems are
designed to chat naturally with human and aiming
to provide reasonable responses. Previous work
make efforts to improve response generation by
developing novel neural networks and training on
large-scale corpus (Serban et al., 2017; Zhou et al.,
2016, 2018). Although the promising progresses
have been achieved, these chat-oriented dialogue
systems still struggle to a set of limitations such as
dull or inconsistent responses (Ram et al., 2018).

Due to these limitations, a novel task named
target-guided open-domain conversaion was pro-
posed, which requires the system to proactively and
naturally guide the topic thread by integrating goals
and strategies. Tang et al. (2019) for the first time
introduced this task and employed a simple target-
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guided strategy to attain smooth topic transition by
turn-level supervised learning. Qin et al. (2020) fur-
ther improved this work by capturing semantic or
factual knowledge relations among candidate top-
ics through a dynamic knowledge routing network.
However, both these methods employ single-turn
supervised learning to predict the topic of each turn
according to the human annotated topic sequence.
Moreover, they only consider existing context and
overlook the long-term planning of topics in next
several turns.

Monte Carlo Tree Search (MCTS) enhanced
MDP was firstly proposed in games (Silver et al.,
2016; Schrittwieser et al., 2019; Silver et al., 2017)
and has been applied in other fields such as diverse
ranking (Feng et al., 2018), name entity recogni-
tion (Lao et al., 2019) and task-oriented conversa-
tion (Wang et al., 2020). In this paper, we apply
MCTS in open-domain conversation to generate
topic sequence which is utilized to guided the con-
versation thread to achieve the target.

6 Conclusion

In this paper, we formulate the target-guided con-
versation as a multi-turn topic prediction problem,
and propose a novel approach called MM-TP to
resolve this task. MM-TP formalizes the multi-turn
topic prediction as sequential decision prediction
problem, and models it with MDP. MCTS is used
to improve the raw policy by making a long-term
planning of topics in next several turns and then
selecting a topic for the current turn. The model
parameters are learned by reinforcement learning.
Experimental results demonstrate that MM-TP out-
performed existing baseline systems in terms of
both the successful rate of achieving target and the
topic transition smoothness.
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Abstract
This paper applies contextualized word embed-
ding models to a long-standing problem in the
natural language parsing community, namely
prepositional phrase attachment. Following
past formulations of this problem, we use data
sets in which the attachment decision is both a
binary-valued choice as well as a multi-valued
choice. We present a deep learning architecture
that fine-tunes the output of a contextualized
word embedding model for the purpose of pre-
dicting attachment decisions. We present ex-
periments on two commonly used datasets that
outperform the previous best results, using only
the original training data and the unannotated
full sentence context.

1 Introduction

Prepositional phrase (PP) attachment is a sub-
problem of natural language parsing in which the
objective is to determine the likely attachment site
of the preposition. The attachment site should cor-
respond to the preferred semantic interpretation of
the sentence.

I bought a computer with a GPU

In the above example, the preposition with could
attach to bought or computer. The likely interpreta-
tion is that GPU is a sub-component of computer,
which implies an attachment to computer.

I bought a computer with bitcoin

In this example, the likely interpretation is that
bitcoin is a payment method, which implies an
attachment to bought.

PP attachment ambiguities are difficult to resolve
because the candidate attachment sites look equally
plausible from the perspective of natural language
syntax. Deciding the best attachment site for a
preposition often requires a semantic interpretation
of the words in the sentence.

2 Previous work

Early work on this task uses relationships between
head words of the phrases involved in the attach-
ment decision. Hindle and Rooth (1993) predict
attachments using co-occurrence statistics between
the preposition and the candidate heads, drawn
from an automatically built corpus of partial parses.
Ratnaparkhi et al. (1994); Brill and Resnik (1994);
Collins and Brooks (1995) use a wider variety of
machine learning techniques to learn the attach-
ment decision from annotated tuples of head words.

Later work uses a variety of external data sources
to help with the attachment decision. E.g., Stetina
and Nagao (1997) use features from WordNet
(Miller, 1995) while Olteanu and Moldovan (2005)
use features from FrameNet (Baker et al., 1998)
and co-occurrence statistics drawn from the World
Wide Web.

More recent work uses word embeddings and
neural models. Belinkov et al. (2014) explore a
number of neural composition architectures to com-
bine the embeddings from the head words, while
Dasigi et al. (2017) use the WordNet ontology to
create context-sensitive word embeddings. Yu et al.
(2016) use a scoring function on low-rank tensors,
created from a variety of PP attachment features,
while Madhyastha et al. (2017) use the tensor prod-
ucts of the word vectors in a multi-linear model.
Recently, Do and Rehbein (2020) present German
language PP attachment experiments using a neural
scoring model with a biaffine transformation.
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Field Example
Verb h1 made
Noun h2 paper
Preposition p for
Child noun n2 filters
Label N

Table 1: Example in RRR data set. h1 and h2 are the
verb and noun candidate attachment sites for p, respec-
tively.

Field Example
Candidate heads
h1 . . . hn

made trip compete

Preposition p for
Child noun n2 slots
Full sentence eventually , about 250 made

the trip to florida to compete
for the available slots .

Annotated label 3

Table 2: Example in BLBG data set with joined sentence.
h3, or "compete", is the annotated attachment site for
the preposition.

3 Data

In this work, we report results on the English-
language data sets from Ratnaparkhi et al. (1994)
and Belinkov et al. (2014), henceforth referred to
as the RRR and BLBG data sets, respectively. Both
datasets were extracted from the Penn Treebank
(Marcus et al., 1993).

Each example in the RRR data set1 consists of a
tuple (h1, h2, p, n2, L), where h1 is the candidate
verb head, h2 is the candidate noun head, p is the
preposition, n2 is the noun head child of the prepo-
sition, and L ∈ {N,V } is the label that indicates a
noun or verb attachment. We map {N,V } to {2, 1}
for consistency with the BLBG format, described
below.

Each example in the BLBG data set2 consists of
a tuple (h1 . . . hn, p, n2, L), in which h1 . . . hn are
a list of candidate noun and verb heads, p is the
preposition, n2 is the noun head child of the prepo-
sition, and L ∈ {1 . . . n} denotes the index of the
correct attachment in the list of heads. Compared
to the RRR dataset, the BLBG dataset is a better
approximation of the attachment decision faced in
a full parsing task since it allows more than two

1https://github.com/adwaitratnaparkhi/ppa_transformer
2http: //groups.csail.mit.edu/rbg/code/pp

Training Development Test
RRR 20801 4039 3097
BLBG 35359 n/a 1951

Table 3: Data set sizes of the RRR and BLBG data sets

possible attachment sites.
In order to enable experiments in which the full

sentence context is used as input, the original head
word tuples were joined with the full sentences
from which they were extracted. Starting from data
generation scripts provided to us by the author3

of the BLBG data set, we joined each example in
the original BLBG data set with its full sentence
context from the Penn Treebank Version 3. The
sentences were lower cased to match the conven-
tion of the BLBG data. As we could not obtain
the matching version of the Penn Treebank for the
RRR dataset4, the full sentence experiments were
only conducted on the BLBG data set.

Table 3 shows the size of the data sets. Tables 1
and 2 contain example training instances.

4 Our method

In recent years, contextualized word embeddings
(CWE), particularly those built using the Trans-
former (Vaswani et al., 2017) architecture, have
accelerated progress in many NLP tasks. Past
work on NLP tasks has typically followed a trans-
fer learning strategy, in which a large pre-trained
model is fine-tuned on a small annotated training
set with task-specific labels. We apply this strategy
using pre-trained BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) models on data specific
to the prepositional phrase attachment task, with
the objective of improving task accuracy.

Figure 1 introduces a deep learning architecture
that fine-tunes the output of a CWE module in or-
der to predict attachments. We henceforth refer
to it as the Fine Tuning for Headword Attachment
(FTHA) model5. The full sentence or phrase is first
passed through the CWE module, which yields a
vector of token embeddings, shown in layer (1). In
cases where the original word has been split into
multiple tokens by the CWE tokenizer, we follow
the convention in (Devlin et al., 2018) and use the

3Many thanks to Yonatan Belinkov for the data generation
code.

4The RRR dataset cannot be joined with Penn Treebank
Version 3 due to missing data.

5The FTHA implementation can be found at
https://github.com/adwaitratnaparkhi/ppa_transformer
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Full sentence or phrase

BERT or RoBERTa

h1 h2 h3 n2p

h1, p, n2 h2, p, n2 h3, p, n2

Hidden layer 1 Hidden layer 1 Hidden layer 1

Out 1+
h1, p, n2

Out 1

Out 2+
h2, p, n2

Out 2

Out 3+
h3, p, n2

Out 3

Hidden layer 2 Hidden layer 2 Hidden layer 2

SoftMax

(1)

(2)

(3)

(4)

(5)

(6)

Figure 1: The Fine Tuning for Headword Attachment
(FTHA) model. The diagram shows only 3 candidate
head word attachment sites for the preposition, but the
network can operate on an arbitrary number of candidate
head words.

embeddings of the first sub-token. Next, a mask
operation extracts a vector of n embedding triples
(h1, p, n2) . . . (hn, p, n2), shown in layer (2). Each
triple represents a possible attachment. The embed-
ding triples are passed to a hidden layer (3), and
then concatenated with the hidden layer output us-
ing a "skip" connection, shown in layer (4). The
result (4) is then passed to a second hidden layer
(5). Finally, a softmax layer (6) returns a score for
each attachment. The hidden layers in (3) and (5)
share their parameters across their respective layer.

Each input example contains the information
shown in Tables 1 and 2, together with a token
sequence, and token indices of the head words. De-
pending on the experiment configuration, the token
sequence is either the full sentence from which the
example was drawn, or a phrase synthesized by
concatenating the words in (h1 . . . hn, p, n2).

5 Experiments

The FTHA model is trained and evaluated on both
the RRR and BLBG data sets. Furthermore, we
compare with past results on both data sets, as
well as against an existing implementation6 of a
multiple choice fine-tuning architecture in the Hug-
gingFace (HF) code library (Wolf et al., 2019).

The HF multiple choice implementation was de-

6https://github.com/huggingface/transformers/tree/
master/examples/multiple-choice

Data set Label Frequency Label Frequency
RRR N 10865 V 9936
BLBG 1 1585 5 4957

2 7961 6 1478
3 10113 7 225
4 9022 8 18

Table 4: Allowable labels and their distribution in the
RRR and BLBG training sets.

signed for the SWAG (Zellers et al., 2018) task,
and is described in Devlin et al. (2018). We config-
ure the implementation to predict up to 8 choices,
where each choice is a phrase formed from the head
word triple (hi, p, n2), or a dummy label. For con-
text input, we also give it either a full sentence or
a phrase synthesized from all of the head words,
depending on the experiment configuration. For
our experiments, we configure it to use RoBERTa.

The HF implementation encodes the text of the
choice (i.e., the head word triples) and any ad-
ditional input, "pools" the embeddings, and then
passes them to linear and softmax layers. In con-
trast, the FTHA model retains the head word em-
beddings that were computed in the context of the
full sentence or phrase. This representation allows
the FTHA model to work with a higher granularity
of information from the input, compared to the HF
implementation.

All experiments are measured using accuracy of
the label classification. The allowable labels for
each data set and their distributions are shown in
Table 4.

Table 5 shows results on the RRR dataset using
the FTHA model with both BERT and RoBERTa.
Only the head word tuples are used as input. The
best result, FTHA with RoBERTa, is 0.7% higher
than the one reported in Stetina and Nagao (1997),
which is the previously best known result for the
RRR dataset.

Table 6 shows results on the BLBG dataset with
multiple experiment configurations. The best result
in the Head words only configuration, FTHA
with RoBERTa, outperforms the previously best
result from Yu et al. (2016) by 1.7%. The best re-
sult in the Full sentence configuration, again
FTHA with RoBERTa, outperforms that result by
4.1%. Table 7 shows an example where having the
full sentence context helps.

The higher granularity representation of the
FTHA model (with RoBERTa) gives slight accu-
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Paper Dev Test
(Stetina and Nagao, 1997) n/a 88.1%
HF multiple choice 89.1% 88.4%
FTHA (RoBERTa) 89.3% 88.8%
FTHA (BERT) 88.8% 87.9%

Table 5: Results on the RRR data set.

Paper/Configuration and Model Accuracy
(Belinkov et al., 2014)
HPCD-full 88.7%
HPCD-full with parser 90.1%
(Dasigi et al., 2017)
OntoLSTM-PP 89.7%
OntoLSTM-PP with parser 90.11%
(Yu et al., 2016)
LRFR1-TUCKER & LRFR2-CP 90.3%
Head words only configuration
FTHA (RoBERTa) 92.0%
FTHA (BERT) 91.1%
HF multiple choice 91.1%
Full sentence configuration
FTHA (RoBERTa) 94.4%
FTHA (BERT) 93.2%
HF multiple choice 94.2%

Table 6: Results on the BLBG data set

racy gains compared to the HF baselines, for both
the RRR and BLBG experiments. However, the dif-
ferences are not statistically significant according
to McNemar’s test at α = 0.05 significance level.

All RoBERTa and BERT experiments use the
roberta-base and bert-base-uncased
models, respectively. All models have at most
126M parameters, and training times were at most
1 hour on a UNIX server with an NVIDIA Titan
RTX GPU with 24Gb RAM.

5.1 Hyperparameters
In our experiments, the hidden layers 1 and 2 in
Figure 1 have a size of 3N and 4N , respectively,
where N = 768. During training, we use 3 epochs,
a batch size of 16, the AdamW optimizer, a warmup
step of 500, a weight decay of 0.01, and a learning
rate of 10−3.

6 Discussion

In past work, data sparsity has been a major chal-
lenge for corpus-based approaches to prepositional
phrase attachment. To remedy data sparsity, re-

Field Example
Candidate heads
h1 . . . hn

plan impose freeze

Preposition p on
Child noun n2 fees
Full sentence the plan would impose a

brief freeze on physician
fees next year .

Annotated label 2

Table 7: Test example where the Head words
only configuration predicts incorrectly and the Full
sentence configuration predicts correctly, for the
FTHA (RoBERTa) model. h2, or "impose", is the anno-
tated attachment site for the preposition.

searchers have incorporated features from external
resources like WordNet and FrameNet, with the
idea that semantic features on words will have far
less than sparsity than words themselves.

In our work, the CWE, built from a huge amount
of unsupervised data, seem to compensate for the
sparsity in the relatively small training sets. Our re-
sults on both the RRR and BLBG sets exceed those
reported in past work, but without using WordNet,
FrameNet, or any other external resources. All
other results compared in Tables 6 and 5 use re-
sources external to the training set.

We do not compare our experimental results with
those in Do and Rehbein (2020) and Olteanu and
Moldovan (2005) due to differences in test data.

The approach of Do and Rehbein (2020), con-
ducted on German-language PP attachment data,
resembles our work in that it uses CWE in a neu-
ral model. It also presents a scoring function for
(hi, p, n2) triples, using a biaffine transformation of
word representations derived from a bidirectional
LSTM. It differs from our approach in that it consid-
ers all words in the sentence as potential attachment
sites. And unlike our work, it incorporates addi-
tional information like part-of-speech tags, topolog-
ical field tags, and auxiliary distributions computed
from a large newspaper corpus.

The approach of Olteanu and Moldovan (2005)
uses support vector machines and requires rich fea-
tures that cannot be derived from the RRR dataset.
Therefore it creates a new and larger data set with
complex features from syntax trees, FrameNet, and
co-occurrence statistics derived from an internet
search engine. In contrast, our work focuses on
only the CWE and excludes external resources.
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Both the FTHA and HF experiments show bene-
fit from using the full sentence context. For FTHA,
the embeddings computed in the context of the
whole sentence are likely more accurate than those
computed from the head word phrase. For the HF
implementation, the pooled embedding of the sen-
tence carries enough information to boost the ac-
curacy over just using the head words. Notably, in
both cases, the sentence information is not explic-
itly annotated with any syntactic information, yet
gives a sizable boost (+ 2% to 3%) in PP attachment
accuracy.

Our work studies the PP attachment problem
in isolation, and does not compare against the at-
tachment decisions of a full parser. Other work
(Belinkov et al., 2014; Dasigi et al., 2017) shows
that PP attachment is still a problematic area for
full parsers, and that an independently trained PP
attachment model can improve the decisions of a
full parser.

7 Conclusion

We present deep learning experiments for the prepo-
sitional phrase attachment task that exceed the ac-
curacy of all previously published results on two
widely used data sets. The results in our paper
are 0.7% and 4.1% higher in absolute percentage
points over the best previously published results
on the RRR and BLBG data sets, respectively. We
present a novel fine-tuning architecture that uses
a higher granularity of information from the input,
compared to a baseline implementation from Hug-
gingFace. All our results were obtained without
using external semantic data sources like WordNet
or FrameNet. Lastly, we observe a big accuracy
gain when the model is given the full sentence con-
text vs. only the head words, despite having no
syntactic annotation in the full sentence context.
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Abstract
Pretrained multilingual language models have
become a key part of cross-lingual trans-
fer for many natural language processing
tasks, even those without bilingual informa-
tion. This work further investigates the cross-
lingual transfer ability of these models for con-
stituency parsing and focuses on multi-source
transfer. Addressing structure and label set di-
versity problems, we propose the integration
of typological features into the parsing model
and treebank normalization. We trained the
model on eight languages with diverse struc-
tures and use transfer parsing for an additional
six low-resource languages. The experimen-
tal results show that the treebank normaliza-
tion is essential for cross-lingual transfer per-
formance and the typological features intro-
duce further improvement. As a result, our
approach improves the baseline F1 of multi-
source transfer by 5 on average.

1 Introduction

Recent pretrained multilingual language models
have become a key step in cross-lingual transfer
for many natural language processing tasks such
as name entity recognition, part-of-speech tagging,
natural language inference, and dependency pars-
ing (Wu and Dredze, 2019). These models are
desirable in research on cross-lingual transfer be-
cause bilingual information is not required.

Cross-lingual transfer is when a trained model
for a source language is applied to a target (unseen)
language. There are two transfer scenarios, single-
source and multi-source transfer. For single-source
transfer, each time, the model is trained on only one
source language. In this scenario, multiple models
are available for cross-lingual transfer in practice.
Additional model selection is necessary for single-
source transfer because cross-lingual transfer relies
on language isomorphism. For multi-source trans-
fer, to leverage all existing resources, treebanks of

multiple languages are combined to train a multi-
lingual parser that can be later used for any unseen
language. In this work, we study the multi-source
transfer for sophisticated structure prediction, i.e.,
constituency parsing. Our work will serve as a
benchmark for cross-lingual constituency parsing
using pretrained multilingual language model.

For constituency parsing, training a multilingual
parser has two main issues that must be consid-
ered. First, the source languages can produce di-
verse word orders—for instance, different subject-
verb-object or noun-adjective orders. These lan-
guage properties can be simply identified using
existing typology databases, e.g., The World At-
las of Language Structures (WALS) or Syntactic
Structures of the World’s Languages (SSWL). It
is intuitive that these language properties can be
used to guide a multilingual parser to share cor-
responding model parameters among similar lan-
guages (Naseem et al., 2012; Ammar et al., 2016;
Scholivet et al., 2019; Üstün et al., 2020). For cross-
lingual transfer, the typological features could hurt
performance (Ammar et al., 2016), and an effec-
tive integration technique is required (Üstün et al.,
2020). Inspired by this, we investigate the useful-
ness of typological features for cross-lingual con-
stituency parsing and propose a training strategy to
generalize the cross-lingual capability of the model
using smooth sampling and random dropout.

The second issue is that even though con-
stituency structure is universal, the design of a label
set is language specific. For dependency structures,
this problem has inspired the creation of the Uni-
versal Dependency project (Nivre et al., 2016). The
syntactic label sets of constituency structure vary
across languages—for instance, very few labels
are shared and even labels for the same syntactic
category may be different across languages. This
increases the complexity of multi-source transfer.
Therefore, we propose normalization of the con-
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Figure 1: Overall architecture of our parser. The multilingual treebanks are normalized (a) before training the
parser (b). A span classifier (c) is also integrated with a feature extractor (d) for binary typological vectors, as
shown in the right-most example.

stituency treebanks to universalize the multilingual
parsing model.

The contributions of this paper are summarized
as follows: 1) typological feature integration for
model generalization on unseen languages (Sec-
tion 4.1), and 2) treebank normalization is proposed
to reduce the complexity of cross-lingual structural
prediction (Section 4.2).

2 Related Work

In multi-source transfer, task-specific knowledge of
multiple source languages is combined and jointly
transferred to an unseen or zero-shot language.
This combination can be categorized according to
three levels (Das and Sarkar, 2020), that is, the
level of treebanks (McDonald et al., 2011; Am-
mar et al., 2016; Scholivet et al., 2019; Üstün
et al., 2020), model parameters (Cohen et al., 2011;
Søgaard and Wulff, 2012), or parse outputs (Rosa
and Žabokrtský, 2015; Agić, 2017). This work
focuses on treebank level, that is, treebank con-
catenation and, unlike previous studies, we study
a more sophisticated structure, constituency tree-
banks, which simultaneously contain diverse syn-
tactic labels across multiple source languages.

Typological features are a valuable resource for
multi-source transfer where source languages have
diverse structures, and they have been used specif-
ically for sharing the parameters of non-neural
(Naseem et al., 2012; Täckström et al., 2013; Zhang
and Barzilay, 2015) and neural (Ammar et al.,
2016; Scholivet et al., 2019; Üstün et al., 2020)
models. Following the same motivation, we also in-
vestigate the usefulness of typological features for a
multilingual constituent parser and propose a train-
ing strategy that generalizes the model for zero-shot
languages. Specifically, we integrate typological

features into the self-attentive constituency parser
(Kitaev and Klein, 2018).

Our work is similar to that of Kitaev et al. (2019)
who investigated the multilingualism of the self-
attentive constituency parser (Kitaev and Klein,
2018) using the pretrained multilingual language
model. However, our work differs from theirs such
that we focus on zero-shot performance. In ad-
dition, we propose to normalize the concatenated
treebanks and integrate typological features for bet-
ter zero-shot performance. We also extend the sam-
pling technique that Kitaev et al. (2019) use by
constraining the minimum size of each treebank.

3 The Self-Attentive Parser

The basis of our model (Fig. 1b) follows the self-
attention based encoder–decoder architecture of
Kitaev and Klein (2018). Specifically, the encoder
consists of word embedding and self-attention lay-
ers to produce the contextual presentation for each
word. At the decoder side, all possible spans are
extracted and each span (i, j) is represented by a
hidden vector vi,j that is constructed by subtract-
ing the representations associated with the start and
end of the span. Then, each span (i, j) is assigned a
labeling score s(i, j, ·) by an MLP span classifier as

s(i, j, ·) = W2g(f(W1vi,j + c1)) + c2, (1)

where W∗ and c∗ are the weight and bias, re-
spectively; f and g are the layer normalization
and ReLU (”Re”ctified ”L”inear ”U”nit) activation
function, respectively, as shown in Figure 1c. For
each sentence, the constituency structure T is rep-
resented by a set of labeled spans {(it, jt, lt) : t =
1, . . . , |T |} where l is a label. Therefore, the score
of T is

s(T ) =
∑

(i,j,l)∈T
s(i, j, l). (2)
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At test time, the optimal structure can be ob-
tained using a CKY-style inference algorithm. For
training, the model is optimized using a max-
margin objective function, the details of which can
be found in Kitaev and Klein (2018). In addition,
the parser’s hyperparameters are unchanged from
Kitaev and Klein (2018).

To perform cross-lingual parsing, an external pre-
trained multilingual language model must be used
and simply take the place of the word embedding
layer. Because the model is trained on sub-words,
only the last sub-word unit of the corresponding to-
ken is used to represent a word. In this experiment,
we use a recent multilingual language model, i.e.
XLM-RoBERTa-Large (Conneau et al., 2020).

4 Proposed Methods

4.1 Typological Feature Integration
A typology database is a valuable resource that
represents various aspects of languages. Recent
lang2vec (Littell et al., 2017) provides an inter-
face to represent languages as binary vectors of
typological features. Inspired by the recent work of
Üstün et al. (2020), we also integrate typological
features f (TF) into our model to guide the multi-
lingual model’s sharing of the structural knowledge
among similar languages, as Figure 1d shows. We
use simple feature concatenation to integrate typo-
logical features into the span classifier. Like Üstün
et al. (2020), we embed binary typological vectors
using two linear layers and a ReLU activation func-
tion g, and further apply random dropout over the
binary typological vectors as

f ′ = M2g(M1dropout(f) + z1) + z2. (3)

We then concatenate f ′ with each span vector, vi,j ,
which modifies Equation 1 as

s(i, j, ·) = W2g(f(W1[vi,j , f
′] + c1)) + c2. (4)

Dropout is applied directly to the binary fea-
tures because, during training, typological features
only vary with respect to the number of source
languages, and each feature is only helpful in the
context of other features, which is known as co-
adaptation (Hinton et al., 2012). Therefore, for
a zero-shot language, without dropout, the model
would not be able to extract individual features in a
new feature context, which can be prevented using
simple random dropout (Hinton et al., 2012). Like
Hinton et al. (2012), we drop 50% of the features
during training.

The number of multilingual treebanks commonly
differs, and high-resource languages tend to be
over-represented during training. Similar to the
exponential smoothing in Kitaev et al. (2019), at
each epoch, we sample da examples from each
language, where d is the size of each language tree-
bank and a is a hyperparameter. Unlike Kitaev
et al. (2019), we use a = 0.95 because the size
of each treebank is not as large as the unlabeled
corpora. We also constrain the smoothed number
of examples as da > m, where m is the smallest
treebank size in the source-language pool. We call
this approach “smooth sampling.”

For the typological features, we combine the
syntax features of WALS (Dryer and Haspelmath,
2013) or SSWL (Collins and Kayne, 2011)1. We
only select the relevant features such as 81A, 82A,
83A, 85A, 87A, 88A, 89A, 90A, 144A, and other
unknown ID features such as subject b/a object2,
possessor b/a noun, degree word b/a adjective,
and subordinator word b/a clause. In addition, we
exclude the morphological features, which contain
the word prefix or suffix, and the missing features
of any source language. For zero-shot languages,
the missing features are set to zero. After that, we
further automatically remove unnecessary features
that are repeated for all source languages. Like Us-
tun et al. (Üstün et al., 2020), we set the hidden and
output layer of our TF to 10 and 32, respectively.

4.2 Treebank Normalization
Another obvious issue of constituency treebanks is
the difference in their syntactic labels. We observed
that high-resource languages tend to have more
diverse labels, whereas low-resource languages use
a much smaller label set; for instance, Myanmar
and Khmer have five and six labels, respectively,
whereas English has 26. Moreover, label symbols
for each treebank are very language specific; for
example, French and English, which have large
label sets, only share two labels.

Therefore, we propose treebank normalization
(TN) as the preprocessing step in our approach.
Specifically, we first remove any non-terminal span
that has length or number of children less than two.
In other words, they are any span (i, j) ∈ T where
j − i < 2. After that, we mask the labels of all
the remaining non-terminal spans with an unified
symbol, e.g., “P” as in the example in Figure 1a.

1These features can be obtained using lang2vec by pass-
ing a syntax wals+syntax sswl. argument.

2b/a denote “before or after”.
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Code Language Train Valid Test
de German 40, 472 5, 000 5, 000
en English 39, 832 1, 700 2, 416
ko Korean 23, 010 2, 066 2, 287
my Myanmar 18, 088 1, 000 1, 018
zh Chinese 17, 544 352 348
ja Japanese 17, 204 953 931
ar Arabic 15, 762 1, 985 1, 959
fr French 14, 759 1, 235 2, 541

km Khmer 8, 788 510 654
hu Hungarian 8, 146 1, 051 1, 009
eu Basque 7, 577 948 946
pl Polish 6, 578 821 822
sv Swedish 5, 000 494 666
he Hebrew 5, 000 500 716

Table 1: Data statistics. The numbers refer to numbers
of sentences where upper languages are high-resource
languages and lower for low-resource languages.

As a result, our label classifier is simplified to only
detect the span as a span or non-span.

5 Experiments

5.1 Setups

The evaluation was performed on 14 languages:
English from the Penn Treebank (Marcus et al.,
1993); Chinese from the Chinese Penn Treebank
5.1 (Xue et al., 2005); Japanese, Khmer, and Myan-
mar (my) from the Asian Language Treebank (Riza
et al., 2016); and Arabic, Basque, French, German,
Hebrew, Hungarian, Korean, Polish, and Swedish
from the SPMRL 2013 shared task (Seddah et al.,
2014). The standard splits of each treebank were
applied to prepare the training, validation, and
test datasets.

We grouped the languages into high- and low-
resource (zero-shot) languages based on their
amount of data; those with fewer than 10k samples
were treated as low-resource languages (Khmer,
Hungarian, Basque, Polish, Swedish, and He-
brew). We trained a multilingual model on the
high-resource languages and evaluated the cross-
lingual parsing on the low-resource languages.

Note that Khmer and Myanmar scripts have no
word boundaries, so we simply use their gold seg-
mented long token3 for this experiment. We ob-
serve that XLM-RoBERTa-Large’s tokenizer pro-

3Khmer and Myanmar written scripts can be segmented
into morphemes (short tokens) or at compound level (long
tokens) (Ding et al., 2018)

Lang. Sbest Sdist Mbase TNours + TFours

km 70.0 70.0 55.5 69.0 71.8
hg 64.7 31.2 68.6 73.9 74.7
eu 33.2 27.2 27.3 34.7 35.8
pl 72.8 72.8 65.6 67.9 68.3
sv 74.8 74.8 67.8 73.1 73.8
he 77.1 71.3 80.5 81.6 82.2

avg 64.5 55.5 61.9 66.2 67.0

Table 2: Main unlabeled F1 results. The best F1 for
each row is highlighted in bold text.

duces reasonable sub-words for Khmer and Myan-
mar’s long tokens, even when the tokenizer was
trained using SentencePiece for these two lan-
guages. Table 1 presents detailed data statistics
for each language.

For comparison, we trained two baselines, single-
and multi-source models. For the single-source
model, we trained parser for each high-resource
language and then selected the best model based
on its parsing accuracy on the oracle test set (Sbest)
of the low-resource language or used the precom-
puted syntactic distance (Littell et al., 2017) (Sdist).
For the same-value syntactic distance, we further
weighted each source language based on the size
of its corresponding training data. For the multi-
source baseline, a multilingual parser (Mbase) was
trained on concatenated treebanks without treebank
normalization or typological features.

Because the label sets of each treebank differ and
calculating the accuracy of label prediction was dif-
ficult, we calculated the unlabeled F1 measure to
evaluate cross-lingual performance. All following
F1 values refer to the unlabeled F1 for simplic-
ity. We also removed unnecessary spans such as
sentence-level and length-of-one spans.

5.2 Results

As shown in Table 2, the performance of single-
source transfer was very high, especially when the
best source language can be accurately detected.
Unfortunately, the precomputed syntactic distance
is not enough to choose the best source language;
in the results, it failed in three out of six cases. The
alternative to source selection is to train a multilin-
gual parser. Interestingly, even the straightforward
treebank concatenation Mbase has a competitive
performance when compared with single-source
transfer. The results further show that treebank nor-
malization is essential when training a multilingual
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Figure 2: Improvements in the F1 of TN+TF over TN
model with or without SD. SD refers to Smooth sam-
pling and random Dropout.

constituency parser for zero-shot languages, where
the improvement over Mbase is 4.3 in average F1.
This result suggests that reducing the complexity of
the structure improves cross-lingual performance.

In addition to treebank normalization, our inte-
gration of typological features constantly improves
cross-lingual performance. An analysis of Fig-
ure 2 further shows that the straightforward inte-
gration of typological feature yields smaller im-
provements or hurts the performance for some zero-
shot languages, indicating the effectiveness of our
smooth sampling and dropout, which generalize the
typology-guided cross-lingual parser for zero-shot
languages. We additionally observe that the combi-
nation of both smooth sampling and dropout is the
best configuration for the cross-lingual parsing.

6 Conclusion

We demonstrated the strong ability of recent pre-
trained multilingual language models for cross-
lingual constituency parsing. This result will serve
as a new benchmark for future cross-lingual con-
stituency parsing. Moreover, we found that our
treebank normalization is crucial when training
multilingual treebanks with diverse label sets. In
addition, our typological feature integration with
dropout and smooth sampling generalizes and im-
proves the model for zero-shot languages. Because
we integrated typological features into the span
classifier using a simple concatenation approach,
more advanced techniques—for instance, a parame-
ter generator (Üstün et al., 2020)—with our dropout
and smooth sampling could be studied in the future.

Additionally, our parser could make the applica-
tions that leverage structures possible for a wide
range of languages without additional treebanks.
For example, pseudo constituency structures that
our parser generate could be used to apply the re-
current neural network grammar (Dyer et al., 2016;
Kim et al., 2019) or the syntax-based neural ma-

chine translation (Ma et al., 2019) for many non-
English languages. However, since the pseudo
structures could be noisy or irrelevant to the model,
selective or soft integration techniques should be
considered (Chakrabarty et al., 2020).
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Abstract

Kannada is one of the major spoken classical
languages in India. It is morphologically rich
and highly agglutinative in nature. One of the
important grammatical aspects is the concept
of sandhi(euphonic change). There has not
been a sandhi generator for Kannada and this
work aims at basic sandhi generation. In this
paper, we present algorithms for lopa and Ade-
sha sandhi using a rule-based approach. The
proposed method generates the sandhied word
and corresponding sandhi without any help of
dictionary. This work is significant for agglu-
tinative languages especially to Dravidian lan-
guages and can be used to enhance the vocab-
ulary for language related tasks.

1 Introduction

Kannada is one of the Dravidian Languages spoken
predominantly by people of Karnataka. The Dra-
vidian languages are highly agglutinative and mor-
phologically rich in nature (Shashirekha and Van-
ishree, 2016). Euphonic change known as sandhi
(Kumar et al., 2009) is quite common in this lan-
guage.

Sandhi occurs at the character level between
two valid words of a particular language based
on a set of rules. It also occurs between a root
word/nominal stem and suffix as well. As Huet
(2009) rightly mentions the Sanskrit grammarians’
point that the sandhi is a mandatory action in the
case of compound words in Sanskrit, this condition
aptly applicable to Kannada as well.

The classification of sandhi can be done as in-
ternal sandhi and external sandhi. The euphonic
change that occurs, between a root word and suf-
fix, and in the case of construction of a compound
word, is considered as internal sandhi. For in-

stance, hU + annu1 = hUvannu 2 which means
the flower (as an object of a verb). In this case,
the first word hU is a nominal stem and annu is a
suffix. It undergoes euphonic change and vakAra-
Agama sandhi occurs here. Hence, it is an in-
ternal sandhi. An example for another internal
type is - parama + ISvara = parameSvara
[supreme + Lord = supreme Lord]. Here
both parama and ISvara are words forming the
compound word parameSvara. If sandhi occurs
between the characters present in two different
words, then it can be called as external sandhi.
For example: illi + ixxAlY eV = illixxAlY eV
[here + she is = she is here]. Both the words -
illi and ixxAlY eV are two different words.

Another way of classification is Kannada sandhi
and Sanskrit sandhi. This can be classified based
on the words present in the usage. As described
by Kittel (1920), Kannada has borrowed many
words from Sanskrit. It is possible to identify
sandhi corresponding to pure Kannada words or
a combination of Kannada and Sanskrit words.
If both the pUrvapaxa(first word) and uwwara-
paxa(second word) are chosen to be Kannada
words, then, Kannada sandhi occurs. For instance,
nAnu+ illi = nAnilli [I + here = I am here].
Both the words are Kannada words and the Sanskrit
sandhi is not applicable here. The non-application
of guNa sandhi (a Sanskrit sandhi) affirms that
through the previous instance. If either or both are
Sanskrit words, then Sanskrit sandhi occurs. For in-
stance, deva+ISanu = deveSanu [Lord+Lord
of = Lord of all Lords]. Both the words are
borrowed words and will follow guNa sandhi of
Sanskrit and, not any Kannada sandhi.

In this paper, our focus is on Kannada
sandhi. There are mainly three Kannada sand-

1Accusative case marker
2We have used WX notation given by Gupta et al. (2010)

throughout this paper to represent Kannada words.
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his: lopa(elision) sandhi, Agama(addition) sandhi
and Adesha(substitution) sandhi as mentioned by
Sharma (2015).

• Lopa(elision) sandhi: When pUrvapaxa is
ending with a Kannada vowel , uwwarapaxa
begins with a Kannada vowel, then euphonic
union of this will cause the vowel at the
pUrvapaxa to be eliminated and this word be
combined with the uwwarapaxa to form the
new word.
Example: nAnu + illi = nAnilli.
[I + here = I am here]
Here the last vowel of pUrvapaxa, u is
eliminated from pUrvapaxa and then joined
to the uwwarapaxa to form the new word.

• Agama(addition) Sandhi: When pUrvapaxa is
ending with a Kannada vowel , uwwarapaxa
begins with a Kannada vowel, then euphonic
union of this will cause the addition of y
or v at the beginning of uwwarapaxa. This
combination leads to Agama sandhi.
Example: maneV + ixu = maneV yixu
[house + this = this is house]. Here the
first vowel i of uwwarapaxa is prefixed with y
and then joined to form the new word.

• Adesha(substitution) Sandhi: When pUrva-
paxa is a Kannada word, uwwarapaxa be-
gins with either k , w or p then it is replaced
with g, x, b respectively .This combination of
pUrvapaxa and uwwarapaxa leads to Adesha
sandhi.
Example: malY eV+kAla = malY eV gAla
[rain + season = rainy season]. Here
uwwarapaxa begins with k, in the euphonic
change, it is replaced with g to form the new
word.

The Kannada sandhi can be further sub-categorized
as svara(vowel) sandhi and vyaFjana(consonant)
sandhi. The svara sandhi has vowel at the end
of the pUrvapaxa and at the beginning of uwwara-
paxa. vyaFjana sandhi must have a consonant char-
acter at the beginning of uwwarapaxa and there can
be any character svara or vyaFjana at the end of
the pUrvapaxa.

This classification helps us to apply the sandhi
rules unambiguously to some extent. However, in
some cases, we can see some overlapping of the

rules of the sandhi. One such instance is nAnu+
illi = nAnilli [I + here = I am here]. Though
the sandhi rule of vakAra-Agama sandhi explained
by Sharma (2015) is applicable, we have to choose
lopa sandhi, based on the usage. There are no
research or reason present for the preference of
lopa sandhi over the Agama sandhi. Due to this
complexity, we have excluded the Agama sandhi
in this paper.

The work on sandhi generation for Kannada has
not been successfully carried out. There are sandhi
generator tools developed for basic Malayalam by
Kleenankandy (2014) and for Sanskrit by Amba
(2002), Huet (1994) and many others. We may
find some works in sandhi generation for other In-
dian languages (Nirmala and Kalpana, 2015) as
well. The sandhi splitter tasks were carried out
for Kannada by Shashirekha and Vanishree (2016),
but generator was left out due to the complexity
and ambiguity involved. We are addressing this
issue by proposing a novel idea by defining the
algorithm necessary to generate sandhi formation
for the given input Kannada words using a rule
based approach. The sandhi generator is useful for
students who wish to learn the concept of euphonic
change in Kannada and to researchers working on
NLP applications for the tasks like morphologi-
cal analysers and Machine Translation. The paper
is organized as follows: Section 1 introduction,
section 2 literature review, section 3 methodology,
section 4 result analysis and section 5 conclusion
and future scope followed by references.

2 Literature Survey

Kannada spell checker and sandhi splitter work
was carried out by Murthy et al. (2017) making
use of transliterated dictionaries which stored the
words and affixes. The Agama sandhi splitter was
developed by Shashirekha and Vanishree (2016)
using a rule based approach with manual annotation
of suitable words and their affixes. There are other
Kannada sandhi splitter works but here we have
reviewed a few as our focus is on generation than
splitting. Kleenankandy (2014) has implemented
sandhi-rule based compound word generator for
Malayalam, the basic sandhi rules for Malayalam
was addressed along with supplementary details
for words to identify the sandhi. This work was
semi-automatic and required human intervention to
resolve ambiguities. Significant work on Sanskrit
word segmentation was carried out by Huet (2003).
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The disambiguation of a given word was performed
using a rule-based approach.

Though there are sandhi generator tools devel-
oped for Sanskrit by Amba (2002), Huet (1994),
Sachin Kumar and many others, we see that there
has not been a successful sandhi generator for pure
Kannada sandhi.

3 Methodology

The implementation of a basic lopa and Adesha
sandhi using regular expression is presented in this
section. We have excluded the internal sandhi (root
+ suffix) and considered only compound words and
external sandhi. As we mentioned earlier in the
introduction section, some rules of Agama sandhi
overlaps with the rules of lopa sandhi. Let us con-
sider the yakAra-Agama sandhi as an example -
maneV + alli = maneVyalli [house + locative case
marker = in the house]. The rules for lopa sandhi
and Agama sandhi overlap here and there is no
semantic information which can distinguish and
avoid the overlap. By convention and practical us-
age, maneVyalli is the expected output, whereas
due to the overlapping rules, our system generates
maneli as the output. Though the word maneli is
also correct in colloquial Kannada and the mean-
ing is also exactly similar as maneVyalli, we may
not find the word maneli in formal usage. Hence,
we have skipped writing the algorithms to Agama
sandhi at this stage.

The block diagram of the methodology is shown
in Figure 1.

Figure 1: Block diagram of the system for sandhi gen-
eration

The user inputs two Kannada words in WX no-
tation. The Check Regular Expression module will
validate the input words to check if the words fol-
low the pattern suitable to perform lopa or Adesha
sandhi. If it follows the pattern, then the inputs are
passed into Generate Sandhi module. In this mod-
ule, the rules are defined. The rules to perform lopa
and Adesha sandhi are different. We have referred
mainly to the Kannada grammar book by Sharma
(2015) and inspired by the Sanskrit Sandhi works
of Amba (2002) and Huet (1994) to obtain these
rules and implementation was performed follow-
ing the same. The generated output is the sandhi

word in WX notation. However, we may render
the WX input in UTF-8 (Kannada scripts) to ease
the process of learning or understanding the sandhi
concept, using the existing standard transliteration
schemes.

3.1 Algorithm for lopa and Adesha Sandhi

The algorithm for lopa sandhi and Adesha sandhi is
shown in Algorithm 1. As we mentioned, we have
followed rule based approach and is based on the
morphological rules of Kannada by Sharma (2015).
The characters are extracted using extract function
as defined in Algorithm 2 and are joined with re-
spect to the predefined morphological rules. The
input words are analysed to check which sandhi
can be applied. Once we decide on the sandhi, uni-
fication of characters can be done based on rules.
No dictionary is used here and we assume that user
has typed valid Kannada words as input. We would
like to make use of a dictionary in the future to
validate input words. As of now, if the rules are sat-
isfied by the input words, the corresponding output
is generated.

3.1.1 Definitions
Svara: Vowels in Kannada language - a, A, i, I, u,
U, q, eV, e, E, oV, o, O
ktp: characters k or w or p

3.2 Implementation details

The text in WX form is checked against the regular
expressions. There are four separate regular expres-
sions two each for lopa and Adesha sandhi. For
instance, in lopa sandhi the pUrvapaxa has to end
with a svara. The corresponding regular expression
is [A−Za− z]∗ ([aAiIuUqeEoO]|(eV )|(oV ))$.
We have made use of regular expression library3

available for Python 3 to match these and imple-
mented on Google Colab4 platform.

4 Results and Analysis

We have checked in total for 386 unique pairs of
Kannada words manually extracted from the data
we requested from the work carried out by Reddy
and Sharoff (2011). We were able to identify 255
pairs for lopa sandhi and 131 pairs for Adesha
sandhi. The sample data is shown in table 15. The

3https://docs.python.org/3/library/re.html
4https://colab.research.google.com
5We have not used diacritics in this table to highlight that

the input to the system must be in WX notation.
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Algorithm 1: Kannada sandhi generator
for lopa and Adesha sandhi
Data: string1, string2
Result: sandhi,output string
len1← length(string1)− 1
len2← length(string2)− 1
if string1 ends with svara then

if string2 begins with svara then
if string1 ends with ’eV’ or ’oV’
then

e1←
extract(string1, 0, len1− 2)

else
e1←
extract(string1, 0, len1− 1)

end
e2← string2
k ← concatenate(e1, e2)
print ”Lopa Sandhi”, k

else if string1 contains only characters then
if if string2 begins with ktp then

if first char(string2)=’N’ or ’n’
then

temp←
extract(string1, 0, len1− 1)
e1← concatenate(temp,′M ′)

else
e1← string1

end
e2← extract(string2, 1, len2)
check ← string2[0]
if check=’k’ then

add←′ g′

else if check=’w’ then
add←′ x′

else
add←′ b′

end
temp2← concatenate(e1, add)
f ← concatenate(temp2, e2)
print ”Adesha Sandhi”, f

else
print ”Check your input”

end

generated words were examined by a Kannada lin-
guistics expert for its accuracy.

The proposed work is useful in the generation of
euphonic change without a dictionary and maybe
applicable to other Dravidian languages. The sum-
mary of result and the accuracy is shown in table
2.

Algorithm 2: Extract substring
Data: string, start len, end len
Result: substring
j ← 0
for each i←start len to end len do

m[j]← concatenate(m, string[i])
j ← j + 1

end
m[j]←′ \0′

Input1 Input2 Output string Sandhi
nAnu illi nAnilli lopa
[I] [here] [I am here]

nanna iMxa nanniMxa lopa
[me] [by] [by me]

nanna Uru nannUru lopa
[my] [place] [My place]

kaliyaxe iruvuxu kaliyaxiruvuxu lopa
[not ] [to learn] [to not learn]

xevaru iMxa xevariMxa lopa
[God] [by] [by God]

maneV keVlasa maneVgeVlasa Adesha
[house] [work] [house work]

adi kallu adigallu Adesha
[foundation] [stone] [foundation stone]

mE woVlYeV mExoVlYeV Adesha
[body] [wash] [wash the body]

hullu kAvalu hullugAvalu Adesha
[hay] [land] [hay land]

betta wAvareV bettaxAvareV Adesha
[mountain] [lotus] [mountain lotus]

Table 1: Sample output for lopa and Adesha sandhi

Sandhi Test pairs Correct Accuracy
output

Lopa 255 255 100%
Adesha 131 130 99.2%

Table 2: Summarized results for lopa and Adesha
sandhi

In one of the instances of Adesha sandhi, ”kaN
+ kAvalu = kaNgAvalu [eye + security = surveil-
lance]”, the generated output was kaMgAvalu
which is not a valid sandhied word. In the case
of lopa sandhi, all the generated outputs are valid
outputs. Since the input words are not validated by
a morphological analyser, any non-Kannada word
which follows the pattern prescribed for lopa and
Adesha sandhi will generate a sandhi output as per
the rules is the major flaw in this tool. However, for
a given input, no pair can undergo both lopa and
Adesha sandhi at once. The evaluation of this task
is performed manually by checking the generated
output for the correct euphonic change and the type
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of that sandhi, and is verified by a senior linguist
and a few native speakers as well.

5 Conclusion and Future Scope

A basic sandhi generator for lopa and Adesha
sandhi is carried out in this work. This work can
be helpful for beginners and teachers who are en-
gaged in the Kannada language and trying to un-
derstand/teach the concept of sandhi. In future,
we would like to enhance this work by adding the
non-overlapping and unambiguous rules for Agama
sandhi. We will include the dictionary in the pro-
cess to check the validity of the input words. We
shall make a user-friendly interface to interact with
the system. The generated words can be used to
enhance the vocabulary for performing language re-
lated tasks viz. Kannada Machine Translation(MT)
systems, Kannada Computational Linguistics tools
etc. in future.
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Abstract

The state of art natural language processing
systems relies on sizable training datasets to
achieve high performance. Lack of such
datasets in the specialized low resource do-
mains lead to suboptimal performance. In
this work, we adapt backtranslation to gen-
erate high quality and linguistically diverse
synthetic data for low-resource named entity
recognition. We perform experiments on two
datasets from the materials science (MaSciP)
and biomedical (S800) domains. The empiri-
cal results demonstrate the effectiveness of our
proposed augmentation strategy, particularly
in the low-resource scenario.

1 Introduction

Most recently, various deep learning methods have
demonstrated state of art performance for many nat-
ural language processing tasks such as text classifi-
cation, sentiment analysis and named entity recog-
nition. The availability of large training datasets is
crucial to achieve this improved performance and
avoid overfitting. However, in many real-world
applications collecting such large training data is
not possible. This is especially true for specialized
domains, such as the material science or biomedi-
cal domain, where annotating data requires expert
knowledge and is usually time-consuming and ex-
pensive.

Data augmentation (DA) (Simard et al., 1996)
has been investigated to overcome this low resource
problem. Label preserving synthetic data genera-
tion is widely used in computer vision (Krizhevsky
et al., 2012; Ciresan et al., 2012; Fawzi et al., 2016)
and speech domains (Schlüter and Grill, 2015; Ko
et al., 2017). The discrete nature of language makes
it difficult to adapt data augmentation strategies
from computer vision and speech to natural lan-
guage processing. Unlike computer vision, where

hardcoded transformations (such as rotation, mask-
ing, cropping etc.) can be easily applied without
changing the label semantics, the manipulation of a
single word in a sentence could change its meaning.

Recently, there is an increased interest in ap-
plying data augmentation to natural language pro-
cessing tasks. Most augmentation methods explore
sentence-level tasks such as sentiment analysis (Li-
esting et al., 2021), text classification (Wei and Zou,
2019; Xie et al., 2019) and sentence-pair tasks such
as natural language inference (Min et al., 2020) and
machine translation (Wang et al., 2018). The aug-
mentation methods either employ heuristics such
as word replacement (Zhang et al., 2015; Wang
et al., 2018; Cai et al., 2020), word swap (Sahin and
Steedman, 2018; Min et al., 2020) or random dele-
tion (Wei and Zou, 2019) to generate augmented in-
stances by manipulating a few words in the original
sentence; or generate completely artificial instances
via sampling from generative models such as varia-
tional autoencoders (Yoo et al., 2019; Mesbah et al.,
2019) or backtranslation models (Yu et al., 2018;
Iyyer et al., 2018).

The sequence labelling tasks such as named en-
tity recognition (NER) and part-of-speech tagging
(POS) involves prediction at the token level. This
makes applying token-level transformation difficult
as such manipulations may change the correspond-
ing token level label. The existing DA methods for
sequence labelling uses dependency tree morph-
ing (Sahin and Steedman, 2018), MIXUP (Zhang
et al., 2018) to generate queried samples in the ac-
tive learning scenario (Zhang et al., 2020), sample
novel sequences from a trained language model
(Ding et al., 2020) and apply pre-defined heuristics
such as label-wise token and synonym replacement
(Dai and Adel, 2020). The existing sequence la-
belling DA methods are limiting as they: a). rely
on linguistics resources like dependency parser or
WordNet b). involves training a language model c).
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generate grammatically incoherent sequences d).
cannot generate linguistically diverse sequences.

Motivated by the advancements in machine trans-
lation and the availability of high-quality machine
translation systems (He, 2015; Wu et al., 2016;
Junczys-Dowmunt, 2019), in this work we adapt
backtranslation to the task of NER. Backtransla-
tion (BT) can automatically generate diverse para-
phrases of a sentence or a phrase by naturally in-
jecting linguistic variations. The injected linguistic
variations can be further diversified by introducing
layers of intermediate language translations. In this
work, we generate paraphrases of one or several
phrases in a sentence. We empirically demonstrate
the effectiveness of our proposed method on two
domain-specific NER datasets.

2 Related Work

There is an abundance of recent work on DA meth-
ods for NLP tasks, we refer the readers to Feng et al.
for an extensive survey. In this section we narrow
our focus to existing DA methods for sequence la-
belling tasks like NER and POS. We categorize
existing DA methods for sequence labelling into
two categories:

Rule-based: DA primitives, which use prede-
fined easy-to-compute transformations. We briefly
describe six of such transformations proposed in
the existing work:

(a) NER::Label-wise token replacement (LwTR):
Replace a token with another token of the
same entity type at random (Dai and Adel,
2020).

(b) NER::Synonym replacement (SR): Replace a
token with one of its synonyms retrieved from
WordNet at random (Dai and Adel, 2020).

(c) NER::Mention replacement (MR): Replace an
entity mention with another entity mention of
the same entity type at random (Dai and Adel,
2020).

(d) NER::Shuffle within segments (SiS): Divide
the sequence of tokens into segments of the
same label and then randomly shuffle the order
of segments (Dai and Adel, 2020).

(e) POS::Crop Sentences: Given a dependency
tree of the sentence, ”crop” a sentence by re-
moving dependency links (Sahin and Steed-
man, 2018).
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Figure 1: An illustration of data augmentation via back-
translation for NER. Note that backtranslation is only
applied to the context around the entity mentions. Here
the entity mention context is first translated to German
and then back to English using an off-the-shelf ma-
chine translation system. The backtranslation results
in a paraphrase of the original entity mention context.
The original entity mention context is replaced with
backtranslated context to create the augmented data in-
stance.

(f) POS::Rotate Sentences: Given a dependency
tree of the sentence, ”rotate” a sentence by
moving the tree fragments around the root
(Sahin and Steedman, 2018).

Generative models: The existing work uses pre-
trained language models to generate either part of
the sequence or the entire sequence with the corre-
sponding NER tags. Kang et al. proposed Filtered
BERT which randomly masks one or several to-
kens in the original sentence and let BERT (Devlin
et al., 2019) predict the masked token. The aug-
mentation is only accepted if the cosine similarity
of the word embeddings (computed using fastText
embeddings (Bojanowski et al., 2017)) of the origi-
nal token and the predicted masked token is above
a certain threshold. Ding et al. propose a two-
step DA process DAGA. First, a shallow language
model is trained over linearized sequences of tags
and words. Second, sequences are sampled from
this language model and delinearized to create new
examples.

3 Data Augmentation via
Backtranslation

Figure 1 illustrates an example of data augmenta-
tion using backtranslation for NER with German as
a pivot language. In a nutshell, the algorithm con-
sists of three steps. First, the input token sequence
is split into segments of the same label; thus, each
segment corresponds to either the entity mention
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or the context around the entity mention. Note that
only context around the entity mention is a candi-
date for the backtranslation. Second, the validity
of the segment is determined based on the length
of the segment, we only consider segments with
three or more tokens as a valid segment for back-
translation. As a final step, the segment tokens are
translated to the intermediate pivot language(s) and
finally back to the source language; the original seg-
ment tokens are replaced with the backtranslated
tokens and thus we obtain the augmentation of the
original input token sequence. In practice, we use
a binomial distribution to randomly decide whether
the segment should be backtranslated. Since only
the context around the entity mention is backtrans-
lated, it is straightforward to adjust the correspond-
ing BIO-label sequence accordingly for the back-
translated text.

4 Experiments and Results

4.1 Datasets

We empirically evaluate backtranslation for NER
on two English datasets from the materials science
and biomedical domains: MaSciP (Mysore et al.,
2019)1 and S800 (Pafilis et al., 2013)2. MaSciP
contains synthesis procedures annotated with syn-
thesis operations and their typed arguments. S800
consists of PubMed abstracts annotated for organ-
ism mentions. We use the original train-dev-test
split provided by the authors.

We simulate low-resource setting as proposed
by Dai and Adel; we select 50, 150, 500 sentences
from the training set to create the corresponding
small, medium and large training sets (denoted as S,
M, L in Table 1, whereas the complete training set
is denoted as F). Data augmentation is only applied
on the training set without altering the development
and test set.

4.2 NER Model

We follow the standard approach of modelling the
NER task as a sequence labelling task. The main-
stream sequence labelling models for NER employ
the neural-based encoder and an output tagging
component. The typical choice of the encoder is
a sequence model such as LSTM (Hochreiter and
Schmidhuber, 1997) or more recently a sequence
encoder such as Transformer (Vaswani et al., 2017);

1https://github.com/olivettigroup/
annotated-materials-syntheses

2https://github.com/spyysalo/s800
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Figure 2: The diversity statistics of various augmenta-
tion techniques across the datasets.

the output tagging component is usually a condi-
tional random field layer (Lafferty et al., 2001) to
model dependencies between neighbouring labels.

We employed the standard BiLSTM-CRF model
(Lample et al., 2016) as our backbone model. We
experimented with context-independent GloVe em-
beddings (Pennington et al., 2014) as well as state-
of-the-art contextualized BERT embeddings (De-
vlin et al., 2019). We employed SciBERT (Beltagy
et al., 2019), which is based on the BERT model
pretrained on scientific publications; our prelimi-
nary experiments suggest that SciBERT achieves
better performance than BERT. The superiority
of domain-specific BERT models on downstream
tasks has been observed by existing studies (Guru-
rangan et al., 2020; Dai and Adel, 2020).

We report the micro-average F1 score as an eval-
uation metric. We employ early stopping and report
the F1 score on the test set using the best perfor-
mant model on the development set.

4.3 Backtranslation Models

We employed the Huggingface’s Transformers li-
brary (Wolf et al., 2020) port of the pretrained
English↔German models (Ng et al., 2019)3,4 as
the underlying backtranslation models for all our
experiments.

4.4 Hyperparameters

Following existing work (Dai and Adel, 2020),
we tune the number of augmentation instances
per training instance from a list of numbers:

3https://huggingface.co/facebook/
wmt19-en-de

4https://huggingface.co/facebook/
wmt19-de-en
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Embeddings Method MaSciP
∆

S800
∆S M L F S M L F

Glove

None 48.52± 3.5 67.98± 0.5 73.02± 0.8 75.37± 0.3 12.24± 1.6 21.61± 0.7 49.99± 2.6 60.44± 1.4
LwTR 61.95± 1.3 68.04± 0.7 75.05± 0.3 75.32± 0.2 2.9 17.37± 0.4 41.19± 1.3 50.93± 1.8 62.46± 1.2 6.9

SR 63.91± 1.6 69.44± 0.7 75.10± 0.4 76.95± 0.8 4.6 17.83± 1.3 43.86± 1.1 57.76± 0.2 65.28± 0.5 10.1
MR 63.46± 0.3 69.64± 0.7 75.08± 0.4 76.33± 1.0 4.6 17.86± 2.4 43.90± 0.8 56.70± 0.9 65.34± 0.6 9.9
SiS 63.63± 1.1 69.60± 0.3 73.35± 0.2 77.36± 0.3 4.6 17.17± 1.7 44.36± 0.2 56.80± 0.9 64.93± 0.2 9.7
BT 63.66± 0.6 69.67± 0.1 75.22± 0.2 76.85± 0.4 4.6 31.06± 1.7 47.82± 1.2 58.86± 1.0 66.89± 0.3 15.1

SciBERT

None 61.89± 1.3 71.76± 0.6 78.52± 0.1 79.91± 0.1 39.78± 1.6 51.15± 1.6 64.08± 0.8 72.73± 0.9
LwTR 66.88± 1.4 73.40± 1.1 77.83± 0.1 77.51± 3.0 0.9 41.37± 0.4 51.76± 1.0 64.97± 1.6 71.34± 0.1 0.4

SR 67.07± 0.8 74.56± 0.3 78.47± 0.4 79.71± 0.3 1.9 40.24± 1.2 53.68± 0.4 62.98± 1.4 71.77± 0.6 0.2
MR 67.65± 1.0 74.60± 1.3 78.04± 1.1 79.57± 0.6 1.9 41.89± 1.4 53.24± 1.3 66.56± 1.2 70.87± 0.5 1.2
SiS 66.87± 2.9 73.40± 1.5 78.95± 0.6 79.79± 0.5 1.7 41.57± 1.8 51.83± 0.7 65.16± 1.0 71.20± 0.6 0.5
BT 70.11± 0.8 75.86± 0.8 78.92± 0.2 80.30± 0.5 3.3 44.60± 1.0 53.22± 1.3 66.76± 1.1 72.92± 0.2 2.4

Table 1: F1-score on test sets using different subsets of the training set. Here: S, M, L and F refer to small (50
instances), medium (150 instances), large (500 instances) and full (all instances) set. We repeat all experiments
three times with different seeds. Mean values and standard deviations are reported. ∆ column shows the averaged
improvement due to data augmentation for each embedding type across the datasets.

{1, 3, 6, 10}. When the complete dataset is used,
this tuning list is reduced to: {1, 2, 3}. We also
tune the probability value p of the beta distribution
which is used to decide if the segment in a sequence
should be backtranslated. It is searched over a list
of numbers: {0.1, 0.3, 0.5, 0.7}. We perform a grid
search over these two hyperparameters to find their
best combination on the development set.

4.5 Results

We report the performance of various augmentation
techniques on the test sets in Table 1. For the most
part, all data augmentation techniques improve over
the baseline; backtranslation results in the biggest
average improvement for both context-independent
GloVe and contextualized SciBERT embeddings
under different data usage percentiles. We attribute
the improved performance of backtranslation to the
generation of linguistically diverse and meaning-
preserving entity mention contexts to enable better
generalization of the underlying NER model.

The data augmentation techniques contribute to
the biggest improvement in performance when the
training sets are small, this effect is reduced as
the training sets get larger (see columns S vs F
in Table 1). The augmentation on the complete
training set even decreases the performances for
some augmentation techniques. The performance
impact of data augmentation on varying sizes of
training sets has also been observed in the existing
work (Fadaee et al., 2017; Dai and Adel, 2020;
Ding et al., 2020).

We also investigate the effectiveness of data aug-
mentation techniques on the mainstream contextu-

alized (pretrained SciBERT) embeddings. All the
augmentation techniques especially backtranslation
result in better performance when compared to the
baseline. However, the average performance im-
provement due to data augmentation with SciBERT
embeddings is lower as compared to the GloVe em-
beddings.

To quantitatively measure the diversity intro-
duced by various augmentation techniques, we re-
port distinct-1 (Li et al., 2016) in Figure 2. Distinct-
1 quantifies the intra-text diversity based on distinct
unigrams in each sentence, the value is scaled by
the total number of tokens in the sentence to avoid
favouring long sentences. Backtranslation yield the
highest level of unigram diversity, this is not very
surprising as backtranslation is known to generate
diverse linguistic variations.

5 Conclusion

In this paper, we adapt backtranslation to the token-
level sequence tagging task of NER. We show that
backtranslation can generate high-quality coherent
and linguistically diverse synthetic data for NER.
The experiments on two domain-specific datasets
demonstrate the effectiveness of backtranslation as
a competitive data augmentation strategy for NER.
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Abstract

This paper examines widely prevalent yet
little-studied expressions in Indian languages
which are known as geometrical terms be-
cause “they engage locations along the
axes of the reference object”. These
terms are andara (inside), bāhara (outside),
āge (in front of), sāmane (in front of),
pı̄che (back), ūpara (above/over), nı̄ce (un-
der/below), dāyem. (right), bāyem. (left), pāsa
(near), dūra (away/far) in Hindi. The way
these terms have been interpreted by the schol-
ars of Hindi language and handled in the Hindi
Dependency treebank is misleading. This
paper proposes an alternative analysis of
these terms focusing on their triple – nom-
inal, modifier and relational - functions and
presents abstract semantic representations
of these terms following the proposed analy-
sis. The semantic representation will be ex-
plicit, unambiguous abstract and therefore uni-
versal in nature. The correspondence of these
terms in Bangla and Kannada are also iden-
tified. Disambiguation of geometric terms
will facilitate parsing and machine translation
especially from Indian Language to English
because these geometric terms of Indian lan-
guages are variedly translated in English de-
pending on context.

1 Introduction

Geometric terms that “engage locations along the
axes of the reference object” (Landau, 2017) play
multiple roles - relational, nominal, modifier - in
Indian languages and their equivalents in English
can vary based on their functional role. For exam-
ple, the geometric term nı̄ce in (1-a) and (1-b) is
translated differently into English depending on the
function of the word in the given two contexts:

(1) a. meja
table.SG

ke
GEN

nı̄ce
under

cyūim. gama
Chewing gum.SG.3.NOM

cipakı̄ hai
stick.PR.SG.3
‘There is a chewing gum stuck under
the table’.

b. nı̄ce
down

jāo
go.IMP.SG

‘Go down’.

In (1-a), the term nı̄ce indicates a spatio-
directional1 relation between meja (table) and
cyūim. gama (chewing gum) while in (1-b), nı̄ce
denotes downward location. Thus, in (1-a), nı̄ce
(under) is a relational marker that specifies the ge-
ometric position of ‘chewing gum’ with respect
to the ‘table’ while in (1-b) nı̄ce (down) indicates
location, thus fulfilling a nominal function. Inter-
estingly there are contexts where these terms in-
advertently appear to be relational markers which
they are not. For such cases we attribute a third
role to them, the role of a modifier. For example,
in (2) the term nı̄ce is a spatial modification of
the location pet. ı̄ (box). The location of ‘books’
is the box and the position of the box is specified
by the geometric term nı̄ce. The reference object
meja (table) with respect to which nı̄ce has to be
interpreted is present in (2-a). In (2-b), we show
that nı̄ce can even take the adjectival suffix, thus
making its modifier role clearer.

(2) a. meja
table.SG

ke
GEN

nı̄ce
under

pet.ı̄
box.SG

mem.
LOC

pustaka
book.SG.NOM

rakhı̄ hai
keep.PR.SG.3

‘The book is kept in the box under the
table.’

b. meja
table.SG

ke
GEN

nı̄cevālı̄
under.ADJ

pet.ı̄
box.SG

mem.
LOC

pustaka
book.SG.NOM

rakhı̄ hai
keep.PR.SG.3

‘The book is kept in the box that is
under the table.’

1Spatio-directional refers to spatial cum directional seman-
tics
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Thus, we identify three roles of the geometric terms
in Indian languages:

1. A spatial noun denoting a place as in (1-b)

2. A geometric spatio-directional relation marker
as in (1-a).

3. A geometric spatio-directional modifier of a
noun as in (2-a)

In this paper, we propose semantic interpretation
of geometric terms and present an abstract semantic
representation for them. The semantic representa-
tion will be explicit, unambiguous, abstract and
therefore universal in nature. Such enquiry is sig-
nificant not just for Natural Language Understand-
ing, but also in the context of language transfer. We
have shown in (1) that English, for example, uses a
preposition when the geometric term is a relational
marker, otherwise the language uses adverbs as in
(1-b) while Hindi and other Indian languages such
as Bangla and Kannada use the same lexical item
in both (1-a) and (1-b).

The paper is divided into the following sections.
Section 2 introduces the equivalents of Hindi spatio-
directional geometric terms in Bangla and Kannada.
Section 3 presents the semantic interpretation of
these terms. Section 4 presents semantic representa-
tion of these terms and shows how such representa-
tion captures information explicitly and unambigu-
ously, which are the characteristic features of any
efficient semantic representation system. Finally,
we will present the design of a Geometric terms
Search Interface with annotation facility integrated
in section 5.

2 Geometric Terms in Hindi, Bangla and
Kannada

Geometric terms under considerations are andara
(inside), bāhara (outside), āge (in front of), sāmane
(in front of), pı̄che (back), ūpara (above/over), nı̄ce
(under/below), dāyem. (right), bāyem. (left), pāsa
(near), dūra (away/far) in Hindi. There are some
more geometric terms which are used in Hindi
such as āra-pāra (across), ora (towards) which
are purely relational markers and hence we keep
them out of scope of this paper.

Table-1 presents equivalent lexical terms in
Hindi, Bangla, Kannada and English for the re-
lational variant of these terms and their morpho-
lexical properties. Most of the English terms apart

from ‘right’, ‘left’, ‘inside’ and ‘outside’ are spatial
prepositions which are indeclinable.

Table-2 gives a quick comparative study of these
lexical items in Hindi, Bangla and Kannada. The
gloss for each example given in Table-2 is given in
Appendix-1.

Fortis and Fagard following Levinson et al. have
shown that relational nouns (spatial nominals) in
Japanese and Korean follow a structure [Ground-
GEN Spatial Nominal-PostP] which, we see, is
quite similar to Indian languages.

3 Semantic Interpretation of Geometric
Terms

Talmy (1983) has introduced Figure-Ground geo-
metric sense6“to refer to the located vs locating
entity”. Figure is “the object which is considered
as moving or located with respect to another ob-
ject” and Ground is “the object with respect to
which a first is considered as moving or located”
(Talmy, 1983) in the context of spatial configura-
tion. Ground is alternatively referred to as a Refer-
ence object.

(3) lad. akāfig
boy.SG.NOM

gharagr
house

ke
GEN

bāhara
outside

khad. ā hai
stand.PR.SG
‘The boy is standing outside the house.’

In Indian Grammatical Tradition, the relation is
described between ādhāra (Ground) and ādheya
(Figure). Two kinds of relations between ādhāra
and ādheya have been identified in the literature
which is very much relevant for our interpretation
of geometric terms. This analysis also explains data
recorded by Talmy in a different light that fits to our
multirole analysis of these terms. The two relations
are sam. yoga-sambandha (contact by touch) and
sāmı̄pya-sambandha (contact by proximity) Shastri
(1926); Subramania Iyer (1971). When there is a
temporary physical contact (sam. yoga) between the
ādhāra and the ādheya then the spatial relationship
is said to have a sam. yoga-sambandha.

(4) paks.ı̄
bird.SG.NOM

ped. a
tree

ke
GEN

ūpara
above

bait.hā hai
sit.PR.SG.3

/
/

paks.ı̄
bird.SG.NOM

ped. a para
tree.LOC

bait.hā hai
sit.PR.SG.3

‘The bird is sitting on the tree.’

2The concept of Figure and Ground are borrowed from
gestalt psychology to linguistics.
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Hi. Hi.
form Ba. Ba.

form Ka. Ka.
form En. Example En. Transla-

tion

andara Indcl2 bhitare
bhitare3+
e4 ol.age

ol.a
+akke

inside
d. ibbā thaile ke
andara hai.

The box is in-
side the bag.

bāhara Indcl
bāhira,
bāire

bāira5+e horage
hora
+akke

outside
ghara ke bāhara
nāma pat.t.ı̄ lagı̄
hai.

The nameplate
is outside the
house.

āge Indcl āge āga + e mumde Indcl
In
front
of

gād. ı̄ ke āge nam-
bara plet.a nahı̄m.
hai.

There is no num-
ber plate in front
of the car.

sāmane Indcl sāmane Indcl edhuru Indcl
In
front
of

ye pirāmid. a
itihāsa kı̄ eka
alaga hı̄ duniyā
ko hamāre
sāmane rakhate
haim. .

These pyramids
put a different
kind of world be-
fore us.

pı̄che Indcl pichane
pichana
+e

himdhe Indcl behind
gād. ı̄ ke pı̄che
nambara plet.a
nahı̄m. hai.

There is no num-
ber plate behind
the car.

ūpara Indcl
opara,
opore

opara
+e

mele Indcl
Above/
over/
on

meja ke ūpara
kapa hai

The cup is on
the table.

nı̄ce Indcl nı̄ce nı̄ca +e kel.age
kel.a
+akke

under
meja ke nı̄ce
cyūim. gama
cipakı̄ hai.

The chewing
gum is stuck
under the table.

dāyem. Indcl dāine Indcl balakke
bala
+akke

right
paidala yātrı̄
sad. aka ke dāyı̄m.
ora calem.

Pedestrians
should walk on
the right side of
the road.

bāyem. Indcl bām. ye bām. +e edakke
eda
+akke

left
gād. iyām. sad. aka
ke bāyı̄m. ora
calem.

Cars should go
on the left side
of the road.

cārom.
ora

Indcl
cāradike,
cāridike

cāradika
+e,
cāridika
+e

suttalu
sutta
+alu

around

ribana moma-
battı̄ ke cārom.
ora bam. dhā huā
hai.

The ribbon is
tied around the
candle.

bı̄ca Indcl
mājha-
khāne

mājha-
khāna
+e

madhya Indcl between
nāva samudra ke
bı̄ca taira rahı̄
hai.

The boat is float-
ing in the mid-
dle of the ocean.

pāsa Indcl
pāśe,
kāche

pāśa +e,
kācha
+e

hattira Indcl near

hara mausama
mem. govā ke
pāsa āpako
parosane ke lie
kucha khāsa hai.

In every weather
Goa has some-
thing special to
serve you.

dūra Indcl dūre dūra +e dūra Indcl far - -

Table 1: Morpho-lexical properties of relational variants of Geometric Terms in Hindi, Bangla, Kannada and
English

3Indeclinable : indcl
4All the roots to which -e suffix has been added has an

independent nominal occurrence in present Bangla
5-e is the locative marker in Bangla
6bāira ¡ bāhira (sadhu form of Bangla) does not have lexical
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Morpho-syntax of
geometric terms

Hindi Bangla Kannada

Nominal use
Frozen expressions:
ladakā pı̄che se āyā

Bare forms with excep-
tions dāine and sāmane
which are frozen: chele-t.ā
pechon theke elo

Bare forms to which
suffixes can be added:
hud. uga hiṁdininṁda
baṁdanu

Relational marker
use

Frozen expressions. ‘ke’
variant of the genitive
marker preceeds the rela-
tional marker: meja ke
nı̄che cyūim. gama cipakı̄
hai

The ‘-e’ suffix is added to
the root form. Genitive
suffix is added to the refer-
ence object: t.ebil-er nı̄c-e
cuing-gum āt.ake āche

The ‘-akke’ suffix is added
to the root form. Geni-
tive suffix is added to the
reference object: t.ebal-ina
kel.age cyūim. gama aṁt.ide

Modifier

The genitive marker op-
tionally follows the geo-
metric form: ghara ke
pı̄che (ke) bāgı̄ce mem.
bad. e bad. e ped. a haim.

bārir. pechone(r) bāgāne
baro baro gāch āche

The genitive marker pre-
cedes and follows the ge-
ometric form: maneya
hindina tōt.adalli dod. d. a
maragal.ive

Table 2: A morpho-syntactic properties of geometric items in Hindi, Bangla and Kannada

When the ādheya does not touch the ādhāra but
stays in proximity with ādhāra then that spatial
relation is said to have sāmı̄pya-sambandha.

(5) ped. a
tree.SG

ke
GEN

ūpara
above

cām. da
moon.SG.NOM

ā cukā hai
appear.PR.SG.3
‘The moon has appeared above the tree.’

In order to localize a Figure with reference to
Ground, Talmy has identified three kinds of expres-
sions:

1. The expression indicates the Figure in
touch with the Ground – same as sam. yoga-
sambandha. Talmy observes that “the part of
the Ground thus named is treated a regular
noun” and usually occurs after ‘the’ in such
cases,

(6) The mosaic is on the back of the
church.

(7) The boy is in the front of the line.

2. The expression indicates the Ground’s part
to indicate ‘immediate adjacency’ – similar
to sāmı̄pya-sambandha. Talmy has observed
that in such cases in English, there is no ‘the’
before the geometric terms:

attestation in the language

(8) The bike is in back of/behind the
church.

(9) The police officer is in front of the line.

We omit the third type of expression here be-
cause they are poorly represented in English as
Talmy has pointed out and do not come under the
scope of this paper.

Given the above understanding, we propose two
possible situations:

1. The Figure is located in a locus that is in ‘part-
whole’ relation with the reference object,

(10) ped. a
tree

ke
GEN

ūpara
on

paks.ı̄
bird.NOM

hai
be.PR.SG

‘The bird is on the tree.’

(11) The bike is behind the church (sen-
tence (8) is repeated here)

2. The Figure is located in a locus that indicates
a space denoted by the geometric term with
respect to the reference object.

(12) ped. a
tree

ke
GEN

ūpara
above

cām. da
moon.SG.NOM

hai
be.PR.SG
‘The moon is above the tree.’

(13) The mosaic is on the back of the
church (sentence (6) is repeated here)
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In case of 1, the geometric term mainly denotes
the spatio-directional relation between the Figure
and the reference object. The directional config-
uration of the Figure ‘bike’, for example in (8) ,
with respect to the reference object ‘church’ can be
front/back/behind/ near and so on. Hence, this is
the relational marker interpretation of the geomet-
ric terms.

In case of 2, on the other hand, the geometric
term specifies a location. The location, although un-
derspecified, indicates either directional or spatial
position of the Figure. For example, the position
of ‘cām. da’ (moon) in (12) is in a space which is
above the ‘ped. a’ (tree). This is the nominal use of
the geometric terms. Such terms can be modified
just like any other noun as shown in (14)-(17).

(14) ped. a
tree.SG

ke
GEN

t.hı̄ka
right

ūpara
above

cām. da
moon.NOM

hai
be.PR.SG
‘The moon is right above the tree.’

(15) ghara
house.SG

se
ABL

4
4

kilomı̄t.ara
kilometre

dūra
away

eka
a

mandira
temple.NOM

hai
be.PR.SG

‘There is a temple 4 kilometres away from
the house.’

(16) mandaura
mandaura.NNP

se
ABL

eka
a

mı̄la
mile

nı̄ce
below

eka
a

chot.ā
small

sam. gha
sangha.NOM

hai,
be.PR.SG

‘There is a small sangha a mile below the
mandaura.’

(17) kām. kera
Kanker.NNP

se
ABL

22
22

kilomı̄t.ara
kilometre

āge
ahead

śurū hotı̄ hai
start.PR.SG

keśakāla
Keshkal.NNP

kı̄
GEN

manorama
charming

ghāt.ı̄
valley.NOM
‘The charming valley of Keshkal starts 22
kilometres ahead of Kanker.’

4 Abstract Semantic Representation of
expressions with Geometric terms

Keeping in tune with our analysis given in sec-
tion 3, we will present here an abstract semantic
representation of the geometric terms. Before we
present our representation, we will examine how
these terms have been represented in the Hindi
dependency treebank. In Hindi grammar, these ge-
ometric terms have been considered as part of com-
plex post-positions (Bharati et al., 1995; Kachru,

2006; Koul, 2008; Bharati et al., 2009). In Hindi
dependency treebank, however, they are lexically
marked as Noun-Space-Time (NST) thus distin-
guishing them from other post-positions which are
tagged as PSP7 (Bharati et al., 2007). The tag NST
indicates that these lexical items are nouns denot-
ing space and time, but their role in the context is
not that of a noun. The semantic relation that has
been annotated for the sentence “lad. akā ghara ke
bāhara khad. ā hai.” where ‘bāhara’ is an NST as
shown in Figure-1.

khadā hai

ladakā

k1
/d

oe
r

ghara

k7p 8/location

Figure 1: Basic dependency tree for sentence: lad. akā
ghara ke bāhara khad. ā hai.

In dependency tree structures the content words
are represented as nodes, the verb is the head of
the tree (in case of simple sentences) and relational
markers are all semantic labels on the edges con-
necting the nodes as shown in Figure-1. The con-
vention of Hindi Dependency treebank is that the
syntactico-semantic relations are marked among
the chunks. Each chunk has a head and the re-
lation is to be understood between the heads of
the chunk. The meaning of this structure is that
‘ke bāhara’ (which is annotated as PSP NST at
the POS level) is a relational marker and conveys
‘deśādhikaran. a’ (locative) information. This analy-
sis implies ‘ghara’ (house) the location where the
boy stands. This is a misleading analysis because
the boy does not stand at the house rather he stands
in a place which is outside the house. ‘bāhara’
conveys that information but the analysis in the
treebank does not explicitly capture that.

According to our interpretation of geometric
terms, the representation of relational and nom-
inal/modificational variants are postulated differ-
ently. Figure-2 presents the relational marker vari-
ant of geometric terms. For the sentence ‘paks. ı̄
ped. a ke ūpara / para bait.hā hai’, both the refer-
ence object and the Figure are shown as dependents

7postposition
8k1 and k7p are tags used for marking syntactico-semantic

relations in Hindi Dependency Treebank.
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of the sentential head which is the verb:

bait.hā hai

paks.ı̄
k1

/do
er

ped. a

special on

Figure 2: Basic dependency tree for sentence (4)

The semantic label spatial on indicates that ped. a
is a reference object for the action ‘sitting’ whose
kartā is paks. ı̄ (bird). The labels for geometric terms
are given in Table-3. Semantic classes in terms of
positive and negative values for features are also
specified.

The nominal/modificational variant of geometric
terms are represented in the form of constructions.
Constructions in Construction Grammar (Fillmore,
1988) are linguistic patterns in which some aspect
of its form or its meaning cannot be predicted
from its component parts. In Indian Grammati-
cal Tradition, it is called vr. tti. Vr. tti is defined as
‘parārthābhidhānam vr. ttih. ’ – an aggregated word-
form that gives a sense which is different from the
literal sense of its constituents (Joshi et al., 1990;
Sharma and Sharma, 1982).

In our construction, geometric terms entail a
space which is not lexically expressed but whose
geometric relation to the reference object is con-
veyed by the geometric terms. The linguistic pat-
terns can be represented as a template and the tem-
plate is assigned a meaning. For example, the fol-
lowing template defines the form-meaning pair for
the nominal/modificational usage of the geometric
terms:

[X]ref-objke Termspatial/directional-ground[ke/vālā][Y ]loc
(1)

where X and the space denoted by the Term are
not in a part-whole relationship.

The subscripts define the meaning and X,
ke Term and Y are variables for physical expres-
sions in 1.

For the sentence (5), the template-1 can be in-
stantiated as follows:

(18) ped. aref-obj ke ūparaspatial/directional-ground
cām. dafig hai

Following are more examples:

(19) sāmanespatial/directional-ground /

cārom. oraspatial/directional-ground /
pı̄chespatial/directional-ground bad. e bad. e
ped. afig haim.

(20) ghararef-obj ke
sāmanespatial/directional-ground /
cārom. oraspatial/directional-ground /
pı̄chespatial/directional-ground bad. e bad. e
ped. afig haim.

In the above sentences, ‘big trees’ are the Figure/
ādheya and the space denoted by the geometric
terms sāmane / pāsa / pı̄che is the Ground / ādhāra.
In sentences (20) ghara is a reference point with
respect to which ‘ādhā’ has to be interpreted. In
(19), the reference point is not explicitly mentioned,
and it is from the context the reference point has
to be determined. For the above sentences the final
part of the template [ke/vālā] [Y]loc is null, and
therefore they represent nominal variants. For (21)
and (22) below, the construction is used as a modi-
fier and the full template is instantiated as shown
below:

(21) ghararef-obj ke
sāmanespatial/directional-ground /
cārom. oraspatial/directional-ground /
pı̄chespatial/directional-ground ke bagı̄celoc
mem. bad. e bad. e ped. afig haim.

(22) ghararef-obj ke
sāmanespatial/directional-ground /
cārom. oraspatial/directional-ground /
pı̄chespatial/directional-ground vāle bagı̄celoc
mem. bad. e bad. e ped. afig haim.

5 Developing a Corpus Search cum
Annotation Interface for Geometric
Terms

From the above discussion, it has become clear
that the semantics of geometric terms are quite che-
quered. We have done a corpus study to understand
how these terms are translated into English. We
present here example sentences for 4 geometric
terms in Table-4.

From Table-4, we find that nı̄ce has been trans-
lated into as many as 5 different words while
sāmane into 4 different words. There is also one
case of idiom and one phrasal verb attested in the
data. We get the adjectival form of bāhara as
bāharı̄.

In order to be able to disambiguate the geometric
terms so that we get appropriate translations into
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Hindi Bangla Kannada Semantic Class Semantic Label

andara bhitare ol.age
(R9) Loc: Interior; Con +,

(N/M10) Loc: Interior; Con - Spatial inside

bāhara
bāhira,
bāire

horage (R) Loc: Exterior; Con -
(N/M) Loc: Exterior; Con -

Spatial outside

āge āge muṁde (R) Loc: Anterior; Dir + directional ahead

sāmane sāmane eduru (R) Loc: Anterior; Dir +
directional front
facing

pı̄che pichane hiṁde (R) Loc: Posterior; Dir + directional behind

ūpara
opara,
opore,
upare

mēle (R) Loc: Superior; Dir +; Con +
(N/M) Loc: Superior; Dir +; Con -

Directional on

nı̄ce nı̄ce kel.age (R) Loc: Interior; Dir +; Con +
(N/M) Loc: Interior; Dir +; Con -

Directional under

dāyem. dāine balakke (R) Loc: Right side; Dir +; Con +
(N/M) Loc: Right side; Dir +; Con -

Directional left

bāyem. bāMye edakke (R) Loc: Left side; Dir +; Con +
(N/M) Loc: Left side; Dir +; Con -

Directional right

cārom.
ora

cāradik,
cāridike

suttalu (R) Loc: Circumferential; Con +
(N/M) Loc: Circumferential; Con -

Directional around

bı̄ca mājhakhāne madhya (R) Loc: Medial; Con +
(N/M) Loc: Medial; Con -

Spatial between

pāsa
pāśe,
kāche

hattira
(R) Approx Spatial Proximity: +; Con +

(N/M) Approx Spatial Proximity: +; Con - Spatial near

dūra dūre dūra (R) Approx Spatial Proximity: -; Con +
(N/M) Approx Spatial Proximity: -; Con -

Spatial far

Table 3: Semantic Classification of the geometric terms. The binary feature ‘Con’ defines the physical ‘contact’ of
the ādheya with the ādhāra; ‘Dir’ and ‘Loc’ specify ‘direction’ and ‘location’ respectively.

English, we need to understand the context of oc-
currence of these terms more thoroughly. One way
of doing this is to study their usage in corpora, both
monolingual and Indian language-English bilin-
gual corpora. To facilitate this study we propose to
design an interface for intelligent search of these
terms in different contexts. For that purpose, we
create a database of existing annotated monolingual
corpora as well as a database of parallel corpora.
For monolingual corpora, we use POS tags, actual
lexical items and syntactic relations as ques for
searching the database. When we set out to do
that, we find that the geometric terms irrespective
of their functional status are annotated as NST in
the existing corpora (Jha, 2012). In order to make
the search more meaningful, we have integrated
an annotation facility to the search interface for
annotating the geometric term for relation markers,
nouns and modifiers. This will help in future to

search these terms for their different functions.

6 Conclusion

The paper has examined the spatio-directional ge-
ometric terms and their semantics in a great detail
mainly for Hindi and also for Bangla and Kannada.
We have observed that even though these geometric
terms have some morpho-syntactic differences in
these three languages they are very much in align-
ment in terms of interpretations. This paper is the
beginning of an in-depth study of geometric terms
of Indian languages. There remains much work to
be done in laying out systematically the subtler dif-
ferences among apparently close terms such as āge,
sāmane; bāhara, sāmane and so on. For example,
we can almost interchangeably say the following
two sentences:

9‘R’: Relational
10‘N’: Nominal, ‘M’: Modifier
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(23) ghara
house

ke
GEN

bāhara
outside

gād. ı̄
car.NOM

khad. ı̄ hai
park.PR.SG

‘The car is parked outside the house.’

(24) ghara
house.SG

ke
GEN

sāmane
in front of

gād. ı̄
car.NOM

khad. ı̄ hai
park.PR.SG
‘The car is parked in front of the house.’

But that is not true for the following pair of sen-
tences:

(25) a. meja
table

ke
GEN

sāmane
in front of

kursı̄
chair.NOM

hai
be.PR.SG
‘A chair is kept in front of the table.’

b. *meja
table

ke
GEN

bāhara
outside

kursı̄
chair.NOM

hai
be.PR.SG
‘*A chair is kept outside the table.’

It appears that the semantics of reference ob-
jects are playing a role in licensing the geometric
terms. This paper draws the conclusion that in
Indian languages (at least for those under consid-
eration), spatio-directional geometric terms play
three roles: relational, nominal and modificational.
We have proposed to design an interface for anno-
tating geometric terms for their different interpre-
tations. The information can be useful for Natural
Language Understanding, Natural Language Gen-
eration and knowledge rich Machine Translation.
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A Appendix-1

Glosses for the Hindi, Bangla and Kannada exam-
ples given in Table-2.

Hindi: Nominal use:-

(26) ladakā
boy.SG.NOM

pı̄che
behind

se
ABL

āyā
come.3.SG.PT

‘The boy came from behind.’

Bangla: Nominal use:-

(27) chele-t.ā
boy.SG.NOM

pechon
behind

theke
ABL

elo
come.3.SG.PT

‘The boy came from behind.’

Kannada: Nominal use:-
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(28) hud. uga
boy.SG.NOM

hiṁdininṁda
behind.ABL

baṁdanu
come.3.SG.PT

‘The boy came from behind.’

Hindi: Relational marker use:-

(29) meja
table.SG

ke
GEN

nı̄che
under

cyūim. gama
Chewing gum.SG.3.NOM

cipakı̄ hai
stick.PR.SG.3

‘There is a chewing gum stuck under the
table.’

Bangla: Relational marker use:-

(30) t.ebil-er
table.SG.GEN

nı̄c-e
under

cuing-gum
Chewing gum.SG.3.NOM

āt.ake āche
stick.PR.SG.3

‘There is a chewing gum stuck under the
table.’

Kannada: Relational marker use:-

(31) t.ebal-ina
table.SG.GEN

kel.age
under+towards

cyūim. gama
Chewing gum.SG.3.NOM

aṁt.ide
stick.PR.SG.3

‘There is a chewing gum stuck under the
table.’

Hindi: Modifier use:-

(32) gara
house.SG

ke
GEN

pı̄che
behind

(ke)
GEN

bāgı̄ce
garden.SG

mem.
LOC

bad. e
big.PL.NOM

bad. e
big.PL.NOM

ped. a
tree.PL.3.NOM

haim.
be.PR.3.PL

‘There are big trees in the garden which is
behind the house.’

Bangla: Modifier use:-

(33) bārir.
house.SG.GEN

pechone(r)
behind.GEN

bāgāne
garden.SG.LOC

baro
big.PL.NOM

baro
big.PL.NOM

gāch
tree.PL.3.NOM

āche
be.PR.3.PL

‘There are big trees in the garden which is
behind the house.’

Kannada: Modifier use:-

(34) maneya
house.SG.GEN

hindina
behind.GEN

tōt.adalli
garden.SG.LOC

dod. d. a
big.PL.NOM

maragal.ive
tree.PL.3.NOM, exist.PR.3.PL

‘There exist big trees in the garden which
is behind the house.’
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down, below, underground, under, underneath nı̄ce Tag
In the same fashion Son river falls 300 metres
down.

usı̄ tarja mem. sona nadı̄ 300 phı̄t.a nı̄ce gi-
ratı̄ hai.

N

While going to Kedarnath snow mass are seen
slipping here and there below the feet.

kedāranātha jāte samaya pairom. ke nı̄ce
yatra-tatra hima rāśi khisakatı̄ dikhāı̄
pad. atı̄ hai.

M

In Bucharest city there are underground
trains as ell which are called as ‘Metro’.

bukhāresta śahara mem. jamı̄na ke nı̄ce
calane vālı̄ relem. bhı̄ haim. , jinhem. ‘met.ro’
kahā jātā hai.

N

There are special kind of shoes for skiing, un-
der which a long metal ski board is attached.

Skı̄im. ga ke lie viśes.a prakāra ke jūte hote
haim. , jinake nı̄ce dhātu kā banā lam. bā skı̄
bled. a lagā hotā hai.

R

Here underneath a peepal tree, Shree Kr-
ishna sat in a lugubrious pose.

yahām. eka pı̄pala ke ped. a ke nı̄ce śrı̄kr.s.n. a
vis.ādamaya mudrā mem. bait.he the.

N

ahead, forward āge
The charming valley of Keshkal starts 22 kilo-
metres ahead of Kanker.

kām. kera se 22 kilomı̄t.ara āge śurū hotı̄
hai keśakāla kı̄ manorama ghāt.ı̄

N

Taking deep breaths making our breath regular,
we were going forward.

gahare śvāsa bharakara apanı̄ sām. som. ko
niyamita karate hue hama āge bad. ha rahe
the.

N

out, outer, outside bāhara
Picnic spots adorned with cedars and rivers
and streams are out of population.

ābādı̄ se bāhara nadı̄nālom. va devadārom.
se saje pikanika sthala haim. .

N

Installed in the Atishay Kshetra the outer
structure of this temple is extremely grand.

Atiśaya ks.etra mem. sthāpita isa mam. dira
kā bāharı̄ svarūpa atyam. ta bhavya hai.

M

Diwan-e-Khas looks like a one-storey build-
ing from outside but from inside it is double
storied.

dı̄vāna-e-khāsa imārata bāhara se dekhane
mem. eka mam. jilā pratı̄ta hotı̄ hai magara
am. dara se domam. jilā hai.

N

before, in front of, to the fore, out sāmane

Then Mahalaxmi had appeared before him
with a lotus in her hand.

taba mahālaks.mı̄ hātha mem. kamala
dhāran. a kie hue unake sāmane prakat.a
huı̄ thı̄m. .

R

An extremely attractive pillar is installed in
front of the temple.

mam. dira ke sāmane eka atyam. ta ākars.aka
stam. bha sthāpita hai

N

During the excavation of Vaishali it came to
the fore that it has had an impressive history.

vaiśālı̄ mem. milı̄ khudāı̄ mem. mile
avaśes.om. se yaha bāta sāmane āı̄ hai ke
isakā eka prabhāvaśālı̄ itihāsa rahā hai.

Idiom

At the confluence place of the rivers which
is right before the temple are beautiful but
small falls.

nadiyom. ke sam. gama sthala para jo
mam. dira ke t.hı̄ka sāmane haim. sum. dara
kintu chot.ā prapāta hai.

N

Although quarrying of the Stupa is still not
complete yet its 104 ft high structure has come
out.

stūpa kā utkhanana-kārya yadyapi abhı̄ pūrā
nahı̄m. huā hai, tathāpi, isakı̄ 104 phı̄t.a ūm. cı̄
sam. racanā sāmane ā cukı̄ hai.

Phrasal
verb

The part in the front of it has fallen. inakā sāmane kā hissā gira gayā hai. M
Table 4: Example sentences from the corpus for 4 geo-
metric terms
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Abstract

Developing Natural Language Processing re­
sources for a low resource language is a chal­
lenging but essential task. In this paper, we
present a Morphological Analyzer for Gujarati.
We have used a Bi­Directional LSTM based
approach to perform morpheme boundary de­
tection and grammatical feature tagging. We
have created a data set of Gujarati words with
lemma and grammatical features. The Bi­
LSTM based model of Morph Analyzer dis­
cussed in the paper handles the language mor­
phology effectively without the knowledge of
any hand­crafted suffix rules. To the best of
our knowledge, this is the first dataset and
morph analyzer model for the Gujarati lan­
guage which performs both grammatical fea­
ture tagging and morpheme boundary detec­
tion tasks.

1 Introduction

As Natural Language Processing is increasingly
becoming an active area of research with many
important applications, most of the research is fo­
cused only on a few languages. Developing NLP
tools for under resource languages is an essential
task, as it not only opens considerable economic
perspectives but also prevents its extinction and
foster its expansion (Magueresse et al., 2020)
In this paper we present a morph analyzer for

Gujarati. Gujarati is an Indo­Aryan language, spo­
ken mainly in the Gujarat state of India. It is
the 26th most widely spoken language with ap­
proximately 55 million speakers across the world.
We identify various grammatical features of Gu­
jarati morphology and prepare a gold data set of
16527 unique words. We have developed Bi­
LSTM based morph analyzer inspired from (Pre­
mjith et al., 2018) and (Tkachenko and Sirts, 2018).
For the training and evaluation of the morph anal­
ysis task, we have built the dataset for Gujarati

language in the standard Unimorph format (Kirov
et al., 2018). The neural architecture proposed in
this paper does not require any language specific
rules and captures linguistic characteristics of the
language effectively.
The remaining of the paper is organized as fol­

lows : Section 2 describes related work. Section 3
describes the dataset details. Section 4 describes
proposed approach. section 5 describes experi­
ments and observations. Section 6 describes result
analysis from the linguistic perspective. In section
7, we discuss conclusion and future research direc­
tion.

2 Related Work

Morphological analysis is the task of analyzing the
structure of the morphemes in a word and is gener­
ally a prelude to further complex NLP tasks such
as parsing, machine translation, semantic analysis.
Existing approaches to build a Morphologi­

cal Analyzer can be broadly classified as Rule
Based approaches andMachine Learning based ap­
proaches. Recent breakthroughs in the field of
Deep Learning has motivated researchers to apply
the neural models to the Morphological Analyzer
problem.
Two­level morphology(Koskenniemi, 1984)

was the first practical general model in the history
of computational linguistics for the analysis of
morphologically complex languages. The current
C version two­level compiler, called TWOLC,
was created at PARC(Beesley and Karttunen,
1992). (Kenneth R. Beesley and Lauri Karttunen,
2003) introduced XFST, a finite state morphology
tool. Finite state transducer based approach
have been used to develop Morph analyzer
for many languages (Beesley, 1998)(Beesley,
2003)(Megerdoomian, 2004).(Kumar et al., 2012)
developed a morphological analyzer for Hindi
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using this approach. Following Hindi, mor­
phological generators were developed for other
Indian languages e.g. Kannada (Melinamath and
Mallikarjunmath, 2011), Oriya (Sahoo, 2003), etc.
(Bharati et al., 2002) described another popular
approach named Paradigm Based approach for
morphological analysis. A Paradigm defines all
the word forms that can be generated from given
Root along with grammatical feature set.
Apart from the rule based techniques, there have

been some efforts to develop machine learning
based methods to develop morph analyzer for In­
dian languages. (Anand Kumar et al., 2010) have
defined the morphological analysis problem as
classification problem and experimented with var­
ious kernel methods to capture non linear relation­
ships of the morphological features using SVM­
Tool. (Srirampur et al., 2015) developed Statistical
Morphological Analyzer for the Indian languages
using linguistic features.
(Chakrabarty et al., 2016) proposed a Neural

lemmatizer for the Bengali language. The pro­
posed lemmatizer makes use of contextual infor­
mation of the surface word to be lemmatized.
(Heigold et al., 2016) investigated character based
neural morphological tagger for morphologically
rich languages having large tag set. They pre­
sented various neural architectures. The work
is extended in (Heigold et al., 2017) by experi­
menting on 14 different languages. (Chakrabarty
et al., 2017) introduced Deep Neural Network
based method for lemmatization. This method
works by identifying a correct edit tree for the word
lemma transformation. (Premjith et al., 2018) De­
veloped a Deep Learning approach for detecting
morpheme boundaries. They studied agglutinative
nature and sandhi splitting process of Malayalam
language. (Tkachenko and Sirts, 2018) explore 3
different neural architectures named simple multi­
class multilabel model, hierarchical model and se­
quence model for Morphological tagging. The en­
coder used for this work is same as the one used in
(Lample et al., 2016). (Gupta et al., 2020) evalu­
ated various neural morpholgical taggers for San­
skrit with the focus on the fact that good result for
morphological tagging should be achieved without
an extensive linguistic knowledge.
There have also been effort to develop unsu­

pervised approaches for morphological tagging
task. (J., 2005) described an Automatic Morpho­
logical Analyser which can be adopted for dif­

ferent languages. Morphessor (Creutz, 2005) is
another widely used tool which performs unsu­
pervised morphological segmentation. (Ak and
Yildiz, 2012) and (Narasimhan et al., 2015) have
also proposed unsupervised morphological ana­
lyzer using Trie based approach and Log linear
methods.
To the best of our knowledge, very less work

is reported in the area of developing a morph ana­
lyzer for the Gujarati language. (Patel et al., 2010)
built a stemmer using handcrafted suffix list along
with unsupervised learning. (Suba et al., 2011)
built Hybrid Inflectional Stemmer and Rule­based
Derivational Stemmer. (Baxi et al., 2015) devel­
oped rule based lemmatizer for Gujarati by hand
crafting of suffix rules. The language independant
models such as morfessor can not be used to de­
velop full fledge morph analyzer as they only give
morphological segmentation and do not perform
morphological feature tagging. The model sug­
gested by (Heigold et al., 2017) can not be directly
used as the language specific training data for Gu­
jarati language is not available in penn treebank
dataset.

3 Gujarati morphology and Data set
Generation

Gujarati is a verb­final language and has a rela­
tively free word order, it is an inflectional lan­
guage1. Words are formed by successfully adding
suffixes to the root word in series. When suffixes
are attached to the root, several morphophonemic
changes take place. In this section, we describe
the format and the details about the data set cre­
ation for the training and evaluation of morpho­
logical analyzer. For the creation of the dataset,
we did a survey of available corpus for the Gu­
jarati language. For the morphological analysis, it
is preferable to have a POS tagged data, hence we
have selected Gujarati Monolingual Text Corpus
ILCI­II corpus for the creation of the dataset. The
dataset is obtained from TDIL.2. We now discuss
Gujarati morphology and details of dataset created
for Noun, Verb and Adjective POS categories.

3.1 Noun

Gujarati nouns participate in three genders and two
numbers. The genders are masculine, feminine

1https://en.wikipedia.org/wiki/Gujaratigrammar
2Technology Development for Indian Languages (TDIL),

http://http://tdil­dc.in
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and neuter and the numbers are singular and plural.
Gujarati nouns also inflect for various cases. Ta­
ble 1 shows various cases with corresponding case
markers. The data set for the noun category con­
tains 6847 number of unique nouns. Along with
each noun entry, the corresponding root form, gen­
der, number and case information are marked man­
ually.

Case Suffix
Nominative ϕ

Genitive નો,ની,નું,નાં (
Nō,nī,nuṁ,nāṁ)

Ergative એ ( ē)
Objective/Dative ને (nē)
Ablative થી (thī)
Locative માં (māṁ)

Table 1: Case Markers for Gujarati Noun

3.2 Verb

Gujarati verbs inflect for gender, number, person,
tense, aspect and mood features. Table 2 and Ta­
ble 3 shows example of Gujarati verb with differ­
ent moods and aspects respectively. The dataset
for the verb category contains 6334 inflected verb
forms. Each verb form is marked with correspond­
ing root form and corresponding linguistic features.

3.3 Adjective

Gujarati adjectives can be classified in two types
based on their nature of inflections. One class of
adjectives do not inflect while the other class in­
flect for gender and number. Table 4 shows exam­
ple of each category. The dataset for the adjective
contains 3346 inflected adjective forms marked
with linguistic features type, gender and number.

POS Category Features Number
of Words

Noun Gender, Num­
ber, Case

6847

Verb Gender, Num­
ber, Tense, As­
pect, Person

10128

Adjective Gender, Num­
ber

3346

Table 5: Details about Dataset

4 Proposed Approach

We propose a morphological analyzer for Gu­
jarati which performs morpheme boundary detec­
tion and grammatical feature tagging of a given in­
flected word. Gujarati is a morphologically rich
language and manual hand crafting of rules is cum­
bersome process, hence we propose a deep learn­
ing based approach for this problem so that the
features of an inflected word can be learned with­
out supplying hand crafted rules. The morpheme
boundary segmentation model inspired by (Pre­
mjith et al., 2018) and feature tagging module is
based on the work reported in (Tkachenko and
Sirts, 2018).

Figure 1: Block Diagram of the System

Figure 1 shows the overall architecture of the
proposed system. We first prepare the training data
and perform the model training for both tasks. The
input word is passed to both models to get the cor­
responding morpheme segmentation and linguis­
tic feature tagging outputs. For the preparation of
training data, we represent inflectedword as binary
string and mark “1” in the position of the split char­
acter, rest all characters are marked as “0”. Fig­
ure 2 shows morpheme splitting example. Due
to the rich morphological nature of Gujarati lan­
guage, different word forms can be constructed by
attaching various suffixes to the root word. Table
6 shows the sample output obtained for morpheme
segmentation task.
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Mood Example Transliteration English Translation
Indicative ધન્વી ચોકલેટ ખાય છે. Dhanvī cōkalētạ khāya chē. Dhanvi is eating a

chocolate.
Imperative સવારે વહેલો ઊઠજ.ે Savārē vahēlō ūtḥajē. Get up early in the

morning..
Conditional જો હંુ ત્યાં હોત, તો હંુ તમને મદદ

કરી શક્યો હોત.
Jō huṁ tyāṁ hōta, tō huṁ
tamanē madada karī śakyō
hōta.

Had I were there, I
would have helped..

subjunctive એ અત્યારે દીપક ને ધેર હોવાનો. Ē atyārē dīpaka nē dhēra
hōvānō.

He must be at Di­
pak’s home right
now.

Table 2: Moods of Gujarati Verb

Mood Example Transliteration English equivilant
Simple રામ અમદાવાદમાં રહે છે. Rāma

amadāvādamāṁ
rahē chē.

Ram lives in Ahmed­
abad.

Progressive રામ અત્યારે પુસ્તક વાંચી રńો છે. Rāma atyārē pus­
taka vāṅcī rahyō
chē.

Ram is reading a
book right now..

Perfect રામે પુસ્તક વાંચી લીધું. Rāmē pustaka vāṅcī
līdhuṁ.

Ram has finished
reading a book.

Perfect Progressive રામ સવારથી પૂજા કરી રńો હતો. Rāma savārathī pūjā
karī rahyō hatō.

Ram was doing
pooja since morn­
ing.

Table 3: Gujarati Verb Aspects

Type of Adjective Example
Non­Inflected ઉત્તમ (Uttama)
Inflected સારો, સારી, સારંુ ,સારા

(sārō,sārī,sāruṁ,sārā)

Table 4: Gujarati adjective inflection

Figure 2: Morpheme Splitting Example

Inflected Word Morpheme separa­
tion

વાતોમાં(Vātōmāṁ) વાત (vāta) +ઓ (ō)
+માં(māṁ)

પત્નીને (Patnīnē) પત્ની(patnī) + ને
(nē)

કરતો હતો(Karatō hatō) કર(kara) + તો(tō) +
હતો(hatō)

Table 6: Morpheme Separation Example

In the Linguistic Feature Tagging module, we
predict morphological features associated with an
inflected word. Table 5 describes various features
associated with different part of speech categories.
We formulate this task as multi class classification
problem. We have represented the class labels in
a monolithic way such that each unique combina­
tion of different features is considered as one class.
The number of classes for this task are 36, 198 and
13 for noun, verb and adjective categories respec­
tively.
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5 Experiments and Results

We use Keras Python library for the implementa­
tion of the system. Our model is sequential model
with the first layer as embedding layer followed
by a Bi­Directional LSTM layer followed by a
dense layer for output prediction. We use Adam
optimizer and binary cross entropy and categorical
cross entropy loss for morpheme segmentation and
feature tagging task respectively. We keep 80:20
ratio for training and testing of the model.Table 7
shows the results obtained for morpheme segmen­
tation task.

# of
words in
test set

Correctly
seg­
mented
words

Accuracy

4058 3614 89.05

Table 7: Morpheme boundary detection result ­ overall

Table 8 shows the results separately for each
POS category.

POSCate­
gory

# of
Words

Correctly
predicted
words

Accuracy

Noun 1369 1240 90.57 %
Verb 2025 1761 86.96 %
Adjective 669 645 97.49 %

Table 8: Morphme Boundary Detection Results ­ POS
category wise

To study the effect of POS category on the re­
sults, we repeat the experiments individually for
each POS category. Table 9 shows the result of the
morphological tagging task for various POS cate­
gories. We observe that system performs very well
for morpheme boundary segmentation task across
the POS categories.
We also compare the results of the neural mor­

phological analyzer with an existing unsupervised
morph analyzer Morphessor. Morphessor(Creutz,
2005) is a family of methods for unsupervised
morphological segmentation. The first version of
Morfessor, called Morfessor Baseline, was devel­
oped by Creutz and Lagus (2002) and its soft­
ware implementation, Morfessor 1.0 was released
by Creutz and Lagus (2005b). We have tested
our dataset on morfessor implementation and com­
pared the results of the neural model and the

unsupervised model. For the Gujarati language,
Morphessor implementation is available in Indic
NLP(Kunchukuttan) library which is very popu­
lar NLP library for Indian Languages. However,
the limitation of Morphessor is that it only per­
forms morpheme segmentation task, whereas our
proposed neural morphological analyzer performs
both morpheme segmentation and morph feature
tagging tasks. Due to this limitation, we are able
to compare results for neural and unsupervised
morph analyzer for only the morpheme segmenta­
tion task. We observe that the neural morphologi­
cal analyzer outperforms unsupervised model by a
large margin.

Accuracy in %
POS Category Neural

Model
Unsupervised
Model

Noun 90.57 68.27
Verb 86.96 12.95
Adjective 97.49 25.72

Table 10: Accuracy comparison of neural and unsuper­
vised model

6 Result analysis

6.1 Morpheme boundary detection

Using the LSTM based morpheme segmentation
module, the system predicts a correct segmentation
point for 3613 words out of 4058 total words in
the test data set. Table 11 highlights few examples
where system identifies correct splitting location
for an inflected word:

Even though the morphemes splitting in all
above cases are correct, It is observed that the first
portion of the split may not be the valid root word
every time. Table 12 highlights such examples.

We make an observation that the rules to form a
valid root word are different for each word. These
rules depend on POS category of the word and
other grammatical features. Table 13 summarizes
the rules.
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POS Category Accuracy Precision Recall F1­Score
Noun 70.64 0.7 0.68 0.68
Verb 16.18 0.1 0.17 0.12
Adjective 85.85 0.78 0.61 0.68

Table 9: Morphological Feature Tagging Task Result

Segmentation Example
પાત્રમાં (Pātramāṁ)→ પાત્ર (Pātra)+માં (Māṁ)
દોડી (Dōdị̄)→ દોડ (dōdạ) +◌ી (ī)
મગજને (Magajanē)→ મગજ (magaja)+ને (nē)
દેખાશે (Dēkhāśē)→ દેખા (dēkhā)+ શે (śē)
યંત્રો (Yantrō)→ યંત્ર (yantra)+◌ો (ō)
વ્યાજના (Vyājanā)→ વ્યાજ (Vyāja) + ના (nā)
છોકરા (Chōkarā)→ છોકર (chōkara)+◌ા (ā)
ધંધાનું (Dhandhānuṁ)→ ધંધ(dhandha) +◌ાનું(ānuṁ)
ઈશારા(Īśārā)→ ઇશાર (iśāra) +◌ા(ā)

Table 11: Segmentation Examples

POS Category Other
Features

Rule

Noun / Adjective Gender =
Male

Attach
Suffix ­
◌ો(Ō)

Noun / Adjective Gender =
Female

Attach
Suffix ­
◌ી(ī)

Verb ­ Attach
Suffix
◌ું(uṁ)

Table 13: Rules to form correct root word

We supply POS category of the word as an input
to the system and obtain the grammatical features
using morph tagging module. Using this informa­
tion, accuracy of the morpheme boundary detec­
tion task can be further enhanced.
It is also observed that due to ambiguities in

the word formation rules, in some cases, the
system is not able to identify correct segmen­
tation. For example, words િવદેશો (Vidēśō) is
spitted correctly as િવદેશ +◌ો (Vidēśa + ō) and
word જબરો (Jabarō) is spitted correctly as જબર
+◌ો(Jabara + ō) . System tries to split the
words ખુલાસો(Khulāsō) and િકનારો(Kinārō) us­
ing similar method leading to incorrect outputs
ખુલાસ(Khulāsa) and િકનાર(Kināra). The issue
here is that system considers ◌ો (Ō) as the suf­
fix but in some words◌ો(Ō) is part as the root

word not as a suffix. The similar issue is observed
in many other inflected words ending with suffix
◌ી(Ī) as highlighted in the table 14
We also observe that the system does

not produce correct segmentation in some
cases where multiple suffixes are attached.
For example, the correct segmentation of
the word કારખાનાનુ(ંKārakhānānuṁ) is
કારખાન(Kārakhāna)+◌ા(Ā)+નુ(ંNuṁ) but the
system does not identify any segmentation in the
given word.

6.2 Grammatical feature prediction task

In this section, we do the result analysis of the
grammatical feature prediction task from the
linguistic perspective. We perform this analysis
individually for each part of the speech category.
Noun:

For Noun, we consider gender, number and
case as morphological features. The model is
trained in such a way that based on the inflections
that a word takes, it predicts corresponding gram­
matical features. For most of the cases we have
good correlation between suffix and grammatical
features, but in some cases the correlation does
not hold. Due to these exceptions, sometimes
there is an error in the feature prediction task.
Consider two noun examples બજારો(Bajārō) and
ડાયરો(Dạ̄yarō). Both words take similar suffix
but in word બજારો(Bajārō), the suffix indicates
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Inflected word Root morpheme detected
by the system

Actual root word

દેખાશે (Dēkhāśē)→ દેખા ( dēkhā)+શે ( śē) દેખા ( dēkhā) દેખા( dēkhā) + વું(vu ṁ) →
દેખાવું(Dēkhāvu ṁ)

છોકરા ( Chōkarā)→ છોકર ( chōkara)+◌ા
( ā)

છોકર( chōkara) છોકર ( chōkara)+◌ુ( U) +◌ં(
ṁ)→ છોકરંુ(Chōkaru ṁ)

ધંધાનું (Dhandhānu ṁ)→ધંધ( dhandha) +
◌ાનું(ānu ṁ)

ધંધ ( dhandha) ધંધ( dhandha) + ◌ો( Ō)
→ધંધો( dhandhō)

ઈશારા( Īśārā)→ ઇશાર ( iśāra) +◌ા( ā) ઇશાર( iśāra) ઈશાર( iśāra) +◌ો(Ō)→ઈશારો
( Īśārō)

Table 12: Examples of incorrect root identification

Segmentation Remark
છોકરી(Chōkarī)→ છોકર(Chōkara) +◌ી(I) Correct Segmentation
ગણતરી(ganạtarī)→ ગણતર(ganạtara) +◌ી(I) Incorrect Segmentation
શ્રેણી(śrēnị̄)→ શ્રેણ(śrēnạ) +◌ી(I) Incorrect Segmentation

Table 14: Segmentation Analysis

plural marker but for the word ડાયરો(Dạ̄yarō), the
suffix is part of the word itself and the word is
not plural. Similarly the word ઘટના(Ghatạnā) is
tagged with genitive case marker due to ના(Nā) at­
tachment but actually the suffix is part of the word.

Verb:
For the verb category, we consider gender, num­
ber, person, tense and aspect features. Due to
different combinations of features, we get total
198 classes for tag prediction task. The accuracy
of the prediction task for verb is poor due to large
number of classes. It is also observed that for
different combinations of the features, same verb
form exists which makes classification task more
difficult. Table 15 highlights such examples:

A possible solution to address the above issue is
to look at the input at the sentence level rather than
word level. When the sentence level input is taken,
verb features becomes clear and unambiguous.
For example, with reference to the examples 1
and 2 from the above table, by looking at only
રમતો હતો(Ramatō hatō), the person feature is not
clear but when we look at the whole sentence
: રામ રમતો હતો(Rāma ramatō hatō), the person
feature becomes unambiguous ( person = 3rd).
Similarly, by looking at only રમતી હતી(Ramatī
hatī), the number feature is not clear but when
we look at the whole sentence:છોકરીઓ રમતી
હતી(Chōkarīō ramatī hatī), the Number feature
becomes unambiguous (Number=PL) .

Adjective
We consider the type of an adjective, gender and
number as features for morph feature tagging of an
adjective. Consider the adjective અજ્ઞાની(Ajñānī).
As per the language specification, this adjective
does not inflect with gender and number but by
looking at ◌ી(Ī) suffix, the system predicts it as
inflecting type of adjective with female gender.
To summarize, we observe that linguistic issues

such as stem to root word generation, attachment
of multiple suffixes and ambiguity in suffix rules
affects the performance of the system.

7 Conclusion and Future Scope

In this paper we have proposed a Bi­LSTM based
morphological analyzer for the Gujarati language.
We have prepared the dataset and evaluated the
proposed system. The system effectively performs
morpheme boundary detection and morphological
feature tagging tasks. With the proposed system,
morphological analysis of unknown inflectedword
can be performed without the knowledge of lin­
guistic rules. We have done result analysis from
the linguistic perspective. We also conclude that
the proposed model performs better than the exist­
ing unsupervised model.
In future, we aim to expand the dataset, and im­

plement other neural architectures such as seq2seq
model. We also aim to study sentence level depen­
dency for morphological analysis.
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Sr No Features Verb Form
1 Gender= Male , Number=SG, Person=1st

, Tense=Past, Aspect=Progressive
રમતો હતો(Ramatō
hatō)

2 Gender=Male , Number=SG, Person=3rd
, Tense=Past, Aspect=Progressive

રમતો હતો(Ramatō
hatō)

3 Gender=Female, Number=SG, Per­
son=3rd, Tense=Past, Aspect= Progres­
sive

રમતી હતી(ramatī
hatī)

4 Gender=Female, Number=PL, Per­
son=3rd, Tense=Past, Aspect= Progres­
sive

રમતી હતી(ramatī
hatī)

Table 15: Ambiguity in verb form generation
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Abstract

Data security and privacy is an issue of grow-
ing importance in the healthcare domain. In
this paper, we present an auditing system to
detect privacy violations for unstructured text
documents such as healthcare records. Given a
sensitive document, we present an anomaly de-
tection algorithm that can find the top-k suspi-
cious keyword queries that may have accessed
the sensitive document. Since unstructured
healthcare data, such as medical reports and
query logs, are not easily available for public
research, in this paper, we show how one can
use the publicly available DBLP data to cre-
ate an equivalent healthcare data and query log,
which can then be used for experimental eval-
uation.

1 Introduction

Large business enterprises, hospitals, etc., maintain
a large amount of digital information in the form
of structured, semi-structured, and unstructured
data. With growing concern among users regard-
ing the privacy of their data, such organizations
are required to design a robust data management
system. Thus, the goal of DBMS has expanded,
to include additional features, such as enforcing
data privacy and security (Robling Denning, 1982;
Denning et al., 1979), in addition to the primary
goal of easy and efficient retrieval.

Lot of research has been done (Duncan and
Mukherjee, 1991; Jajodia and Meadows, 1995;
Brodsky et al., 2000) to prevent and detect privacy
violation for structured data (e.g. SQL) and semi-
structured data (e.g. XML) (Byun et al., 2005).
However, to the best of our knowledge, there is
no existing work that detects privacy violations in
access to unstructured text documents using key-
word queries. Detecting privacy violations for text
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documents has not been explored much because it
is difficult to audit keyword queries for text data,
which is explained later in this section. Organiza-
tions tend to maintain their sensitive data in a struc-
tured or semi-structured format. However, just as
the strength of a chain is equal to its weakest link;
similarly, an organization with very secured access
to structured and semi-structured can still face pri-
vacy violations due to its unsecured unstructured
data repositories.

Example Alice has undergone breast cancer medi-
cal treatment in HealthCo Hospital. A few weeks
after she returned from the hospital, she started
getting advertisements on natural products to treat
breast cancer. She blamed HealthCo for disclosing
her sensitive disease data to outsiders. HealthCo
has a strong security system that will not allow
outsiders to directly access Alice’s information.
HealthCo has to prove that either nobody has mis-
used Alice’s private information or find the employ-
ees from HealthCo whose access to the information
seems suspicious.

One can use access control policies to secure ac-
cess to sensitive documents so that only authorized
users can access those documents. However, this
can restrict access to crucial information at times of
emergency. For example, in a hospital, if we create
a strict access control policy over medical reports,
then it may lead to the inaccessibility of informa-
tion during crucial hours. An auditing system can
help in such scenarios by allowing a relaxed access
control policy, and then providing means to detect
privacy violations through auditing.

The auditing models that have been proposed
for structured or semi-structured data (Agrawal
et al., 2004; Bottcher and Steinmetz, 2006; Miklau
and Suciu, 2007; Motwani et al., 2008) cannot be
used for text documents due to the difference in the
query model. Structured and semi-structured data
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is often accessed using precise query languages,
such as SQL or XQuery, which returns the result
using the boolean retrieval model. In these query
models, there is no notion of ordering among re-
turned tuples or elements. A query is marked sus-
picious if its result contains any sensitive tuple, or
if a sensitive tuple can be inferred from the query
result. The auditing techniques proposed for these
types of data do not have a notion of the degree of
suspiciousness for a query.

Text documents are commonly accessed using
keyword queries, which are not precise. And thus,
neither the query nor the result indicates what in-
formation the user was looking for. Each query
returns a long list of documents ordered by some
relevant measure, and in most cases, users may
look at only the top few results. The major success
of IR is due to the ordered nature of its result set.
Thus, rather than just returning a long list of queries
that had the particular sensitive document in its re-
sult, we need to define a suspiciousness order for
the queries, using various factors such as the rank
of the document in the result, the relevance of the
document to the query, access anomalousness, etc.

Auditing is common in the healthcare domain
as it involves sensitive patient data. To our knowl-
edge, there is only one publicly available healthcare
dataset1 of medical reports. The dataset has been
reported for around 200 hundred patients and has
no associated query log. Since there is no existing
big publicly available dataset from healthcare that
can be used to evaluate auditing systems for un-
structured data. In this paper, one of our main con-
tributions is to model healthcare data using DBLP
data, which is a large dataset that contains biblio-
graphic information about computer science jour-
nals and proceedings. In the medical domain, ac-
cess is anomalous if someone accesses sensitive
information that one is normally not required to
access. Doctors or nurses are allowed to access
sensitive information based on their needs. As dif-
ferent staff have different roles in a hospital and the
role determines whether an access is anomalous or
not, we show how one can model such roles and
accesses using bibliographic data.

This paper is organized as follows: Section 2
contains related work. Section 3 discusses the au-
diting model and system architecture. Section 4
discusses proposed algorithms. Section 6 presents
evaluation. Finally, Section 7 concludes the paper

1https://webscope.sandbox.yahoo.com/catalog.php

with some directions for future work.

2 Related Work

Inspired by the Hippocratic Oath2, the Hippocratic
databases were proposed by (Agrawal et al., 2002)
that impose data privacy and security protocols on
the data.

(Agrawal et al., 2004) address the problem of de-
tecting privacy violations in the case of relational
databases. In this work, the authors proposed a
framework for detecting whether or not a relational
database is adhering to data disclosure policies.
Users specify sensitive information in the form
of audit expressions. The audit component takes
audit expressions and returns all the queries that ac-
cessed sensitive data during execution. (Motwani
et al., 2008) also study the problem of auditing
SQL queries. Given a forbidden view of a rela-
tional database, which should be confidential, and
a batch of SQL queries posted over the database.
It determines whether a query batch is suspicious
or not with respect to the forbidden view. (Stoffel
and Studer, 2005) use the database views are used
to make the decisions on privacy violations. The
work proposes to solve the problem of data privacy
by looking for the data leak from a view of the
database.

(Bottcher and Steinmetz, 2006) proposed an au-
dit system for sensitive XML databases and XPath
query language that uses an audit query to describe
sensitive information. It also discusses privacy vi-
olations in the case of an attacker who submits
multiple queries. (Bertino et al., 2001; Bertino and
Ferrari, 2002; Damiani et al., 2000; Kudo and Hada,
2000) propose access control approaches for XML
data sources ranging from policies to fragments of
XML databases.

Another interesting approach towards data pri-
vacy comes from inference methods by (Farkas and
Jajodia, 2002). Inference based methods stem from
the fact that the access control methods can only
block direct access to the sensitive, while there still
exists ways of inferring the sensitive data through
indirect means. We propose an auditing model for
unstructured text documents. Our work is moti-
vated by various works done in the structured and
semi-structured database to ensure data privacy.

2An oath was historically taken by physicians stating their
obligations and proper conduct.
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3 Text Auditing System

In this section we walk-through the various compo-
nents of the text auditing system and further illus-
trate the working example introduced in Section 1.

Figure 1 presents the skeletal view of the au-
diting system. Users access the unstructured data
repository using keyword queries, where the docu-
ments are ranked using any IR ranking algorithm.
Given a query, we store the following information
in its query log: query ID, query, query timestamp,
the ID of the user who issued the query, and the IDs
of top-n documents returned for the query. Using
the query log we maintain an access index, which
greatly improves the performance of our auditing
system. Access index is an inverted index from
document to queries. For each document ID, we
have a posting list that contains the IDs of all the
queries that contain the document in their top-n
results

A user can submit an audit request audit(d),
where d is the sensitive document. The access
index is used to find all the queries that had the doc-
ument d in their top-n result. We call this query set
the candidate queries. Here, we assume that users
will not be interested in results appearing below the
top-n. Henceforth, we first find the candidate set
of suspicious queries using the stored query log. A
query from the candidate set is termed anomalous
if its score crosses a certain threshold. In Section 4,
we shall decode how a simple suspicious candidate
query transcends into an anomalous one.

Let us carry forward the example in Section 1
in-order to better understand the audit scenario.
The Table 1, contains five candidate queries that
had Alice’s report on breast cancer in their top-n
results. For each query, we compute two scores:
Suspiciousness score (SScore) and Anomalousness
score (AScore). The SScore is a measure of how
relevant the query is to the audit document, which
also indicates how likely the user has seen the sen-
sitive information. AScore is a measure of how
unlikely the query is from the user. The unlikely
queries are considered anomalous.

In Table 1, Query 4 has the highest SScore since
Alice’s blood report contains the information about
her breast cancer. Although this query is suspicious,
it is not anomalous because Lucy is a Nurse in the
Oncology department, and it is normal for her to
access such reports. The same argument holds true
for Query 1.

Query 2, 3 and 5 are from employees of the Gy-
naecology and Cardiology department, who are not
typically expected to access breast cancer-related
information. Although Query 3 and 5 are not ask-
ing for any information directly related to Alice,
they still have high SScore because Alice’s au-
dit document has high relevance for these queries.
Both Barbara and Chris might be trying to access
the information indirectly. The former is trying to
get all breast cancer patients from a particular loca-
tion, and the latter knows that those who have +ve
estrogen receptors are likely to have breast cancer.
Although Query 2 is accessing some information
about Alice, it has low SScore because it has low
relevance to Alice’s breast cancer data.

If we want the top-2 anomalous queries, then
Query 5 and Query 3 will be returned by our sys-
tem as they have high suspicious scores and are
also anomalous. Given the imprecise nature of key-
word queries and the lack of user’s background
information, such as Role, Department, etc., it is
difficult to compute SScore or AScore for queries.
In general, it is difficult to get the background in-
formation of users as it may not be available or
one user may have multiple roles. In this paper,
we present an algorithm that computes the AScore
without having the prior background information
of users who issued the query.

4 Algorithms

In Section 3, we explained how we use the access
index to find all queries that had the audit document
in the top-n query result. We call them as the
candidate suspicious queries. We now discuss the
elements that make up the SScore and AScore for
each candidate query.

4.1 Suspiciousness Score

The Suspiciousness score (SScore) builds on the
relevance of the audit document to a query. A
precise query is very likely to pull the relevant
document on the top. Such queries will land higher
SScores concerning the sensitive document. Next,
we study a few popular choices for SScore.

Query Relevance: An IR ranking function returns
the documents in decreasing order of similarity
score to the query q. We call this similarity score
as IRScore.

IRScore(q, d) = similarity(R, q, d) (1)
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Figure 1: Architecture of text auditing system

Query ID Username Department Role Keyword query SScore AScore
1 Bob Oncology Doctor Non-invasive breast cancer 0.4 No
2 Carol Gynecology Doctor Alice urine report 0.15 Yes
3 Barbara Gynecology Nurse Breast cancer Ann Arbor 0.37 Yes
4 Lucy Oncology Nurse Blood reports of Alice 0.8 No
5 Chris Cardiology Doctor Reports with +ve estrogen receptor 0.45 Yes

Table 1: Sample queries that have accessed Alice’s breast cancer report

where R is the IR ranking function, q is the input
query and d is the document. If the query has a high
similarity with the document, then it indicates that
the user who issued the query may be interested in
the document.

Document Rank: In IR, results are shown in
ranked order of decreasing IRScore i.e., Eq. 1 . The
position of a document in the ranked list determines
its ease of access. The IRScore can only estimate
the significance of a document w.r.t a query. But
the relevance of a document is relative to all other
documents in the results set. A document catches
the attention of the user when it falls within a cer-
tain percentile of ranks. In case of a generic query,
a majority of the documents have high IRScore.
Nevertheless, the user may not look at a document
that has high IRScore but does not appear in the
top 20-30 documents. On the other hand, indirect
queries are vague thus all the documents in the re-
sult set have low IRScores. As a result the user
can still access the document if it appears in the
topmost suggestions (e.g. Query 3 in Table 1) even
though it possesses low IRScore.

Therefore, we define IRRank to take into account
the rank of result documents in the retrieval system.

One can use either the rank of the document or the
page number in which the document appears. From
empirical evaluation, we observed that considering
page number is better than document rank. We thus
define IRRank as:

IRRank(q, d) = e−b
r
N
c (2)

where r is the document rank and N is the num-
ber of documents shown per page. By using this
function, all the documents that appear on page i
have IRRank score of e−i. In general, users only
look at the top few pages and the likelihood of their
seeing two documents that appear on the same page
is equal, so we chose this pagewise exponentially
decreasing scoring function.

Click Log: Users do not click on arbitrary links
but make selective choices. The click log contains
information about the query, the ranked list of doc-
uments presented to the user, and the set of links
the user clicked (Joachims, 2002). Although a user
may not click a sensitive document, by looking at
the document snippet in the result set or just its
presence in the result set may reveal its sensitive
information. Click log information is not defini-
tive of the suspiciousness since it does not record
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the cases where the user hovers over the document
without clicking on it. As a result, it is not used in
our paper.

Time Spent by the User: A user spending lot of
time on a particular page indicates that he is inter-
ested in the documents present on that page, thus
his access should be more suspicious to documents
that appear on that page. If we know the amount of
the time user spent on each page, we can include it
in IRRank by defining it as follows:

IRRank(q, d, ti) = e
−b (

r
N

)

ti
c (3)

where ti is the time (in minutes) that is spent
by the user on a page b r

N c. The IRRank of all the
documents in a page increases if the user spends
more time on that result page.

SScore of a query for a given sensitive document
d is defined as the product of the IRScore and the
IRRank of the query for the given document. The
set of Candidate Suspicious Queries (CSQ) can
be defined as the top-m queries with respect to
SScore, or all the queries with SScore more than
some given threshold. We use a threshold in this
paper.

4.2 Anomalousness Score

In this section, we compute the anomalousness
score for the Candidate Suspicious Queries. We
compute the anomalousness score using the follow-
ing two steps: (a) For each user find the topics of
interest; (b) Determine anomalous score for each
query that accessed the document by computing
how anomalous the query is to the topics of interest
of the user who issued the query. We determine the
anomalousness of the user’s topics of interest by
comparing them with the topics of interest of other
users who have also accessed the document. We
explain these two steps below.

Topics of Interest: To find a user’s topics of inter-
est, we consider all the user’s queries. We then take
the union of top-20 result documents for each user’s
query and denote it as the set Su. The user’s topics
of interest are then computed using three topic mod-
eling algorithms, namely TF-IDF, LDA (Blei et al.,
2003) and TNG (Wang et al., 2007), on Su. The
TF-IDF representation is the most straightforward
approach computed by selecting the top-k words
with the highest TF-IDF score.

LDA is a general probabilistic topic modeling
algorithm. It is extensively used to determine im-
portant topics and terms from a collection of doc-
uments. We apply LDA on Su to get the user’s
topic of interest. LDA considers each document
as a mixture of topics and places frequently co-
occurring terms under the same topic with high
probabilities. It computes the document-topic dis-
tribution (θ) and term-topic distribution (φ), which
signify the importance of topics in a document and
the importance of terms in a topic respectively. The
document-topic distribution (θ) is defined as fol-
lows:

NDT
dj + α

∑T
k=1N

DT
dk + Tα

(4)

where NDT
dj is the number of times a term ap-

pears in document d that has been assigned to topic
j. D and T stand for the document, topic respec-
tively. α is a smoothing constant. Similarly, term-
topic distribution (φ) is computed as follows:

NWT
ij + β

∑W
k=1N

WT
kj + Tβ

(5)

where NWT
ij is the number of occurrences of a

word i that has been assigned to topic j. W and
T represent the terms, topics respectively. β is
a smoothing constant. LDA generates the topics
from Su, and each of these topics contains unigram
words (terms).

The above methods do not generate topic phrases.
Phrases are important to convey a specific meaning.
The meaning of ‘natural language processing can-
not be completely captured by any of the individual
words of this phrase. To overcome this problem,
we use TNG, which generates topical collocations
as well as better unigram words. We use TNG to
generate the topic of interest of users from the doc-
ument set Su. Similar to LDA, we generate top-m
topics.

Query Anomaly: To determine query anomaly, we
take all the queries that had the sensitive document
d in their top-n result, say n = 30. We use these
queries and the query log to find the set of all the
users Ud who had the document d in their top-n
result. We say a query is anomalous if the user who
issued the query has a topic interest that is very
different compared to the document’s topic.

However, we cannot directly compute the topics
from a document because a document has very
limited information. Topic modeling algorithms
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generate good topics only if the corpus has a large
amount of data. In a small single document, each
term would be present only a few times, so we
cannot determine the term importance directly from
the document. To address this challenge, we do not
directly compare the topics of interest of users with
the topics in the sensitive document. We use an
indirect approach, where we look at all the users
who have accessed the document, and from those
users, we find users whose topics of interest are
anomalous. Our problem can be formally defined
as follows:

Problem Given a set of users Ud =
{X1, X2, ...Xm} who had the document d
in their top-n result. The access anomaly score of
user Xi is equal to his average distance from his
k-nearest neighbors in Ud −Xi.

We use nearest neighbors to define the anoma-
lous score. If a user has topics of interest that are
very different from other similar users who have
also accessed the document, then that user would
get a high average distance score.

Given two users Xi and Xj , we define their sim-
ilarity as the cosine similarity of their topics of
interest. For topics using TF-IDF, we can directly
compute the cosine similarity between topics of
interest vector by taking each topic as a term and
the TF-IDF score as the term importance. However,
we cannot use cosine similarity for the topic distri-
bution obtained using probabilistic topic modeling
algorithms, such as LDA or TNG. These algorithms
will generate a set of topics with document-topic
distribution probability (θ), and for each topic, they
will generate a set of terms with term-topic dis-
tribution (φ). The same term may be present in
multiple topics with a different degree of term im-
portance. To use cosine similarity we need to have
a document-topic vector that has one importance
score per term, where the topic could be a unigram
or phrase term. To compute this type of vector,
for each term we compute its weight by multiply-
ing the document-topic distribution probability (θ)
with term-topic distribution (φ). The probability θ
indicates the importance of the topic and the proba-
bility φ indicates the importance of the term in that
topic. If a term is present in multiple topics, then
the score we assign to the term is the maximum
value of the product of the corresponding θ and φ
values.

5 Modeling Healthcare Data using DBLP

This section shows how to create equivalent health-
care data using the DBLP dataset because such
healthcare data is not publicly available for re-
search. We first describe our dataset and then ex-
plain the modeling of roles and specializations, gen-
erate query logs, and find ground-truth anomalous
queries. DBLP3 is a bibliographic dataset contain-
ing information of 3.66 million publications from
Computer Science. Each publication in the dataset
has information such as title, conference name,
the name of authors, publication year, etc. We
removed publications that do not contain the name
of authors, abstract, or conference name from the
dataset. Our processed dataset contained 183232
publications.

5.1 Modeling Specializations and Roles

In healthcare, we consider access anomalous if
an employee accesses sensitive information that
he usually is not required to see. Since in hospi-
tal, each employee has his specialization(s) and
the department he belongs to, we can compare the
accesses of the particular employee with other em-
ployees with similar roles and departments to de-
termine whether the access is anomalous or not.

Although this information is not directly avail-
able in DBLP data, we use authors’ publications to
find their area of research. If an author publishes or
looks for a very different paper from his research
area, then we consider such papers anomalous. For
example, Prof. H. V. Jagadish4 is a well-known
researcher in the area of Databases and Data Min-
ing. However, one of his papers: "Hui Jin, H. V.
Jagadish: Indexing Hidden Markov Models for Mu-
sic Retrieval. ISMIR 2002" seems like an outlier
given most of his other papers are in Databases.

Since DBLP does not have the research interest
of authors, we combine it with WikiCFP5 to get
the research interest of authors. WikiCFP is a web-
site that advertises calls for papers of international
workshops, conferences, and journals. While post-
ing CFP for a conference, one can tag the confer-
ence with one or more research areas. We crawled
this information from WikiCFP to get the research
interest of authors.

For each author, we consider all his publications
in the DBLP dataset. We use the conference name

3https://www.aminer.cn/dblp_citation
4https://web.eecs.umich.edu/ jag/
5http://www.wikicfp.com/cfp/
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Research Area 1 Research Area 2 Jaccard Similarity
Health Informatics E-health 1
Formal Methods Verification 0.67
Parallel Computing HPC 0.41
Education E-learning 0.36
Machine learning Verification 0.05

Table 2: Jaccard similarity between research areas

Conference Name Areas of the conference
VLDB Databases
ICVS Computer Vision, Pattern Recognition, Image Processing
CIKM Web, Information Management, Data Mining, Information Retrieval, Text

Mining, Databases, Knowledge Engineering, Knowledge Management,
Database

KDD Web, Data Mining, Machine Learning, Information Retrieval, Databases,
Knowledge Discovery, Data Science, Big Data, Knowledge Engineering

Table 3: A sample of conferences and their research areas as crawled from WikiCFP. Highlighted in bold are areas
extended using Jaccard similarity.

in the WikiCFP dataset to get the area(s) of the
particular publication. Since there are thousands
of category labels in WikiCFP, the CFP poster may
not label a conference with all the possible labels.
For example, the conference International Confer-
ence on Computer Vision Systems (ICVS) is only
labeled Computer Vision in WikiCFP. But we know
that it also belongs to Pattern Recognition, Image
Processing, etc. Using the few area labels of con-
ferences given by the CFP poster, we use Jaccard
similarity between areas to find all the related la-
bels of the conferences.

Table 2 shows the Jaccard similarity between
a few research areas. Jaccard similarity between
Health Informatics and E-health is 1, which in-
dicates that these two areas are almost the same.
Jaccard’s similarity between Machine learning and
Verification is 0.05, which indicates that these two
areas are very different. Suppose Lc is the set of the
labeled area(s) of a conference c such that |Lc| > 1.
Rc is the set of related areas with Jaccard similar-
ity greater than a threshold th = 0.25 . We use
the extended set of areas Lc ∪ Rc to label confer-
ence c. Table 3 shows the conferences and their
extended areas after using Jaccard similarity. The
related areas obtained using Jaccard similarity are
highlighted in bold.

5.2 Generating Query and Access Log

We consider the keywords in titles as keyword
queries and all the abstracts as the repository of
sensitive documents. We consider the authors of
the publications as the users who issued queries. A
publication is anomalous if the conference area of
that publication has very low similarity with the
author’s overall publication profile. To generate the
IRScore and IRRank of queries, we used Apache
Solr6, which is an open-source IR system.

5.3 Finding Ground-truth Anomalous
Queries

To evaluate the algorithms discussed in Section 4,
we need ground-truth anomalous queries. Given
the huge size of the DBLP dataset, it is difficult to
manually label all the anomalous queries. In this
section, we present a heuristic to generate ground
truth about the queries. For this, we use the man-
ually provided category labels, in other words, re-
search areas of conferences to compute profiles of
users and documents in terms of category labels.

Given a paper’s abstract and its conference, we
get the labeled areas of the conference Lc from
WikiCFP and then compute the closely related ar-
eas Rc, as described in Section 5.1. We create a
profile vector of the document by considering the

6http://lucene.apache.org/solr/
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extended set of areas, where each feature of the vec-
tor is a topic area and the feature weight is one. To
compute the profile vector of a user, we add up the
profile vectors of all his publications, as described
above. We then compute the cosine similarity be-
tween the publication and user profile vector. If the
cosine similarity is below a certain threshold, we
consider the particular publication as anomalous.

6 Evaluation

As introduced in Section 5, we carry out our ex-
periments on a surrogate DBLP dataset. For this,
we use the ground-truth generated in Section 5.3.
The first step in detecting anomalous queries is to
find Candidate Suspicious Queries (CSQ). In this
regard, Figure 2 shows the relationship between
the number of outliers vs SSsore. From the graph
one can observe that queries with SScore less than
0.1 are not a threat as there are no outliers with
SScore less than 0.1. Thus while finding CSQs, we
can exclude all the queries with SScore less than
0.1. Interestingly, queries with high SScore are not
a threat either. These queries seem to be issued
by genuine users. This is expected for genuine
users, as it is okay to access sensitive documents
that are of relevance to them. Most of the outliers
are concentrated around SScore value 0.2. These
queries are either issued by users who are unable
to form a proper query, maybe due to a lack of do-
main knowledge, or those who are trying to make
indirect access. Since these queries are less precise,
they have low SScore.

Evaluation Metric: In general outlier detection is
evaluated using either the precision-recall graph
or the ROC curve (Aggarwal, 2015). ROC is a
plot of True Positive Rate (TPR) vs False Positive
Rate (FPR). ROC has the advantage of being mono-
tonic and more easily interpretable in terms of its
lift characteristics in comparison to the precision-
recall curve. ROC studies the trade-off between
average-TPR and average-FPR. TPR is the number
of outliers that were rightly identified while FPR
measures how many non-outliers were wrongly
classified as outliers. Ideally, we prefer a model
that predicts all the outliers (high TPR) while be-
ing specific of not wrongly predicting normal data
as outlier (low FPR). A perfect ROC curve would
require the curve to stick to the left-hand side; main-
taining high TPR and low FPR, and is thus said to
have a high area under the curve (AUC).

Topic modeling evaluation: As discussed in
Section 4.2, user representations can be computed
using three topic modeling algorithms, namely
TF-IDF, LDA, and TNG. From the ROC plot
shown in Figure 3, we observe that TF-IDF and
LDA closely follow each other. Similar to TF-IDF,
LDA depends on the frequency of a word to assign
a topic to it. Since abstracts are very small texts
both TF-IDF and LDA have comparable outcomes
here. However, TNG identifies more topic-specific
terms by learning n-grams in the topics and can
make a clear distinction given the small text. This
is also evident from the high AUC under TNG. For
the remaining evaluation, we use TNG to get the
user representations.

Effect of number of neighbors: The next parame-
ter we evaluate is the optimal number of neighbors
k in computing access anomaly. The value of k
depends on the nature of the data. For example
in a hospital, not every department has an equal
number of staff. Suppose the hospital specializes
in cardiac treatment and thus has a huge cardiol-
ogy department, in comparison the ophthalmology
department is tiny. If we are looking for staff in
the ophthalmology department, we can only get a
few similar staff. If we put a big value of k, then
our anomaly detection will not be accurate as we
will include neighbors who are very different from
the staff. The k value changes depending on the
data distribution (Latourrette, 2000), it is therefore
necessary to understand the data dynamics.

To find the optimal k for different data dynamics,
we divided our data into three classes based on
outlier density. Figures 4, 5 and 6 shows the effect
of k on low, medium and high outlier density. We
can observe that while k = 2 is an insufficient
number of neighbors, k = 15 is too big a number
to still be called ‘nearest neighbors’. Both of them
are bad estimators with very low AUC. Plots for
all k values except k = 6 have close performance.
For all three cases, k = 6 seems to give the optimal
classification. For low outlier density, the number
of outliers is less, therefore ROC plots are oriented
towards the y-axis. However, for medium and high
outlier density, the ROC curves gravitate away from
the y-axis as they have a high number of outliers.
All these observations are perfectly captured in
Figure 7, which is the consolidated ROC plot.
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Figure 2: Outlier frequencies at varying Suspiciousness
Scores Figure 3: ROC plot for various topic models

Figure 4: ROC for low outlier density Figure 5: ROC for medium outlier density

Figure 6: ROC for high outlier density Figure 7: Overall ROC

7 Conclusion

We present one of the first of its type approaches
to detect privacy violation in access of unstruc-
tured text documents using keyword queries that is
mainly useful for healthcare domain. Since health-
care data is difficult to obtain, we also demonstrate
the construction of a substitute dataset for health-
care. The proposed system shows promising re-
sults.
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Abstract

To find the correct word’s sense is a great im-
portance in many textual data related applica-
tions such as information retrieval, text min-
ing and natural language processing. We have
proposed one novel Word Sense Disambigua-
tion (WSD) method according to its context.
On the Basis of collocation extraction score,
three different features are extracted for each
sense definition of a target word. From the ex-
tracted features, feature vector is created. A
sense matrix is formed from all the feature vec-
tors. To enhance the sense matrix, Restricted
Boltzmann Machine (RBM) is used. By us-
ing SENSEVAL and Sem Eval datasets, pro-
posed WSD method is compared with other
current systems. Practical implementation of
the proposed WSD method is also shown here
by applying it on query-based text summary.
To implement it in query-based text summary,
the method uses DUC (Document Understand-
ing Conference) datasets. It contains news-
wire articles. Finally, the experimental analy-
sis shows that our proposed WSD method out-
performs many current query-based text sum-
mary systems.

1 Introduction

Disambiguation of word is much important in the
fields of natural language processing and ontology.
In computational linguistics, most of the languages
are polysemous (Rahman and Borah, 2021b). For
example, ‘I am going to bank.’ The bank could be
a financial institution or it could be a sloping land.
In a sentence, sense of a word depends on context
of the sentence (Lin et al., 2016). It is very trouble-
some to discover the sense of a word in computer
programs because it does not possess endless infor-
mation like a human being. According to Jurafsky

et al. (Jurafsky, 2000), the task of selecting the
correct sense of a word is known as WSD. Many
text applications depend on WSD technique in their
process.

The original Lesk algorithm (Lesk, 1986) uses
gloss or definition of the ambiguous word (Kwon
et al., 2021). Lesk algorithm can be applied only
in short phrases. Wawer et al. (Wawer and
Mykowiecka, 2017) developed two approaches
based on the supervised and unsupervised method.
The first method is an unsupervised method where
log probability is computed from the sequences of
word embedding vectors by considering the senses
of the ambiguous word and from the context, it
finds the correct sense (Rahmani et al., 2021). The
second method is a supervised method where a mul-
tilayer neural network is used to find the sense of
an ambiguous word. Another unsupervised method
was developed for word sense disambiguation by
Chaplot et al. (Chaplot and Salakhutdinov, 2018).
Here, the whole text document is considered as a
context for the ambiguous word. This model is
based on logistic normal topic model, which adds
semantic information about the synsets as its priors.

Literature survey says that different supervised,
unsupervised, and knowledge-based approaches
are widely used in WSD ((Navigli, 2009) (Bevilac-
qua et al., 2021)). A word contains different senses
based on context and we need to disambiguate the
target word for that given context. Word sense dis-
ambiguation method is applied in many fields like
sentence similarity measure. Pawar et al. (Pawar
and Mago, 2018) used ‘max similarity’ algorithm
for WSD (Pedersen et al., 2005) where they cal-
culated sentence similarity score. They have im-
plemented in Pywsd which is available in NLTK
library in Python (Tan, 2014). However, the ac-
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curacy of this method is quite low as it does not
always provide the exact sense of a word as max-
imum similarity does not give the surety that two
senses will be exact for both sentences.

Here, an unsupervised learning algorithm named
as Deep Belief Network (DBN) is applied. DBN is
a probabilistic learning model having multi-layers
of hidden units (Wiriyathammabhum et al., 2012).
In DBN, a Restricted Boltzmann Machine (RBM)
is used to train the model. Three different fea-
tures are proposed to find the exact sense of a word.
Finally, RBM is used to enhance the extracted fea-
tures to improve the result.

2 Contribution

The main contribution is that proposed WSD
method depends on three new features based on
collocation extraction scores and further Restricted
Boltzmann Machine is applied to enhance these
three features which give better result than other
existing word sense disambiguation systems. To
the best of my knowledge, there is no such kind of
earlier work done in disambiguation of a word by
using DBN. The proposed WSD method is the orig-
inal one and can be applicable in many text mining
applications. This proposed WSD method can be
used in semantic relatedness score calculation be-
tween two sentences as it finds the word’s correct
sense on the basis of context of the sentence. Fur-
ther, semantic relatedness measure can be applied
in many text mining applications like query-based
text summarization, text clustering, plagiarism de-
tection. The proposed WSD method is applied to
query-based text summarization datasets to show
its practical implementation. Query-based text sum-
marization is different from generic summarization
as it extracts essential sentences from the input text
based on the user’s requirement (Rahman and Bo-
rah, 2020). Therefore, to find semantic relatedness
between query and input text sentence, this WSD
technique is applied to get accurate relatedness
score.

3 Introduction to WordNet

WordNet (Miller, 1995) is a lexical dictionary.
Only content words are present in WordNet. These
words are organized semantically. It is different
from the traditional dictionary. Nouns, verbs, ad-
verbs, and adjectives are present in content words.
‘WordNet’ contains synonymous words set. It is
known as synset or synonym set. Synonym set

contains words having same meaning. For exam-
ple, shut and close are synonyms. Polysemous
words possess more than one synsets. For example,
right; sometimes it means correct, morally good
or justified and sometimes used as direction op-
posite to left. For each content word present in
a synset, a gloss or a definition is present. Most
of the content words contain more than one sense
definition. In Wordnet, a word is represented as
word#part of speech#sense number. Table
1 says about different gloss definition of word love
along with its parts-of-speech and sense number
present in WordNet.

WordNet dictionary is used here for calculat-
ing the semantic similarity or relatedness score
between two words. Therefore, before finding the
score, it is important to disambiguate those words.

4 Proposed Unsupervised Deep Leaning
Method for Sense Detection

Process of finding the appropriate sense of a word
is shown in Figure 1. Following steps are used to
find the correct word’s sense present in a sentence
using unsupervised deep learning:

• Pre-processing: Initially, pre-processing step
removes unwanted words from the text sen-
tence. It makes the sentence a lighter one.
Here, pre-processing of text document uses
stop word removal. Stop words eliminates
most common and unimportant words. Exam-
ple of stop word are: are, is, the etc.

• Feature Extraction: For finding sense of a
word, three features are used. It is described
in section 5 and 6.

• Feature enhancement: Feature enhancement
is done to improve the selection of sense for
the context of the sentence. RBM is used for
a feature enhancement to get the exact sense.
How RBM can be applied in feature enhance-
ment for finding word sense is described in
section 7.

5 Finding Collocation Extraction Score
between two Words

Collocation refers as the use or occurrence of two
words together. Computational technique to find
the collocation in a document or a corpus is known
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Table 1: Representing content ‘love’ in WordNet

Synset(‘love.n.01’) a strong positive emotion of regard and affection
Synset(‘love.n.02’) any object of warm affection or devotion
Synset(‘love.n.03’) a beloved person; used as terms of endearment
Synset(‘love.n.04’) a deep feeling of sexual desire and attraction
synset (love.n.05’) a score of zero in tennis or squash
Synset(‘love.v.01’) have a great affection or liking for
Synset(‘love.v.02’) get pleasure from
Synset(‘love.v.03’) be enamored or in love with

Figure 1: Block Diagram of Word Sense Disambiguation Method

as collocation extraction score (Rahman and Bo-
rah, 2021a). To find collocation extraction score,
Wikipedia Corpus (WC) (Denoyer and Gallinari,
2006) is used. Bi-gram frequency is used to find the
co-occurrence between two terms. Associativity is
found in while calculating collocation. If we take
the example of cat and tiger, both are semantically
similar. Both are members of the feline family or
superb hunters. In contrast, tiger and deer are asso-
ciated as both occur frequently in language. This
is known as functional relationship. Association
and similarity both are not even mutually exclusive
or independent. Two words tiger and deer are re-
lated two both relations to some degree (McRae
et al., 2012) (Plaut, 1995). For each sense of am-
biguous word, bi-gram collocation extraction score
word1 (McKeown and Radev, 2000) is found by
calculating the frequency of words’ available in
sense definition for the first word (word1) with the
present words in the sentence and finally maximum
value is taken by the proposed WSD method.

We have taken one sentence: Ram went to the

state bank of India for depositing money. Initially,
for fining the accurate sense of word bank, we ob-
tain all the senses present in WordNet. We find the
collocation extraction score for each word present
with the sense with the other content words present
in the sentence. There are many senses present
for the word bank. For example if I take the sense
depository financial institution, then for each con-
tent word present in the sense deposit, financial,
institution, we need to find the collocation extrac-
tion score with the content words present in the
sentence Ram, Go, State, India, deposit, money. At
the end, we need to take the maximum value. In
this way we have to find the score for each sense.
Following equation 1 is used for finding the collo-
cation extraction score between two words. One
word is selected from the gloss of g and other word
is selected from the sentence sen:

collocation score(g, sen) =
log( (z∗SC)

(gf∗sf∗span))

log(2)
(1)
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gf = frequency of g in WC
sf = frequency of sen in WC
z = frequency of sen near g in WC
SC= size of WC
span = width of the words (e.g. 2 to left and 2 to
right of first word)

For a target word (TaW) exist in a sentence, the
collocation extraction score (CES) of that sense is:

CES (Sense, Sentence) = max
∑

g∈Sense,sen∈Sentence
(collocation score (g, sen))

(2)

We find the collocation extraction score for all
the senses of TaW. Finally, we select that sense of
TaW for which the proposed WSD method gets the
maximum collocation extraction score (Rahman
and Borah, 2021b).

6 Feature Extraction for Finding Exact
Sense of a Word present in a Sentence

Initially, proposed WSD method takes all the con-
tent words available in the same sentence to detect
the sense of an ambiguous word. For an ambiguous
word, the proposed method takes all senses present
in the WordNet. For each sense, collocation extrac-
tion score is calculated for all content words. To
find out the collocation extraction score, algorithm
1 shows the systematic steps:

Data: target word (Tw) and the sentence
(Sws)

Result: collocation score of Tw for each
sense s of Tw

Do the stop word removal of Sws

Find out senses of Tw

for each sense (s) of Tw do
Do the stop word removal (sswr) of s
for each word (wswr) of sswr do

Find out the collocation extraction
score between wswr and Sws by
using the equation 2

end
end

Algorithm 1: Collocation Extraction Score for
target word’s each sense with words available
in the sentence

It is also seen that noun phrases always carry
essential information which helps in finding the

meaning of a sentence. Therefore, noun phrases
are considered and find collocation extraction score.
We have calculated the collocation extraction score
for each sense of target word with noun phrases.
Description of Algorithm 2 is given below.

Data: target word (Tw) and sentence (Sws)
Result: collocation score of Tw for each

sense s of Tw

Do the removal of stop words Sws

Find the noun phrases (Snp) in Sws

Find out senses of Tw

for each sense (s) in Tw do
Do the stop word removal (sswr) of s
for each word (wswr) of sswr do

Find out the collocation extraction
score between wswr and Snp by
using the equation 2

end

end
Algorithm 2: Collocation Extraction Score of
each sense of the target word with the noun
phrases present in the sentence

It is also observed that sometimes, some words
are not present in the WordNet, but they still can be
considered as important words as they contribute
to creating the context of the sentence. For ex-
ample, we take three sentences: Narendra Modi
visits China. Shyam visited his uncle’s house to
attend the birthday party, and Donald Trump vis-
ited India. The word Visit has different senses in
WordNet. Now the proposed method will find the
most suitable sense present in WordNet. In first
sentence, the word visit is much related to Naren-
dra Modi. It can understand that this visit must be
an official visit, as Prime Minister usually goes to
other foreign countries for official purpose. The
same meaning is also present for the third sentence.
For the second sentence, the word visit is related to
go to see a place which is certainly not official. To
find exact sense, the collocation extraction score
between each sense of visit with Narendra Modi,
Shyam, and Donald Trump will contribute to it.
Narendra Modi, Donald Trump, and Shyam are not
present in WordNet. That refers that, sometimes, if
a word is not present in WordNet, still it helps in
contributing to finding exact sense. The word visit
is identified as a verb here.

From the above Table ??, it is clear that the sense
of visit word for the first and third sentence should
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be visit#v#4 as it matches with the context of the
sentence and for the second sentence, it should
be visit#v#1. The collocation extraction score be-
tween Narendra Modi and office is much higher in
case of the first sentence; for the second sentence
it is for party and entertainment and the third sen-
tence it is for Donald Trump and office. This exact
sense will help in finding an exact semantic related-
ness score among three sentences. Therefore, the
following Algorithm 3 is used to find the required
collocation extraction score:

Data: target word (Tw) and the sentence
(Sws)

Result: collocation score of Tw for each
sense s of Sws

Do stop word removal of Tw

Find the words from Sws not present in
WordNet (Swsnw)

Find out senses of Tw

for each sense (s) in Tw do
Do the stop word removal (sswr) of s
for each word (wswr) of sswr do

Find collocation extraction score
between wswr and Swsnw with the
help of equation 2

end

end
Algorithm 3: Collocation Extraction Score of
target word with words exist in the sentence but
not present in WordNet

7 Use of Restricted Boltzmann Machine
for Feature Enhancement to Find
Correct Sense

We use Restricted Boltzmann Machine (RBM)
for finding correct sense. It needs the collo-
cation extraction score of each target word ob-
tained from the mentioned Algorithm1, Algo-
rithm 2, and Algorithm 3. For each target
word, every sense is presented as a feature vec-
tor. For example: if a target word w has
n number of senses, then it is represented as
a feature vector: w1 = [f11, f12, f13], w2 =
[f21, f22, f23]............., wn = [fn1, fn2, fn3].This
sense matrix will be input for the RBM. The fea-
ture vector for each target word is passed through
the hidden layer where each feature vector is multi-
plied with respective weight and a bias value.

Initially, train the RBM with the input vector v.

Now, the hidden units of RBM become determin-
istic. RBM has two layers: one is visible, or input
layer, and the other is a hidden layer. No of units
in the visible layer depends on how many senses
are present for each word available in the text docu-
ment. It calculates E(hj |v;w) with input v which
serves again as visible units for RBM. This process
can be repeated as many layers as it needs. After
this unsupervised layer-wise training, back propa-
gation is utilized to fine-tune of weights and biases
(Cai et al., 2012). This unsupervised phase does
not require labels. Finally, we will get a refined
and enhanced matrix.

The method can be represented mathematically.
Input for the RBM is a sense matrix. Each row in
the matrix represents one particular sense of a word.
Whole content words present in the text document
are represented as a sense matrix. The sense matrix
S = (s1, s2, .....sN ) is a feature vector set contains
all the three features extracted for each sense of a
word s1 (Jain and Lobiyal, 2022). The sense matrix
is represented by the following Figure 2:

Figure 2: Sense Matrix

The input to the RBM is the set of feature vector
S. It acts as a visible layer. Here, random values
are selected for biases. RBM contains two hidden
layers, the whole process can be represented in
following equations:

S = (s1, s2, ........sN ) (3)

Here si = (f1, f2, f3) and i <= N , where N is
the sense number for the ambiguous word present
in the text document. As the RBM has two layers,
two bias values h0 and h1 are selected randomly.

To get a more refined matrix, RBM works in two
steps. During the first phase, the new refined sense
matrix is:

S′ = (s′1, s
′
2, ........s

′
N ) (4)

The above expression is obtained in the follow-
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ing way:

N∑

i=1

si + h0 (5)

In step 2, the same procedure is followed by
considering the bias h1 and get more enhanced and
refined sense matrix and which is given by:

S′′ = (s′′1, s
′′
2, ........s

′′
N ) (6)

After obtaining refined sense matrix, a thresh-
old value is taken for testing purpose with it. The
threshold value is randomly generated for each vec-
tor. it is further tested with a For example: if the
value of f1 >= thresholdf1, then only it will be
considered.

To generate optimal feature vector set, obtained
feature vector sets are fine tuned by adjusting the
units’ weight of RBM. For optimal fine-tuning,
back propagation algorithm is used. The enhanced
feature vector values are added to obtain a score
against each sense. Finally, the highest scored
sense will be considered as the best sense for that
target word. Note that the RBM will have to be
freshly trained for each new content word that has
to be disambiguated.

8 Experimental Analysis and Discussion

8.1 Evaluation Metric
For evaluation of the proposed word sense disam-
biguation method, the following equation 7 calcu-
lates the performance of the method.

mi =
correctly predicted instances number

all test instances number
(7)

This mi stands for micro-average recall (Wiriy-
athammabhum et al., 2012).

8.2 Experiment with Word Sense
Disambiguation Datasets

Proposed WSD Method is compared with other
recognized and current word sense disambiguation
methods where SENSEVAL-2, Sem Eval-2013 task
12 and SemEval-2015 task 13 datasets are used
((Ide and Véronis, 1998), (Wiriyathammabhum
et al., 2012),(Navigli et al., 2013)). Three different
features: topical local and part-of-speech- are used
by Wiriyathammabhum et al. They have used dif-
ferent learning methods on SENSEVAL-2 dataset
for word sense disambiguation (Wang et al., 2017).

MFS (Most Frequent Sense) method is considered
as a baseline method which chooses the major class
of each word task as its prediction. Table 2 shows
that proposed WSD Method performs better than
existing methods. Though RBM is used by Wiriy-
athammabhum et al. (Wiriyathammabhum et al.,
2012), but their used features are dissimilar from
the proposed WSD method. Therefore, the result
varies, and the proposed method performs well.

Table 2: Micro-average recall values of various learn-
ing algorithms with proposed WSD Method

Method Name Accuracy in percentage (mi)

MFS 47.60%
1-NN 43.11%
PCA 44.45%

KPCA (polynomial) 37.50%
KPCA (Gaussian RBF) 47.71%

NB 49.95%
Logistic Regression 60.07%

MLP 59.70%
Linear SVM 60.40%

SVM (polynomial) 47.71%
SVM (Gaussian RBF) 51.02%

DBN 61.30%
Proposed WSD 72.80%

Unsupervised and supervised BabelNet-based
WSD systems are used for comparison purpose
(Dongsuk et al., 2018). F-score is used here as eval-
uation metric. BabelNet is a multilingual encyclo-
pedic dictionary (Navigli and Ponzetto, 2012). Fol-
lowing widely used unsupervised systems: Moro et
al. (Moro et al., 2014), Agirre et al. (Agirre et al.,
2014), Apidianaki et al. (Apidianaki and Gong,
2015), Tripodi et al.(Tripodi and Pelillo, 2017),
Dongsuk et al. (Dongsuk et al., 2018) and super-
vised systems: Zhon et al. (Zhong and Ng, 2010),
Weissenborn et al. (Weissenborn et al., 2015), Ra-
ganato et al. (Raganato et al., 2017), Pasini et
al. (Pasini and Navigli, 2017) are considered here.
For SemEval-2013 dataset, The performance of
our proposed WSD method is better than existing
WSD systems. It is also seen in Table 3 that al-
though for SemEval-2015 dataset, supervised Weis-
senborn et al. method performs better than our pro-
posed WSD method but for macro-average score,
proposed WSD method has shown better perfor-
mance. A macro-average takes the average value
of F-scores.

In comparison to other existing unsupervised
(knowledge-based) methods, the proposed WSD
method shows better performance. Though per-
formance of some supervised methods are better
than the existing knowledge-based methods ((Ra-
ganato et al., 2017)), but literature survey says that
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it is quite expensive to construct the training cor-
pus for all the languages and words. Hence, this
is one of the prominent limitation of supervised
approach while applying in WSD. On other hand,
WordNet ((Banerjee and Pedersen, 2003), (Chap-
lot et al., 2015)) is used in knowledge-based WSD
system. In knowledge-based WSD systems, con-
textual information and semantic knowledge both
are incorporated. Therefore, knowledge-based ap-
proach can disambiguate larger number of words.
Conclusion can be derived from this discussion is
that WSD systems which are based knowledge are
more practicable and attainable than supervised
WSD systems ((Chaplot et al., 2015), (Moro et al.,
2014), (Chaplot and Salakhutdinov, 2018), (Dong-
suk et al., 2018)). It is also tested that if anyone
feature is dropped from the three proposed features,
the overall performance degrades. It can be said
that all three features are equally important.

9 Comparison of Results of use of Three
different Features with and without the
Use of Feature Enhancement

Here, we have compared the word sense disam-
biguation results with or without the use of feature
enhancement technique. Through this compari-
son, it is quite clear that the feature enhancement
through Restricted Boltzmann Machine helps in
getting better results. Following Table 4 shows the
performance of word sense disambiguation method
with or without using feature enhancement in Sem
Eval datasets. From the comparison 4, it is quite
clear that there is a high impact of utilization of
RBM in disambiguation of sense of a word.

9.1 Evaluation on Query-Based Text
Summarization Datasets

9.1.1 Datasets
To further prove the performance of the proposed
WSD method in practical implementations, evalu-
ation is done on query-based text summarization
datasets. WSD is widely used in text summariza-
tion. WSD helps in extracting more query oriented
sentences for creating query-based text summariza-
tion. Newswire articles are taken from the Docu-
ment Understanding Conference (DUC) corpora to
implement WSD method. Effectiveness of the pro-
posed method is evaluated with existing systems
that perform an experimental evaluation using the
Document Understanding Conference. DUC 2005
and 2006 datasets (http://duc.nist.gov) are mainly

used in query-based text summarization purpose
(Gervasi et al., 2019). They have complex real-life
query with related text documents. Datasets con-
tain 50 queries with 50 different topics and length
of the summary is of 250 words only.

9.1.2 Evaluation of Proposed WSD Method
with DUC 2005 and DUC 2006 Systems

At first, proposed WSD methods is compared with
DUC 2005 and 2006 datasets. Sense of each con-
tent word is found. Table 5 and Table 6 present
the different mi scores for DUC 2005 and 2006
datasets. The proposed WSD method is compared
with the baseline method, along with some other
existing and widely used WSD methods. Here, the
baseline system represents the LESK algorithm.
Table 5 and Table 6 provide the scores for different
mi values. Results show that the proposed WSD
method has better performane than all the existing
WSD methods.

9.1.3 Evaluation of Proposed WSD Method
on Query-Based Text Summarization

Now proposed WSD method is implemented for
finding query-based text summary. Commonly
used HSO semantic relatedness measure ((Peder-
sen et al., 2004), (Hirst et al., 1998)) is applied here
for calculating the semantic relatedness score be-
tween query and input text sentences. Sentences are
extracted based on its semantic relatedness score.
The equation to find Semantic Relatedness value
(S) between two words w1 and w2 is:

S ((w1, s 1, p 1), (w2, s 2, p 2)) =

2× c− PL (w1, w2)− k ×DC (w1, w2)
(8)

here,
s 1= sense number of W1
p 1= part of speech of W1
s 2= sense number of W2
p 2= part of speech of W2
PL= Path Length
DC= Direction Change

Here, values of A and C are 8 and 1, respectively.
The maximum value of HSO score is 16 which
means two content words are same. The minimum
value of HSO score is 0 which means there is no
relatedness between two content words (Xia et al.,
2019). For finding the Semantic Relatedness Score
(S) between two sentences s1 and s2, we use the
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Table 3: Comparison of different BabelNet-based unsupervised and current supervised methods

Approach System F-score for F-score for Macro Avg
SemEval-13 SemEval-15 F-score

Unsupervised

Moro 14 66.4 70.3 68.4

(Knowledge-based)

Agirre 14 62.9 63.3 63.1
Apidianaki 15 - 64.7 -

Tripodi 17 70.8 - -
Wordsim iterSRP2vSim 18 75.0 65.8 70.4

Proposed WSD 75.6 74.8 75.2

Supervised

Zhong 10 66.3 69.7 68.0
Weissenborn 15 71.5 75.4 73.5

Raganato 17 66.9 71.5 69.2
Pasini 17 65.5 68.6 67.1

Table 4: Comparison results with and without the use of feature enhancement

System F-score for F-score for Macro Avg
SemEval-13 SemEval-15 F-score

Proposed WSD (without Future Enhancement) 70.6 69.3 68.6

Proposed WSD (with Future Enhancement) 75.6 74.8 75.2

Table 5: mi values for different WSD methods on DUC
2005 datasets

Method Name Accuracy in percentage (mi)

Proposed WSD 79.2%
Original Lesk 55%
Adapted Lesk 60%
Cosine Lesk 61.4%

Table 6: mi values for different WSD methods on DUC
2006 datasets

Method Name Accuracy in percentage (mi)

Proposed WSD 81.20%
Original Lesk 57%
Adapted Lesk 64.34%
Cosine Lesk 64.42%

following equation 9:

S (s1, s2) =∑
w1∈ s1,w2∈ s2

S ((w1, s 1, p 1), (w2, s 2, p 2))

Maximumrelatedness score
(9)

Mentioned existing WSD methods are con-
sidered again and now we use that appropriate
sense for calculating S between query and in-
put text sentences to create query-based text sum-
mary. We have taken the threshold value as

60%. It means that input sentences which are
equal or greater than the threshold value are all
equally important for query-based text summary
creation. For comparison purpose, length of
the summary is confined to 250 words for DUC
datasets. Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) ((Lin, 2004)) is used here
for evaluation purpose. ROUGE is a popular and
standard intrinsic-based metric. National Insti-
tute for Standards and Technology (NIST) adapts
ROUGE for summarization evaluation metric. To
compare different summaries, different metrics
are available in ROUGE. Quality of summary is
measured in terms of overlapping units such as
N-grams, word sequences, and word pairs. Dif-
ferent ROUGE measures ROUGE-N (N-gram co-
occurrence), ROUGE-L (Longest Common Sub-
sequence), ROUGE-W (Weighted Longest Com-
mon Subsequence), ROUGE-S (Skip-Bigram) and
ROUGE-SU: (Extension of ROUGE-S) are avail-
able. ROUGE-N is a gramn recall between system-
generated summary and human summary. It is
based on the total number of common content
words between them. Equation to find ROUGE-N
is :

ROUGE −N =∑
S∈HS

∑
gramn∈S Countmatch(gramn)∑

S∈HS
∑

gramn∈S Count(gramn)

Here, N is the length of gramn.

395



Countmatch(gramn) says about the total
common gramsn co-occurring in both system and
human summary and Count(gramn) gives the
number of gramsn present in human summary.
Here, official metrics of ROUGE-1, ROUGE-2 and
ROUGE-SU4 are used along with 95% confidence
intervals. Tables 7 and 8 present different ROUGE
scores.

Table 7: Different ROUGE values for Query-Based
Text Summary on DUC 2005 datasets

Method Name ROUGE-1 ROUGE-2 ROUGE-SU4

Proposed WSD 0.3812 0.0752 0.1413

Original Lesk 0.3711 0.0624 0.1218

Adapted Lesk 0.3768 0.0651 0.1291

Cosine Lesk 0.3791 0.0687 0.1317

Table 8: Different ROUGE values for Query-Based
Text Summary on DUC 2006 datasets

Method Name ROUGE-1 ROUGE-2 ROUGE-SU4

Proposed WSD 0.4017 0.0921 0.1482

Original Lesk 0.3992 0.0861 0.1479

Adapted Lesk 0.4001 0.0891 0.1489

Cosine Lesk 0.4009 0.0897 0.1494

From the evaluations, it is quite clear that the pro-
posed WSD method helps in getting more query rel-
evance sentences, which helps in creating a query-
based text summary. Here, only the semantic relat-
edness measure is used. In the future, features can
be increased, which will help in extracting more
query related sentences.

10 Conclusion and Future Work

We have presented an unsupervised deep learning
technique for detecting the word’s sense. Three
different features are extracted based on the col-
location score. Restricted Boltzmann Machine
is used to enhance the features. Proposed WSD
method is implemented on word sense disambigua-
tion datasets to compare mainly with other exist-
ing and current word sense disambiguation meth-
ods. The evaluation shows that the proposed WSD
method outperforms many current methods. As this
method will be used in query-based text summariza-
tion, evaluations have done on DUC datasets where
the performance is much more better than many

query-based text summarization methods. Exper-
imental analysis shows better performance of our
proposed WSD method than many current methods.
The result attains much better due to the use of col-
location based features in deep belief network. In
future, the proposed WSD method can be used in
many fields like question-answering, information
retrieval or query-based text summarization. The
proposed method will also try to work on languages
other than English.
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Nancy Ide and Jean Véronis. 1998. Introduction to
the special issue on word sense disambiguation: the
state of the art. Computational linguistics, 24(1):2–
40.

Goonjan Jain and DK Lobiyal. 2022. Word sense
disambiguation using cooperative game theory and
fuzzy hindi wordnet based on conceptnet. Transac-
tions on Asian and Low-Resource Language Infor-
mation Processing, 21(4):1–25.

Dan Jurafsky. 2000. Speech & language processing.
Pearson Education India.

Sunjae Kwon, Dongsuk Oh, and Youngjoong Ko. 2021.
Word sense disambiguation based on context selec-
tion using knowledge-based word similarity. Infor-
mation Processing & Management, 58(4):102551.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In Proceedings of
the 5th annual international conference on Systems
documentation, pages 24–26. ACM.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out: Proceedings of the ACL-04 workshop,
volume 8. Barcelona, Spain.

Chin-Yew Lin, Nianwen Xue, Dongyan Zhao, Xuan-
jing Huang, and Yansong Feng. 2016. Natural Lan-
guage Understanding and Intelligent Applications:
5th CCF Conference on Natural Language Process-
ing and Chinese Computing, NLPCC 2016, and 24th
International Conference on Computer Processing
of Oriental Languages, ICCPOL 2016, Kunming,
China, December 2–6, 2016, Proceedings, volume
10102. Springer.

Kathleen R McKeown and Dragomir R Radev. 2000.
Collocations. In: Dale, R., Moisl, H., Somers, H.
(Eds.), Handbook of Natural Language Processing,
chapter 21. Marcel Dekker, New York. Citeseer.

Ken McRae, Saman Khalkhali, and Mary Hare. 2012.
Semantic and associative relations in adolescents
and young adults: Examining a tenuous dichotomy.
In In V. F. Reyna, S. B. Chapman, M. R. Dougherty,
& J. Confrey (Eds.), The Adolescent Brain: Learn-
ing, Reasoning, and Decision Making, pages 39–66.
Washington, DC: American Psychological Associa-
tion (APA).

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1–
69.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. Semeval-2013 task 12: Multilingual word
sense disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (* SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
volume 2, pages 222–231.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belnet: The automatic construction, evaluation and
application of a wide-coverage multilingual seman-
tic network. Artificial Intelligence, 193:217–250.

Tommaso Pasini and Roberto Navigli. 2017. Train-
o-matic: Large-scale supervised word sense dis-
ambiguation in multiple languages without manual
training data. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 78–88.

Atish Pawar and Vijay Mago. 2018. Calculating the
similarity between words and sentences using a lex-
ical database and corpus statistics. arXiv preprint
arXiv:1802.05667.

Ted Pedersen, Satanjeev Banerjee, and Siddharth Pat-
wardhan. 2005. Maximizing semantic relatedness to
perform word sense disambiguation. Technical re-
port, Research Report UMSI 2005/25, University of
Minnesota Supercomputing Institute.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. Wordnet:: Similarity: measuring the
relatedness of concepts. In Demonstration papers
at HLT-NAACL 2004, pages 38–41. Association for
Computational Linguistics.

David C Plaut. 1995. Semantic and associative priming
in a distributed attractor network. In Proceedings of
the 17th annual conference of the cognitive science
society, volume 17, pages 37–42. Pittsburgh, PA.

397



Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word sense disambiguation:
A unified evaluation framework and empirical com-
parison. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers, vol-
ume 1, pages 99–110.

Nazreena Rahman and Bhogeswar Borah. 2020. Im-
provement of query-based text summarization using
word sense disambiguation. Complex & Intelligent
Systems, 6(1):75–85.

Nazreena Rahman and Bhogeswar Borah. 2021a.
Redundancy removal method for multi-document
query-based text summarization. In 2021 Interna-
tional Symposium on Electrical, Electronics and In-
formation Engineering, pages 568–574.

Nazreena Rahman and Bhogeswar Borah. 2021b. An
unsupervised method for word sense disambigua-
tion. Journal of King Saud University-Computer
and Information Sciences.

Saeed Rahmani, Seyed Mostafa Fakhrahmad, and Mo-
hammad Hadi Sadreddini. 2021. Co-occurrence
graph-based context adaptation: a new unsupervised
approach to word sense disambiguation. Digital
Scholarship in the Humanities, 36(2):449–471.

L Tan. 2014. ”pywsd: Python implementa-
tions of word sense disambiguation (wsd)
technologies [software],” [online]. available:
https://github.com/alvations/pywsd.

Rocco Tripodi and Marcello Pelillo. 2017. A game-
theoretic approach to word sense disambiguation.
Computational Linguistics, 43(1):31–70.

Tinghua Wang, Wei Li, Fulai Liu, and Jialin Hua. 2017.
Sprinkled semantic diffusion kernel for word sense
disambiguation. Engineering applications of artifi-
cial intelligence, 64:43–51.

Aleksander Wawer and Agnieszka Mykowiecka. 2017.
Supervised and unsupervised word sense disam-
biguation on word embedding vectors of unam-
bigous synonyms. In Proceedings of the 1st Work-
shop on Sense, Concept and Entity Representations
and their Applications, pages 120–125.

Dirk Weissenborn, Leonhard Hennig, Feiyu Xu, and
Hans Uszkoreit. 2015. Multi-objective optimization
for the joint disambiguation of nouns and named en-
tities. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol-
ume 1, pages 596–605.

Peratham Wiriyathammabhum, Boonserm Kijsirikul,
Hiroya Takamura, and Manabu Okumura. 2012. Ap-
plying deep belief networks to word sense disam-
biguation. arXiv preprint arXiv:1207.0396.

Wenlong Xia, Qingdang Meng, Qingchuan Tao, and
Ray T Chen. 2019. Non-orthogonal multiple access
without channel state information for similar chan-
nel conditions. Electronics letters, 55(8):493–495.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. Proceedings of the ACL 2010 system
demonstrations, pages 78–83.

398



Proceedings of the 18th International Conference on Natural Language Processing, pages 399–407
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)

Encoder Decoder Approach To Automated Essay Scoring For Deeper
Semantic Analysis

Priyatam Naravajhula1, Sreedeep Rayavarapu1, and Srujana Inturi1

1CBIT, Hyderabad-500078, India
{priyatamnaravajhula,sreedeep}@gmail.com, isrujana cse@cbit.ac.in

Abstract

Descriptive answers have always played a ma-
jor role in education of children. They are rep-
resentative of student’s grasp on knowledge and
presentation skills. Manual evaluation of essay
answers is a arduous process to human evalu-
ators owing to limited numbers of evaluators
and an out of proportional number of essays to
be graded hence leading to an inefficient or an
inaccurate score. It can be concluded that due
to the major shift in paradigm of learning from
traditional classroom education to online educa-
tion engendered by COVID-19 pandemic that
future assessment of education shall be online,
making the solution of automatic essay scorer
not only relevant, but of paramount importance.
We explore several neural architecture models
for the task of automated essay scoring system.
Results and Experimental analysis exhibit that
our model based on recurrent encoder-decoder
provides for a deeper semantic analysis hence,
outperforming a strong baseline in terms of
quadratic weighted kappa score.

1 Introduction

The exponential advancement of deep learning in
the past decade has seen its applications in a wide
range of fields from molecular biology to quan-
tum physics. This flexible nature of deep learn-
ing and neural architectures is the reason why we
have seen its application to a wide array of issues
in natural language processing. Automated essay
scoring is one such problem which aims to find a
relation between the essay written and the score
assigned so that given an unseen essay, we can
predict the score as accurately as possible. Essay
writing forms important aspect in the academic as-
sessment of the student, grading these essays is a
laborious task therefore most of the educational or-
ganizations like Educational Testing Service (ETS)
employ automated essay scorers to evaluate essays.
The major pitfalls of these systems stem for the

reason that they use hand crafted features to score
the essay. The continuous space representations
and non-linearity of neural network have provided
a great potential in natural language processing.
BERT and GPT-3, neural architectures developed
by Google and OpenAI respectively achieve state
of the art performance in NLP tasks such as word
prediction, question-answering and neural machine
translation.

Researchers have applied convolutional neu-
ral networks(CNNs), recurrent neural networks
(RNNs), attention mechanisms (16) and a per-
mutation of ensembles to the task of automated
essay scoring. In this paper we present our encoder-
decoder model that learns the relation between
the essay and the score assigned by performing
a deeper semantic analysis than the current existing
models. By applying self-attention and non-linear
layers at both encoder level and decoder level, our
model is able to effectively capture the informa-
tion at word level and sentence level respectively,
required for scoring. We show that our model per-
forms significantly better than our baseline neural
net and finds patterns between words for a better
semantic analysis.

The rest of the paper is divided into section 2
which deals with related work, section 3 which
gives an idea about the task of automated essay
scoring .In section 4 we present our model and
all its intricacies. Section 5 gives an idea of train-
ing , section 6 deals with our experimental setup
and lastly we present our results and discussion in
section 7, followed by conclusion and references

2 Related Work

Some of the earliest systems of AES were depen-
dent on handcrafted features and feature engineer-
ing. Page(1986) developed an AES tool called
Project Essay Grade(PEG) by using only linguistic
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surface features.A well-known early example of
automated essay scorer is E-Rater (Jill Burestein)
(7) that employed more traditional techniques of
natural language processing. The same project was
released under version 2 in the year 2004 which
utilizes a new set of features to represent charac-
teristics related to organization and development,
lexical complexity ,etc. All these methods shared
a common regression equations for essay assess-
ment, therefor share a common limitation of being
dependent on feature engineering.

The introduction of neural networks eliminated
the need for handcrafted features .Alikaniotis et
al. (2016)(1) and, Taghipour and Ng, (2016)(12)
presented scoring models based on LSTM. These
formed some of the early examples of application
of deep learning in automated essay scoring pro-
cess. Particularly Taghipour and Ng, (2016)(12)
presented a method to extract word level semantics
by applying 1D convolution over vectors. The ma-
jor limitation of the paper being usage of one-hot
representations that do not extract relations as ef-
fectively as word embedding does. The usage of
single layer LSTM also does not provide effective
semantic relation analysis. Interestingly, Dong and
Zhang,(2016)(13) presented a model involving two
CNN’s. In the recent years, we have seen fascinat-
ing neural architectures applied to automated essay
scoring systems. Zhang and Litman,(2018)(9) pro-
posed a novel co-attention based model that deals
with source article for scoring the essay,with ma-
jor limitation of not being scalable to all type of
essays. Jiawei Liu et al., (2019)(14) presented a
two-stage learning approach leveraging both hand-
crafted features and neural networks to calculate
three different scores and giving a final score based
on those. Siamese Neural architecture was intro-
duced by Liang G et al,(2018)(8) where Bidirec-
tional LSTM was used in a Siamese fashion to
predict scores. In this paper, we aim to provide an
end-to-end system that predicts a holistic score of
the essay while ensuring that the network captures
the semantic relations. Excited by the performance
of encoder-decoder models in applications of NLP
such as machine translation, we adopted this neural
architecture for automated essay scoring system

3 Model

Our model is inspired by the neural architecture
presented by Dong et al.,(2017)(3). The model
presented by Dong et al; is divided into three sec-

tions:Intially, A convolution layer and attention
was used to capture sentence representations. there-
after, LSTM with attention pooling for document
representation was utilised. At the end, sigmoid
layer was utilised for mark prediction. We have
introduced a decoder layer into the network archi-
tecture, influenced by the performance of recurrent
encoder-decoder layers presented by Robert Susik,
(2020)(11).By doing so, our model extracts mean-
ingful semantic relationship between sentences in
the essay written by the student. Our model con-
sists of ten layers with four layers forming the en-
coder architecture and the remaining six forming
decoder architecture. Figure 1 depicts the architec-
ture of our network.

3.1 Encoder Architecture

Encoder architecture consists of 4 layers:word em-
bedding layer, convolutional layer, word level at-
tention and an encoder LSTM layer.

3.1.1 Word Embedding Layer

Word embeddings are used to map a word to a
specific dimensional vector. We have used Glove
embeddings (Pennington et al., 2014)(6) to obtain
word embeddings.This particular embeddings were
developed by training on six billion words from
two sources It has around four hundred thousand
uncased vocabulary items. The embeddings in the
proposed model is restricted to fifty dimensions
.The output of this layer is a matrix of dimension
LE = RS×W×dL ,where S, W, dL are the number
of sentences of the essay, length of the essay and
embedding size .A dropout layer is applied after
the embedding layer to control overfit.

3.1.2 Encoder Convolutional Layer

A 1-D convolution is performed in this layer over
word representations to fetch isolated represnta-
tions in each sentence. For each word wi in sen-
tence, we perform a convolution:

ki = a([wi : w(i+l−1)].filc + bsc) (1)

where a is a non-linear activation function, l is the
kernel size, filc is the filter matrix and bsc is the
bias vector. The outputs for this layer are CE =
RS×fe×nC , where S, fe, nC are count of sentences
in the essay, filtered lengths of sentences of the
essay and number of filters used in convolutional
layer .
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Figure 1: Neural Architecture

3.1.3 Word Level Self- Attention Pooling
Layer

Attention is applied following the convolutional
layer , as presented in Dong et al,(2017) (3) to
capture sentence representations. The attention
mechanism is defined by following equations

mki = tanh(Wmxi + bsm) (2)

vki =
eWvmki

∑
eWvmkj

(3)

D =
∑

vkiai (4)

Where Wm, wv, bsm are weight matrix, weight vec-
tor , bias vector respectively. mki, vki are attention
weight and attention vector for ai. The outputs for
this layer are AE = RD×nC

3.1.4 Encoder Sentence Level LSTM
This layer receives the input from provious atten-
tion layer and forms the basis of first context extrac-
tion. LSTM is a modified version of recurrent units
that overcome the problem of vanishing gradients

effectively. (Hochreiter and Schmidhbur, 1997)(5).
The power of LSTM comes from the fact that it can
control the flow of information for a better sentence
representation by leveraging three gates that are
used to preserve or forget the information required
for capturing the context of sentence representation.
The output of this layer is interpreted in a manner
where contextual information C is interpreted as
sequence C ′,

C =
pc−1∑

i=0

ci (5)

C ′ =
pc/α−1∑

i=0

α−1∑

j=0

ciα+j (6)

Where α = pc/nx, pc, nxbeing size of context(size
of output of this layer) and size of input to this layer.
The output of dimension C = RS×nH , where nH

is the number of hidden states

3.2 Decoder Architecture
Decoder architecture consists of 1D convolutional
layer, decoder LSTM layer, a self-attention layer
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and an output linear sigmoid layer.

3.2.1 Decoder Convolutional Layer

A convolutional layer is added right before the de-
coder to extract meaningful representations from
the context C ′ and to also restrict the number of
output channels and are is derived as follows:

C” =
∑

p

∑

l

C ′
p,lWp,l (7)

Where p,l are the number of kernels and length of
kernel size.

3.2.2 Sentence level Attention Layer

Self-attention layer as described in section 4.1.3 is
applied over 1D convolution layer. The output x of
this layer is proved as input max-pool layer.

3.2.3 Decoder LSTM layer

The final context extracted from previous convo-
lutional layer is given to this layer for capturing
the semantic relations by using input output and
forget gates.This layer serves as a modeling layer
to construct the final sentence representation

3.2.4 Decoder Self-Attention

After obtaining the intermediate states of LSTM, a
final layer of attention pooling is applied to learn
the final text representation. The equations pre-
sented in 4.1.3 are also applicable here. The output
O is the final text representation.

3.2.5 Linear Layer

After obtaining the final sentence representations
O, a linear layer with sigmoid activation is used to
predict the final output.

y = sigmoid(WoO + bo) (8)

Where Wo and bo are weight and bias vectors.

4 Training

Automated Essay scoring is the process of evaluat-
ing the essays written by students for a particular
prompt without any human intervention. Their per-
formance is assessed by comparing the scores gen-
erated to the human-assigned gold standard scores.
Rest of this section deals with the data utilized
for training and the evaluation metric chosen for
comparing the performance of AES systems

Table 1: ASAP Dataset Statistics

Prompt Avg Length Score
1 350 2–12
2 350 1–6
3 150 0–3
4 150 0–3
5 150 0–4
6 150 0–4
7 250 0–30
8 650 0–60

4.1 Data
The data that we used for our training is the one
published by Hewlett Foundation for the 2012
competition titled ‘Automated Student Assessment
Prize’ on Kaggle .The dataset consists of 8 prompts
with three different types of essays: persuasive,
source-dependent and narrative. The essays have
different score ranges, being scored on average by
three raters across two domains. The statistics of
the dataset are given in Table 1

4.2 Evaluation Metric
The scores generated by AES systems need to be
compared to ratings assigned by human-annotators.
While there are many correlation metrics such as
Pearson’s correlation, Spearman’s correlation, we
have chosen Quadratic Weighted Kappa(QWK)
score to be our evaluation metric. The main reason
of this choice is because this metric is useful when
it’s necessary to evaluate the possible impact of
random selection in computation of standard accu-
racy. (Giuseppe Bonaccorso,2017)(4) IN QWK, a
weighted matrix is calculated as follows

W (x, y) =
(x− y)2

(U − 1)2
(9)

Where x and y are the reference ratings and hy-
pothesis rating respectively. U is the number of
possible ratings. A matrix P is calculated where
P(i,j) denotes number of essays that received a rat-
ing x from human annotators and rating y from
AES. An expected count matrix K is constructed
as cross vectors of two(reference and hypothesis)
ratings. After normalization of K such that sum of
elements of K and P are same, QWK is calculated
as follows

κ = 1−
∑

x,y W (x, y)P (x, y)
∑

x,y W (x, y)K(x, y)
(10)
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In our experiments, we compare QWK scores of
our model to chosen baseline and performed paired
t-test analysis to test the improvement obtained

4.3 Loss

MSE(Mean Square Error ) calculates the average
value of difference between gold standard scores
y∗i and prediction scores yi. MSE is applied ubiqui-
tously to regression tasks. Hence we have decided
to adopt this loss function for our AES system. The
following equation defines MSE, given N is the
total number of samples.

MSE(y, y∗) =
1

N

∑

(i=1)N

(yi − y∗i )
2 (11)

4.4 Optimization

In this paper, we adopted Adam optimizer (Ba et
al., 2017) owing to its efficiency. Learning rate
is set to 0.001, momentum to 0.9 for training our
whole model. We have set Dropout rate to 0.5 to
prevent overfitting.

5 Experiments

We have designed our experiments to test three
hypotheses:

H1: The proposed model will perform equally
or surpass baseline model on ASAP essay corpora
in holistic score prediction.

H2:The proposed model will perform equally or
surpass as the non-neural network baselines.

H3:Our model will have a better or at least equal
semantic attention score as our baseline model.

Text preprocessing is done using NLTK , vo-
cabulary size is restricted to 4000 consisting of
most frequent words and all other words are treated
as unknowns. The scores are scaled to range
[0,1].(Taghipour and Ng, 2016)(12) For model
training and the prediction assessment ,the pre-
dicted scores are converted back into original score
ranges during model evaluation. We have divided
the dataset into five folds to perform 5-fold cross
validation and average QWK score across five folds
on test set is reported.. In each fold,60% of data are
used for training and the rest of data is equally di-
vided between development testing.Table 2 gives a
summary of hyperparameters used for training the
models, taken from Dong et al.,2017(3) Best model
was evaluated on development set after the comple-
tion of each epoch, this process was repeated for
100 epochs. The

Table 2: Hyperparameters

Hyperparameter Value
Embedding dimension 50
CNN-kernel size 5
CNN-number of kernels 100
LSTM-Hidden units 100
GRU-Hidden units 100
Dropout Rate 0.5
Batch-size 100
Learning Rate 0.001
Momentum 0.9
Epochs 100

We have conducted the experiments in follow-
ing software environment: Ubuntu, Python 3.7,
Keras 2.4.0 using Tensorflow 2.4.1 backend. The
baseline chosen for our paper is the model pre-
sented in (Dong et al, 2017). An attention based
recurrent-convolutional network, where the word
embedding are given to a convolutional layer to
extract sentence representations. The extracted sen-
tence representations are given as input to LSTM
layer to extract semantic context. An attention layer
is used for final representations. We have trained
our model on this architecture and reported the
QWK scores obtained. For non-neural baselines,
we report the results of SVR and BLRR presented
in Phandi et al, (2015)(10).They extract features
such as length, prompt, and Bag of Words to clas-
sify using SVR and BLRR classifiers

6 Results and Discussion

Examining H1 hypothesis, results in Table 3 sup-
port this hypothesis. Encoder decoder model with
architecture of LSTM+LSTM yields higher perfor-
mance than our baseline.

The QWK scores obtained for encoder-decoder
model have been shown to be significantly better
on performing a paired t-test (p <0.05). The reason
of this high performance can be attributed to a finer
text representations obtained by the architecture of
encoder-decoder model and the usage of attention
mechanisms at both word and sentence levels. It is
interesting to note that the architecture GRU+GRU
does not perform as well as its counterpart LSTM.

As we examine H2 hypothesis, QWK scores
from Table 3 provide evidence to support this hy-
pothesis, the proposed architecture outperforms or
performs equally well across all non-neural archi-
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Table 3: QWK scores for various architectures and baselines. The scores with statistical significant improvement
(p¡0.05) are marked with “*”.The highest scores for a prompt are marked in bold. Note: In system layers for decoder
row, The operand before ‘+’ is recurrent layer of encoder and the operand after is recurrent layer in decoder layer.
The same notation is followed throughout the paper

ID Architecture System-layers Prompts
1 2 3 4 5 6 7 8 Avg QWK

1 With Decoder +Attn LSTM+LSTM 0.808 0.648 0.686 0.761 0.811 0.823 0.786 0.702 0.753*
GRU+GRU 0.784 0.620 0.612 0.771 0.757 0.791 0.802 0.675 0.722

2 Encoder(Baseline)+Attn CNN +LSTM 0.796 0.644 0.593 0.752 0.761 0.782 0.762 0.699 0.719
3 Non-Neural EASE (SVR) 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699

EASE (BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705

tectures. One contributing factor is that, the final
representation in neural architectures contains more
semantic information than information encoded in
hand-crafted information.

Table 4: QWK score of variants of proposed model.
The scores with statistical significant improvement (p
<0.05) are marked with ’*’

I.D System Layers Avg.QWK
1 LSTM+GRU 0.747*
2 GRU+LSTM 0.726
3 LSTM+BILSTM 0.743*

Apart from the models that are reported in Table
3, we have also experimented with possible permu-
tations of encoder-decoder architecture, as shown
in Table 4.A combination of GRU and LSTM
in the last layer of encoder and decoder respec-
tively, was trained across all the prompts. Results
from Table 4 show that the architecture having
LSTM as final layer of encoder and GRU in the
decoder(LSTM+GRU)preforms significantly better
than our baseline model(p<0.05). It is observed
from Table 3 and Table 4 that final layer of en-
coder model is having a significant impact on the
performance of the whole model. The usage of
LSTM in final layer of encoder is giving significant
improvement in performance than GRU. This is
attributed to inefficient sentence representation of
entire essay by GRU hence leading to ineffective
context construction in decoder layer. We also used
a bidirectional LSTM in decoder, in which the se-
quence of words are processed in both directions.
The results of these architectures are summarized
in Table 4.

Table 5 supports H3 hypothesis. In Table 5, we
enlist the heatmaps of attention scores assigned
by models to every word in the essay and report
the average attention score. The observations
are made on an essay response to prompt 5,

which has been assigned a gold-standard score
of 3(highest) and a predicted score of 3. The
darkness of red is proportional to the attention
assigned to that particular word. Prompt 5 asked
the students to write about the mood created by
Narciso Rodriguez in his memoir. Examining the
architecture (LSTM+LSTM) closely, we can see
that certain words like culinary, family, memoir
are getting the highest attention while words
like better, good, grateful ,love receive attention
better than rest of the words. The overall average
attention score of this model is higher than our
baseline model, which assigns same attention to
most of the words in the essay. Looking at the next
architecture, (GRU+GRU) the average attention
score is higher than the proposed architecture
as it assigns higher attention to words better,
traditions. The highest attention score is obtained
by architecture (LSTM+BLSTM) that utilizes
a bidirectional LSTM in the decoder layer. It
assigns high attention to important words and it
is also interesting to note that the model assigns
high score to word collocations, some of the
words like gratitude ,grateful ;culinary ,cooking
received highest attention .Figure 2 depicts loss
graphs for all the architectures proposed. The
graphs are plotted for prompt 5, utilizing mean
squared error as loss functions. The graphs show
variation of loss function with 100 epochs. Figure
2 (a) shows how loss varies over 100 epochs for
architecture LSTM+LSTM, while the overall
trend is decreasing, intermittent pulses indicate
the presence of varied samples that the model is
trying to learn. The presence of LSTM in the
encoder layer is giving a similar curve as observed
in Figure 2 (a),(c),(e); plotted over architectures:
LSTM+LSTM,LSTM+GRU,LSTM+BILSTM.
Figure 2 (b),(d) plotted across architectures:
GRU+GRU,GRU+LSTM, depicts a steady de-
crease in loss followed by a sharp convergence.
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Figure 2: Training loss graphs for various architectures

Table 5: Accuracy Score and attention visualizations for prompt 5 response. The darkness of red is proportional to
attention value assigned.

Architecture System-layers Essay Attention

3*With Decoder LSTM+LSTM 0.492

GRU+GRU 0.501

LSTM+BILSTM 0.533

Encoder

(Baseline)
CNN +LSTM 0.353

6 provides a comparison between the proposed
Encoder-Decoder model and the state of the art
BERT model. The table provides QWK scores

of BERT model taken from Rodriguez et al,??.
The proposed model performs equally or well than
BERT model in all the eight prompts.
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Table 6: Comparison of QWK scores between proposed Encoder-Decoder model and BERT

Prompt Encoder-Decoder
(LSTM+LSTM) BERT

1 0.808 0.792
2 0.648 0.679
3 0.686 0.715
4 0.761 0.801
5 0.811 0.805
6 0.823 0.805
7 0.786 0.785
8 0.702 0.595

7 Conclusion

In this paper, we have proposed a recurrent based
encoder-decoder model to address the problem
of automated essay scoring that outperforms the
state-of -the art attention based models. The pro-
posed model employed a decoder layer and atten-
tion mechanism to recognize germane words and
sentences. Our model produces better sentence
representations hence leading to a deeper semantic
analysis than state of the art models. Empirical re-
sults on ASAP dataset report outperformance of our
model to strong established baselines in terms of
quadratic weighted Kappa score. The future scope
of this to make the task of essay scoring prompt
agnostic and extend beyond English language.
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Abstract

Temporal analysis of history text has always
held special significance to students, histori-
ans and the Social Sciences community in gen-
eral. We observe from experimental data that
existing deep learning (DL) models of Prophet-
Net and UniLM for question generation (QG)
task do not perform satisfactorily when used
directly for temporal QG from history text. We
propose linguistically motivated templates for
generating temporal questions that probe differ-
ent aspects of history text and show that fine-
tuning the DL models using the temporal ques-
tions significantly improves their performance
on temporal QG task. Using automated metrics
as well as human expert evaluation, we show
that performance of the DL models finetuned
with the template-based questions is better than
finetuning done with temporal questions from
SQuAD.

1 Introduction

Major events in history have always held signifi-
cance for the Social Sciences community. Under-
standing the history of a nation, a society, an era or
historic personalities involves analysing the time-
lines of major events that happened, their locations,
the actors, and the consequences that followed.
Given a set of history documents (Wikipedia pages,
books, papers), it is a challenging problem to au-
tomatically extract timelines from them and to use
these timelines for downstream applications such
as Q&A (Bauer and Teufel, 2016; Bedi et al., 2017;
Palshikar et al., 2019a,b; Gottschalk and Demidova,
2019; Hingmire et al., 2020). Another important
application is to generate temporal questions from
historical narrative text, which can be used for test-
ing and improving the students’ understanding of
the temporal aspects of history. While much re-
search has focused on generation of general ques-
tions from text, generation of temporal questions

has received less attention (Heilman and Smith,
2010; Du et al., 2017; Pan et al., 2020; Peng et al.,
2020).

We experimented with two deep learning (DL)
based language models, UniLM (Dong et al., 2019)
and ProphetNet (Qi et al., 2020) finetuned on
SQuAD (Rajpurkar et al., 2016) for QG from his-
tory documents. The percentage of temporal ques-
tions generated and the acceptability of the ques-
tions was quite low (details in Section 4). To im-
prove the quality and quantity of temporal ques-
tions generated, we propose linguistic knowledge
based methods (templates). Each template ana-
lyzes the given sentence to generate a temporal
question having a specific structure, by looking at
the relationships among nominal and verbal events,
time expressions (timex), verbs and its arguments
in the dependency parse tree. Our manual evalu-
ations show that the templates generate temporal
questions with high acceptability. Then we lever-
aged the generated temporal questions to finetune
ProphetNet and UniLM for the temporal question
generation task. We evaluated the performance
of the finetuned models using both domain-expert
evaluation and automated metrics of BLEU-4, ME-
TEOR, and ROUGE-L. The results show that tem-
poral questions created through our templates sig-
nificantly improve the performance of DL models
on the task of temporal QG.

2 Related Work

Compared to general purpose question generation
(QG) and question answering (QA), the temporal
aspect of QG has been relatively less explored in
the literature. TEQUILA (Jia et al., 2018) is a
system for temporal QA over knowledge bases
(KB). It identifies temporal questions, converts
them into non-temporal sub-questions and tempo-
ral constraints and then uses the underlying KB-QA
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engine to extract the answers to the sub-questions.
Sun et al. (2018) generate and rank answers to com-
plex questions by creating Event Graphs from text
using dependency parser mainly focusing on tem-
poral and causal relations. Both of these methods
focus on temporal QA whereas our work is focused
on temporal QG.

Recent trends in deep learning (DL) based meth-
ods for QG are mainly driven by neural sequence-
to-sequence modeling (Qi et al., 2020; Dong et al.,
2019). However, acceptability of temporal ques-
tions generated using these methods is low. Com-
pared to other literature, the work by Peng et al.
(2020) is closer to the scope of this paper. They
have used triples <subject, predicate, object> from
WikiData, a structured knowledge-base and a rule-
based method to generate temporal questions. How-
ever, our approach uses raw input text and does not
need any external KB for generating temporal ques-
tions. Further, we use the template-based questions
to finetune and improve the DL methods for tem-
poral QG.

3 Our Approach

Figure 1: Temporal QG pipeline

Our method for temporal QG has two stages. In
the first stage, we process the input text to extract
and analyze the temporal as well as linguistic in-
formation. This information is then transformed
syntactically as well as semantically using care-
fully designed templates to generate temporal ques-
tions. In the second stage, the generated temporal
questions are used to finetune DL based models,
ProphetNet and UniLM to improve their ability to
generate acceptable temporal questions.

Extraction of TIMEX and Events: As shown
in Figure 1, the processing pipeline of stage 1
starts with identification of tokens that indicate
temporal expressions (i.e., TIMEX). We use Hei-
delTime (Strötgen and Gertz, 2015) to identify and
normalize timex entities in the input sentence. To
capture the verbal events in the input text, we make
use of the past-tense propagation technique pro-
posed by Palshikar et al. (2019a). To identify the

Algorithm 1: Algorithm for template:
‘‘When did SUB V N?’’

Input: S = Sentence;
PT = Parse Tree of S;
TES = Timex Entities in S;
NES = Nominal Events in S;
Output: Temporal question of the form:
‘‘When did SUB V N?’’

Let w be a verb in past tense in S which is not modal
OR auxiliary verb;

if there is no such w then return;
Let V be the present tense form of w;
Let SUB be the complete text connected to w using

DR “nsubj” in PT;
if there is no such SUB or SUB contains a pronoun

then return;
Let P1 be a preposition in S such that P1 is connected

to w using DR “prep” in PT AND T is a timex in
TES connected to P1 using DR “pobj” in PT;

if there is no such T then return;
if there is N in NES such that N is connected to a

preposition P2 using DR “pobj” in PT AND P2 is
connected to w using DR “prep” in PT then

print ‘‘When did SUB V N?’’
else if there is N in NES such that N is connected to

w using DR “dobj” in PT then
print ‘‘When did SUB V N?’’

else if there is verb U in present tense in S connected
to w using DR “xcomp” in PT AND there is N in
NES such that N is connected to U using DR “dobj”
in PT then

print ‘‘When did SUB U N?’’

nominal events, we make use the approach pro-
posed by (Ramrakhiyani et al., 2021). They make
use of NomBank (Meyers et al., 2004) and deverbal
nouns (Gurevich et al., 2008) to identify the nomi-
nal events. Since, we specifically focus on history
text in this paper, we also use a curated gazette of
headwords indicating verbal and nominal events
in history domain to augment the event extraction
process.

Temporal Question Generation Templates:
The templates are designed to probe different as-
pects of history text such as spatio-temporal details
of an event, key players involved in it, relative
temporal order among events, consequences of an
event etc. We note that the set of templates is open
to further extension based on the interest of histori-
ans and analysts. The proposed approach is flexible
such that the questions generated by the DL based
methods can be adapted to the additional templates.

Table 1 provides an overview of the templates
along with examples of generated temporal ques-
tions. Due to the space constraints and ease of
exposition, we focus on the template #2 When did

<Subject> <Verb> <NominalEvent>? ; but the
overall approach is similar in case of other tem-
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Sr Template Sentence Question
1 When did <N> happen? During the Jassy-Kishinev Offensive of August 1944,

Romania switched sides on August 23, 1944.
When did the Jassy-Kishinev
Offensive happen?

2 When did <SUB><V>
<N>?

In June 1941, Hitler ordered an invasion of the Soviet
Union.

When did Hitler order an inva-
sion of the Soviet Union?

3 What happened to
<SUB> after <PR>
<V> <N> <P> <T>?

Gandhi launched the Quit India Movement in August
1942, after which he was arrested with other Congress
lieutenants like Nehru and Patel.

What happened to Gandhi af-
ter he launched the Quit India
Movement in August 1942?

4 What happened to
<SUB> during <T>?

During the 1980s, Cromwell’s statue was relocated out-
side Wythenshawe Hall, which had been occupied by
Cromwell’s troops.

What happened to Cromwell’s
statue during the 1980s?

5 Which event happened
first: <N1> or <N2>?

Russia was promised Constantinople in the Constantino-
ple Agreement of 1915. The Jews were promised
a homeland in Palestine in the Balfour Declaration
of 1917, but the Arabs had already been promised a
sovereign state in Turkish-controlled regions.

Which event happened first:
the Constantinople Agreement
or the Balfour Declaration?

6 What happened to
<SUB> <TM> <N>
<P> <T>?

India’s Prime Minister, Shastri, suffered a fatal heart
attack soon after the Tashkent Agreement on January
11, 1966.

What happened to India’s
Prime Minister after the
Tashkent Agreement on
January 11, 1966?

7 When did <SUB>
<VE> <O>?

By the end of 1941, German forces and the European
Axis powers occupied most of Europe and North Africa.

When did the European Axis
powers occupy most of Europe
and North Africa?

Table 1: Overview of templates; SUB=subject, N=Nominal Event, V=Verb, P=preposition, T=Timex, N1=Nominal
Event 1, N2=Nominal Event 2, TM=Temporal marker, VE=Verbal Event, O=Object

plates. We generate the dependency parse tree of
the sentence using spacy (Honnibal et al., 2020)
and apply the template patterns to generate tem-
poral questions. We traverse through the part-
of-speech (POS) tags and dependency relations
(DR) in the parse tree of the sentence to extract
phrases and tokens required to fill the relevant
parameters of the templates. For instance, for
template #2, we need the Subject (SUB), Verb

(V), Nominal Event (N) with the constraint that
a temporal expression (T) is appropriately asso-
ciated. Algorithm 1 gives the details of how we
verify the constraints and extract the parameters
of the template #2. As an example, consider
the sentence: In June 1941, Hitler ordered

an invasion of the Soviet Union. Figure 2
shows its dependency parse tree and the POS-
tags of tokens. From this sentence, the Al-
gorithm 1 extracts T = June 1941, P = In,
SUB = Hitler, V = ordered, N = invasion

of the Soviet Union. Finally, after verifying
the appropriate constraints, Algorithm 1 gener-
ates the question When did Hitler order an

invasion of the Soviet Union?.
Fine-tuning DL Models for Temporal QG: The
second stage of our approach overcomes the limi-
tations of existing deep learning (DL) models for
temporal QG. We use two different DL models to
emphasize the flexibility and robustness of this ap-
proach. ProphetNet uses future n-gram prediction

and n-stream self attention mechanism to achieve
state-of-the-art performance on many NLP tasks.
Unified pre-trained Language Model (UniLM) em-
ploys a shared Transformer network and specific
self-attention masks. Both ProphetNet and UniLM
have shown superior performance on general pur-
pose QG task for SQuAD dataset (Qi et al., 2020;
Dong et al., 2019). We observe that off-the-shelf
QG models of ProphetNet and UniLM do not per-
form satisfactorily when used directly for tempo-
ral QG from history text (Table 4). Hence, we
finetune both the DL models using the temporal
questions generated by the templates in the first
stage. The DL models tackle the temporal QG task
as a sequence-to-sequence learning problem. The
source text comprises of the input sentence and the
candidate answer and the target text is the reference
question. The candidate answers are generated by
rule-based methods, details of which are beyond
the scope of this paper. As discussed in Section 4,
finetuning the models using the questions gener-
ated by our approach performs better than using
questions from SQuAD dataset.

4 Experimental Evaluation

Datasets: We evaluate the proposed approach for
temporal QG using history text intended for di-
verse audience and focusing on different topics
such as historical accounts of famous personalities
(e.g. Napoleon), important phenomenon (e.g., Fas-
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Figure 2: Dependency parse tree using Spacy for Template #2 example sentence

cism), battles, wars, and global conflicts. We use
3 chapters from history text books as well as 186
Wikipedia articles on historical topics. The point-
ers to the book chapters and Wikipedia articles are
provided as a part of supplementary data.

Input
articles

Sentences Sentences
with Time
expressions

Templates Questions Avg.
Qacc

189 31538 12460 7 2480 84.07

Table 2: Template-based approach details

We use two different datasets of temporal ques-
tions for the second stage of our approach i.e. fine-
tuning experiments with ProphetNet and UniLM.
First dataset consists of 868 question generated by
our template based approach for training and 217
for validation of the DL model finetuning. The
second dataset consists of temporal questions (i.e.,
questions with explicit date-time expressions as
well as implicit expressions such as before, after,
during etc.) extracted from SQuAD dataset. The re-
sulting subset of SQuAD dataset consists of 35794
questions as training set and 2492 questions as the
validation set. The dataset used for experimenta-
tion is available for research purposes upon email
request.

Finetuning Details: To evaluate the effective-
ness of finetuning the DL models for temporal QG
task, we use two different models, ProphetNet and
UniLM.
ProphetNet: The input provided for finetuning
ProphetNet is in the form of answer [SEP] nar-
rative and output is the generated question. We
use the hyperparameter values as suggested by the
authors on their github page1 for finetuning task.
We use Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.00001. We set the dropout
value as 0.1 and train for 10 epochs.
UniLM: The input provided for finetuning UniLM
is in the form of narrative [SEP] answer and out-
put is the generated question. Here also, we use the
hyperparameter values as suggested by the authors

1https://github.com/microsoft/
ProphetNet

on their github page2 for finetuning task. We use
BERT Adam optimizer (BERT version of the Adam
algorithm with weight decay fix) with a learning
rate of 0.00002. We train UniLM for 10 epochs.

Evaluation methodology: We employ both au-
tomated and human expert evaluation. For hu-
man evaluation, we asked experts (people well
versed with English language and Global history)
to mark the generated question as acceptable or
non-acceptable following the human evaluation in
Heilman and Smith (2010). A question is marked
as acceptable if it is grammatically correct, read-
able, sensible and not too vague. More details can
be found in the guidelines proposed by Heilman
and Smith (2010). For human evaluation, we use
a random sample of 100 generated questions for
each experimental setting.
Qacc metric is used for the percentage of gener-

ated temporal questions which are found acceptable
by a human expert. Qtemporal measures the frac-
tion of temporal questions generated with respect
to total number of generated questions. For auto-
mated evaluation, we use BLEU-4 (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
ROUGE-L (Lin, 2004) which are standard metrics
for natural language generation tasks. The ques-
tions generated by the template based approach are
used as reference questions for calculating these
automated metrics.

Results and Discussion: The evaluation details
of our template based approach (i.e., the stage 1
of our approach) are given in Table 2. In the cor-
pus of 31538 sentences, there are 12460 sentences
that contain a temporal expression (timex). The
template based approach (i.e., the stage 1 of our ap-
proach) generates 2480 questions from this corpus
with an acceptability rate of 84.07%. In this work,
we have not considered the entity coreference reso-
lution. A large number of sentences do not get con-
sidered by the templates if a slot/parameter (e.g.,
SUB) of a template contains a pronoun. We plan to
consider entity coreference resolution (Patil et al.,

2https://github.com/microsoft/unilm/
tree/master/unilm-v1
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Template Qacc

template #1 94.71
template #2 82.45
template #3 78.24
template #4 73.33
template #5 60.76
template #6 89.79
template #7 80.08

Table 3: Template-wise acceptability scores (in %)

2018; Gupta et al., 2018) as part of future work.
Template wise acceptability scores are given in

Table 3. Since no reference questions are available
for this dataset, we evaluate the performance of
template based approach through human experts.
We keep aside 1000 sentences with timex that gen-
erated acceptable questions as the test set for evalu-
ation of the second stage of finetuning DL models.

Pre-trained models of ProphetNet (denoted by
Ppre) and UniLM (Upre) for general purpose QG
task are used as baselines. Let P T

ft, P
S
ft, P

TS
ft de-

note ProphetNet base models finetuned for tem-
poral QG using the template based questions,
SQuAD temporal questions, and the combined
set of template-based as well as SQuAD tempo-
ral questions respectively. Similar notation is used
for UniLM (U).

Model B-4 M R-L Qtemporal Qacc

Ppre 0.37 0.29 0.59 53.85 80.00
PT

ft 0.84 0.61 0.93 97.49 99.00
PS

ft 0.36 0.29 0.60 70.00 91.00
PTS

ft 0.73 0.50 0.85 98.50 99.00
Upre 0.39 0.30 0.63 65.00 69.00
UT

ft 0.85 0.60 0.93 99.20 97.00
US

ft 0.36 0.30 0.61 71.60 76.00
UTS

ft 0.73 0.50 0.85 97.50 94.00

Table 4: Experimental comparison of DL models with
pre-training vs. different finetuning settings (Abbr.: B-4
= BLEU-4, M = METEOR, R-L = ROUGE-L)

From Table 4, we observe that ability to generate
temporal questions (Qtemporal) as well as accept-
ability of the generated questions (Qacc) is low for
both the pre-trained DL models, Ppre and Upre.
Finetuning the base models of ProphetNet as well
as UniLM certainly helps to improve their perfor-
mance on the temporal QG task. We note that
SQuAD dataset of temporal questions is signifi-
cantly larger than the set of template-based ques-
tions. Still, for both automated metrics as well as
human expert evaluation, the performance of the
DL models finetuned with only the template-based
questions is significantly better than models that
use SQuAD temporal questions.

5 Conclusion

We proposed a two-staged method for temporal QG
from history text. First, we use templates motivated
by linguistics and domain knowledge to carry out
syntactic and semantic transformations to generate
temporal questions. Then, the generated temporal
questions are used to finetune DL models for QG.
We experimentally validated the approach with two
different DL models to demonstrate improvement
due to finetuning as well as flexibility and robust-
ness of this approach for temporal QG.
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Abstract

Extractive summarization of lengthy legal doc-
uments requires an appropriate sentence scor-
ing mechanism. This mechanism should cap-
ture both the local semantics of a sentence as
well as the global document-level context of a
sentence. The search for an appropriate sen-
tence embedding that can enable an effective
scoring mechanism has been the focus of sev-
eral research works in this domain. In this
work, we propose an improved sentence em-
bedding approach that combines a Legal Bert-
based local embedding of the sentence with
an anonymous random walk-based entire doc-
ument embedding. Such combined features
help effectively capture the local and global in-
formation present in a sentence. The experi-
mental results suggest that the proposed sen-
tence embedding approach can be very benefi-
cial for the appropriate representation of sen-
tences in legal documents, improving the sen-
tence scoring mechanism required for extrac-
tive summarization of these documents.

1 Introduction

Automatic summarization of lengthy legal docu-
ments has several benefits regarding the quick un-
derstanding of these documents for various types of
users like lawyers, judges, lawmakers, and the gen-
eral public (Jain et al., 2021). One of the most pop-
ular ways of performing such automatic summa-
rization is via extractive summarization approaches,
where the main idea is to extract summary-worthy
sentences directly from the original documents.
This process involves the appropriate representa-
tion of the individual sentences of the document,
followed by the summary worthiness scoring of
these sentences. The quality of sentence representa-
tion and the subsequent scoring mechanism greatly
impact the overall extractive summarization perfor-
mance. This motivates the need for effective sen-
tence embedding approaches that can capture both

the meaning of the individual sentences and their
global context with respect to the entire document.
This work proposes an improved sentence embed-
ding approach that combines domain-specific sen-
tence embedding with feature-based anonymous
walk embeddings (AWE) of a document (Ivanov
and Burnaev, 2018), which can help represent a
sentence more effectively for extractive summa-
rization.

Several research works have explored the prob-
lem of extractive summarization in the legal do-
main (Jain et al., 2021). CaseSummarizer (Polsley
et al., 2016) is a tool which is specifically devel-
oped for summarizing legal judgment documents.
In this approach, extractive summary is produced
based on the frequency of words. In addition to the
frequency, it also uses domain specific knowledge.

In the recent years, neural networks based ap-
proaches have shown to be very effective for extrac-
tive summarization. Most of these approaches have
formulated the summarization task either as binary
classification problem (Eidelman, 2019; Nallapati
et al., 2017) or classification followed by ranking
(Zhou et al., 2018; Narayan et al., 2018) of the
sentences inside the documents. In order to per-
form such classification based summarization, re-
searchers have extensively explored the problem of
finding appropriate embeddings or representations
of the individual sentences (Diao et al., 2020; Liu
and Lapata, 2019). In this work also, our main
focus is on finding the appropriate sentence repre-
sentations for the summarization of legal bills.

Representing a document in terms of a sentence
connectivity graph is an idea which has been very
popularly applied in the general text summariza-
tion domain (Mihalcea and Tarau, 2004; Baralis
et al., 2013; Li et al., 2020), because it captures
the document-level global context of each sentence
effectively. This suggests that if local semantics
of a sentence can be combined with a graph-based
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global context, appropriate summarization-centric
sentence embeddings can be obtained.

The key contributions of this work are given
below:-

• For better sentence representation, a combina-
tion of domain-specific local embedding and
graph-based anonymous random walk embed-
ding approach is proposed.

• A detailed empirical analysis of different
anonymous random walk settings are explored
for finding appropriate sentence embeddings.

• A Multilayer Perceptron (MLP) based sen-
tence summary worthiness prediction ap-
proach is presented which can make use of
the improved sentence embeddings in the ex-
tractive summarization process.

Following the introduction, the organization of the
rest of the paper is done as follows: A brief de-
scription of the related work is given in Section
2. A detailed description of our proposed method
is given in Section 3. The evaluation strategies
are presented in Section 4. The experimental re-
sults are given in Section 5 along with a detailed
discussion. Finally Section 6 concludes our work,
by summarizing the key findings and the potential
future research directions.

2 Related Work

There are popular classical unsupervised extrac-
tive approaches in general text summarization
which either utilizes the frequency-based methods
(Nenkova and Vanderwende, 2005) or graph-based
methods (Mihalcea and Tarau, 2004; Jing, 2000)
for scoring sentences. Finally, the top scoring sen-
tences are picked up to form an extractive sum-
mary. Several research works also find important
sentences in a document, based upon the idea of
Singular Value Decomposition (SVD), such as LSA
(Steinberger et al., 2004). There is yet another
popular classical approach in which sentences are
added in a greedy manner into the summary as
long as the Kullback-Lieber (KL) divergence keeps
on decreasing between the document set and the
summary set (Haghighi and Vanderwende, 2009).
Recently a Bayesian Optimization (BO) based ap-
proach BO-Textrank has been proposed by Jain
et al. (2020), in which the authors improve the Tex-
trank algorithm for extractive summarization.

A neural network based supervised approach is
proposed by Eidelman (2019), in which scores are
assigned to each of the sentences of the document
and the best among them are selected. The authors
have formulated the sentence scoring task as a sen-
tence classification problem for which the random
ensemble and Bert models are used as classifiers
to predict the important sentences for summary for-
mation. In (Nallapati et al., 2017), authors have
proposed a novel approach called SummaRuNNer,
which is a Recurrent Neural Network (RNN) based
approach in which the summarization task is for-
mulated as the sequence classification task for ex-
tractive summarization of documents. Another un-
supervised neural network approach is proposed by
Verma and Nidhi (2017) where summary creation
is done by firstly extracting the Restricted Boltz-
mann Machine (RBM) based features followed by
a feature enhancement step.

Several random walk based approaches have
been proposed in the literature for the summa-
rization of documents represented in terms of a
graph. Wang et al. (2017) have proposed an affinity-
preserving random walk for the multi-document
summarization problem. The summary sentences
are extracted once the random walk reaches a sta-
tionary state for the purpose of summary gener-
ation. In another work, Wang et al. (2014) have
proposed a random walk model in which utterances
are the nodes and the relationship between two ut-
terances is determined with the help of topic rel-
evance, opinion relevance and structure relevance
features. Finally, PageRank algorithm-based global
ranking is done to select the relevant utterances to
form an opinion summary. Otterbacher et al. (2005)
have proposed a topic-sensitive version of Lexrank
method (Erkan and Radev, 2004) where the sen-
tence score is calculated based on the concept of
random walks. The sentence score is determined
by considering sentence’s relevance to the query
as well as it’s similarity to other high scoring sen-
tences. Apart from these works, several efficient
attention mechanisms have also been proposed in
the literature for handling long documents and thus
achieving better performance in downstream tasks
such as summarization (Zaheer et al., 2020; Beltagy
et al., 2020).

From the literature review, it has been observed
that most of the works ignore either the impor-
tance of domain specific knowledge or the capa-
bility to handle long documents. To deal with
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these shortcomings, a novel sentence representa-
tion approach is proposed in this work, which uti-
lizes domain specific Legal-Bert embeddings of
sentences along with AWE based document graph
embeddings. Such combined sentence representa-
tion scheme can capture both the local sentence
level information as well as the global document
level information, thereby achieving better summa-
rization of lengthy legal documents. The reason
for utilizing AWE is to find the accurate vectorized
representation of the entire document graph. This
vectorized representation can be efficiently found
using anonymous walk distribution, as proven by
Micali and Zhu (2016).

3 Proposed approach

The basic steps of our proposed approach CAWE-
Summ (Contextual Anonymous Walk Embedding
Summarizer) to automatically generate the extrac-
tive summary of legal documents is presented in
this section. Our training dataset (DTr) consists of
{(d1, s1), (d2, s2), ....., (dm, sm)}, where (di, si)
corresponds to the ith document-summary pair in
the dataset. The overall methodology has been
depicted in Fig. 1.

Figure 1: Overall Proposed Methodology

In the training phase, firstly, the Legal-Bert
(Chalkidis et al., 2020) based sentence embeddings
and Anonymous Walk Embeddings of the entire
document graph are combined via concatenation
operation. After this, the combined representation
is used in an MLP model for learning the binary
classification of summary worthiness for each of
the sentences. Once the training phase is complete,
we obtain a trained MLP model, which can be used
at test time for predicting whether a sentence is

summary-relevant or not. Each of the individual
steps in Fig. 1, which depicts the proposed summa-
rization approach, is discussed in a detailed manner
in the following subsections.

3.1 Contextual Representation

The very first step is to create sentence embeddings
for each of the sentences present in each document.
This sentence representation is achieved through
a pre-trained model. Since Bert has achieved
state-of-the-art performances on several tasks
(Devlin et al., 2018), researchers have started
exploring the application of Bert to domain specific
legal tasks as well. But the adaptation of general
Bert could not perform well in legal specific tasks.
Hence Chalkidis et al. (2020) has developed a legal
specific Bert known as Legal-Bert. In this work,
we use Legal-Bert for sentence representation
which consists of 12-hidden layers, where each
layer consists of 768 units. To get the contextual
representation/features of sentences, the average of
all the tokens in a sentences is taken. In this way,
we get a vector of 768 features representing the
input sentences. If the ith document consists of k
sentences, then it is represented as shown below:

di = {LB(s1), LB(s1), ....LB(sk)}
= {[s11, s21, ..., s7681 ], [s12, s

2
2, ..., s

768
2 ],

[s1k, s
2
k, ..., s

768
k ]}

where LB(sk) is a pretrained Legal-Bert model,
applied on each sentence of a document to obtain
the corresponding sentence representation.

Thus, we get the contextual representation of
each sentence present in each of the documents.

3.2 Feature-based Anonymous Walk
Embeddings

After obtaining the contextual representation for
the input sentences, we try to enhance the repre-
sentation with the help of graph representation.
For this, we convert every document into Graph
Gi = (Vi, Ei), where Vi consists of sentences from
di and Ei consists of direct edges between all sen-
tences or nodes in Vi with edge weights as the
similarity values between each pair of vertices. We
consider cosine similarity metric for finding the
similarity between each pair of vertices. The adja-
cency matrix representation of Gi is shown in Fig.
2.
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0 sim(LB(s1), LB(s2)) sim(LB(s1), LB(sk))

sim(LB(s2), LB(s1)) 0 sim(LB(s2), LB(sk))

sim(LB(sk), LB(sk)) 0

Figure 2: Adjacency matrix representation of Gi

Once the graph representation Gi is available,
a p- dimensional embedding for the graph Gi can
be obtained using feature-based Anonymous Walk
Embeddings approach as shown below:
AWE(Gi) = [a1, a2, ......, ap]
The main idea of AWE is to represent the random

walks as a sequence of times when node in a graph
was visited first, and not as a sequence of nodes
(Ivanov and Burnaev, 2018). In order to understand
feature-based AWE, let’s first try to understand
AWE. Consider the random walks as shown in Fig.
3:

Graph
A

B

C D
E

F

C
D

B

D

E

Random Walk 1


A

Random Walk 2
B

C

B

D

Random Walk 3

Anonymous Walk 1


1 2 2 43

A
B

A

B

D

Anonymous Walk 2
1 2 2 31

Figure 3: Illustration of anonymous walk in a un-
weighted directed graph

From Fig. 3, it can be observed that random
walks are not represented as a sequence of nodes
but as the index of a node when it appears first.
These walks are known as anonymous walks be-
cause they are agnostic to the identity of nodes
visited. It means that, random walks that have vis-
ited different nodes but in the same order, get the
same anonymous walk representation (for example,
look at random walk 1 and 2). Micali and Zhu
(2016) theoretically justified that AWE, allows to
encapsulate and reconstruct the structure of the en-
tire graph irrespective of global information and
therefore can be used to represent feature based
embeddings for the entire network. Based on this,
(Ivanov and Burnaev, 2018) came up with the fea-
ture representation of the entire network. There
is a exponential growth in the number of anony-
mous walk with length l. For example, there are

five anonymous walks wj of length 3: w1 = 111,
w2 = 122, w3 = 121, w4 = 112, w5 = 123. The
jth coordinate of AWE(G)[j] is the probability
of anonymous walk wj in Graph G, i.e., the prob-
ability that the anonymous walk of type j occurs
in graph G. Since it is infeasible to count all the
anonymous walks in a large graph, Ivanov and Bur-
naev (2018) have proposed an efficient sampling
approach to approximate the true distribution. In
this work also, we have considered the same sam-
pling approach for finding the AWE of length 3,
4, 5 and 6, on the document graph Gi mentioned
above.

3.3 Combined features
To enhance the representation of each input
sentence, we propose to concatenate AWE (Gi) to
each sentence embedding for the ith document to
obtain final di, thereby capturing the entire graph
information as well as the local contextual infor-
mation. The concatenation is done as shown below:

di = {[LB(s1;AWE(Gi))],

[LB(s2;AWE(Gi))],

[LB(sk;AWE(Gi))]}

di = {[s11, s21, ..., s7681 , a1, a2, ...., ap],

[s12, s
2
2, ..., s

768
2 , a1, a2, ...., ap],

[s1k, s
2
k, ..., s

768
k , a1, a2, ...., ap]}

where, p is the all possible anonymous walk of
length 3, 4, 5, and 6. More specifically, the possible
values of p is 5, 15, 52 and 203 for lengths 3, 4, 5,
and 6 respectively.

3.4 Extractive dataset building
After having all the di’s (i = 1, 2....,m) for DTr,
we then build an extractive training dataset for
summarization using the greedy approach as
proposed in (Nallapati et al., 2017). In this way,
we get the dataset in the form:
DTrExt = {[d1, y1], [d2, y2], ....., [dm, ym]}
where, each di is a collection of (768 + p)-
dimensional vectors, representing each sentence of
a document and yi is a binary vector representing
the relevance of each sentence in di for summary
formation.

3.5 Summary worthiness classification task
For the purpose of training, we use an MLP (details
shown in Table 1) that takes sentence embedding
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as an input and outputs its summary relevancy or
worthiness. In order to train an MLP model, we
flatten DTrExt by one level to obtain DTrExtMLP

as:

DTrExtMLP = {([x1, x2, ...., x768+p]
(1), y(1)),

([x1, x2, ...., x768+p](2), y
(2)),

...

...

([x1, x2, ...., x768+p]
(q), y(q))}

where q is the total number of sentences across all
the documents (≈ 10M for BillSum dataset).

We then train the model on DTrExtMLP , which
takes (768 + p)-dimensional sentence embedding
as input and outputs its summary worthiness. For
training purpose, we consider four dense layers
of nodes 768, 128, 64, 32 followed by one output
layer with a sigmoid activation function. The batch
size is chosen as 32, adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.001.

MLP Layers # nodes/ Pr
FC Layer 1 768

Dropout Pr=0.4
FC Layer 2 128

Dropout Pr= 0.4
FC Layer 3 64

Dropout 0.4
FC Layer 4 32

Dropout Pr=0.4
Prediction Layer(sigmoid) 1

Table 1: Number of nodes/Dropout Probabilities per
layer in the MLP classification model.

3.6 Summary generation

At the time of inference, for every test document,
firstly (768 + p) dimensional embedding of each
sentence is found, followed by the MLP based pre-
diction of summary worthiness. The final summary
formation is done by taking the top 15% sentences
which is the ratio of number of words in the training
documents to the number of words in the training
summaries based on their summary worthiness in
the order they appear in the original document.

4 Evaluation strategy

4.1 Dataset

Our proposed approach is evaluated on the Bill-
Sum dataset which is a legal specific benchmark
dataset introduced by Eidelman (2019). It consists
of United States (US) Congressional bills which
has been divided into 18,949 training documents
and 3,269 testing documents. Along with the US
Congressional bills, the BillSum dataset also con-
tains 1,237 California (CA) state bills so that the
models build upon US legislatures can be tested
upon new legislature as well. The training docu-
ments contain 150 sentences on an average while
the training summaries contain 20 sentences on an
average. The US testing dataset contains an aver-
age of 100 and 12.5 sentences in the documents
and summaries respectively. The CA test dataset
contains an average of 75 and 20 sentences for the
CA test documents and summaries respectively.

4.2 Evaluation metric

For the purpose of evaluating the automatically
generated summaries, a very popular metric known
as Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) is considered (Lin, 2004). It counts
the overlapping of n-grams between reference sum-
maries and system generated summaries. In this
work, three variants of ROUGE are considered-
ROUGE-1, ROUGE-2 and ROUGE-L.

4.3 Baselines and state-of-the-art methods

We consider 8 baseline methods: Textrank (Mi-
halcea and Tarau, 2004), Sumbasic (Nenkova and
Vanderwende, 2005), Latent Semantic Analysis
(LSA) (Steinberger et al., 2004), KLSum (Haghighi
and Vanderwende, 2009), Reduction (Jing, 2000),
Restricted Boltzman Machines (RBM) (Verma
and Nidhi, 2017), CaseSummarizer (Polsley et al.,
2016) and 2 state-of-the-art methods: DOC+Sum
(Eidelman, 2019) and BO-Textrank (Jain et al.,
2020) (see Section 2 for brief descriptions of these
methods).

Apart from these methods, we also compare our
proposed approach with a Legal-Bert based sum-
marization approach which we refer to as Contex-
tual, in Table 2. In this approach, the Legal-Bert
based local sentence embeddings are considered,
in which sentence importance is predicted using
the MLP model described in Section 3.5.
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4.4 Experimental setup

The pretrained Legal-Bert implementation has
been acquired from the Hugging-Face package 1.
Whereas, the implementation for finding AWE-
based representations is publicly available from
Ivanov and Burnaev (2018) and in this work the
default parameter settings are utilized for the ex-
perimentation purposes. The MLP model has been
implemented using the Tensorflow package (Abadi
et al., 2016). Finally, the experimental results are
reported in terms of the F1-Scores of the ROUGE-
1, ROUGE-2 and ROUGE-L metrics, using the
rouge 1.0.1 package 2.

We have run all the experiments on a Linux ma-
chine with i7 processor and RTX 2070 GPU (8GB
RAM).

5 Summarization results and discussion

The ROUGE metric based summarization results
for the proposed as well as the baseline and state-
of-the-art approaches are depicted in Table 2. The
results shows that the proposed CAWESumm ap-
proach outperforms all the baselines and state-of-
the-art approaches for the extractive summariza-
tion on the BillSum test datasets. Importantly, even
with the smallest length of anonymous walk em-
beddings, results have been improved significantly
comparing to even with the legal-specific summa-
rization baseline (CaseSummarizer) as well as with
the state-of-the-art approaches. More specifically,
the CAWESumm approach can obtain the best
ROUGE-1, ROUGE-2 and ROUGE-L scores of
0.42827, 0.25288 and 0.41319 on the US test set
respectively and 0.43120, 0.21762 and 0.36445 on
the CA test set respectively.

It is important to note here that, in case of the
US testing data, even though the best performances
have been observed when we consider anonymous
walk of length 6, still the difference between the
other walk lengths are not that significant. In case
of the CA testing dataset, the proposed approach
has been able to outperform all the baselines and
state-of-the-art methods; however here also we can
see that the specific walk lengths do not have very
significant impact on improving the summarization
performance.

Based on the number of sentences in a document,
the summarization performance of the document

1https://huggingface.co/nlpaueb/
legal-bert-base-uncased

2https://pypi.org/project/rouge/

changes. This change in performance is depicted
with the help of line charts in Fig. 4. From the line
charts it can be clearly observed that when we con-
sider small-sized documents(# of sentences ≤ 50),
we can achieve much better summarization perfor-
mances, across different anonymous walk lengths.
On the other hand, as we get medium-sized(51 ≤
# of sentences ≤ 100) and large-sized(100 < # of
sentences) documents, we see that the summariza-
tion performance decrease significantly, for both
the US test and CA test datasets. This is due to the
fact that, always the top 15% of the high scoring
sentences are picked for summary formation, and
when a larger document comes as an input, the top
15% will include some low confidence predictions
as well. Moreover, this causes large-sized summary
formation which might be detrimental by itself.

Studying the inference time of the proposed ap-
proach can give appropriate insights into its real-
time applicability. This analysis is presented in
Fig. 5, with the help of a line chart diagram. From
Fig. 5, it can be observed that for both the test
sets, the average inference time for generating sum-
maries is in the range of (1− 7) seconds. Another
important observation is that, as the sentence em-
bedding dimension increases, the inference time
also increases sharply. This is to be expected, since
larger embedding size are due to the presence of
longer anonymous random walks with more num-
ber of samplings. Repeated simulation of such long
walks is bound to increase the total inference time,
as during inference also the AWE vectors for each
sentence is needed to be calculated.

One of the key findings of this work is that the
inclusion of anonymous random walk based docu-
ment graph embeddings as part of the sentence em-
bedding itself can significantly improve the overall
quality of sentence representation. Such improved
representation of sentences can help in the subse-
quent summary worthiness prediction process, as
these sentences are aware of their global context
in the document. The intuition behind such perfor-
mance improvement is that through the learning
of different anonymous walks, the embeddings are
much more informative than only contextual em-
beddings since the anonymous walk embeddings
can efficiently model the entire document. This
effectiveness of AWE based graph embeddings is
supported by (Micali and Zhu, 2016), where the
authors prove that under sufficient samplings of
anonymous random walks, entire subgraphs of the
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Method type Approach US test data CA test data

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Baseline Unsupervised Textrank (Mihalcea and Tarau, 2004) 0.32698 0.17939 0.33835 0.40693 0.20159 0.34574
Sumbasic(Nenkova and Vanderwende, 2005) 0.23979 0.08106 0.22749 0.32799 0.12773 0.29769
LSA (Steinberger et al., 2004) 0.32771 0.12888 0.28909 0.33635 0.13136 0.2971
KLSum (Haghighi and Vanderwende, 2009) 0.26383 0.0927 0.21385 0.28002 0.10348 0.22647
Reduction (Jing, 2000) 0.34728 0.17574 0.33046 0.39962 0.18439 0.3256
CaseSummarizer (Polsley et al., 2016) 0.34019 0.14488 0.28507 0.36321 0.15515 0.29476
RBM (Verma and Nidhi, 2017) 0.29710 0.10796 0.23970 0.31660 0.10074 0.24697

Supervised Contextual 0.38043 0.22336 0.3886 0.42100 0.20827 0.34982
SummaRunner (Nallapati et al., 2017) 0.41604 0.22454 0.39148 0.38616 0.17467 0.32814

Proposed Supervised CAWESumm (l = 3) 0.42247 0.25002 0.41068 0.43104 0.21762 0.36325
CAWESumm (l = 4) 0.42465 0.25058 0.41151 0.43120 0.21653 0.36445
CAWESumm (l = 5) 0.42739 0.25246 0.41309 0.42730 0.21420 0.36067
CAWESumm (l = 6) 0.42827 0.25288 0.41319 0.42998 0.21671 0.36186

State-of-the-art Supervised DOC + SUM (Eidelman, 2019) 0.4080 0.2383 0.3373 0.3965 0.2114 0.3405
Unsupervised BO-Textrank (Jain et al., 2020) 0.356 0.172 0.312 0.404 0.194 0.327

Table 2: Comparison of proposed CAWESumm approach for different AWE lengths (l), with baseline and state-
of-the-art approaches.

(a) US Test

(b) CA Test

Figure 4: Document length wise ROUGE scores
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Figure 5: Average running time to generate summaries
for BillSum testing dataset where 5,15,52 & 203 are
all possible anonymous walks for l=3, 4, 5 & 6 respec-
tively.

underlying graph can be reconstructed with the help
of such walks in that region. In our case, this result
ensures that the AWE obtained on the document
graph can effectively represent the original input
document. Moreover, since the MLP model has
been trained to recognize summary worthy embed-
dings during the training process, the interaction
between the contextual and document graph em-
bedding features can be effectively modeled for
summarization.

6 Conclusion

Due to the lengthy nature of legal bills, it becomes
very difficult to capture the important information
of the documents. To overcome this difficulty,
extraction of summary worthy sentences for au-
tomatic summarization has been explored in the
literature. However, in order to efficiently iden-
tify summary worthy sentences, they need to be
appropriately represented in the form of numeri-
cal vectors. In this work, we propose to capture
a sentence’s local as well as global context infor-
mation in the form of embeddings via contextual
and anonymous walk embeddings. From the ex-
perimental results, it has been found that, when we
incorporate the global document level information
with the sentence’s local information, a significant
improvement can be obtained in terms of ROUGE
scores. The experimental results suggests that the
anonymous walk embeddings are very effective in
capturing the entire document graph information,
and can enhance the representation of a sentence
for its summary worthiness prediction. Such im-
proved sentence representation are able to signifi-
cantly improve the extractive summarization of the
document.

To further improve the representation learning,
leveraging embeddings in the form of hierarchi-
cal structure of the entire legal documents will be
part of our future work. Moreover, a more end-
to-end graph based approach can also be studied,
by considering the emerging area of graph neural
networks.
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Abstract

The exponential growth in the number of
text documents produced daily on the web
poses several difficulties to people who are
responsible for collecting, organizing, and
searching different textual content related
to a particular topic. Automatic Text Sum-
marization is effective in this direction, as
it can evaluate a large number of docu-
ments and extract essential information.
However, the limits of automatic text sum-
marization must be overcome by devising
practical solutions. Even though current
research efforts focus on this direction for
future advances, they still face numerous
obstacles. This work suggests a combined
semantic-based word and sentence simi-
larity technique to summarise a corpus of
text documents. KL-divergence approach
is used to organize the sentences in the fi-
nal summary. Experimental work is con-
ducted using DUC datasets, and the ob-
tained results are promising.

1 Introduction

With the widespread adaptation of technology, a
large number of documents are getting digitized,
resulting in a rapid influx of textual data. This
data often contains crucial information; however,
absorbing all this information can be difficult and
time-consuming. Automatic Text Summarization
(ATS) is the process of condensing data into use-
ful and comprehensible information. By distilling
out meaningful details, ATS makes referring doc-
uments much more efficient. ATS can be done
in two ways: Extractive and Abstractive. Ex-
tractive summarization selects sentences of im-
portance directly from the source text, which can
either be within a single document (called sin-

gle document text summarization) or a group of
documents (called multi-document text summa-
rization)(Gupta and Lehal, 2010)(Roul and Arora,
2019). On the other hand, abstractive text sum-
marization is an understanding of the main con-
cept of its expression in clear natural language.
When abstraction is used for text summarization
in deep learning issues, it can overcome the ex-
tractive method’s grammatical inconsistencies.

1.1 Motivation
There has already been a vast amount of research
on text summarization such as ‘graph-based sum-
marization (Elbarougy et al., 2020)’, ‘clustering-
based summarization(Wang et al., 2011)(Roul
et al., 2016)’, ‘machine learning based summariza-
tion(Roul et al., 2017)(Abdi et al., 2018)’, ‘sum-
marization based on Fuzzy logic’ (Suanmali et al.,
2009), topic-modeling based summarization(Roul
et al., 2019)(Alami et al., 2021)(Roul, 2021) etc.
As listed below, all of these existing text sum-
marising approaches have some common limita-
tions:

i. Two different sentences made up of com-
pletely different words can share a similar
meaning, and it should be taken care of when
the summary is generated.

ii. Stop-words like ’a,’ ’an,’ ’the,’ ’of,’ and so
on are often excluded from surface match-
ing algorithms since they are relatively preva-
lent throughout all articles in the collection.
However, these words play a significant part
in calculating sentence similarity since they
provide structural information that is used to
infer the content of the phrase, and hence they
should not be ignored.

iii. The significance of the words in the scope of
the sentence is ignored.
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iv. When computing the similarity of sentences,
giving equal weight to each word is still lack-
ing.

This study considers the extractive approach to-
wards achieving summarization and presents a
snapshot of the content of a group of related doc-
uments. Semantic-based word and sentence simi-
larities are combined to generate a coherent sum-
mary at the end.

1.2 Contribution
The following is a summary of the paper’s contri-
butions:

i. The problem of organizing and logically dis-
playing the gathered data has not yet received
attention. The suggested method computes
each sentence’s cohesiveness score to elimi-
nate redundancy and picks the top ’m’ per-
cent of sentences based on the cohesion score
to generate the coherent summary.

ii. Every word of the generated coherent sum-
mary gets equal algebraic treatment by con-
sidering modified harmonic mean.

iii. The suggested method, which includes all the
stop-words, treats each word in a sentence
separately according to its semantic structure.

iv. The proposed approach computes the seman-
tic similarity between the sentences to get a
more information-rich coherent summary.

v. In the generated summary, all the sentences
are arranged as per their importance using the
Kullback-Leibler divergence technique.

Empirical results show that the suggested ap-
proach is more efficient than the existing extrac-
tive text summarization approaches.

2 Proposed Approach

Assume a corpus P consists of D number of doc-
uments. At first, all D documents are merged into
a single huge collection. All the sentences of this
huge collection are extracted to form a set of sen-
tences S = {s1, s2, s3, · · · , sn}. Below steps dis-
cuss how the coherent summary is generated from
the corpus P .

1. Word similarity calculation:
Semantic similarity between two words (a

and b) is calculated using WordNet (Miller,
1995) having 206942 words and 117660
synsets. Figure 1 shows the hierarchy of
these synsets (or concepts) of the semantic
database of the WordNet. The symbol ‘· · ·’
is used to represent more synonym words of
a synset. To extract the information from the
semantic database, WordNet.Net1, a public
framework is used here. The semantic sim-

Figure 1: Hierarchical Semantic Net

ilarity sim(a, b) is calculated using two func-
tions:

- minimum path length (min path)
- depth of the subsumer (depth-sub)

sim(a, b) = function(f1(min path), f2(depth-sub)) (1)

i. Computing minimum path length:
There are 3 posibilities as mentioned be-
low while computing the sim(a, b):
• a and b are belong to the same

synset: since they have the same
meaning, a semantic path length of
zero is allocated between them.
• a and b have not belonged to the

same synset: here the shortest path
between the two synsets is calcu-
lated by ‘max-similarity’ algorithm
(Pedersen et al., 2005) using Py-
wsd2.
• a and b do not belong to the

same synset, but their corresponding
1http://en.wikipedia.org/wiki/Brown Corpus
2https://github.com/alvations/pywsd
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synset consists of one or more com-
mon words: in this circumstance, a
semantic path length of one is allo-
cated since both synsets share some
of the same terms.

In light of the three situations presented
above, the f1(min path) of equation 1
is fix to be a steadily reducing function
as shown in equation 2.

f1(min path) = e−α(min path)

(2)
here α ∈ [0, 1] is constant.

ii. Depth of the subsumer computation:
The depth of the subsumer is deter-
mined by counting the levels from the
subsumer to the hierarchical net’s top.
Words in the top layers of the hierarchy
have a broader meaning and fewer se-
mantic concepts than words in the lower
layers. When computing the similar-
ity, this behavior must be taken into ac-
count. Thus, it is necessary to scale
up the sim(a, b) for subsuming words
at bottom layers, and for subsuming
words at higher layers, one needs to
scale down the sim(a, b). This shows
f2(depth-sub) of equation 1 should be
monotonically increasing function as
shown illustrated in equation 3.

f2(depth-sub) =
eβ.depth-sub − e−β.depth-sub

e−β.depth-sub + eβ.depth-sub
(3)

where β ∈ [0, 1] is a smoothing fac-
tor, and it determines the contribution of
depth of subsumer. With respect to α
of equation 2,The percentage contribu-
tion of subsumer depth reduces as beta
rises. The word’s depth in the hierarchy
is not considered when β > ∞ (Shep-
ard, 1987). The optimum values of β
and α are set to 0.46 and 0.2 respectively
(Erkan and Radev, 2004).

iii. Finally, semantic similarity between a
and b is measured using equation 4.
sim(a, b) =

e−α.min path∗e
β.depth-sub − e−β.depth-sub

eβ.depth-sub + e−β.depth sub

(4)
The value of sim(a, b) ∈ [0, 1].

2. Word score calculation based on modified
harmonic mean:
The harmonic mean can’t be determined
without taking into account all of the words
in the corpus. It gives each word equal weight
and is excellent for qualitative data. The
modified Harmonic Mean (HM ) formula is
used to produce a ranking score for each word
in relation to the total corpus, as shown in
equation 5.

HMq =
n− 1

∑
p,p 6=q

1
sim(a,b)+k

(5)

n indicates the number of words in P ,
sim(a, b) represents the similarity score be-
tween the two words a and b as shown in
equation 4. Except for the reflexive pair, all
of the pairs of words are summed up. k is a
factor that must be included in every similar-
ity score in the algorithm to ensure that the
score, when divided by 1, does not provide
an exception.

3. Selection of representative words:
Upon calculating the modified harmonic of
every word in P , the top l% words3 are saved
in a list Lrep as representative words of the
corpus P . Now, as stated in equation 6, the
cosine-similarity (cos-sim) between s and
the list Lrep is calculated.

cos-sim(s, Lrep) =
s.Lrep

||s|| ∗ ||Lrep||
(6)

Sentences having cosine similarity more than
0.754 are considered.

4. Calculation of sentence similarity:
The following steps are used to measure sim-
ilarity between two sentences :

i. A combined word set construction:
To compare the similarity of two sen-
tences s1 and s2, create a combined
set of words Js = {w1, w2, · · · , wn},
where each wi is an unique word from
s1 and s2. This means there are no com-
mon terms in Js between s1 and s2. Be-
cause they carry syntactic information,
Js also contains function words. The
word form is maintained in the same
way as it appears in the sentence.

3 chosen by the experiment
4decided by experiment
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ii. Similarity between sentences:
The structural semantic vector (lsvi, i ∈
[1, 2] of s1 and s2 is computed first.
Each lsvi entry corresponds to a word
in Js. For every w ∈ Js, the follow-
ing steps are utilised to calculate the
lsvi, i = 1 for s1 (denoted as lsv1).
Prior to the commencement of the pro-
cedure, a semantic vector sv is consid-
ered, with every entries set to zero.

case-a’. w ∈ s1: the sv entry corresponding
to s1 is set to 1. This value is indi-
cated in equation 7.

lsv1 = I(w)2 ∗ sv (7)

case-b’. w /∈ s1: an identical word (desig-
nated as w) is found in s1 by an-
alyzing the semantic relatedness of
w to each word in s1 (semantic re-
latedness is determined using equa-
tion 4). The related entry in the
(sv) is fix to the estimated similar-
ity, if it exceeds a per-defined thresh-
old value5, otherwise it is set to zero.
Equation 8 shows the detail.

lsv1 = I(w) ∗ I(w) ∗ sv (8)

In the same manner for s2, the
lexical-semantic vector lsv2 is
generated by converting all entries
of sv to zero, and then executing
case-a’ and b’ as mentioned above.

The cosine coefficient between lsv1
and lsv2, as stated in equation 9, is
the final value of the semantic sen-
tence similarity.

sim(lsv1, lsv2) =
lsv1.lsv2

||lsv1|| ∗ ||lsv2||
(9)

The value of sim(lsv1, lsv2) ∈
[0, 1].

iii. Corpus Statistics:
One can measure the value of distinct
words of a sentence using corpus statis-
tics. This is critical because, as indi-
cated in equation 10, one must incorpo-
rate stop-words with lower priority re-

5determined by experiment

lating to other words in a sentence.

I(w) = 1− Log(x+ 1)

Log(S + 1)
(10)

The frequency of the wordw in P is rep-
resented by x, while the total number of
words in P is represented by S. To pre-
vent zero, x and S are both increased by
one. I(w) ∈ [0, 1].

5. Cohesion score calculation:
The cohesiveness score of each sentence in
relation to the related document is calcu-
lated by determining the Equlidean distance
between sj and the document’s centroid dc,
as illustrated in equation 11.

coh(sj) = ||(dc− sj)|| (11)

dc calculated using the equation 12.

dc =

∑n′
i=1 si
n′

(12)

Here, n′ ∈ di is the number of sentences.

6. Generating final summary list
The top m percent sentences based on the
cohesion score are picked and saved in a
new list NL, which constitutes the final sum-
mary (given in equation 11).

7. Organising sentences
An entropy-based mechanism is presented to
organise all of the sentences in NL according
to their relevance (i.e., weight), which is ex-
plained below:

- Each word’s probability for a sentence
is calculated using equation 13.

P (w|s) = term-frequency(w, s)
|s|

(13)
- Each word’s probability for a document
d is calculated using equation 14.

P (w|d) = term-frequency(w, d)
|d|

(14)
The weight of s (referred as Weights)
is determined by its comparison to the
document d and is evaluated using equa-
tion 16. As illustrated in the equa-
tion 15, KL-divergence (KLD) (Kumar
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et al., 2009) is used to make the compar-
ison between s and d.

KLD(s, d) =
∑

w

P (w|s)Log(P (w|s)
P (w|d))

(15)

Weights =
1

KLD(s, d)
(16)

Sentences are ordered in the final sum-
mary NL according to their weights, and
constitute the system-generated sum-
mary.

2.1 Extractive Gold Summary (EGS)
generation

Sentences containing important information
should be categorised as “Important,” else they
should be labeled as “Not-Important.” The sen-
tences identified as‘ ‘Important” are considered
for inclusion in the document’s summary. The
procedures outlined below show how EGS is
created from the DUC dataset (Pduc) 6.

i) Every document d ∈ Pduc is processed one
sentence at a time. For this, the Natural Lan-
guage Toolkit 7 is employed.

ii) A listL contains all terms of 4 human-written
summaries. The number of related words r′

between L and s is calculated for each sen-
tence s ∈ d, where r′ fluctuates from one
sentence to another.

iii) The score for s is measured by the value of r′.
Finally, the sentences are ranked and placed
in a new list L′ depending on these scores.

iv) The extractive gold summary of d is gener-
ated by selecting the top m words from L′.
The value of m is used to conduct the ex-
periment. In this approach, each Pduc doc-
ument received a 5-sentence extractive gold
summary.

3 Analysis of Experimental Results

The description of DUC datasets8 used for ex-
perimental purposes are shown in Table 1. Two
most popular techniques, such as ROUGE-N and
summary readability, are used to compare the
proposed approach with the state-of-the-art ap-
proaches, and those are discussed in the following
sections.

6http://www.duc.nist.gov
7http://www.nltk.org/
8http://www.duc.nist.gov

3.1 Comparing the performances using
ROUGE-N score

i. ROUGE-2 and ROUGE-1 scores (shown
in Figures 3 and 2) of the propose
model using DUC-2002 dataset are com-
pared with 5 conventional text summa-
rization models (TGRAPH(Parveen et al.,
2015), ILP(Woodsend and Lapata, 2010),
URANK(Wan, 2010), TextRank(Mihalcea
and Tarau, 2004), NN SE(Cheng and Lapata,
2016)).

ii. Similar way, ROUGE-1, ROUGE-2, and
ROUGE-SU4 scores (shown in Figures 4 -
6) of the propose approach using DUC-2006
dataset are compared with 6 conventional text
summarization approaches (OnModer(Ye
et al., 2007), CTMSUM (Yang et al.,
2015), TopicalN(Wang et al., 2007), IIITH-
Sum(Jagarlamudi et al., 2006), RMSUM
(Zhai and Lafferty, 2017), SFU v36(Melli)).

iii. Results on the DUC-2002 dataset show that
both ROUGE-1 and ROUGE-2 scores of the
proposed approach are better than conven-
tional approaches.

iv. Results on DUC-2006 dataset shows that
the ROUGE-1 and ROUGE-SU4 scores of
the proposed approach are better, but for
ROUGE-2 score, CTMSUM and IIITH-Sum
are better compared to the proposed ap-
proach.

v. Overall from the results of both DUC
datasets, it can be concluded that the pro-
posed model is either better or comparable
with the existing text summarization tech-
niques.

3.2 Comparing the performance using
readability of the summary

Readability of summary means how system-
generated summary can read and understand by
others in a better manner and is affected by
many parameters like sentence weight, sentence
length, sentence density etc.(Zamanian and Hey-
dari, 2012). For computing the readability of the
summary, statistical methods are generally used
(Kondru, 2007), and some of the methods are used
by the proposed approach (Table 2). When the
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Table 1: DUC Datasets

Dataset Number of
sets

Number of
documents

Avg. number of sentence
per document

Summary
Length

Source

DUC-2006 48 1230 32.22 240 AQUAINT
DUC-2002 54 532 34.55 140 TREC-9

Table 2: Methods of summary readability

Method Formula

Coleman Liau (CL) 5.89 * (characters/words) - 0.3 * (sentences/words) -15.8

Flesch Kincaid Grade Level (FKGL) 0.39 * (words/sentences) + 11.8 * (syllables/words) - 15.59

Automated Readability Indexing (ARI) 3.70 * (characters/words) + 0.4 * (words/sentences) - 20.42

Figure 2: DUC-2002 (ROUGE-1)

Figure 3: DUC-2002 (ROUGE-2)

summary readability score is very high, it indi-
cates that the system-generated summary is highly
user-friendly in terms of understanding and read-
ing. Figures 7 and 8 show the results. Experimen-
tally, it can be concluded that the obtained results

Figure 4: DUC-2006 (ROUGE-1)

Figure 5: DUC-2006 (ROUGE-2)

of the proposed model are more promising.

4 Conclusion

By combining semantic-based word and sentence
similarity, the proposed method suggested a novel
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Figure 6: ROUGE-SU4 (DUC-2006)

Figure 7: Readbility of summary (DUC-2002)

Figure 8: Readbility of summary (DUC-2006)

extractive text summarisation technique. Modi-
fied harmonic mean is used to select the impor-
tant words of each sentence, and then the sen-
tence similarity is computed. Based on the cohe-
sion score, top sentences are selected that consti-
tute the final summary. The sentences in the fi-
nal summary are organized using KL-divergence
approach. The proposed method’s experimental
work is carried out on two DUC datasets. The
proposed approach outperforms the standard ap-
proaches on DUC-2006 and DUC-2002 datasets,

according to empirical results. This work can
be improved even more by using the abstractive
text summarization technique to produce a more
grammatical-based summary. In the medical do-
main, many summarization models are proposed,
but still, the medical documents have vague terms
that make it difficult to extract useful information.
The proposed model can use the medical data as
the input documents to generate a useful summary
that can help the medical system.
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Abstract
Metaphors are creative cognitive constructs
that are employed in everyday conversation
to describe abstract concepts and feelings.
Prevalent conceptual metaphors such as WAR,
MONSTER, and DARKNESS in COVID-19
online discourse sparked a multi-faceted de-
bate over their efficacy in communication, re-
sultant psychological impact on listeners, and
their appropriateness in social discourse. In
this work, we investigate metaphors used in
discussions around COVID-19 on Indian Twit-
ter. We observe subtle transitions in metaphor-
ical mappings as the pandemic progressed.
Our experiments, however, didn’t indicate any
affective impact of WAR metaphors on the
COVID-19 discourse.

1 Introduction

Metaphors are cognitive artefacts to anchor one’s
thoughts and navigate a situation whether it is
social, political or even financial. Conceptual
metaphors restructure an abstract domain in terms
of a relatively concrete domain, influencing how
we perceive reality [Lakoff and Johnson, 1980].
Consider the conceptual metaphor, “DREAMS
are BUTTERFLIES”. Here, the abstract domain,
DREAMS is mapped to a more concrete domain
as that of BUTTERFLIES evoking meanings such
as vibrant and delicate. Linguistic metaphors are
the manifestations of these conceptual mappings
in text. For instance, Her eyes were full of vibrant
dreams.

India reported the first case of COVID-19 infec-
tion in January, 2020 [Andrews et al., 2020]. Soon
after that, various control measures including the
restriction on international travel, screening of air
passengers and institutional quarantine were im-
plemented to curb the infection. The government
of India imposed the first nationwide lockdown1

1‘Coronavirus in India: 21-day lockdown begins; key high-
lights of PM Modi’s speech’, Business Today (Mar 25, 2020).
Available at LINK

from Mar 25, 2020 to Apr 14, 2020 as a preventive
measure to curb COVID-19.

Various conceptual metaphors with source do-
mains such as WAR (defeat the virus), HAM-
MER/LANDSCAPE (flatten the curve) and even
MONSTER (grappling with virus) were used to
communicate state’s guidelines as well as reactions
to situations arising due to the pandemic [Ruão
and Silva, 2021]. In the mapping, COVID-19 is
WAR, healthcare staff have been reconceptualised
as warriors, and the citizens as soldiers fighting
unitedly against the enemy COVID-19. Flusberg
et al. [2018] advocate the use of domain WAR to
deliver urgent communication infused with motiva-
tion. Consider another phrase “Covid 2.0: Threat
of an administrative cytokine storm building up
in India”2. Here, administration’s RESPONSE is
being compared to a biological phenomenon, CY-
TOKINE STORM to emphasize the lack of atten-
tion to ground-reality while drafting COVID-19
protocols. This mapping does bundle subtle as-
pects such as failure to identify key points of action,
overly restrictive protocols and its resultant unde-
sired effect on citizens.

Another direction of research on COVID-19
metaphors reflects on the appropriateness of these
cognitive constructs in COVID-19 discourse. There
is widespread discontentment against re-imagining
the pandemic using source domains such as WAR
or MONSTER which may negatively manipulate
the understanding of the society. World Emergency
COVID-19 Ethics (WeCope) Committee advise
against the use of WAR metaphors as it instills
fear amongst masses and leads to stigmatization
towards those who do not respect the guidelines
[WeCope, 2019]. Höijer [2011] calls out the use of
metaphors as an instrument by the state to defend
its actions and policies during the pandemic. Por-

2Blog by Samir Shukla, Times of India (Mar 30, 2021).
Available at https://timesofindia.indiatimes.
com/blogs/science-nomad/
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traying the pandemic as a WAR legitimizes state-
imposed violence and excessive control. Kahamb-
ing [2021] warns against the portrayal of COVID-
19 virus as Mother Nature’s way to clean the planet.
Sabucedo et al. [2020] further demonstrated the ill-
effect of commonly used violent source domains
such as WAR, MONSTER in COVID-19 discourse
on public health. Semino [2021] thus emphasizes
the need to reframe COVID-19 metaphors. Rohela
et al. [2020] speak in favour of correcting the WAR
narrative in COVID-19 discourse using substitute
domains such as CRICKET and DANCE. Inspired
from this debate, we study the metaphors embed-
ded in Indian tweets posted during the pandemic.
The main contributions of this study are:

• We manually identify COVID-19 conceptual
metaphors used in headlines of major In-
dian newspapers published from March’20
to May’21.

• We detect linguistic metaphors embedded in
Indian tweets on COVID-19 posted between
Mar’2020 to Jul’2021 by fine tuning BERT
model.

• Using diachronic embeddings, we detect the
transition in manifestations of conceptual
metaphors as the pandemic progressed.

• We study the hypothesis if the conceptual
metaphor WAR has an affective influence on
COVID-19 discussion on Twitter.

The rest of the paper is organized as follows. We
discuss the prior works on conceptual metaphors in
context of the ongoing global pandemic in Section
2. We describe data collection and the procedure
to frame different conceptual metaphors in Section
3. Section 4 discusses the evolving interpretation
of mappings as well as the role of WAR metaphors
on COVID-19 discourse. We conclude our work in
Section 5.

2 Related Work

Wicke and Bolognesi [2020] studied the source
domain WAR and how its pervasive nature when
describing diseases, plays a role in the COVID-
19 dialogue. Prior research discusses the role
of conceptual metaphors in moulding public per-
ception in India [Rohela et al., 2020, Wagener,
2020]. Das [2020] describes the crisis and wrath
faced by marginalized sections of society due to

WAR centered analogies by the Government of In-
dia. The readers are encouraged to refer [Rai and
Chakraverty, 2020] to know more about metaphors
and theories.

Our work differs from the existing works in mul-
tiple ways. First, our work focuses on the COVID-
19 metaphors of India. We detect metaphorical
tweets and also label the underlying conceptual
mapping. We study the transition in the linguistic
metaphors as the pandemic progressed. Taking in-
spiration from WEAT [Caliskan et al., 2017], we
measure affective influence of metaphorical tweets
on COVID-19 discourse as well as see if WAR
metaphors indeed present a grimier picture. To the
best of our knowledge, this is the first computa-
tional approach designed to understand metaphori-
cal themes in India during the pandemic.

3 Discovering Metaphors of COVID-19

3.1 Dataset

Twitter is a micro blogging platform, used widely
during the pandemic to express one’s feelings and
seek help. We extracted Indian tweets on COVID-
19 posted between March’20 to July’21 using
snscrape3 library. A tweet is considered a COVID-
19 tweet if it has at least one COVID-19 related
hashtag such as #coronavirus, #covid19, #quaran-
tine, #covid 19, #vaccine, #TogetherAgainstCovid
etc. To ensure that the extracted tweets are from
India, we check if the location attribute within the
tweet object pulled by snscrape contains ”India”.
Our dataset comprises of over 1.3M tweets.

3.2 Filtering literal tweets

To filter out literal tweets, we fine tuned a BERT
model [Devlin et al., 2018]. Two human annota-
tors were asked to tag a random subset of collected
tweets into categories metaphor and not metaphor,
for the task of finetuning. Both annotators are un-
dergraduate students aged between 19 − 22, pro-
ficient in English with sufficient knowledge of In-
dian society. The guidelines shared with annotators
to identify metaphors in tweets is as described by
Pragglejaz group [Group, 2007]. Below are the
steps:

• Read the text to get a general understanding
of the meaning

• Determine the lexical units
3https://pypi.org/project/snscrape/
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– Establish the contextual meaning of the
unit

– Determine if it has a more basic meaning

• Does the contextual meaning contrast with
the basic meaning but can it be understood in
comparison with it?

• If yes, mark the unit as metaphorical.

A total of 3.7K tweets were tagged by annota-
tors, out of which 1.8K were marked as metaphor-
ical. We obtained Cohen’s kappa of 0.719 on a
common sample of 100 tweets indicating good re-
liability of annotation. The hand annotated dataset
of tweets is available at link4.

We split this dataset into a training set with 3006
tweets, test and validation sets with 376 tweets
each. On finetuning BERT for 25 epochs with a
learning rate of 2e−5, we obtained an accuracy of
74.4% on the validation set. On the test set, we
achieved accuracy of 72.6% with a precision of
77% and recall of 67%.

We used this finetuned model to identify
metaphorical tweets from the dataset collected in
Sec. 3.1. Out of almost 1.3M tweets, the sys-
tem predicted 264K tweets as metaphorical. We
hereafter indicate this set of metaphorical tweets as
M0.

3.3 Framing the source domain
The next task is to derive a list of conceptual
metaphors used in COVID-19 metaphorical tweets
from India. #ReframeCovid5 is one such ongo-
ing open-source work which collects metaphorical
mappings present in global COVID-19 tweets and
related media.

For our study, we created a list of metaphori-
cal mappings S0 (of the form SOURCE DOMAIN
is TARGET DOMAIN) inspired from #Reframe-
Covid along with the manual analysis of major In-
dian newspaper headlines on COVID-19 published
during Mar’20-May’21. Few examples are VAC-
CINE is SHIELD, COVID-19 is TEACHER and
PANDEMIC is SPEEDBREAKER. The complete
list of mappings is available at link4.

Prior works [Choi and Lee, 2019, Wicke and
Bolognesi, 2020] used websites6 to extract lexi-
cal units that they then use to frame the source

4https://github.com/makflakes/
Covid-Metaphors-of-India/tree/main/data

5https://sites.google.com/view/
reframecovid/initiative

6www.relatedwords.org

domains. However, we found that the these lex-
ical units are not used commonly in Indian En-
glish. We thus use pretrained word2vec embed-
dings [Mikolov et al., 2013] to expand the set of
relatable lexical units/concepts close to a source
domain s ∈ S0. We train a word2vec skip-gram
[Mikolov et al., 2013] model on the 264K tweets
in M0 to derive the lexical units . We define lower
and upper thresholds for cosine similarity to filter
out overly specific as well as generic concepts. The
thresholds are decided empirically. The set Ps de-
notes the set of lexical units that we use to frame
source domain s ∈ S0. Below are few lexical units
from the set Pwar:

fight, battle, defeat, enemy, soldier, menace, bi-
ological war, weapon, battlefield, soldier, defend,
warfare, bio war, unseen enemy, hero, confronta-
tion, army, combat, biowar, invasion, biowarfare,
destruction, war, attack, superpower, destruction,
fighting, standoff, invisible enemy, invade, invasion

We manually filter the list to make it contextually
suitable for COVID-19 discourse. For instance, the
above list for the source domain WAR comprises
of words such as menace, hero, superpower which
was used in literal sense while discussing the pan-
demic. Therefore, these words are removed from
the list. This forms the basis for identifying un-
derlying source domains in Indian metaphorical
tweets.

3.4 Identifying Conceptual Metaphors in
Tweets

In this section, we describe our approach to identify
the inherent conceptual mapping that is, TARGET
DOMAIN is SOURCE DOMAIN in the tweets.

3.4.1 Labeling Source domain
We categorize a tweet t to source domain s ∈ S0
if t consists a word w ∈ Ps. There is a possibility
that a tweet may have words related to two or more
source domains. For our analysis, we have elimi-
nated these tweets and will only be utilising tweets
that uniquely indicate a particular source domain.
Below are few example tweets:

“ A storm is coming. Brace yourselves. Impact
on Indian economy will be severe. I have started
studying and will write a detailed article on it. Will
publish soon. #coronavirusindia”. - COVID-19 is
STORM

“In a #World divided by #religion, greed and

433



Table 1: Top-10 Source Domains

Source Domain #Tweets
WAR 48415
MONSTER 2884
SUCCESS/CHALLENGE 1382
LESSON/TEACHER 1252
STORM 1213
DARKNESS 1080
PUNISHMENT/BANE 851
PRISON 851
LUXURY 602
CATALYST 542
SAVIOR 486
SHIELD/BARRIER 426

inflated egos, it took an invisible virus to instill a
common fear. And we still believe that #human be-
ings are the most intelligent species on this planet.
#coronavirus” - COVID-19 is DARKNESS

“Janata Curfew on 22nd March 2020 from 7
AM to 9 PM AND ”Ghantanad” on 5 PM, which
will help Indians to fight against the corona viruse.
It will help to kill the devil” - COVID-19 is MON-
STER

We list the Top-10 source domains on the ba-
sis of their volume in M0 in Table. 1. It may be
noted, this list is derived using s ∈ S0. It is thus
possible that there are undetected source domains
s /∈ S0 with metaphorical tweets in our dataset.
From Table. 1, we observe that WAR is the most
often used source domain to describe COVID-19 re-
lated events. Source domains such as MONSTER,
CHALLENGE, LESSON, STORM also contribute
significantly to the discourse.

3.4.2 Assumption regarding target domain
Since the tweet extraction process focused only
on tweets with COVID-19 related hashtags, it is
safe to assume that all tweets are inherently de-
scriptors of COVID-19 and related dialogue. We
initially considered segregating tweets with vac-
cine related hashtags to the target domain VAC-
CINE. We discovered a total of 3701 metaphorical
tweets on VACCINE. On careful analysis, we dis-
covered that tweets tagged with VACCINE related
hashtags, were also essentially reconceptualizing
COVID-19/PANDEMIC. Few such tweets are pro-
vided below.

“Another deadly wave of Covid19 is ravaging
countries including India Stricter observance of

anti Covid protocol and stepping up vaccination
manifold are urgently called for to face the cri-
sis #tkan #vaccine” - VIRUS/COVID-19 is MON-
STER

“Got vaccinated today with first dose of in-
digenously developed #Covaxin Thank you naren-
dramodi. Thank you all the scientists who worked
hard to invent the vaccine in record time. To-
gether India will defeat COVID-19.” - COVID-19
is WAR/VIRUS is ENEMY

Due to the plentiful presence of such tweets in
the VACCINE targeted set, we decided to go ahead
with COVID-19 as the sole target domain for fur-
ther analysis.

4 COVID-19 Metaphors of India

4.1 Evolving Conceptual Mappings

As the pandemic progressed, the conceptual map-
pings describing COVID-19 also evolved. Consider
the topic of VACCINE, which was initially concep-
tualized as a WEAPON7 to decimate the enemy,
COVID-19 virus. Later, VACCINE evolved into a
PASSPORT/TICKET8 to freedom which allowed
unrestricted movement and gradually, it metamor-
phosed to LUXURY9 which was rare and accessi-
ble to only few.

In this section, we study the evolving concep-
tualization of COVID-19 through the notion of
semantic shift. To compute semantic shift, the
standard approach is to first slice a corpus with
respect to time. The granularity for time slicing
may vary depending on the problem statement.
For our analysis, we consider the duration (a) t0:
during lockdown i.e. Mar’20 to Jun’20 (b) t1:
post lockdown i.e. July’20 to Oct’20 and (c) t2:
second wave i.e. Mar’21 to Jun’21. Given cor-
pora C = [Ct0 , Ct1 , Ct2 ], the task is to analyse
the change if any in semantic neighbourhood of
COVID-19. Here,Cti indicates the set of metaphor-
ical tweets posted during the time interval ti.

On slicing the set of metaphorical tweets M0

from Sec. 3.2, Ct0 has 136K tweets, Ct1 has 39K
tweets andCt2 contains 65K tweets. We learn word
embeddings using word2vec skip-gram architec-
ture [Mikolov et al., 2013] for the first phase using

7The Hindu, May 26, 2021. ”Vaccination is our only
weapon” available at LINK

8The Diplomat, July 12, 2021. ”Vaccine Passports: Ticket
to Freedom or Path to a Divided World? ” available at LINK

9Quartz India, Aug 2, 2021. ”India’s vaccine supply is a
curious mix of abundance and shortage” available at LINK
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(a) Lockdown (b) Post Lockdown

(c) Second Wave

Figure 1: t-SNE representation of diachronic word embeddings

time-specific corporaCt0 . Here, the vectors are ran-
domly initialized. For next two phases, we update
the embeddings initialized with the embeddings
learnt from the previous phase. In order to com-
pare word vectors from different time-periods, we
align word vectors to the same coordinate axes us-
ing orthogonal Procrustes [Hamilton et al., 2016].

4.1.1 Analysis

To analyze the semantic shift in the conceptualiza-
tion of COVID-19, we plot the t-SNE visualization
[van der Maaten and Hinton, 2008] in Fig. 1 for all
phases.

Fig. 1-a visualises the semantic concepts re-
lated to COVID-19 based on tweets posted in t0
phase. Fear and determination are reflected from
the metaphors such as scare, fear, panic, worry,
deadly, dangerous and combat, win, threat defeat,
protect respectively used in this phase. COVID-19
is conceptualized as MONSTER, and even as an
OBSTACLE/GAME (challenge, overcome, strike,
tackle). This overview is consistent with the mixed
feelings of fear and hope in the early stages of
COVID-19 in India.

The post lockdown embeddings are aligned on
t0 embeddings. We present covid related concepts
for this period in Fig. 1-b. Metaphors such as fight,

call, win, race are getting closer to COVID-19
indicating the positive attitude. MONSTER related
words such as fear, scare, deadly are moving away.
BARRIER metaphors such as shield and other units
such as nature, shame, ruin start to appear in this
phase.

Concepts related to covid from the Second wave
embeddings aligned on t1 are depicted in Fig. 1-c.
Defensive WAR metaphors such as failure, lose,
tough and shield are getting closer. DARKNESS
related metaphors such as grim, vanish, invisible
can be seen. MONSTER related metaphors have
come closer when compared to Fig. 1-b. Orienta-
tional metaphors such as fall, and surge are also
present.

4.2 Linguistic Metaphors

To identify linguistic metaphors of each phase, we
extracted the top-1000 words closest to covid19
from each of these phases. We manually go through
this list to identify linguistic metaphorical units.
Relevant tweets were retrieved when needed to sub-
stantiate the metaphoricity and rule out the literal
use. We present these linguistic metaphors in order
of increasing distance from covid19 in Table 2.

The foremost observation is the pronounced pres-
ence of WAR metaphors across all phases. This
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Table 2: Linguistic Metaphors of COVID-19

Phase Linguistic metaphors (w.r.t cosine distance from COVID-19 in vector space)

Lockdown (t0) fight, indiafightscorona, battle, crisis, deadly, break, war, defeat, support, control, win, combat,
attack, force, team, protect, hide, coronawarrior, threat, kill, dangerous, suffer, prepare, impact,
isolation, hit, border, hell, solution, strategy, survive, fighting, coronafighter, unite, develop,
strength, scary, destroy, isolate, disaster, tackle, scare, beat, deadly virus weapon, soldier, fighter,
shut, shame, lesson, cover, enemy, scared, win battle, win war, danger, devastating, catch, surge,
tracking, deep, victory, vulnerable, evil, cut, surpass, giant, expose, break chain, boom, unlock,
push, hail, chain, flatten curve, heal

Post-Lockdown (t1) indiafightscorona, break, stand, block case, battle, line, strong, support, war, combat, save,
warrior, frontline, duty, fighter, leader, play, win, strategy, fear, hit, control, covidwarrior, scary,
deadly, attack, base, push, tackle, brave, hell, team, force, defeat, game, fall, race, power, action,
united, build, struggle, beat, dangerous, kill, strike, panic, powerful, peak, danger, stage, crusader,
frontline warrior, tough time, scared, deadly virus, deep, crisis, hide, throw, win battle, lose life,
rage, threat, grim, nightmare, block, havoc, unlock, fire, fighting, flood, wall, victory, impact,
kick, boost, storm, invisible, weapon, disaster, shoot

Second Wave (t2) battle, support, deadly, crisis, strong, win, suffer, defeat, hit, indiafightscovid, handle, dangerous,
safety, warrior, control, strength, protect, overcome, fear, difficult, attack, tough time, hard,
scary, war, kill, struggle, win battle, tough, scare, pain, beat, peak, panic, strike, grim, catastro-
phe, save life, unite fightcorona, hell, shame, difficult time, lose life, combat, frontline worker,
stay united, devastating, disaster, wake, hero, breakthechain, powerful, shift, destroy, fighting,
deadly virus, indiafightsback, blast, tackle, seek, shocking, dip, weapon, force, rule, front-
line warrior, game, chance, strategy, decline, hang, target, lightly, enemy, border, wish speedy,
lose battle, threat, loss, shall pass, push, catch, build, breach, blame, player, rage, bio bubble,
shock, frontline, hit hard, nightmare, gloom, danger, tsunami, tear, kick, casualty, terrible, brutal,
lethal, mark, pressure, devastate, devastation,

includes enemy, fight, defeat, attack, weapon, bat-
tle, casualty etc. We further note the presence
of domains including MONSTER (deadly, scary,
giant, fear), GAME (team, race, tackle, push,
player, strike), STORM/DISASTER (crisis, dev-
astate, havoc, flood, hail, tsunami), DARKNESS
(hide, cover, nightmare, gloom, grim, invisible),
HAMMER (beat, flatten curve, hit, impact) and
ACCIDENT (chance, rage, shock). There are also
other metaphors such as dip, surge, blast, tear, kick,
build, shame, hell, evil, heal, chain, deep in the
corpus.

During t0 phase, the closest words are fight, bat-
tle, crisis, deadly, break, war, protect, hide etc. It
may be noted that India had only few reported cases
of COVID-19 in comparison to t1 phase. Never-
theless, the metaphors are relatively grim and fear
inducing. The fear of unknown and the lack of con-
fidence on Indian healthcare might be the reason
behind these overly gloomy tweets.

We note increased use of GAME metaphors in
t1 phase when compared to other two phases. It
may be noted that Post-Lockdown is the phase
where India faced the first wave of COVID-19.
COVID-19 is discussed using concepts such as
race, action, kick, team and block. Moreover, even
WAR metaphors are used in more authoritative fash-
ion when compared with the Second Wave phase.
This indicates the transition in lexical manifesta-

tions of WAR metaphors while discussing COVID-
19. Metaphors such as duty, strategy, push, tackle,
brave, fighter, crusader convey a sense of control.
The metaphors used in this phase indicate a more
confident and controlled reaction to the pandemic
in comparison to t0 and t2 phases.

We see the highest volume of metaphors in
Second Wave phase. There are more negative
metaphors such as battle, deadly, crisis, suffer, de-
feat, dangerous closer to COVID-19 when com-
pared with the previous two phases. There are also
increased occurrence of DISASTER/DARKNESS
metaphors such as grim, catastrophe, devastating,
disaster, panic, nightmare, gloom, danger, tsunami
etc. We also note metaphors such as breach, blame,
rage, pressure from GAME domain indicating the
shift in meaning of GAME metaphors. There is a
clear difference in the underlying emotional tone
of metaphors when compared with t1 phase. The
first wave (t1) definitely saw a controlled strategy
with manageable COVID-19 cases whereas the
second wave (t2) witnessed more suffering, panic
and lack of control which is also evident from the
metaphors.

4.3 Impact of WAR metaphors on COVID-19
online discourse

To better understand the role of WAR metaphors
in COVID-19 discourse, we analyse if metaphors
based on WAR mapping indeed paint an overly
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grim picture contrary to the true reality of COVID-
19 in India. We take inspiration from Word Em-
bedding Association Test (WEAT) proposed by
Caliskan et al. [2017] to identify the polarity of as-
sociativity between WAR metaphors and COVID-
19 concepts. We define our hypothesis Ha as “
WAR has an affective influence if COVID-19 con-
cepts show associativity towards negative or posi-
tive attribute sets.” The null hypothesis Ho there-
fore is “ WAR metaphors have no affective influ-
ence on the meaning of COVID-19 concepts.”

Let Do be the dataset of non-metaphorical In-
dian tweets as predicted by the fine-tuned BERT
model in Sec. 3.2. Let Ds be the set of predicted
metaphorical tweets belonging to source domain
s ∈ S0. For our analysis, we first learn word em-
beddings using skip-gram word2vec model on the
dataset Do. These representations will serve as the
baseline for our analysis. We fine tune the learnt
embeddings usingDs to capture if there is a change
in the meaning of COVID-19 concepts due to the
source domain s.

For analysis, let X be the set of COVID-19 tar-
get words, and P, N be the attribute sets namely
positive and negative respectively. We define
δ(X,P,N) as the differential association of the
target words embeddings for x ∈ X trained on Do

and Do +Ds with the attribute sets P and N as in
eq. 1.

δ(X,P,N) =
∑

x∈X
f(~xo,P,N)−

∑

x∈X
f(~xs,P,N)

(1)
where

f(x,P,N) = µp∈P cos(x, p)− µn∈N cos(x, n)

• ~xo refers to the embeddings for x ∈ X learnt
on Do

• ~xs refers to the embeddings for x ∈ X fine
tuned on Ds

• µ indicates mean,

• cos(~a,~b) denotes the cosine similarity be-
tween the vectors ~a and~b.

Each word in sets X,P and N has occurred
at least 20 times in both corpus and are provided
below:
X = { covid, corona, virus, lockdown, pandemic,

coronavirus, health, hospital }

P = {hope, faith, strength, unite, support, care,
survive, recover}
N = {death, panic, struggle, concern, stress,

chaos, shortage, oxygen}
Using permutation test for sampling, we discov-

ered that the domain WAR is more close to attribute
set P with p-value of 0.98. We reject our hypoth-
esis Ha due to high p-value. It is thus not evi-
dent from our experiments that WAR metaphors
have statistically significant affective influence on
COVID-19 domain. We further performed this
analysis specifically for tweets posted during t2
phase. However, our experiments did not reveal
any affective influence exercised due to metaphors
on the understanding of COVID-19. In future, we
aim to design extensive experiments to understand
the affective influence of different metaphorical
themes on COVID-19 discourse.

5 Conclusion

Collecting data for any figurative text related task
is a big challenge. Through this study, we release
a hand-annotated set of 3.7K Indian tweets for
metaphor related research. A wide variety of con-
ceptual mappings were used in Indian newspapers
while reporting COVID-19 situation in India. Nev-
ertheless, we see a handful of these conceptual
mappings in Indian tweets. WAR, MONSTER,
DARKNESS and GAME are the most prominent
conceptual metaphors in Indian tweets. Our results
reveal the shift in the use of conceptual metaphors
as the pandemic progressed. Despite intense dis-
cussions on the appropriateness of the conceptual
mappings used during the pandemic, it is not evi-
dent from our experiments if WAR indeed led to
an overly negative understanding of COVID-19 in
India.
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Abstract 

Fake news, one of the important topics of 

recent trends causes serious problems to 

common people and even organizations in 

general by spreading its threads in terms 

of news and social messages. The scenario 

becomes vulnerable while we deal with 

health issues like COVID19. Thus, in the 

present task, we have collected the tweet 

data on COVID19 of seven different 

languages. We employed two types of 

model, one works in a language dependent 

way whereas the other one aims to 

investigate various language independent 

issues. We received better results in 

language independent model for the 

languages like English, Hindi and Bengali. 

Results of European languages like 

German, Italian, French and Spanish are 

comparable in both language dependent 

and independent models. 

1 Introduction 

In our day-to-day world, we humans mostly 

generate unstructured data and mostly the textual 

data in a large scale. While utilizing information 

grounded in such textual data, our efforts become 

useless when we stuck in handling fake news or 

misinformation. We observe three main different 

types of news – legitimate news, fake news and 

satirical news and all these news differ with 

respect to two parameters; authenticity and intent. 

If authenticity of news is not verifiable or false 

and its intent is to mislead the readers, then it is 

known as fake news. On the other hand, if 

authenticity of the news is verifiable or true and 

its intent is to convey or spread the authenticity to 

the readers then it is known as legitimate news. 

Finally, if authenticity of news is not verifiable or 

false and its intent is oriented towards 

entertainment, then such type of news is known 

as satirical news.  

In the present approach, we have 

considered only fake and non-fake news. Here 

we use linguistic features for detecting fake news. 

We tried to detect fake news in language 

dependent and independent both ways. We have 

also checked which features are more important 

than others in detecting fake news for a particular 

language. 

 Our remaining paper is divided into 

different sections. In Section 2 we will see some 

studies or previous works related to fake news 

detection. In Section 3 we will see our dataset, 

upon which we performed this research work. 

After that in next Section we will discuss methods 

or model architecture. In Section 5 we discussed 

about result and error analysis and lastly in 

Section 6 we draw a conclusion and discussed 

about future works. 

2 Related Work 

Misinformation is currently one of the balmy 

topics of last six to seven years. In this Fake 

news field particularly many researches are 

already been executed and many are currently 

also going. Researchers suggested many 

different ways of detecting fake news. If we 

generalize them, then we can come to a 

conclusion that we can detect a news fake or not 

based news content or social context. These are 

the only two generalize way of detecting fake 

news. We can call these two ways – a) news 

content model, and b) social context model. 

Again there are two divisions of news content 

model based upon which we can detect a fake 

news – a) knowledge based detection, and b) 

style based detection. For knowledge based 

method everything is depend on a knowledge 

base that we extracted from the news. After 

creating that knowledge base we have to 
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compare it with some reliable source to check its 

authenticity. In style based method we mainly 

focus on linguistic features and based on that we 

predict the news. Like news content model social 

context model also divided in two categories, 

based on which we can detect a fake news – a) 

propagation based techniques, and b) credibility 

based techniques. In case of propagation based 

method, we have to find propagation path of the 

news on the social media and have to track the 

original source of the news. But for credibility 

based method, we have to find the various 

relationship between news article and users, 

publishers, posts, shares, comments etc.  

Several researchers have explored the 

area into different ways. George et. al. uses 

different types of machine learning algorithms 

like SVM, Naïve Bayes, KNN etc. upon 

contextual features and linguistic features to 

detect fake news. In contrast, Perez-Rosas et. al. 

analyse seven different types of news domains 

and also analyse their linguistic differences in 

both fake and neutral news and also compare 

characteristics of different domains. Whereas 

Bedi et. al. uses knowledge based fake news 

detection mechanism. He creates a knowledge 

database first and then compare it to authorized 

news database to verify fake news and neutral 

news. Dey et. al. follows style based detection. 

So he first extracted features and then analyse 

the linguistic patterns and then apply KNN 

algorithm to classify news. Uppal et. al. propose 

discourse level analysis for deception detection 

of news documents.  

However, these above mentioned 

techniques have one problem that is they can 

detect the fake news of a particular language and 

particular domain. But, one of the important 

issues is that whether we can detect it in a 

language independent fashion or not. Therefore, 

in the present attempt, one of our aims is to 

detect the fake news in language independent 

way. Moreover, none of the above mentioned 

approaches deal with less computerized and less 

resourced language like Bengali. Here, in the 

present task, we have developed dataset as well 

as explored the detection techniques for Bengali 

along with English, Hindi and other European 

languages.  

 

3 Dataset Preparation 

Undoubtedly, the term fake news comes into our 

mind while we think of social media. Thus, we 

aimed to collect data from a social media like 

twitter. We also collected newspaper data from 

different languages like English, Hindi and 

Bengali.  

Already there is a popular multilingual 

fake news dataset present in covid19 domain, but 

this dataset does not contain German and Bengali 

languages and secondly size of our dataset is 

much larger than this dataset. In case of 

newspaper data, we crawled sentences (mostly 

news) from various web sources and manually 

labeled them. We crawled Bengali sentences from 

‘ABP Ananda1’ and Hindi sentences from ‘Abp 

News2’ and ‘Aajtak3’, as well as ‘Twitter4’.  

In case of collecting data for European 

languages, we considered the data available in the 

CLEF shared task by participation.  

In addition, we have collected COVID19 

twitter data from 15th March, 2020 to 15th May 

2020 of 7 different languages (German, Italian, 

French, Spanish, English, Hindi and Bengali). We 

collect our COVID19 related data from twitter 

using tweet-scrapper library. It has been observed 

in preliminary study that fake news datasets are 

always skewed because the frequency of real 

news data are much more than fake news data. 

Thus, we tried to maintain a similar ratio of fake 

and real news in each of the languages. However, 

we were able to collect very less number of fake 

tweets in Bengali and Hindi in COVID19 domain. 

Thus, in order to train the models for Bengali and 

Hindi, we had to add more data from other 

domain as well.  

When we started collecting our dataset from 

twitter, we have the following tweet filtering 

feature options like ‘tweet_id’, 'hashtags', 

'has_media', 'is_replied', 'is_reply_to', ‘img_urls’, 

'links', 'likes', 'parent_tweet_id', 'replies', 

'reply_to_users', 'retweets', 'screen_name', 'text', 

'text_html', 'timestamp', 'timestamp_epochs',  

'tweet_url', 'user_id', 'username' and 'video_url'.    

But among these feature columns, we used 

only the ‘text’ column and extracted textual 

features which we employed in our language 

dependent model. Some of such textual features  

are 'label', 'word_count', 'char_count', 

'word_density', 'punctuation_count', 

'title_word_count', 'upper_case_word_count', 

                                                           
1 https://bengali.abplive.com/ 
2 https://www.abplive.com/ 
3 https://aajtak.intoday.in/ 
4 https://twitter.com/?lang=bn/hn 
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'noun_count', 'adj_count', 'verb_count', 

'pron_count', 'adv_count', 'other_POS', 

'sentiment', 'tags', 'tags_ORG', 'tags_PER', 

'tags_LOC',  'tags_MISC'. For annotating our 

dataset, we considered the help of factcheck.com. 

The detail statistics of the dataset are shown in 

Table 1.   

 
   Language Real  

# Sentence 

Fake  

# Sentence 

German 14155 302 

Italian 13270 507 

French 13318 300 

Spanish 12113 496 

English 11490 2097 

Bengali 1051 449 

Hindi 615 287 

 

Table 1: Number of tweet sentences available for 

each language 

 

4 Language Dependent Classification 

In order to investigate the roles of language to 

detect fake news, here each of the models and its 

input features are exclusive to that particular 

language. We employ different types of machine 

learning algorithms and also ensemble them in 

order to achieve better results by exploring the 

benefits of individual machine learning classifiers. 

Here we first extracted some features from the 

tweets. We here don’t use twitter specific features 

because we want our experiment to be on general 

purpose, instead of twitter specific fake news. 

Therefore, we use different types of open source 

libraries to extract different types of features from 

the text. Here, we have mainly conducted 

experiment upon 7 different languages. Among 

these 7 languages we collected our COVID19 

related data purely in 5 languages and for other 

two languages (Bengali and Hindi), we added 

data from other domain as the COVID19 data of 

these two languages were very less in number.  

From each text or tweet, we extracted a couple 

of features for different languages using different 

libraries. For English and European languages, we 

used spacy5 and polyglot library6. Like for French 

we have to download ‘fr_core_news_sm’ (which 

is exclusively for French). Finally, we had to 

                                                           
5 https://spacy.io/ 
6 https://polyglot.readthedocs.io/en/latest/ 

install spacytextblob library7. For Hindi language, 

we use nltk library8 and for Bengali language, we 

use Bengali-NLP library9. 

We extracted 17 different features (e.g., ‘word 

count’, ‘char count’, ‘word density’, ‘punctuation 

count’, ‘title word count’, ‘upper case word 

count’, ‘noun count’, ‘verb count’, ‘adjective 

count’, ‘pronoun count’, ‘adverb count’, ‘other 

POS’, ‘sentiment’, ‘tags_LOC’, ‘tags_MISC’, 

‘tags_PER’, ‘tags_ORG’).  

Classification algorithms are of three types, 

such as - binary classification, multiclass 

classification and multi-label classification. Here, 

we have used binary classification algorithms, 

because our output is between any one of the fake 

and real class. We have used Logistic Regression, 

KNN, SVM, Random Forest, XGBOOST, 

Ensemble Learning and Naïve Bayes to 

accomplish our goals. Here we take logistic 

regression based model as our baseline model. 

 

4.1   Feature Ablation Study 

 

In order to identify the importance of different 

features for different languages we use random 

forest algorithm (for entropy) and we also use 

correlation matrix for checking collinearity 

between features. Followings are some of the 

hints into that direction. 

 

English Language: For English language, we 

checked up to the top 15 important features. Here 

sentiment feature is the most important (more than 

0.3) and char count, word density features are the 

next to it (close to 0.05) and others are of very 

less important (less than 0.05). 

   

German Language: Here, the most important 

feature is sentiment (more than 0.6) and next to it 

is title word count feature (close to 0.1), which is 

very less important than sentiment and other 

features (less than 0.05) are of very negligible 

importance. 

 

Italian Language: For Italian language, the most 

important feature is sentiment (more than 0.6) and 

next to it is miscellaneous tag feature (less than 

                                                           
7 https://pypi.org/project/spacytextblob/ 
8 https://www.nltk.org/ 
9 https://github.com/sagorbrur/Bengali-NLP-Library 
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0.05) which is of very less important than the first 

one and other features are of very less importance. 

 

Spanish Language: Here, we can say that 

sentiment is the most important feature (more than 

0.8) and other features importance (less than 0.05) 

is close to 0, or we can say they are given no 

importance. 

 

French Language: For French language, 

sentiment is the most important feature (more than 

0.45) and then the adjective count feature (close 

to 0.05). This is also of very less important and 

other features (less than 0.05) are of negligible 

importance. 

 

Hindi Language: For Hindi language, we can see 

none of the features are that important because all 

features have values less than 0.1. But among 

these, ‘char count’ has the highest importance 

which is slightly greater than 0.07. 

 

Bengali Language: In Bengali language, noun 

count feature has the highest importance (value 

greater than 0.2) and other POS feature has also 

some importance (value 0.1). Char count, 

punctuation and pronoun count have some 

importance but those are very less. 

 

4.2     Results 

  

It was noticed that our data is highly imbalanced 

so accuracy should not be a good metric or score 

to measure the performance of the models or even 

to compare the models. Thus, we tried different 

types of scores like precision, recall, f1 score for 

every class and macro f1 score for both the 

classes as a whole. We also calculated AUC (Area 

Under Curve) for each model in each language to 

do a better comparison among the various models.  

 

Logistic Regression: In logistic regression model 

for real labelled data, the highest precision 

achieved is 0.99 for German and Spanish 

languages and the highest recall is 0.99 for 

German, Italian, Spanish, French and the highest 

F1 score is 0.99 for German, Italian and Spanish. 

In case of fake labelled data, our logistic 

regression achieved the highest precision of 0.83 

for German language and the highest recall of 

0.75 for Spanish and the highest F1 score of 0.79 

for Spanish. Overall, in case of both real and fake 

data consideration, we can say Spanish language 

gives the best result according to both Macro F1 

and AUC score.   

 

KNN: In KNN model for real labelled data, the 

highest precision is 0.99 for German, Italian, 

Spanish, French language and the highest recall is 

0.99 for German, Italian, Spanish and the highest 

F1 score is 0.99 for German, Italian, French and 

Spanish. In contrast, for fake labelled data, the 

highest precision is 0.89 for Spanish language and 

the highest recall is 0.92 for German, French and 

the highest F1 score is 0.88 for Italian. As a 

whole, by taking both real and fake data into 

consideration, German language gives the best 

result according to both Macro F1 and AUC 

score.   

 

SVM: Similarly, in SVM model for real labelled 

data, the highest precision, recall and F1 scores 

are 0.99, 0.99 and 0.99 respectively for German, 

Italian, Spanish, French languages. In SVM 

model for fake labelled data, the highest precision 

is 0.91 for German language and the highest recall 

is 0.97 for Spanish and the highest F1 score is 

0.92 for German. Overall, German language gives 

the best result according to Macro F1 and Spanish 

gives the best result according to AUC score.   

 

Random Forest: In random forest model for real 

labelled data, the highest precision, recall and F1 

scores were obtained for German, Italian, French 

and Spanish whereas for fake, the highest 

precision is 0.93 for German language and highest 

recall is 0.97 for Italian and the highest F1 score is 

0.94 for German and Italian both. It was found 

that German, Italian language gives the best result 

according to Macro F1 score and Italian language 

gives the best result according to AUC score.   

 

XGBOOST: In XGBOOST model for real 

labelled data, the highest precision, recall and F1 

scores were obtained for German, Italian, French 

and Spanish. In XGBOOST model for fake 

labelled data, the highest precision is 0.90 for 

German language and the highest recall is 0.96 for 

Italian and the highest F1 score is 0.91 for 

German, Spanish. Overall, Spanish language 

gives the best result according to Macro F1 and 

Italian  language gives best result according to 

AUC score. 
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Stacked Ensemble: Similarly, in stacked 

ensemble model for real labelled data, the highest 

precision recall and F1 scores were obtained of 

0.99 for German, Italian and Spanish.  In stacked 

ensemble model for fake labelled data, the highest 

precision is 0.92 for German language and the 

highest recall is 0.96 for Spanish and highest F1 

score is 0.93 for German. Finally, German 

language gives the best result according to Macro 

F1 and Spanish gives the best result according to 

AUC score.   

 

Naïve Bayes: In Naïve Bayes model for real 

labelled data, the highest precision is 0.99 for 

German, Italian, Spanish, French language and 

the highest recall is 0.99 for Spanish, Italian and 

the highest F1 score is 0.99 for Italian and 

Spanish. In Naïve Bayes model for fake labelled 

data highest precision is 0.82 for Italian, Spanish 

language and the highest recall is 0.93 for Spanish 

and highest F1 score is 0.87 for Spanish. Spanish 

language gives best result according to both 

Macro F1 and AUC score on both the classes.   

 

4.3     Error Analysis 
).   

 

Logistic Regression: In this section first we have 

to know two things Type-1 error and Type-2 error. 

Type-1 error is false positive and Type-2 error is 

false negative. For rest of the paper I will use T1 

error for Type-1 error and T2 error for Type-2 

error. 

Our main concern should be fake news because 

we don’t want to left out any of the fake news as 

real news. So we need basically recall value of 

fake labelled data. Here Spanish have highest 

recall of 0.752 for fake label. So we can say for 

logistic regression model Spanish language has 

least error in detecting fake news. 

 

KNN: For English language T1 error is 71 and T2 

error is 424. In German language T1 error is 13 

and T2 error is 7. For Italian language T1 error is 

19 and T2 error is 14. For Spanish language T1 

error is 13 and T2 error is 15. For French 

language T1 error is 36 and T2 error is 76. For 

Hindi language T1 error is 15 and T2 error is 38. 

For Bengali language T1 error is 22 and T2 error 

is 116. 

Our main concern should be T2 error because 

we don’t want to left out any of the fake news as 

real news. So we need basically recall of fake 

labelled data to calculate T2 error in relative way. 

Here German have highest recall of 0.92 for fake 

label. So we can say it has least relative Type-2 

error. 

SVM: For English language T1 error is 126 and 

T2 error is 304. In German language T1 error is 5 

and T2 error is 16. For Italian language T1 error is 

18 and T2 error is 6. For Spanish language T1 

error is 14 and T2 error is 5. For French language 

T1 error is 29 and T2 error is 15. For Hindi 

language T1 error is 13 and T2 error is 31. For 

Bengali language T1 error is 15 and T2 error is 

54. 

Here Spanish have highest recall of 0.966 for 

fake label. So we can say it has least relative T2 

error. 

 

Random Forest: For English language T1 error 

is 74 and T2 error is 223. In German language T1 

error is 7 and T2 error is 4. For Italian language 

T1 error is 15 and T2 error is 4. For Spanish 

language T1 error is 19 and T2 error is 8. For 

French language T1 error is 14 and T2 error is 8. 

For Hindi language T1 error is 15 and T2 error is 

31. For Bengali language T1 error is 28 and T2 

error is 98. 

Here Italian language have highest recall of 

0.97 for fake label. So we can say it has least 

relative T2 error. 

 

XGBOOST: For English language T1 error is 116 

and T2 error is 199. In German language T1 error 

is 9 and T2 error is 7. For Italian language T1 

error is 23 and T2 error is 6. For Spanish language 

T1 error is 14 and T2 error is 8. For French 

language T1 error is 19 and T2 error is 19. For 

Hindi language T1 error is 14 and T2 error is 32. 

For Bengali language T1 error is 36 and T2 error 

is 89. Here Italian language have highest recall of 

0.96 for fake label. So we can say it has least 

relative T2 error. 

 

Stacked ensemble model: For English language 

T1 error is 109 and T2 error is 249. In German 

language T1 error is 7 and T2 error is 6. For 

Italian language T1 error is 17 and T2 error is 12. 

For Spanish language T1 error is 19 and T2 error 

is 5. For French language T1 error is 19 and T2 

error is 20. For Hindi language T1 error is 11 and 

T2 error is 37. For Bengali language T1 error is 

17 and T2 error is 118. 

443



 
 

Here Italian language have highest recall of 

0.96 for fake label. So we can say it has least 

relative T2 error. 

 

Naïve Bayes: For English language T1 error is 

973 and T2 error is 161. In German language T1 

error is 96 and T2 error is 14. For Italian language 

T1 error is 29 and T2 error is 16. For Spanish 

language T1 error is 30 and T2 error is 10. For 

French language T1 error is 83 and T2 error is 18. 

For Hindi language T1 error is 38 and Ty2 error is 

18. For Bengali language T1 error is 53 and T2 

error is 31. 

Here Spanish language have highest recall of 

0.93 for fake label. So we can say it has least 

relative T2 error. 

 

5 Language Independent Classification  

Here, we have conducted experiments to see if we 

can detect fake news in language independent 

way or not. We here mainly focused on 

multilingual BERT model. This BERT model is 

already pre-trained on some different corpus. 

Therefore, we will first fine tune this multilingual 

BERT model with our different language corpora, 

then we received a fixed length embedded output 

through this model for each of the tweets, then we 

pass this output through the two layers of artificial 

neuron network of different unit size and at last 

we pass that output through the sigmoid layer. 

 

5.1   Model Architecture 

 

Here, we discuss about our independent language 

model architecture. First, in pre-processing step, 

we remove all urls and html tags. Then, we 

remove all emojis and emoticons present in the 

tweet. Now, we send these pre-processed tweets 

into BERT model as mentioned in the input 

format section of this thesis. After that, we choose 

to go with pooled output and then passed it 

through the 256 RELU units of artificial neural 

network (ANN) layer. Finally, we introduce 

dropout of 0.4. After that, we passed that through 

the 128 RELU units and lastly through the 

sigmoid unit which will give our ultimate output. 

 
 

Figure1: Independent model architecture 

 

5.2    Result 

 

In our language independent model for real 

labelled data, the highest precision is 0.99 for 

English, Italian, Spanish, French language and the 

highest recall is 100% for German and the highest 

F1 score is 0.99 for English, German, Italian, 

French and Spanish.  

In language independent model for fake 

labelled data highest precision is 100% for 

German language and the highest recall is 0.98 for 

French and the highest F1 score is 0.98 for 

German. Overall, by considering both the real and 

fake data, we can conclude that English and 

German language give the best result in Macro F1 

score.       
Langua

ge 

 F1 

score 

Macro F1 

score English Real 0.99 0.98 

Fake 0.97 

German Real 0.99 0.98 

Fake 0.98 

Italian Real 0.99 0.93 

Fake 0.88 

Spanish Real 0.99 0.97 

Fake 0.95 

French Real 0.99 0.94 

Fake 0.90 

Hindi Real 0.87 0.78 

Fake 0.71 

Bengali Real 0.86 0.68 

Fake 0.56 

 

Table 2: Results of Language Independent Models 

 

5.3   Error Analysis 

 

For English language, T1 error is 11 and T2 error 

is 17. In German language T1 error is 0 and T2 

error is 3. For Italian language T1 error is 22 and 
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T2 error is 13. For Spanish language T1 error is 5 

and T2 error is 7. For French language T1 error is 

22 and T2 error is 2. For Hindi language T1 error 

is 16 and T2 error is 17. For Bengali language T1 

error is 30 and T2 error is 69. 

Our main concern should be T2 (Type-2) error 

because we don’t want to left out any of the fake 

news as real news. So we need basically recall of 

fake labelled data to calculate T2 error in relative 

way. Here, in case of French language, the highest 

recall of 0.98 for fake label. So we can say it has 

least relative T2 error. 

 

6 Result Comparison  

After doing both language dependent and 

independent fake news detection, now we will 

compare both results. 

 
Languages Language 

Dependent 

Language 

Independent 

F1 

score 

Recall F1 

score 

Recall 

English 0.83 0.69 0.98 0.97 

French 0.93 0.92 0.94 0.98 

German 0.96 0.95 0.98 0.96 

Italian 0.96 0.97 0.93 0.91 

Spanish 0.95 0.97 0.97 0.95 

Hindi 0.66 0.69 0.78 0.71 

Bengali 0.67 0.66 0.68 0.48 

 

Table3: result comparison between two models 

 

Here, we compare our results based upon two 

parameters. Firstly, for all over performance we 

take F1 score as our parameter. Secondly, we take 

recall of fake class as our second parameter. We 

take this second parameter because we want to see 

how many of fake news are correctly predicted as 

fake news. Here, we give more emphasize on fake 

data over real or neutral data. In the above 

mentioned table, recall is for fake class. For 

English language, our independent model gives 

the better result in both parameters. For French, 

German, Italian and Spanish results of dependent 

and independent models are comparable in both 

parameters. For Hindi language, our independent 

model gives better results in case of both the 

parameters. It has also been observed that the 

Bengali language independent model gives better 

result in F1 score, but dependent model gives 

better result in recall value. 

7 Conclusion 

The present work deals with some of the modern 

day topics like fake news and COVID19. We first 

collect our data using various sources like twitter, 

newspaper and shared task. We analyse fake news 

in multilingual aspect and check how each model 

and language performs differently in each 

scenario. Though our data in Hindi and Bengali is 

very less but still we got some good results in 

some model. In future if we can get more data in 

Hindi and Bengali then we can build more 

concrete models upon these two languages. Here 

we also learn the basic architecture and concepts 

of BERT model which is one of the most popular 

pre-trained models of NLP. We build a language 

independent model using BERT multilingual 

which supports many languages. So with our 

collected data we just fine-tune BERT model with 

each language data. It produces some astonishing 

results. Though our data is less but it still gives 

very good results. In English, Hindi and Bengali 

language our language independent model 

outperformed most of the language dependent 

models. In case of European languages like 

German, French, Italian and Spanish both 

language dependent and language independent 

model performs very good and their results are 

comparable. One thing we should mention that in 

case of German language our language 

independent model predicted all real news 

correctly and only four fake news wrongly, which 

quite astonishing. 
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Abstract

This paper proposes a method to summarize
news events from multiple sources. We pose
event summarization as a clustering-based op-
timization problem and solve it using particle
swarm optimization. The proposed methodol-
ogy uses the search capability of particle swarm
optimization, detecting the number of clusters
automatically. Experiments are conducted with
the Wikipedia Current Events Portal dataset
and evaluated using the well-known ROUGE-
1, ROUGE-2, and ROUGE-L scores. The ob-
tained results show the efficacy of the proposed
methodology over the state-of-the-art methods.
It attained improvements of 33.42%, 81.75%,
and 57.58% in terms of ROUGE-1, ROUGE-2,
and ROUGE-L, respectively.

1 Introduction

The continuously rising amount of text data makes
analyzing and comprehending textual files tiresome
as technology progresses in a fast-changing fashion.
Capturing important information from large doc-
uments is a time-consuming and labor-intensive
job from the reader’s perspective. A large num-
ber of documents must be handled quickly, and
a large amount of text data necessitates the use
of text and document summarization algorithms.
However, the focus has been on single-document
summarization both for extractive and abstractive
variants with comparatively little advancements in
multi-document summarization.

Multi-document summarization techniques are
becoming paramount in recent years. There are
several real life applications of multi document
summarization like : scientific summarization (Ya-
sunaga et al., 2019) (Mishra et al., 2021d) (Mishra
et al., 2020), news summarization (Fabbri et al.,
2019), email thread summarization (Zhang et al.,
2021), summarization of product reviews (Gerani
et al., 2014), course feedback summarization (Luo

et al., 2016), Wikipedia article generation (Liu
et al., 2018), summarization of medical documents
(Afantenos et al., 2005).

Deep learning has gained a huge amount of at-
tention in recent years as a result of its success in
computer vision (Krizhevsky et al., 2012), natural
language processing (Devlin et al., 2014) (Mishra
et al., 2020), and multi-modal applications (Wang
et al., 2020) (Mishra et al., 2021b) (Mishra et al.,
2021a). Researchers use deep learning to solve
challenging problems because of its capacity to
capture highly nonlinear data relationships. Deep
learning-based models have recently been used in
multi-document summarization (Zhang et al., 2021)
(Fabbri et al., 2019) (Yasunaga et al., 2017), advanc-
ing the field of text summarization and allowing
models to improve their performances. Attempts to
utilise big deep learning models, which have con-
siderably improved the state-of-the-art for different
supervised natural language processing tasks, how-
ever, are hampered by a shortage of large datasets,
making a comprehensive evaluation impossible.
Even with larger datasets, compute resources and
the corresponding training time might also pose a
challenge in case of MDS (multi-document sum-
marization) since several documents have to be pro-
cessed. Moreover, for single and multi-document
summarization, meta-heuristics algorithms have
shown good results in previous studies (Mishra
et al., 2021d) (Saini et al., 2019a) (Saini et al.,
2019b) (Mishra et al., 2021c).

In this work, we have proposed a meta-heuristic
optimization technique-based multi-document sum-
marization methodology using Wikipedia Current
Events Portal (WCEP) dataset introduced in Asso-
ciation for Computational Linguistics (ACL), 2020
(Ghalandari et al., 2020). Major contributions of
this work are as follows:

• Employment of word mover’s distance
(WMD) (Kusner et al., 2015) to find the doc-
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ument center, it captures the semantic simi-
larity. The proposed approach(s) utilize the
word move distance (WMD) to capture the
semantic similarity of sentences. It’s worth
noting that WMD doesn’t require sentences
to be represented as vectors. It employs word
embeddings for various terms derived from a
word2vec model trained on the Google news
corpus, which comprises of 3 billion words
and each word vector has 300 dimensions. If
two phrases are similar, the WMD for each
will be 0.

• We have used the particle swarm optimization-
based clustering (PSO) (Kennedy and Eber-
hart, 1995) technique to cluster these news
event sentences efficiently. It decides the
number of clusters automatically within doc-
uments. This is the first effort to summarize
Wikipedia’s current event documents using
PSO-based clustering to the best of our knowl-
edge.

• To generate the summary, meaningful sen-
tences from different clusters are selected us-
ing sentence scoring features like sentence’s
position, sentence length, similarity with pa-
per’s title, and similarity with the document
center.

2 Related Work

To solve multi-document summarization, non-
neural and neural network-based methods have
been used in the literature.

Non-neural approaches have been widely used
in the literature for multi-document summarization.
In (Carbonell and Goldstein, 1998), authors have
used query relevance and maximum marginal rele-
vance to accomplish text summarization. They uti-
lized the maximum marginal relevance to maintain
anti-redundancy in generated summary. Authors
of (Radev et al., 2004) proposed a clustering-based
approach in which summary is generated using
cluster centroid. Apart from this, they proposed
evaluation techniques using subsumption and sen-
tence utility for single and multi-document sum-
marization. In (Erkan and Radev, 2004), an un-
supervised graphical method, LexRank, has been
proposed for text summarization. Here, the pro-
posed method accomplishes sentence scoring using
the graph-based method. LexRank finds the im-
portant sentences utilizing eigenvector centrality of

graph representation denoting sentences. Authors
of (Mihalcea and Tarau, 2004) have proposed the
TextRank method for text summarization; this is
based on page ranking methodology. In (Haghighi
and Vanderwende, 2009), a generative probabilis-
tic methodology to summarize multiple documents
is proposed. Here, the authors have proposed a
way of constructing a sequence of models using a
frequency-based model. In (Radev and McKeown,
1998), authors have developed a method ’SUM-
MONS’ that combines information from various
news articles and converts it into a summary. In
(Barzilay et al., 1999), multi-document summariza-
tion is accomplished by finding similar elements
across texts from different documents. A graph-
based summarization technique, namely ’Opinosis’
introduced in (Ganesan et al., 2010), generates a
precise abstractive summary from the redundant
opinion. A word-level and sentence-level ranking
based on various indicators of importance, keyword
extraction, and phrase-level salience (Hong, 2005)
(Cao et al., 2015), greedy heuristics on relation
graphs and embedding (Yasunaga et al., 2017) has
been used to solve the multi-document summariza-
tion.

Nowadays, supervised learning is used to solve
extractive and abstractive summarization problems.
But, limitation of supervised approaches is that it
requires a huge amount of data for training. An
attention with encoder-decoder based recurrent
neural network is introduced in (Nallapati et al.,
2016a). Here, authors have carried out abstractive
summarization over DUC and CNN/Daily mail
datasets. In (Cheng and Lapata, 2016), authors
have proposed a data-driven approach with a deep
neural network that incorporates the continuous
sentence features. They developed an architecture
consisting of a hierarchical document encoder and
an attention-based extractor. A sentence ranking-
based approach for single document summarization
is explored in (Narayan et al., 2018). Here, authors
have proposed a training methodology to optimize
the ROUGE evaluation metric using reinforcement
learning. A conditional recurrent neural network
has been employed for abstractive summarization
in (Chopra et al., 2016). Here, the convolutional
attention-based encoder ensures the conditioning
of the input sequence that helps the decoder to fo-
cus on relevant input words at each time step of the
summary generation. In (Nallapati et al., 2016b),
an extractive summarization of the document has
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been carried out using contrasting recurrent neural
network-based architecture. The proposed method
classifies the sentences in a sequential way that
decides whether a sentence should be accepted or
rejected to be included in the summary. Further,
a sentence selector selects a single sentence at a
time in random order to form the summary. A
sequence to sequence architecture for abstractive
summarization has been introduced in (See et al.,
2017). Authors have proposed a pointer generator-
based sequence to sequence model that can copy
a word from the source text that helps in generat-
ing an accurate summary. In (Paulus et al., 2017),
an intra-attention mechanism has been introduced
that attends the input sequence and generates the
output separately in a continuous manner. The au-
thors have also proposed a new training methodol-
ogy that utilizes reinforcement learning and super-
vised word prediction. Standard word prediction
is coupled with RL’s global sequence prediction
training, resulting in more comprehensible sum-
maries. Author of (Cohan et al., 2018) proposed
a architecture to learn discourse structure of the
documents. Apart from these, they also employed
an attentive discourse-aware decoder that can sum-
marize single and multiple documents. In (Ce-
likyilmaz et al., 2018), abstractive summarization
has been accomplished using deep communicat-
ing agents in the encoder-decoder model. Here,
the deep communicating agents divide the long
documents into smaller parts and assign them to
different collaborative agents. The collaborative
agents work as agents connected through a single
decoder which trains end-to-end using reinforce-
ment learning to generate a coherent and accurate
summary. In (Gehrmann et al., 2018), authors
have introduced a data-efficient content selector
that finds the phrase in the input document that is
important for the summary. This selector is em-
ployed as bottom-up attention to constraining the
model to similar phrases.

The limitation of the supervised approach (deep
learning model) is that it needs a huge amount of
data for learning. We often don’t have enough data
to train a supervised model in many instances. Mo-
tivated by this, we present an unsupervised method
for summarizing events in an extractive way from
recent news, which we evaluate on the WCEP
dataset (Ghalandari et al., 2020). It contains daily
news events and their corresponding summaries.
The proposed approach does not require massive

data, and it has consistent performance irrespective
of dataset size.

3 Proposed Methodology

This section has an overview of the proposed
methodology. Fig 1 and Algorithm 1 illustrate the
steps and pseudo-code, respectively. The notations
used in this section are defined in Table 1.

The proposed methodology is based on a nat-
ural phenomenon; at the end of its execution, it
generates a set of solutions. We get a set of opti-
mal solutions at the end. Here, a solution is made
up of a group of sentence clusters that have been
optimized (particle).

Particle swarm optimization (Kennedy and Eber-
hart, 1995) is a famous nature-inspired method that
was designed inspired by the social behavior of bird
flocks. It’s a population-based method of searching.
The method maintains a population of particles.
Every particle in this diagram represents a viable
optimization solution. A swarm comprises numer-
ous alternative solutions to an optimization issue
known as particles in the PSO framework. The
PSO algorithm’s goal, in this case, is to find the op-
timal particle position that produces the best fitness
value in terms of the objective function. We used
a PSO-based clustering approach with K-means
clustering to seed the original swarm. It entails the
following procedures:

1. Particle representation: Each particle chooses
K different sentence vectors as initial cluster
centroid vectors in the first step.

2. • Points are assigned to various clusters as
follows: Each phrase vector is allocated
to the centroid vector that is closest to it,
and then the fitness value is calculated
using Equation 5.

• Updation of position and velocity: In
order to create the new solution, the par-
ticle’s velocity and position are changed
using Equations 1 and 2.

3. Step 2 should be repeated until the termination
condition is met:

• The total number of iterations has been
achieved.

• There is a little change in the centroid
vector.
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Each particle in Nd dimensional space repre-
sents a position, and it moves throughout multi-
dimensional search space, changing its location in
reference to both:

• Particle’s best position found.

• Best position in the neighborhood of that par-
ticle.

The following information is maintained by ev-
ery particle:

• yi The particle’s personal best position.

• xi: The particle’s current position.

• vi The particle’s current velocity.

Using the notations above, the particle’s position
is modified according to

vi,k(t+ 1) = wvi,k(t) + c1r1,k(t)(yi,k(t)

−xi,k(t)) + c2r2,k(t)(ŷk(t)− xi,k(t))
(1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

Here, c1 and c2 is denotes the acceleration
constant, inertia weight is w, r1,j(t), r2,j(t) de-
note the random number between 0 and 1 where
k = 1, ...., Nd. Velocity is computed using three
components: (1) component denoting function of
particle’s distance from the personal best position,
(2) fraction of the previous velocity, (3) social com-
ponent representing the distance between particle
and best particle.

The particle’s personal best position is measured
as follows:

yi(t+ 1) = yi(t) if f(xi(t+ 1)) ≥ f(yi(t))

xi(t+ 1) if f(xi(t+ 1)) < f(yi(t))

(3)

Equation 1 denotes the global best version of
PSO, where at end global best solution is taken into
consideration, where ith particle’s neighborhood
has best particle ŷk.

A single particle describes the Nc centroid vec-
tors in the sense of clustering. Here, every particle
xi is formed, as follows:

xi = {mi1,mi2, .......mij , ........miNc} (4)

Here, mij corresponds to the centroid vector of
the jth cluster of the ith particle of the Cij cluster;
therefore, for the existing data vectors, a swarm
describes a set of candidate clusters. As a quantiza-
tion error, the fitness of the particle is calculated as
follows:

E =

∑Nc
j=1[

∑
∀Zp∈Cij

d(zp,mj)/|Cij |]
Nc

(5)

PSO begins with a swarm, which is a
collection of possible solutions (particles).
The particle Xi is made up of solutions
{mi1,mi2, .......mij , ........miNc} with vary-
ing numbers of clusters. Our assumption is
the solution, mij , would represent the centers
of the sentence clusters. However, this is a
challenging task to identify the number of clusters
in a document automatically. Because of this
complexity, each solution has a different number
of clusters, ranging from 1 ≤ K ≤M . M signifies
the number of sentences to be clustered, using K
number of clusters.

K-mean algorithm, with the current number of
cluster centers, is invoked for each solution. After
each iteration of the K-means algorithm, cluster
centroids/centers are modified, and this step is re-
peated until the centroids are converged. particles
change the velocity and position to obtain the best
fitness values. In the end, it automatically decides
the number of clusters as the algorithm terminates.

3.1 Summary Generation
The summary generation procedure is as follows:

• Document’s center identification: The sen-
tence with the lowest average WMD distance
is considered as the document center with re-
spect to all other sentences. The M number of
sentences are taken into account to determine
the average WMD for a sentence.

t = argmini

M∑

i=1

M∑

j=1,i ̸=j

wmd(si, sj)

A
(6)

Where, representative sentence or document
centre is t, M denotes the number of news
sentences , si, sj denote document’s ith and
jth sentence, respectively, A represents the
number of sentence pairs.
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• Cluster’s ranking in ith particle: The Co-
sine similarity computed between the cluster
centers and the document center are used to
rank clusters inside a particle in decreasing
order. In other words, cluster with the shortest
distance to the document center will be given
higher priority(higher rank) than others.

In order to generate the summary, sentences be-
longing to different clusters (high to low) must be
extracted as per their ranks.

Sentence scores are therefore assessed in each
cluster on the basis of four features. Those are the
similarity of sentence to the paper’s title, length of
the sentence, the position of the sentence, sentences
close to the document center, Descriptions of these
features are given below:

• Similarity with the paper’s title (F1): The sen-
tences which are semantically close to the doc-
ument’s title have given high scores (Saini
et al., 2019a). Firstly, these sentences are con-
sidered summary generation. This is defined
as follows:

F1 = wmd(ski , title) (7)

where, ski represents ith sentence of the kth

cluster, document’s title is represented by
title and distwmd is WMD between sentence
and document’s title.

• Position of the sentence (F2:) Essential sen-
tences can be found at the start of most para-
graphs/documents. These sentences can be
helpful to generate a good quality summary
(Saini et al., 2019a).

F2 =
1√
r

(8)

• Length of sentence (F3:) The length of sen-
tence has been used as a selecting criteria.
Here the sentence which are longer in the
length given higher priority over others (Saini
et al., 2019b) (Mishra et al., 2021d).

• Sentences close to the document center in
terms of WMD (F4): Sentences in each clus-
ter identical to the document center in terms
of WMD have been included first in summary
(Saini et al., 2019b) (Saini et al., 2019a).

Symbol Meaning
Nc Number of cluster centroids
xi Particle’s current position
t Time steps
vi Particle’s current velocity
Nc Cluster centroid vector
yi Particle’s best position
Nd Input dimension

vi,k(t+ 1) Updated velocity in k dimension
w weight of inertia
r Random number between 0 and 1
ŷ Best particle
m Centroid Vector

c1, c2 Acceleration constant
WMD Word mover’s distance

Table 1: List of abbreviations

Algorithm 1 WCEP EventSumm-PSO
1: Input: News event from Wikipedia Current

Event Portal
2: Output: Summary of the news events
3: Initialize each particle with Nc randomly se-

lected centroids.
4: for i← 1 to tmax do
5: for each particle i do
6: for each data vector zp do
7: Find the Euclidean distances

d(zp,mij) to all cluster centroids Cij

8: zp assigned to cluster Cij such that
d(zp,mij) = min∀c=1,........Nc{d(zp,mic)}

9: Calculate the fitness using Equa-
tion 5

10: Global and local best positions are being
updated.

11: Update the centroids of the clusters using
Equations 1 and 2.

12: Summary generation corresponding to
Global best solutions as discussed in section
3.1

Methods ROUGE-1 ROUGE-2 ROUGE-L
Similarity with the title (F1) 0.459 0.239 0.395
Position of the sentence (F2) 0.471 0.249 0.405
Length of the sentence (F3) 0.425 0.203 0.355

Similarity with the document center (F4) 0.442 0.221 0.376

Table 2: Score obtained with different features

4 Experimental Setup

This section has a detailed discussion on dataset
and evaluation metrics used.
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Figure 1: The process flow chart of the proposed method.
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Figure 2: The bar graph of obtained score with the
different features

4.1 Dataset

We use WCEP (Ghalandari et al., 2020) dataset for
the experimentation. The dataset contains 10,200
items from recent news events, as well as their
summaries. Train set, validation set and test set
consist of 8158, 1020 and 1022 respectively.

4.2 Evaluation metrics

The proposed approach is evaluated using the pop-
ular evaluation metrics ROUGE scores (Lin, 2004)
used for text and document summarization. This
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Figure 3: The bar graph showing comparison with the
state-of-the-art methods

score computes the overlapping n-grams between
the generated summary and the ground truth sum-
mary. F1-score, precision, and recall are commonly
utilized in the literature to do quantitative analysis.
The Rouge-F1 scores are shown in the Tables 2 and
Table 3 .

5 Result and Discussions

This section has a detailed discussion on results
obtained and their analysis. We have shown the
obtained score in Table 2 and comparison with the
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Methods ROUGE-1 ROUGE-2 ROUGE-L
TextRank 0.341 0.131 0.25

TSR 0.353 0.137 0.257
BertReg 0.35 0.135 0.255

Submodular 0.344 0.131 0.25
Submodular + Abs 0.306 0.101 0.214

Centroid 0.341 0.133 0.251
Proposed Method 0.471 0.249 0.405

Table 3: Comparison of the proposed method with the
state-of-the-art methods

state-of-the-art methods in Table 3.

5.1 State-of-the-art comparative baselines

We have accomplished the comparison with the
following state-of-the-art methods:

• TextRank: This is an unsupervised method
of text summarization (Mihalcea and Tarau,
2004). It is based on a graph-based ranking
model that perceives the most important sen-
tence and the keyword for the summary.

• Centroid: This methodology generates the
summary utilizing the cluster centroid gen-
rated by a topic detection algorithm (Radev
et al., 2004).

• TSR: This approach is based on sentence rank-
ing based on statistical feature an average
of the word embedding vectors (Ren et al.,
2016).

• BERTREG: This is similar to TSR method-
ology, but it uses the sentence embedding
produced by pre-trained BERT (Devlin et al.,
2019).

• SUBMODULAR: This method is based on the
submodular function that integrates coverage
and non-redundancy to find the important sen-
tence within the document to form the sum-
mary (Chali et al., 2017).

• SUBMODULAR + Abs: Abstractive based
approach sentence compression and metging
is incorporated in SUBMODULAR approach
(Chali et al., 2017).

5.2 Analysis of the Results:

We have shown the obtained score with different
features in Table 2 and comparison with state-of-
the-art methods in 3. It can be concluded from Ta-
ble 3 that the proposed methodology outperforms

the state-of-the-method. It can be seen from Ta-
ble 3 that TSR (Ren et al., 2016) has the high-
est score among all methods. The bar graph of
scores obtained with different features and com-
parison with the state-of-the-art is shown in Fig
2 and Fig 3 respectively. If, we compare with
the TSR method, the proposed method has the im-
provement of 33.42%, 81.75%, and 57.58% con-
sidering ROUGE-1, ROUGE-2, and ROUGE-L,
respectively.

6 Conclusion and Future Works

This paper presents a method of Wikipedia cur-
rent event summarization using a particle swarm
optimization-based clustering methodology. We
utilized the search capability of particle swarm op-
timization as an underlying optimization strategy,
an evolutionary algorithm. The proposed method
detects the number of clusters automatically. The
different feature has been employed for sentence
scoring within-cluster and to form the final sum-
mary. The efficacy of the proposed method has
been tested on the WCEP dataset. The obtained re-
sults show the effectiveness of the proposed method
over state-of-the-art methods. Compared to the best
method among the state-of-the-art, the proposed
method has the improvement of 33.42%, 81.75%,
and 57.58% in terms of ROUGE-1, ROUGE-2, and
ROUGE-L, respectively.

In the future, this work can be extended using
the ensembling of the clustering technique. Apart
from that, more sophisticated feature word mover’s
distance, BERT similarity, and textual entailment
can be utilized for a summary generation.
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Abstract

Fake news, misinformation, and unverifiable
facts on social media platforms propagate
disharmony and affect society, especially when
dealing with an epidemic like COVID-19. The
task of Fake News Detection aims to tackle
the effects of such misinformation by classify-
ing news items as fake or real. In this paper,
we propose a novel approach that improves
over the current automatic fake news detec-
tion approaches by automatically gathering ev-
idence for each claim. Our approach extracts
supporting evidence from the web articles and
then selects appropriate text to be treated as
evidence sets. We use a pre-trained summa-
rizer on these evidence sets and then use the
extracted summary as supporting evidence to
aid the classification task. Our experiments,
using both machine learning and deep learning-
based methods, help perform an extensive eval-
uation of our approach. The results show that
our approach outperforms the state-of-the-art
methods in fake news detection to achieve an
F1-score of 99.25 over the dataset provided for
the CONSTRAINT-2021 Shared Task. We also
release the augmented dataset, our code and
models 1 for any further research.

1 Introduction

The ability to consume readily available informa-
tion from the internet is alarming for both indi-
viduals and organizations. The quality of content
on social media platforms has been significantly
affected due to the spread of fake news, misinfor-
mation and unverifiable facts. The current tally
of internet users stands at 4.66 billion2 (Kemp,
2015); and many of these users generate, post
and consume content without any regulation, in

1https://github.com/rawat-mrinal06/
fake_news

2Internet Live Stats (as on 15-07-2021)

a large number of countries3. Due to the unre-
stricted nature of online platforms, there is a sig-
nificant increase in the amount of misinformation
on social media (Allen et al., 2020), especially in
developing nations (Badrinathan, 2020; Wasser-
man and Madrid-Morales, 2019). Studies show
that events such as the presidential election of the
United States in 2016 were affected due to moder-
ated fake news campaigns (Tavernise, 2016). Shu
et al.(2017) (Shu et al., 2017) propose that fake
news is intentionally written, verifiably false, and
is created in a way that makes it look authentic.
Manual efforts by other online platforms such as
Poynter4, FactCheck5, AltNews6 etc. to detect fake
news, requires a lot of human effort and can prove
to be cumbersome. Such manual efforts can be
time-consuming, challenging, and at times, can
also be ineffective as fake news can spread faster
than verified claims over social media platforms.

Automatic Fake News Detection is a task that
aims to mitigate the problem of misinformation
with the help of evidence supported by various
sources. Most of the approaches in this recently
devised task aim to use the classical machine
learning-based methods or the recent deep
learning-based methods to help classify news
items as fake or as real. Initially proposed methods
for the task applied machine learning-based
techniques but cited insufficient data as a major
concern (Vlachos and Riedel, 2014). Recent
deep learning and ensemble approaches (Malon,
2018; Roy et al., 2018) were proposed on the
FEVER (Thorne et al., 2018a) and LIAR (Wang,
2017) datasets, and have been shown to perform
very well. Studies have proposed a combination
of evidence detection with textual entailment

3Internet Censorship in Countries
4Poynter: Online
5FactCheck: Online
6AltNews: Online
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concerning the claim (Vijjali et al., 2020). FEVER
Shared Tasks (Thorne et al., 2018b, 2019) have
helped the automatic fact verification task gather
attention towards the problem and helped generate
approaches to mitigate the issues with previously
proposed solutions. This study shows that our
novel approach improvises over state-of-the-art
approaches and helps detect fake news related to
COVID-19. Our approach performs web-search
for evidence collection and uses BERT-score
similarity to match the unverified claim with the
top-k searches. Further, we propose the use of
summarization to mitigate problems with the
evidence collection. We summarize the top-n
selected lines from these articles and use them as
evidence to support or reject the news item claim.
Our experiments perform an extensive evaluation
of the approach over the datasets released as a part
of the CONSTRAINT-2021 Shared Task (Patwa
et al., 2020) shared task.

Our summarized contributions with this pa-
per are:

• We propose a novel approach to help automate
the evidence collection for any fake news de-
tection dataset.

• Additionally, we incorporate a summarization
component that helps outperform the state-of-
the-art approaches for automatic fact verifica-
tion on the CONSTRAINT-2021 dataset.

2 Related Work

Automatic detection and classification of fake news,
especially in epidemic situations like COVID-19,
is a significant issue for society. Most of the re-
cent works have identified that fake news is written
intentionally and factually false (Shu et al., 2017).
Several datasets have been released for the AI com-
munity in the field of fake news detection, such
as LIAR (Wang, 2017), Fake News Challenge-1,
and FEVER (Thorne et al., 2018a). Some recent
techniques extract the evidence from Wikipedia to
classify a claim as SUPPORTED, REFUTED or
NOTENOUGHINFO (Thorne et al., 2018a). They
formulate the problem as a three-step process (i)
first the top-k documents are identified based on the
TF-IDF based approaches (ii) then top-k sentences
are identified from the documents, and (iii) finally
the textual entailment based approaches (Parikh
et al., 2016) are used to classify the claim. Team

Papelo (Malon, 2018) used the Transformer-based
approach for the textual entailment and selected
the evidence-based on tf-idf and entities present
in the title. Hanselowski et al. (2018) selects the
documents and sentence using the entity mentions
and recognizes textual entailment using Enhanced
Sequential Inference Model (ESIM) (Chen et al.,
2017). Despite the several attempts, fake news de-
tection is a challenging problem and countering
fake news is a typical issue that requires continu-
ous studies. Recently, some researchers released
the datasets related to COVID-19 fake news detec-
tion. Shahi and Nandini (2020) (Shahi and Nandini,
2020) proposed the first multi-lingual cross-domain
dataset for COVID-19 that consists of 5182 fact-
checked news articles from Jan-2020 to May-2020.
They collected data from 92 different websites and
manually classified them into 23 classes. Kar et
al. (Kar et al., 2020) also released a multi-indic-
lingual dataset besides English to detect the fake
news in social media tweets. They obtained 480
tweets in Bengali and 460 tweets in Hindi. In addi-
tion to tweets, they also included several features
related to tweets such as retweet count, favourite
count, total URL in description, URL, friend list,
followers, etc. Recently, a very relevant dataset was
released by Patwa et al. (Patwa et al., 2020) which
consists of 10,700 tweets or claim collected from
various sources such as Twitter, PolitiFact, Snopes,
Boomlive. They experimented with various ma-
chine learning techniques like Decision Trees, Lo-
gistic Regression, SVM, Gradient Boosting DT and
achieved the F1-score of 93.32. Most of the pre-
vious work on COVID-19 dataset proposed an en-
semble approach of various models such as BERT,
RoBERTa, XLNet, etc. (Shifath et al., 2021; Raha
et al., 2021; Shushkevich and Cardiff, 2021). Chen
et al. (Chen et al., 2021) trained the model with
additional words such as covid-19, coronavirus,
pandemic, indiafightscorona since the BERT tok-
enizer will split these words into separate tokens.
Some works leveraged the fine-tuned models like
COVID-Twitter-BERT (CT-BERT) (Müller et al.,
2020) and demonstrated a boost in performance
(Li et al., 2021; Glazkova et al., 2020; Wani et al.,
2021). The fake news detection methods described
above mainly uses the claim for the classification.
Our method focuses on extracting and summarizing
the evidence from the external source and uses it to
classify the claim on the COVID-19 fake news de-
tection dataset (Li et al., 2021; Patwa et al., 2020).
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Split Real Fake Total
Training 3360 3060 6420
Validation 1120 1020 2140
Test 1120 1020 2140
Total 5600 5100 10700

Table 1: Dataset Statistics

3 Dataset

For our work, we use the pre-released COVID-19
fake news dataset as a part of the CONSTRAINT-
2021 shared task (Patwa et al., 2020). This gold-
standard manually annotated dataset comprises so-
cial media posts and articles which are related to
COVID-19. Each post or tweet contains content in
the English language and is classified in either of
the two categories- (1) Real: where tweets or arti-
cles which are factually correct and verified from
authentic sources, for example, “Wearing mask can
protect you from the virus. (Twitter)”; or (2) Fake:
where tweets or posts related to COVID-19 which
are factually incorrect and verified as false, for ex-
ample, “If you take Crocin thrice a day you are
safe. (Facebook)”.

The authors collect fake news from two different
sources- social media platforms and public fact-
checking platforms. The social media posts in-
clude text from Facebook posts, Instagram posts,
and Twitter posts, whereas the fact-checking web-
sites such as PolitiFact, Snopes, and Boomlive are
used to collect fact-checked news items. To further
collect real news, they sample tweets from official
government channels, news channels, and medical
institutes. Overall, a total of 14 such sources were
used to prepare this dataset.

The dataset comprises 10700 manually anno-
tated samples and is split into (60%) train, (20%)
validation and (20%) test sets. We provide the
exact numbers for each split/class in Table 1 for
clarity. The dataset is class-balanced as it contains
52.3% samples of real posts and 47.7% samples
of fake posts. As an analysis on it, we obtained a
word-cloud illustration for both real and fake sam-
ples and observed a high lexical overlap between
both the classes, where words like ‘coronavirus’,
‘covid19’, ‘people’, ‘cases’, ‘number’, ‘test’, etc.
are repeatedly used in both the sets. We do not
show the word cloud due to space constraints. We
create and present a wordcloud for the dataset in
Figure 1.

(a) Worcloud of Real Posts (b) Worcloud of Fake Posts

Figure 1: Wordcloud of real/fake posts in our dataset.

4 Our Approach

In this section, we provide details of our novel ap-
proach to augment the dataset with evidence from
web search and the use of this evidence to comple-
ment the task of fact verification. The algorithm for
our approach can be seen in Algorithm 1. As dis-
cussed above, we collect this evidence and prune
to top-k related news items based on semantic sim-
ilarity via BERTScore (Devlin et al., 2019). We
also select top-n lines from each article for further
building an evidence repository, as detailed below
in further subsections.

4.1 Evidence Collection

In the original dataset of COVID-19, evidence is
not released along with the claim. We hypothe-
size that evidence is equally relevant to classify the
claim as proposed by Thorne et al. (2018a). As
per our approach, given a claim or post text, we
first select K relevant articles using a BERT-based
sentence similarity score as detailed here; and can
be seen as an architecture component in Figure 2.

4.1.1 Article Retrieval
For each claim c, we search the claim as a query
using a publicly available search API. The response
returned by this API consists of (heading,
text) pairs. We use the spacy (Honnibal et al.,
2020) library to get the similarity score of response
text with respect to the input claim. Based on this
similarity score, we select top K results that have
the similarity score greater than 0.77. While se-
lecting documents, we prune for webpages in other
languages and pages which are direct links to PDF
or other such non-text files. As an immediate next
step, we scrape the selected web pages to obtain
the matching N sentences concerning the claim as
detailed here.

7Selected with empirical evaluation and manual analysis
after trying 0.5, 0.6, 0.7, 0.8 using the ’en nli roberta base’
model for document similarity
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Figure 2: Full architecture of our proposed approach.

Algorithm 1: Algorithm to collect the evi-
dence from the input claim
Input: Claim c, Blocked URLs u
Output: Evidence e

1 Function ArticleRet(c, k = 3):
2 results← GoogleSearch(c);

filtered results← ∅; foreach
ri ∈ results do

3 if ri /∈ u then
4 si ← Similarity(c, ri);

// Document Similarity

using spacy library

5 if si > 0.7 then
6 filtered results←

(ri, si)

7 filtered results←
Sort(filtered results)[:k];
return filtered results;

8 articles← ArticleRet(c);
9 e← ∅; // Evidences

10 foreach ai ∈ articles do
11 d←WebsiteData(ai.url);

sents← d[′< h >′] + d[′< p >′];
// Extract <p> and <h> tags

from html

12 foreach si ∈ sents do
13 sim← Similarity(c, si); if

sim > 0.5 then
14 e← (si, sim);

15 e← Sort(e)[:3];

16 return e;

4.1.2 Sentence(s) Retrieval

In the previous step, we extract the relevant arti-
cle URLs U = (u1, u2, u3). We employ a similar
method to find the sentences within each article.
For every url u, we first scrape the webpage and
extract the text from < h > and < p > tags. Fur-
ther, we use the same similarity score to select
the top N sentences with respect to the claim. We
obtain a similarity threshold of 0.5 after perform-
ing a similar empirical evaluation as mentioned in
the footnote. Eventually, we concatenate the se-
lected sentences from these articles, which act as
our evidence for the claim. We would like to note
that increasing the threshold significantly higher
returned an empty set in some case and hence we
choose a relatively lower threshold (0.5).

An example of evidence collected via our ap-
proach is shown in Table 2 where the column titled
“Evidence” shows the output after these steps.

4.2 Dataset Preprocessing

To map claims with evidence, we pre-process both
the dataset and the evidence collected from exter-
nal sources. Following are the details of the pre-
processing steps: (1) URL Mapping: We observe
that some posts contain URLs in a masked form,
e.g., https://t.co/z5kk XpqkYb. Our approach ex-
tracts these URLs using a regular expression-based
match and maps them to the original URL using
the python ‘requests’ library. Any additional in-
formation from the URL is removed, and only ap-
propriate URLs remain in the text. For example,
https://t.co/z5kkXpqkYb −→ https://www.cdc.gov/;
(2) Special symbols: We removed extra white-
spaces, special symbols and brackets like ,̂ (, ), {,};
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Claim Evidence Summarization-1 (S1) Summarization-2 (S2)

There is no evidence that children have
died because of a COVID-19 vaccine.
No vaccine currently in development has
been approved for widespread public use.
https://t.co/9ecvMR8SAf

Currently there is no coronavirus vaccine that has been
approved for the American public. And there is no
evidence that children have died because they received
one of the COVID-19 vaccines being developed.
PolitiFact found no evidence that anyone has died from
complications related to a trial COVID-19 vaccination.
There is no evidence that children have died because
of a COVID-19 vaccine.

There is no evidence that children have died
because they received a COVID-19 vaccine.
No evidence that anyone has died from
complications related to a trial COVID-19.

There is no evidence that children have
died because they received one of the
COVID-19 vaccines being developed.
PolitiFact found no evidence that anyone
has died from complications related to a
trial COVID-19 vaccination.

Table 2: Illustrative example of our approach pipeline shown as Claim −→ Evidence −→ Summarization-1 −→
Summarization-2, where Summarization-2 is obtained after fine-tuning T5 language model, and used as evidence
input for classification

(3) Hashtags, Emojis and Mentions: Addition-
ally, we remove hashtags and replace it with the
token “HASHTAG:”.

For example, #COVID-19 becomes
HASHTAG:COVID-19. Similarly, we also
replace mentions “@” with “MENTION:” token.
At the end, we convert emojis to their text form
using the ‘demoji’ library8; (4) Lowercasing:
Eventually, we lowercase the claim and the
evidence text to obtain the input data used for the
next Summarization step.

4.3 Summarization of Evidence

Our pre-processed evidence for claims in many
cases were multiple paragraphs resulting in perfor-
mance degradation. Therefore, we propose the
addition of a summarization component to our
pipeline which utilizes state-of-the-art Text-to-Text
Transfer Transformer (T5) language model (Raffel
et al., 2019) for the inherent summarization task9.
Due to the nature of the usual summarization task
input, a large body of text (full documents), we
believe that our comparatively short paragraphs
would be better summarized. This language model
is fine-tuned for the task of summarization helps
us obtain a summarized text for each piece of evi-
dence resulting in what we call Summarization-1
or S1. An output obtained is shown in Table 2.

4.3.1 Fine-tuning T5 on FEVER Dataset
As an additional experimental step, we further fine-
tune the Text-to-Text Transfer Transformer (T5)
model using the original FEVER dataset (Thorne
et al., 2018a). The original T5 summarization
model is trained on the CNN/Daily Mail (Hermann
et al., 2015) data where the input is the news ar-
ticle text, and the objective is to highlight sum-
marized text as the output. The T5 is an encoder-

8GitHub: Demoji
9This language model can perform the summarization task

with the help of a prefix “summarize” to the input text pro-
vided.

decoder model pre-trained on a multi-task mix-
ture of unsupervised and supervised tasks and for
which each task is converted into a text-to-text for-
mat. This allows for the use of the same model,
loss function, hyperparameters, etc. across our di-
verse set of tasks. T5 works well on a variety of
tasks out-of-the-box by prepending a different pre-
fix to the input corresponding to each task, e.g.,
for the task of translation−→ translate English to
German: <English Sentence>, for the task of
summarization−→ summarize: <English Text>.

For our experiments, the aim is to summarize the
pre-processed evidence while including the claim.
Thus, we hypothesize that fine-tuning on an aux-
iliary dataset will improve the quality of the gen-
erated summary. For fine-tuning, we use the same
hyperparameters as described in their paper to gen-
erate another model. We perform another iteration
of the summarization step using this fine-tuned
model to generate a parallel set of evidence and la-
bel the output as Summarization-2 or S2 as shown
in Table 2. Further, we provide the details of as
the classification task, which uses either S1 or
S2 as evidence input to classify the claims as real
or fake (Figure 2).

5 Experiment Setup

In this section, we discuss the experiment setup
in detail. We perform the task of fake news de-
tection as a binary classification task in a super-
vised setting. We choose to perform our experi-
ments with both conventional machine learning-
and deep learning- based classifiers. From the ma-
chine learning-based approaches, we choose Logis-
tic Regression (LR) and Support Vector Machines
(SVM) with the GridSearch implementation for
best results over multiple hyperparameters (val-
ues of c, different kernels, etc.) We also utilize
LSTMs with various contextual language models
from the deep learning methods. From the deep
learning-based approaches, we use a simple LSTM
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Previous Approaches Our Approach w/ various Classification methods

Chen et al. (2021) Li et al. (2021)
Logistic Regression SVM LSTM
- S1 S2 - S1 S2 - S1 S2

P 0.9902 0.986 0.9531 0.9565 0.9701 0.9641 0.9671 0.9764 0.9589 0.9598 0.9612
R 0.9901 0.985 0.9531 0.9564 0.9700 0.9639 0.9668 0.9761 0.9584 0.9596 0.9612
F 0.9901 0.985 0.9531 0.9565 0.9700 0.9639 0.9668 0.9761 0.9584 0.9596 0.9612

Table 3: Results obtained after the fake news classification task where the values for previous approaches are from
the latest shared task results and the results for each iteration of our approach are shown [P (Precision), R (Recall),
and F (F-Score)]. (-) −→ No Evidence, S1 −→ Summarization-1 as Evidence, S2 −→ Summarization-2 as Evidence.

Our Approach w/ various Deep Learning Classification methods
BERTbase RoBERTabase XLNetbase

- S1 S2 - S1 S2 - S1 S2
P 0.9612 0.9916 0.9917 0.9918 0.9929 0.9922 0.9920 0.9934 0.9947
R 0.9864 0.9888 0.9897 0.9897 0.9911 0.9916 0.9892 0.9911 0.9925
F 0.9858 0.9888 0.9893 0.9893 0.9908 0.9908 0.9892 0.9910 0.9925

Table 4: Results obtained after the fake news classification task where the results for each iteration of our approach
with various deep learning classification methods are shown [P (Precision), R (Recall), and F (F-Score)]. (-) −→ No
Evidence, S1 −→ Summarization-1 as Evidence, S2 −→ Summarization-2 as Evidence.

implementation with pre-trained GloVE10 vectors,
BERTbase, RoBERTabase, and XLNETbase -based
classifiers. Our LSTM implementation uses Adam
optimizer with a learning rate of 0.001, and 256 as
the batch size. For classifiers based on BERTbase,
RoBERTabase, and XLNETbase, we use the Hug-
gingFace implementations with a batch size of 32,
L2 regularization and cross-entropy loss. The regu-
larization parameter λ was set to 0.1. Each classifi-
cation method is iterated (1) without evidence (-),
(2) with augmented summarized evidences from
S1, (3) and then with S2, thus giving us three sets
of results for each method; as shown in Table 4.

As an input to the classifier, we use the claim as-
is from the dataset as described above. We have a
dataset D = (xn, yn)

N
n=1 comprising of N training

samples. Here xn = (cn, en), where cn represents
the claim, and en represents evidence gathered us-
ing our approach. X ∈ X is defined on input
space, and Y ∈ Y = {0, 1} are the correspond-
ing labels. Thus, given a claim c and evidence e,
the aim of this task is to train a classifier such that
the claim c is predicted as fake news or not, i.e
Fθ : X → Y ∈ {0, 1}.

F (c, e; θ) =

{
1, if c is the fake news
0, otherwise

(1)

where F (c, e) is the function our model aims to
learn over each iteration or epoch.

10https://nlp.stanford.edu/projects/glove/

6 Results and Discussion

The results for our classification task are shown
in Table 4. Using our approach, we are able to
marginally outperform (+0.24, F-Score) the pre-
vious state-of-the-art (SoTA) approaches for the
task of fake news detection as shown in the last
column (XLNetbase, S2). Even the RoBERTbase

model is able to outperform the SoTA approaches
by a small margin. We present the values of our top
two best models in boldface in Table 4. Although
the improvement margin is small, we would like to
note that the previous SoTA approaches are already
performing at almost a 0.99 F-score. We executed
our model run multiple times to ensure that our
improvement margin is indeed truly obtained. We
also observe that RoBERTAbase, and XLNetbase
outperform the SoTA approaches (Chen et. al. / Li
et. al.) even with S1 summarization component.
Classical machine learning-based approaches are
also shown to perform very well for this task as
the scores of 0.96 can be considered to be a good
performance for any classification method.

However, this is not the only key takeaway from
these results. We observe that by using our novel
approach, a consistent improvement is seen in the
task results. The efficacy of our approach can be
seen from Table 4, as either S1 or S2 consistently
outperforms all the base models (-) [no evidence]
in the table. Moreover, using our approach, we
are able to gather key evidence for such a dataset
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Text XLNet LR SVM
We always appreciate questions about the quality of our data. If you see a
number that doesn’t look right please file an issue at and we will investigate.
[SEP] SOURCES: github.com

✗ ✓ ✓

The number of daily tests has been increasing in a steep climb. Average daily
tests during the past three weeks also strongly depict the progress made in
enhancement of #COVID19 tests across the country. [SEP] SOURCES:
twitter.com/MoHFW INDI

✗ ✓ ✓

Bill Gates said thousands of people will die with the COVID-19 vaccine
[SEP] SOURCES:

✗ ✗ ✗

Table 5: Qualitative error analysis of some output cases both in terms of successes and failures of our approach.

where, to begin with, only claims were present
with manually annotated labels. Table 5 illustrates
the success and failure cases from XLNet, Logis-
tic Regression and Support Vector Machines. We
observe that first two cases were incorrectly pre-
dicted by the XLNet but were predicted correctly
by LR and SVM. Last case was predicted incor-
rectly by all of the models. We believe that the
absence of source in the text could be a potential
reason for this failure. Our approach can gather
the evidence using a fully automated method with
summarization component(s) in the pipeline. The
importance of this component can be gathered from
manual observations of examples in the augmented
dataset. We observe that summarized evidences
shorten the length of the evidences, which helps
the Transformer architecture-based classifiers like
BERTbase, RoBERTabase, XLNetbase perform bet-
ter. These pre-trained models have a token length
limitation of 512 tokens which is easily able to cap-
ture our summarized evidence. We also manually
observe that the summarization component helps
reduce redundancy in the generated sentences and
removes duplicates. Hence, improving the quality
of evidence used as additional input helps reduce
the training time. The performance of our models
with the fine-tuned summarization component (S2)
seems to perform better than S1, and the model
without any evidence, as can be seen in Table 4.

We acknowledge that the CONSTRAINT dataset
is saturated in terms of possible improvements.
However, with this paper, our aim is to show the
efficacy of our summarization technique which can
help the evidence detection for news. We chose this
dataset at an early stage of our work, and our exper-
iments do show that improvements can, in fact, still
be shown on this dataset. Our best-performing sys-
tem surpasses the state-of-the-art by 0.23% points.

7 Conclusion and Future Work

In this paper, we present an automated method to
collect evidence for the fake news detection task.
We use our novel approach to augment the dataset,
released in the CONSTRAINT-2021 Shared Task,
with evidence sets collected from the web. Our
method helps process these evidence sets, clean
them and use them to generate summarized evi-
dence based on two different methodologies. We
use either of the summarized evidence as an addi-
tional input to the fake news classification task and
perform an evaluation of our approach. We discuss
the results of the classification task and conclude
that our approach helps outperform the previous
SoTA approaches by a small margin, however, help-
ing generate evidence for a crucial dataset. We
show that a summarization module can help collect
evidence more effectively. We augment this dataset
with the summarized evidence and release it along
with the code and generated models for further re-
search. We would also like to conclude that our
method is generalizable; since it uses pre-trained
metrics (BERTScore) and models (T5), it can be
used to gather evidence for other datasets. The
overall pipeline is also not very time-consuming (2
seconds per sample) once fine-tuned models are in-
cluded in it. We hope our method and the resources
are helpful to the NLP community.

In future, we would like to use our method to
gather evidence for other fact detection/verification
datasets as well. Our initial aim is to reproduce
this study with other datasets and ensure that our
method performs well in a real-world scenario. We
would also like to apply this method and gather fur-
ther evidence for existing fake news datasets, and
perform our experiments to evaluate this approach
over multiple exisiting datasets, including existing
multilingual datasets.
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Abstract

The interactive entertainment industry is being
actively involved with the development, mar-
keting and sale of video games in the past
decade. The increasing interest in video games
has led to an increase in video game develop-
ment techniques and methods. It has emerged
as an immensely large sector, and now it has
grown to be larger than the movie and mu-
sic industry combined. The postmortem of a
game outlines and analyzes the game’s history,
team goals, what went right, and what went
wrong with the game. Despite its significance,
there is little understanding related to the chal-
lenges encountered by the programmers. Post-
mortems are not properly maintained and are
informally written, leading to a lack of trust-
worthiness. In this study, we perform a sys-
tematic analysis on different problems faced in
the video game development. The need for au-
tomation and ML techniques arises because it
could help game developers easily identify the
exact problem from the description, and hence
be able to easily find a solution. This work
could also help developers in identifying fre-
quent mistakes that could be avoided, and will
provide researchers a beginning point to fur-
ther consider game development in context of
software engineering.

1 Introduction

The video game industry is engaged in the pro-
cess of development, promotion, and selling video
games. It includes several occupation disciplines
and employs a huge number of individuals across
the globe. The business has developed from fo-
cused markets to the mainstream in recent years.
Despite being an extremely competitive market
where knowledge is the principle weapon, absence
of information regarding processes and techniques
used in game development makes it hard to under-
stand the game development process. Due to this,

developers often find it difficult to avoid commonly
occurring issues and learn from past faults.

The motive behind this work is to classify the
dataset based on the quote into types of problems
so that future developers could easily recognize the
type of problem they are facing and find solution
accordingly. However, there are 3 main challenges
in this process:

• Word Embedding: The post-mortems of
game development are not well structured
(Washburn Jr et al., 2016). This poses an in-
trinsic challenge. Since the input to any ma-
chine learning (ML) model is a feature vector,
it is crucial to give a numerical representation
of the textual data. This challenge can be re-
duced by using word embedding techniques.
Word embedding techniques not only give a
numerical representation of the textual data,
but also combine the words with similar mean-
ing and provide a reduced set of features (Li
and Yang, 2018). In this work, 7 word embed-
ding techniques - TFIDF, Skip gram, CBOW,
Word2Vec, BERT, GloVe, and FastText are ap-
plied on the text and their predictive abilities
are compared.

• Number of Features: The efficiency of any
ML model relies up on its features. Research
(Cai et al., 2018) suggests that models where
the input consisted of redundant and irrelevant
features performed less efficiently. Since the
data set consists of a huge number of features,
this poses an intrinsic challenge. To overcome
this, 3 feature selection techniques have been
used to select the relevant and crucial features:
Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA) and Analysis of
variance (ANOVA).

• Class Imbalance: A balanced dataset (Jun-
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somboon and Phienthrakul, 2017) is one that
contains an equal or almost equal number of
samples from all the dependent variables. The
last challenge in building the predictive model
is that the data suffers from class imbalance
problem. Hence, Synthetic Minority Over-
sampling Technique (SMOTE) has been used
to balance the data.

To overcome the 3 challenges, a technical analy-
sis and comparative study between the performance
of 7 word embedding, 3 feature selection, and 5
classification techniques have been conducted. 5
classification techniques namely, K-Nearest Neigh-
bours (KNN), Support Vector Classifier (SVC),
Naive Bayes Classifier (NBC), Decision Tree (DT)
and Random Forest (RF) have been used. Finally,
the performance of the word embedding and clas-
sification techniques are compared. The results
obtained from the original data is also compared
to the results obtained from SMOTE data. To com-
pare the results, accuracy, F-measure, and area un-
der the curve (AUC) are used. Box plots are drawn
based on AUC values since accuracy is not a good
measure when the data suffers from class imbal-
ance. Finally, rank sum test and friedman’s test are
used to test the hypotheses.

2 RELATED WORK

This section details about studies available in the
broad domain of game development. (Politowski
et al., 2020) prepared a grounded dataset obtained
from post-mortems of video games which details
about various software engineering problems dur-
ing development. An iterative method has been
used to create the dataset. 1035 problems were
extracted from more than 200 post-mortems span-
ning over 20 years (1998-2018). The problems are
divided into 3 problem groups (production, busi-
ness, management) which are further divided into
20 different types. This work utilizes the above
stated dataset to understand issues encountered by
developers during the process of video-game de-
velopment and further we foster a model for distin-
guishing the problem group based on description.

Game industry problems: An extensive analy-
sis of the gray literature (Politowski et al., 2021)
tries to analyse and develop a state of the prob-
lems of the gaming industry, their evolution and
root causes which would help researchers and prac-
titioners to work towards addressing and solving
these problems. It was observed that the industry

suffers from similar proportions of management
and production related problems. Over the years
as the industry became more mainstream, man-
agement related problems decreased only to give
space to business related problems. Technical and
design related problems have also decreased over
the years. Team related problems increased over
the last decade, and marketing problems had the
biggest increase over the past 23 years. Finally,
it was concluded that people (and not technology)
were the root cause of most problems.

Callele et al. (Callele et al., 2005) analysed the
various factors which led to the success or fail-
ure of a video game. Using the Game Developer
Magazine, they analysed 50 post-mortems and in-
vestigated how requirements engineering could be
applied to game development. “What went right”
and “What went wrong” aspects were grouped into
5 categories: (1) pre-production issues (2) inter-
nal, and management related problems (3) external
problems (4) technological problems (5) scheduler
related problems. Finally, it was concluded that the
transition from preproduction to production plays
a crucial role in deciding the fate (success/failure)
of the developed video game.

20 post-mortems were taken from the Gamasu-
tra Website and were analysed by Petrillo et al.
(Petrillo et al., 2009) The most common game de-
velopment problems were identified and they were
compared with traditional software-engineering
problems. It was concluded that (1) management
(and not technical) related issues contribute most
to the video-game development problems (2) prob-
lems faced in video-game development and tradi-
tional software development are very similar and,
(3) the most common problems are related to scope,
feature creep, and cutting features.

Washburn et al. (Washburn Jr et al., 2016) anal-
ysed 155 game development post-mortems for what
went right and wrong. Various characteristics of
game development have been identified, linked
with positive and negative experiences and a set of
best practices, pitfalls for game development have
been distilled. Design aspects cover all situations
and decisions that were made that are external to
the direct team and development process. Produc-
tion issues relate to scheduling and work prioritiz-
ing issues. Other aspects include art, programming
and testing issues.
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3 Study Design

This section enlists the information about different
design plans utilized in this work.

3.1 Experimental Dataset

This work uses Video Game Development prob-
lems data set which was collected from MSR 2020
conference datasets (Politowski et al., 2020). The
dataset was created using iterative method, where
more than 200 post-mortems for different video
games were studied and around 1035 problems re-
lated to software engineering were extracted. The
problems were divided into 3 groups – production,
management, and business (Politowski et al., 2021).
Production problems can be classified as problems
based on documentation, prototyping, technical,
testing, tools, bugs, and design. Business problems
could be due to marketing or monetization, while
management problems could be classified as prob-
lems based on communication, crunch time, delays,
team, budget, planning, security, scope, cutting fea-
tures, feature creep, and multiple projects.

3.2 Word Embedding

The representation of words for text analysis, in
the form of a real-valued vector is called word em-
bedding. The feature vectors encode meaning of
the word such that words with similar meaning are
closer in vector space. This reduces the overall fea-
ture space. Primarily, there are 2 word embedding
methods: frequency-based, and neural network-
based. In this work, 7 word embedding techniques
have been applied to represent the words as a vec-
tor in n-dimensional vector space. The data has
been cleaned by removing stop-words, bad sym-
bols, spaces, etc. Further, predictive power of word
embedding techniques have been compared.

3.3 SMOTE

The considered dataset suffers from the problem
of class imbalance. Out of the four categories, the
maximum class has around 430 data points while
the minority class has less than 100 data points.
Since ML algorithms increase accuracy by reduc-
ing the error, the class distribution is not consid-
ered. This problem is also prevalent in various
domains such as fraud or anomaly detection, face
identification, etc. Conventional ML algorithms
such as logistic regression, DT, etc. possess bias
towards majority class (Hoens and Chawla, 2013).
Hence, dataset is balanced using SMOTE technique

(Fernández et al., 2018)(Chawla, 2009). SMOTE
balances the class distribution by replicating minor-
ity class instances.

3.4 Feature Selection
This work utilizes 3 feature selection techniques:
ANOVA, PCA, and LDA for eliminating irrelevant
features. The predictive power of the classifiers
learnt using selected features is compared with the
predictive power of the classifiers learnt using all
features using AUC, F-measure, and accuracy. Fur-
ther, rank sum test has been applied.

• ANOVA is a collection of statistical models
for analysing differences among means (Sarst-
edt and Mooi, 2019)(St et al., 1989). The one-
way classification follows completely random
design (CRD), while two-way classification
follows random block design (RBD). Over-
all, ANOVA possess no assumptions. How-
ever, CRD assumes independence, normality
and homogeneity of variances of the residu-
als while RBD assumes homogeneity of vari-
ances of residuals. ANOVA partitions total
sum of squares (SS) into components related
to the effects used in model. For instance,
model for a simplified ANOVA with one type
of treatment at different levels would have
SSTotal = SSError + SSTreatments. For
comparing factors of total deviation, below
formula for F-test is used:

F =
V ariance between treatments

V ariance within treatments
(1)

• PCA is an unsupervised dimensionality-
reduction technique to transform large number
of features into a smaller set which comprises
similar information as contained by large num-
ber of features. Each instance is projected
onto only principal components to reduce di-
mensionality while preserving data variation.
If variance is high, it is easier to find patterns
in the data set and so, we choose the ones with
high variance as the important features.

• LDA is a supervised learning technique for
dimensionality reduction where classes and
their dependencies are also considered (Mar-
tinez and Kak, 2001)(Yu and Yang, 2001). Un-
like PCA which considers maximum variance
alone, LDA considers within class and be-
tween class variance also. The objective of
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LDA is to extend components from higher
dimensional space onto a lower dimensional
space to keep away from the curse of dimen-
sionality and furthermore decrease resources
and dimensional expenses. Reducing the di-
mensions shrinks and concludes the dimen-
sions which helps in better understanding of
the data. LDA measures data from all features
to make a new axis that limits variance and
maximizes class distance.

3.5 Classification Techniques

The performance of various word-embedding, fea-
ture selection and SMOTE is evaluated with 5 ML
classifiers: KNN, SVC, NBC, DT, & RF.

4 RESEARCH METHODOLOGY

The motive behind this work is to do a technical
analysis and comparison between performance of
7 word embedding and 5 classification techniques
on game development problems. The algorithm
tries to classify the dataset based on the quote
into types of problem so that future developers
could easily recognize the type of problem they
are facing and find solution accordingly. Firstly,
7 word embedding techniques are applied on text
available in the dataset to obtain feature vectors.
Next, data imbalance problem was dealt with using
SMOTE technique which adds more minority test
cases and balances data. Dimensionality reduction
and feature selection was done using PCA, LDA
and ANOVA. Finally, 5 classification techniques
were used to predict class of the test data using em-
bedded vectors. The performance of various word
embedding and classification techniques are com-
pared. The results obtained from original data are

also compared to that obtained from SMOTE data
using accuracy, F-measure and AUC. Box plots
are drawn based on the AUC values since accu-
racy is not a good measure when the data suffers
from class imbalance (Bekkar et al., 2013). Rank
sum test and Friedman’s test are used to test the
hypotheses. Framework of the proposed work is
depicted in Figure 1.

5 Empirical Results and Analysis

In this work, 7 word embedding, 1 sampling, 3
feature selection, and 5 ML classifiers were applied
to develop models which predict the group of game
development problem. Each word-embedding is
applied on the chosen dataset and its effectiveness
is evaluated using classifiers. The predicted values
for each of the word embedding and classification
techniques have been tabulated in Table 1. AUC,
accuracy, and F-Measure values are calculated. To
compare the results, however, only AUC values
are used. This is because accuracy is not a good
measure when there is class imbalance and AUC
uses probability measures. Table 1 denotes AUC
values corresponding to the original and SMOTE
sampled data. Figure 2 shows the bar graph of
AUC score for models trained on original data and
balanced data for different sets of features. The
models are validated using 5-fold cross validation
(CV). AF denotes the AUC values corresponding to
all features while ANOVA, PCA, LDA correspond
to those got after feature selection. From Table 1
and Figure 2, we can infer following:

• High values of AUC confirm that developed
models can predict different video game de-
velopment problems based on the data.

FTX TFIDF CBOW

W2VSKG GLOVE BERT

ANOVA Test

Linear Discriminant
Analysis

Principal component
analysis

KNN

SVC

NBC

DT

RF

Performance
Analysis

Data Set

SMOTE

Data Set

Figure 1: Research Framework
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Table 1: AUC values

Original Data SMOTE Data
KNN SVC NBC DT RF KNN SVC NBC DT RF

A
F

TFIDF 0.54 0.82 0.53 0.62 0.70 0.83 0.99 0.96 0.80 0.92
SKG 0.58 0.75 0.63 0.53 0.61 0.80 0.77 0.64 0.71 0.83
Cbow 0.55 0.74 0.55 0.51 0.59 0.76 0.77 0.54 0.69 0.79
W2V 0.79 0.82 0.80 0.59 0.70 0.89 0.93 0.83 0.74 0.90
FAT 0.55 0.61 0.59 0.51 0.56 0.81 0.59 0.61 0.69 0.81
GLOVE 0.78 0.82 0.80 0.59 0.74 0.89 0.91 0.82 0.76 0.91
BERT 0.60 0.71 0.53 0.54 0.57 0.84 0.88 0.56 0.74 0.88

A
N

O
VA

TFIDF 0.60 0.90 0.73 0.61 0.77 0.86 0.97 0.87 0.79 0.92
SKG 0.57 0.75 0.63 0.54 0.63 0.81 0.77 0.65 0.72 0.85
Cbow 0.54 0.74 0.55 0.53 0.59 0.77 0.75 0.57 0.70 0.81
W2V 0.79 0.83 0.81 0.57 0.72 0.89 0.93 0.83 0.77 0.90
FAT 0.55 0.60 0.62 0.51 0.56 0.83 0.59 0.64 0.69 0.83
GLOVE 0.78 0.82 0.80 0.60 0.70 0.89 0.91 0.82 0.77 0.91
BERT 0.59 0.71 0.54 0.53 0.57 0.84 0.86 0.56 0.73 0.87

PC
A

TFIDF 0.59 0.44 0.50 0.52 0.57 0.73 0.22 0.30 0.69 0.76
SKG 0.52 0.43 0.50 0.52 0.51 0.67 0.22 0.29 0.66 0.69
Cbow 0.54 0.43 0.50 0.53 0.54 0.60 0.22 0.29 0.61 0.62
W2V 0.68 0.77 0.77 0.60 0.70 0.85 0.76 0.76 0.74 0.87
FAT 0.50 0.47 0.50 0.52 0.52 0.68 0.22 0.29 0.66 0.71
GLOVE 0.63 0.73 0.72 0.57 0.66 0.80 0.68 0.67 0.73 0.85
BERT 0.58 0.66 0.60 0.55 0.58 0.84 0.68 0.64 0.72 0.86

L
D

A

TFIDF 0.93 0.88 0.92 0.87 0.95 0.97 0.86 0.92 0.92 0.97
SKG 0.94 0.97 0.97 0.87 0.95 0.97 0.97 0.97 0.91 0.98
Cbow 0.94 0.96 0.97 0.84 0.94 0.96 0.97 0.97 0.89 0.97
W2V 0.94 0.97 0.97 0.85 0.95 0.97 0.97 0.97 0.90 0.97
FAT 0.78 0.84 0.84 0.66 0.78 0.87 0.84 0.84 0.78 0.89
GLOVE 0.94 0.97 0.97 0.84 0.94 0.97 0.97 0.97 0.90 0.97
BERT 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00

• Word2Vec embedding gives the best results.

• Results of FastText are poorer than others.

• Model trained using RF has better predictions.

• Model trained on SMOTE data has better
AUC score than original data.

6 Comparative Analysis

In this section, we compare the performance of
models built using 7 word embedding, SMOTE,
3 feature selection, & 5 classification techniques.
Descriptive statistics, box-plots, & significant tests
have been used to compare developed models.

6.1 Word Embedding

In this work, 7 word embedding techniques (TFIDF,
Skipgram, CBOW, Word2vec, FastText, GloVe and
BERT) have been applied to represent words as
vectors in n-dimensional vector space. The data
has been cleaned before these techniques were ap-
plied, i.e., stop-words, bad symbols, spaces, etc.
have been removed. These techniques not only
give a numerical representation of textual data, but
also encode their meaning such that words which
are similar in meaning are closer in vector space.
Moreover, as compared to a large set of vocabu-
lary, a small number of features is obtained. The
predictive ability of developed models using word

(2.1) AUC: ANOVA on SMOTE

(2.2) AUC: PCA on SMOTE

(2.3) AUC: LDA on SMOTE

Figure 2: AUC vlaue

embeddings are computed with the help of AUC
score, F-Measure, and accuracy value. However,
only AUC scores are considered for comparison
since the data suffers from class imbalance. The
AUC values are compared using descriptive statis-
tics, box-plots, and significant tests.

6.1.1 Box-Plot: Word Embedding
Figure 3 provides descriptive statistics and perfor-
mance values (measured using AUC) of 7 word
embedding techniques in terms of a box-plot. From
Figure 3, it is clear that models developed using
Word2Vec, TFIDF, GloVe better predict group of
game development problem. As compared to other
techniques, models developed using CBOW, Fast-
Text, Skipgram have a low predictive ability. This
is evident from the fact that mean AUC scores of
CBOW, Skipgram & FastText are 0.66, 0.70 & 0.64
respectively while mean AUC scores of TFIDF,
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Figure 3: AUC Scores for Word Embedding Tech-
niques

Word2vec & GloVe are 0.80, 0.83 & 0.82 respec-
tively.

6.1.2 Significant Tests: Word Embedding
In this study, Friedman’s test and rank-sum test are
applied on the AUC scores to statistically compare
the predictive ability and performance of the mod-
els built using 7 word embedding techniques. To
check if these models have a significant improve-
ment on the predictive ability or not, the following
hypothesis has been formed:

• Null Hypothesis: The performance of the
models do not depend on features extracted
from word embedding techniques.

• Alternate Hypothesis: The performance of
the models depend on features extracted from
word embedding techniques.

To test the hypothesis, Friedman’s test and rank
sum test are used with a significance level of 0.05
i.e., null hypothesis is accepted if p≥0.05. For the
purpose of simplicity a two-number representation
of results has been used, i.e., 0 if null hypothesis is
accepted (models are significantly same) and 1 if
hypothesis is rejected (models are significantly dif-
ferent). From Table 2, it can be seen that Skipgram
and CBOW give significantly different results as
compared to Word2Vec, GloVe. Similarly, Fast-
Text gives significantly worse results as compared
to TFIDF, GloVe, BERT.

Further, since models prove to give significantly
different results, Friedman’s mean rank test is also
applied on AUC values to rank 7 word embedding
models. A model with a lower mean rank value
performs better than the one with a higher mean
rank value. Hence, from Table 4 we can conclude
that w2v gives the best results (followed by GloVe)
and that its performance is significantly better than
Skipgram, CBOW and FastText.

Table 2: Rank-Sum Test: Word Embedding

Rank-Sum Friedman’s
TFIDF SKG CBOW W2V FAT GLOVE BERT Mean-Rank

TFIDF 0 0 0 0 1 0 0 3.32
SKG 0 0 0 1 0 1 0 4.30
CBOW 0 0 0 1 0 1 0 5.82
W2V 0 1 1 0 1 0 0 2.27
FAT 1 0 0 1 0 1 1 6.27
GLOVE 0 1 1 0 1 0 0 2.625
BERT 0 0 0 0 1 0 0 3.37

6.2 SMOTE
In this paper, it has been proposed to apply SMOTE
in order to get balanced data and account for class
imbalance. In this section, the predictive ability of
prediction models using original data and SMOTE
sampled data are compared using descriptive statis-
tics, boxplot diagram, and significant tests.

6.2.1 Box Plots: Original and SMOTE data
The AUC values of the models developed using
original data and SMOTE sampled data have been
compared using box-plot diagrams as shown in
Figure 4 and descriptive statistics. The informa-
tion in Figure 4 shows that the models developed
using SMOTE sampled data achieved 0.82 mean
AUC score while that of original data achieved 0.64
mean AUC value. Hence, it can be concluded that
SMOTE data sampling technique plays a crucial
role in enhancing the model’s ability to predict the
group of game development problem.
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Figure 4: AUC Scores for Original data and SMOTE
data

6.2.2 Significant Tests: Original and SMOTE
data

In this study, Friedman’s test and rank sum test are
applied on the AUC scores to statistically compare
the predictive ability of the models built using the
original data and SMOTE sampled data. The ob-
jective is to check if the models developed using
SMOTE has a significant improvement on the pre-
dictive ability or not, and for this, the following
hypothesis has been formed:
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Table 3: Significant Tests: Original and SMOTE data

Rank-Sum Friedman’s
OD SMOTE Mean-Rank

OD 0 1 1.871
SMOTE 1 0 1.128

• Null Hypothesis (H 0 ): The models devel-
oped using SMOTE sampled data do not have
a significant impact on the predictive ability
of classification model.

• Alternate Hypothesis (H a ):The models de-
veloped using SMOTE sampled data have a
significant impact on the predictive ability of
classification model.

To test above hypothesis, p-value is used. Con-
sidering a significance level of 0.05 level (95%
confidence interval), null hypothesis is accepted if
the p-value≥0.05. From Table 3, it can be seen
that the models built from the original data and
SMOTE sampled data are significantly different.
From Table 3, we can also conclude that the model
developed using SMOTE sampled data performs
significantly better and that accounting for class
imbalance is crucial.

6.3 Feature Selection

In this work, 3 feature selection techniques were
used to remove unnecessary features and for di-
mensionality reduction. The 3 feature selection
techniques – ANOVA (Figure 22.1), PCA ( Figure
22.2), and LDA (Figure 22.3) have been applied
to find best combination of relevent features. The
predictive ability of the developed models using the
3 feature selection techniques are evaluated using
AUC scores. They are compared using descriptive
statistics, boxplot diagram, and significant tests.

6.3.1 Box Plots: Different sets of Features

Figure 5 provides the descriptive statistics and per-
formance values (measured using AUC) of the 3
feature selection techniques in terms of a box-plot.
From Figure 5, it is evident that the models devel-
oped using LDA best predict the group of game
development problem. The models developed us-
ing ANOVA, PCA have a relatively low predictive
ability as compared to LDA. This is evident from
the fact that the mean AUC scores ANOVA, PCA,
LDA are 0.75, 0.6, 0.97 respectively.
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Figure 5: Feature Selection

Table 4: Significant Tests: Different sets of Features

Rank-Sum Friedman’s
AF ANOVA PCA LDA Mean-Rank

AF 0 0 1 1 2.757
ANOVA 0 0 1 1 2.428
PCA 1 1 0 1 3.757
LDA 1 1 1 0 1.057

6.3.2 Significant Tests: Different sets of
Features

In this study, Friedman’s test and rank sum test are
applied on the AUC scores to statistically compare
the predictive ability of the models developed from
3 feature selection techniques. To test the hypoth-
esis, p-value is used at significance level of 0.05
level (95% confidence interval), null hypothesis is
accepted if the p-value > 0.05. For the purpose
of simplicity, a two-number representation for the
results has been used, i.e., 0 if the null hypothe-
sis is accepted (models are significantly same) and
1 if the hypothesis is rejected (models are signifi-
cantly different). From Table 4, it can be seen that
the models developed using PCA, LDA are signifi-
cantly different from the model developed using all
features. Similarly, models developed using LDA
is significantly different from all other models.

Further since models prove to give significantly
different results, Friedman’s mean rank test is per-
formed on AUC values to rank the models devel-
oped using feature selection techniques. A model
with a lower mean rank value performs better than
one with a higher mean rank value. Hence, from
Table 4 we can conclude that model developed us-
ing LDA gives best results while model developed
using PCA gives worst prediction results. Also, it
can be seen that models built using ANOVA, all
features are not significantly different from one
another. These results also verify the conclusion
made from the box plot in Figure 5.
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6.4 Classification Techniques

In this study, KNN, SVC, NBC, DT, RF have
been used to classify the game development prob-
lem into 3 groups (production, management, and
business-related problems). 5-fold CV has been
used to train the prediction models. In this section,
the predictive ability of the models developed us-
ing 5 classifiers are computed using AUC scores.
The AUC values are compared using descriptive
statistics, box-plots, & significant tests.

6.4.1 Box Plots: Classification Techniques
Figure 6 provides descriptive statistics and perfor-
mance values (measured using AUC) of 5 classi-
fication techniques in terms of a box-plot. From
Figure 6, it is clear that models developed using
KNN, SVC, RF better predict group of game devel-
opment problem. Compared to models built using
KNN, SVC, and RF, models developed using NBC,
DT have a low predictive ability. This is evident
from the fact that mean AUC scores of KNN, SVC
& RF are 0.80, 0.80 & 0.81 while mean AUC scores
of NBC & DT are 0.70 & 0.69 respectively.
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Figure 6: Classification Techniques
6.4.2 Significant Tests: Classification

Techniques
In this study, Friedman’s test and rank sum test
are applied on AUC scores to statistically compare
the predictive ability of models developed using 5
classifiers. Table 5 show results of Friedman’s test
and rank sum test for different techniques. For the
purpose of simplicity, two-number representation
for the results is used, i.e., 0 if null hypothesis is
accepted (models are significantly same) and 1 if
hypothesis is rejected (models are significantly dif-
ferent). From Table 5, it can be seen that model
developed using DT is significantly different from
models developed using KNN, SVC, RF while it
does not differ significantly from NBC in terms of
predictive ability. Further since the models prove
to give significantly different results, Friedman’s
mean rank test is also applied on AUC values to
rank 5 models. A lower value of mean rank indi-

Table 5: Significant Tests: Classification Techniques

Rank-Sum Friedman’s
KNN SVC NBC DT RF Mean-Rank

KNN 0 0 0 1 0 3.000
SVC 0 0 0 1 0 2.375
NBC 0 0 0 0 0 3.107
DT 1 1 0 0 1 4.303
RF 0 0 0 1 0 2.214

cates a better performance of the model. Hence,
from Table 5, we can conclude that RF classifier
gives the best results (followed by SVC, KNN) and
its performance is significantly better than model
built using DT.

7 Conclusion

A postmortem is a summarization procedure used
to analyse the various positive and negative as-
pects of the game development project. It aids
developers in drawing meaningful conclusions and
helps them learn from past successes and failures.
However, given the various responsibilities of a
video game developer, it is not surprising that they
hardly take time to conduct and prepare project
postmortems. Moreover, the lack of formal struc-
ture leads to a lack of trust worthiness. In this
work, a data set of the different problems in game
development has been taken and studied. 7 word
embedding techniques have been applied on the
data set and it can be observed that Word2Vec gives
the best results and these results are significantly
different from Skipgram, CBOW and FastText. As
far as the classification techniques are concerned,
KNN, SVC, and RF produce significantly better
results. RF gives the best value in Friedman’s rank
sum test. However, KNN may also be considered
since it takes the lowest computation time amongst
KNN, SVC, RF whilst still producing similar re-
sults. LDA is the best suitable feature selection
technique here, followed by ANOVA. Finally, it
is important to note that the data obtained after
SMOTE gives significantly better yield than the
original data, and hence, accounting for class im-
balance is crucial. This work, thus provides a way
to classify the dataset based on the quote into types
of problems. This could help future developers eas-
ily recognize the type of problem they are facing
and find suitable solutions.
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Gaël Guéhéneuc. 2020. Dataset of video game de-
velopment problems. In Proceedings of the 17th In-
ternational Conference on Mining Software Reposi-
tories, pages 553–557.

Marko Sarstedt and Erik Mooi. 2019. Hypothesis test-
ing and anova. In A Concise Guide to Market Re-
search, pages 151–208. Springer.

Lars St, Svante Wold, et al. 1989. Analysis of variance
(anova). Chemometrics and intelligent laboratory
systems, 6(4):259–272.

Michael Washburn Jr, Pavithra Sathiyanarayanan,
Meiyappan Nagappan, Thomas Zimmermann, and
Christian Bird. 2016. What went right and what
went wrong: an analysis of 155 postmortems from
game development. In Proceedings of the 38th Inter-
national Conference on Software Engineering Com-
panion, pages 280–289.

Hua Yu and Jie Yang. 2001. A direct lda algorithm
for high-dimensional data—with application to face
recognition. Pattern recognition, 34(10):2067–
2070.

473



Proceedings of the 18th International Conference on Natural Language Processing, pages 474–480
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)

Multi-task pre-finetuning for zero-shot cross lingual transfer

Moukthika Yerramilli∗
Amazon / Bangalore
mky@amazon.com

Pritam Varma∗

Amazon / Bangalore
spv@amazon.com

Anurag Dwarakanath∗

Amazon / Bangalore
adwaraka@amazon.com

Abstract

Building machine learning models for low re-
source languages is extremely challenging due
to the lack of available training data (either
un-annotated or annotated). To support such
scenarios, zero-shot cross lingual transfer is
used where the machine learning model is
trained on a resource rich language and is di-
rectly tested on the resource poor language. In
this paper, we present a technique which im-
proves the performance of zero-shot cross lin-
gual transfer. Our method performs multi-task
pre-finetuning on a resource rich language us-
ing a multilingual pre-trained model. The pre-
finetuned model is then tested in a zero-shot
manner on the resource poor languages. We
test the performance of our method on 8 lan-
guages and for two tasks, namely, Intent Clas-
sification (IC) & Named Entity Recognition
(NER) using the MultiAtis++ dataset. The re-
sults show that our method improves IC perfor-
mance in 7 out of 8 languages and NER perfor-
mance in 4 languages. Our method also leads
to faster convergence during finetuning. The
usage of pre-finetuning demonstrates a data ef-
ficient way for supporting new languages and
geographies across the world.

1 Introduction

Recent advances in Natural Language Process-
ing include the development of language mod-
els trained in an unsupervised fashion on large
amounts of data (Devlin et al., 2019), (Radford
and Sutskever, 2018). These models were extended
to a multilingual context by training on data from
a number of languages (Devlin et al., 2019), (Con-
neau et al., 2019). These multilingual models were
found to perform well in a zero-shot cross lingual
transfer tasks - i.e. the multilingual model is fine-
tuned for a task in a resource rich language (such

∗*Equal contribution

as English) and is directly tested on a resource poor
language (such as Swahili) (Schlinger, 2019a)

In this paper, we investigate the usage of multi-
task pre-finetuning in zero-shot cross lingual tasks.
Pre-finetuning is a step between pre-training and
fine-tuning, where a pre-trained model is trained
on additional supervised learning tasks with the
aim to improve pre-trained representations (Agha-
janyan et al., 2021)(Liu et al., 2019). Typically,
these additional tasks are unrelated to the tasks
that the model will finally be fine-tuned on. Past
work on multi-task learning showed its usefulness
in a monolingual setting. In our work, we extend
the pre-finetuning concept to a multilingual setting
with zero-shot cross lingual transfer.

Our method is demonstrated on the XLM-
Roberta (Conneau et al., 2019) pre-trained model
and uses 8 additional auxiliary tasks from the
GLUE benchmark (Wang et al., 2018) for the multi-
task pre-finetuning on English. The resulting model
is then applied for the joint Intent-Classification &
Named Entity Recognition tasks (IC-NER). We
show cross lingual transfer by fine-tuning for IC-
NER on English and directly test on 8 different
languages in a zero-shot manner. We use the Mul-
tiAtis++ dataset (Xu et al., 2020) for the IC-NER
data in English and 8 other languages for fine-
tuning and testing. Our results bring out multiple
insights. We find that the multi-task pre-finetuned
model is better by 5.12% relative (or 391 abso-
lute basis points (bps)) on average across all 8 lan-
guages for the IC task at early stages of fine-tuning.
This shows the ability of multitask pre-finetuning
to improve the learnt representations of the pre-
trained model. The results however indicate that
such out of the box improvement in pre-trained
models is not seen in the NER task, where the per-
formance at early stages of fine-tuning degrades by
10% relative (or 525 bps absolute). We also find
that pre-finetuning has improved the performance
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in monolingual setting where the results for both
IC and NER for English have improved by 6.53%
relative (or 549 bps absolute) and 11.86% relative
(or 700 bps absolute) respectively.

Improving the ability of cross lingual transfer in
a zero shot setting has large implications. Through
our method, products using language models can
improve machine learning support for new lan-
guages where sufficient training data is not avail-
able. For example, the Indian sub-continent has
179 languages and 544 dialects (Wikipedia con-
tributors, 2021b) and building machine learning
services to cater to all multilingual users is a daunt-
ing task since enough data, both in the form of
annotated and un-annotated, is not available.

This paper is structured as follows. In Sec-
tion 2, we present the related work in zero-shot
cross lingual transfer and progress in multi-task
pre-finetuning. Section 3 presents our method of
improving zero-shot cross lingual transfer through
the use of multi-task pre-finetuning. We present the
results in Section 4 and conclude with directions
for future work in Section 5.

2 Related work

Multilingual language models such as mBERT (De-
vlin et al., 2019)(Devlin et al., 2021), XLM (Con-
neau et al., 2019) and MuRIL (Khanuja et al., 2021)
have advanced the state-of-the-art on cross-lingual
natural language understanding tasks by training
large Transformer models (Vaswani et al., 2017) on
data from many languages.

These multilingual pre-trained models can be
used as generic task agnostic neural network ar-
chitectures and can be applied in different natu-
ral language processing tasks by attaching a task
specific decoder (such as a linear classifier) and
fine-tuning on the task specific training data. The
usage of multilingual pre-trained models also en-
abled zero-shot cross lingual transfer. In zero-shot
transfer, the pre-trained model is fine tuned on an-
notated data from a resource rich language (such
as English) and directly tested in a resource poor
language (such as Swahili). Studies (Schlinger,
2019b) (Libovický et al., 2020a) (Wu and Dredze,
2019a) have shown such multilingual pre-trained
models have the ability to learn common represen-
tations across languages even though the training
methodology was not explicitly designed to build
common representations.

Independently, approaches have been developed

to improve the performance of pre-trained models
in the monolingual setting. Prominent work in-
cludes the usage of multi-task pre-finetuning (Liu
et al., 2020) (Aghajanyan et al., 2021). In pre-
finetuning, the pre-trained model such as BERT
is trained in a supervised learning setting on aux-
iliary tasks. The work in (Liu et al., 2020) uses
8 different tasks from the GLUE dataset (Wang
et al., 2018) and trains for different tasks in random
batches. The work in (Aghajanyan et al., 2021)
scales the pre-finetuning concept by training on 50
different tasks. Their results show that multi-task
pre-finetuning can significantly improve the per-
formance of the pre-trained models. Both these
works test the improvement in a monolingual set-
ting. In contrast, our work in this paper explores
the applicability of pre-finetuning in a multilingual
setting.

3 Multi-task pre-finetuning for zero shot
cross lingual transfer

In this section, we present our method to improve
the performance of zero-shot transfer of knowl-
edge across languages. Current state-of-the-art
methods have demonstrated the great ability of a
neural network to transfer knowledge of a given
task across languages using a pre-trained model
that is trained generically (Conneau et al., 2018),
(Schlinger, 2019a), (Wu and Dredze, 2019b). In
our work, we demonstrate a further intriguing
property of deep neural networks. We take a
multi-lingual pre-trained neural network and train
it over multiple tasks in English using task spe-
cific supervised data (we choose English since
there is significant amount of supervised train-
ing data available for the language). We then
fine tune the network for the specific down-stream
task in English. We denote the resulting neural
network model through our method as MT-DNN-
MultiLingual-Finetuned. Now, when the MT-
DNN-MultiLingual-Finetuned model is tested di-
rectly (i.e. zero-shot) on the downstream task in a
different language, we observe better performance.
This demonstrates the ability of the neural network
to not only transfer knowledge of the same task
across languages (as demonstrated by existing lit-
erature), but also shows its ability to transfer cumu-
lative knowledge of multiple different tasks across
languages. Figure 1 depicts the novelty of our work
in comparison with extant literature.
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(a) Baseline model: XLM-R with fine-tuning on English (b) Experiment model: XLM-R with multi-task pre-finetuning
and fine-tuning – both done on Enlgish

Figure 1: Baseline vs Experimental Model with multi-task pre-finetuning setup for zero-shot transfer.

3.1 Multi-Lingual Pre-trained Model

We base our method on the XLM-RoBERTa base
(XLM-R) (Conneau et al., 2019) as the pre-trained
model for all the experiments in this paper. XLM-
R is trained on 100 languages (including the 8
languages we use for our tests) using the Com-
monCrawl Corpus. The XLM-R was trained using
the Masked Language Model training objective
and does not use any supervised data (or parallel
corpus) for its training. Recent work (Schlinger,
2019a) (Libovický et al., 2020b) has shown that
the XLM-R model is able to build similar represen-
tations for semantically similar sentences across
languages.

3.2 The Multi-Task Pre-finetuning step

In existing work, the XLM-R model would be
fine-tuned on a downstream task. In contrast, our
method introduces a pre-finetuning step before fine-
tuning is done. We chose the GLUE benchmark
dataset (Wang et al., 2018) which contains super-
vised training data in English for 8 tasks spanning -
1) Single-Sentence Classification; 2) Pairwise Text
Similarity; 3) Pairwise Text Classification; and 4)
Pairwise Ranking. For each task, a task specific
decoder was attached to the XLM-R pre-trained
model and trained for a fixed number of epochs.
We made use of the publicly available framework
(Liu et al., 2020) for pre-finetuning on the GLUE
benchmark. No layer freezing was done for the

pre-finetuning steps. The different tasks and the
size of the training data is shown in Table 1.

3.3 The finetuning step
Post the pre-finetuning on English using the GLUE
benchmark dataset, we attach a decoder for the
joint Intent Classification & Named Entity Recog-
nition (IC-NER) task. The formulation of the IC-
NER task is shown below.

yi = softmax(W ih1 + b) (1)

where yi represents the IC hypothesis and h1
represents the hidden state of the classification head
(also denoted using the special token [CLS]).

For NER, we feed the final hidden states of other
tokens h2, ..., hn into a softmax layer to classify
over the slot filling labels. To make this procedure
compatible with WordPiece or SentencePiece tok-
enization, we feed each tokenized input word into a
tokenizer and use the hidden state corresponding to
the first sub-token as input to the softmax classifier.

ysn = softmax(W shn + b), n ∈ 1...N (2)

where hn is the hidden state corresponding to the
first sub-token of word xn and s is the slot label. To
jointly model intent classification and slot filling,
the objective is formulated as:

p(yi, ys|x) = p(yi|x)
N∏

n=1

p(ysn|x), (3)
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Table 1: GLUE dev set results. ST-DNN has the same architecture as MT-DNN-Original but without the Multi-Task
pre-finetuning. MT-DNN-MultiLingual is the Multi-Task pre-finetuned model with XLM-R pre-trained model as
the base. The results in columns 3, 4 and 5 (BERT-Large, ST-DNN and MT-DNN-Original) are obtained from
(Liu et al., 2019) The results in bold(not indicative of best performance) represent the performance of MT-DNN-
MultiLingual, which is the pre-finetuned model used in experiments later.

.

Dataset Train Data Size BERT-Large ST-DNN MT-DNN-Original MT-DNN-MultiLingual
QQP(F1score/Acc) 364k 86.3/86.2 91.3/88.4 91.9/89.2 88.532/91.373
MNLI-m/mm(Acc) 393k 86.3/86.2 86.6/86.3 87.1/86.7 84.035/84.123

RTE(Acc) 2.5k 71.1 72 83.4 77.978
QNLI(Acc) 108k 92.4 - 92.9 90.427

MRPC(F1/Acc) 3.7k 89.5/85.8 89.7/86.4 91.0/87.5 92.199/89.216
SST-2(Acc) 67k 93.5 - 94.3 92.775
CoLA(Mcc) 8.5k 61.8 - 63.5 49.217

STS-B(Pc/Sc) 7k 89.6/89.3 - 90.7/90.6 89.086/88.868

The learning objective is to maximize the condi-
tional probability p(yi, ys|x). The model is fine-
tuned end-to-end via minimizing the cross-entropy
loss.

3.4 Zero-shot transfer evaluation task

We evaluate the performance of pre-finetuned and
finetuned XLM-R model (on English) directly on
different languages for the joint IC-NER task. We
use 8 languages in the MultiATIS++ corpus - Hindi
(hi), French (fr), Spanish (es), German (de), Por-
tuguese (pt), Chinese (zh), Japanese (ja) and Turk-
ish (tr). These languages also belong to a diverse
set of language families - Indo-European, Sino-
Tibetan, Japonic and Altaic.

4 Experiments and Results

4.1 Pre-Finetuning

Using the XLM-R pre-trained model, pre-
finetuning is conducted over eight English lan-
guage GLUE datasets: CoLA(Single-Sentence
Classification), SST-2(Single-Sentence Classi-
fication), STS-B (Pairwise Text Similarity),
RTE(Pairwise Text Classification), MNLI(Pairwise
Text Classification), QQP(Pairwise Text Clas-
sification), MRPC(Pairwise Text Classification),
QNLI(Pairwise Ranking). Pre-finetuning is carried
out using MT-DNN (Multi-task DNN) setup where
the training is done on only English. The training
is conducted for four epochs with standard (as per
the original MT-DNN implementation(Liu et al.,
2020)) hyper-parameter values such as learning
rate of 5× e−5, batch-size of 32 and with adamax
optimizer.

Table 1 shows the GLUE dev set results, where
MT-DNN-MultiLingual is the proposed model

with pre-finetuning over XLM-R. The MT-DNN-
Original is the original MT-DNN model that is
pre-finetuned on BERT-Large model. The results
indicate that MT-DNN-MultiLingual, which uses
a multi-lingual pre-trained model as its base, is
able to beat the mono-lingual non-prefinetuned
models such as ST-DNN (stands for single task
DNN which implements task-wise finetuning) and
BERT-Large in most validation datasets (except
for CoLA, MNLI-m/mm). However, its unable to
beat MT-DNN-Original which is pre-trained and
pre-finetuned exclusively on English. These re-
sults re-emphasize the effectiveness of multilingual
models even for mono-lingual tasks.

4.2 IC-NER fine-tuning and Zero-Shot
Transfer

The baseline XLM-R-Finetuned model for zero-
shot transfer experiments consists of XLM-R
model that is fine-tuned on English and evaluated
on other languages in a zero-shot manner. These
experiments are conducted on IC-NER Joint Task
(Chen et al., 2019) over MutiATIS++ dataset. Our
method MT-DNN-MultiLingual-Finetuned con-
sists of MT-DNN-MultiLingual that is fine-tuned
on English. Tables 2, 3 and 4 show the zero-
shot performance of baseline model vs MT-DNN-
MultiLingual-Finetuned across all the available
languages in MultiAtis++ dataset. The results are
averaged across three different fine-tuning runs and
hyper-parameters such as batch-size (256), learning
rate (5×e−6) remain the same across both baseline
and experimental model.

As seen in the results, MT-DNN-MultiLingual-
Finetuned beats the baseline on 7 out of 8 lan-
guages at the 10th epoch for the IC task. The
average improvement in accuracy is 5.12% con-
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Table 2: XLM-R-finetuned vs MT-DNN-MultiLingual-finetuned for English, Hindi and French

Language en hi fr
Task IC (Accuracy) NER (F1 score) IC (Accuracy) NER (F1 score) IC (Accuracy) NER (F1 score)

10th Epoch 78.52 59 72.57 55 72.14 46
20th Epoch 86.52 81 78.4 58 80.82 55
30th Epoch 90.06 83 80.68 54 82.3 59

XLM-R-finetuned

40th Epoch 90.52 83 81.37 55 84.58 59

10th Epoch 84.01 66 77.71 53 80.36 49
20th Epoch 90.41 82 83.77 55 86.64 57
30th Epoch 90.75 83 84.68 54 86.64 58

MT-DNN-MultiLingual-finetuned

40th Epoch 90.75 84 84.57 53 86.3 58

Table 3: XLM-R-finetuned vs MT-DNN-MultiLingual-finetuned for Spanish, German and Portuguese

Language es de pt
Task IC (Accuracy) NER (F1 score) IC (Accuracy) NER (F1 score) IC (Accuracy) NER (F1 score)

10th Epoch 72.34 47 72.34 47 73.6 54
20th Epoch 81.05 69 80.22 53 80.57 62
30th Epoch 84.7 70 84.68 57 86.17 63

XLM-R-finetuned

40th Epoch 84.81 70 88.68 58 87.88 64

10th Epoch 75.68 51 83.08 48 74.62 54
20th Epoch 87.1 69 88.57 58 82.62 62
30th Epoch 87.67 72 88.91 59 83.42 63

MT-DNN-MultiLingual-finetuned

40th Epoch 87.44 72 89.48 59 83.2 63

Table 4: XLM-R-finetuned vs MT-DNN-MultiLingual-finetuned for Chinese, Japanese and Turkish

Language zh ja tr
Task IC (Accuracy) NER (F1 score) IC (Accuracy) NER (F1 score) IC (Accuracy) NER (F1 score)

10th Epoch 72.14 61 72.03 52 73.6 54
20th Epoch 75.57 65 73.07 56 68.42 51
30th Epoch 79.68 67 77.33 55 72.68 52

XLM-R-finetuned

40th Epoch 79.79 67 78.82 55 74.82 51

10th Epoch 75.57 64 73.53 33 71.55 22
20th Epoch 85.5 66 84.11 43 71.4 27
30th Epoch 85.38 67 85.5 45 68.7 27

MT-DNN-MultiLingual-finetuned

40th Epoch 85.38 0.67 85.5 45 66.7 27

sidering all languages. The results indicate Turkish
(tr) is showing regressions for both IC and NER
and appears to be an outlier. Discounting the Turk-
ish language, we see an average improvement of
6.11% for IC. A similar improvement of 6.54% in
IC is seen on English. These results, at the 10th

epoch, indicate that multi-task pre-finetuning has
improved the performance of the pre-trained model
for the IC task in a zero-shot setting. At the 40th

epoch, we see that the performance improvement
tapers and achieves an average improvement of
1.17% across all languages. This reduction in gain
is expected as the continual training on English
starts to improve baseline performance but reduces
some of the gains across other languages - i.e. the
usage of pre-finetuning allows for early conver-
gence (convergence in terms of performance on
non-English languages). Discounting the results
from Turkish, we see an average improvement of
2.64% across 7 languages for the IC task at the
40th epoch.

The early convergence of our method can be
seen in figure 2. We observe that MT-DNN-

MultiLingual-Finetuned converges faster (at epoch
20) than the baseline method. We also see that
in Chinese, the baseline model appears to have
a constant test accuracy value till 15 epochs and
the accuracy starts to increase post that. In con-
trast, MT-DNN-MultiLingual-Finetuned accuracy
starts to improve after 8 epochs. Since MT-DNN-
MultiLingual-Finetuned gains such early momen-
tum on IC task, its able to progressively beat the
baseline performance. Similar early gains in accu-
racy are observed for Hindi and Japanese as well.
This can be attributed to the improved generalisa-
tion via the pre-finetuning step.

We see a degradation of 5.32% and 12.17% for
pt (Portuguese) and tr (Turkish) respectively on
IC task (at 40th epoch). For Portuguese, we see
that MT-DNN-MultiLingual-Finetuned beats the
baseline until 25 epochs. However, fine-tuning for
further epochs shows better gains in baseline model
compared to MT-DNN-MultiLingual-Finetuned.
Although the MT-DNN-MultiLingual-Finetuned
beats the baseline for zero-shot performance in
Turkish at 20th Epoch, the performance does not
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Figure 2: Learning profiles of Train (en), Validation
(en) and Test (hi,zh,ja) datasets for Baseline and Exper-
imental Models

improve with further finetuning as compared to
baseline.

The results from NER indicate that pre-
finetuning hasn’t improved the performance. On
average across all 8 languages, NER performance
at the 10th epoch has degraded by 10.09% relative
to baseline. For NER, we see significant degrada-
tion of Turkish ( - 47%) (- indicates degradation).
Discounting Turkish, we see NER performance av-
eraging across 7 languages to be -2.72% relative to
baseline.

The reasons for degradation in Turkish (for both
IC & NER) and for the lack of improvement in
NER is not exactly clear. We hypothesise that the
degradation in Turkish could perhaps be attributed
to the fact that the language is highly agglutina-
tive in nature. Agglutination is a linguistic pro-
cess of derivational morphology in which complex
words are formed by stringing together morphemes
without changing them in spelling or phonetics
(Wikipedia contributors, 2021a). While Japanese
and Hindi do show partial agglutination, the mor-
phemes/words are much more complex in Turkish.
This hypothesis needs to be further investigated by
checking for zero-shot performance on other agglu-
tinative languages such as Hungarian, languages
of the Dravidian family etc and the investigation
forms the part of our future work.

5 Conclusion and Future Directions

In this work, we have investigated the effective-
ness of multi-task pre-finetuning for cross lingual

zero-shot transfer. Our method takes a multilingual
pre-trained model and further trains it on auxiliary
supervised tasks. The pre-finetuned model is then
finetuned on a task specific language and tested di-
rectly on other languages in a zero-shot setting. We
test our method for the tasks of Intent Classification
(IC) and Named Entity Recognition (NER). The
results indicate that the method indeed improves
the performance for the IC task. This improvement
is seen the most in early steps of finetuning and
our method allows the training to converge faster.
However, we see that the pre-finetuning does not
improve results for NER. Further, we see that both
IC and NER results degrade in Turkish.

Our furture directions include scaling our
method to cover large number of auxiliary tasks for
pre-finetuning. While our current method used 8
auxuliary tasks, we aim to scale this to beyond 50.
Large scale multi-task learning has been shown to
be effective in a monolingual setting (Aghajanyan
et al., 2021) and we would like to explore this phe-
nomenon in a multilingual setting. We will also
explore the role of language families and its interac-
tion with multi-task learning to test the hypothesis
of poor performance in agglutinative languages
(such as Turkish).

The pratical application of zero-shot learning
provides a data-efficient method to expand the lan-
guage capability of machine learning based tech-
niques. The results from our technique show that
such zero-shot performance can be further im-
proved and also provide impetus for further re-
search.
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Abstract

Sentiment analysis is one of the key Natu-
ral Language Processing (NLP) tasks that has
been attempted by researchers extensively for
resource-rich languages like English. But for
low resource languages like Bengali very few
attempts have been made due to various rea-
sons including lack of corpora to train ma-
chine learning models or lack of gold standard
datasets for evaluation. However, with the
emergence of transformer models pre-trained
in several languages, researchers are showing
interest to investigate the applicability of these
models in several NLP tasks, especially for low
resource languages. In this paper, we inves-
tigate the usefulness of two pre-trained trans-
formers models namely multilingual BERT
andXLM-RoBERTa (with fine-tuning) for sen-
timent analysis for the Bengali Language. We
use three datasets for the Bengali language
for evaluation and produce promising perfor-
mance, even reaching a maximum of 95% ac-
curacy for a two-class sentiment classification
task. We believe, this work can serve as a good
benchmark as far as sentiment analysis for the
Bengali language is concerned.

1 Introduction

In this era of the World Wide Web, sharing of in-
formation, knowledge, opinion, etc. has been in-
creased by a huge margin since the last decade.
Internet users are coming forward to review stuff
like books, movies, videos, e-commerce products,
etc., and are sharing their experiences which in
turn help the next in line users to get feedback up-
front. This genre of texts brings in the essence
of sentiment analysis task which helps in polar-
ity classification, i.e. determining whether a given
text expresses positive, negative, or neutral senti-
ment. Sentiment analysis of texts can be useful
for different applications, like detecting cyberbul-
lying (Saravanaraj et al., 2016), hate speech de-

tection (von Boguszewski et al., 2021; Mathew
et al., 2021), e-commerce recommendation sys-
tem (Hwangbo et al., 2018), etc. There has been
a substantial amount of work done by the re-
searchers to tackle sentiment analysis for resource-
rich languages like English (Pak and Paroubek,
2010; Feldman, 2013), but for low resource lan-
guages, such attempts are scarce (Islam et al.,
2020; Sazzed, 2020; Siripragrada et al., 2020). In
recent times, for low resource languages likeHindi,
Telegu, Bengali, Assamese, Manipuri, Indonesian,
etc. (Akhtar et al., 2016; Mukku and Mamidi,
2017; Sazzed, 2020; Le et al., 2016; Kumar and
Albuquerque, 2021; Meetei et al., 2021; Das and
Singh, 2021; Singh et al., 2021; Kumari et al.,
2021) and even for English-Hindi, English- Ben-
gali code-mixed languages (Jamatia et al., 2020),
researchers have come up with a solution for sen-
timent analysis tasks. In another work, R et al.
(2012) performed cross-lingual sentiment analy-
sis task where the opinion polarity of a text in
a language is predicted using classifier trained in
another language. The authors report results on
two widely spoken Indian languages, Hindi and
Marathi. Gupta et al. (2021) used an LSTM-
RNN based approach to determine the sentiment
of Hindi tweets and also compared their approach
with CNN, machine learning, and Lexicon based
approaches. Gupta et al. (2021) uses Hindi Senti-
WordNet (HSWN) proposed by Joshi et al. (2010)
as a lexicon generating tool for hindi text. So
Hindi being a major Indian language has been ex-
plored whereas more insights are still needed in
Bengali. In one of the very recent works, Islam
et al. (2020) prepare a two-class and a three-class
sentiment analysis dataset in Bengali and report
performances of multilingual BERT (Devlin et al.,
2019) which is impressive. Moving forward in a
similar direction, in this paper we apply two pre-
trained transformers models namely multilingual
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BERT and XLM-Roberta (Conneau et al., 2020)
after fine-tuning and conducting the analysis. In
addition to the datasets proposed by Islam et al.
(2020), we use two other datasets proposed by
Sazzed (2020) and Hossain et al. (2021) for our
study. We observe that, by applying fine-tuned
multilingual BERT and XLM-RoBERTa (for con-
venience we will refer XLM-Roberta as XLM-R
in our paper), we achieve an accuracy of 63%-
94% and 68%-95%, while evaluating against these
three target datasets leading to state-of-the-art per-
formances. To the best of our knowledge, this is
the first attempt at such a comprehensive study
for the Bengali language where pre-trained trans-
formermodels’ applicability (with fine-tuning) has
been investigated for sentiment analysis tasks and
evaluated against three datasets. All the codes and
datasets are made publicly available1.

2 Dataset

For this study, we use three datasets. The details
of these datasets are described below.
Prothom Alo: This is the first dataset2 used in
this study which is a publicly available dataset cre-
ated from user comments on 10 popular news top-
ics from an online Bengali news portal, Prothom
Alo3. This dataset is introduced by Islam et al.
(2020), for convenience, we refer to this dataset
as ‘Prothom Alo’. The authors scrape user com-
ments from news threads and clean to obtain a to-
tal of 17,852 user comments. Each of the com-
ments is tagged by Bengali domain experts into
one of the following three classes: positive, neg-
ative, and neutral. The authors prepare a variant
of this dataset as well which has only two classes
by removing the neutral class entries. This step re-
sults in a dataset for two-class classification with
13,120 entries.
YouTube-B: This is a collection of reviews manu-
ally annotated from YouTube Bengali drama4 con-
sisting of 8500 positive reviews and 3307 negative
reviews and is introduced by Sazzed (2020). This
dataset is a two-class dataset having only positive
and negative as labels. We refer to this dataset as
‘YouTube-B’ for the rest of the paper. ‘B’ stands
for Bengali language.

1https://github.com/Anirbanbhk88/
BengaliSentimentWithTransformers

2https://github.com/KhondokerIslam/Bengali_Sentiment
3https://www.prothomalo.com/
4https://data.mendeley.com/datasets/p6zc7krs37/4

#(Classes) Dataset Neu Pos Neg
Three Prothom Alo 4732 4769 8351

Two
Prothom Alo - 4769 8351
YouTube-B - 8500 3307
Book-B - 982 1018

Table 1: Class Distribution of Bengali sentiment anal-
ysis datasets. ‘Neu’, ‘Pos’ and ‘Neg’ represent neutral,
positive, and negative classes, respectively.

Book-B: This is the third dataset introduced by
Hossain et al. (2021). It is a collection of Bengali
book reviews collected from web resources such
as blogs, Facebook, and e-commerce sites. This
dataset is also a two-class dataset (having positive
and negative classes) with 2000 entries of book re-
views. We refer to this dataset as ‘Book-B’ for the
rest of the paper.
The details of these three datasets are shown in

Table 1.

3 Proposed Approach

In this study, we consider the state-of-the-art mul-
tilingual BERT model (Devlin et al., 2019) and
XLM-RoBERTa model (Conneau et al., 2020) for
the Bengali sentiment analysis task. First, we
use them separately in one of the recent archi-
tecture proposed by Islam et al. (2020), where
authors use Long Short Term Memory (LSTM)
(Cho et al., 2014), Convolutional Neural Network
(CNN) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Cho et al., 2014)) on
top of the transformer model. Next, we fine-tune
the pre-trained BERT and XLM-RoBERTa model
using each of the three datasets separately (as de-
picted in Figure 1) and analyze the performances.
In both the direction of exploration, BERT and
XLM-RoBERTa are the core transformers for our
analysis. Hence, a summary of both the BERT
model and the XLM-RoBERTa (XLM-R) model
is described below.
Description ofmodels: BERT andXLM-R are un-
supervised language models pre-trained on a large
corpus. They are transformer-based models which
have encoder-decoder architecture and use atten-
tion mechanisms to generate a contextualized rep-
resentation of words. BERT uses a multi-layer bi-
directional transformer encoder. Its self-attention
layer performs self-attention in both directions.
There are several variants of BERT. For example,
bert-base has 12 transformers layers, 110M total
parameters while bert-large has 24 transformers
layers, 340M total parameters. They are useful
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to solve the long-range dependencies which is a
key problem faced by sequence to sequence mod-
els like Recurrent Neural Networks(RNN). For our
proposed approach we use bert-base-multilingual-
cased, which is a bert-base model checkpoint
trained on multilingual corpus.

Figure 1: A snapshot of the architecture we fine-tuned
for the sentiment analysis task.

Dataset
(#Classes)

Layer on top
of BERT

Validation
Accuracy

Prothom Alo (3)
LSTM 0.58
CNN 0.59
GRU 0.57

Prothom Alo (2)
LSTM 0.63
CNN 0.74
GRU 0.74

YouTube-B (2)
LSTM 0.85
CNN 0.92
GRU 0.91

Book-B (2)
LSTM 0.49
CNN 0.91
GRU 0.86

Table 2: Accuracy of the framework proposed by (Is-
lam et al., 2020) where LSTM, CNN and GRU are used
on top of multilingual BERT.

XLM indicates a cross-lingual language model.
XLM-RoBERTa (XLM-R) is a pre-trained multi-
lingual model that is considered to be superior over
multilingual BERT when evaluated against vari-
ous NLP tasks. One probable reason could be
that XLM-R is trained using a much bigger cor-
pus. XLM-R is also trained in approximately 100
languages. Similarly incase of XLM-R, in our ap-
proach we use xlm-roberta-large checkpont of pre-
trained XLM-R model. We opt for the idea of
fine-tuning BERT and XLM-R models especially
for low resource language like Bengali, as fine-

Dataset
(#Classes)

Layer on top
of XLM-R

Validation
Accuracy

Prothom Alo (3)
LSTM 0.65
CNN 0.37
GRU 0.63

Prothom Alo (2)
LSTM 0.64
CNN 0.77
GRU 0.79

YouTube-B (2)
LSTM 0.85
CNN 0.90
GRU 0.90

Book-B (2)
LSTM 0.60
CNN 0.88
GRU 0.84

Table 3: Accuracy of the variant of the framework pro-
posed by (Islam et al., 2020) where LSTM, CNN, and
GRU are used on top of XLM-R.

Dataset
(#Classes)

Models Validation
Accuracy

Test
Accuracy

Prothom Alo (3) BERT 0.63 0.49
XLM-R 0.68 0.53

Prothom Alo (2) BERT 0.77 0.69
XLM-R 0.81 0.73

YouTube-B (2)
BERT 0.94 0.95
XLM-R 0.95 0.97

Book-B (2)
BERT 0.91 0.91
XLM-R 0.91 0.87

Table 4: Validation (Val) and Test accuracy(Acc) of
fine-tuned BERT and XLM-R models all the three
datasets respectively. XLM-R here represents XLM-
RoBERTa.

tuning can be done with a small amount of train-
ing data, and the training process is also less time
consuming since we are not training all the lay-
ers from scratch. Note that, all these transformer-
based models used in our study are adopted from
HuggingFace.5.

4 Experimental Setup

For the series of experiments performed, we first
adopt the model from the work by Islam et al.
(2020) and use it as a baseline model. This
benchmark model consists of a multilingual BERT
(bertbase-multilingual-cased) pre-trained on mul-
tiple languages. Three different deep neural net-
work layers: GRU, LSTM, CNN are used as an
extra layer on top of BERT separately to produce
three separate architectures. We use their code
repository and train the baseline models using the
same set of hyper-parameters and attempt to repli-
cate the results. Next, we replace BERT with
XLM-R in the same architecture. As XLM-Rmod-
els we use xlm-roberta-large. For this set of exper-

5https://huggingface.co/transformers
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Samples Model #(Classes) Target Prediction
প্রথম আেলার এই িডপারেমন্ট খুব কঁাচা িরেপােটর িদক িদেয় ।
This department of Prothom Alo is very raw in terms of reporting.

BERT-Fine 3 Neg Neg

েখলাধুলায় ভ্রাতৃত্বেবাধ থাকা প্রেয়াজন । েরষােরিষ নয় ।
There needs to be a sense of brotherhood in sports. Not a rivalry.

BERT-Fine 3 Pos Pos

সবার সােথই েসম অবস্থা , বুঝেত হেব আমােদর নয্াচার
The situation is same with everyone, we have to understand nature.

BERT-Fine 3 Neu Pos

অসাধারন নাটক এমন টা হেয়িছেলা আমার সােথ মত ।
Such an extraordinary drama. The same happened to me.

BERT-Fine 2 Pos Pos

প্রথম আেলার এই িডপারেমন্ট খুব কঁাচা িরেপােটর িদক িদেয় ।
This department of Prothom Alo is very raw in terms of reporting.

BERT-Fine 2 Neg Pos

প্রথম আেলার এই িডপারেমন্ট খুব কঁাচা িরেপােটর িদক িদেয় ।
This department of Prothom Alo is very raw in terms of reporting.

XLM-R-Fine 3 Neg Neg

আমরা এমন েরসােরিস চাই না , সবার সােথ বনু্ধত্ব পূণর্ সম্঩কর্ চাই ।
We do not want such a race, we want a friendly relationship with everyone.

XLM-R-Fine 3 Pos Pos

ঘুমন্ত বয্িক্তেক জাগােনা যায় িকন্তু জাগ্রতেক নয়
The sleeping person can be awakened but not watchful.

XLM-R-Fine 3 Pos Neu

শুধুই ভােলাবাসা িনশ ভাই
Take Only love brother.

XLM-R-Fine 2 Pos Pos

কুরুিচপূরণ শেব্দ ভরিত বই
A book full of ugly words.

XLM-R-Fine 2 Neg Pos

Table 5: Sample predictions for fine-tuned BERT and XLM-RoBERTa extracted from different datasets. ‘Target’
column represents gold standard class as per dataset and ‘Prediction’ column represents predicted class by our
models. ‘Neu’, ‘Pos’ and ‘Neg’ represents the neutral, positive and negative class.

iments, we use a learning rate of 5e−04.
We also perform another set of experiments

where we use pre-trained BERT(bert-base-
multilingual-cased) and XLM-R(xlm-roberta-
large) and fine-tune them. For all the fine-tuning
experiments a batch size of 16, a learning rate of
2e−05, and a categorical cross-entropy loss func-
tion are used. We use Adam optimizer (Kingma
and Ba, 2015) for all the experiments. More
details of hyper-parameters used are mentioned in
Table 1 of supplementary material.

5 Results and Discussion

Even though our primary aim is to investigate
the applicability of fine-tuned multilingual BERT
and XLM-RoBERTa for Bengali sentiment analy-
sis task, we start our experiment with one of the
most recent baseline models proposed by Islam
et al. (2020). As Islam et al. (2020) perform all
their evaluation on their proposed dataset, Prothom
Alo, we first reproduce their result on the same
dataset which is presented in the upper half of Ta-
ble 2. In addition to that, we also evaluate their
models on Youtube-B and Book-B datasets as well
which are presented in the bottom half of Table 2.
We observe BERT with CNN produces an accu-
racy as high as 0.92 and 0.91 for Youtube-B and
Book-B, respectively. Note that, in the study done
by Islam et al. (2020), authors report accuracy for
the validation set. Therefore, to make a fair com-

parison we also report the same. Next, we investi-
gate further by using the same model architectures
but instead of using multilingual BERT, replac-
ing it with XLM-RoBERTa (XLM-R). The perfor-
mances of this modified architecture over all three
datasets are presented in Table 3. The result shows,
that replacing multilingual BERTwith XLM-R im-
proves the performance for Prothom Alo dataset
(for both three class and two-class classification
tasks) by amaximum of 7%. On the other hand, for
Youtube-B and Book-B datasets the performance
marginally reduces.

Such inconsistencies in performances over dif-
ferent models lead to our next step which deals
with fine-tuning multilingual BERT and RoBERTa
using three datasets. Note that, in this approach,
we do not use any of the LSTM, CNN, and GRU
layers on top of the transformer layers as it was
done by Islam et al. (2020) as we attempt to show
that rather than implementing custom and complex
architectures working well on a specific task, sim-
ply fine-tuning a transformer is an easier, better
alternative. The results of this approach are pre-
sented in Table 4. We see that, for ‘Prothom Alo’
(both two and three classification tasks) fine-tuned
XLM-R beats all the previous approaches dis-
cussed so far by a significant margin and achieves
validation accuracy of 0.68 for the three-class clas-
sification task and 0.81 for the two-class classifica-
tion task. For ‘Youtube-B’ fine-tuned XLM-R pro-
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duces an accuracy of 0.95 whereas for ‘Book-B’ it
produces an accuracy of 0.91 which looks promis-
ing.
Note that, to have a fair comparison with the

most recent baseline models proposed by (Islam
et al., 2020), we report validation accuracy follow-
ing their performance measures and we see fine-
tuned XLM-R outperforms this baseline by a sig-
nificant margin for the ‘Prothom Alo’ dataset. In
addition, we also report test accuracy in the last
column of Table 4. Fine-tuned BERT/XLM-R pro-
duces substantially improved performances over
closest baselines which will serve as new state-of-
the-art performance for these three datasets.
We further investigate a few predicted sam-

ples from different datasets to check for the
cases that were predicted wrongly by fine-tuned
BERT or XLM-R . Few correctly predicted and
wrongly predicted samples are presented in Table
5. Even though the overall fine-tunedBERT/XLM-
R model performs well, there are certain cases
where these models get confused and predict
wrongly. In most such cases, the Bengali sentence
either contains an ambiguous word or it contains
two words from different polarity or it contains
some sort of philosophy the meaning of which de-
pends on human interpretation. Taking care of
these such cases could be immediate future work.

6 Conclusion

In this paper, we conduct an experimental study
showing the applicability of multilingual BERT
and XLM-R (with fine-tuning) for the Bengali sen-
timent analysis task. We use three datasets to
evaluate the models and obtain promising perfor-
mances for all three datasets. The immediate fu-
ture step would be investigating the erroneously
classified cases and trying to find the reason behind
such errors and mitigate it. Broadly, we plan to in-
vestigate sentiment analysis for other low-resource
languages like Tamil, Oriya, Gujrati, etc and at-
tempt to propose variants of transformer based
models.
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Abstract

The task of sentiment analysis has been ex-
tensively studied in high-resource languages.
Even though sentiment analysis is studied for
some resource-constrained languages, the cor-
pora and the datasets available in other low re-
source languages are scarce and fragmented.
This prevents further research of resource-
constrained languages and also inhibits model
performance for these languages. Privacy con-
cerns may also be raised while aggregating
some datasets for training central models. Our
work tries to steer the research of sentiment
analysis for resource-constrained languages in
the direction of Federated Learning. We con-
duct various experiments to compare server
based and federated approaches for 4 Indic
Languages - Marathi, Hindi, Bengali, and Tel-
ugu. Specifically, we show that a privacy
preserving approach, Federated Learning sur-
passes traditional server trained LSTM model
and exhibits comparable performance to other
servers-side transformer models.

1 Introduction

With the proliferation of opinionated user data on
social media platforms (Murphy et al., 2014), cap-
turing user emotions could help in decision making
and determining public opinion on cultural, social,
and political agendas (Zhao et al., 2016; Liu, 2012).
This has prompted research into sentiment analysis
and opinion mining for English (e.g. Thelwall et al.,
2010, 2012; Li and Lu, 2017; Hussein, 2018; Li
and Lu, 2019; Li et al., 2019; Hoang et al., 2019;
Ruz et al., 2020; Chen et al., 2021), which is aided
by the availability of large-scale, centralized train-
ing datasets. However, there is a pressing need to
work on NLP beyond resource-rich languages due
to cultural, linguistic, and societal factors (Ruder,
2020).

* indicates equal contribution

Sentiment Analysis in low-resource Indic lan-
guages has posed a challenge to the research com-
munity due to the absence of large-scale central-
ized datasets. Moreover, to due to increasing
concerns and regulations about data privacy (e.g.
GDPR (Regulation, 2016)), emerging data has been
much more fragmented. It resides in decentralized
private silos across different client devices. To
abide by such regulations and respect the privacy
of users, we must assume that these private data
silos can not be shared either with other clients or
with the centralized server. Hence, it is exigent to
tackle these challenges and study the problem of
sentiment analysis in a much more realistic setting -
i.e., training models on distributed data silos across
different clients to maintain data privacy.

Federated Learning (FL) (McMahan et al., 2017),
is a distributed learning paradigm which aims to
enable individual clients to train their models col-
laboratively while keeping their local data private.
Instead of accumulating data on a centralized server
for training the model, each client sends its model
parameters to the server, which updates and sends
back the global model to all clients in each round.
Since the raw data always remains on the client
device and is never shared, FL offers promising
solution to the above challenges, particularly in
resource poor languages where collection of large-
scale training data is difficult.

Previous works for sentiment analysis have re-
lied on traditional server-based architectures and
have been centered around resource rich languages.
However, such models risk leakage of highly sen-
sitive user-generated data. Thus, we propose a
privacy-preserving approach, Federated Learning
for sentiment analysis in 4 Indic languages. To the
best of our knowledge, our work is the first effort
towards Federated learning on Marathi, Bengali,
and Telugu datasets; and also towards sentiment
analysis in Hindi.
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Language Dataset Reference # Classes # Examples
Train Test Dev Total

Marathi (mr) L3CubeMahaSent Kulkarni et al. (2021) 3 12, 114 2, 250 1, 500 15, 864

Telugu (te) ACTSA Mukku and Mamidi (2017) 3 3, 784 812 812 5, 408

Bengali (bn)

ABSA Cricket Rahman et al. (2018) 3 2, 085 380 372 2, 837
ABSA Restaurant Rahman et al. (2018) 3 1, 365 219 224 1, 808

YouTube Comments Tripto and Ali (2018) 3 1, 957 420 419 2, 796
SAIL Patra et al. (2015) 3 697 204 98 999

BengFastText Karim et al. (2020) 2 5, 510 1, 532 1, 378 8, 420
Combined Hasan et al. (2020) 3 9, 901 2, 755 2, 491 15, 147

Hindi (hi) Hindi Sentiment Analysis Sinha (2019) 1 3 6, 353 1, 362 1, 362 9, 077

Table 1: Summary of different datasets

We use of publicly available datasets for
sentiment analysis in Marathi (Kulkarni et al.,
2021), Telugu (Mukku and Mamidi, 2017), Ben-
gali (Hasan et al., 2020), and Hindi 1. We ex-
amine how Federated LSTM model performs, in
comparison to 4 server-side centralized models:
bi-directional LSTM (Hochreiter and Schmidhu-
ber, 1997), IndicBert (Kakwani et al., 2020b),
mBERT (Devlin et al., 2019), and XLM-R (Con-
neau et al., 2020). We find that the federated learn-
ing architecture outperforms the centralized server-
side LSTM model and shows comparable perfor-
mance to the centralized transformer models for all
4 languages under consideration.

The remainder of the paper is organized into
prior work (§2), a brief description of the datasets
we use (§3), a description of the experimental setup
(§4), an in-depth analysis our experiments (§5), and
finally a conclusion (§6).

2 Prior Work

Federated Learning: Federated Learn-
ing (McMahan et al., 2017) is used for building
PPML (Privacy Preserving Machine Learning)
models. As proposed by Hard et al. (2018),
Federated Learning is useful for preventing
bottlenecks when the data is trained on central
servers. Some major work is being done for the
English language at the intersection of Federated
Learning and Natural Language Processing which
was also observed in Lin et al. (2021). However,
even though benchmarks were established for
English language, the task of using it on Indic
resource-constrained languages remains relatively
unexplored. Recently, Singh et al. (2021) showed
that Federated Learning surpasses the baselines for
complaint identification in some Indic languages.
It is evident from these approaches that using this
technique helps achieve better results. Therefore,

we consider a total of 4 Indic languages (Hindi,
Marathi, Telugu, Bengali) in this paper to conduct
Federated Learning.

Sentiment Analysis in Indic Languages: Joshi
et al. (2010) talks about various approaches for
sentiment analysis in Hindi, and resorts to translat-
ing the data to English for sentiment identification
due to the issue of constrained resources for Hindi.
However, even though Hindi cannot be considered
a very resource-constrained language now due to
the development of various corpora such as (e.g.
Kunchukuttan et al., 2018; Khandelwal et al., 2018;
Bafna and Saini, 2021), but a lot of other Indic
languages are still resource constrained and cor-
pora for the same are very limited. The datasets for
such Indic languages are spread out as observed for
Bengali in Table 1. Many approaches have been
adopted server trained models for sentiment anal-
ysis of the languages being considered here (e.g.
Salehin et al., 2020; Regatte et al., 2020; Kulkarni
et al., 2021; Jain et al., 2020; Hasan et al., 2020;
Kakwani et al., 2020a).

3 Datasets

We use publicly available datasets for sentiment
analysis in low-resource Indian languages. Table 1
gives the details of all datasets used in our work.
We combine all the Bengali datasets and train our
models on the combined dataset.

In case of ACTSA Dataset (Mukku and Mamidi,
2017) and Hindi Sentiment Analysis Dataset 1, we
make a stratified split of 70:15:15 to divide the
data into train, test, and development sets. For
other datasets, we use the original splits which are
provided.

1https://github.com/sid573/Hindi_
Sentiment_Analysis
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mBERT XLM-R IndicBERT
Acc. AUC F1 Acc. AUC F1 Acc. AUC F1

te 45.81± 0.00 49.46± 1.66 28.79± 0.00 48.45± 5.89 54.98± 10.34 34.81± 13.46 61.85± 0.53 76.61± 0.69 61.74± 0.62
hi 75.57± 3.93 87.03± 3.83 74.55± 5.02 88.39± 0.39 94.93± 1.38 87.40± 2.49 88.58± 1.61 95.73± 0.72 88.58± 1.62
bn 77.54± 0.64 80.66± 1.01 76.72± 0.67 78.30± 6.87 81.24± 7.58 77.00± 8.28 80.87± 0.26 86.27± 0.76 80.35± 0.23
mr 69.98± 0.57 83.58± 0.43 69.97± 0.55 82.47± 0.46 92.02± 0.62 82.42± 0.47 83.36± 0.36 93.51± 0.36 83.33± 0.35

Table 2: Performance of centrally trained models on 5 different seeds. IndicBERT performs better than the others
for all languages.

3.1 Pre-processing

To pre-process the data, we lower-case all text and
remove numbers, punctuation, and URLS. Since
some of the datasets are taken from Twitter, we
also remove Twitter specific things like hashtags,
@-mentions, and the retweet marker: ”RT:”.

4 Experiments

All the experiments are conducted on Google Colab
using a NVIDIA Tesla P100 GPU (16 GB) with 26
GB RAM. The metrics used to compare the results
are weighted AUC, weighted F1 and the accuracy
score for every model in every variation.

4.1 Central Training

In order to compare results to Federated Learn-
ing, we use 4 different models: mBERT (De-
vlin et al., 2019), XLM-R (Conneau et al., 2020),
IndicBERT (Kakwani et al., 2020b), and Bi-
LSTM (Hochreiter and Schmidhuber, 1997). We
report the mean and standard deviation after train-
ing on 5 random seeds. All of these models except
the Bi-LSTM architecture are pretrained on the
languages being considered in this paper.

Every pretrained model is trained for 25 epochs
and the Bi-LSTM model is run for 500 epochs with
early stopping. The default learning rate (lr =
4e − 5) is used for the pretrained models and for
the Bi-LSTM model, the learning rate of 0.01 is
set.

4.2 Federated Learning

We use the FedProx algorithm (Li et al., 2018)
because it works better in non-iid data where the
distribution varies rapidly within the dataset. We
conduct various experiments under synthetic-iid
(independent and identical distribution) (Li et al.,
2018) and non-iid settings. Since, some of these
Indic languages cannot be tokenized using general
tokenizers such as Spacy2, we use language specific
tokenizers provided by iNLTK (Arora, 2020).

2https://spacy.io/

To make the computation cheaper on resource-
constrained edge-devices, by the distributed train-
ing process, we train it on a basic Bi-LSTM
model (Hochreiter and Schmidhuber, 1997) with 2
hidden layers and dropout (Srivastava et al., 2014)
set to 0.5. Different client fractions are used to
observe the variation of results in the Federated
setting too. The client fractions of 10%, 30% and
50% are considered and these clients are always
picked randomly for every round.

All the models are run for 500 rounds with early
stopping applied on the average training loss. The
learning rate is set to 0.01 and the proximal term is
set to 0.01 as default (Li et al., 2018).

5 Results

Telugu (te): From Table 4, it can be observed
that for the Telugu language, the Federated train-
ing process performs much better than the cen-
trally trained LSTM model. The best model chosen
for the Federated setting is with c = 30%. Even
though the Federated training is trained on 30%
of the data every round, the results are better than
the central model. Looking at the other models
trained for the Telugu language, we also observe
from Table 2 that the best performing model In-
dicBERT (Kakwani et al., 2020b) has comparable
results to the Federated LSTM model3.

Hindi (hi): From Table 4, we find that the feder-
ated model performs better on all the metrics than
the server-based LSTM model. Even though we
achieve better F1 score for c = 30% (Table 3), we
consider the model with c = 10% as the high per-
forming model for federated learning because of
the AUC score and the accuracy. It must be noted
that the scores are on the lower side for models
trained on non-iid setting in federated learning be-
cause every client cluster is intentionally biased to
represent one single class unlike the synthetic-iid
method.

3IndicBERT was pretrained on 674M tokens of Tel-
ugu. (Kakwani et al., 2020b)
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c = 10% c = 30% c = 50%
IID non-IID IID non-IID IID non-IID

Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1
te 47.62 76.09 55.75 38.10 64.42 37.74 66.67 74.32 54.38 42.86 66.88 25.54 61.91 71.16 49.90 38.10 68.33 32.32
hi 81.82 99.79 84.18 45.46 92.18 52.14 75.76 99.63 84.57 45.45 87.95 49.46 75.76 95.12 76.73 60.61 88.51 62.13
bn 68.12 39.38 80.18 53.03 33.15 59.21 65.15 38.65 74.94 46.97 34.16 61.18 65.15 39.74 81.16 53.03 36.16 64.57
mr 68.52 95.15 79.33 35.19 81.06 38.12 68.52 95.15 79.33 50.00 81.44 51.01 70.37 95.58 79.57 48.15 82.62 62.70

Table 3: Performance of model under federated settings conducted with 3 different client fractions. c is the fraction
of clients whose updates are considered in every round. Evidently, for lower dataset sizes, c = 10% performs
comparatively better.

server-LSTM federated-LSTM
Acc AUC F1 Acc AUC F1

te 51.28 73.91 54.60 66.67 74.32 54.38
hi 78.79 98.92 82.60 81.82 99.79 84.18
bn 60.61 40.92 83.46 68.12 39.38 80.18
mr 65.74 92.03 76.67 70.37 95.58 79.57

Table 4: Comparison between the centrally trained Bi-
LSTM model and federated Bi-LSTM model.The fed-
erated model is selected based on best results from Ta-
ble 3

Bengali (bn): Table 4 shows that the Federated
Bengali model performs better in terms of accuracy
against the centrally trained LSTM but worse in
terms of AUC and F1-score. The reason is that
the Bengali federated model is trained differently.
For the synthetic-IID setting, every client cluster
consists data from one specific dataset only and no
dataset entries are mixed for every client. Since
we use the combined dataset (Hasan et al., 2020),
all of the datasets in it have different distributions
in terms of categories. We believe that the poor
AUC and F1 scores are due to this difference of
distribution as the ’neutral’ category is absent in
some of these member datasets.

Marathi (mr): Looking at Table 4, it is evident
that the Federated LSTM performs better on all
metrics than the centrally trained LSTM. Since this
trend continues across all the languages, we believe
that Federated Learning helps learn the data repre-
sentations better without data bottlenecks and also
without sharing any data which might be sensitive.

6 Conclusion

We show that a LSTM model trained using feder-
ated learning can outperform an identical server
trained LSTM model for 4 Indic languages -
Marathi, Bengali, Telugu and Hindi. We also show
that federated learning achieves comparable per-
formance to other server trained Transformer ar-

chitectures4. Surprisingly, we find that for smaller
datasets, lower client fractions show better perfor-
mance. To our knowledge, this represents one of
the first applications of federated learning in low-
resource settings for sentiment analysis. Federated
learning offers security and privacy advantages for
users by training across a population of highly dis-
tributed computing devices while simultaneously
improving model performance.

For future work, it would be interesting to train
heavier transformer models like IndicBERT, XLM-
R, etc. using federated learning which could help
to minimize the large gap in accuracy in non-iid
settings. Conducting some interpretable evaluation
on the intermediate models before updating dur-
ing Federated training is another important future
direction.
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Abstract
Social media is bustling with ever growing
cases of trolling, aggression and hate. A huge
amount of social media data is generated each
day which is insurmountable for manual in-
spection. In this work, we propose an effi-
cient and fast method to detect aggression and
misogyny in social media texts. We use data
from the Second Workshop on Trolling, Ag-
gression and Cyber Bullying for our task. We
employ a BERT based model to augment our
data. Next we employ Tf-Idf and XGBoost
for detecting aggression and misogyny. Our
model achieves 0.73 and 0.85 Weighted F1
Scores on the 2 prediction tasks, which are
comparable to the state of the art. However,
the training time, model size and resource re-
quirements of our model are drastically lower
compared to the state of the art models, mak-
ing our model useful for fast inference.

1 Introduction

With the rise of social media, there has also been a
huge surge of online criticism and trolling. Mitiga-
tion of these kinds of online bullying has been an
important problem and has been studied for a long
time. However, the amount of information gen-
erated on social media is too large for humans to
wade through. Machine Learning (ML) and Deep
Learning (DL) models have achieved great success
in the task of text categorization. However, even
as larger models with higher accuracy are being
built, the importance of the quality of data has still
not reduced. Larger models will give sub-optimal
results if the training data is not of good quality.
But the results of large models are more difficult to
interpret. Traditional ML models have the advan-
tage of producing results that are relatively easier
to interpret.

In this work, we combine a large deep learning
model and traditional ML approaches for the pur-
pose of text classification. Our experimental data
is comprised of social media texts from YouTube

comments and the task is to predict the presence
of aggression and misogyny from the data. First
the data is analyzed to reveal the class distribution
issue with the data. Next we develop a Bidirec-
tional Encoder Representations from Transformer
(BERT) (Devlin et al., 2019) based text data aug-
mentation pipeline to fix the class distribution. This
augmented data helps to reduce class imbalance.
For the classification part, we develop a Tf-Idf and
XGBoost based classification model to classify the
text.

Our model1 achieves a score very close to the
state of the art. However, since the augmentation
task is essentially a one-time process, our model is
simpler and faster. The main classification pipeline
does not require high-end computational resources
during inference, which makes our model even
more efficient.

2 Related Works

So far, significant contributions have been made in
the domain of aggression detection in text (Razavi
et al., 2010; Kumar et al., 2018, 2020b). Other as-
pects of of the task have been investigated in areas
such as trolling (Cambria et al., 2010; de la Vega
and Ng, 2018), misogyny (Anzovino et al., 2018),
cyberbullying (Dadvar et al., 2013; Xu et al., 2012),
racism (Greevy, 2004), offensive language(Nobata
et al., 2016) and hate speech(Djuric et al., 2015;
Davidson et al., 2017). All these works are di-
verse in terms of the target subject they investigate.
The works have mainly been conducted on English
datasets, however there are some other languages
on which works have been reported, for example,
in Hindi (Mandla et al., 2021),Spanish (Garibo i
Orts, 2019),Chinese (Su et al., 2017), etc.

1Source Code : https://github.com/Dutta-SD/
AggDetect
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Figure 1: Model Pipeline

3 Model Description

3.1 BERT based Text Data Augmentation
The dataset had a skewed distribution, with the
majority of the data belonging to one category. This
imbalance can cause models to always predict the
majority class. To counter this effect, we employed
a BERT based masked word prediction model for
data augmentation. The process of augmentation is
presented in Algorithm (1).

Algorithm 1 BERT based Data Augmentation -
Masked Word Prediction

1: Select one text belonging to the minority class.
2: Filter out the stop words from the text as they

do not contribute to the overall sentiment of
the text.

3: Randomly select one token and replace it with
a special [MASK] token. The model fills this
token with the word that it deems to be most
likely in that context.

4: We take the top k predictions for augmenting,
where ‘k’ is a hyper parameter. We choose k
as per the dataset to ensure equal class distri-
bution.

5: Repeat the above steps for other texts in the
minority class to make the distribution even for
all the classes.

The dataset is augmented once and stored. This
essentially being an offline one time process, makes
our overall model faster. This process need not be
repeated during inference, which makes our net
model size smaller.

3.2 Text Data Cleaning
To clean the texts, we use the following steps:

• Remove Punctuation – Punctuation marks
are replaced with empty string.

• Remove Stop Words – We use the default
stop words list of nltk package and replace
the stop words with the null character. We
exclude words like “no”, “not”, “ain’t” since

they change the semantic nature of a sentence;
therefore these words are retained.

• Stemming – Porter Stemmer from the
nltk package is used to reduce the vocabu-
lary size and noise.

3.3 Tf–Idf Vectorization
Tf–Idf Vectorization is a scheme that converts a
given text into a vector of numerical values. Classi-
fication task is made easier by using Tf–Idf, since
taking the log of the inverse count of t term reduces
the value of unimportant words occurring more fre-
quently in the document. Tf–Idf returns a sparse
vector for each text. This helps reduce memory
consumption and training time.

3.4 XGBoost Text Classifier
XGBoost (Chen and Guestrin, 2016) or Extreme
Gradient Boosting is a very popular algorithm for
classification. The model is preferred because of
the following reasons.

• Sparsity Aware Computation – XGBoost
supports computations on sparse data, which
helps avoid unnecessary overheads and results
in faster training.

• Approximate Splitting Algorithm – BERT
based data augmentation (cf. Section 3.1) of
our pipeline increases the amount of data in
our dataset by data augmentation. XGBoost
provides approximate methods for splitting
the data which saves memory.

• Regularized Learning Objective – XG-
Boost provides regularized objective function
which controls model complexity and pre-
vents over-fitting.

4 Experiments and Results

4.1 Dataset
The English dataset (Bhattacharya et al., 2020) we
used for our experiments consists of texts scraped
from YouTube comments section (Kumar et al.,
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Table 1: Experiments on Various Classifiers and Weighted F1 Scores (Other Hyper-parameters are Default Values)

Model Sub Task A Score Sub Task B Score
Multi Layer Perceptron Classifier (50 iterations) 0.533 0.720
Random Forest Classifier 0.561 0.740
LinearSVC 0.620 0.773
XGBoost Classifier (γ = 0.2) 0.729 0.850
Final Model – XGBoost Classifier (γ = 0.1) 0.735 0.852

Table 2: Results obtained (Weighted F1 Score)

Team Name Sub Task A Score Sub Task B Score
Julian (Risch et al., 2020) 0.802 0.851
abaruah (Baruah et al., 2020) 0.728 0.870
sdhanshu (Safi Samghabadi et al., 2020) 0.759 0.857
Our best model 0.735 0.852

2020a). The task consists of 2 sub tasks - ‘Sub
Task A’ and ‘Sub Task B’.

Sub Task A is to detect the level of aggression
in the text and for this sub task the dataset con-
tains 3,375 Non Aggressive (NAG), 453 Covertly
Aggressive (CAG, Disguised aggressive content
e.g, sarcasm), and 435 Overly Aggressive (OAG,
directly aggressive) samples.

Sub Task B addresses misogyny identifica-
tion and for this the dataset comes with 3,954
Non Misogynistic (NGEN) and 309 Misogynistic
(GEN) samples.

An additional validation set was provided with
836 NAG, 117 CAG and 113 OAG samples for Sub
Task A and 993 NGEN and 73 GEN samples for
Sub Task B. The testset comprised of 690 NAG,
286 OAG and 224 CAG samples for Sub Task A
and 1,025 NGEN and 175 GEN samples for Sub
Task B.

For both the sub tasks, the ratio of samples indi-
cates a huge data imbalance. This was fixed by us-
ing BERT based augmentation and then prediction
was done using the model as described in Section
3.2 – 3.4.

4.2 Experimental Setup

Figure 1 shows the entire classification pipeline.
Hyper-parameter k (cf. Algorithm 1) was set to 2
for our model to augment each data point 2 times.
This entire process was repeated 2 times to even
out the distribution.

A number of experiments were performed on
Random Forest, SVM and Multi Layer Percep-
tron using scikit-learn (Pedregosa et al., 2011).
The BERT masked word prediction augmentation

model was moved to the GPU but not finetuned.
All hyper-parameters were set as per Devlin et al.
(2018). It took about 10 minutes to finish the entire
data augmentation process on a Nvidia Tesla K80
GPU.

Next, the Tf-Idf + XgBoost pipeline was trained
on an Intel Xeon CPU. The gamma hyperparame-
ter of XGBoost model was set to 0.1 for regular-
ization. All other hyper parameters were kept to
their default values. The entire process of cleaning,
training, validation and predicting on test data took
about 2 minutes to complete. We evaluated our
models using weighted F1 score.

4.3 Results

The results of our experiments are reported in Table
1. Among our models, XgBoost with γ = 0.1
yielded the best results for both the subtasks.

Table 2 presents a comparison of our best model
with the best models on this task reported in the
literature. Risch et al. (2020) obtained the highest
scores on Sub Task A and they used bagging of
multiple BERT models for prediction. Their en-
tire pipeline required 7 hours to train on a Nvidia
1080 Ti GPU. Baruah et al. (2020) reported the
best results on the Sub Task B and they used Trans-
former based models which demand heavy compu-
tational resources. Another top performing model
(Safi Samghabadi et al., 2020) took about 6 hours
to train on an Nvidia Tesla P40 GPU.

Our model achieves nearly comparable results
to the state of the art for this task but requires only
a small fraction of the computational resources and
time that the top models need. To train the model,
the total time required is about 30 minutes, which
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Table 3: Predictions by Our Model (Some Texts are Truncated)

Text Aggression Misogyny
Actual Predicted Actual Predicted

watch sandeep’s interview in film companion fat
guy with salt and pepper hair ( rajiv masand )

NAG CAG GEN NGEN

maria malhotra yes, but i am more of dying on the
interviewers face. it looked like a square. I was
rolling on the ground

NAG OAG NGEN NGEN

sesh r kotha gulo just heart touching.... NAG NAG NGEN NGEN
where the hell is that sexuall predater cunt. she
must be exposed by judiciary, media, parliament

OAG OAG NGEN GEN

Table 4: Model performance (Weighted F1 Score) with different values of hyperparameter k

Value of k Sub Task A Score Sub Task B Score
0 (No Augmentation) 0.232 0.354
2 (Our Experiment) 0.735 0.852
4 0.551 0.672

Figure 2: Confusion Matrix Sub Task A (0: NAG, 1:
CAG, 2: OAG, Y-Axis: True Label; X-Axis: Predicted
Label)

is drastically less compared to the state of the art.
The storage requirement for our model is also lower.
Our models occupy about few MBs (.pkl files),
whereas other models take hundreds of MBs.

4.4 Analysis

Table 4 shows the performance of the classifier
based on different values of the hyperparameter k.
It is evident from the table that with no augmen-
tation (k = 0), the model performs poorly. With
k = 2, which makes the class distribution almost
even, the model gives the best performance. For

Figure 3: Confusion Matrix Sub Task B (0: NGEN, 1:
GEN, Y-Axis: True Label; X-Axis: Predicted Label)

higher values of k, the class distribution becomes
skewed and we get deteriorated performance. Thus
best performance is obtained when there is almost
equal distribution of all the classes; the model can
then learn better representations of the data.

Figure 2 and Figure 3 show the confusion matrix
for Sub Task A (Aggression Detection) and Sub
Task B (Misogyny Detection), respectively.

We see that our model detects non aggressive
and overtly aggressive categories well. However,
it shows some problem in detecting aggression in
covert forms such as in sarcasm. For misogyny
detection, our model shows some errors.
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Table 3 shows some predictions from our model
where the model predictions match or differ from
the actual labels. As has also been reported in
Safi Samghabadi et al. (2020), there are some la-
belling errors in the dataset itself. Our model pre-
dictions seem to be more appropriate than ground
truth values in those cases.

5 Conclusion

In this work, a fast and efficient pipeline to de-
tect aggression and misogyny from social media
texts was developed. The text data is cleaned and
analysed and data augmentation was performed us-
ing a BERT based model. Various models were
experimented upon and Tf-Idf + XgBoost model
performs the best among them. Weighted F1 Score
of 0.735 and 0.852 was produced by our model,
however with drastically reduced computational
requirements.

In future, we aim to perform the training on a
larger dataset to obtain better results. This would
enable us to develop a fast and efficient system to
tackle the problem of hatred on social media sites.
There is scope of improvement in specific areas
like improving the pipeline to detect the subcate-
gory of covertly aggressive better, and to detect
misogynous content slightly better. We can extend
the reach of the present work to processing multi-
lingual datasets as well.
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Abstract

This document contains our work and progress
regarding phishing detection by searching for
proper influential sentences. Currently, the
world is becoming smart, as a result most
of the transactions and posting offers happen
online. So, human beings have become the
most vulnerable to security breach or hack-
ing through phishing attacks, or being per-
suaded through influential texts in social me-
dia sites. We have analyzed influential and
non-influential sentences and populated our
dataset with those. We have proposed a com-
putational model for implementing Cialdini
and we got state of the art accuracy with our
model. Our approach is language independent
and domain independent and it is applicable
to any problem where persuation detection is
important. Our dataset and proposed computa-
tional psycholinguistic approach will motivate
researchers to work more in the area of persua-
sion detection.

1 Introduction

In some ways we humans are incredibly durable,
and in others we are incredibly fragile. Most of the
humans can be easily swayed by beautiful rewards.
We are the most vulnerable to phishing attacks and
such rackets. Some people take these opportunities
to persuade people to click some bad links through
some deceitful messages.

Susceptibility (Pierre O. Jacquet, 2018), persua-
sion (MakuochiNkwo and Orji, 2018; Kiemute Oy-
ibo and JulitaVassileva, 2018; Ifeoma Adaji and
JulitaVassileva, 2020; Christopher Hidey, 2018)
and gullibility (Mercier, 2017), these three words
are very much related to human behaviour. Humans
are susceptible to treachery, they can be persuaded
easily, and they are gullible too to believe anything
in what others say.

Depending on a person’s behaviour we can in-
fluence him/her using different types of methods.
Robert Cialdini did research on all those methods
and ways and published his famous principles. We
created a classifier to detect types of influence by
fine-tuning a pre-trained BERT model.

In this paper our major contributions are:

i. Our research on phishing detection was us-
ing computational psycholinguistic approach.
Here we have modeled the Cialdini principles
on influence analysis.

ii. We have prepared our dataset using influential
texts, such as advertisements, Twitter posts
etc.

iii. We experimented with pre-trained BERT mod-
els by adding extra layers and changing the
learning rate.

The rest of the paper is organised as follows.
Section 2 discusses about the related works and
how those are different. Section 3 discusses about
Cialdini principles and how we applied them in
our work. Section 4 describes how we made our
own dataset and related literature survey. Section
5 provides an insight into the pre-trained model
and why we used it. Section 6 discusses about
our experiment with different methods and tools to
reach higher accuracy. Section 7 provides a detail
about our result and section 8 concludes the paper.

2 Related Work

The closest research to our work is on sentiment
analysis and persuasion detection based on Cial-
dini principles. Kiemute Oyibo and JulitaVassileva
(2018) focused on how culture and gender influ-
ence the effectiveness of Cialdini’s principles of
persuasion. They investigated on how the culture,
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gender and age differences affect individual’s sus-
ceptibility to Cialdini’s persuasive strategies. But
their work centred on the people of Nigeria. Srid-
har Ramaswamy (2018) used unstructured data
available for survey voice recording of customer
interactions and chat transcripts and explored dif-
ferent technologies of Deep Learning (Goodfel-
low et al., 2016) and Natural Language Processing
(NLP) that would help better analyze the contextual
information to capture customer feedback. Christo-
pher Hidey (2018) worked with detection of persua-
sion in online discussion or in some argument. Mer-
ton Lansley (2019) developed a method that detects
social engineering attacks that are based on NLP
and Artificial Neural Networks. Ifeoma Adaji and
JulitaVassileva (2020) proposed the use of shop-
pers’ online shopping motivation in tailoring six
commonly used influence strategies: scarcity, au-
thority, consensus, liking, reciprocity, and commit-
ment and they identified how these influence strate-
gies can be tailored or personalized to e-commerce
shoppers based on the online customers’ motiva-
tion when shopping. Shilpa P C (2021) used deep
learning techniques to classify the sentiments of
an expression into positive or negative emotions
which were further classified into more atomic emo-
tions. Vansh Gupta (2021) worked with persuasion
detection but their work was based on biased or
misleading information or propaganda classifica-
tion.

Some researchers have also worked on sentiment
analysis and persuasion detection based on Twitter
data. OlhaKaminska and Hoste (2021) developed
an approach for the SemEval-2018 emotion detec-
tion task, based on the Fuzzy Rough Nearest Neigh-
bor (FRNN) classifier enhanced with Ordered
Weighted Average (OWA) operators. Neha Jadav
and Khamparia (2018) focused more on improve-
ment of accuracy of sentiment system 1 to 5 star, 1
being the most negative.

So many works on persuasion detection have
been done over the years. Everyone has focused on
some particular domain, either customer feedbacks,
online shopping sites, or some particular culture
or area. Our goal was to identify phishing attacks
through influential texts. Therefore we used persua-
sion detection and Cialdini principles and we tried
to be more general in determining effects of these
influences. So, we collected example sentences
from as many diverse places as possible.

3 Our Technique

While searching for the ways by which people can
be persuaded or phishing attacks can be detected
we came across Cialdini’s principles.1 So we used
mainly those principles in our classifier. Before
going further let’s first discuss about Cialdini prin-
ciples.

3.1 Cialdini’s Principles

Robert Cialdini published his book “Influence: The
Psychology of Persuasion”2 in 1984. In this book
he explored some factors that affect the decisions
that people make. Cialdini identified six core prin-
ciples that affect this decision making process.

Reciprocity — People always tend to help those
from whom they have got help before as a form of
gratitude. So business companies make the adver-
tisements in a way to provide their customers extra
benefits, discounts, offers in order to prompt them
to buy products from that company.

Scarcity — It is a fact that the less something
there is, the more people will tend to want it. Many
companies use this human behaviour to put some
products in limited edition sale.

Authority — Individuals who are authoritative,
credible, expert in their fields are more influential
and persuasive than those who are not. People
prefer to go for those company products that are
promoted by authoritative figures.

Commitment and Consistency — People like
them who are committed to their words, and they
also like to be consistent with their identity. So
many advertisements tend to make people believe
something and make them do according to that.
People also like to use the products which are com-
mitted to their usefulness.

Liking — People tend to follow those whom
they love, that could be an authoritative person,
a player, a singer. So some companies give such
famous persons money to use their products and
show to people.

Consensus — People love opinion of the major-
ity. When they find something is used by most of
the people they tend to use it too.

1https://worldofwork.io/2019/07/
cialdinis-6-principles-of-persuasion/

2https://www.goodreads.com/book/show/
28815.Influence
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3.2 How we applied Cialdini theory

We used this Cialdini Persuasion theory in order to
find the influence working behind a text, be it an
advertisement or a text message. We made each
category a class and thus we applied Cialdini’s Prin-
ciples as a multiclass Machine Learning (Mitchell,
1997) classification problem.

We chose Cialdini’s principles to divide texts in
multiple classes. We marked those classes as 1)
Reciprocity, 2) Scarcity, 3) Authority, 4) Commit-
ment, 5) Liking, 6) Consensus and we created a
7th class as not showing any influence, for normal
sentences.

We collected email texts from different senders
and went through different ads and categorized
them according to the levels of persuasion.

Phishing attacks target vulnerabilities that exist
in systems due to the human factor (Khonji et al.,
2013). Many cyber attacks are spread via mecha-
nisms that exploit weaknesses found in end-users,
which makes users the weakest element in the secu-
rity chain. The phishing problem is broad and no
single silver-bullet solution exists to mitigate all the
vulnerabilities effectively, thus multiple techniques
are often implemented to mitigate specific attacks.
One of these techniques is persuasion analysis.

4 Making Dataset

We studied Cialdini’s theory to understand how a
person can be influenced in order to detect phishing
attacks. We did not find any dataset regarding our
research, so we had to make our own dataset and
categorize the texts by ourselves. We used some
pre-defined definitions in order to sort those sen-
tences out. For identifying the six influence classes,
we followed the following conventions —

• Give away or giving something without any
charge on some occasion, such messages show
reciprocity type of influence.

• Messages alerting customers regarding lim-
ited offer show scarcity type of influence.

• Messages or ads regarding sponsorship or do-
ing partnerships show authority type of influ-
ence.

• Messages committing about well being or best
performance of a product show commitment
type of influence.

• Messages telling what one’s favourite person
uses or does, provoking him/her to use that
product show liking type of influence.

• Messages showing survey results show con-
sensus type of influence.

We collected as many influential texts as possible
from advertisements from different companies and
grouped them in those classes. We gathered about
100 texts from each class and made a dataset with
735 texts. We created a model using this dataset.3

Still the variety in our dataset was very small.
So we collected more examples using twitter scrap-
ing of companies like – Amazon, Tesla, Microsoft,
Flipkart, Tinder etc. From Amazon, Flipkart, we
got more examples on scarcity and reciprocity.
From Tesla, we got more examples on commit-
ment types. Tinder gave us examples on liking.
Big companies like these are also perfect for find-
ing examples on authority and consensus. These
sentences helped us understand how social sites can
persuade people through influential advertisements
and messages. After collecting these sentences on
various domains we used our temporary model to
make predictions. Then we rechecked, verified
and corrected the predictions that were made above
95% and discarded others. Finally we appended
those texts with our original dataset (please see
table 1) and made its size 2379.

5 Used model for classification

5.1 Transformers vs RNNs

Transformers (Ashish Vaswani and IlliaPolosukhin,
2017) are semi-supervised machine learning mod-
els that were primarily used with text data and have
also replaced Recurrent Neural Networks (RNNs)
(Danilo P. Mandic, 2001) in Natural Language Pro-
cessing (NLP) (Jurafsky and Martin, 2009) tasks.
We chose Transformers for our problem because it
beats RNN in time complexity.

Transformers use self-attention mechanism that
allows the decoder to look back at the entire sen-
tence and selectively extract the information it
needs during decoding. This mechanism helps
to know the context better. With RNN, one has
to go word by word to access the cell of the last
word. This becomes a major problem for GPUs,

3https://github.com/starboi2000/
Phishing-detection-and-influence-analysis/
blob/main/previous_data.xlsx

501



Sentence Influence
Class
Number

Influence Class
Name

@lifeisahandful You’re most welcome! We’re happy we can help brighten
your day!

1 Reciprocity

@RachelLivesLife Thanks for the support! We are hiring, have a look. 1 Reciprocity
@JaggiPagal Apologies for the unpleasant experience with your order.
Could you confirm if we’ve missed the estimated delivery date?

2 Scarcity

@FunSizeDel Time to bust out those happy moves, and dance All Night
Long! Enjoy your order! #deliveringsmiles

2 Scarcity

@nhuebecker Alexa play The Fame by Lady Gaga 3 Authority
You guessed it - it’s their next look! With the latest trends and top brands
at Flipkart Fashion - India Ka Fashion Capital, there’s no other way than
to Wear the next!

3 Authority

You can now contribute to on-ground COVID relief services with #Check-
OutGiving . Donate Rs. 10 to @GiveIndia when you check out with just a
click of a button. #FlipkartCares #FlipkartForIndia.

4 Commitment

If you’re not 100% in love after the first 30 nights, we’ll pick it up, do all
the packing, and give you a full refund. We do our best to donate returned
mattresses and give them a new home.

4 Commitment

@StephTheGroupie You’ve got to be squidding! We’re shrimply lobsessed
with these slides. A pair of these would make anyone jelly(fish)!

5 Liking

@cutenfeisty– There’s nothing quite like a good book journey! Tell us,
what’s your favorite genre of books to read on your Amazon Kindle
device?

5 Liking

for the last 10 years we are the number 1 in this industry by our customer
review

6 Consensus

57% of consumers will buy this or use a this service because it has at least
a 4-star rating.

6 Consensus

Having Zelda’s approval on the box just brightened up our Caturday!
What does she enjoy doing when she’s not lounging?

7 Normal

@pww3777 Someone sure looks comfurtable! What’s this little cutie’s
name?

7 Normal

Table 1: Example Dataset

this sequentiality is an obstacle to the paralleliza-
tion of the process. Whereas, transformer proposes
to encode each position and to apply the mecha-
nism of attention in order to connect two distant
words, which can then be parallelized, accelerating
learning.(Louis-Philippe Morency, 2018)

5.2 BERT vs Others

More than one architectures are being used in NLP
tasks, such as ELMo, GPT, BERT.(Jacob Devlin,
2019)

ELMo follows a more traditional design and uses
LSTM to compute vocabulary when it comes to
art. BERT uses transformers in two approaches

for language improvement. ELMo uses two layers
each to include forward and backward passages
to calculate the middle word vectors. This helps
ELMo to achieve high efficiency compared to other
traditional language models.(Ezen-Can, 2020)

Though transformer uses a decoder and an en-
coder, BERT only uses an encoder and it does bi-
directional context search, whereas GPT does it in
one direction. BERT can also be used for multi-
masked sentences, and next sentence prediction,
and bi-directional search really makes it more re-
liable. Moreover, BERT model reads at most 512
words in one iteration. GPT-3 has almost 175B
parameters and T5 has 11B parameters, whereas
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BERT has only 110M parameters in its base model
and 340M parameters in its large model. Based on
our subject we did not require so many parameters
as GPT and T5 provide, that is why we preferred
BERT over other models.

We picked BERT-base-uncased over cased as
influence detection should not be sensitive to cases.

6 Experiments with different methods

We trained a wide range of different models for the
task. As discussed in sections 3 and 4 we made our
own dataset and used them to train the models. As
we discussed in section 5, we used BERT model
from transformers rather than RNN.

After making the train and validation datasets
we applied different pre-trained models, fine-tuned
them and used the best one to make our final model.

We fine tuned BERT-base-uncased with our Neu-
ral Network which is taking input from the fine
tuned BERT layer and processing it in this extra 9
layers out of which first 7 layers are simple dense
layers with the unit numbers of 1024, 512, 256, 128,
128, 64, 32, a dropout layer with 0.3 dropout rate
and lastly an output dense layer with unit number
of 7.

We fine tuned another BERT-base-uncased
model with previous configurations but this time
without the dropout layer. We wanted to check how
it behaves after removing the dropout layer.

Then we also fine tuned a BERT-base-cased
model with a total of 9 layers among which 7 layers
are simple dense layers with unit numbers 1024,
512, 256, 128, 128, 64, 32, an output dense layer
with unit number of 7 and one dropout layer with
rate 0.3. We checked by removing the dropout
layer also for this model.

Then we also fine tuned a Distilled version of
BERT model or DistilBERT.

Our Deep Neural Network model used a vocab-
ulary size of 10,000, a batch size of 32 and was
trained over 10 epochs. The system consisted of
two input layers, one main BERT layer, six dense
layers with varying sizes decreasing from 1024 to
32, one dropout layer with regularization of 0.3 and
one output layer.

We used Rectified Linear Unit (ReLU)4 activa-
tion function for dense layers and Softmax function
for the output layer. The main advantage of using

4https://bit.ly/32YjPlx

ReLU over other activation functions is that it does
not activate all the neurons at the same time. This
means that the neurons will only be deactivated if
the output of the linear transformation is less than
0.

We experimented with all these models using dif-
ferent learning rates, because not only the method,
but how fast the model is learning, is also very cru-
cial in gaining more accuracy. We started with 0.01
and decreased the rate each time until we got the
maximum accuracy. Then we collected the learn-
ing rate and accuracy for each model. Among all
these models, we got the best result in BERT-base-
uncased without dropout layer model with learning
rate of 0.0001 or 1e-4.5

7 Result and discussion

There are many datasets on whether a sentence is
ham or spam67 and datasets on detecting phish-
ing sites8(Justinas Rastenis, 2021; Patrick Lawson,
2020; Kiemute Oyibo and JulitaVassileva, 2018).
But there is no dataset on influence analysis using
Cialdini principles, so we had to make our dataset.
Then we experimented with different Deep Neural
Network models and found BERT-base-uncased to
overwhelm others and be suited for our work.

Figure 1: Accuracy Plot

Figure 1 shows epoch count versus accuracy for
different models. We used the transformer models

5https://github.com/starboi2000/
Phishing-detection-and-influence-analysis/
blob/main/All_Codes_in_ipynb_to_
understand_better/Cialdini_6_Principles.
ipynb

6https://github.com/laxmimerit/
All-CSV-ML-Data-Files-Download

7https://bit.ly/3lpxlFi
8https://bit.ly/32InPX6
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DistillBERT, BERT-base-cased and uncased both
of them with or without dropout. Among them we
got the best result in BERT-base-uncased without
dropout layer, we can clearly see in the graph above
that the violet line is exceeding other lines in almost
every epoch.

Figure 2: Loss Plot

Figure 2 shows epoch count versus loss for dif-
ferent models. As we got the best accuracy in
accuracy graph for BERT-base-uncased without
dropout, similarly we got the least loss in case of
this model.

We used Bert-base-uncased model of Trans-
former to make our model with a learning rate
of 0.0001 as it reached the highest accuracy. We
achieved 97.46% accuracy with our small dataset.
After appending it with more example texts, we got
93.76% from our model using the new dataset.9

We have also kept a sub-part10 of the dataset, as
our test data, and used that to evaluate our model.
It turned out to be 87.5%.

Our model does not show which type of influ-
ence is being used, but rather it shows each type
of influence along with their probabilities of being
present in the given text.

Figure 3 shows the prediction of our proposed
model by displaying the probabilities of each influ-
ence category in a given sentence.

To check this model is predicting well in the
dataset, we used confusion matrix (See figure 4).

True Positive, False Negative, False Positive,
True Negative for each class are shown in Table 3.

9https://github.com/starboi2000/
Phishing-detection-and-influence-analysis/
blob/main/main_data.xlsx

10https://bit.ly/3IcxPbs

10.651%

76.741%

5.305%

5.206%
2.097%

Reciprocity
Scarcity
Commitment
Consensus
Other

Figure 3: An example of the output

Figure 4: Confusion Matrix

Total number of true positive in 7 classes is 2176
out of 2379. We can see that we have the most
information on Reciprocity type of influence and
the least on Authority and Social Proof. As we
have scraped business data, Reciprocity is the most
dominant one there, and then comes Commitment.
To make the understanding better we use F1-score
which depends on both recall and precision.

In Table 2, we can check the F1-scores for dif-
ferent models on each class. We checked running
all the models for 50 epochs. We can see that how
we are getting the highest accuracy of 78% with
the BERT-base-uncased model without a dropout
layer.

8 Conclusion

Influence detection is a multi-level classification
problem. Many works have been done on this topic
and on persuasion detection, but they have worked
on a particular domain, area, or caste. We focused
more on finding the example texts not only from
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Reciprocity Scarcity Authority Commitment Liking Consensus Normal Accuracy
Cased with
dropout

0.81 0.66 0.42 0.44 0.52 0.25 0.6 0.63

Cased with-
out dropout

0.83 0.65 0.39 0.6 0.6 0.3 0.67 0.67

Uncased
with
dropout

0.81 0.78 0.61 0.65 0.6 0.4 0.68 0.71

Uncased
without
dropout

0.87 0.8 0.7 0.77 0.7 0.65 0.76 0.78

Distil
BERT

0.69 0.54 0.48 0.6 0.65 0.35 0.6 0.61

Table 2: F1-Score

TP FN FP TN
Class-0 810 24 76 1469
Class-1 258 19 35 2067
Class-2 127 5 11 2236
Class-3 224 20 14 2121
Class-4 338 54 51 1936
Class-5 153 30 4 2192
Class-6 266 51 12 2050

Table 3: TP, FN, FP and TN for each class

advertisements, but from normal messaging texts
also.

We focused on detecting phishing and other so-
cial media attacks, because these are something to
which people are the most vulnerable nowadays.
We made our own dataset and we have not pre-
dicted only the type of influence; we have given all
the probabilities for each type of influence. Even
for a human, we cannot predict exactly what type
of influence is working in a sentence. Sometimes, a
sentence can be formed using more than one influ-
ence categories. Advertisements include multiple
influences in one sentence, so that becomes very
difficult for anyone to determine the most effec-
tive type of the sentence. So, we have shown the
probabilities as a pie chart (please see figure 3) and
also mentioned the type of influence that is most
probably working.

Where from Here

i. At first we did not find any suitable dataset
for our work, so we collected data from differ-
ent advertisements and sentences from Twitter
and we made our model. The final dataset that

we have made is still not sufficient, so our
model may be overfitted. We plan to increase
the data more in the future using Bootstrap
mechanism. Then by human intervention we
will verify and rectify the predictions made by
our model and train it with new data.

ii. We have fine tuned cased and uncased ver-
sions of pre-trained BERT model and we have
also used DistilBERT. As our future work, we
want to do more research using recent pre-
trained models for better results.

iii. We have applied phishing detection using
influence analysis in English language only.
However, our proposed approach is domain
and language independent. Therefore we are
planning to apply our model for other Indian
Languages starting from Bangla. We are also
planning to see how it will work for fake news
detection problem where influence detection
is also important.

iv. Limited priorwork has been done on phishing
detection using persuasion techniques. We
did not have the opportunity to compare with
those datasets. As a future work, we are plan-
ning to compare our dataset with different
datasets and different methodologies.
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Abstract

The objective of Aspect Based Sentiment
Analysis is to capture the sentiment of review-
ers associated with different aspects. However,
complexity of the review sentences, presence
of double negation and specific usage of words
found in different domains make it difficult
to predict the sentiment accurately and overall
a challenging natural language understanding
task. While recurrent neural network, atten-
tion mechanism and more recently, graph at-
tention based models are prevalent, in this pa-
per we propose graph Fourier transform based
network with features created in the spectral
domain. While this approach has found con-
siderable success in the forecasting domain, it
has not been explored earlier for any natural
language processing task. The method relies
on creating and learning an underlying graph
from the raw data and thereby using the adja-
cency matrix to shift to the graph Fourier do-
main. Subsequently, Fourier transform is used
to switch to the frequency (spectral) domain
where new features are created. These series
of transformation proved to be extremely effi-
cient in learning the right representation as we
have found that our model achieves the best
result on both the SemEval-2014 datasets, i.e.,
”Laptop” and ”Restaurants” domain. Our pro-
posed model also found competitive results on
the two other recently proposed datasets from
the e-commerce domain.

1 Introduction
With the proliferation of online shopping con-
sumers are relying more and more on ratings, and
reviews available from past customers. Aspect-
based sentiment analysis (ABSA) tries to under-
stand customers’ granular opinion on different di-
mensions (aspects) of a product which helps in
understanding its current limitations and planning
for the next round of improvements. These reviews
invariably talk about multiple aspects (sometimes

in the same sentence) with the presence of mixed
feedbacks, positive and negative. The presence of
multiple aspects and opposite sentiments makes
the task of ABSA challenging and since its birth
in 2014 (SemEval-2014 Task-4, Pontiki et al.) the
task has seen a variety of different approaches and
still enjoys considerable attention from the research
community.

The key to an improved performance in ABSA
lies in the ability to identify the aspects and the cor-
responding sentiments with the help of connections
between them. A typical example would be “The
price is reasonable although the service is poor”
where price and service are the aspects with posi-
tive and negative sentiments, respectively. It is clear
from the sentence that the corresponding modifiers,
reasonable and poor, are driving the respective sen-
timents. However, in another example, “I had the
salmon dish and while it was fine, for the price paid,
I expected it to have some type of flavor”, it is not
clear which words or phrases can be identified as
responsible for the negative sentiment. Similar ex-
amples are “prices are in line” (neutral sentiment)
and “For the price, you can not eat this well in Man-
hattan” (positive sentiment). Thus, while one may
hope that capturing the syntactical structure and
dependency between words will help in improving
the sentiment identification it is also important to
understand the meaning and application of words in
general setting and not to be gleaned from the lim-
ited examples present in the modest ABSA datasets
(2328 and 3608 training examples for the popular
“Laptop” and “Restaurant” domains, respectively).
Recent successes with BERT and RoBERTa based
encoders indicate that a powerful word representa-
tion in the context of the surrounding words would
help in establishing the required connections be-
tween the aspects and sentiments.

While large model-based encoders provide a
powerful initial representation, subsequent transfor-
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mations possibly involving attention and additional
embeddings from parts-of-speech or dependency
parser are equally important for the quality of the
final prediction. Recent trends also indicate a con-
fluence of deep encoders and graph-based represen-
tation of words (nodes) where semantic relations
are captured in the graph representations either by
converting a dependency graph or by utilizing the
nearest neighborhood of words.

Instead of working on a graph structure stem-
ming from the language itself, a different approach
of constructing an underlying graph can be by learn-
ing it from the encoded representations. This is
motivated by recent advances in the forecasting
literature where in absence of any obvious underly-
ing graph, a graph is created from encoded repre-
sentation by applying self-attention. Armed with
this new graph subsequent transformations includ-
ing Graph Fourier Transform (GFT) and Discrete
Fourier Transform (DFT) proved to be extremely
efficient in understanding the correlation between
different dimensions and increasing the overall per-
formance of the model.

Motivated by the success of this approach in the
forecasting domain, we apply the same for ABSA
although we believe there can be many other ap-
plications. There are three key components in this
technique, (a) create a graph from the encoded rep-
resentation using self-attention, (b) use the graph
Laplacian to transform from the vertex domain
to graph-spectral domain and (c) apply DFT to
transform from graph-spectral to frequency domain
where convolution operator extracts features. To
the best of our knowledge these components ap-
proach has not been considered in solving any Nat-
ural Language applications and would open nu-
merous possibilities for further modifications and
improvements.

The organization of the paper is as follows. In
the next section we provide a detailed literature sur-
vey on the techniques employed for ABSA. Next,
we present the details of the proposed model. Sub-
sequently, the model predictions and comparisons
with other baseline methods are discussed. Finally,
conclusions are drawn and scope for future works
is outlined.

2 Related Work
Since it’s introduction in 2014 in Sem-Eval (Task-
4), (Pontiki et al.) ABSA has come a long way from
initial SVM classifier with handcrafted features
to deep learning classifiers based on RNN, Trans-

former and memory network. We broadly catego-
rize these models into three groups, (a) RNN with
attention, (b) memory network and (c) models that
use Transformer architecture and/or pre-trained lan-
guage model. One of the first application of LSTM
was proposed by (Wang et al., 2016) where atten-
tion mechanism was applied on LSTM output that
embedded both the words and aspects individually.
(Wang et al., 2018) used a hierarchical network of
Bi-directional LSTMs with attention at word and
phrase level. A new attention model was proposed
by He et al. (2018) that improved the performance
of the previous LSTM based models. Ma et al.
(2017) proposed an interactive network to learn
separate embeddings for the context and target with
two sets of LSTMs that attends to specific part of
the context based on the target (aspect). Relations
between aspects are further investigated by (Haz-
arika et al., 2018) where hierarchical LSTM struc-
ture was used to capture inter-aspect dependency.
An attention-over-attention model was proposed
by (Huang et al., 2018) that modelled aspects and
sentiments together and explicitly captured their
interactions. Similar hierarchical attention model
was proposed by (Li et al., 2018) which emphasised
on the position information of the aspect.

On the models based on memory network, Tang
et al. (2016) and Chen et al. (2017) designed
deep memory networks to with weighted memory
mechanism to capture relations between aspects
and sentiments separated by long distance. Tay
et al. (2017) introduced dyadic memory network
for ABSA where relevant memory information is
adaptively used based on the input query. Cheng et
al. (2017) proposed hierarchical attention network
to have separate aspect attention and sentiment at-
tention that found better matching between previ-
ously unseen aspect and sentiment words. Lin et al.
(2019) proposed a new mask memory network with
semantic dependency that exploited inter-aspect re-
lations for aspects in the same sentence.

With the advent of Transformer (Vaswani et al.,
2017) and strong baselines reported for different
NLP tasks with BERT (Devlin et al., 2019) based ar-
chitectures there are quite a few BERT based mod-
els for ABSA. Hoang et al. (2019) used sentence-
pair classification task to reformulate aspect ex-
traction and aspect polarity classification. Zeng et
al. (2019) used BERT embeddings to create a local
and global representation of the contexts that were
further processed via multi-head self-attention. Xu
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et al. (2019) created a novel task called Review
Reading Comprehension from the ABSA datasets
and applied BERT to answer the review questions.
Li et al. (2019) used BERT as embedding layer
together with CRF for end-to-end ABSA. BERT
embeddings are also used by Song et al. (2019) for
ABSA with label smoothing regularization. Sun et
al. (2019a) constructed ABSA as sentence-pair clas-
sification task by constructing auxiliary sentences.
Phan and Ogunbona (2020) combined POS embed-
dings, dependency embeddings and self-attention
with RoBERTa (Liu et al., 2019) embeddings to
further improve on the aspect classification results.

There are not many applications of graph neu-
ral networks for ABSA available in the literature.
Zhang et al. (2019) and Sun et al. (2019b) used
graph convolution network (GCN) where the graph
structure was learnt from the dependency tree. Sim-
ilarly, Huang and Carley (2019) used graph atten-
tion network (GAT) to establish the dependency
between words without paying specific attention to
the aspects and their opinions. Wang et al. (2020)
modified the original dependency tree to create an
aspect-oriented dependency tree that was used fur-
ther in a relational GAT (R-GAT) where different
relations contributed differently in the computation
of nodal representations.

While the above mentioned approaches rely on
a graph structure that emerges naturally from the
syntactic structure of the examples it is worth ex-
ploring if there is a possibility of learning the graph
structure itself from the presented data. This idea is
borrowed from Forecasting literature where state-
of-the-art models are based on GCN originated
from the theory of Graph Fourier Transform (GFT).
In addition to GCN and temporal modules like
LSTM or GRU, it has also been shown that fea-
ture processing in the spectral domain can substan-
tially improve the model performance (Cao et al.,
2020). While the application of Fourier transform
is not common in the natural language process-
ing (NLP) domain, it has been observed recently
(Lee-Thorp et al., 2021) that the self-attention layer
in the Transformer can be replaced by a standard
Fourier Transform and still achieving 92-97% of
the original accuracy.

3 Methodology

The overall architecture of the current method
closely follows the architecture of Spectral Tempo-
ral Graph Neural Network (STGNN) (Cao et al.,

2020) with some minor modifications (see Fig. 1).
However, for the sake of completeness the com-
ponents of STGNN are described here. There are
five major transformations that any sentence will
be subjected to, (1) encoding by an embedding
layer, (2) processing by an RNN (we call it the
encoder) and create a graph structure, (3) trans-
formation from vertex domain to graph spectral
domain using the eigenvectors of this graph, (4)
discrete Fourier transform in the graph spectral do-
main and (5) filtering by convolution layers in the
graph spectral frequency domain. Subsequently, in-
verse Fourier transform and inverse graph Fourier
transform are applied sequentially to bring the rep-
resentation back to the graph vertex domain. These
transformations can be broadly combined into three
key components, (1) embedding layer, (2) latent
correlation layer (LCL) and (3) spectral block layer
(SBL). The details of each layer are given below:

3.1 Embedding Layer
The embedding layer converts a sentence into a
sequence of vectors of some suitable dimension
(h). Some of the popular choices are (a) Glove vec-
tor (h = 300), (b) different BERT models (mostly,
h = 768) or RoBERTa models (h = 768). We
have used BERT with 768-dimensional output for
all subsequent experiments. While there are dif-
ferent ways of representing a sentence (a) repre-
sentation of the [CLS] token, (b) average of all the
tokens at the last layer or (c) representation of the
tokens at the last layer. Here we use the last option
where we pass the original sentence along with
the aspect term separated by a [SEP] token, i.e.,
[CLS] + sentence + [SEP] + aspect + [SEP], where
+ indicates concatenation. Two sentence segments
are also created to distinguish between the original
sentence and the aspect terms.

3.2 Latent Correlation Layer
Given an embedded vector of a sentence LCL
learns an underlying graph structure and emits
the corresponding graph Laplacian (L). This is
where STGNN differs from other methods where
the graph is computed from the presented data
and does not use any external information. First,
the encoded representation from the previous layer
(X̂ ∈ Rb×s×h, where b is the batch size and s is
the sequence length) is passed through an RNN (of
hidden dimension h, we have experimented with
GRU, LSTM and Bi-LSTM) where the input is
posed as a sequence of h elements of dimension s.
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Figure 1: Spectral-Temporal Graph Neural Network model for aspect polarity detection. An example sentence is
embedded (using e.g., BERT) first and passed through an RNN and self-attention layer to create a feature graph.
The Laplacian of this graph and DFT are used successively to convert the sentence representation into the graph
Fourier frequency domain. After extracting features in this domain using 1D convolution and GLU, they are
subsequently transformed back to the original domain using inverse Graph Fourier transform and inverse DFT.
The final representation is connected to the logits through a fully-connected layer.

The last hidden state of the RNN (X̆ ∈ Rb×h×h) is
taken as a representation of the entire sentence and
passed through an attention layer:

W = Softmax
(QKT

√
d

), Q = X̆WQ, K = X̆WK

(1)
where Q and K can be thought as the query and
key learnt from the RNN output through train-
able weights WQ and WK . The output matrix
W ∈ Rh×h is taken as the weighted adjacency
matrix of the graph. The adjacency matrix is fur-
ther processed to create the Laplacian matrix de-
fined as L = Ih −D−1/2WD1/2 where Ih is the
h-dimensional identity matrix, D is the diagonal
degree matrix with Dii =

∑
j Wij . The eigenvec-

tors of the Laplacian, U (where L = UΛUT ), is
used for GFT defined as GFT (X) = X̄ = UTX
and inverse-GFT becomes X = UX̄ . While back-
propagation can be applied through eigenvalue de-
composition it is often numerically unstable (Wang
et al., 2019). Instead, we apply Chebyshev polyno-
mial approximation (Shuman et al., 2011) which
only requires Chebyshev polynomials of the Lapla-
cian (L) up to a specified order. Thus, if the order

of the Chebyshev polynomial considered is k then
the GFT is defined as

X̄ = [T0(L), T1(L), . . . , Tk−1(L)]X, (2)

where T`(L) ∈ RN×N .

3.3 Spectral Block Layer

The transformed representation in the graph Fourier
domain is further transformed into frequency do-
main using DFT. Subsequently 1D convolution fol-
lowed by a Gated Linear Unit (Dauphin et al., 2017)
(originally applied for language modelling) is ap-
plied to both the real and imaginary components
independently to extract novel features. The output
of GLU is transformed back to the time domain us-
ing inverse Fourier transform. Subsequently, a lin-
ear transformation (akin to inverse GFT) is applied
to map back to the vertex domain. Specifically, the
DFT output has real and imaginary components,
X̂r and X̂i, that are processed by the same oper-
ators (but different parameters) in parallel. The
operation can be written as

M r(X̂r) = GLU
(
θr(X̂r), θr(X̂r)

)
(3)
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Dataset Positive Neutral Negative Total
Train Test Train Test Train Test Train Test

Laptop 994 341 464 169 870 128 2328 638
Restaurants 2164 728 637 196 807 196 3608 1120
Men’s Tshirt 1122 270 50 16 699 186 1871 472

Television 2540 618 287 67 919 257 3746 942

Table 1: Statistics of the datasets used in this work

where θr is the convolution kernel of size 3, σ de-
notes sigmoid function, GLU(x, x) = x � σ(x)
and � is the element-wise Hadamard product.
The same operation is applied to the imaginary
components and they are combined together as
M r(X̂r) + jM i(X̂i) (j2 = −1) before applying
inverse DFT.

The combined transformation of the LCL and
SBL can be thought as another layer that gener-
ates an output of dimension same as that of the
input which is very similar to the operation of the
Transformer layer (Vaswani et al., 2017), i.e., the
output X̃ ∈ Rb×s×h. This processed version of
the original input X can be transformed further
depending upon the nature of the task. For as-
pect polarity, we explore different options like (1)
two fully-connected (FC) layers, (2) GRU followed
by a FC layer and (3) LSTM followed by a FC
layer. For all these cases, the second FC layer al-
ways has two sub-layers with a leaky Relu transfer
function in between. The second sub-layer emits
raw score of dimension three corresponding to the
three sentiment classes (positive, neutral and neg-
ative). We use categorical cross-entropy loss with
L2 regularization. The overall time complexity of
self-attention and GFT is O(h3), where h is both
the BERT embedding dimension and the hidden
dimension of the encoder (GRU/LSTM). The com-
plexity of DFT is slog(s) where s is the sequence
length.

4 Experiments

In this section, we first describe the datasets used
for the evaluation of our proposed method and the
other baseline methods employed for comparison.
Then, we report the experimental results conducted
from different perspectives. Finally, error analysis
and discussion are conducted with a few represen-
tative examples.

4.1 Datasets

We use four public sentiment analysis datasets, two
of them are the commonly used Laptop and the
Restaurant review datasets from SemEVal-14 task
(Pontiki et al., 2014) and other two are recently re-
leased and based on e-commerce reviews, namely,
Men’s T-shirt and Television ((Mukherjee et al.,
2021)). Statistics of these datasets are given in Ta-
ble 1. Looking at the datasets it is apparent that
in general we do not have enough training data for
most of the deep learning based models and one has
to be careful to avoid over-fitting. We also experi-
ment on the ”hard-data” as defined by (Xue and Li,
2018) where examples with multiple aspects and
different polarities are identified. All experiments
were conducted on Tesla K-80 with 12 GB GPU.

4.2 Implementation Details
We extend the codebase of (Mukherjee et al., 2021)
by adding our proposed model. We have used 768-
dimensional embeddings of BERT (Devlin et al.,
2019) implemented in the PyTorch environment.
There are several hyperparameters that we should
tune for, namely, learning rate, dropout rate, regu-
larization parameter L2 weights and STGNN spe-
cific parameters like the number of layers, encoder
and decoder types (fully-connected, GRU, LSTM,
Bi-LSTM etc.) etc. However, what we have found
is that the optimal set of parameters can be different
for different datasets and it would take substantial
amount of computational effort to obtain all four
of them.

In this work we have not done an extensive
search of the hyper-parameter space. Instead, we
started with the baseline parameters used earlier
(Mukherjee et al., 2021) and modified only the L2

weight that we found to be significantly affecting
the test results. Thus, all subsequent results are
based on L2 = 2× 10−7 whereas the other param-
eters are as follows: (a) learning rate = 1× 10−5,
(b) dropout = 0 and (c) batch size = 32. We have
used Adam optimizer with the default parameters
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Model Reported (no held out) Reproduced (no held out) Reproduced using 15% held out
Accuracy F1 Accuracy F1 Accuracy F1

ATAE-LSTM 68.70 - 60.28 44.33 58.62 (33.47) 43.27 (29.01)
RAM 74.49 71.35 72.82 68.34 70.97 (56.04) 65.31 (55.81)
IAN 72.10 - 69.94 62.84 69.40 (48.91) 61.98 (48.75)

BERT-SPC 78.99 75.03 78.72 74.52 77.24 (59.21) 72.80 (59.44)
BERT-AEN 79.93 76.31 78.65 74.26 75.71 (46.53) 70.02 (45.22)
LCF-BERT 77.31 75.58 79.75 76.10 77.27 (62.57) 72.86 (62.71)

R-GAT+BERT 78.21 74.07 79.15 75.14 75.64 69.52
STGNN-GRU - - 79.09* 75.28* 78.72(64.36) 74.84(64.34)

Table 2: Comparison of predictions on the Laptop dataset. The best results are highlighted in bold and * next to a
number indicates the second best result.

(β1 = 0.9 and β2 = 0.999) and weight decay. As
reported by (Mukherjee et al., 2021) most of the
earlier studies did not set aside a separate test set
and the same dataset was used for validation. How-
ever, in this work we follow the same process of
keeping 10-15% of the train data as the validation
set. The first pass runs over all the epochs and the
optimal epoch number is noted that corresponds to
the maximum validation accuracy. Next, the entire
training set is considered for training but only up
to the optimal epoch and finally the model perfor-
mance on the test data is reported.

4.3 Baseline Methods
We compare with the methods studied by (Mukher-
jee et al., 2021) along with the R-GAT model of
(Wang et al., 2020). The methods compared by
(Mukherjee et al., 2021) can be broadly categorized
into two classes, (a) memory network based and (b)
BERT based. While memory network based mod-
els have fewer parameters and better suited for the
small datasets the BERT based methods are domi-
nating the ABSA landscape and their success can
be attributed to the huge pre-training corpora that
helps in better understanding of words and their
associations. A brief description of the methods
considered here are given below:

1. ATAE-LSTM (Wang et al., 2016) where sepa-
rate embeddings are used for the aspects and
concatenated with word embeddings followed
by an attention layer.

2. Recurrent Attention on Memory (RAM,
(Chen et al., 2017)) where memory network is
used to capture relations between aspects and
sentiments separated by long distance.

3. Interactive Attention Network (IAN, (Ma
et al., 2017)) where two sets of LSTMs are

used to learn the embeddings of the context
words and target (aspect). The attention based
representations are then concatenated to pre-
dict the aspect polarity.

4. BERT-SPC, which is a baseline BERT model
that treats sentiment classification as a sen-
tence pair classification task where the pooled
output of a modified sentence [CLS]+ con-
text + [SEP ]+ target + [SEP ] is passed to a
fully-connected layer.

5. BERT-AEN (Song et al., 2019) that uses atten-
tional encoder network with label smoothing
regularization.

6. The local context focus BERT (LCF-BERT,
(Zeng et al., 2019) where a local and global
representation of the contexts are created
through BERT that are further processed via
multi-head self-attention.

In addition, we also consider the R-GAT model that
combines the power of BERT with Graph attention
network and reported the best result so far for both
the Laptop and Restaurants domain.

5 Results & Analysis
For all the baseline models, it is difficult to know
the exact hyperparameter settings in order to repro-
duce the results. Instead, we relied on the results
that are obtained by (Mukherjee et al., 2021). We
have also included the originally reported results
for the sake of completion and easy comparison.
For all the datasets we have two sets of results, (a)
the test set is used as a validation set and the model
is decided based on the epoch with the best test set
accuracy; and (b) 15% of the training data is used
as a validation set that decides the optimum number
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Model Reported (no held out) Reproduced (no held out) Reproduced using 15% held out
Accuracy F1 Accuracy F1 Accuracy F1

ATAE-LSTM 77.20 - 73.71 55.87 73.29 (52.41) 54.59 (47.35)
RAM 80.23 70.80 78.21 65.94 76.36 (59.29) 63.15 (56.36)
IAN 78.60 - 76.80 64.24 76.52 (57.05) 63.84 (55.11)

BERT-SPC 84.46 76.98 85.04* 78.02* 84.23 (68.84) 76.28 (68.11)
BERT-AEN 83.12 73.76 81.73 71.24 80.07 (51.70) 69.80 (48.97)
LCF-BERT 87.14 81.74 85.94 78.97 84.20* (69.38) 76.28 (69.64)

R-GAT+BERT 86.60 81.35 85.27 78.40 83.40 75.74
STGNN-GRU - - 84.93 77.65 83.66 (69.29) 75.33 (68.45)

STGNN-LSTM - - - - 84.20* (70.98) 76.55 (70.44)

Table 3: Comparison of predictions on the Restaurants dataset. The best results are highlighted in bold and * next
to a number indicates the second best result.

of epochs. Subsequently, the model is trained on
the full train set till the optimum number of epochs
and results are reported on the test set. For both the
cases, average scores over 5 runs are reported for
all the experiments.

5.1 Model Performance
Table 2 presents the results from the baseline mod-
els as well as our current model for the Laptop
dataset. The first two columns show the originally
reported test accuracy and F1-score without any
held out validation data. The next two columns
show the same metrics as obtained by (Mukherjee
et al., 2021) again without any separate validation
data. The last two columns show the same metrics
with 15% validation data (created from train set).
As we can see the current method obtains the best
result for both the accuracy and F1-score for this
setup with a substantial improvement over the next
best result from LCF-BERT. Our model also works
well on the hard dataset with an improvement of
1.79 and 1.63 percent point, respectively, for the
accuracy and F1-score.

On the Restaurant dataset (Table 3) we show
two different predictions from our model, one with
GRU encoder and the second one with LSTM en-
coder. For GRU encoder, our model predictions
are close to the best predictions of BERT-SPC and
LCF-BERT while the gap in accuracy on the hard
dataset is minimal. It is to be noted that the same
set of hyperparameters is used in this case and
not tuned specifically for the Restaurant dataset.
Similar trend is also observed for the BERT-AEN
and R-GAT models where the performance on the
Laptop dataset is significantly better compared to
the Restaurant dataset. Using LSTM encoder, on

the other hand, our model accuracy on the whole
dataset is same as that of the best model whereas,
on the hard dataset STGNN prediction outperforms
the current best model. In case of F1 score, our
model outperforms both on the overall and hard
dataset. It is to be noted that on the Laptop dataset,
the LSTM encoder based STGNN model does not
perform better than the GRU based model. More
on the choice of encoder is discussed later.

For the Men’s T-Shirt and Television dataset all
the previous results are reported by (Mukherjee
et al., 2021). Table 4 shows the comparison for the
Men’s T-Shirt dataset where our model achieves
the best results for the no held out scenario. For
the 15% validation data based case, the present
model achieves competitive performance on the
complete test data (a gap of only 0.2 percent point
on accuracy). However, the gap increases to 1.67
percent point on the hard dataset. It is to be noted
that there are only 48 examples in the hard test
set. Similarly, on the Television dataset (shown in
Table 5) our model achieves comparable results for
both no held out and 15% held out data. For the first
case (no separate validation set) the gap in accuracy
and F1-score with the best performing model (LCF-
BERT) is 0.63 and 0.28 percent point, respectively.
For the 15% held out data, our model achieves the
second best results with a gap of 0.21 and 0.56
percent points, respectively, on the accuracy and
F1-score. Similarly, on the hard slice the gaps are
also minimal at 0.4 percent point.

5.2 Error Analysis
We have also conducted a detailed analysis of the
errors made by our model to understand if any
discernible pattern exists. A summary of the dis-
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Model no held out using 15% held out
Accuracy F1 Accuracy F1

ATAE-LSTM 83.13 55.98 81.65 (58.33) 54.84 (39.25)
RAM 90.51 61.93 88.26 (83.33) 59.67 (56.01)
IAN 87.58 59.16 87.41 (63.75) 58.97 (42.85)

BERT-SPC 93.13 73.86 92.42 (89.58) 73.83 (60.62)
BERT-AEN 88.69 72.25 87.54 (50.42) 59.14 (32.96)
LCF-BERT 93.35 72.19 91.99 (91.67) 72.13* (62.30)

STGNN-GRU 93.60 78.77 92.21* (90.0*) 71.09 (60.90)

Table 4: Comparison of predictions on the Men’s T-Shirt dataset. The best results are highlighted in bold and *
next to a number indicates the second best result.

Model no held out using 15% held out
Accuracy F1 Accuracy F1

ATAE-LSTM 81.10 53.71 79.68 (53.92) 52.78 (39.13)
RAM 84.29 58.68 83.02 (64.31) 58.50 (50.07)
IAN 82.42 57.15 80.49 (54.31) 56.78 (41.67)

BERT-SPC 89.96* 74.68 88.56 (80.20) 74.81 (74.32)
BERT-AEN 87.09 67.92 85.94 (50.39) 65.65 (38.08)
LCF-BERT 90.36 76.01 90.00(80.98) 75.86 (73.72*)

STGNN-GRU 89.73 75.73* 89.79* (80.59*) 75.30* (73.32)

Table 5: Comparison of predictions on the Television dataset.

tribution of the true class for different datasets are
provided in Table 6. It can be seen that most of
the error is concentrated around the neutral class
for the Laptop, Restaurant and Television dataset,
whereas, for the Men’s T-Shirt dataset the errors
are uniform amongst the classes.

For the neutral classes the errors are broadly
categorized into two classes:
• Presence of negation words, examples: (a)

”which it did not have , only 3 usb 2 ports .”,
(b) ”no startup disk was not included but that
may be my fault”, (c) ”there is no ””tools””
menu .”, or (d) ”the happy hour is so cheap
, but that does not reflect the service or the
atmosphere .”

• Presence of negative/positive adjectives, ex-
amples: (a) the only solution is to turn the
brightness down, (b) ”a lot of features and
shortcuts on the mbp that i was never exposed
to on a normal pc”, (c) ”premium price for
the os more than anything else”, or (d) ”tiny
restaurant with very fast service .”

while for the positive or negative true classes there
are examples of general lack of understanding of
the meaning due to their complexity or presence of
double negation:

Dataset Positive Negative Neutral
Laptop 32% 15% 53%

Restaurants 25% 20% 55%
Men’s Tshirt 30% 36% 34%

Television 33% 23% 43%

Table 6: Distribution of mis-prediction across different
true classes

• Complicated: (a) ”if you ask me , for this
price it should be included”, (b) ”logic board
utterly fried , cried , and laid down and died”,
(c) ”however , i can refute that osx is “ fast ”
.”, or (d) ”the sangria ’s - watered down”

• Double negation: (a) screen - although some
people might complain about low res which
i think is ridiculous ., (b) i would have given
it 5 starts was it not for the fact that it had
windows 8 etc.

In absence of enough training examples the onus
of understanding the nuances of the language falls
on the word/sentence representation, which also
explains the relatively higher success rate of BERT.

6 Conclusion
We present a novel application of graph Fourier
transform with spectral feature engineering hith-
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erto limited to forecasting domain. The model
learns an underlying graph structure from the raw
data created by a BERT encoder. The advantage of
this approach is that it does not require dependency
parser based graph creation and thereby does not
inherit any limitation of the parser. It is shown
that the series of transformations involving GFT,
DFT, convolution and GLU create powerful rep-
resentations of the text resulting in the superior
performance on SemEval-2014 datasets, namely
”Laptop” and ”Restaurants” domain. On the ”Lap-
top” dataset we achieved the best results while on
the ”Restaurants” dataset our performance is at par
with the current best prediction. On the recently
released e-commerce datasets, our model perfor-
mance is very competitive with a gap of 0.2-0.4
percent points. Although we have not done a full-
scale hyper-parameter tuning, the effect of different
components like the initial encoder and the final
layer is studied. It is observed that the same set of
hyper-parameters and architecture will not generate
the best result across all the datasets.

There are several possible future directions of
work. If we view the current model as a spectral
graph transformer that takes sequential input and
generates sequential output there could be several
other applications like, sequence tagging or natural
language generation. Also, we have evaluated only
BERT for sentence encoding and in future, other
language models like RoBERTa and GPT can be
explored.
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Abstract

Attacks on deep learning models are often dif-
ficult to identify and therefore are difficult to
protect against. This problem is exacerbated
by the use of public datasets that typically are
not manually inspected before use. In this pa-
per, we offer a solution to this vulnerability
by using, during testing, random perturbations
such as spelling correction if necessary, sub-
stitution by random synonym, or simply drop-
ping the word. These perturbations are applied
to random words in random sentences to de-
fend NLP models against adversarial attacks.
Our Random Perturbations Defense and In-
creased Randomness Defense methods are suc-
cessful in returning attacked models to similar
accuracy of models before attacks. The origi-
nal accuracy of the model used in this work is
80% for sentiment classification. After under-
going attacks, the accuracy drops to accuracy
between 0% and 44%. After applying our de-
fense methods, the accuracy of the model is
returned to the original accuracy within statis-
tical significance.

1 Introduction

Deep learning models have excelled in solving dif-
ficult problems in machine learning, including Nat-
ural Language Processing (NLP) tasks like text
classification (Zhang et al., 2015; Kim, 2014) and
language understanding (Devlin et al., 2019). How-
ever, research has discovered that inputs can be
modified to cause trained deep learning models to
produce incorrect results and predictions (Szegedy
et al., 2014). Models in computer vision are vul-
nerable to these attacks (Goodfellow et al., 2015),
and studies have found that models in the NLP do-
main are also vulnerable (Kuleshov et al., 2018;
Gao et al., 2018; Garg and Ramakrishnan, 2020).
One use of these adversarial attacks is to test and
verify the robustness of NLP models.

With the potential for adversarial attacks, there

comes the need for prevention and protection.
There are three main categories of defense meth-
ods: identification, reconstruction, and prevention
(Goldblum et al., 2020). Identification methods rely
on detecting either poisoned data or the poisoned
model (Chen et al., 2019). While reconstruction
methods actively work to repair the model after
training (Zhu et al., 2020), prevention methods rely
on input preprocessing, majority voting, and other
techniques to mitigate adversarial attacks (Gold-
blum et al., 2020; Alshemali and Kalita, 2020).
Although most NLP adversarial attacks are easily
detectable, some new forms of adversarial attacks
have become more difficult to detect like concealed
data poisoning attacks (Wallace et al., 2021) and
backdoor attacks (Chen et al., 2021). The use of
these concealed and hard-to-detect attacks has re-
vealed new vulnerabilities in NLP models. Consid-
ering the increasing difficulty in detecting attacks,
a more prudent approach would be to work on neu-
tralizing the effect of potential attacks rather than
solely relying on detection. Here we offer a novel
and highly effective defense solution that prepro-
cesses inputs by random perturbations to mitigate
potential hard-to-detect attacks.

2 Related Work

The work in this paper relates to the attack on NLP
models using the TextAttack library (Morris et al.,
2020), the current state-of-the-art defense methods
for NLP models, and using randomness against ad-
versarial attacks.

The TextAttack library and the associated
GitHub repository (Morris et al., 2020) represent
current efforts to centralize attack and data augmen-
tation methods for the NLP community. The library
supports attack creation through the use of four
components: a goal function, a search method, a
transformation, and constraints. An attack method
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uses these components to perturb the input to fulfill
the given goal function while complying with the
constraints and the search method finds transfor-
mations that produce adversarial examples. The
library contains a total of 16 attack model recipes
based on literature. The work reported in this paper
pertains to the 14 ready-to-use classification attack
recipes from the TextAttack library. We believe
that successful defense against such attacks will
provide guidelines for the general defense of deep
learning NLP classification models.

There are many methods to defend NLP mod-
els against adversarial attacks, including input pre-
processing. Input preprocessing defenses require
inserting a step between the input and the given
model that aims to mitigate any potential attacks.
Alshemali and Kalita (2020) use an input prepro-
cessing defense that employs synonym set averages
and majority voting to mitigate synonym substi-
tution attacks. Their method is deployed before
the input is run through a trained model. Another
defense against synonym substitution attacks, Ran-
dom Substitution Encoding (RSE) encodes ran-
domly selected synonyms to train a robust deep
neural network (Wang and Wang, 2020). The RSE
defense occurs between the input and the embed-
ding layer.

Randomness has been deployed in computer vi-
sion defense methods against adversarial attacks.
Levine and Feizi (2020) use random ablations to
defend against adversarial attacks on computer vi-
sion classification models. Their defense is based
on a random-smoothing technique that creates cer-
tifiably robust classification. Levine and Feizi de-
fend against sparse adversarial attacks that perturb
a small number of features in the input images.
They found their random ablation defense method
to produce certifiably robust results on the MNIST,
CIFAR-10, and ImageNet datasets.

3 Input Perturbation Approach &
Adversarial Defense

The use and availability of successful adversarial
attack methods reveal the need for defense methods
that do not rely on detection and leverage intuitions
gathered from popular attack methods to protect
NLP models. In particular, we present a simple
but highly effective defense against attacks on deep
learning models that perform sentiment analysis.

The approach taken is based on certain assump-
tions about the sentiment analysis task. Given a

short piece of text, we believe that a human does
not need to necessarily analyze every sentence care-
fully to get a grasp on the sentiment. Our hypoth-
esis is that humans can ascertain the expressed
sentiment in a text by paying attention to a few
key sentences while ignoring or skimming over the
others. This thought experiment led us to make
intermediate classifications on individual sentences
of a review in the IMDB dataset and then combin-
ing the results for a collective final decision.

This process was refined further by considering
how attackers actually perturb data. Usually, they
select a small number of characters or tokens within
the original data to perturb. To mitigate those per-
turbations, we choose to perform our own random
perturbations. Because the attacking perturbations
could occur anywhere within the original data, and
we do not necessarily know where they are, it is
prudent to randomly select tokens for us to perturb.
This randomization has the potential to negate the
effect the attacking perturbations have on the over-
all sentiment analysis.

We wish to highlight the importance of random-
ness in our approach and in possible future ap-
proaches for defenses against adversarial attacks.
Positive impact of randomness in classification
tasks with featured datasets can be found in work
using Random Forests (Breiman, 2001). Random
Forests have been useful in many domains to make
predictions, including disease prediction (Lebedev
et al., 2014; Corradi et al., 2018; Paul et al., 2017;
Khalilia et al., 2011) and stock market price pre-
diction (kha, 2019; Ballings et al., 2015; Nti et al.,
2019). The use of randomness has made these
methods of prediction robust and useful. We have
chosen to harness the capability of randomness in
defense of adversarial attacks in NLP. We demon-
strate that the impact randomness has on our de-
fense method is highly positive and its use in de-
fense against adversarial attacks of neural networks
should be explored further. We present two algo-
rithms below—first with two levels of randomness,
and the second with three.

3.1 Random Perturbations Defense

Our algorithm is based on random processes: the
randomization of perturbations of the sentences of
a review R followed by majority voting to decide
the final prediction for sentiment analysis. We con-
sider each review R to be represented as a set R
= {r1, r2, ..., ri, ..., rN} of sentences ri. Once R

520



is broken down into its sentences (Line 1 of Al-
gorithm 1), we create l replicates of sentence ri:
{r̂i1, ..., r̂ij , ..., r̂il}. Each replicate r̂ij has k num-
ber of perturbations made to it. Each perturbation
is determined randomly (Lines 4-7).

In Line 5, a random token t where t ∈ r̂ij is se-
lected, and in Line 6, a random perturbation is per-
formed on t. This random perturbation could be a
spellcheck with correction if necessary, a synonym
substitution, or dropping the word. These perturba-
tions were selected as they are likely to be the same
operations an attacker performs, and they may po-
tentially even counter the effect of a large portion
of perturbations in attacked data. A spellcheck is
performed using SpellChecker which is based in
Pure Python Spell Checking. If a spellcheck is per-
formed on a token without spelling error, then the
token will not be changed. The synonym substi-
tution is also performed in a random manner. A
synonym set for token t is found using the Word-
Net synsets (Fellbaum, 1998). Once a synonym set
is found, it is processed to remove any duplicate
synonyms or copies of token t. Once the synonym
set is processed, a random synonym from the set
is chosen to replace token t in r̂ij . A drop word
is when the randomly selected token t is removed
from the replicate altogether and replaced with a
space. Conceptually speaking, the random pertur-
bations may be chosen from an extended set of
allowed changes.

Once l replicates have been created for the given
sentence ri and perturbations made to tokens, they
are put together to create replicate review set R̂
(Line 8). Then, in Line 9, each r̂ij ∈ R̂ is classified
individually as f(r̂ij) using classifier f(). After
each replicate has been classified, we perform ma-
jority voting with function V (). We call the final
prediction that this majority voting results in as
f̂(R). This function can be thought of as follows
(Line 12):

f̂(R) = V ({f(r̂ij) | r̂ij ∈ R̂}).

The goal is to maximize the probability that
f̂(R) = f(R) where f(R) is the classification of
the original review R. In this paper, this maximiza-
tion is done through tuning of the parameters l and
k. The certainty T for f̂(R) is also determined for
each calculation of f̂(R). The certainty represents
how sure the algorithm is of the final prediction it
has made. In general, the certainty T is determined

as follows (Lines 13-17):

T = count(f(r̂ij) == f̂(R)) / N ∗ l.

The full visual representation of this algorithm can
be seen in Algorithm 1 and in Figure 1.

Figure 1: Visual representation of Algorithm 1.

3.2 Increasing Randomness

Our first algorithm represented in Algorithm 1 and
in Figure 1 shows randomness in two key points
in the decision making process for making the per-
turbations. This is the main source of randomness
for our first algorithm. In our next algorithm, we
introduce more randomness into our ideas from our
original algorithm to create a modified algorithm.
This more random algorithm is visually represented
in Figure 2 and presented in Algorithm 2. This new
defense method adds a third random process before
making random corrections to a sentence. Ran-
domly chosen ri from R are randomly corrected
to create replicate r̂j which is placed in R̂ (Lines
2-6). The original sentence ri is placed back into
R and a new sentence is randomly selected; this is
random selection with replacement. This process
of random selection is repeated until there is a total
of k replicates r̂j in R̂. This algorithm follows the
spirit of Random Forests more closely than the first
algorithm.

In Line 2, we randomly select a sentence ri from
R. This is one of the main differences between Al-
gorithm 1 for Random Perturbations Defense and
Algorithm 2 for Increased Randomness Defense.
That extra random element allows for more ran-
domization in the corrections we make to create
replicates r̂j . In Lines 3 and 4, the process is prac-
tically identical to Lines 5 and 6 in Algorithm 1.
The only difference is that only one random cor-
rection is being made to get the final replicate r̂j
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Algorithm 1: Random Perturbation De-
fense
Result: f̂(R), the classification of R after

defense
Input :Review R = {r1, r2, ..., rN}

where ri is a sentence
Parameters :l = number of copies made of

each r, k = number of
corrections made per ri,
C = {c1, c2, ..., ck}, set of
corrections

1 R̂ = ∅
2 for ri ε R do
3 for j = 1 to l do
4 r̂ij = ri
5 for k do
6 Select random token t where

t ε r̂ij
7 Perform random correction

c ε C to t
8 end
9 Append r̂ij to R̂

10 Classify: f(rij)
11 end
12 end
13 f̂(R) = V ({f(r̂ij) | r̂ijεR̂}), V () is a

voting function
14 if f(R̂) == negative then
15 T = count(f(r̂ij) ==

negative) / N ∗ l
16 else
17 T = count(f(r̂ij == positive) / N ∗ l
18 end

for Increased Randomness Defense, while Random
Perturbations Defense makes k random corrections
to get the final replicate r̂ij .

3.3 Overcoming the Attacks

We define an attack as making random perturba-
tions to an input, specifically for this work, a review
R. We assume a uniform distribution for random-
ness. We interpret these random changes to occur
throughout each review R with probability 1

W or
1

N∗m , where W is the number of words in R, N
is the number of sentences in R, and m is the av-
erage length of each sentence in R. We refer to
this probability that an attack makes changes to the
review text as Pattack where a is the total number

Algorithm 2: Increased Randomness De-
fense
Result: f̂(R), the classification of R after

defense
Input :Review R = {r1, r2, ..., rN}

where ri is a sentence
Parameters :k = number of replicates r̂j

made for R̂,
C = {c1, c2, ..., ck}, set of
corrections

1 R̂ = ∅, P = []
2 for j = 1 to k do
3 Randomly select ri ∈ R
4 Select random token t where t ∈ ri
5 Perform random correction c ε C to t to

get r̂j
6 Append r̂j to R̂
7 end
8 for j = 1 to k do
9 Classify: f(r̂j)

10 Append results to predictions array P
11 end
12 f̂(R) = V (P ), V () is a voting function
13 if f(R̂) == negative then
14 T = count(f(r̂ij) ==

negative) / N ∗ l
15 else
16 T = count(f(r̂ij == positive) / N ∗ l
17 end

of perturbations made by the attack:

Pattack =
a

W
=

a

N ∗m.

If each random perturbation performed by the at-
tack has a probability of 1

N∗m , then our defense
method needs to overcome that probability to over-
come the attack.

Our two defense methods, Random Perturba-
tions Defense and Increased Randomness Defense,
both offer ways to overcome the attack, i.e., undo
the attack change, with a probability greater than

a
N∗m .

Proposition 1 Random Perturbations Defense
overcomes an attack that makes a small number of
random perturbations to a review document by hav-
ing a probability greater than the attack probability
Pattack.

Our Random Perturbations Defense picks a random
token t from each sentence ri ∈ R and repeats k
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Figure 2: Visual representation of Algorithm 2 that in-
cludes more randomness.

times to get a final replicate r̂ij . This gives an
initial probability that the defense picks a certain
token from the text, or PRPD, to be:

PRPD =
N ∗ l ∗m!

k!(m− k)! .

We find this probability from choosing k tokens
from ri with length m which breaks down to a bi-
nomial coefficient

(
m
k

)
= m!

k!(n−k)! . This is then re-
peated l times for each sentence inRwhich equates
to that initial probability being multiplied by l and
N . After doing some rearranging of the probabil-
ities, we can see that for certain values of l and k
where k < m:

PRPD = N2m2l(m−1)(m−2)...(m−k+1)
k! > a.

PRPD now is the total probability that the de-
fense makes random changes to lN tokens. We
know that W = N ∗ m, that a =< W for the
attack methods we are testing against, and that
k should be selected so that k << W . This
means that we know W 2 > a, W 2 > k!, and
l(m−1)(m−2)...(m−k+1) > 0 for the selected
attack methods, which gives us the necessary con-
ditions to assert that PRPD > Pattack. Therefore,
our Random Perturbations Defense will overcome
the Pattack and should overcome the given attack
method as stated in Proposition 1.

Proposition 2 Increased Randomness Defense
overcomes an attack that makes a small number of
random perturbations to a review document by hav-
ing a probability greater than the attack probability
Pattack.

Our Increased Randomness Defense first chooses a
random sentence ri which is selected with proba-
bility 1

N . Next, we choose a random word within

that sentence which is selected with probability 1
m .

This gives us a probability for changes as follows:

PIRD =
1

N
∗ 1

m
=

1

N ∗m.

We can see that PIRD ∗ a = Pattack. We need to
overcome the attack probability and we do this in
two ways: we either find the attack perturbation
by chance and reverse it, or we counterbalance
the attack perturbation with enough replicates r̂j .
With each replicate r̂j created, we increase our
probability PIRD so that our final probability for
our Increased Randomness Defense is as follows:

PIRD =
k

N ∗m.

As long as our selected parameter value for k is
greater than the number of perturbation changes
made by the attack method a, then PIRD > Pattack

and our Increased Randomness Defense method
will overcome the given attack method as stated in
Proposition 2.

4 Experiments & Results

4.1 Dataset & Models
We used the IMDB dataset (Maas et al., 2011) for
our experiments. Each attack was used to perturb
100 reviews from the dataset. The 100 reviews
were selected randomly from the dataset with a
mix of positive and negative sentiments. Note that
the Kuleshov attack data (Kuleshov et al., 2018)
only had 77 reviews.

The models used in this research are from the
TextAttack (Morris et al., 2020) and HuggingFace
(Wolf et al., 2020) libraries. These libraries of-
fer many different models to use for both attacked
data generation and general NLP tasks. For this re-
search, we used the bert-base-uncased-imdb model
that resides in both the TextAttack and Hugging-
Face libraries. This model was fine-tuned and
trained with a cross-entropy loss function. This
model was used with the API functions of the Tex-
tAttack library to create the attacked reviews from
each of the attacks we used. We chose this model
because BERT models are useful in many NLP
tasks and this model specifically was fine-tuned for
text classification and was trained on the dataset
we wanted to use for these experiments.

The HuggingFace library was also used in the
sentiment-analysis classification of the attacked
data and the defense method. We used the Hugging-
Face transformer pipeline for sentiment-analysis
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to test our defense method. This pipeline returns
either “negative” or “positive” to classify the senti-
ment of the input text and a score for that predic-
tion (Wolf et al., 2020). This pipeline was used to
classify each replicate r̂ij in our algorithm and is
represented as the function f().

4.2 Experiments

The attacks from the TextAttack library were used
to generate attack data. Attack data was cre-
ated from 7 different models from the library:
BERT-based Adversarial Examples (BAE) (Garg
and Ramakrishnan, 2020), DeepWordBug (Gao
et al., 2018), FasterGeneticAlgorithm (Jia et al.,
2019), Kuleshov (Kuleshov et al., 2018), Probabil-
ity Weighted Word Saliency (PWWS) (Ren et al.,
2019), TextBugger (Li et al., 2019), and TextFooler
(Jin et al., 2020) (Morris et al., 2020). Each of
these attacks were used to create 100 perturbed sen-
tences from the IMDB dataset (Maas et al., 2011).
These attacks were chosen from the 14 classifica-
tion model attacks because they represent different
kinds of attack methods, including misspelling, syn-
onym substitution, and antonym substitution.

Each attack method used for our experiments
has a slightly different approach to perturbing the
input data. Each perturbation method is unique
and follows a specific distinct pattern and exam-
ples of these can be found in Figure 3. The BAE
attack determines the most important token in the
input and replaces that token with the most similar
replacement using a Universal Sentence Encoder.
This helps the perturbed data remain semantically
similar to the original input (Garg and Ramakrish-
nan, 2020). The DeepWordBug attack identifies the
most important tokens in the input and performs
character-level perturbations on the highest-ranked
tokens while minimizing edit distance to create
a change in the original classification (Gao et al.,
2018). The FasterGeneticAlgorithm perturbs ev-
ery token in a given input while maintaining the
original sentiment. It chooses each perturbation
carefully to create the most effective adversarial
example (Jia et al., 2019). The Kuleshov attack is
a synonym substitution attack that replaces 10% -
30% of the tokens in the input with synonyms that
do not change the meaning of the input (Kuleshov
et al., 2018).

The PWWS attack determines the word saliency
score of each token and performs synonym substi-
tutions based on the word saliency score and the

maximum effectiveness of each substitution (Ren
et al., 2019). The TextBugger attack determines
the important sentences from the input first. It then
determines the important words in those sentences
and generates 5 possible “bugs” through different
perturbation methods: insert, swap, delete, sub-c
(visual similarity substitution), sub-w (semantic
similarity substitution). The attack will implement
whichever of these 5 generated bugs is the most
effective in changing the original prediction (Li
et al., 2019). Finally, the TextFooler attack deter-
mines the most important tokens in the input using
synonym extraction, part-of-speech checking, and
semantic similarity checking. If there are multiple
canididates to substitute with, the most semanti-
cally similar substitution will be chosen and will
replace the original token in the input (Jin et al.,
2020).

Figure 3: Example of what original data looks like
and how the BAE (Garg and Ramakrishnan, 2020) and
TextBugger (Li et al., 2019) attack methods perturb
data. The BAE attack method uses semantic similarity,
while the Textbugger attack method uses visual similar-
ity.

After each attack had corresponding attack
data, the TextAttack functions gave the results for
the success of the attack. The accuracy of the
sentiment-analysis task under attack, without the
defense method, is reported in the first column in
Table 1. Each attack caused a large decrease in
the accuracy of the model. The model began with
an average accuracy of 80% for the IMDB dataset.
Once the attack data was created and the accuracy
under attack was reported, the attack data was run
through our Random Perturbations and Increased
Randomness defense methods. All of the exper-
iments were run on Google Colaboratory using
TPUs and the Natural Language Toolkit (Loper
and Bird, 2002).

4.3 Results
We began by testing on the HuggingFace sentiment
analysis pipeline with the original IMDB dataset.
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This gave an original accuracy of 80%. This per-
centage represents the goal for our defense method
accuracy as we aim to return the model to its origi-
nal accuracy, or higher. The accuracy under each
attack is listed in Table 1 in the first column. These
percentages show how effective each attack is at
causing misclassification for the sentiment analy-
sis task. The attacks range in effectiveness with
PWWS (Ren et al., 2019) and Kuleshov (Kuleshov
et al., 2018) with the most successful attacks at 0%
accuracy under attack and FasterGeneticAlgorithm
(Jia et al., 2019) with the least successful attack at
44% accuracy under attack, which is still almost a
40% drop in accuracy.

Attack w/o Defense w/ Defense
BAE 33% 80.80%±1.47

DeepWordBug 34% 76.60%±1.85
FasterGeneticAlgo 44% 82.20%±1.72

Kuleshov* 0% 60.00%±2.24
PWWS 0% 81.80%±1.17

TextBugger 6% 79.20%±2.32
TextFooler 1% 83.20%±2.48

Table 1: Accuracy for each of the attack methods under
attack, and under attack with the defense method from
Algorithm 1 deployed with l = 7 and k = 5. The
accuracy prior to attack is 80%.

4.3.1 Random Perturbations Defense
For the Random Perturbations Defense to be suc-
cessful, it is necessary to obtain values of the two
parameters, l and k. Each attack was tested against
our Random Perturbations Defense 5 times. The ac-
curacy was averaged for all 5 tests and the standard
deviation was calculated for the given mean. The
mean accuracy with standard deviation is presented
for each attack in the second column of Table 1.
The results presented are for l = 7 and k = 5.
These parameters were chosen after testing found
greater values of l and k resulted in a longer run
time and too many changes made to the original
input; with lower values for l and k, the model
had lower accuracy and not enough perturbations
to outweigh any potential adversarial attacks. The
values behind this logic can be seen in Table 2.

The defense method was able to return the model
to original accuracy within statistical significance
while under attack for most of the attacks with
the exception of the Kuleshov method (Kuleshov
et al., 2018). The accuracy for the other attacks
all were returned to the original accuracy ranging

Attack l k Accuracy w/ Defense
BAE 5 2 55%
BAE 10 5 50%
BAE 7 5 79%

Table 2: This table explains values of l and k

from 76.00% to 83.20% accuracy with the Ran-
dom Perturbations defense deployed. This shows
that our defense method is successful at mitigat-
ing most potential adversarial attacks on sentiment
classification models. Our defense method was
able to increase the accuracy of model while un-
der attack for the FasterGeneticAlgorithm, PWWS,
and TextFooler. These three attack methods with
our defense achieved accuracy that was higher than
the original accuracy with statistical significance.

4.3.2 Increased Randomness Defense
The Increased Randomness Defense was also tested
on all seven of the attacks. Each attack was tested
against this defense 5 times. The results for these
experiments can be seen in Table 4. There were
tests done to determine what the proper value for
k should be. These tests were performed on the
BAE (Garg and Ramakrishnan, 2020) attack and
the results can be found in Table 3. These tests
revealed that 40-45 replicates r̂j was ideal for each
R̂ with k = 41 being the final value used for the
tests on each attack. This defense method was more
efficient to use.

Attack k Accuracy w/ Defense
BAE 10 67%
BAE 20 76%
BAE 25 72%
BAE 30 76%
BAE 35 74%
BAE 40 82%
BAE 45 74%
BAE 41 77%

Table 3: This table shows the results for the tests for
different values of k for the increased randomness ex-
periments.

The runtime and the resources used for this
method were lower than the original random per-
turbations defense method with the runtime for
the Random Perturbations Defense being nearly 4
times longer than this increased random method.
A comparison of the two defense methods on the

525



seven attacks tested can be seen in Figure 4. This
defense was successful in returning the model to
the original accuracy, within statistical significance,
for most of the attacks with the exception of the
Kuleshov attack (Kuleshov et al., 2018). A t-test
was performed to determine the statistical signifi-
cance of the difference in the defense method accu-
racy to the original accuracy.

Attack w/o Defense w/ Defense
BAE 33% 78.40%±3.14

DeepWordBug 34% 76.80%±2.64
FasterGeneticAlgo 44% 82.80%±2.48

Kuleshov* 0% 66.23%±4.65
PWWS 0% 79.20%±1.72

TextBugger 6% 77.00%±2.97
TextFooler 1% 80.20%±2.48

Table 4: Accuracy for increased randomness defense
from Algorithm 2 against each attack method with k =
41. The accuracy prior to attack is 80%.

Figure 4: Comparing the average accuracy of the Ran-
dom Perturbations Defense and the Increased Random-
ness Defense methods to the under attack accuracy
without defense on the seven attacks.

4.4 Comparison to Recent Defense Methods

Our defense methods are comparable to some re-
cent defense methods created for text classifica-
tion. Our defense method returns the model to
the original accuracy within statistical significance.
This is comparable to the work done by Zhou et al.
(2021) in their Dirichlet Neighborhood Ensemble
(DNE) defense method. They were able to bring
the model within 10% of the original accuracy for
CNN, LSTM, and BOW models for the IMDB
dataset. However, their work is only applicable to
synonym-substitution based attacks. Since our de-
fense methods apply equally well to seven attacks,

it is general and can be applied without determin-
ing the exact type of attack (assuming it is one of
the seven).

Another recent defense method, Synonym En-
coding Method (SEM), was tested on synonym-
substitution attacks on Word-CNN, LSTM, Bi-
LSTM and BERT models (Wang et al., 2021b).
This defense method was most successful on the
BERT model and was able to return to the original
accuracy within 3% for the IMDB dataset. Our
work is comparable to both DNE and SEM which
represent recent work in defending NLP models
against adversarial attacks and more specifically
synonym-substitution based attacks.

WordDP is another recent defense method for ad-
versarial attacks against NLP models (Wang et al.,
2021a). This defense method used Differential
Privacy (DP) to create certified robust text classifi-
cation models against word substitution adversarial
attacks. They tested their defense on the IMDB and
found that their WordDP method was successful at
raising the accuracy within 3% of the original clean
model. This method outperformed other defense
methods including DNE. This is similar to our de-
fense method, but they do not include whether these
results are statistically significant.

We also compare our defense methods, RPD and
IRD, against these recent defense methods on cost
and efficiency. Our RPD and IRD methods have
comparable time complexity of O(cn), where c
is the time it takes for classification and n is the
number of reviews. Each method has a similar con-
stant that represents the number of perturbations
and replicates made. We cannot directly compare
the time complexity of our defense methods with
the SEM, DNE, and WordDP methods. These re-
cent defense methods require specialized training
and/or encodings. Our RPD and IRD methods do
not require specialized training or encodings, so
they cannot be directly compared on time complex-
ity. This means that the comparison between our
methods and recent defense methods comes in the
form of specialized training vs. input preprocess-
ing. Training and developing new encodings tends
to be more time consuming and expensive than in-
put preprocessing methods that can occur during
the testing phases.

5 Conclusion

The work in this paper details a successful de-
fense method against adversarial attacks generated
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from the TextAttack library. These attack methods
use multiple different perturbation approaches to
change the predictions made by NLP models. Our
Random Perturbations Defense was successful in
mitigating 6 different attack methods. This defense
method returned the attacked models to their origi-
nal accuracy within statistical significance. Our sec-
ond method, Increased Randomness Defense, used
more randomization to create an equally success-
ful defense method that was 4 times more efficient
than our Random Perturbations Defense. Overall,
our defense methods are effective in mitigating a
range of NLP adversarial attacks, presenting evi-
dence for the effectiveness of randomness in NLP
defense methods. The work done here opens up
further study into the use of randomness in defense
of adversarial attacks for NLP models including
the use of these defense methods for multi-class
classification. This work also encourages a further
mathematical and theoretical explanation to the
benefits of randomness in defense of NLP models.
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Abstract
The word representations are based on
distributional hypothesis according to which
words that occur in the similar contexts,
tend to have a similar meaning and appear
closer in the vector space. For example,
the emotionally dissimilar words ”joy” and
”sadness” have higher cosine similarity. The
existing pre-trained embedding models lack in
emotional words interpretations. For creating
our VAD-Emotion embeddings, we modify the
pre-trained word embeddings with emotion
information. This is a lexicons based approach
that uses the Valence, Arousal and Dominance
(VAD) values, and the Plutchik’s emotions to
incorporate the emotion information in pre-
trained word embeddings using post-training
processing. This brings emotionally similar
words nearer and emotionally dissimilar words
away from each other in the proposed vector
space. We demonstrate the performance of
proposed embedding using NLP downstream
task - Emotion Recognition.

1 Introduction

An emotion is a feeling that characterizes the state
of mind such as happiness, sadness, anger, fear and
more. The emotions are classified using various
taxonomies under the dimensional models and
the psychological emotion models such as Ekman
(1992) Emotion Model , Plutchik (1980) Emotion
Wheel, Parrot (2001) Model which agree to a basic
set of emotion with few changes. The Plutchik
emotion model represents the categorization of
emotion words into 8 basic emotions : anger,
anticipation, disgust, fear, joy, sadness, surprise,
and trust. The PAD emotional state model
(Mehrabian, 1994) is a 3-dimensional model that
represents every emotion in Valence (Pleasure),
Arousal and Dominance dimensions.

Emotion detection in the text is critical for a
number of applications and services in diverse

domains, including market research, customer-care,
psychological healthcare, and intelligent tutoring
systems and so on.(Mohammad and Turney, 2013).
The automatic detection of emotions remains a
challenging task till date as researchers may use
different emotion models with different number
and types of emotion categories. Also, the
emotions are subjective, hence creation of emotion
related resources requires much time and effort.

Word embedding are distributed word
representations where each word w in the
vocabulary V is mapped into a dense, low-
dimensional, continuous valued vector vwϵR

d.
Here d represents dimensions of the vector space
model. Most of the embeddings are modeled using
the syntactic context of words which means words
appearing in the similar contexts have the similar
semantics and appear closer in the vector space
(Mikolov et al., 2013), (Pennington et al., 2014).
As a consequence, emotionally opposite words,
such as “joy” and “sorrow” occurring in similar
contexts show higher cosine similarity. Hence,
said property does not fit in case of emotion words
as ’joy’ and ’sorrow’ and many more similar and
opposite emotion words too.

We propose a model that modifies the pre-trained
word embedding with emotion information using a
post-training processing method. This is a lexicons
based approach that uses the Valence, Arousal
and Dominance (VAD) values, and the Plutchik’s
emotions to incorporate the emotion information
in the word embeddings.

The main contributions of this paper includes
the creation of emotion-fitted embedding to be
used for NLP downstream tasks related to emotion
analysis. We present average of cosine similarities
for emotion words. The visualizations shown
for NRC-emolex lexicons using for Glove-300d
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embeddings, and retrofitted embeddings at both
steps : VAD-append embeddings and VAD-
Emotion embeddings confirms the step-by-step
clustering of similar emotion words. The accuracy
for emotion recognition as downstream emotion
task using the proposed embedding is mentioned as
results. Though clustering of emotion words takes
place, the accuracy for emotion recognition task
using proposed embedding is closer to baseline but
can not outperform the same.

The paper is organized as follows. Section 2
discusses various approaches used by researchers
for updating vector space models for specific set
of NLP tasks. Section 3 describes the proposed
approach. experiment and setting are explained in
section 4. We discuss the results and observation
in section 5.

2 Related Work

The use of lexical semantic information
(lexical resources), sentiment information,
emotion information to improve distributional
representations in respective area of NLP tasks is
recent. Methods like Tang et al. (2016), Agrawal
et al. (2018), Ye et al. (2018) achieve improved
representations by using training on unlabelled
corpora, distant supervision and other techniques
to gain relational knowledge to modify the prior
or add a regularization term. Such methods are
known as ‘pre-training methods’, as they alter
the training process for word representations.
Such methods may require a change in the loss
function with training and may be computationally
expensive.

Ye et al. (2018) proposed a method for sentiment
analysis, where they use external knowledge
from SentiWordNet (Baccianella et al., 2010),
Extended ANEW lexicons (Warriner et al., 2013)
with pre-trained word embeddings during joint
parameter training to a CNN classifier using
training data. Agrawal et al. (2018) proposed
a distant supervision method for automatically
labeling a large corpus of training data with
fine-grained emotions; and the LSTM model
architectures for learning emotion-enriched word
embedding from this training data.

On the other hand post-training methods include
external information to modify to the vanilla
word representations such as Word2Vec, GLOVE
to name a few. Retrofitting Method (Faruqui

et al., 2015), has used word relation knowledge
from semantic lexicons (e.g. WordNet), to bring
similar words closer in the retrofitted vector space.
It injects antonym and synonym constraints to
improve the existing word representations. Mrkšić
et al. (2016) presented post-training approach
named as counter-fitting which injects antonym
and synonym constraints into existing vector space
representations in order to improve the vectors’
capability for increase semantic similarity.

Aff2Vec (Khosla et al., 2018) aims at
incorporating affective information in word
representations. They have used the Warriner’s
VAD lexicon (Warriner et al., 2013) to improve the
strength in the antonym-synonym relationships of
the words is incorporated to the word distribution
space. The word similarity task and other sentiment
analysis related tasks are performed to display the
results.

Seyeditabari et al. (2019) proposed a method,
based on counterfitting approach (Mrkšić et al.,
2016) that incorporates emotional information
of words into the model. It uses an NRC-
emotional lexicon (Mohammad and Turney, 2013)
and the Plutchik’s model of basic emotions to
prepare emotion constraints for fitting an emotional
information into pre-trained word vectors.

Here, we propose a pipeline model to integrate
Valence, Arousal and Dominance information of
emotion words and their basic emotion labels
from lexicon set to create a new vector space on
pre-trained word vectors using post-training (post-
processing) method.

3 Fitting VAD values and Emotion
constraints into the Word Embedding

This work aims at incorporating affect information
in word representations. The figure - 1 illustrates
overview of proposed system for retrofitting of pre-
trained vector space. The emotion information is
infused in two consecutive steps. The subsections
3.1 and 3.2 discuss the processing performed in
step-1 and step-2 respectively. As shown in figure-
1, at step-1, we append the Valence, Arousal and
Dominance (VAD) values for the emotion lexicons
to their respective word embedding to transform
an original pre-trained vector space V into the
VAD-appended vector space V’. In step-2, we
use emotion constraints to modify these VAD-
appended embeddings further to achieve retrofitted
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vector space V”. Following subsections present
the steps of modifications in the pre-trained word
vector space V to V’ and then to the final modified
vector space V” from V’.

Figure 1: The System Overview

NRC-VAD lexicons : NRC-VAD lexicon
(Mohammad, 2018) is a set of affect lexicons
with 20007 English words. It contains real-valued
scores for valence, arousal, and dominance (VAD)
on a scale of [0 - 1] for each lexicon.

3.1 Step-1 : VAD-Append
Consider the word embedding space V and
the affect ([V,A,D]) embedding space A. The
word vector vw of word w , vwϵR

M , is
concatenated with the respective VAD-vector aw =
[V,A,D]ϵR3 from A, resulting in a M + 3
dimensional word representation (Khosla et al.,
2018). For the words not present in VAD-NRC
lexicons, aw = [0.5, 0.5, 0.5]ϵR3 is assumed.
Then these vectors are reduced to M dimensions
using dimensionality reduction algorithm such as
Principle Component Analysis (PCA) so that their
performance can be compared with existing pre-
trained embedding. This process transforms a pre-
trained vector space V to VAD-appended vector
space V’ as shown in figure-2.

Figure 2: The VAD-Append Process for a word

3.2 Step-2 : Emotion constraints using the
Plutchik Model of emotions

For fitting emotional information into VAD-
Append word vectors, we use a methodology on

Emotion-1 Emotion-2 Differing dimen-
sion from VAD

Anger Fear D
Anticipation Surprise AD
Disgust Trust VD
Joy Sadness VAD

Table 1: VAD-dimensions and opposite emotions

the similar lines of (Seyeditabari et al., 2019). We
aim to modify VAD-Append vector space V

′
=

{v1′ , v2′
, . . . , vn

′} to new vector space V ” =
{v1”, v2”, . . . , vn”} to add emotion information
without loosing much information present with
original vectors.

The Plutchik’s emotion model defines 4 pairs
of opposite emotions: Anger and Fear, Disgust
and Trust, Anticipation and Surprise, and Joy and
Sadness. These emotions differ based on high(1) or
low(0) VAD-values for the respective emotions.
Anger and Fear differs on Dominance value as
Dominance is high for Anger and low for Fear.
Table-1 shows difference for rest of the emotions.

We refine the VAD-append vectors further to
increase the cosine similarity between words with
similar emotions and decrease cosine similarity
between the dissimilar emotion words which can
help improve new vector space having word vectors
with interpretation of emotions in the respective
words.

To achieve this, two emotion constraint
lists are created. First list TrueEmotion
maintains pairs as (word, true emotion) for
every lexicon from NRC-Emolex such as
{(w1, e1), (w1, e2) . . . (w2, e1), . . . (wn, e3) . . .
} and another list OppositeEmotion maintains
pairs as (word, opposite emotion) for
every pair present in the first list such as
{(w1, o1), (w1, o2) . . . (w2, o1) . . . (wn, o3) . . . }
. Here oi represents the opposite emotion of ith

emotion ei as shown on the Plutchik wheel of
emotions. The NRC-Emolex lexicons (Mohammad
and Turney, 2013) are annotated with the best
suitable Plutchik emotions and positive or negative
as sentiment value are used for the same.

Our objective function for step-2 is based
on the counterfitting approach (Mrkšić et al
2016) to decrease the cosine distance between
words with their associated emotion in the list
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TrueEmotion(TE) , and to increase cosine
distance with their opposite emotions in the list
OppositeEmotion(OE). The objective function
is to be minimised to achieve proposed vector
space model V ′. The objective function contains
following three terms,

Obj(V
′
, V ”) = c1OR(V ”) + c2TA(V

”)

+ c3V SP (V
′
, V ”)

(1)

Opposite Repels(OR) : This term is to reduce
cosine similarity between words’ and opposite
emotions’ vectors away from each other in
by increasing cosine distance between them in
the transformed vector space V’. It uses the
OppositeEmotion list for this purpose.

OR(V ”) =
∑

(w,o)ϵOE

max(0, δ − d(vw
”, vo

”))

(2)

Here, standard value of δ = 1 and cosine
distance d(vw, vo) = 1− cosdist(vw, vo)

True Attracts(TA): This term is to bring the
embeddings of the words and their respective true
emotions nearer to each other in new vector space
V ′. In other words, for increasing cosine similarity
between them.

TA(V ”) =
∑

(w,e)ϵTE

max(0, d(vw
”, ve

”)− γ))

(3)

The γ = 0 represents minimum distance
between true emotion and words.

Vector Space Preservation(VSP) : The
original vector space describes the distributional
information for words from very large textual
corpora (Mrkšić et al., 2016). VSP term tries to
minimize the difference between cosine distance
between word pairs in original vector space V
and new vector space V ′ to preserve semantic and
contextual information as much as possible. In
current experiments, the neighbouring words are
chosen from NRC-Emolex only.

V SP (V
′
, V ”) =

N∑

i=1

∑

jϵN(i)

(max(0, d(vx
”, vy

”)− d(vx
′
, vy

′
)))

(4)

.

4 Experiments

We have used the NRC-VAD lexicons (Mohammad,
2018) to create VAD vectors and the NRC-Emolex
emotion lexicons (Mohammad and Turney, 2013)
for emotion constraints creation as they are labelled
with Plutchik’s wheel of emotions (Plutchik, 1980)
along with positive and negative sentiment values.

During experiments, Glove-300d (Pennington
et al., 2014), FastText-1M (Joulin et al., 2016), and
Google Word2Vec (Mikolov et al., 2013) are used
as pre-trained input vector space and created the
VAD-append embeddings at step-1, VAD-Emotion
word embeddings at step-2 respectively. We run
Stochastic Gradient Descent (SGD) for 20 epochs
to achieve the final retrofitted embeddings with
emotion information.

We have compared performance of VAD-
Emotion fitted embeddings with existing vector
space as mentioned above for the task of finding
average cosine similarity over NRC-Emotion
lexicons for similar and opposite emotions. Also,
have displayed accuracy results of Emotion
Recognition task on ISEAR dataset (ISEAR)
and the Twitter Emotion Corpus (TEC) dataset
(Mohammad, 2012).

5 Results and Discussion

Table-2 shows average cosine similarity between
NRC-Emolex lexicons and their respective
emotions. Higher the cosine similarity is better
for the similar emotion words. For Joy and
Trust emotions, VAD-Emotion Embedding perform
better than rest of them.

Table-3 shows average cosine similarity
between NRC-Emolex lexicons and the opposite
emotions.The cosine similarity between lexicons
and emotion should be as low as possible. The
range for cosine similarity is [+1,−1] The figure -
5 shows the clustering of similar emotion words
together and opposite emotion words in opposite
word clusters.

Table-4 shows accuracy of Emotion Recognition
Task using the pre-trained word embedding,
and respective VAD-append and VAD-Emotion
Embedding as input to a simple BiLSTM model.
The Table-4 reports 4-fold cross validation
accuracy on the subset of ISEAR dataset with
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Figure 3: Visualization of NRC-
Emolex lexicons using Glove-300d
embeddings

Figure 4: Visualization of NRC-
Emolex lexicons using VAD-Append
embeddings after step-1 processing

Figure 5: Clustering of NRC-Emolex
lexicons using VAD-dimention +
Plutchik emotion embeddings after
step-2 processing

5.4k examples and TEC dataset with 20k examples
respectively used for training and testing.

For the purpose of comparison, the emotion
recognition task on the ISEAR dataset was
performed with the Emotion-Refined-Embedding
(Seyeditabari et al., 2019) with Glove-300d pre-
trained embedding which resulted as accuracy of
64.84%. The embeddings are computed with help
of the code of Seyeditabari et al. (2019) which is
available publicly.

It can be observed from emotion recognition
accuracy values that VAD-Append embedding
give better accuracy than pre-trained Embedding
- Glove, Google Word2Vec, FastText as well as
respective VAD-Emotion embedding. The initial
segregation based on V,A,D values helps to achieve
improvement in accuracy of emotion recognition.

The figure-3, figure-4, and figure-5 show
visualization for NRC-Emolex lexicons
using Glove-300d embeddings, VAD-append
embeddings (step-1 output) and VAD-Emotion
embeddings i.e. final proposed retrofitted
embeddings. It can be observed that VAD-Emotion
embeddings show the better cosine similarity
among the emotionally similar words and less
cosine similarity between emotionally dissimilar
words than rest of them. This can be confirmed
by looking at the clusters of emotion lexicons
formed in figure - 5. Yet, the accuracy for
emotion recognition, do not show better results for
VAD-Emotion Embedding.

The reason from the primary observation is that
it is due to overlaps in clusters, as one lexicon may
belong to one or more emotions. Also, at step-2, we

retrofit word embeddings, only for emotion words
present in NRC-Emolex. The limitation with post-
processing methods such as counter-fitting is that
it retrofits emotion words present in the constraints.
Hence, we should perform a global specialization
or post-specialization processing (Vulic et al.,
2018) for retrofitting non-emotion words with
reference to the newly retrofitted emotion word
vectors. This will turn into the retrofitting of
complete vector space with the Plutchik’s emotion
information, which may help to improve accuracy
of the downstream tasks.

At step-1 every word embedding is appended
with VAD-values or the neutral value vector
[0.5,0.5,0.5] which retrofits every word for VAD-
values in V’ vector space. Due to the limitation
mentioned above, step-2 does not perform better
than step-1. Hence, the words which are not in
the NRC-lexicons can not be retrofitted at step-2.
To achieve the better accuracy results with final
retrofitted vector space V”, this is going to be our
future work with the proposed method.

Conclusion and Future Work

Embedding models have an important role in
word representation in various natural language
processing tasks. Here we present an approach
to bring emotionally similar words nearer and
emotionally dissimilar words away from each other
in the proposed vector space. This can be observed
in the better cosine similarity results presented in
table - 2, 3 for the NRC-Emolex lexicons and
also in the in figure - 5 that shows the similar
emotion words from Emolex are clustered together
and opposite emotion words are far apart. In this
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Lexicons
labelled with
Emotion

GloVe-300d
Embedding

VAD-append
Glove
Embedding
(Step-1 of
Proposed
Approach)

VAD-Emotion
Embedding
(Step-2 of
Proposed
Approach)

Anger 0.2864 0.4650 0.2548
Anticipation 0.3746 0.5496 0.5743
Disgust 0.2789 0.4436 0.7646
Fear 0.3057 0.4945 0.4023
Joy 0.3315 0.4585 0.7720
Sadness 0.2603 0.4329 0.7214
Surprise 0.2818 0.4287 0.3906
Trust 0.2567 0.4246 0.8724

Table 2: Average on Cosine Similarity between lexicons and their emotion labels from NRC-Emolex

Lexicons
labelled with
Emotion

Opposite
Emotion

GloVe-300d
Embedding

VAD-append
Glove
Embedding
(Step-1 of
Proposed
Approach

VAD-Emotion
Embedding
(Step-2 of
Proposed
Approach)

Anger Fear 0.3091 0.4329 0.0181
Anticipation Surprise 0.2519 0.3528 -0.0235
Disgust Trust 0.1625 0.1843 -0.2284
Fear Anger 0.2557 0.5078 -0.0127
Joy Sadness 0.2372 0.3118 -0.1035
Sadness Joy 0.2029 0.2719 -0.1164
Surprise Anticipation 0.2422 0.4145 -0.0223
Trust Disgust 0.1626 0.2656 -0.2264

Table 3: Average on Cosine Similarity between lexicons from NRC-Emolex and their opposite emotions

Word
Embedding

ISEAR dataset Twitter Emotion Corpus (TEC)

Pre-
Trained
Embedding

VAD-
Append
Embedding
(step-1)

VAD-
Emotion
Embedding
(step-2)

Pre-
Trained
Embedding

VAD-
Append
Embedding
(step-1)

VAD-
Emotion
Embedding
(step-2)

Glove-300d 70.57 70.95 66.11 56.44 57.62 54.73
Google
Word2Vec

69.7 70.50 65.84 56.90 58.51 53.81

FastText-1M 67.79 70.60 66.11 55.35 57.70 55.11

Table 4: Average accuracy of Emotion Recognition model for 4-fold cross validation on ISEAR dataset and TEC
dataset
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approach, we have combined effect of dimensional
emotion model through VAD values as well as
effect of psychological emotion model through
emotion constraints for incorporating emotion
information in the proposed vector space VAD-
Emotion embedding.

However, the VAD-append embedding shows
better results than pre-trained embedding, the
accuracy of VAD-Emotion embedding for emotion
recognition task is not impressive. The post-
specialization or global-specialization process for
retrofitting of non-emotion word embeddings may
improve the accuracy at step-2 of proposed model.

As a future work, we will be performing a
process for retrofitting non-emotion words with
reference to the newly retrofitted word vectors,
which may help to improve accuracy of the
downstream emotion-based NLP tasks. Also,
use of The knowledge base such as ConceptNet,
SenticNet etc may help in finding more emotion
words and emotion constraints to gain better
emotion information. Being the lexicon-based
approach, the approach with modifications may
be useful for emotion/sentiment based applications
with low-resource languages too.
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Abstract

The wide applicability of pretrained
transformer models (PTMs) for natural
language tasks is well demonstrated, but
their ability to comprehend short phrases
of text is less explored. To this end, we
evaluate different PTMs from the lens of
unsupervised Entity Linking in task-oriented
dialog across 5 characteristics– syntactic,
semantic, short-forms, numeric and phonetic.
Our results demonstrate that several of
the PTMs produce sub-par results when
compared to traditional techniques, albeit
competitive to other neural baselines. We
find that some of their shortcomings can
be addressed by using PTMs fine-tuned
for text-similarity tasks, which illustrate an
improved ability in comprehending semantic
and syntactic correspondences, as well as some
improvements for short-forms, numeric and
phonetic variations in entity mentions. We
perform qualitative analysis to understand
nuances in their predictions and discuss scope
for further improvements.1

1 Introduction

In task-oriented dialog systems, Entity Linking
(EL) is the process of disambiguating a detected
entity mention (aka. slot) in a user utterance to a
canonical entry in a Knowledge Base (KB). EL is
a crucial step in building robust dialog systems,
especially when dealing with domain-specific
entities, e.g., a chatbot for food ordering or a voice
assistant for medical assistance.

Popular open-source conversational AI
platforms such as DeepPavlov (Burtsev et al.,
2018), MindMeld (Raghuvanshi et al., 2018)
and Rasa (Bocklisch et al., 2017) maintain a KB
of canonical entries, each consisting of a title,
optionally with aliases (i.e., alternate usages)

1Code and re-purposed datasets can be found at
https://github.com/murali1996/el tod

Figure 1: Different types of matching scenarios observed in
Entity Linking task for short spoken/written language texts.

for the task of entity linking. Detected entities
from user utterances, often with spelling and
automatic speech recognition (ASR) errors, are
then mapped to those canonical entries through text
classification or similarity matching techniques.2

Previous works (Chen et al., 2020; Cao
et al., 2021; Broscheit, 2019) have proposed
context-aware classification techniques for EL,
wherein the context surrounding the slots is
leveraged to ascertain canonical names. However,
such approaches fall short due to (i) their reliance
on large training/fine-tuning sets and associated
annotation costs (ii) requirement to re-train the
classifiers with every change in KB entries.
Alternatively, a more popular paradigm is to model
EL as a matching problem by transforming entities
into vectors, and using a similarity function such as
cosine distance to find the closest canonical entry.

EL systems typically rely on textual n-gram
features modeled by ranking algorithms such as
BM25 (Robertson and Walker, 1994) implemented
as part of search engines such as Elasticsearch.3

To capture semantic similarity within such systems,

2Entity Linking may be clubbed with Entity Recognition
or is a standalone component of the NLP pipeline, the latter is
used in this work for better interpretability.

3https://www.elastic.co/blog/practical-bm25
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one needs to tediously engineer feature sets and
collect synonyms or aliases for each KB entry,
leading to a lot of manual effort and development
cost.

Recently, pretrained word embeddings have had
much success in capturing entity correspondences
(Francis-Landau et al., 2016; Sun et al., 2015)
by addressing aforementioned shortcomings–
off-the-shelf usage without reliance on training data
and flexibility to expand KBs without retraining.
Mudgal et al. (2018) presents a detailed account
of different deep learning based representations
and modeling choices for the EL task, showing the
advantages of using them over traditional systems.

More recently, transformer-based PTMs like
BERT (Devlin et al., 2019) have excelled for
Entity Linking when entities are in the form of
tabular data without much additional context (Tracz
et al., 2020; Teong et al., 2020; Li et al., 2020;
Mudgal et al., 2018). However, their ability
to understand nuances in linking short spans of
free-form text is not thoroughly tested, especially
for domain-specific entities with minimal context.

In this work, we investigate and analyze how
different PTMs behave in such settings, when
compared to widely adopted neural and non-neural
models (§ 2). To probe model behaviours on
examples with different characteristics, we curate
and benchmark evaluation datasets of various sizes
that each contain a subset of those characteristics
(§ 3). Lastly, we present qualitative as well as
quantitative analysis of the predictions of various
models, which shows that while pretrained models
fine-tuned for text-similarity tasks perform the best
overall, there is room for improvement (§ 4).

2 Models

In this section, we provide a brief detail of the
different pretrained transformer models (PTMs)
as well as the 5 baseline models (3 neural and
2 non-neural) used in our benchmarking process.
We categorize PTMs under consideration into
4 different types to understand the usefulness
of different pre-training strategies, number of
parameters and inference times. We adopt the
model nomenclature from Huggingface4 (Wolf
et al., 2020) and refer the reader to Rogers
et al. (2020) and Qiu et al. (2020) for more
comprehensive account on these different types
of PTMs and their utility.

4https://huggingface.co/models

We categorize the PTMs as follows:

Type-I Pretrained general-purpose transformer
language models which are base-sized.
These include bert-base-cased (Devlin et al.,
2019), roberta-base (Liu et al., 2019) and
mpnet-base (Song et al., 2020).

Type-II Parameters-reduced models which
are also trained for language modeling tasks
through different parameter reduction techniques.
These include albert-base-v2 (Lan et al.,
2020), distilbert-base-cased (Sanh et al., 2019),
distilroberta-base (Sanh et al., 2019), and
MiniLM-L6-uncased (Wang et al., 2020).

Type-III Reimers and Gurevych (2019)
fine-tuned some of the Type-I and Type-II
models on a variety of datasets annotated for
textual similarity tasks5. We select their all-*
models which were fine-tuned with more than
1 billion textual pairs and were designed as
general purpose textual similarity models. These
include all-distilroberta-v1, all-mpnet-base-v2 and
all-MiniLM-L6-v2.

Type-IV Dynamic quantization can reduce the
size of the model while only having a limited
implication on accuracy. We use Pytorch’s (Paszke
et al., 2019) dynamic quantization functionality6

to obtain the quantized versions of the following
models: all-mpnet-base-v2 and all-MiniLM-L6-v2.

In addition to the pretrained language
models based on transformer architecture, we
also benchmark PTMs based on other neural
architectures. Specifically, we consider the
following 3 neural models as baselines– (1)
FASTTEXT (Bojanowski et al., 2017), (2) FLAIR

(Akbik et al., 2019), and (3) ELMO (Peters et al.,
2018).

FASTTEXT consists of continuous distributed
word representations trained on large unlabeled
corpora for many natural language processing tasks.
It represents each word as the sum of its character
n-grams. Compared to FLAIR and ELMO, this
model has a shallower network and is pretrained
similar to Mikolov et al. (2013)’s skipgram model
with negative sampling. In our benchmarking, we
use the 300-dimension English model.7

5https://www.sbert.net/docs/pretrained models.html
6https://pytorch.org/dynamic quantization bert tutorial.html
7https://github.com/facebookresearch/fastText/crawl-vectors.md
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FLAIR is a LSTM based pretrained character
language model (Hochreiter and Schmidhuber,
1997), trained to produce a novel type of
word embedding also known as contextual
string embeddings. It is trained without any
explicit notion of words and hence can represent
even out-of-vocabulary (OOV) words similar
to FASTTEXT. In our experiments, we use
word representations concatenated from their
news-forward and news-backward models leading
to 4096-dimensional vectors.8

ELMO is a deep contextualized bidirectional
word representation produced by pretrained
LSTMs. In our experiments, we use the base model
and concatenate all three ELMo layers leading to
3072-dimensional vectors.9

We compare all the above neural models with
two non-neural baselines which are popularly
adopted for the task at hand– (1) TFIDF vectorizer10

and (2) BM25, both using word & character
n-grams upto 5-gram.

For all models except BM25, we use cosine
similarity as the scoring function. For every
pretrained model, we use mean pooled
representation of all (sub-)words in a given
entity text as its final representation.11

3 Datasets

We utilize both in-house and publicly available
corpora to curate datasets in English for the
Entity Linking task– MindMeld Blueprints
dataset12(MM BP) along with word and
character level misspelled versions of this
data (MM BP-WORD and MM BP-CHAR),
re-purposed open-domain QA datasets like
ComplexWebQuestions (COMPLWQ) (Talmor and
Berant, 2018) and MKQA (MKQA) (Longpre
et al., 2020), acronym identification dataset
(ACRI) (Veyseh et al., 2020), and an in-house
dataset of ASR mis-transcriptions for person
names (ASR-MIS). More details on the dataset
curation process is provided in Appendix A.

To probe model behaviours further, we manually
annotate 1.3K queries pooled from all of these

8https://github.com/flairNLP/flair/FLAIR EMBEDDINGS.md
9https://github.com/allenai/bilm-tf

10https://scikit-learn.org/sklearn-TFIDF
11Different pretrained models have different tokenization

strategies and we leave any analysis on the effect of
tokenization to future work.

12https://github.com/CiscoDevNet/mindmeld-blueprints

datasets into our 5 predefined categories as
follows (with their sample sizes) – SEMANTIC

(#294), SYNTACTIC (#408), SHORT-FORMS (#310),
NUMERALS (#125) and PHONETICS (#200).
Examples from these sets are presented in Figure 1.

We use Precision@1 (P@1) and Precision@5
(P@5) as our benchmarking metrics and conduct
all our experiments using the publicly available
MindMeld framework13. Unless otherwise stated,
we do not include any aliases alongside canonical
titles for matching KB entries and utilize all known
aliases as our test queries. We disregard any
canonical descriptions as they are not always
available and procuring them may have significant
annotation costs.

4 Results & Analysis

Table 1 present the results of different models
across our curated datasets. We observe that on
average, Type-I & Type-II models perform poorly
compared to the baselines by atleast 30% P@1.
However, Type-III & Type-IV models, fine-tuned
to find similar sentence pairs, perform superior to
our baselines by 5-13%, showcasing the usefulness
of such tuning strategies even to short texts. We
further observe that the parameter-reduced models
generally perform better than the base models.
Almost all PTMs perform poorly on abbreviations
and also fail to beat the BM25 baseline on the
phonetic matching dataset. While we believe that
these two datasets are quite challenging to the
PTMs as their training processes do not include
any related objectives, the superior performance of
Type-III models compared to Type-I and Type-II is
quite encouraging. On misspelled versions of the
datasets, Type-III & Type-IV models still perform
better than others. However, their precision falls
short by at least 10% absolute indicating scope for
improvement.

4.1 Qualitative analysis

Figure 2 shows the performance of different models
on the 5 different categories of data without and
with aliases in the KB. We perform a manual
inspection of the results across the 5 categories
with 3 different models: baseline BM25 model,
Type-I bert-base-cased (BERT) and Type-IV
all-mpnet-base-v2-quantized (MPNET-Q).

13https://github.com/cisco/mindmeld
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Results for Entity Linking (Precision@1 / Precision@5)

MM BP COMPLWQ MKQA ACRI ASR-MIS Avg. MM BP-WORD MM BP-CHAR
before after before after

Baselines

BM25 49.5 / 52.6 55.1 / 66.0 54.2 / 59.6 1.1 / 1.5 52.3 / 66.0 42.4 / 49.2 41.9 / 54.9 33.5 / 41.0 46.5 / 60.8 37.6 / 48.9
TFIDF 66.7 / 88.3 55.7 / 69.9 67.3 / 84.0 1.0 / 2.1 39.4 / 66.3 46.0 / 62.1 41.1 / 87.5 35.3 / 86.3 43.3 / 87.6 36.2 / 87.7
FLAIR 44.1 / 81.7 32.8 / 40.2 19.7 / 23.8 0.1 / 0.3 12.9 / 20 21.9 / 33.2 17.1 / 81.9 11.4 / 79.4 20.4 / 82.3 12.1 / 75.3
FASTTEXT 60.9 / 89.8 37.1 / 47.9 24.4 / 30.7 6.0 / 11.5 4.0 / 7.4 26.5 / 37.5 26.0 / 87.4 13.5 / 82.4 29.4 / 88.7 13.5 / 76.1
ELMO 57.7 / 84.6 46.6 / 58.3 26.6 / 32.6 1.1 / 1.9 6.4 / 10.4 27.7 / 37.6 17.5 / 86.3 10.4 / 81.5 21.6 / 83.3 10.9 / 75.1

Type-I
bert-base-cased 45.9 / 79.4 40.2 / 49.2 27.2 / 34.3 0.6 / 1.2 5.7 / 8.9 23.9 / 34.6 15.4 / 82.0 8.3 / 75.8 18.9 / 78.2 9.6 / 73.7
roberta-base 59.0 / 76.7 43.9 / 40.4 38.5 / 30.7 1.7 / 0.9 13.1 / 9.3 31.2 / 31.6 27.4 / 78.8 13.5 / 75.3 29.4 / 77.1 17.2 / 72.3
mpnet-base 31.1 / 74.3 25.2 / 30.1 21.4 / 23.0 0.4 / 0.6 12.3 / 14.0 18.1 / 28.4 21.9 / 77.6 7.1 / 73.1 22.2 / 74.2 8.3 / 69.2

Type-II

albert-base-v2 39.1 / 77.8 22.9 / 28.5 17.4 / 19.2 0.1 / 0.3 5.8 / 7.8 17.1 / 26.7 18.2 / 79.9 6.6 / 74.4 18.1 / 78.3 7.0 / 71.7
distilbert-base-cased 52.8 / 81.1 29.5 / 33.3 37.7 / 41.0 0.6 / 0.7 6.5 / 9.5 25.4 / 33.1 15.4 / 83.9 9.9 / 74.6 19.0 / 80.4 11.1 / 72.8
distilroberta-base 64.6 / 77.7 39.6 / 31.9 36.1 / 26.5 1.5 / 0.7 10.6 / 6.5 30.5 / 28.7 25.0 / 80.8 14.0 / 74.2 26.2 / 76.9 16.3 / 73.3
MiniLM-L6-uncased 57.5 / 82.7 33.7 / 38.0 36.8 / 38.9 0.5 / 0.8 16.9 / 18.3 29.1 / 35.8 29.5 / 85.6 9.8 / 75.6 30.6 / 81.4 11.4 / 73.8

Type-III
all-distilroberta-v1 72.3 / 91.8 62.5 / 72.1 59.9 / 76.4 11.2 / 23.3 42.4 / 62.6 49.7 / 65.2 42.2 / 91.7 24.2 / 87.3 44.3 / 91.4 32.2 / 87.5
all-mpnet-base-v2 75.8 / 91.4 62.3 / 72.1 57.6 / 73.3 6.0 / 11.4 43.6 / 57.5 49.1 / 61.1 44.8 / 92.4 21.6 / 85.4 46.3 / 90.9 27.5 / 86.3
all-MiniLM-L6-v2 74.6 / 91.7 62.0 / 71.8 68.2 / 80.1 4.7 / 8.2 44.9 / 59.2 50.9 / 62.2 45.5 / 91.4 21.5 / 82.9 47.5 / 92.0 27.4 / 84.8

Type-IV all-mpnet-base-v2 (Q) 79.4 / 93.3 63.2 / 72.4 75.5 / 84.1 5.5 / 10.6 43.5 / 59.5 53.4 / 64.0 45.5 / 92.4 22.1 / 85.4 46.7 /92.5 28.4 / 85.8
all-MiniLM-L6-v2 (Q) 73.0 / 91.0 61.2 / 70.9 67.3 / 79.6 4.1 / 7.4 42.3 / 58.1 49.6 / 61.4 44.8 / 91.3 20.9 / 83.0 46.8 / 90.9 26.5 / 82.3

Table 1: Evaluation of different pretrained transformer models across different datasets (§ 3). The Avg. column
reports mean precision across different datasets. Marked in bold are the best scores & in underline are second best.

Figure 2: EL results on annotated subset of 1.3K test
queries, annotated across 5 matching criterion. For each
model, the first bar corresponds to the scenario with KBs
containing only canonical names whereas for the second,
KBs contain aliases in addition for disambiguating test
queries.

4.1.1 Syntactic Matches
Syntactic matches refer to cases when the query
and its matching canonical form have slight textual
variations or spelling errors. The baseline TFIDF
and BM25 models are well equipped to handle such
differences and perform on-par and in some cases,
better than the other models. Between the BERT
and MPNET-Q models, the latter handles syntactic
differences better than the former by favouring
more word overlaps.

Query: John Jr.
BM25: John F. Kennedy Jr.
BERT: Michael Joseph Jackson, Jr.
MPNET-Q: John Warner

Query: mammoth pizza
BM25: Wham, Bam, Thank You Mammoth
BERT: Pizzawich
MPNET-Q: Fresco Pizza

Query: Hindi
BM25: Hindi Language

BERT: India
MPNET-Q: Hindi Language

4.1.2 Semantic Matches
The baseline BM25 system relies heavily on aliases
to handle queries that are semantically equivalent
to one of the canonical names in the KB. In their
absence, the model performs poorly in this category.
In contrast, the transformer models are better suited
to handle these queries. We notice 2 trends in the
BERT and MPNET-Q models:
While BERT tends to predict related words, they
are not always semantically equivalent.

Query: Instrumentalist
BERT: Singer
MPNET-Q: Musician

Query: most recently released
BERT: popular
MPNET-Q: latest

Query: totalled
BERT: count
MPNET-Q: sum

In addition, the BERT system tends to rank
antonyms higher.

Query: min
BERT: highest
MPNET-Q: lowest

Query: hilarious
BERT: erotic
MPNET-Q: comedy

Query: resigned
BERT: active
MPNET-Q: voluntarily terminated

4.1.3 Abbreviations & Short Forms
All models perform poorly on abbreviations and
short forms. BM25 relies on character n-grams to
match shortened sub-strings of entities, but fails on
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acronyms. MPNET-Q is able to identify acronyms
of popular entities like universities, countries, etc.,
perhaps as a result of the fine-tuning phase.

Query: PSU Football
BM25: Football
BERT: UD Arena
MPNET-Q: Penn State Nittany Lions

football

Query: Mla
BM25: Mlabri Language
BERT: lo
MPNET-Q: Mlabri Language

Query: USSR
BM25: (no result)
BERT: Czechoslovakia
MPNET-Q: Soviet Union

4.1.4 Numeric Matches
Among the three systems, BERT performs the
worst with numeric entities. It does not handle
different numeric representations of the same
entity well, leading to random predictions. Fuzzy
character matching ensures that BM25 system
handles different formats well as long as most of
the characters match. MPNET-Q model handles
changes in numeric formats the best even when
compared against its full model, with P@1 of 92.8.

Query: 90’s
BM25: 1990s
BERT: 2010s
MPNET-Q: 1990s

Query: 5th Avenue
BM25: 12th Avenue
BERT: 12th Avenue
MPNET-Q: 45 Fifth Avenue

Query: 1775 April 19
BM25: april 1986
BERT: 1875-09
MPNET-Q: 1775-04-19

4.1.5 Phonetic Matches
Often, ASR systems mis-transcribe uncommon
words into more common, phonetically similar
words. This category tests whether the models
are robust to such errors. While the performance
of all the models are lacking, BM25 qualitatively
provides explainable results due to its reliance on
textual similarities when compared to predictions
of the PTMs. Typically, EL systems are evaluated
on queries that test the models’ abilities to match
the 4 categories mentioned above. Given the
popularity of conversational agents with a speech
interface, probing EL models for their phonetic
matching capabilities is important.

Query: this loud (Liz Laub)
BM25: Cloud Hu
BERT: Kevin Upright
MPNET-Q: Riley Rant

Query: Yale sushi (Xiaoxue Shi)
BM25: Sakshi Alekar
BERT: Joshua Frattarola
MPNET-Q: Sammy Su

5 Conclusion

Given the success of PTMs for various NLP
applications (Rogers et al., 2020), we evaluate the
ability of these models to understand short spans of
text for unsupervised entity linking in task-oriented
dialog systems by curating a large dataset and
comparing their results against traditional n-gram
systems. We further analyze the performance
of these models across 5 different characteristics-
syntactic, semantic, abbreviations & short-forms,
numeric and phonetic matches. Our results
demonstrate that these models, when fine-tuned
on a semantic similarity task, comprehend
syntactic and semantic differences in short phrases
better than their other variants. However,
their performance is lacking - particularly for
abbreviations and queries with speech recognition
errors - with the best performing models averaging
at 53.4% P@1 and 64.0% P@5 across the different
datasets. For future work, with the goal of creating
a generic model for the unsupervised EL task, we
plan to improve these models through task-adaptive
fine-tuning techniques with our curated datasets.
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Abstract

Transformer based architectures have shown
notable results on many down streaming tasks
including question answering. The availabil-
ity of data, on the other hand, impedes obtain-
ing legitimate performance for low-resource
languages. In this paper, we investigate the
applicability of pre-trained multilingual mod-
els to improve the performance of question
answering in low-resource languages. We
tested four combinations of language and task
adapters using multilingual transformer archi-
tectures on seven languages similar to MLQA
dataset. Additionally, we have also proposed
zero-shot transfer learning of low-resource
question answering using language and task
adapters. We observed that stacking the lan-
guage and the task adapters improves the mul-
tilingual transformer models’ performance sig-
nificantly for low-resource languages. Our
code and trained models are available at :
https://github.com/CALEDIPQALL/

1 Introduction

Last few years have seen emergence of transformer
based pretrained models like BERT(Devlin et al.,
2019), XLNet(Yang et al., 2019), T5(Raffel et al.,
2020), XLM-RoBERTa(Conneau et al., 2020) etc.
The pretrained models have shown significant im-
provement in various downstream tasks like ques-
tion answering, NER, Machine translation and
speech recognition(Delobelle et al., 2020; Pires
et al., 2019; Pfeiffer et al., 2020a; Pires et al., 2019;
Pandya and Bhatt, 2021; Saha et al., 2021; Murthy
et al., 2019; Park et al., 2008; Raffel et al., 2020).

The emergence of multilingual models: mBERT
(Devlin et al., 2019) and XLM-RoBERTa(Conneau
et al., 2020) made it possible to leverage English

∗Equal contribution
†Corresponding Authors

data to improve the performance of low-resource
languages. In this paper, we continue to investi-
gate the effectiveness of multilingual pretrained
transformer models in improving the performance
of question answering systems in a low-resource
setup using the cascading of language and task
adapters(Pfeiffer et al., 2021, 2020a; Bapna and
Firat, 2019). Our work contributes by evaluat-
ing cross-lingual performance in seven languages
- Hindi, Arabic, German, Spanish, English, Viet-
namese and Simplified Chinese. Our models are
evaluated on the combination of XQuAD(Artetxe
et al., 2020) and MLQA(Lewis et al., 2020) datasets
which are similar to SQuAD (Rajpurkar et al.,
2016) .

To this end, our contributions are as follows:

• We have trained multilingual variants of trans-
formers, namely mBert and XLM-RoBERTa
with a QA dataset in seven languages. Both
the MLQA and XQuAD datasets contain val-
idation and test sets for the above languages
but not the training set. To finetune the model
we have combined the test set of XQuAD and
MLQA datasets and evaluated the model with
the MLQA development dataset as the test
dataset. By splitting the dataset in this way
we can get train and test data with the consider-
able length for low-resource languages which
helped us to conduct various experiments. Ta-
ble 1 highlights the size of our train and test
set for all the above-mentioned languages.

• We exhaustively analysed the fine-tuned mod-
els by evaluating them with the tasks adapter1

(Pfeiffer et al., 2021, 2020a). We con-
ducted the experiments in two different se-
tups, Houlsby(Houlsby et al., 2019) and Pfeif-

1Pre-trained task adapters from https://
adapterhub.ml/explore/qa/squad1/
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Hindi German Spanish Arabic Chinese Vietnamese English
Train 6854 5707 6443 6525 6327 6685 12780
Test 507 512 500 517 504 511 1148

Table 1: Size of the train and test set used in the experiments. The MLQA(Lewis et al., 2020) test and
XQuAD(Artetxe et al., 2020) datasets are used for fine-tuning the model and for testing purpose MLQA de-
vset is used for all languages to maintain consistency.

fer(Pfeiffer et al., 2021, 2020b). These two
setups enabled us to compare our language
model variants with their multilingual coun-
terparts and understand the different factors
that lead to better results on the downstream
tasks.

• We have also attempted a series of two
different experiments by stacking language
adapters and task adapter2 in different ways.
We first analyze the fine-tuned model by
stacking language-specific adapter with the
XLM-RoBERTabase

3. After fine-tuning the
language-specific adapter we augment the
task-specific adapter upon the previously fine-
tuned language adapter. We analyze both
the experiments separately and conclude that
multiple adapters with the transformer-based
model perform notably better.

• Due to limited training, the transfer-learning
performance of the transformer is poor on
the low-resource languages as well as on
the languages unseen during the pretrain-
ing(Kakwani et al., 2020). The multi-task
adapter (MAD-X) (Pfeiffer et al., 2020b) out-
performs the state-of-the-art models in cross-
lingual transfer across a representative set
of typologically diverse languages on ques-
tion answering. To avoid the training of
model individually for multiple languages
while maintaining the performance, we used
cross-lingual transfer by switching heads of
language adapter from the source language to
the target language.

2 Proposed Approach

In this section we describe our approach of training
the task adapter and the language adapters in 4
different setup.

2Pre-Trained Language Adapters from https://
adapterhub.ml/explore/text_lang/

3XLM-RoBERTabase https://huggingface.co/
deepset/roberta-base-squad2

2.1 Cross-Lingual Tuning of Task Adapter
and Language Adapters

Task-Specific Cross-Lingual Transfer: We have
used two different configurations for fine-tuning
the task-specific adapter for cross-lingual transfer
in low-resource languages (Pfeiffer et al., 2021;
Houlsby et al., 2019). We have fine-tuned XLM-
RoBERTabase for multiple languages with the ques-
tion answering corpora. We calculated the F1-
Score, Exact Match, Jaccard 4 , and WER (Word
Error Rate)(Park et al., 2008) 5 for the test dataset.

Adapting Cross-Lingual learning using
Language-Specific Model: We used the language
adapter trained using unlabelled data on MLM
objective. It makes the pretrained multilingual
model more suitable for the specific language with
its improved language understanding. We perform
the downstream task by stacking specific language
adapter with the XLM-RoBERTabase and used
recent efficient adapter architecture proposed by
pfeiffer et al. (Pfeiffer et al., 2021).

After fine-tuning task-specific adapter and
language-specific adapters individually with the
different low-resource languages, we observed that
by stacking task adapter and language adapters to-
gether with the transformer model the performance
improved significantly. For each language avail-
able in MLQA, we fine-tuned a task adapter using
a corresponding question answering dataset.

2.2 Multi-Task Adapter for Cross-Lingual
Transfer

The adapter-based MAD-X framework (Pfeiffer
et al., 2020b) enables learning language-specific
and task-specific transformations in a modular and
parameter-efficient way. Our method of using
MAD-X is as follows:

4Jaccard score https://en.wikipedia.org/
wiki/Jaccard_index

5WER score https://en.wikipedia.org/wiki/
Word_error_rate
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Figure 1: Experimental architecture- SETUP A: mBERT and XLM-R for QA, SETUP B: XLM-R with task adapters
setup, SETUP C: XLM-R with language and language + task adapter and SETUP D: MAD-X setup for XLM-R

1. We have used pre-trained language adapters6

for the source and target language on a lan-
guage modeling task.

2. Train a task adapter on the target task dataset.
This task adapter is stacked upon the previ-
ously trained language adapter. During this
step, only the weights of the task adapter are
updated.

3. Next, in zero-shot cross-lingual transfer step,
we replaced the source language adapter with
the target language adapter while keeping the
stacked task adapter.

3 Experimental setups

We have performed 4 different analysis as repre-
sented in Figure 1. Details of all 4 setups are shown
below:

6from https://adapterhub.ml/

3.1 Setup A

Here, we evaluated mBERT, XLM-Robertabase and
XLM-Robertalarge models on downstream tasks
with the training dataset, which is specific to the
individual language variant. The EM and F1 score
for all languages are shown in Table 2.

Here, the interpretation of the matrix is F1/EM
and it is same for rest of the Setups. For Example,
in Table 2 first entry 56.25/39.45 indicates, for the
Hindi test set, the F1score=56.25 and EM=39.45
is achieved using mBERT transformer model.

3.2 Setup B

After fine-tuning the transformer model, We
have evaluated XLM-RoBERTabase with the task-
specific adapter on downstream tasks under two
training settings: Houlby(Houlsby et al., 2019) and
Pfeiffer(Pfeiffer et al., 2021). While fine-tuning,
the weights of only the task adapter get updated and
the model weights are kept unchanged. This setup
enables the scalable sharing of the task adapter
model particularly in low-resource scenarios. Pre-
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Hindi German Spanish Arabic Chinese Vietnamese English
mBERT 56.25 / 39.45 52.99 / 38.09 59.89 / 40.4 51.28 / 31.33 41.86 / 41.07 59.52 / 39.73 77.86 / 63.85

XLM-RoBERTabase 64.49 / 48.32 60.74 / 45.31 68.99 / 47.6 58.07 / 39.65 45.37 / 44.24 68.19 / 48.53 81.29 / 68.64
XLM-RoBERTalarge 73.37 / 56.02 70.57 / 53.32 76.32 / 54.2 67.15 / 47.78 49.94 / 49.21 73.78 / 54.21 85.98 / 74.39

Table 2: F1 score and Exact Match on the test set for the Setup A on multilingual-BERT and XLM-RoBERTa.

Hindi German Spanish Arabic Chinese Vietnamese English
Task Adapter (Houlby) 64.12 / 47.73 60.95 / 44.53 68.48 / 46.6 58.13 / 38.49 44.38 / 43.25 68.39 / 48.34 80.86 / 68.29
Task Adapter (Pfeiffer) 65.7 / 49.9 60.53 / 44.14 69.09 / 48 55.97 / 37.14 44.05 / 43.05 68.46 / 48.53 81.23 / 68.64

Table 3: F1 score and Exact Match for the xlm-roberta with Task Adapter (Setup B). We bold the best results.

trained task-specific adapters: Houlby7 and Pfeif-
fer8 are taken with predefined conditions. The EM
and F1 score for all languages are shown in Table
3.

3.3 Setup C
The language adapters are used to learn language-
specific transformations (Pfeiffer et al., 2020b). Af-
ter being trained on a language modeling task, a lan-
guage adapter can be stacked before a task adapter
for training on a downstream task. To perform zero-
shot cross-lingual transfer, one language adapter
can be replaced by another. In terms of architec-
ture, language adapters are largely similar to task
adapters, except for an additional invertible adapter
layer after the embedding layer.

In this setup, we have evaluated each language-
specific adapter9 by stacking it on the XLM-
RoBERTa model. In the second phase, we stacked
the task-specific adapter and language-specific
adapter on the XLM-RoBERTa model. The EM
and F1 score for the language adapter and the task
+ language adapter fusion are shown in Table 4.

3.4 Setup D
Here, we have cascaded the multi-task
adapters(Pfeiffer et al., 2020b) to leverage
the high-resource dataset to improve the perfor-
mance of the low-resource language. We stacked
the fine-tuned task-specific adapter upon the
language-specific adapter and XLM-RoBERTa
(shown in figure 1). After fine-tuning with high
resource language, we performed zero-shot
cross-lingual transfer by switching the source
language adapter with the target language adapters.

7Available at https://adapterhub.ml/
adapters/ukp/roberta-base_qa_squad1_
houlsby/

8https://adapterhub.ml/adapters/ukp/
roberta-base_qa_squad1_pfeiffer/

9Available at https://adapterhub.ml/
explore/text_lang/

Our results for multi-task adapters are highlighted
in the Table 6.

Figure 2: The performance of the different heads. The
Y-axis here denotes the F1 score

Table 5 shows Jaccard and WER score for all
four setups while the Figure 2 represents the F1
score of our models on all the languages.

4 Observations

To study the impact of the task adapter and the lan-
guage adapters, we have conducted experiments
as shown in Setup B and Setup C. Our obser-
vations from Table 3 and Table 4 indicates that
the trained language adapter (Setup C: language
adapters only) improves the performance for Hindi,
German, Spanish, Chinese and English languages
over the usage of task adapter(Setup B). However,
instead of using language adapters only the stack
of task and the language adapters lower EM and F1
score for languages other than Arabic.

We have compared two task adapter architec-
tures and noted that the usage of different task
adapter architectures have negligible performance
impact on majority of the languages. As a result,
no clear distinction can be drawn from this obser-
vation, which can be used to guide future research.

High-resource languages that use the Right-to-
Left (RTL) scripting approach dominate the train-
ing of pretrained transformer models. The Ara-
bic language follows Left-to-right(LTR) scripting
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Hindi German Spanish Arabic Chinese Vietnamese English
Language Adapter 66.14 / 49.11 61.41 / 45.9 70.25 / 49.6 56.84 / 37.52 44.82 / 43.85 68.06 / 49.31 81.43 / 68.64

Task + Language Adapter 65.39 / 48.72 61.03 / 45.51 69.03 / 47.6 58.15 / 38.29 44.68 / 43.45 68.39 / 48.14 81.31 / 68.9

Table 4: F1 score and Exact Match on the test set for the Setup C and We bold the best result in each section.

Hindi German Spanish Arabic Chinese Vietnamese English
XLM-RoBERTabase 59.1 / 76.9 51 / 94.9 53 / 74.4 50 / 92.7 44.8 / 60.2 57.2 / 81.6 73.6 / 49.3

Task Adapter (Pfeiffer) 58.2 / 84.7 51 / 93 52.2 / 88.9 49 / 92.8 43.9 / 59.2 57.3 / 81 73.4 / 50.7
Task Adapter (Houlby) 59.7 / 70.6 51.1 / 93.4 53.1 / 78.9 48.5 / 87.6 43.6 / 60.1 57.1 / 79.9 73.6 / 49.7

Language Adapter 60.4 / 74.7 52.5 / 104.2 54.6 / 75.9 49.2 / 93.8 44.3 / 59.7 56.6 / 76.4 73.8 / 49.4
Task + Language Adapter 59.5 / 82.8 51.6 / 97.4 53 / 76.9 49.8 / 93.7 44.1 / 59.4 57.2 / 85.2 73.7 / 46.5

MAD-X (Multi-Task Adapter) 59.7 / 72.6 48.6 / 95.5 50.3 / 88.7 42.9 / 107 42.4 / 60.9 53.7 / 88.4 -

Table 5: Jaccard and Word error rate (WER) on the test set for Setup A, B, C, and D

Multi-Task Adapter
(Task + Source Language + Target Language)

Hindi 65.24 / 48.91
German 60.42 / 43.35
Spanish 65.82 / 44.2
Arabic 50.12 / 31.33

Chinese 42.87 / 41.86
Vietnamese 64.48 / 44.22

English -

Table 6: F1 score and Exact Match on the test set for
the Setup D of Multi-Task adapter

style. The general poor performance in the Arabic
language could be due to a variation in scripting
technique. This also demonstrates that, regardless
of the downstream task, the language structure has
a significant impact on overall performance.

The Chinese language has a symbolic language
structure and can be written in a variety of forms
(left-to-right, or vertically top-to-bottom). The de-
graded findings in Chinese compared to other low-
resource languages are most likely due to the lan-
guage’s writing flexibility.
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5 Conclusions

We have investigated the efficacy of cascading
adapters with transformer models to leverage high-
resource language to improve the performance of
low-resource languages on the question answering
task. We trained four variants of adapter combina-
tions for - Hindi, Arabic, German, Spanish, English,

Vietnamese, and Simplified Chinese languages. We
demonstrated that by using the transformer model
with the multi-task adapters, the performance can
be improved for the downstream task. Our results
and analysis provide new insights into the general-
ization abilities of multilingual models for cross-
lingual transfer on question answering tasks.
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Abstract 

Visual Question Answering (VQA) has 

recently become a popular research area. 

VQA problem lies in the boundary of 

Computer Vision and Natural Language 

Processing research domains.Various 

details about each dataset are given in this 

paper, which can help future researchers to 

a great extent. In this paper, we discussed 

and compared the experimental 

performance of the Stacked Attention 

Network Model (SANM) and bidirectional 

Long Short Term Memory (LSTM) and 

Multimodal Tucker Fusion (MUTAN) 

based fusion models. As per the 

experimental results, MUTAN accuracy 

and loss are 29% and 3.5, respectively. 

SANM model is giving 55% accuracy and 

a loss of 2.2, whereas the VQA model is 

giving 59% accuracy and 1.9 loss. 

1 Introduction 

The visual Question Answer model should have 

the ability to understand both visual and linguistic 

capabilities. These models must possess some 

capabilities to function. They are locating an object 

(finding the location of any object within any given 

image mostly based on coordinate position along 

with height and width), finding object attributes 

(retrieval of attributes of any given object, e.g., 

color, shape, or any other traits of an object), 

activity being performed by an object (e.g., sport 

being played, running, walking, etc.), 

understanding of any given scene which is 

basically providing a high-level representation of 

the environment. The VQA models are prone to 

bias to remove this problem; multiple answers are 

normally being provided for any question.  

This paper has been structured in the 

following way. Section 2 will give related existing 

work or literature study. This will be followed by 

Section 3, which will give a study of existing 

datasets available which is relevant for this 

analysis along with dataset details like licensing, 

year of formation, and other statistics about image, 

question, answer, etc. Section 4 will give details 

about the experiment being conducted along with 

an analysis of the results. Section 5 has conclusion 

details. 

2 Background Study 

Assessing the performance of the VQA model is 

a bit tricky. Regular ML models metrics like 

Accuracy (for classification problems), MAE (for 

regression problems), etc., cannot estimate 

performance properly. To effectively quantify the 

performance of a VQA model, the metric 

(Shrestha, R et al., 2017) must have the following 

capabilities:  

a. Consistency: This depicts the ability to 

provide a consistent answer for a different form of 

the same question. 

b. Grounding/Localization: The main 

purpose is better model interpretability. This is the 

ability to localize the region in the image which is 

relevant with respect to the answer. 

c. Plausibility: Providing a justifiable 

answer, e.g., for a question like, is it a sunny day? 

The answer will be either yes, no, or cannot say 

something of this like. 

VQA models generate an attention map to perform 

object localization with respect to the question 

being asked. The attention maps are nothing but a 

matrix that identifies a region within an image that 

is relevant for an image-question pair.A ranking 

score is generated based on a number of overlaps 

of bounding regions (Shalini Ghosh et al., 2019). 

In a simple attention map mechanism mix of 

images and questions can derive whether a region 

is relevant or not with respect to that image.  They 

propose a new architecture that represents the 
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image and question mix as a vector representation 

rather than pairwise confluence. This kind of 

vector representation can give accurate 

information about a region that is relevant for a 

specific context hence making this a context-aware 

region search (Xi, Y. et al., 2020). The authors 

proposed a very basic approach towards Visual 

Question Answer methods (Antol, S. et al., 2015). 

In this paper, the authors have shown the 

importance of captioning.  

In a paper (Yang, Z. et al.,2016), the authors have 

adopted a stacked attention mechanism because the 

reasoning is complex; hence if multiple attention 

map mechanisms are stacked together, they 

perform well, as shown below how stacked 

attention map is able to pinpoint the region of an 

image which is related to a question. Figure 1 

shows a sample example of how the stacked 

attention layer works for the question “What is 

sitting on the basket on a bicycle?” 

 

Original Image       First Attention Layer     Second Attention Layer 

Figure 1: Multiple attention layers stacked together. 

 

The stacked attention mechanism is a sequential 

approach, i.e., the next layer of the attention 

mechanism attempts to reduce the error caused by 

the previous attention layer. This approach is like a 

bagging or bootstrap aggregating algorithm. 

Another attempt is to try boosting approach, i.e., 

instead of sequential attention layer using parallel 

attention layer and at the result aggregates all 

attention layers data (like boosting concept). The 

use of multiple layers parallel manner and 

aggregating the results to get combined data works 

well and reduces the chance of overfitting. 

In the paper (Goyal, Y. et al.,2017), the authors 

have emphasized on visual part or image part in 

VQA. The language part can be biased based on 

various human and other unavoidable biases.  

In the paper (Anderson, P. et al., 2018), the authors 

proposed a mixed top-down and bottom-up 

approach for the generation of attention maps 

rather than the existing top-down approach for 

generating attention maps. The existing top-down 

approach is generating an attention map based on 

feature weights. The authors are claiming the 

attention maps are being generated for each 

feature. The proposed model generates the 

attentions map where each bounding box is 

associated with an attribute followed by an object, 

as shown in Figure 2. 

 
       Figure 2: Attention map for a bottom-up approach. 

 

In the above image, the top left bounding box is 

attached to “object: sky “and the attribute of sky 

object, “color: blue.”  

3 Related Datasets 

This section is focused on the different dataset 

descriptions. Dataset is an important part of VQA.  

DVQA dataset: 

This dataset was developed in the year 2018. This 

is restricted only to research and educational 

purpose. This dataset also provides additional 

supplemental material. Along with the question-

answer pair, detailed annotations of every object 

have been provided in the form of a bar chart. 

(Kafle, K. et al., 2018). 

VQA v1 and v2 Dataset: 

This dataset was developed in the year of 2016. 

This dataset has 256016 images. The images are 

inherited from the COCO image database. VQAv1 

and VQAv2 have around 0.6M and 1.1M 

questions, respectively. The dataset has 7.9M 

answers. The dataset has 50K abstract scenes and 

15K questions, and 1.9M answers to cater to the 

need of analysis abstract scenes (Zhang, P. et al., 

2016). 

VCR Dataset: 

The dataset has 290K multiple choice questions 

along with their answers (290K). The dataset 

maintains answers are of 7.5 words on average. 

(Zellers, R. et al., 2019). 

GQA Dataset: 

This dataset was developed in the year 2019.The 

dataset has 110K images, where each image is 

associated with a scene graph of objects and 

relations. The dataset has 22M multistep questions. 
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A new metric also has been added to this dataset 

which is a combination of Accuracy, consistency, 

validity, and plausibility (Hudson, D. A. et al., 

2019). 

CLEVR: 

This dataset was developed in the year 2018. The 

train set has 70K images and 700K questions, 

validation, and test sets have 15K images and 150K 

questions. Scene graph annotations are additional 

supplemental material available to boost the 

performance (Johnson, J. et al., 2018). 

4 Experimental Result and Performance 

Analysis 

For the experiment, we have used 30 epochs with 

minibatch gradient descent with a batch size of 

128. Each epoch took almost 1.5 hours for the 

stacked area network model and roughly 2 hours 

for the VQA model.Now we will discuss internal 

model details. 

 

 

Figure 3: Execution phases for VQA models. 

Visual Question Answer (VQA) Model: 

As stated earlier, in any VQA model, image and 

question-answer have been trained or processed 

separately, and at a later point in time, the feature 

vectors from image and text have been combined 

in a different manner. In the VQA model, we have 

used the pre-trained CNN model VGG19 to 

retrieve the image feature vector. For question-

answer processing, we have used the Embedding 

layer and followed by a bidirectional LSTM layer 

to understand word embedding sequences pattern. 

During the experiment both image and text features 

are processed separately however we need to 

combine both the features so that the combined 

output can be fed into subsequent Neurons in Deep 

Learning frameworks. The image and text feature 

vectors have been combined using a torch tensor 

multiplication (like matrix multiplication). We 

have also ensured bypassing the argument to image 

and feature vector to have the same size. Followed 

by this step, we have used two hidden layers, and 

we have used tanh activation function in our 

hidden layer. The use of tanh activation function 

ensures we have bounded the output within   -1 to 

1 range. We have tried with relu and leaky relu but 

did not do well. 

Multimodal Tucker Fusion for Visual Question 

Answering (MUTAN): 

This model is similar to the VQA model with a 

small difference. In VQA, the image and text 

features are mixed using torch multiplication. 

However, in this model, image and text feature 

passed through separate deep neural network. Then 

the output from both the neural networks has been 

multiplied and forwarded to output generation. 

Stacked Attention Network Model (SANM): 

In this model also image and question-answer pairs 

have been processed in the same way as with the 

previous VQA model. However, there is a small 

change in combining image and text features. 

During the VQA model, we are doing simple torch 

tensor multiplication of text and image features, 

however, in this model, we are first creating a list 

of attention layers, and for each attention layer, we 

are combining image features and text features 

related to that attention map. Then all attention 

maps are stacked together, and they are further 

passed through a deep neural network with a single 

hidden layer where both image and text feature 

vectors have been passed with tanh as an activation 

function. Further, in the final layer, we have used 

softmax to extract which attention maps are 

relevant for that image-question pair. Then the 

combination of an image feature, word feature, and 

combined output from the stacked attention layer 

is passed through a shallow neural network for 

further processing. 

            

Model Performance: 

We have performed the experient on VQAv2 

dataset. Table 1 shows the experimental results for 

models. As stated, earlier the VQA model 

1. Download Image 

2.Download Question 

3.Download Answer 

4.Download Annotations 

1.Word Embeddings for 

Questions 

2.Word Embeddings for 

top n Answers (default 

n=1000) 

Train/Test 
Generation of Dataset 

Optimized for fast 

retrieval 

Generation of 

Word 

Embeddings 

Download 

Data 

Resize Image 

(150 X 150) 
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performance is slightly better than the SANM 

model. 

 
Image Question Output 

SANM 
Model 

VQA 
Model 

Mutan 

 

Is the ball 
flying 

towards 
the 

batter? 

'no' - 
0.2597 
'yes' - 

0.2281 
'both' - 
0.1156 

 

'yes' - 
0.1507 
'no' - 

0.1015 
'ground' - 

0.0380 
'floor' - 
0.0192 

 

'yes' - 
0.2160 
'no' - 

0.1992 
'night' - 
0.1057 
'red' - 
0.0292 

 

What 
sport is 
being 

played? 

'yes' - 
0.2171 
'no' - 

0.1455 
'old' - 

0.0626 
'both' - 
0.0529 
'new' - 
0.0351 

 

'tennis' - 
0.1301 

'baseball' 
- 0.0569 

'unknown' 
- 0.0158 
'none' - 
0.0141 

'yes' - 
0.2466 
'no' - 

0.1710 
'red' - 
0.0520 
'night' - 
0.0375 

 

Table 1: Experimental Results on test dataset 

 
Figure 5: SANM model accuracy. 

From Figure 5 we can see during epoch 8 or 9, the 

difference between training and validation loss was 

almost 0. We have taken that model as our best 

model since it reduces overfitting and generalizes 

well. The Accuracy is around 55%, and the loss is 

around 2.2. 

 
Figure 6: VQA model accuracy. 

 

From Figure 6, we can see during epoch 8 or 9, the 

difference between training and validation loss is 

almost 0. We have taken that model as our best 

model since it reduces overfitting and generalizes 

well. The Accuracy is around 59%, and the loss is 

around 1.9. It is quite evident that the 2nd model is 

performing better than the 1st model. 

 

 
Figure 7: MUTAN model accuracy. 

 

From Figure 7, we can see during epoch 14 or 15, 

the difference between training and validation loss 

is almost 0. We have taken that model as our best 

model since it reduces overfitting and generalizes 

well. The Accuracy is around 27%, and the loss is 

around 3.8. This model performance is not up to 

the mark. Overall VQA model is giving best 

accuracy among the 3 models evaluated. 

5 Conclusions and Future Scope 

Loosely speaking, so far, visual question 

answering models and datasets follow a specific 

pattern. Visual Question Answering dataset 

normally contains multiple images, which could be 

natural or synthetic, and along with this, each 

image contains a pair or combination of question 

and answer. Along with these in a few datasets, 

additional supplemental materials have been 

provided to support models as a feature to make 

better decisions. As per the VQA model is 

concerned with preprocessing image and text 

(question-answer) part preprocessing is going 

separately, i.e., no relation or dependency on each 

other. After preprocessing, the preprocessed data 

from image and text have been combined, which 

varies from model to model and then fed into 

Neural network models. This is overall architecture 

in simple terms. In this experiment, we have tested 

some of the VQA models successfully in our lab 

environment and produced results. We have also 

ensured to reduce overfitting by selecting the best 

model where training and validation loss difference 

is minimum. 
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Abstract

We introduce a novel conversation embedding
by extending Bidirectional Encoder Represen-
tations from Transformers (BERT) framework.
Specifically, information related to “turn” and
“role” that are unique to conversations are aug-
mented to the word tokens and the next sen-
tence prediction task predicts a segment of a
conversation possibly spanning across multi-
ple roles and turns. It is observed that the ad-
dition of role and turn substantially increases
the next sentence prediction accuracy. Con-
versation embeddings obtained in this fashion
are applied to (a) conversation clustering, (b)
conversation classification and (c) as a context
for automated conversation generation on new
datasets (unseen by the pre-training model).

We found that clustering accuracy is greatly
improved if embeddings are used as features
as opposed to conventional tf-idf based fea-
tures that do not take role or turn informa-
tion into account. On classification task, a
fine-tuned model on conversation embedding
achieves accuracy comparable to an optimized
linear SVM model on tf-idf based features. Fi-
nally, we present a way of capturing variable
length context in sequence-to-sequence mod-
els by utilizing this conversation embedding
and show that BLEU score improves over a
vanilla sequence to sequence model without
context.

1 Introduction

Embedding of natural language units (word, sen-
tence or paragraph) deals with the problem of find-
ing a vector space representation of these units that
can be used in downstream applications of clas-
sification, summarization or token identification.
For example word embeddings (Mikolov et al.,
2013a,b,c; Pennington et al., 2014) have found ap-
plication in information retrieval (Manning et al.,
2008), document classification (Sebastiani, 2002;

Kim), question answering (Tellex et al., 2003; Mi-
naee and Liu, 2017), named entity recognition
(Turian et al., 2010) and parsing (Socher et al.,
2013). Extending the same concept to sentences
and documents one can also find the correspond-
ing vector representations independently (Le and
Mikolov, 2014) or by suitably averaging the word
vectors (Kusner et al., 2015).

While aforementioned embeddings are created
without optimizing for (or even considering) down-
stream applications there are recent approaches that
seek optimal representations based on pre-training
(Radford et al., 2018; Howard and Ruder, 2018;
Peters et al., 2018). These applications can be at
sentence-level such as natural language inference
(Bowman et al., 2015; Williams et al., 2018) and
paraphrasing (Dolan and Brockett, 2005) where
the semantic relationship between sentences are
captured or at word-level tasks (Rajpurkar et al.,
2016; Wang et al., 2018). There are two different
approaches for applying pre-trained embeddings,
(a) feature-based ((Peters et al., 2018), where the
model architecture is task-specific and pre-training
is a feature of the architecture) and (b) fine-tuning
(Radford et al., 2018; Devlin et al., 2019) (where
the pre-training architecture is quite generic to han-
dle a variety of downstream tasks and model param-
eters are later fine-tuned for specific tasks). While
most of the pre-training architectures use unidi-
rectional language models (Radford et al., 2018;
Peters et al., 2018), Bidirectional Encoder Rep-
resentations from Transformers (BERT, (Devlin
et al., 2019)) uses a different strategy to learn sen-
tence/paragraph representations and achieves best
scores on a variety of tasks.

Even though there are different strategies for
creating word, sentence and document level em-
beddings, there is no study available in literature
that deals with conversation embedding. While
a piece of conversation may look very similar to a
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paragraph (and one can probably start with para-
graph embedding to embed conversations) it has
two important additional pieces of information,
namely, turns and roles. A turn can consist of a sin-
gle word, sentence or multiple sentences (all belong
to a single role) and a conversation can have many
participants (roles) where it is crucial to distinguish
who is saying what. An efficient representation
of a complete conversation (or part of it) should
take into account the role and turn information (and
their congruence) for downstream applications.

The most important application of conversation
embedding is in the area of automated dialogue
generation. Starting with the vanilla sequence-to-
sequence model (Sutskever et al., 2014; Vinyals
and Le, 2015) there are different approaches to
capture the “context” so that meaningful responses
can be generated (Sordoni et al., 2015b; Mei et al.,
2017). The “context” continuously grows as the
conversation progresses and can be defined in terms
of everything that has happened in the conversation
so far or key words from earlier turns extracted by
some attention based algorithms (Bahdanau et al.,
2015). There could be different approaches to cap-
ture a context, e.g., (a) separate RNNs for previous
turns and roles, (b) attention over previous turns or
(c) a global vector representing counts of tokens
from previous turns etc. However, all of them have
limitations either in capturing all the required infor-
mation or in their ability to deal with a continuously
increasing context length. An embedding that can
map a variable length context (i.e., a conversation
segment) into a numeric vector while including key
pieces of information required for generating the
next response would be immensely helpful in auto-
matic dialogue generation. This is what has been
attempted in this work where we create conversa-
tion embedding using BERT and apply to various
downstream tasks. Our contributions are

1. Extension of BERT based sentence
representation to conversation
representation by adding the notion
of roles and turns and thus creating an
embedding of conversation segments hitherto
unavailable in literature.

2. We show that with the inclusion of roles and
turns during pre-training the next sentence
prediction accuracy increases.

3. Application of these pre-trained models on
conversation clustering shows better accuracy

over tf-idf based features.

4. We demonstrate how conversation embedding
can be used to capture context in sequence-to-
sequence models and thereby improving the
BLEU score.

2 Related Work

Very little work is available in the literature on con-
versation embedding, especially that treats conver-
sations with all its associated complexities. Most
of the work has been on word embedding (non-
neural, (Brown et al., 1992; Ando and Zhang,
2005; John Blitzer and Pereira, 2006; Pennington
et al., 2014) and neural (Mikolov et al., 2013a,b,c;
Liu et al., 2017)), sentence embedding (Le and
Mikolov, 2014) and embedding of paragraphs (Dai
et al., 2015). Recent approaches involving pre-
training and fine-tuning also deal with sentences
and sentence pairs (Peters et al., 2018; Radford
et al., 2018; Devlin et al., 2019) and the down-
stream tasks are mostly classifications (and not
sequence generation). On conversation embedding,
the closest that we see is from Mehri et al. (2019)
where multiple pretraining objectives are explored.
Conversations are encoded using recurrent neural
network (RNN) and no information from roles or
turns are included.

The importance of capturing “context” for rele-
vant response generation is well understood. (Sor-
doni et al., 2015b) tried capturing the context ini-
tially using bag-of-words representation (Sordoni
et al., 2015a) and later by a hierarchical recurrent
encoder-decoder (HRED) approach (Serban et al.,
2016a) applied to the movie dataset (Banchs, 2012)
with only one previous utterance appearing as the
context. Here, a dialogue D consisting of a series
of utterances {U1, U2, . . . , UM} was decomposed
as

pθ(U1, U2, . . . , UM ) =

M∏

m=1

Nm∏

n=1

pθ(wm,n|wm,<n, U<m)

(1)
and two encoders were used to encode context

and current input. A second approach based on
stochastic latent variables (called VHRED model)
to capture dependency amongst multiple time steps
is proposed by (Serban et al., 2016b) and it was
shown that VHRED generated responses preferred
over HRED. HRED architecture is further modified
by (Li et al., 2018) to take bidirectional GRU as
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input to the encoder, for application to multi-modal
input scenario (Agarwal et al., 2018) and in a GAN
set up for generating a sequence response (Su et al.,
2018).

In the next section we describe our approach
of creating conversation embedding from BERT.
Subsequently, we demonstrate three applications of
this embedding, namely, clustering, classifications
and dialogue generation. Finally, conclusions are
drawn.

3 Conversation Embedding Using BERT

BERT represents a sentence or a pair of sentences
by their Wordpiece tokens (Sennrich et al., 2016),
segment names (A or B) and token-wise positions.
While this representation is enough for contiguous
sentences from a paragraph it does not take into
account (1) role or speaker and (2) turn or depth
of the conversation. In this work we add these
two additional pieces of information along with
the rest of the embedding. To give an example,
Table 1 is a snippet of a typical conversation with
the corresponding roles (Customer and Agent) and
turns (0, 1, 2, . . .):

The corresponding text, role and turn tokens for
input to a BERT model will be as shown in Fig. 1.
While the role in the present case takes only two
values, i .e., agent and customer (although there
is no restriction) the turn can be as high as 200
in our conversation data. Thus, the turn embed-
ding can be similar to the position embedding used
in Transformer, i .e., sines and cosines. However,
in the present work we have projected both the
turn and role values to a fixed-dimensional vector
and learnt the corresponding embeddings (Gehring
et al., 2017). These embeddings are added together
along with the position and segmentation embed-
dings defined in the original BERT paper.

The pre-training steps of BERT are partly based
on tasks defined earlier, namely, masked language
model (MLM) and next sentence prediction (NSP).
However, in case of MLM the masked word can be
from different roles and turns. Similarly, the sen-
tence pairs in NSP can span across multiple roles
and turns. Thus, both MLM and NSP will drive
better understanding of the conversation structure.

Task #3: Middle Sentence Prediction

In addition to NSP and MLM we have also intro-
duced a new task, namely, middle sentence predic-

tion (MSP). As the name suggests, we choose any
two alternate turns (both coming from the same
role) and try to predict the middle turn (different
role). Similar to the NSP task, MSP is also con-
verted into a binary classification problem where
50% of the time the actual middle turn is chosen
and for the rest of the time another turn from a
different conversation is picked randomly (while
maintaining the role). In this way, the model should
be able to understand the conversation structure bet-
ter that will also help in applications like automated
response generation.

4 Experiments

The data for all the experiments presented here
are from conversations between customer service
agents and existing/new customers who contact the
customer service for their order related issues. The
conversations between customer and agents are di-
vided into sessions which we merged together to
generate a single conversation. For BERT model
pre-training we have randomly selected 100,000
chats of various different topics. These conversa-
tions are of varying number of turns and tokens
(as can be seen in Table 2). For text normalization
following steps are carried out (a) lower casing,
(b) replacing entities like number, customer, city
and state names, url, date, ticket number etc. by
their corresponding tokens and finally (c) remov-
ing empty spaces, multiple punctuation and special
characters. We have restricted the number of words
in the vocabulary to 30,000 (same as what was con-
sidered in the original BERT paper (Devlin et al.,
2019)).

4.1 Pre-training

We use the base configuration (Devlin et al., 2019)
for pre-training, i .e., number of layers, L = 12,
hidden dimension, H = 768 and number of self-
attention heads, A = 12. Both turn and role are
projected into the same hidden dimension H as
used for segments and positions. There are only
two words in the role vocabulary (”A” and ”C”)
whereas we have taken 128 as the turn vocabulary
dimension. The maximum sequence length used in
all the examples is 128.

We have created two different pre-training
datasets from the 100,000 chats. The first one does
not contain any MSP task and has 1.7 million ex-
amples for NSP and MLM tasks created by having
a duplication factor of 5 (for random masking and
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Turn Role Text
0 Agent Please proceed with your query.
1 Customer 1want my order delay for one day. On the date of 26 nov
2 Agent I certainly understand your concern. Let me check that.
3 Customer Okk
4 Agent Thanks for waiting. On checking details ...

Table 1: Sample conversation and the corresponding text, roles and turns

Statistics Turn Token
Minimum 1 1
Maximum 195 8409

Mean 13 23
50th percentile 11 14
75th percentile 17 26
90th percentile 25 52

Table 2: Statistics of Turns and Tokens in the pre-training dataset

binary label selection). The second dataset has all
possible (∼1M) MSP examples (no duplication)
along with NSP and MLM examples created with
a duplication factor of 2 (678k) resulting in 1.77
million data points. Thus, the two datasets are simi-
lar in size but having a totally different distribution
of task types. We use a batch size of 32 for all
examples and train for 3 epochs (∼170k steps),
which takes around 80 hours in a 12 GB Tesla GPU
machine.

The corresponding MLM and NSP task perfor-
mance for these datasets are shown in Table 3. The
effect of adding the role and turn is clear in the
next sentence prediction with a much better accu-
racy. It can also be seen that adding MSP task
increases (next or masked) sentence prediction ac-
curacy. Addition of role and turn on the other hand
has little effect on the MLM accuracy, mostly be-
cause these masked words are more dependent on
surrounding words (rather than the roles or turns of
the surrounding words).

Once we have pre-trained BERT models (with
roles and turns) we can use the representation of
[CLS] (from the top layer or from multiple layers,
(Devlin et al., 2019)) as a representation (embed-
ding) of the entire conversation. This representa-
tion (a vector of length H , 768 in the present case)
then can be used for many potential downstream
predictions as it has captured the entire conversa-
tion in a fixed length vector. Here we apply our
pre-trained BERT models for clustering and auto-
mated response generation. For all the applications,

including MSP, we use the representation of the
[CLS] token at the top layer as an embedding. In
addition, we also fine tune the BERT model for
intent prediction.

4.2 Conversation Clustering
The data for conversation clustering consist of a
different set of 50,000 conversations (again taken
from conversations between customers and agents).
Each conversation has a labeled intent (based on
agents’ tagging of the corresponding issue) and the
distribution of these intents in the dataset is shown
in Table 4. Each conversation is converted into a
fixed length feature vector (dimension 768) using
the pre-trained models described in the previous
section. A t-SNE (van der Maaten and Hinton,
2008) plot of this dataset is shown in Fig. 2 where
interactions amongst different intents and existence
of multiple intents in a conversation are captured to
a certain extent. For example, most of the intents
have some overlap with “others” intent and “status”
(order) is closely related to “delivery”. Also, con-
versations with “others” tag and falling in the range
of component-1 > 0 and component-2 > 10 seem
to have no overlap with any of the other existing
intents. A sample of 10 conversations from this
region shown below confirms that:

• check my last order i want to know about
which battery inbuilt

• can u update the name from [[name]] [[name]]
to [[name]] [[name]] in the invoice ?
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Figure 1: Conversation segments and corresponding BERT input representation using tokens, roles (A - agents, C
- customer) and turns (k is the turn number varying between 1 and #turns).

Type MLM Accuracy NSP Accuracy
Set-1, no role and turn 82.4% 89.0%

Set-1, with role and turn 83.5% 96.4%
Set-2 (MSP), with role and turn 81.6% 97.5%

Table 3: Pre-training test results on the two different datasets

Intent Percentage
Cancel 11.2

Delivery 16.5
Return & Refund 18.3

Status Inquiry 22.1
Others 31.9

Table 4: Distribution of pre-defined intents in the clus-
tering dataset

• [[order-id]] item missing product

• i do not want to change the address i want to
change the payment method

• what is mean by no cost emi ?

• hi . i want to remove my default mobile num
[[phone]] and change to [[phone]] i have the
option to change email but not mobile

• i want to buy screen guard with phone but u
charge extra delivery charges for screen guard
yes

• call me back

• what is the offer for this phone i am not able
to understand hello can you type you there

• ji mujhe emi pe phone lena h

where the last sentence has both English and Hindi
words.

Although tags are not always very accurate and
there can be multiple intents in a single conversa-
tion, we apply k-means algorithm (with 5 clusters)
on the BERT embedding and calculate the accuracy.
We also extract tf-idf based features (uni-grams and
bi-grams) from the conversations (without taking
role and turn information into account) and apply

Figure 2: Clustering of conversations by t-SNE
(van der Maaten and Hinton, 2008) applied on conver-
sation embeddings

Feature Accuracy
tf-idf based feature 31.07%

word2vec based feature 33.28%
BERT embedding (no MSP) 44.08%

BERT embedding (with MSP) 42.98%

Table 5: Accuracy of k-means clustering of conversa-
tions

k-means algorithm with 5 clusters. Once cluster
numbers are obtained for individual data points
we apply Hungarian algorithm (Papadimitriou and
Steiglitz, 1998) to map cluster number to intents
(class names) and compute the accuracy. Instead
of clustering all 50000 data points we randomly
sample 10000 data points 10 times and apply k-
means algorithm 5 times (for both tf-idf and BERT
based feature representation) and compute the av-
erage accuracy. The results are shown in Table 5
where it is clear that BERT based feature (on an
unseen dataset) has resulted in a much better accu-
racy underscoring the efficiency of this approach
of embedding a conversation.

559



4.3 Conversation Classification
For classification we consider another set of 40,000
conversations (different from what is used in pre-
training or clustering) with intents (labels) provided
by the customer service agents. The distribution of
these intents in this data is similar to what is shown
in Table 4. We fine-tune the pre-trained BERT
model for 32,000 data points and apply on the rest
8,000 examples. We use the same vocabulary of
pre-training (with 30,000 words) for tokenization
with maximum sequence length of 128. We fine
tune the BERT model for 5 epochs with a batch size
of 32 and learning rate of 2×10−5. For comparison,
we consider a linear SVM model with tf-idf based
features. Hyper-parameters and ranges shown in
Table 6 are considered for grid search. The results
are presented in Table 7. It can be seen that BERT
fine-tuned model achieves comparable accuracy
(slightly higher) on completely unseen data.

hyperparameter range
maximum document frequency 0.5, 0.75, 1.0

n-gram range 1, 2, 3
idf usage True, False

tf-idf norm L1, L2
α 10−4, 10−5, 10−6

Regularization L2, elasticnet

Table 6: Hyperparameter set for SVM classifier

Model Accuracy
Linear SVM 72.04%

BERT fine-tuned 72.13%
BERT fine-tuned (with MSP) 72.24%

Table 7: Accuracy of different classifiers

4.4 Conversation Generation
The final example shows another application of
BERT based features for automatic dialogue gen-
eration. As discussed previously, sequence-to-
sequence (or seq2seq) models are not naturally
amenable to accommodate conversation contexts
and various approaches have been tried in the
past. We try to generate response tokens rkt for
turn k by maximizing the probability of response
rk = {rk1 , rk2 , . . . , rkT }

p(rk|ik) =
T∏

t=1

p(rkt |rk1 , . . . , rkT−1, i
k, c1:k−1)

(2)

where ik and c1:k−1 are the input and con-
text for the kth turn, respectively. Since the
context contains everything that has happened
so far in the conversation, i .e., c1:k−1 =
{i1, r1, i2, r2, . . . , ik−1, rk−1} it is an ever grow-
ing list and difficult to encode in a fixed length
vector. In this work, we convert a variable length
context into a fixed length feature vector using a
pre-trained BERT model, i.e.,

c1:k−1 = BERT ({i1, r1, i2, r2, . . . , ik−1, rk−1}) ∈ RH
(3)

where H is the embedding dimension in BERT
model.

Figure 3 shows the schema of applying context
embedding. The model is based on an encoder-
decoder pair modified for context embedding. At
k-th turn, the context embedding represents turns
1 to k − 1 that is used as an initial hidden state to
the encoder (after a linear transformation). Next,
tokens of the k-th turn are fed into the encoder one-
by-one and the corresponding encoder outputs are
recorded. The final encoder output (h5 in Fig. 3)
is concatenated with the context embedding (again
with another linear transformation) and used as the
initial state of the decoder. Following Bahdanau
style attention (Bahdanau et al., 2015) the decoder
state is compared with encoder outputs to compute
attentions weights that are applied on the encoder
outputs to get ‘context vector’. This context vector
is concatenated subsequently with the k + 1-th
turn tokens before given as input to the decoder
to generate decoder outputs. Although not used in
this work, context embedding can also be included
in the attention weight calculation.

The data for conversation modeling is also taken
from prior customer interaction with agents. How-
ever, we have considered only conversations for a
specific issue, i .e. ‘status check’. We have man-
ually extracted 3,872 conversations with 14,978
turns (data points) that have only this intent and
no other additional intents displayed in the same
conversation. The median number of turns in these
conversations is 6 (75th percentile is 8 and 90th

percentile is 15). We fixed the encoder sequence
length to 32 and decoder sequence length to 128
(90th percentile is 128). The context (which is a
cumulative of previous turns) that is passed to the
BERT model ideally should be less than 128 (the
maximum sequence length considered in the BERT
model). However, in our dataset the maximum
number of tokens in a context is 363 while 99th
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Figure 3: Encoder-decoder model with context embedding. Context embedding is used to set the initial hidden
state of both the encoder (E) and decoder (D).

percentile is 109. Thus, for less than 1% of the
cases the context will be truncated before being
evaluated by BERT model.

We have used GRU for encoder and decoder
(single layer) with a hidden dimension of 256 (same
for the token embedding dimension). The inputs
are reversed before given as input to the encoder.
Before passing the context embedding (vector of
dimension 768) to the encoder and decoder linear
layers with ReLU activation (projecting 768 to 256)
are used. In case of decoder there is an additional
linear layer (with ReLU activation) that acts on the
concatenated vector of last encoder hidden state
and context vector (i.e., of dimension 768+ 256 =
1024).

We have used 80% of the data for training and
20% for validation. All the model components
are trained by Adam optimizer (Kingma and Ba,
2014) with default values and batch size of 16.
Model performance is evaluated by BLEU score
(Papineni et al., 2002) where the validation data
is evaluated at the end of every epoch and tested
for improving BLEU score. If the score does not
improve for 4 consecutive epochs training is termi-
nated. Table 8 shows the BLEU scores (BLEU-2
and BLEU-3 indicate BLEU scores for bi-grams
and tri-grams) with and without conversation em-
beddings. The best rating is obtained when MSP
task was not included in BERT pre-training which
is not intuitive. However, both conversation embed-
ding based models result in a better BLEU score
than vanilla seq2seq model.

Model BLEU-2 BLEU-3
no context embedding 0.2284 0.2037

with MSP 0.2354 0.2116
without MSP 0.2403 0.2177

Table 8: BLEU-2 and BLEU-3 for conversation re-
sponse generated by different seq2seq models

5 Conclusion

We have introduced an embedding (representation)
of a conversation (or conversation segment) by
augmenting role and turn information to word to-
kens and utilizing BERT for pre-training. This
pre-trained model can be used either to generate
features from new conversations or can be fine-
tuned further on specific tasks. In this work we
have explored both the options. Pre-trained model
based conversation features are used for (a) conver-
sation clustering and (b) for representing contexts
in a conversation for predicting the next response.
In case of clustering we show that embedding based
features result in higher accuracy when compared
to tf-idf based features. Similarly, for conversation
modeling embedding feature based context repre-
sentation drove higher BLEU score when compared
to a vanilla seq2seq model without any contextual
information. We also fine-tune a pre-trained model
for conversation classification on new dataset and
obtain accuracy similar to what is given my a linear
SVM model trained on tf-idf based features. With
these examples we show the general applicability
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of the current approach on modeling various tasks
involving conversation data.
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Abstract

Designing robust conversation systems with great
customer experience requires a team of design ex-
perts to think of all probable ways a customer can
interact with the system and then author responses
for each use case individually. The responses are
authored from scratch for each new client and ap-
plication even though similar responses have been
created in the past. This happens largely because
the responses are encoded using domain specific
set of intents and entities. In this paper, we present
preliminary work to define a dialog act schema
to merge and map responses from different do-
mains and applications using a consistent domain-
independent representation. These representations
are stored and maintained using an Elasticsearch
system to facilitate generation of responses through
a search and retrieval process. We experimented
generating different surface realizations for a re-
sponse given a desired information state of the dia-
log.

1 Introduction

A good conversation system is the one that enables
its users to converse freely in natural language text.
To handle conversations in a robust manner, the
system should have set of responses covering many
possible ways the end-customer can interact with
the system. Response generation is a challenging
problem for spoken dialog systems, with the qual-
ity of the generator depending on factors such as
adequacy, fluency, variation and readability (Stent
et al., 2005). Partly because of the need to adapt
to requirements of the specific domain for which
the system is designed, many deployed applica-
tions, including the ones that provide context for
our work, follow a template-based approach, in
which response templates with possible slot fillers

are manually authored by application designers.
Such responses largely satisfy the quality measures
of adequacy and fluency, where adequacy measures
whether the response conveys the intended meaning
completely, non-redundantly, and unambiguously,
while fluency measures linguistic correctness and
appropriateness of style. However, there can be
challenges with respect to variation and readability.

Variation is intended to avoid repetitiveness so
that the responses in multi-turn dialogs sound natu-
ral and human-like, while readability ensures that
responses are interpretable in their dialog context.
For example, asking users for basic personal infor-
mation or task specific details is a common task
across many business needs. However, repeatedly
using the same small set of scripts such as What
is your account number? or Please
share your account number has the un-
desirable effect of sounding predictable and un-
natural.

With a team of experts authoring prompts for
diverse applications across different domains, col-
lecting response variations for different response
types for various stages of a conversation is effort-
less. The challenge however is that the collection
is useful only if the variants are maintained with
dialog state specific equivalence classes that are
consistent across domains for authors to access and
reuse. Fig 1 presents some alternative realizations
for frequently occurring use cases of asking cus-
tomers for their name. While r1 is simply querying
the end user to provide their name, r2 acknowl-
edges the capture of information and requests for
confirmation of correctness. Responses r3 - r5 are
used when the customer has not provided the de-
sired information during the prior turn and needs to
be prompted again; these are paraphrases providing
reasons for why the information is necessary.

The motivation behind this work is to cluster
these variations using a systematic and consistent
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Figure 1: Different variations of asking the end-user
customer about their name.

framework to promote response sharing across dif-
ferent domains and to suggest possible variations
to choose from. In this paper, we describe our pre-
liminary work on dialog act classification of a large
database of responses authored by a design team
for different applications using a consistent and
common domain independent annotation scheme.
These response variants can then be used by the de-
signers to provide possible alternative realizations
of the content they want to convey. Furthermore,
since selecting an appropriate variant is partly a
function of the dialog context, our future goal is
also to develop a context aware response sugges-
tion model that can account for readability through
the proper use of context-dependent elements such
as referring expressions (e.g., Please share your
account number with me vs. Please share that
with me) and discourse markers (e.g., What is your
account number? vs. And what is your account
number?).

Our main contributions in this paper are:

• Creating a unified taxonomy for the commu-
nicative function of dialog acts that is univer-
sally applicable across different domains and
covers probable agent/user tasks.

• Using Elasticsearch to maintain a repository
of system responses and transforming context
independent response generation problem into
a search and retrieval task.

Section 2 presents our approach to Dialog Act (DA)
classification, focusing on the taxonomy for the
communication function (CF) component. Section
3 explains the use of Elasticsearch for maintain-
ing a repository of utterances indexed along many
different dimenions. Section 4 presents our pre-
liminary experiments on classification and static
response generation.

2 Communicative Function of Dialog
Acts

The meaning of an utterance in dialog has long
been characterized as a dialog act, designed to cap-
ture the communicative behavior of a participant in
terms of speech acts (Austin, 1962; Searle, 1969).
Many DA schemes have been developed over the
years, but most were designed for specific domains
and applications (Allen et al., 1994; Allen and Core,
1997a; Anderson et al., 1991; Alexandersson et al.,
1997). Here, we adapt the ISO standard for DA
annotation (Bunt et al., 2012) because it provides
a domain independent representation that covers a
broad range of intents for all aspects of a conversa-
tion state.

Based on the information-state update approach
to meaning in dialogue (Bunt, 2000; Traum and
Larsson, 2003), a DA in the ISO framework (ISO-
DA) has two main components: a semantic content
(SC), which describes the entities, events, actions,
properties or relations that the DA is about, and
a communicative function (CF), which specifies
how addressees should update their information
state with the semantic content. For example, the
utterance What is your account number? has some
representation of the customer’s account number as
the semantic content, while the CF should represent
the fact that the value of this entity is not known
and that it is being requested of the customer.

Since the focus here is on the CF classification
of responses, we have adapted the ISO-DA CFs to
reflect the commonly occurring functions in our
data of approximately 37K unique response utter-
ances. The following provides the CFs, with defini-
tions and examples. Broadly, the functions can be
classified as the ISO-DA categories of information-
seeking functions, information-providing functions,
commissives and directives. For some of the CFs,
such as query info intro, further refinements are
needed, however, our preliminary goal for this work
is to explore the feasibility of the classification
task with a coarse-grained taxonomy. Additionally,
of the nine dimensions in the ISO-DA taxonomy
(Bunt, 2006), we have focused here on classifying
CFs in the task-related dimension. CFs that fall in
other dimensions such as turn management, feed-
back, and social obligations are all treated as an
other category but will be handled in future work.

query info: Information-seeking function where
the customer is asked to provide the unknown value
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of a specific entity, such as the request to provide
the value of the check-out date in ”what date will
you be checking out?” or of the birthdate in ”please
say or enter the 2-digt month, 2-digit day and 4-
digit year of your birth.”

query info open: Open-ended information-
seeking function where the customer is asked to
provide their intent, e.g., ”How may I help you?”
This includes requests for the intent related to a
specific topic, such as ”what would you like to
know about call blocking?”

query info intro: In some dialog contexts, ex-
plicit requests for information are preceded by a
statement that some information is needed, such
as when a prior explicit elicitation for information
was not successful for some reason, and an ex-
planation is provided for the specific request E.g.,
”I need your routing number in order to process
your payment”. Because these responses are not
explicit requests, we believe that their function is
of the information-providing type rather than the
information-seeking type.

query confirm: Information-seeking function
with an explicit request to confirm (or disconfirm)
a proposition, such as ”I heard your credit card
number as $NUM. Is this correct?” or ”Just to be
sure, I am about to cancel your annual subscription
service. Is that correct?” The expected response
from the customer in such cases is a ”yes” or ”no”.

query disambig yn: Information-seeking func-
tion to elicit a ”yes” or ”no” response from the cus-
tomer, but unlike query confirm, this does not elicit
a confirmation. Utterances with this function are
typically used to suggest an action to the customer
to move the task in some direction in the dialog
flow, for example, to invite the customer to transfer
to a live agent for some task, as in ”Would you like
to talk to someone about renewing?”, or to accept
help via email, as in Would you like me to send you
an email to help you reset your password?”

query disambig select: Information-seeking
function to present choices for selection, such as
“Is this for a business, an educational institution
or for a government entity?” or “Would you like
to pay this with a debit card, credit card, or a
different payment method?” In the current version
of the taxonomy, this does not distinguish between
selection between entities and selection between
actions.

promise: Commissive function committing to
perform some action, such as “I’ll send a link to
the email we have on file for you so you can reset
your password.”

offer: Commissive function also committing to
perform some action, but unlike promise, the com-
mitment here is contingent on some condition
which may or not be specified. E.g., “I can get
you help with your login.”, “I can get you to some-
one who will help with gift cards, but I just need
bit more detail.”

deflect request: This is a special case of a com-
missive function that occurs frequently in our data,
and involves deflecting a request from the customer
while suggesting an alternative course of action.
Typically, the deflected request is for a live agent,
with examples such as “I understand you want to
speak to someone, but ...”

instruct: Directive function specifying some ac-
tion that the customer should undertake, such as
“Enter your username and password and click ’sign
in’.”

inform issue: This is a special case of an infor-
mation providing function to inform the customer
of some contrary to expectation situation, such as
when the customer’s utterance in the prior turn was
not understood or captured, e.g., “I wasn’t able to
hear what you just said.”

inform: This covers a broad class of information-
providing utterances. Examples include “Your con-
firmation number is $NUM.”, “I see you have a tax
appointment on $DATE at $TIME.”

other: This category was used for utterances
that could not be captured by any of the other
CFs. As mentioned above, these include utterances
with CFs from non task-related dimensions. We
observed that most of these involve feedback CFs
and social obligation CFs.

The CF taxonomy was developed first over a
seed set of 200 utterances and validated over suc-
cessive iterations as part of the active learning ex-
periments described in Section 5. For example, the
utterance ”I understand you want to speak to some-
one, but if you give me your credit card number, I
can process your payment for you.” has three func-
tional segments with three CFs: deflect request,
query info intro and offer. In this stage of our work,
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Field Description
uspan complete response as col-

lected from our applications
cf communicative function as

annotated in Section 2.
entities entities of interest such as

bank account
vertical domain names for ex. finance,

tourism, hospitality etc.
uspan vector dense vector representation

for the utterance

Table 1: Description of indexing fields.

we ignore the ordering of the segments, and there-
fore, the classes as well.

3 Response Generation

For designing robust conversational systems, in-
cluding ours, there exists a team of experts who list
down alternative ways of how end customer might
interact with the system and create responses for
each such use case individually. The wording of
the prompt has to be carefully chosen both to con-
vey the desired message and to query for further
information. This process is repeated from scratch
for each new client and application, even though
similar prompts may have been authored in the past
for similar scenarios. For example, asking users
for their personal information for authentication
is a common task across many different applica-
tions. We observed many such situations where
very similar system responses were present in dif-
ferent applications but were created from scratch
because of no means available to access and re-use
responses generated in the past.

In this section we describe the mechanism we
devised for maintaining a repository of responses
that can be used either for designing new conver-
sation flows or for reuse directly as templates. As
mentioned above each system response is charac-
terized by both the communicative function and
semantic content. We thought of providing search
interface where designers could mention one or
more of these dimensions to specify these require-
ments and access different realizations of the re-
sponse they want to generate. One dimension is
to provide a text span describing the theme of the
current response such as validating gift cards, in-
forming about longer wait times, calling about a
new product launch, querying for name or date

of birth. Communicative functions provides an-
other dimension to search and filter responses by
the desired intent. While we need an exact match
to search for communicative functions, text based
specifications should be able to retrieve responses
that are semantically similar to the specified con-
straints.

Our requirements prompted us to use Elastic-
search because it facilitates both exact search as re-
quired for CFs as well as similarity based search in
case designer describes a text phrase to specify key
aspects of the content they wish to communicate.
ElasticSearch (ES) is an open source search and
analytics platform widely used for non-structured
text data, hence it perfectly matches our require-
ments. Table 1 provides the list of fields indexed in
ES for our task along with their definitions.

Each indexed field helps to filter responses ac-
cording to the desired specifications, for exam-
ple that the entity must be billing address or
account number. These filters help to obtain re-
sponses that are appropriate for a given context.
The communicative function would be query info
when asking for phone number or first name
of a person, however, Please say and spell your
first name is more appropriate than Please say and
spell your phone number. Since the current system
implementation is context dependent, search fields
such as entities help to provide some context spe-
cific information thereby retrieving responses that
are more relevant to the current context.

4 Models

In order to investigate response generation, we need
to annotate a collection of system responses with
the set of communicative functions defined above.
The annotation task at hand essentially is a clas-
sification task, where given a system prompt we
want to predict the relevant communicative func-
tion. For example, given system response ” Can
you please tell me the phone number associated
with this account”, output should be query info
and given input utterance as ”I can help with au-
tomatic payments, but first for security purposes
please share the phone number linked to this ac-
count ” model should predict three labels as offer,
query info intro.

Many machine learning classifiers are available
in the literature for supervised multi-class classifi-
cation problem such as SVM, KNN, and Gradient
boosting etc, but being supervised algorithms they
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cf No of Prompts
Collections 1200
Communications 4000
Financial Services 9000
Food services 1909
Hospitality 5278
Insurance 6846
Retail Services 6266
Utilities 2160

Table 2: Distribution of

require annotated dataset for the models to learn
patterns and make predictions whereas we had no
reference dataset available with us. The only refer-
ence training dataset available with ISO annotation
scheme is DialogBank (Bunt et al., 2016) which is
very small to be used for training such classifiers
and also more generic than ours.

We collected a set of approximately 37K system
responses from twenty different applications across
eight different domains providing enough response
variations for commonly occurring modules. These
responses are a subset of around 2 billion system
responses being used by our conversation assistants
on a daily basis for various clients across different
domains. The distribution of different domains is
present in Table 2.

BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2019) are two of the most widely adopted transfer
learning approaches that are known to yield reason-
ably good performance even for a very small data
set. For this study, we used Huggingface implemen-
tation of BertForSequenceClassification, where the
final hidden state of the sequence is input to a fully
connected softmax layer with cross-entropy loss
function. There are two standard approaches to
train multi-label classifier. The first being to train
individual binary classifiers for each class in one-
vs-rest approach and the second is to list down all
possible combinations treating each one as an inde-
pendent class. For example, if there are 3 unique
classes, a, b and c, then we can have at most 7
distinct class labels (a), (b), (c), (a, b), (a, c), (b, c),
(a, b, c) where each combination is treated as an
atomic class. The latter approach though works
well for smaller set of unique labels but becomes
difficult as the number of classes increase and the
distribution varies a lot.

Of the two approaches for solving multi-label
classification problems, the preliminary set of ex-

Figure 2: Different variations of asking the end-user
customer about their name.

periments indicated that training ensemble of indi-
vidual binary classifiers resulted in better perfor-
mance than treating each combination as an atomic
class. This implies that we trained and saved indi-
vidual classifiers for each of the 13 communicative
functions as binary classifiers. We experimented
with different learning rates and found best results
for 1e-5 with batch size 16 and max epochs 20.
Also, to account for varied distribution of labels,
we computed class weights for each class label as
size(label i)/max, where max is over all sizes.

5 Experiments

We conducted experiments in two phases. The first
phase is to train multi-label classifier for classify-
ing system responses into space of communicative
functions with a reasonable degree of accuracy. In
the second phase, we analysed the quality of re-
sponses retrieved by the system for both simple
queries given only CF or textual description and
complex queries defined using a combination of
other querying dimensions.

5.1 Multi-label Classification

We begin the training process by manually annotat-
ing a subset of about 200 responses. The training
set had responses with the number of CFs vary-
ing from 1 to 3, with the ratios 0.60, 0.30 and
0.10 respectively. We then adopted an active learn-
ing approach to train and validate batches from
the un-annotated corpus and adding them to the
labelled data set. The distribution of communica-
tive function over first 200 samples is presented
in Fig. 2. The initial distribution clearly indicates
that more than 50% of the prompts were infor-
mation seeking prompts with labels ”query info”
and ”query disambig”. Also note that the initial
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cf F1-score
deflect request 1.0
query info 0.875
query confirm 0.833
query info open 1.0
query info intro 0.875
query disambig select 1.0
query disambig yn 0.698
inform 0.95
inform issue 1.0
instruct 1.0
promise 0.91
offer 0.96
report 0.5
other 0.615

Table 3: F1-scores for communicative functions at the
end of training process.

distribution had no training utterances for ”de-
flect request”, ”query info intro” and some other
relatively occuring combinations such as ”offer,
query info.

These classifiers were used to predict next batch
of 200 prompts that were manually verified by the
authors and language experts from the design team.
With each iteration of training, predictions and eval-
uation, the classification accuracy improved finally
leading to state-of-the-art performance score of
85% at the end of our training process. Though not
directly comparable with joint intent and slot pre-
diction models (Qin et al., 2020)(He et al., 2021)
due to difference in the training objective, we ob-
served that the accuracy scores are in comparable
range of current literary works. We repeated our
training-prediction-manual evaluation cycle four
times increasing the test set from 100 to 500 sam-
ples. Each time, the predictions were manually
verified with a team of designers discussing and
agreeing to the final set of CF label. We adopted
manual verification process because the commu-
nicative intent can not always be explicitly inferred
from the wording of the response.

Table 3 reports the F1-scores at the end of round
four with a training dataset of 1100 system re-
sponses. We found the F1-scores reaching to their
maximum performance scores for most of our class
labels and felt that the current classification model
can be used to annotate our repository with reason-
able accuracy. One of the reason for lower accuracy
but higher F1-score was that certain percentage of

responses were not predicted any CF label. Overall
this percentage was close to 1%, where none of the
classifiers were confident to assign the CF label. On
inspection, we found that this was for those cases
where either the system response has been incom-
plete or the wording of the prompt was such that the
classifier could not predict any class label with a
higher degree of confidence. Also, for the response
labels query confirm and query disambig yn,
the responses were difficult to annotate clearly even
by human experts. We are extending our training
dataset with more such examples and hope to in-
crease the accuracy level while keeping F1-scores
at the maximum.

Once we could annotate the collection of system
responses with a reasonable degree of accuracy,
we created a repository that can be used by the de-
sign team to retrieve prompts by either specifying
the communicative functions or by providing an
abstract description of the current dialog state.

5.2 Response Generation using ES

It is an unrealistic assumption for the design team
to learn a new technology (Elasticsearch) and a
new language of communicative functions to speci-
fying the desired information state. We therefore
created a GUI based user interface for designers.
to enter their requirements. The interface internally
converts the search filters and their values into the
query language executed by the Elasticsearch. We
experimented with different search filters (query
combinations) and found that given sufficient infor-
mation, the system generated response variations
consistent with the specifications mentioned by the
designer.

Generating responses for a specific communica-
tive function simply transitioned to executing a
boolean query over the Elasticsearch. Table 4 pro-
vides subset of sample responses generated for the
criteria (cf = inform). From the perspective of
Elasticsearch, the results were 100% accurate but
from the perspective of using these prompts for the
current context we found them not directly usable.
As no other semantic information was available
about the dialog state, the responses retrieved by
the system are coming form various domains and
dialog state level.

From Table4 we can observe that there is one re-
sponse informing customer about payments made,
another response mentions mailing address while
another is for street address and so on. In the ab-
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response
Thank you, I have successfully submitted your payment.
I see that you have a repair issue that is scheduled to be resolved on DATE.
The mailing address we have on file for you is WORD.

Table 4: Variations for communicative function:inform

response
I see your street address is.
I have your street address as.
The street address I have on file for you is.

Table 5: A subset of 3 response variations generated
for prompt:”street address” and communicative func-
tion:”inform”

sence of context specific information, the design
choice is left to the designers to select which vari-
ation is more appropriate for the current context.
As searching only by CFs would lead to data abun-
dance problem, there are two different ways to
specify context specific information; by selecting
entities or by providing an abstract description of
the content. One such example is presented in Ta-
ble 5 where the designer filters the responses by
including street address in search criteria. As we
can see, almost all the responses are semantically
similar to each other and can be adapted by the
designers for the current conversation state.

As another example, Table 6 presents the sce-
nario where the user provides a text based descrip-
tion and does not specify any communicative func-
tion explicitly. The system returns three different
kinds of responses that look very similar but have
different communicative intents behind each. The
first response informs the customer about longer
wait times and offers to help fulfill the desired task.
The second response on the other hand provides the
reason for longer wait times whereas the third re-
sponse only informs the customer about the current
situation. By providing three different variations,
the system can reveal how these cases have been
previously handled and provides an option to re-
use any one of these realizations as per the current
context.

Using a combination of both communicative
function and text description provides the most
appropriate means to specify the search require-
ments. We tested 25 different queries specifying
both the text specification of the content and the
context appropriate communicative function and

observed the quality of system responses returned.
We used Mean Reciprocal Rank to evaluate the
set of responses generated given only text based
specifications. We executed 30 different queries
using a mixture of simple text based descriptions
and complex queries with both components tex-
tual description and communicative functions. We
found average MRR scores of 0.6, 0.71 and 0.72
for Top-1, Top-3 and Top-5 respectively with Uni-
versal Sentence Embedding (USE) for computing
semantic similarity. The MRR scores for ELMO
and SBERT were much lower for our datasets.

6 Literature Review

Accurately predicting the speakers communicative
intent is extremely important for a successful com-
munication and thus intent detection has always
been widely pursued research thread. As virtual as-
sistants are becoming a part of daily life, it has been
acknowledged that most a times speaker is commu-
nicating multiple aspects with in a single utterance.
There is an increasing trend towards training joint
models for intent detection as Multi-Label Clas-
sification (MLC) and entity detection(also called
slot filling (Hou et al., 2021) (Qin et al., 2020)
(He et al., 2021). These systems compute rele-
vance score for each label and utterance combi-
nation and then select the labels with maximum
similarity score. Some of these approaches are few
shot learning approaches proposing techniques to
perform MLC with fewer examples, but they all
pretrain on domain specific data and then extend
this to out-domain dataset. In contrast, our work
aims to annotate with domain-independent dialog
act labels and only focuses on predicting commu-
nicative functions, hence we adopted conventional
machine learning approaches for classifying com-
municative functions.

The concept of representing dialog acts using
domain independent general purpose schemas has
been studied multiple times as Dialog Act Markup
in Several Layers (DAMSL) by Allen et. al (Allen
and Core, 1997b) and as ISO standard by Bunt
et.al. (Bunt et al., 2012). The ISO taxonomy pro-
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cf response
offer Due to heavy call volume at this time it could take over 90 minutes to talk to a

representative, lets see if I can help you.
inform issue We are sorry for your inconvenience, however, we are experiencing extremely

high call volume due to the recall and this has caused extremely long wait times
to connect with an agent

inform Wait a moment while this call is being transferred to our system.Wait times are
longer due to heavy call volumes.

Table 6: Variations of the system response informing customer that there are excessive wait times.

vided generic representations of a speakers intent
by defining 9 core dimensions and around 60 dif-
ferent communicative functions using domain in-
dependent and task independent labels.

7 Conclusion

In this paper, we proposed a taxonomy of commu-
nicative functions that effectively captures the com-
municative intent of a dialog turn using domain
independent labels providing means for flexible
and generic dialog modelling. The taxonomy was
used to annotate a subset of user responses from
human-machine conversations used by our real-life
applications on day-to-day basis. We experimented
with this annotated dataset to generate different lin-
guistic variations of the system responses for given
communicative function and desired keywords in-
dicating the essence of the current dialog turn. Our
experiments indicated that the proposed taxonomy
can successfully learn representations that capture
what the dialog is written to accomplish across dif-
ferent applications and verticals. We experimented
with these annotations in a dialog generation set-
tings and found that we are able to generate system
responses given desired specifications from the ex-
isting data itself.
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Abstract

Mobile devices, with their rapidly growing us-
age, have turned into rich sources of user infor-
mation, holding critical insights for betterment
of user experience and personalization. Creat-
ing, receiving and storing important informa-
tion in the form of unstructured text has become
a part and parcel of daily routine of users. From
purchase deliveries in Short Message Service
(SMS) or Notifications, to event booking de-
tails in Calendar applications, mobile devices
serve as a portal for understanding user inter-
ests, behaviours and activities through infor-
mation extraction. In this paper, we address
the challenge of on-device extraction of user
information from unstructured data in natural
language from heterogeneous sources like mes-
sages, notification, calendar etc. The issue of
privacy concern is effectively eliminated by the
on-device nature of the proposed solution. Our
proposed solution consists of 3 components – A
Naı̈ve-Bayes based classifier for domain identi-
fication, a Dual Character and Word based Bidi-
rectional Long Short Term Memory (Bi-LSTM)
and Conditional Random Field (CRF) model
for attribute extraction and a rule-based Entity
Linker. Our solution achieved a 93.29% F1
score on five domains (shopping, travel, event,
service and personal). Since on-device deploy-
ment has memory and latency constraints, we
ensure minimal model size and optimal infer-
ence latency. To demonstrate the efficacy of our
approach, we have experimented on CoNLL-
2003 dataset and achieved comparable perfor-
mance to existing benchmark results.

1 Introduction

With an estimated 3.5 billion active users or about
80% of all mobile subscribers, Short Message Ser-
vice (SMS) was the most widely used communica-
tion application in the past few years 1. Even with

1https://en.wikipedia.org/wiki/SMS

the advent of social media and messenger applica-
tions, communication and information storage in
digitised form are vastly prevalent via SMS, noti-
fications, calendar invites and mail. Some exam-
ples we readily see are casual conversations with
a friend over SMS, online shopping related notifi-
cations and event booking details, just to name a
few.

According to 2020 Annual report by CTIA 2

, there were 2.1 trillion text messages exchanged
worldwide, an increase of 52 billion messages since
2019. According to SMS marketing statistics for
2020/2021 reported by FinancesOnline 3 , 98% of
SMS are opened compared to only 20% of emails
and 95% of the read SMS are responded to within
3 minutes of delivery. Moreover, SMS is still the
most powerful marketing tool for businesses with
75% of customers preferring receiving offers via
SMS. The CTR for text messages is much higher
(9.18%), compared to other marketing channels
such as Google Adwords (1.91%) and Facebook
(0.90%).

Apart from SMS and notifications, researchers
have investigated other potential data sources like
calendar, email, user utterances and communi-
cation logs for extracting information. In fact,
many establishments are making use of the per-
sonal knowledge extracted from different sources
on smartphones to provide better service. For exam-
ple, Google extracts and summarizes travel, event
and accommodation reservation information from
emails 4 . However, most of the published litera-
ture is focussed on singular sources of information
and/or certain domains of interest like bio-medical,

2www.ctia.org/news/
report-2020-annual-survey-highlight

3https://financesonline.com/
sms-marketing-statistics/

4https://developers.google.com/gmail/
markup/reference/#reservations
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Data Source Information
Extracted

Inference
Drawn

Messages Shopping,
travel and
financial
activities,

event
attendance,

service
availed etc.

Preferred
vendors,
products,
venues,

payment
modes etc.

Calendar past and
upcoming
events and
occasions

Preferred
relations

Call &
Message logs

caller, callee,
message
sender,
receiver
details

Frequent
caller, callee,

message
sender and

receiver
Notifications All the above

details and
activities

User’s details,
preference
and interest

Table 1: Particular data items extracted and high-level
inferences drawn from the data sources.

events, etc.
In this paper, we address the challenge of on-

device extraction of user information from unstruc-
tured data in natural language from heterogeneous
sources, which include SMS, notifications, cal-
endar etc. Our proposed system offers a unique
method for efficient on-device functionalities. We
achieve 93.29% F1 score on five domains (shop-
ping, travel, event, service and personal). The
system is implemented as a service on the device.
The information that is obtained from these data
sources with a preliminary analysis and the high-
level inferences sought from it, are summarized in
Table 1. The abundance of personal information on
smartphones can hence be safely utilized for many
apps like recommender systems, virtual personal
assistants, on-device content presentation, to pro-
vide better services to end users. This provides a
holistic view about the user encompassing users’
behaviours, interests, activities, etc.

A key consideration is the constant ongoing con-
flict between the service provider’s desire to track
the consumer and the consumer’s concern for the
privacy of their data. This issue is effectively ad-
dressed by the on-device nature of the proposed

system, letting the user enjoy its benefits conve-
niently as the data processing is limited to local
environment.

Some of the features afforded by this new di-
mension of user’s data, which enables personalized
device intelligence, are as follows:

• User’s attention can be proactively drawn to
offers and discounts regarding the products
of only the categories they wish to purchase,
filtering all the annoying spam.

• Enable simplified interaction with smart assis-
tant

• Event reminders can be triggered appropri-
ately

• Convenient grouping or reordering of SMS/
Notification/ Calendar data according to user
preferences

• Assist in better planning of activities, for in-
stance, booking airport cab with prior knowl-
edge of user’s travel plans

• Recommender services based on understand-
ing of user’s shopping behaviour or preferred
types of events (like concerts, sports matches,
photography, art etc.)

2 Related Work

Digital communication devices continue to offer a
growing variety of personalized services to enhance
user experience. This is facilitated by increased ac-
cess and extraction of user information available
in both structured and unstructured forms. Struc-
tured data, generally consisting of text entered in
template fashion or in any pre-defined format (like
date, zip code etc.), can be conveniently processed
whereas unstructured text (like Short Message Ser-
vice (SMS), Notifications, Calendar events etc.)
poses multiple interesting challenges.

Firstly, apart from emanating from heteroge-
neous sources on the device, unstructured data on
mobile devices does not always conform to gram-
matical correctness, rendering it difficult for most
of the existing Natural Language Processing (NLP)
techniques better suited for formal grammar. Sec-
ondly, most of the advanced information extraction
techniques demand server-based deployment, rais-
ing privacy concerns of user data storage on cloud.
There is limited exploration on on-device infor-
mation extraction from unstructured text, befitting
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its memory and latency constraint requirements.
Thirdly, owing to the special nature of data in con-
sideration, there is a lack of standardised bench-
mark datasets. Most of the previous works have
shown a significant amount of research effort being
directed to collection, curation and pre-processing
of short-text corpus. After data procurement comes
the daunting task of annotation based on the identi-
fied guidelines of entities and attributes relevant to
each domain of interest.

There is some pre-existing work on domain clas-
sification and information extraction from email,
SMS, notifications and social media text. Most
of the previous works handling SMS are primarily
focused on spam-filtering or certain rudimentary
levels of classification. Almeida et al. (2011) and
Cormack et al. (2007), limit the task to binary clas-
sification of SMS as spam or non-spam. Dewi
et al. (2017), explore the possibility of multi-class
classification of messages into 4 categories with
limited data instances. They achieve best results
with logistic regression. In comparison, we cate-
gorize messages into 6 classes and perform further
information extraction.

With regard to information extraction from short
texts like SMS and notifications, traditionally var-
ious approaches have been investigated including
use of POS taggers, regular expressions, hidden
Markov models (HMM), logistic regression, spe-
cific syntactic parsers or a combination of the
above. Jiang et al. (2010) investigate the extrac-
tion of named entities related to events or activities
from Chinese SMSes in handsets, using Hidden
Markov models (HMM). Although their method
achieves a lower F-score on a small SMS corpus of
1,000 messages, the authors significantly reduce the
memory consumption. Polifroni et al. (2010) im-
plement logistic regression to recognize name, date,
location and time entities from messages. Their re-
ported F-scores for names and locations reaches 88
on an individual word basis, but they do not report
on computational or memory resources required of
their approach or exact corpus size. Cooper et al.
(2005), exploit the syntactic structure in messages
and used pattern matching for extraction. Since
pattern matching is not robust to variations in data,
Ek et al. (2011) complement pattern matching with
a logistic regression based classifier.

Recent works on SMS and notifications involves
the use of deep learning models for information
extraction. Vatsal et al. (2020) implement a hybrid

hierarchical LSTM-CNN architecture for SMS clas-
sification and then use class specific entity parsers
based on pattern matching. Li et al. (2018) use
the insight that notifications are formatted using
templates. Templates are extracted using longest
common subsequence mining and then clustered us-
ing DBSCAN algorithm. Template semantic rules
are then generated using a Bi-LSTM network.

We believe ours is the first work that provides
a generalized deep learning architecture for infor-
mation extraction from multiple unstructured data
sources. We also categorize inputs into multiple do-
mains and link the attributes to pre-existing entities
in the database. Our system pipeline has been de-
signed to cater to multiple applications such as cus-
tomization services, recommender systems, knowl-
edge base population, etc. requiring the holistic
understanding of users.

3 Proposed Methodology

The proposed information extraction pipeline con-
sists of 3 major components – Domain Classifier,
Attribute Extractor and Entity Linker. A pictorial
representation of the pipeline is depicted in Fig. 1.

Figure 1: System Overview

3.1 Data Preprocessing
We converted messages and notifications into a
more generalised format by using pattern match-
ing. All date and time variations were mapped
to ⟨DATE⟩ and ⟨TIME⟩ tokens respectively and
currency values were mapped to ⟨CURRENCY⟩
tokens. All other numeric values were replaced by
⟨NUM⟩ and alphanumeric values were converted to
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⟨ALPHANUM⟩ token. Website URLs were iden-
tified and replaced by ⟨URL⟩ token. For e.g. the
input sentence

dispatched : your package with philips
dj shl3000 / 00 over - ear headphone (
blue ) will be delivered on or before wed
, june 29 . track at www.amzn.in/track

will be processed as

dispatched : your package with philips
dj ⟨ALPHANUM⟩ / ⟨NUM⟩ over - ear
headphone ( blue ) will be delivered on
or before ⟨DATE⟩ , ⟨DATE⟩ . track at
⟨URL⟩

3.2 Domain Classifier
This module classifies the unstructured part of the
data into one of a set of predefined domains. For
this work, the predefined set includes Shopping,
Travel, Event, Service, Personal & Spam. This clas-
sification allows the identification of user’s domain-
wise preferences, which increases the accuracy of
the recommendations / ranking generated by appli-
cations using extracted information. Since the do-
mains are very distinct, we propose a hybrid Naı̈ve
Bayes model for this simple text classification task.
The block diagram for proposed approach is shown
in Fig. 2. We augmented the standard Naı̈ve Bayes
model with an n-gram language model to effec-
tively capture the inherent template-like structures
in the data. The probabilities were computed based
on tf-idf of tokens along with its length and the
sender (in the case of messages and notifications).

Figure 2: Domain Classifier Architecture

The domain classifier is used in the downstream
task of triplet generation. For e.g. for an SMS
where a token is tagged as Start Date or End Date,
we will use the domain classifier output to decide
the property name before adding the triple to the
knowledge graph. For instance, if the domain of
the SMS is shopping then we would know that the
tagged date corresponds to product delivery date.
We also tried to use the domain information as an

input to our attribute extraction model, however, it
did not improve the overall performance.

3.3 Attribute Extractor
This module extracts a predefined set of attributes
(listed in Table 3) from the unstructured part of the
data, which contain the pieces of information about
the event / activity being conveyed by the data.
Attribute extraction is modelled as a sequence la-
belling task. We implement a dual character and
word embedding based Bi-LSTM (Hochreiter and
Schmidhuber, 1997) followed by a CRF (Lafferty
et al., 2001) trained on the sequence labelled set of
messages, notifications and calendar. In the train-
ing dataset, all attribute tokens in a training sample
are appropriately marked with one of the a) “B”
for beginning, b) “M” for middle and c) “E” for
end token, followed by the attribute type tags. Non-
attribute tokens are marked with “O” (other) tag.
E.g. “Your order for Samsung Galaxy S20 will be
delivered today” is marked as “O O O B-Product
M-Product E-Product B-Status M-Status E-Status
B-EndDate”. All tokens in the training dataset with
frequency greater than 5 are included in vocabu-
lary and the remaining tokens are substituted by
the ⟨UNK⟩ token. We also create a character vo-
cabulary required for generating character based
word embeddings. Using the two vocabularies, we
generate word and character lookup tables that are
required for tokenization of input.

Fig. 3 describes the process of generating em-
beddings for each token in the input sentence. The
input sequence is first encoded using the word
lookup table and then passed into an embedding
layer, which gives us Wemb. Each character is
then considered as a token and encoded using the
character lookup table. The output is passed into
bidirectional LSTMchar which generates forward
and backward representations. These are then con-
catenated to give character based word embedding.
Ultimately, the word embedding and the character
based word embedding are concatenated to give
the final token embedding. The computations per-
formed inside LSTM cells are as follows:

it = σ(wi[ht−1, xt] + bi) (1)

ft = σ(wf [ht−1, xt] + bf ) (2)

ot = σ(wo[ht−1, xt] + bo) (3)

gt = tanh(wg[ht−1, xt] + bg) (4)

ct = ft ∗ ct−1 + it ∗ gt (5)

ht = ot ∗ tanh(ct) (6)
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Figure 3: Word Embedding Generation in Dual Bi-LSTM: The representation of a word is formed by concatenating
the word embedding and the character level representation of the word from char LSTM.

Where it, ft, ot and gt are input, forget, output
and cell gates respectively, xt is input at time step
t, ht is hidden state and ct is cell state. The hidden
states at final time step are considered as represen-
tation of input sequence. The proposed attribute
extractor model is depicted in Fig. 4. The input to-
ken embeddings are fed into the Bi-LSTM encoder
followed by a fully connected layer. This gener-
ates emission scores, which represent likelihood
of word being a certain tag. The role of the CRF
layer is to model the joint likelihood of the entire
tag sequence. This is achieved by calculating the
transition scores, which represent the likelihood of
word being a certain tag given the previous word
was a certain tag. For decoding, Viterbi algorithm
is used to find the tag sequence with maximum
likelihood.

3.4 Entity Linker

This module links the entities identified by the at-
tribute extraction module to an appropriate entity
in the existing database having either the same or
different name. It also processes the “Sender” infor-
mation (for messages and notifications) and “Date”
information (for calendar events) and accordingly
adds entities if they weren’t identified by the at-
tribute extractor from the main content. As entity
linking module gets diverse attributes as its input,
it’s implemented with different approaches.

• We use off-the-shelf string matching algo-

rithms such as FuzzyWuzzy 5 based on Leven-
shtein Distance and phonetic algorithms such
as Soundex 6 for linking the vendor attribute.

• We use an ontology and a predefined set of
rules to match Source Location, Destination,
Travel Mode, Travel Class, Event Type, Ser-
vice Type, Status, Relationship and Occasion
attributes.

• In case of Start Date, Start Time, End Date and
End Time, we identify all possible variations
in our data and map them to a standard format
using pattern matching.

• Some attributes like ID, Product, Vehicle
Number, Event Name and Amount are left
unmatched.

4 Dataset

For data collection we sent out an organization
wide broadcast seeking voluntary participation
from users with diverse demographics . For this
purpose, the users were required to install an ap-
plication developed by the team. The application
masked the user’s private information such as name,
contact number, financial details etc. and allowed
the user the option to filter messages before shar-
ing.

We collected ∼ 90K (90, 811) messages, ∼
55K (54990) notification and ∼ 1K calendar

5https://pypi.org/project/fuzzywuzzy/
6https://pypi.org/project/soundex/
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Figure 4: Attribute Extractor Architecture

Dataset Domains Message Notification Calendar

Training Set

Shopping 5715 621 0
Travel 2982 353 77
Event 2609 467 217

Service 2508 571 0
Personal 3865 5309 235

Test Set All five 2000 500 500

Table 2: Data Distribution Across All Domains

data. We then filtered the collected data to get
∼ 17k (16, 959) relevant messages, ∼ 7K (7321)
relevant notifications and 720 calendar data and
classified them into 5 domains (Shopping, Travel,
Event, Service, Personal). The data distribution
over these domains is shown in Table 2.

The collected data was then clustered based on
similar templates for the ease of annotation. For e.g.
the product delivery messages from Amazon fol-
lows a certain template with only change being in
certain fields such as product name, delivery agent
contact etc. We then chose an exemplar from each
of these clusters and asked annotators to annotate
each of the words in the text with the appropriate
tag. We then curated a test set from ∼ 9k rele-
vant data collected from different individuals. This
was kept separate from the training data and was
handpicked to include unique instances.

Table 1 in appendix displays one sample instance
per domain and the identified relevant attributes
while Table 2 covers the entity linker output for
the previously chosen sample instances along with
relevant fields like Sender and Date. The list of
all relevant attributes was generated by a compre-

hensive analysis of collected data and usefulness
of information contained in the data source. The
distribution and relevant domains for each attribute
is given in Table 3.

Attribute Relevant Domains Count
ID Shopping, Travel, Event, Service 3652

Status Shopping, Travel, Event, Service 8751
Vendor Shopping, Travel, Event, Service 3961
Product Shopping 2910

Start Date Travel, Event 2749
End Date Shopping, Travel, Event, Service 2164
Start Time Travel, Event, Service 2913
End Time Travel, Event, Service 1458

Travel Mode Travel 1835
Travel Class Travel 840

PNR Travel 1553
Vehicle Number Travel 1829
Source Location Travel 2117

Destination Travel, Event 2402
Event Name Event 639
Event Type Event 131

Service Type Service 143
Amount Shopping, Travel 1203

Relationship Personal 41
Occasion Personal 76

Table 3: Distribution of Attributes and Relevant Do-
mains

5 Experiments and Results

5.1 Evaluation Metrics
We performed evaluation on the test set (described
in Table 2). We used weighted F1 score, precision
and recall to evaluate performance of our proposed
pipeline. Since our system focuses on on-device ex-
traction, latency and memory usage are also critical
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metrics. The total model size (including embed-
ding size) is also reported for every model. The
latency measurements were done by averaging over
randomly picked 100 data points.

5.2 Domain Classifier
We compare 3 different models for domain classifi-
cation and the model parameters are given in Table
4.

• Hybrid Naı̈ve Bayes Classifier: This is the
proposed domain classifier. We computed Tf-
Idf of unigram, bigram, trigram and quadgram
tokens and used these to compute class proba-
bilities.

• Deep Neural Network (DNN): We generate
token embeddings using a filtered version of
Glove embeddings to reduce memory usage.
The model accepts these token embeddings
as input and generates a distribution over the
predefined set of domains.

• Convolutional Neural Network (CNN):
Like in the previous model, we generate token
embeddings using filtered version of Glove
embeddings. These token embeddings act as
input for convolutional layers that extract fea-
ture maps. This is further passed into Max-
pooling layer and then a final linear layer
which gives output distribution.

From Table 5, we can see that all the models
gave comparably high F1 scores on the test data
with the Naı̈ve Bayes classifier just edging the other
two. Contrary to expectations, the deep learning
based approaches do not outperform the simpler
Naı̈ve Bayes model. This is because the domains
do not overlap and have very distinct samples and
hence, do not need a complex model for accurate
distinction. Since all computed latencies are very
low, we give preference to memory usage during
selection.

5.3 Attribute Extractor
We compare the performance of 3 deep learning
models with different encoders followed by a CRF
decoder.

• Bi-LSTM + CRF: This is the standard ap-
proach for sequence labelling. The Bi-LSTM
encodes the input and the CRF acts as the de-
coder. This model uses only the word level
features of the sentence as input.

DNN
Number of layers 2

Number of Hidden Units 50, 20
Dropout value 0.5

CNN

Number of 2D convolutional layers 2
Number of filters 64, 32

Kernel dimensions 5, 3
Dropout value 0.5

Optimizer & learning rate Adam, 0.001
Train - validation split 80 - 20

Table 4: Domain Classifier Model Parameters

Metric Näive Bayes CNN DNN
F1 Score 0.9596 0.9551 0.9561
Precision 0.9713 0.9472 0.9487

Recall 0.9482 0.9632 0.9637
Model Size (KB) 2680 378 983

Embedding Size (KB) NA 4636 4636
Total Memory (KB) 2680 5014 5619

Latency (ms) 91.7 14.7 19.8

Table 5: Domain Classifier Results

• Dual Bi-LSTM + CRF: This is the proposed
model. It captures the character level informa-
tion along with word level features.

• Transformer + CRF: We use a multi-headed
transformer encoder followed by a CRF de-
coder.

The model details for each aforementioned ap-
proach are given in Table 6. We also experiment
addition of the domain classifier output as input
into the attribute extraction model. The domain is
added as an extra input to the message/notification
and then the combined input is fed into the embed-
ding layer.

We see from Table 7 that our proposed Dual
Bi-LSTM encoder just outperforms the standard
Bi-LSTM. This verifies the ability of character em-
beddings to capture greater morphological diver-
sity, which is especially visible in SMS and notifi-
cations. We also experiment with the transformer
model for the attribute extraction task. Owing to
the huge model size of pre-trained transformers like
BERT, we limit ourselves to a custom two layer
transformer model which is trained from scratch.
The inferior performance of the transformer model
compared to the Bi-LSTM model can be attributed
to over-parameterization and lack of pre-training.
We also observe that adding domain input slightly
worsens the performance. This is because our at-
tributes are structured such that similar attributes
across different domains are considered as one. E.g.
Delivery Date, Event Date and Service Date are all
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considered as End Date. Hence, adding the do-
main input adds to the complexity of input and we
observe slight drop in performance.

We also run our models on the popular English
NER dataset - CoNLL2003. It contains four dif-
ferent named entities: PERSON, LOCATION, OR-
GANIZATION, and MISC. The dataset consists of
14000 training samples, 3200 validation samples
and 3500 test samples. The data is tokenized using
the same preprocessing as mentioned in 3.1.

BiLSTM + CRF
Number of layers 2

Number of Hidden Units 128
Embedding Dimension 128

Dual Bi-LSTM + CRF

Number of layers 2
Number of hidden units 128

Word embedding dimension 128
Character embedding dimension 64

Number of char-LSTM hidden units 64

Transformer + CRF

Number of layers 2
Positional encoding dimension 128

Embedding dimension 128
Number of attention heads 4

Bidirectional true

Table 6: Attribute Extractor Model Parameters

Metric Dual Bi-
LSTM +

CRF

Bi-
LSTM +

CRF

Transfor-
mer +
CRF

F1 Score 0.9329 0.9308 0.9037
F1 Score

(with
domain)

0.9311 0.9289 0.8976

Precision 0.9392 0.9333 0.9132
Recall 0.9281 0.9307 0.9078
Model
Size

(MB)

6.4 5.4 27

Latency
(ms)

77 50 116

Table 7: Attribute Extractor Results on our collected
dataset

The results of our models on CoNLL2003 test
set are given in Table 8. We see that our proposed
model achieves reasonably high F1 score (within
∼ 1% of current state of the art). A significant
advantage of our approach is the simplicity of the
model which allows it to be deployed on-device
as well. Unlike our proposed model that involves
training embeddings from scratch, all models that
outperform our proposed model make use of power-
ful pre-trained or contextualized embeddings. An-
other interesting trend we observe is the similar
pattern of performance of our three models across
both datasets. This verifies that our proposed model

Models F1 Score
LSTM-CRF (Lample et al., 2016) 90.94

Bi-LSTM-CNN-CRF (Ma and Hovy, 2016) 91.22
LM-LSTM-CRF (Liu et al., 2017) 91.25

Transformer-CRF (Ours) 91.75
Bi-LSTM-CRF + ELMO (Peters et al., 2018) 92.2

TENER (Yan et al., 2019) 92.63
BERT (Devlin et al., 2019) 92.8

Bi-LSTM-CRF (Ours) 92.85
Flair (Akbik et al., 2018) 93.1

Dual Bi-LSTM-CRF (Ours) 93.28
Cross Weigh + Pooled Flair (Wang et al., 2019) 93.43

Baevski et al. (Baevski et al., 2019) 93.5
LUKE (Yamada et al., 2020) 94.3

Table 8: Benchmark results on CONLL-2003 dataset

performs the best for on-device entity extraction.

5.4 Entity Linker

For the entity linker we achieve an F1 score of
0.98. This module has a very high F1 score be-
cause most of the entity linking is done using
string-matching and phonetic algorithms and regex
pattern matching as compared to earlier modules,
which involved machine learning/ deep learning
models. The model size for this module is 284KB
and latency is 40 ms;

5.5 Engine Pipeline

The complete engine pipeline is implemented as
a service on device. The attribute extractor is im-
plemented in PyTorch and the trained model is
converted to android (v10) compatible version us-
ing the Pytorch JIT module. On-device inference
is done using PyTorch android runtime. Similarly,
Domain classifier is implemented in tensorflow and
on-device inference is done using tensorflow-lite
android library. Trained models were tested and
deployed on Samsung Galaxy S10 and Note 10
devices.

The final end to end pipeline consists of 4 differ-
ent modules, Classifier, Attribute Extractor, Entity
Linker & Triplet Builder. The respective F1 scores
achieved on the test set for the 4 modules are 95.96,
93.29, 98 & 92.4 respectively. The end to end accu-
racy of the overall system is 81.06 %. The outputs
of each of these individual modules is included
in the appendix. After porting to the device the
model and app sizes were recorded to be 8.31 MB
& 48.87 MB respectively, and engine’s latency was
measured to be ~200 ms.
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6 Conclusion

In this paper, we have proposed a unique on-device
pipeline to extract relevant information from un-
structured sources such as messages, notification,
calendar entries etc. By making on-device extrac-
tion very efficient, we eliminate the issue of user
privacy while providing a platform for an enhanced
personalised experience. Since the relevant do-
mains are majorly non-overlapping, a Naı̈ve Bayes
classifier gives sufficiently good performance. For
attribute extraction, we propose a dual word and
character based Bi-LSTM + CRF model, which
achieves best results on our self-curated test set as
well as CONLL-2003 test set.

The feasibility of such a system was claimed
through an on-device implementation using the
proposed approach. The applications of such an
on-device system can be envisioned across vari-
ous personalization and recommendation services
while maintaining user privacy.

7 Future Work

A possible extension of this work is to extend the
English information extraction system to a multilin-
gual one. This is an interesting area of exploration
because each language has a different morphology,
so it will be more challenging for a single model
to capture multilingual features. Currently, our
system is a pipeline consisting of several models,
which can cause propagation of error. So, explor-
ing the possibility of an end-to-end information
extraction system is another direction in which we
can expand our research.
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Abstract

In this paper, we propose a novel problem of
automatic extraction of tasks from text. A task
is a well-defined knowledge-based volitional
action. We describe various characteristics of
tasks as well as compare and contrast them
with events. We propose two techniques for
task extraction – i) using linguistic patterns
and ii) using a BERT-based weakly supervised
neural model. We evaluate our techniques with
other competent baselines on 4 datasets from
different domains. Overall, the BERT-based
weakly supervised neural model generalizes
better across multiple domains as compared to
the purely linguistic patterns based approach.

1 Introduction

We define a task as a well-defined knowledge-based
action with a specific goal and which is carried out
within a small time period, often by a single person,
a group of persons, a device, or a system. The tasks
usually demand some skill and expertise by the
human actor(s) performing the task and they are
carried out volitionally by the actor(s).

The problem of Task extraction is to auto-
matically identify mentions of such tasks in
text. Syntactically, a task can be mentioned as
a verb phrase (e.g., implemented a model for

weather prediction) or as a noun phrase (model
implementation for weather prediction) in
a sentence. Table 1 shows various exam-
ples of tasks observed across multiple domains
(also see Table 6 for a comprehensive list of
tasks). The extent of a task mention should
be such that the complete meaning expressed
by the task should be captured. For example,
from the sentence The researcher implemented

a model for weather prediction., it is ex-
pected to identify the entire phrase implemented a

model for weather prediction as a task, even
though the shorter phrase implemented a model

is a valid task mention but does not capture the
entire meaning.

Event extraction (Xiang and Wang, 2019) is a
popular task in NLP literature. An event is gener-
ally defined as a specific occurrence of something
happening in a certain time and place which in-
volves one or more participants and can often be
described as a change of state. Although events are
similar to tasks in some aspects, there are certain
crucial distinctions (described in detail in Section 2)
and hence it is important to define and address task
extraction as a separate problem.

There are several interesting analyses that can
be carried out over the extracted tasks from large
corpora. Similar tasks can be mentioned in differ-
ent ways and it is important to cluster the tasks
together which have similar meanings. By defini-
tion, a task needs certain expertise to be carried out
and it would be an interesting problem to determine
difficulty level for each task. Usually, each task is
carried out by an actor and this actor often plays a
certain generic role such as engineer, banker, farmer
etc. Also, most tasks need certain skills to be carried
out such as various technical or domain concepts,
programming languages, certain tools or technolo-
gies, etc. Such co-occurrence or interdependence
between tasks and roles as well as between tasks
and various skills, can be studied.

Task extraction has several useful real-life appli-
cations. For example, tasks extracted from resumes
capture the fine-grained experience of the candidate
and would be quite useful for automatically short-
listing candidates for a certain job requirement. An-
other interesting application of the extracted tasks
and their corresponding roles is to automatically
augment common sense knowledge. For example,
ConceptNet (Speer et al., 2017) contains knowl-
edge of the form 〈 Engineer; is capable of; building
a bridge〉 or 〈 Policeman; is capable of; arresting
criminals〉. But the number of such triplets are lim-
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Dataset Type Examples of Tasks

Resumes Verbal We compared the techniques with which [low power cascade
amplifiers can be developed].

Nominal Verified the credibility of GA algorithm in [designing of
orthogonal waveform for MIMO radar].

TechCrunch Verbal But Kaliszan and Robertson realized that commercial security was
so backward that just [implementing the established principles
of machine vision] and the cloud could create a huge company.

Nominal Remote work is what led to [the development of GitLab’s publicly
viewable handbook].

Patents Verbal Particularly, [a new e-mail message is created for each software
package to be deployed] .

Nominal The computer implemented method includes performing, using a
processor, [a static timing analysis of the integrated circuit].

Reuters Verbal At noon the bank had [estimated the shortfall at 500 mln stg].
News Nominal Stock market analysts said today’s generally weak stock market

plus unwinding of positions after [heavy buying of BAT shares in
the run-up to the results] caused the fall in the share price.

Table 1: Examples of Tasks mentioned in various datasets. The task phrases are enclosed in square brackets and
are highlighted in bold within sentences. “Type” indicates the syntactic type of the task phrase which depends on
the POS tag of the head word of the phrase – verbal (e.g., developed) or nominal (e.g., development).

ited to a very few tasks. Using tasks extracted from
a large corpus, we can automatically augment such
common sense knowledge.

In this paper, we focus on the problem of auto-
matic extraction of tasks from text and propose two
techniques for that. The first technique makes use
of linguistic patterns and resources such as Word-
Net (Miller, 1995). The second technique uses
a weakly supervised BERT-based neural model
and employs the Snorkel framework (Ratner et al.,
2017) for automatically creating a labeled train-
ing dataset. The rest of the paper is organized as
follows – Section 2 discusses relevant past work.
Section 3 describes the two proposed techniques for
the automatic extraction of tasks from text. Section
4 describes detailed experimental analysis includ-
ing dataset descriptions, baselines, and evaluation.
Finally, We conclude in Section 5 along with some
potential future work.

2 Related Work

To the best of our knowledge, ours is the first at-
tempt to introduce the problem of task extraction
and propose extraction techniques for it. Event ex-
traction (Xiang and Wang, 2019) is a related but
different problem as compared to task extraction.
Definition of an event varies depending on its appli-
cation and context. Sims et al. (Sims et al., 2019)
have defined an event to be what is depicted as actu-
ally occurring in text (also referred as realis events).
Such events are expected to have four important
aspects (non-negation, tense, genericity, and modal-
ity) which we compare and contrast with tasks in

the top four rows of Table 2. We also describe two
more important aspects of tasks – volitionality and
need for expertise. Overall, although there is over-
lap between tasks and events, neither is an subset
of the other.

3 Task Extraction

In this section, we discuss the two techniques for
extraction of tasks from text.

3.1 Using Linguistic Patterns

Linguistic patterns for task extraction do not need
any training data. We define an action noun
as a noun that indicates an action, activity etc.;
e.g., improvement, design, review, selection,
administration. A noun is accepted as an ac-
tion noun if (i) its hypernym tree (for any of
its top k0 = 2 senses) includes action indica-
tor words like work, activity , human action,
group action etc. (e.g., hypernym tree for sense 2
of improvement is: change of state→ change→
action→ human action); or (ii) Alternatively, the
noun’s category in WordNet should be noun.act.
Generally, we do not consider abstract nouns (e.g.,
idea) as action nouns; and (iii) the noun is not
present in a domain-specific negative list; for IT do-
main, some examples of negative action nouns are:
project, technology, job, approach, practice,
procedure etc.

Similarly, we accept a verb V to be an ac-
tion verb1 if: (i) one of the derivationally re-

1The list of action nouns and verbs which is created using
WordNet, will be made available upon request.
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Aspect Description
Non-negation Events should be explicitly mentioned as having occurred; typically there is no direct negation used

to describe an event. Tasks are also similar to events in this aspect. In the sentence He did not
implement the solution, neither an event nor a task is mentioned.

Tense Events must be in the past or present tense. Tasks need not only be in past or present tense, they can be
mentioned in future tense as well. In the sentence He will implement the solution, a task
implement the solution is mentioned but it is not an event.

Genericity Generic events (Engineers build bridges) describe a general category as against specific
events which describe a specific occurrence (L&T engineers built this bridge). In event
extraction, only specific events are considered whereas tasks can be generic events.

Modality Only realis events which have actually occurred are considered as events. All other modalities such
as belief, hypothesis, desire are not considered events but these can be considered as tasks. In the
sentence Engineers are supposed to build bridges which last for years, a
task build bridges is mentioned but it is not an event.

Volitionality Tasks are those actions which are carried out by the actor volitionally. For example, The bridge
collapsed is an event but it is not a task because the action of collapsing is not carried out
volitionally by any actor.

Expertise Unlike events, we define tasks as those actions which need some domain expertise or knowledge by the
actor for execution. For example, John entered the restaurant is an event but not a task.

Table 2: Comparing Events and Tasks based on various aspects

lated nominal forms of V is an action noun;
or (ii) the verb category in WordNet is any
of: verb.change, verb.motion, verb.creation,
verb.social, verb.communication etc. For ex-
ample, there are 2 nouns related to sense 1
of the verb provide, namely, provision and
provider. The second sense of provision in-
cludes activity, making it an action noun and
hence provide is an action verb. Other examples:
improve, stabilize, plan, control, etc.

Examples of linguistic rules to identify tasks
having different syntactic structures are as follows:
• A noun compound (i.e., a sequence of nouns) is
a task if the last noun is an action noun. Exam-
ples: process improvement, user interface

design, version control, asset management

• An action verb in simple present/past tense
or in gerund form and its direct object noun
phrase (NP) form a task. Examples: manage

data center, implement quality processes,
managing attrition, maintaining financial

discipline, resolved customer complaints

• An action verb V in gerund form connected to
a preposition p using dependency relation (DR)
prep followed by an NP connected to p using DR
pobj is a task. Examples: managing of large

teams for customer support, coordinating

with various vendors

• Same as above, except instead of V a noun
compound headed by an action noun is re-
quired. Examples: analysis of existing bugs,
Eigenvalue computation by application of

numerical computation techniques

3.2 Weakly Supervised BERT-based Task
Extraction

The linguistic patterns based approach has certain
limitations which need to be addressed to further
improve the task extraction accuracy. The patterns
check for the presence of action verbs and nouns
and then extract their entire verb or noun phrases
as tasks. However, the presence of action verbs
or nouns is just a necessary condition and not a
sufficient condition for being tasks. Two important
aspects of tasks volitionality and need for exper-
tise are not checked explicitly. Moreover, there
is a challenge of polysemy which is not handled
explicitly. A verb (or noun) may be an action
verb (or an action noun) in one particular sense
but may not be an action verb (or action noun)
in another sense. For example, synthetic data

generation is a valid task but next generation

of chip technology is not a valid task because
of different senses of the noun generation.

To overcome the above-mentioned limitations
of our linguistic patterns based approach, we pro-
pose to learn a classification model which predicts
whether any noun or verb in a sentence represents
a head word of a valid task phrase. Linguistically,
the head word of a phrase is the word which de-
termines the syntactic category (e.g., noun phrase,
verb phrase) of the phrase. We use the following
definition of a head word considering the depen-
dency parse tree – the head word of a phrase is
syntactically the most important word in the phrase
which connects it to the rest of the sentence, all
other words in the phrase are directly or indirectly
dependent on the head word. Once we identify
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head words of task phrases, we use the dependency
tree structure of the sentence to get the correspond-
ing complete task phrase. The rules for phrase
expansion are described later in detail.

3.2.1 Classification Problem
Input: A word w in sentence S
Output: Predict one of the two class labels - TASK
and NOT-TASK indicating whether or not the word
w is a head word of a valid task phrase

3.2.2 Training Data
As there is no prior work for addressing this prob-
lem of extracting tasks, there are no readily avail-
able annotated datasets which we can use for
training the above-mentioned classification model.
Hence, we use the Snorkel framework (Ratner et al.,
2017) for rapidly and automatically creating la-
beled training data. Snorkel enables writing mul-
tiple labeling functions (LFs) where each LF ex-
presses an arbitrary heuristic for class label predic-
tions. These LFs can have unknown accuracies and
correlations but Snorkel denoises their outputs and
combines their predictions to arrive at a final prob-
ability distribution over labels for each instance. A
large training set can then be constructed rapidly
using these automatically assigned soft labels (be-
cause of a probability distribution over labels and
not a single hard label for each instance) and this
training data can be used to train a machine learn-
ing model. We designed several LFs that capture
various linguistic characteristics which we expect
to be present in tasks.

3.2.3 Labeling Functions
We designed the following LFs where each LF as-
signs TASK or NOT-TASK for a classification instance.
An LF need not assign labels for all instances, it
may ABSTAIN for certain instances where it is un-
sure. A classification instance is a combination of
a word w, the corresponding sentence S, and the
dependency tree DT of S.
Action verbs or nouns: If the word w is not an
action verb or noun (as per the list of action verbs
and nouns prepared using WordNet in Section 3.1)
then it is NOT-TASK. Here, the sentence context
is not used and the decision is only based on the
word w. E.g., nouns such as book, culture and
verbs such as situate, lack are not tasks. All
the subsequent LFs also predict NOT-TASK for non-
action verbs and nouns but they also predict TASK
or NOT-TASK for action nouns and verbs provided

certain other conditions are satisfied.
Negation modifier: If the word w is modified by
any negation indicating word (e.g., not, never)
through dependency relation neg in DT then it
is NOT-TASK. E.g., They did not develop any

weather prediction model2. We also consider
other ways of expressing negation such as failed
to develop or absence of development.
Animate or organization agent: If the agent (de-
pendency child with relation nsubj or agent) of
the verb w is animate or corresponds to some or-
ganization, then it is TASK. This LF captures voli-
tionality in an implicit way as the animate agents
(or organizations) indicate that the action corre-
sponding to verb w is likely to be carried out
volitionally. Here, animate/organization agents
are those words which are – i) personal pronouns
like he, she, we, ii) named entities of type PER-
SON or ORGANIZATION, or iii) person or organi-
zation indicating common nouns like engineer,
farmer, department (these words have person or
organization as their ancestors in WordNet hy-
pernym tree). E.g., Any overseas data demands

are screened by the department.

Inanimate agent: If the agent of the verb w is
inanimate, then it is NOT-TASK. This LF captures
the opposite characteristics as compared to the pre-
vious LF. The heuristic is that if any action is car-
ried by an inanimate agent then it is unlikely to
be a task. Here, inanimate agents are those words
which are – i) event indicating nouns (e.g., storm,
pandemic) or ii) natural objects or substances
(e.g., stone, water). Again, lists of such words
are created using WordNet hypernym structure.
E.g., The coronavirus pandemic accelerated

the shift to e-commerce.

Volition marker: If the verb w is modi-
fied by an adverb (dependency child with re-
lation advmod) explicitly indicating volition,
then it is TASK. Examples of volition indicat-
ing adverbs are deliberately, voluntarily,
intentionally. E.g., He voluntarily engages

in self-developmental activities.

Non-volition marker: If the verb w is mod-
ified by an adverb explicitly indicating non-
volition, then it is NOT-TASK. Examples of non-
volition indicating adverbs are accidentally,
unintentionally. E.g., He accidentally

pressed the send button.

2The word w is underlined and the same convention is
followed for subsequent examples
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Explicit expertise marker: If the word w occurs
in explicit expertise indicating context in the
dependency tree DT , then it is TASK. One of
the key aspect of a task is that it needs certain
domain expertise to be executed. Expertise
indicating context can be – i) w being modified
by an adjectival clause headed by using or
leveraging, or ii) w being preposition phrase
modifying nouns/verbs such as knowledge of

or expertise in. E.g., You can dynamically

deliver language files to your mobile

apps using SDKs.

Expertise score using corpus statistics: If the
word w has high expertise score based on corpus
statistics then it is TASK. This LF does not use the
sentence context for the word w. Here, we compute
expertise score for each action noun and verb us-
ing statistics from a large corpus; and then choose
top 100 action verbs and nouns using this expertise
score. We used 3.6 million sentences from ukWaC,
a very large web-derived corpus of English (Fer-
raresi et al., 2008). For each action verb and noun,
the expertise score is computed as follows:

ExpScore(w) = log(N e
w + 1)× N e

w

Nw
(1)

Where, Nw: No. of times the word w appears in
the corpus and N e

w: No. of times the word w ap-
pears in the explicit expertise indicating context (as
described in the previous LF). The score for a word
will be high if both of the following conditions are
true – i) the conditional probability of observing it
in expertise indicating context is high, and ii) the
absolute frequency with which it appears in exper-
tise indicating context is high. This is motivated by
the patterns scoring formula used by Thelen and
Riloff (2002). E.g., The Fosters will develop

media like podcasts and videos. and The

work involves experimental investigation

of droplet impingement over a heated

surface.

Presence of direct object: If the word w has
a direct object (dobj) or a passive subject
(nsubjpass) then it is TASK. For actions expressed
using nouns, prepositional phrase headed by of is
considered similar to a direct object (implemented
the solution ⇒ implementation of the

solution). Here, the heuristic is that the presence
of direct object (or passive subject for passive
voice verbs) for an action verb increases likelihood
of it being a more meaningful task. E.g., It

recently published a handbook.; The post

was restricted on social media.; and It

asks user for selection of a particular

webpage.

Absence of direct object or prepositional modi-
fier: If the verb w does not have any direct object,
passive subject, or any prepositional modifier, then
it is NOT-TASK. This LF captures the opposite char-
acteristic as compared to the previous LF, with
the heuristic that such verbs are unlikely to con-
stitute meaningful tasks. E.g., It allows the VM

to begin operating quickly.

Adjectival clause modifier: If the verb w is
a head word of an adjectival clause modifying
some noun, then it is NOT-TASK. Here, the heuris-
tic is that such verbs simply provide extra in-
formation about a noun and are unlikely to be
tasks. E.g., It left thousands of sensitive

health records exposed to the internet.

Compound noun modifier: If the noun w modi-
fies another noun as a compound modifier, then
it is NOT-TASK. E.g., Rivian sets a delivery

date.

Number-like modifier: If the noun w is mod-
ified by a number, an ordinal, a cardinal, or
a number-like modifier like next, then it is
NOT-TASK. E.g., The solutions that the

first generation of clean tech investors

backed were economically unfeasible.

3.2.4 BERT-based classification model
We propose a BERT-based (Devlin et al., 2018)
classification model which predicts an appropriate
class label (TASK vs NOT-TASK) for each word in
a sentence. The annotated data needed for train-
ing this model is created automatically using the
Snorkel framework with the labeling functions de-
scribed above. Each instance is annotated with soft
labels, i.e., a probability distribution ygold ∈ R2

over TASK and NOT-TASK. Each instance is a combi-
nation of a word w, its POS tag p, and the complete
sentence S.

We now describe the classification model in de-
tail. Figure 1 depicts the model architecture. First,
embedded representation xw ∈ R768 is obtained
for the word w using a pre-trained BERT trans-
former model.

xw = BERT (S,w) (2)

We then use a linear feed-forward layer to get a
more compressed representation x′w ∈ R10 of the
word.

x′w = ReLU(Wx+ b) (3)
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Figure 1: Architecture of BERT-based Task Extraction model

Here, W ∈ R10×768 and b ∈ R10 are learnable
weights. We compress the word representation
to lower dimensions because we use 3 additional
features described below and we do not want the
BERT-based features to overwhelm these addi-
tional features.
POS tag: Part of speech tag of the word w is a key
feature because the head word of a task can only be
a noun or verb. We use embedded representation
xp ∈ R5 of the POS tag of w using an Embedding
layer with learnable weights (RNp×5 where Np is
the number of distinct POS tags).
WordNet-based features: We hypothesize that
more specific words are more likely to be task
head words than generic words. Hence, we use
two WordNet-based features to implicitly estimate
specificity of the word w – i) Hypernym depth and
ii) Corpus frequency. Hypernym depth of a word
is the number of levels in the hypernym tree be-
tween that word and the root (entity in case of
all nouns). The higher the hypernym depth, the
higher is its specificity. E.g., hypernym depth of
diagnosis is 8 which is higher as compared to a
more generic word action with hypernym depth of
5. Similarly, lower the corpus frequency of a word,
higher is its specificity. We use the corpus frequen-
cies provided for each lemma in each synset in
WordNet (Jurafsky and Martin, 2021). E.g., corpus
frequency of see is 613 but for analyze it is only
21 which is more specific word. For each word, we
use WordNet-based features vector xwn ∈ R2

Overall representation of the word w, hw ∈ R17

is now concatenation of x′w, xp, and xwn. This is
then passed through the final classification layer to
get the predicted label distribution ypred ∈ R2.

hw = Concatenate([x′w;xp;xwn]) (4)

ypred = Softmax(W ′hw + b′) (5)

loss = KLDLoss(ygold, ypred) (6)

Here, W ′ ∈ R2×17 and b′ ∈ R2 are learnable
weights. The predicted label distribution is then
compared with the gold standard or expected distri-
bution ygold to compute KL divergence loss which
is back-propagated during the training process. We
also fine-tune the final encoder layer of BERT.

3.2.5 Phrase Expansion

The classification model identifies task head words
which need to be expanded to get complete task
phrases. We use a few simple rules to expand head
words to phrases using the dependency tree of the
sentence. Basically, we need to get the phrase
corresponding to the dependency subtree rooted
at the head word but we need to discard certain
dependencies. We recursively collect a set of de-
pendency children starting from the head word and
construct the phrase from the leftmost child to the
rightmost child. However, we do not consider de-
pendency child connected to its parent with certain
dependency relations and hence do not recurse on
such children further. Dependency relations which
we discard are – i) nsubj, agent (because task
phrase does not contain the agent who executed the
task); ii) relcl, advcl, ccomp, appos (to avoid get-
ting complete dependent clauses or appositives de-
scribing extra information inside a task phrase); iii)
aux, auxpass (for not including auxiliary verbs
in task phrases). E.g., consider the task head word
analyzed from the sentence in Figure 2. Here,
the expanded task phrase is analyzed traffic

at internet exchanges. Here, firm is excluded
because its dependency relation nsubj is discarded,
but other dependency children of analyzed are in-
cluded recursively.
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Figure 2: Example of a dependency tree and phrase expansion for the task head word analyzed. (Courtesy: spaCy
dependency visualizer at https://explosion.ai/demos/displacy)

4 Experimental Analysis

In this section, we describe our experiments in
detail including datasets, baselines, evaluation met-
rics and results.

4.1 Datasets

In order to evaluate the task extraction performance,
we chose 4 datasets from different domains.
• Resumes3: Set of resumes of candidates shared
with our organization
• TechCrunch4: Articles from technical domain
published on TechCrunch in 2020
• Reuters: A collection of 10,788 documents from
the Reuters financial newswire service from the
well-known Reuters-21578 corpus (Lewis, 1997).
• Patents5: Abstracts of patents assigned to IBM
in the years 2000-2019 which are scraped from
Google Patents

4.1.1 Training Data
The training data for our BERT-based task extrac-
tion model is generated automatically using the
Snorkel framework based on several labeling func-
tions described in Section 3.2.3. We randomly
chose 1000 documents from the 4 datasets (250
documents from each) – Resumes, TechCrunch,
Reuters, and Patents. The dataset consists of 19268
sentences where 98044 words (verbs and nouns)
are assigned soft labels using Snorkel’s labeling
model (Ratner et al., 2017) which combines pre-
dictions of our labeling functions. Out of 98044
words, 21892 words were labeled as likely TASK
head words, i.e., they were assigned TASK proba-
bility greater than 0.5. For all the remaining words
in these sentences, NOT-TASK is considered as a
hard label. Table 3 shows various statistics of these

3This is an internal dataset and can not be made public due
to privacy reasons.

4https://www.kaggle.com/
sumantindurkhya/techarticles2020

5https://www.kaggle.com/
federicolusiani/ibm-patents

Labeling function Cov Overlap Conflict
non action nouns/verbs 0.625 0.625 0.000
negation modifier 0.630 0.629 0.006
animate/org agent 0.680 0.667 0.021
non-animate agent 0.638 0.634 0.010
volition marker 0.625 0.625 0.000
non-volition marker 0.625 0.625 0.000
explicit expertise marker 0.629 0.629 0.001
corpus expertise score 0.673 0.660 0.013
direct object 0.799 0.687 0.013
adjectival clause 0.641 0.630 0.002
no object or pp 0.708 0.651 0.029
compound modifier 0.641 0.625 0.000
number-like modifier 0.625 0.625 0.000

Table 3: Analysis of labeling functions over our train-
ing dataset (Cov: Fraction of training instances labeled
(not abstained) by the LF, Overlap: Fraction of train-
ing instances where the LF has predicted along with at
least one other LF, Conflict: Percentage of overlapping
training instances where there is mismatch of predicted
label with at least one other LF)

Dataset #Sentences #Tasks
Resumes 1297 167

TechCrunch 292 251
Reuters 178 89
Patents 102 100
Total 1869 607

Table 4: Details of the evaluation dataset

labeling functions on this training data. Detailed
hyper-parameter details used for training this model
are inlcuded in the Appendix.

4.1.2 Ground Truth

In order to create ground truth for evaluating vari-
ous task extraction techniques, we manually anno-
tated 20 documents from each of the 4 datasets with
gold-standard task head words and complete task
phrases. This dataset6 consists of 1869 sentences
where 607 tasks are annotated (see Table 4).

6Evaluation dataset as well as automatically labeled train-
ing dataset (excluding Resumes) will be made available upon
request.
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Dataset Technique Only Task head word Lenient evaluation Strict evaluation
P R F1 P R F1 P R F1

Resumes

EvExtB1 0.553 0.166 0.255 0.380 0.103 0.162 0.314 0.086 0.136
EvExtB2 0.335 0.669 0.447 0.373 0.714 0.49 0.232 0.454 0.307

Linguistic Patterns 0.582 0.771 0.663 0.551 0.730 0.628 0.429 0.568 0.488
BERT Extractor 0.552 0.675 0.607 0.505 0.589 0.544 0.311 0.368 0.337

TechCrunch

EvExtB1 0.354 0.222 0.273 0.343 0.229 0.274 0.217 0.144 0.173
EvExtB2 0.312 0.763 0.442 0.294 0.734 0.419 0.187 0.476 0.268

Linguistic Patterns 0.404 0.510 0.451 0.420 0.542 0.473 0.239 0.310 0.270
BERT Extractor 0.449 0.732 0.556 0.422 0.694 0.524 0.262 0.439 0.328

Reuters

EvExtB1 0.323 0.370 0.345 0.294 0.364 0.325 0.139 0.170 0.153
EvExtB2 0.188 0.716 0.297 0.188 0.761 0.302 0.095 0.386 0.152

Linguistic Patterns 0.210 0.358 0.265 0.218 0.364 0.272 0.122 0.205 0.153
BERT Extractor 0.314 0.716 0.436 0.296 0.682 0.412 0.161 0.375 0.225

Patents

EvExtB1 0.533 0.075 0.132 0.556 0.085 0.148 0.267 0.034 0.061
EvExtB2 0.371 0.774 0.502 0.370 0.752 0.496 0.179 0.385 0.244

Linguistic Patterns 0.420 0.472 0.444 0.515 0.590 0.550 0.220 0.248 0.233
BERT Extractor 0.524 0.830 0.642 0.522 0.803 0.633 0.268 0.419 0.327

Average

EvExtB1 0.441 0.208 0.251 0.393 0.195 0.227 0.234 0.109 0.131
EvExtB2 0.302 0.731 0.422 0.306 0.740 0.427 0.173 0.425 0.243

Linguistic Patterns 0.404 0.528 0.456 0.426 0.557 0.481 0.253 0.333 0.286
BERT Extractor 0.460 0.738 0.560 0.436 0.692 0.528 0.251 0.400 0.304

Table 5: Comparative task extraction performance of our proposed techniques Linguistic Patterns and Weakly
supervised BERT-based Task Extractor

4.2 Baselines

We consider two recent event extraction techniques
as baselines for comparing the performance of our
task extraction techniques.
EvExtB1: The first baseline is literary event extrac-
tion technique proposed by Sim et al. (2019). It is
trained on literature dataset using a BiLSTM based
model which used BERT token representations.
EvExtB2: The second baseline is an Open Domain
Event Extraction technique proposed by Araki and
Mitamura (2018). This is a more competent base-
line because the events are not restricted to a do-
main or a syntactic type. It uses a BiLSTM based
supervised event detection model which is trained
on distantly generated training data.

For both the baselines, we use pre-trained mod-
els provided by the authors. Both the baselines
identify event triggers that are considered as task
head words and complete task phrases are identi-
fied using the phrase expansion rules described in
Section 3.2.5.

4.3 Evaluation Metrics

Any gold-standard task phrase is counted as a true
positive (TP) if there is a “matching” predicted
task, otherwise it is counted as a false negative
(FN). Here, two task phrases are considered to be
“matching” if there is at least 80% string similarity
between them for strict evaluation and 50% for
lenient evaluation. All the remaining predicted
tasks which are not TPs, are counted as false posi-

tives (FP). In addition, similar to event triggers, we
also compute TPs, FPs and FNs considering only
task head words. Precision, recall and F1-score are
then computed for each of these three evaluation
strategies – strict evaluation, lenient evaluation and
considering only task head words.

P =
TP

TP + FP
;R =

TP

TP + FN
;F1 =

2 · P ·R
P +R

(7)

4.4 Results

We evaluate our proposed techniques – linguistic
patterns and weakly supervised BERT-based task
extractor, on 4 different datasets using 3 evalua-
tion strategies. We compare the performance of
the proposed techniques with two event extraction
baselines. Table 5 shows the detailed results. Ex-
cept the Resumes dataset, the BERT-based task
extractor outperforms all other techniques on all
the datasets. Considering the macro-average across
datasets, the BERT-based task extractor turns out
to be the best overall technique which also per-
forms consistently across datasets. We also carried
out ablation analysis to evaluate contribution of
POS tag and WordNet-based features and observed
that these features have minor positive contribu-
tion. Table 6 shows a comprehensive list of tasks
extracted by the BERT-based task extractor from
the 4 datasets.
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Resumes:
-weld the P91 steel plate

-reduce the surface area of radiators

-develop a FEM code of multidimensional small

deformation plasticity

-Cold flow analysis of double ramp flame holder

-Designed and analyzed a two stage worm gear box

-facilitate cab services

-Implemented a dynamic memory allocator for C

-Comparison of Different Clustering Techniques

-the generation of layered NAND gate

-Development of desktop application using deep

learning

TechCrunch:
-enhance and improve antitrust regulations on the

platform economy

-background data - mining of internet users

-tackling abusive behavior

-ensuring fairness in digital marketplaces

-verifying any system weaknesses and functioning

of devices

-load up prior versions of iOS

-fire up a simulated iPhone and hunt for potential

bugs

-discover potential security bugs

-spin up a virtualized ARM device ( including iOS

devices ) in a browser

-filed a lawsuit against the virtualization

software company

Reuters:
-facilitate a transaction

-fixed the value of the new Cruzado currency

-studying financially superior alternatives

-A bill also was introduced

-monitor coffee imports

-control the spread of the disease

-the susceptible clones would be replaced

-the disease was detected in nurseries

-restore normal moisture to the cane

-made appropriate declarations at customs points

Patents:
-a log transfer to the standby machine is

performed

-the executing program is blocked

-the spatial index may be partitioned

-partition a spatial index into a plurality of

portions

-A set of congestion cost corresponding to the set

of pattern routes is computed

-data processing

-verification of a digital cir cuit design

-disseminate the write request

-performing multimodal analysis on the multimedia

stream

-maintain the PIN diode bias as high as possible

Table 6: Examples of Tasks extracted from various
datasets

4.5 Implementation Details

In this section, we describe the hyper-parameters
used for training our BERT-based Tasks Extraction
model. We have not carried out extensive hyper-
parameter tuning but we set aside a small subset
of training set as validation set, tried a few set-

tings and chose the best one. We then re-trained
our model using the entire training set with this
set of hyper-parameters: batch size = 16 sentences,
maximum sentence length = 128 tokens, number
of epochs = 2, Adam optimizer with learning rate =
0.001. For avoiding overfitting, we used a dropout
of 0.4 probability over the 768 dimensional token
representation output by BERT. We also used gradi-
ent clipping to keep maximum norm of the gradient
vector below 5. We used pre-trained base model of
BERT from HuggingFace: bert-base-uncased7.
While training our model, we also fine-tuned the
last encoder layer of BERT (encoder.layer.11)
and kept other layers’ parameters frozen.

5 Conclusion and Future Work

In this paper, we have introduced a new NLP task
of automatic extraction of tasks from text, high-
lighted the motivation behind it, and its potential
applications. We described various aspects of tasks
and highlighted how they compare with another
popular NLP task of event extraction. We proposed
two techniques for task extraction – i) linguistic pat-
terns and ii) BERT-based weakly supervised neural
model. We demonstrated effectiveness of our tech-
niques on 4 datasets from different domains and
compared them with other competent baselines.
Given that ours is the first attempt for extracting
tasks from text and the approach is only weakly
supervised and does not demand any heavy man-
ual annotation efforts, the overall performance is
encouraging. However, there is still scope for the
improvement which we plan to pursue as a future
work. Also, we wish to refine the labeling func-
tions to better capture linguistic characteristics of
tasks such as volitionality, need for expertise, and
execution within a small time period.
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A Resources created using WordNet and
ukWaC corpus

As described in Sections 3.1 and 3.2.3, we have
created several key resources using WordNet hy-
pernym structure which includes lists of – action
verbs, action nouns, person indicating nouns, or-
ganization indicating nouns, natural objects, and
substances. We also computed expertise scores for
various action nouns and verbs using a subset of
ukWaC corpus. In our labeling function, we use top

100 action nouns and verbs as per this score. These
lists which are created using WordNet and ukWaC
corpus, will be made available upon request.
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Abstract

Reflection about a learning process is bene-
ficial to students in higher education (Bub-
nys, 2019). The importance of machine un-
derstanding of reflective texts grows as ap-
plications supporting students become more
widespread. Nevertheless, due to the sensi-
tive content, there is no public corpus avail-
able yet for the classification of text reflective-
ness. We provide the first open-access corpus
of reflective student essays in German. We col-
lected essays from three different disciplines
(Software Development, Ethics of Artificial In-
telligence and Teacher Training). We anno-
tated the corpus at sentence level with binary
reflective/non-reflective labels, using an itera-
tive annotation process with linguistic and di-
dactic specialists, mapping the reflective com-
ponents found in the data to existing schemes
and complementing them. We propose and
evaluate linguistic features of reflectiveness
and analyse their distribution within the re-
sulted sentences according to their labels. Our
contribution constitutes the first open-access
corpus to help the community towards a uni-
fied approach for reflection detection.

1 Introduction

Consciously experienced and reflected practice
is a prerequisite for professionalization (Donald,
1983). For pre-service teachers, reflection is cru-
cial because it belongs to the core competencies
of prospective teachers (Combe and Kolbe, 2004;
Hänsel, 1996; Shandomo, 2010). In literature, sev-
eral types of reflection can be found. Core reflec-
tion deals with the core of one’s personality: mis-
sion and identity (Korthagen and Vasalos, 2005),
while self-reflection refers to thinking about one’s
own behaviour, actions, thoughts or attitudes (Bub-
nys, 2019). The reflection process can be either
guided using prompts to indicate the structure of
the reflection (Allas et al., 2020), or free, where

∗* indicates equal contribution.

the reflection process follows no given structure
(Sturgill and Motley, 2014). In our corpus, we
mainly focus on guided self-reflection.

Educational staff must assess students’ reflection
texts, yet this is a non-trivial and time-consuming
task. Machine learning methods can provide pos-
sibilities to create such applications. However, the
first step towards this is identifying whether re-
flection is present in a text or not. Collections of
student essays in machine-readable formats have
been created for the last two decades for various
machine learning tasks, such as automated essay
scoring (Foltz et al., 1999), argumentation mining
(Wang et al., 2020), reflection detection and auto-
mated feedback (Wulff et al., 2020). However, to
the best of our knowledge, there is no open-source
corpus of reflective essays currently available. The
reason, in our opinion, lies in the challenges that
this kind of data brings. From an ethical point of
view, these data are sensitive, since they can be
highly personal. In addition, essays are usually
collected in an educational setting, and it might
be against regulations to publish them. Further-
more, inspiring students to reflect is difficult. As a
literature review shows, students mostly write de-
scriptive sentences when journaling (Dyment and
O’connell, 2010).

We thus contribute a publicly available, balanced
text corpus of reflective and descriptive sentences
from students of various universities and disci-
plines as the first step towards a benchmark for
reflection detection in texts. For this, we collected
essays from three different sources and anonymized
them. We then pre-processed texts into sentences
and added manual sentence level annotations ac-
cording to a synthesised taxonomy, engaging pro-
fessional linguists and didactic specialists to refine
our criteria. We present our quantitative and quali-
tative linguistic analysis of the resulted corpus. The
link to our data can be found in Appendix A.
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Figure 1: The main components of our approach.

2 Related Work

In the context of the multi-genre essay collection,
significant works include the British Academic
Written English (BAWE) (Nesi and Gardner, 2012,
2013), the Uppsala Student English Corpus (USE)
(Axelsson and Berglund, 2002), and the Michigan
Corpus of Upper-Level Student Papers (MICUSP)
(Römer and Swales, 2010). Several efforts were
undertaken to create a specialized reflective cor-
pus of students essays at sentence level, namely
in pre-service and early teachers settings (Wulff
et al., 2020; Murphy, 2015) or medical students
and personnel (Liu et al., 2019a; Olex et al., 2020).
For the didactic case specifically, there has been
increasing work in automated detection of reflec-
tive sentences in the didactic context (Geden et al.,
2021; Jung and Wise, 2020; Liu et al., 2019c; Wulff
et al., 2020; Ullmann, 2019, 2017, 2015). However,
none of the used corpora are publicly available.

3 Data Collection

We collected essays of different lengths in both
English and German from students and pre-service
teachers. We used the sentence segmenter of SpaCy
(Honnibal et al., 2020) to obtain a total of 4232
sentences. During the annotation process, we per-
formed manual anonymization, eliminated all the
occurring personal information, including men-
tioned social media accounts, as well as student
and teaching staff names. We describe below how
data from the individual sources were collected.
For more details on the segmentation, anonymiza-
tion, and consent processes, see Appendix A.

Dundee teaching placement essays With the
agreement of the University of Dundee, we scraped
122 reflective essays in English written by students
in teacher training during their placements in pri-
mary and secondary school in 2018. The students
had to upload their essays in the form of an e-
Portfolio on Glow Blogs1, a provider of WordPress
tools used by the Scottish educational centers. The
data reflect their impressions of the Scottish edu-
cational system in general and school approaches
in particular, the acquired skills, their background,
role models, insecurities, and motivations to be-
come a teacher.

We translated the essays into German using
DeepL2 and manually corrected conflicting transla-
tions that occurred due to inconsistent formatting.
After segmentation into simple sentences, we ob-
tained a total of 3595 sentences.

Ethics of AI and Software development Using
a questionnaire, we collected a set of guided reflec-
tive essays in German and English from students
of the Free University and the Technical University
of Berlin taking a Software Development project
or the Ethics of AI lecture. Data was collected
repeatedly at an interval of a few weeks.

The students were asked to reflect on the learn-
ing outcome since the previous collection. They
were guided by a set of questions developed using
Gibbs’ reflective cycle (Gibbs, 1988), thus span-
ning the following topics: description of the action
they took during their work/learning process, eval-
uating what they have learned and how to apply
it further, what challenges they encountered, and
which feelings they note. Additionally, they had to
rate how their perception and their competencies
of the topic changed and to describe why. After
segmentation, we obtained a total of 637 sentences.

4 Annotation Guidelines

4.1 Reflection on the topic

Reflection on the topic accompanies the complex
learning process and helps to integrate new knowl-
edge into the existing one and further elaborate
on it. In contrast to self-reflection, the object of
reflection is part of the subject domain.

We developed our annotation criteria based on
the Structure of the Observed Learning Outcome
(SOLO) taxonomy (Biggs and Collis, 1982), which

1https://blogs.glowscotland.org.uk/glowblogs/
2https://www.deepl.com/translator
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was proposed to assess the quality of learning. This
taxonomy allows us to identify successful criteria,
as it clearly defines the reflection steps. We adapted
the three last levels of the taxonomy: multistruc-
tural, relational and extended abstract level. At the
multistructural level, learners understand the rela-
tionship between different aspects but it’s relation-
ship to the whole remains unclear. At the relational
level, aspects of knowledge are combined to form
a structure. At the extended abstract level, knowl-
edge is generalized to build a new domain. From
the multi-structural level, we adapted the ‘combine’
action to the following criteria: (1) putting entities
into relation (e.g., part of, opposite, but not pro-
viding an example). From the relational level, we
adopted several criteria: (2) criticism, (3) evalua-
tion and comparison between methods or objects,
(4) analysis (e.g., causality, purpose, contributions),
(5) classification and assessment of entities. Based
on the last extended abstract level, we developed
the two following criteria: (6) generating and for-
mulating hypotheses and theorizing, (7) proposal of
alternative implementation (suggestions how some-
thing could have been done in a different way).

4.2 Self-reflection

To annotate self-reflection, we adapted the schemes
proposed by Shum et al. (2017) and Ullmann
(2017), searching for evidence of the categories
proposed by the authors in our own data. If the
sentence met one or more of these requirements,
we annotated it as reflective.

From Ullmann (2017) we included: (1) emo-
tions and feelings, if they were followed by the
cause or description of the circumstances which
provoked them; (2) strategy adaptation based on
previous experience, (3) different perspectives, and
(4) outcome (lessons learned, future intentions, and
action plans). From Shum et al. (2017), we im-
plemented rhetoric components and expressions
denoting: (5) learning something specific, (6) ex-
perimentation and ability, (7) increased confidence
or ability, (8) applying theory into practice, (9)
retrospection (e.g., ‘it would have helped us’, ’I
should have done it’), (10) expressions of reflect-
ing specifically and (11) shifts in perception and
beliefs. From the intersection of both schemes
we included (12) personal beliefs, assumptions,
self-assessment and (13) recognition of difficulties,
which we aligned with rhetoric expressions of chal-
lenge and expressions describing the unexpected to

prior assumptions.

We also introduced new categories based on our
data and the didactic nature of our project: (14)
rhetoric questions, (15) decisions (motives and the
decision-making process), (16) motivation. We
also determined conditional categories, that, simi-
lar to feelings, are annotated, taking into considera-
tion the broader context and given reasons. These
are opinions, evaluations, rendition of the words of
others, generalisations, doubts (e.g., ‘it seems’, ‘it
may be’), ‘even if A, not B’ patterns, own interpre-
tations of definitions, recommendations.

Contrary to Ullmann (2017) and Shum et al.
(2017), we categorize descriptive sentences that
describe the context of the event that triggers re-
flection as non-reflective. We support this decision
by contrasting their linguistic feature distributions
in Section 6.

5 Annotation Process

We manually annotated the collected sentences ac-
cording to the synthesised guidelines presented in
Section 4. If a sentence met at least one of the enu-
merated criteria we annotated it as reflective, even
if it was a long sentence which also consisted of
non-reflective components. The sub-corpora from
the Software Project and Ethics of AI lectures were
annotated in parallel by four annotators (the first au-
thors and our two collaborating didactic specialists
from the Friedrich-Alexander University Erlangen-
Nürnberg). The initial inter-annotator agreement
was low: 0.64 between first authors, 0.32 between
first authors and didactic specialists, and 0.33 be-
tween the didactic specialists. Consequently, we
refined our annotation guidelines and re-annotated
the dataset. The Dundee sub-corpus was annotated
by the first author, while the third author annotated
100 random sentences in order to verify consistency.
The inter-rater agreement between the annotators
was 0.66, which is considered substantial (Landis
and Koch, 1977; Stemler and Tsai, 2008). Over-
all, we see that the annotation of reflectiveness
is a problematic and tedious task, rather impos-
sible using crowd-sourcing and requiring rounds
of discussions and criteria harmonization among
inter-disciplinary professionals, as also addressed
by Ullmann (2019).
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6 Analysis

6.1 Methodology
We investigate morphological features inspired
from (Ullmann, 2015; Liu et al., 2019b; Murphy,
2015). However, we hypothesize that reflective
sentences also differ in syntactic categories. Using
a list of respective subordinate conjunctions and
punctuation, we extracted main types of subordi-
nate clauses and their length, e.g clause of purpose
(‘Within the framework of our group, we addition-
ally met online on average once a week to share
research results and plan the next project steps.’,
len=10); clause of reason (‘I volunteered because
I want to learn to make better slides and I want to
get better at presenting.’, len=17).

We compared the feature distribution in reflec-
tive versus non-reflective sentences. The resulted
distribution of classes is balanced, with 2177 re-
flective and 1970 non-reflective sentences. We nor-
malized feature counts according to the number of
tokens per sentence, transforming them into fre-
quency counts. As our features were mostly non-
normally distributed, we applied non-parametric
U-tests (Wilcoxon-Mann-Whitney) and multiple-
test correction with Benjamini-Hochberg Proce-
dure (N=45 tests). Since we find a large number of
significant features, we further restricted our crite-
ria. We filtered out features with medians lying on
0 (i.e., where more than 50% of the counts are 0),
which is not taken into consideration by the U-test.
Instead, it considers mean ranks, i.e., the arithmetic
average of the positions in the list.

6.2 Results
The number of tokens in the sentence appears to be
one of the most discriminating factors: reflective
sentences tend to be longer, while non-reflective
sentences are often nominal and/or contain short
enumerations. At the same time, reflective sen-
tences tend to be complex (with both subordinate or
coordinate clauses using respective conjunctions).
Relative clauses are the most frequent in reflective
sentences, as they bring additional details describ-
ing the subject. Contrary to our expectations, the
clauses of reason and purpose, typically used in
justifications, show only a slight positive trend for
reflective sentences in the Dundee sub-corpus, pos-
sibly because it often illustrates a situation and can
contain descriptive causes and goals, e.g., ‘We did
not go outside because of the rain’. The trend does
become stronger in the self-reflection sub-corpora.

We can observe the presence of solid justification
with our ‘claims’ feature, which checks matches
with opinion words (e.g., ‘standpoint’, ‘sure’, ‘con-
vinced’, ‘opinion’), and ‘supports’, which is a col-
lective count of subordinate clauses of reason, pur-
pose, concession, condition and adversation. All
subordinate clauses we measured are generally
more present in the reflective part of the data set,
and the mean length of clauses of reason and pur-
pose is also generally longer. Concessive clauses
appear to be the most numerous in this kind of
texts. Reflective sentences also show higher proba-
bility of explicit coherency markers with discursive
connectives (e.g., ‘although’, ‘however’).

As for the tenses used, reflective sentences are
more often written using the Future tenses, while
non-reflective utterances show slight preference of
the Past tenses.

Our ‘personalizing’ marker, which shows usage
of first person singular and plural of pronouns (per-
sonal, possessive and reflexive), is found to be sig-
nificantly more present in reflective sentences, as
also found by (Ullmann, 2015), as well as a number
of adverbs, verbs and adjectives (Murphy, 2015).
However, we also measured usage of the German
indefinite impersonal pronoun ‘man’, which simi-
larly to English pronoun ‘one’ can be considered
a tool to generalize, distance the authors from the
opinion they express, and make it less personal
(hence,‘distancing’ feature). Counter-intuitively,
it was also found slightly more used in reflective
sentences, rather than in descriptive ones.

Interestingly, our data also shows a negative
trend for lexical words in reflective sentences and
a positive one for stop words, which means that
reflective sentences tend to be wordier, but less
informative.

High modality words (e.g. ‘actually’, ‘categori-
cally’) strongly correlate with sentence reflective-
ness, while modal verbs and subjunctive mood
(German Konjunktiv I and II) show the same trend
in all but Dundee sub-corpus. This trend discrep-
ancies between the original German and translated
English data calls for further investigation into dif-
ferences between reflection articulation in different
languages.

7 Conclusion

With the proposed corpus, we aim to make the first
step towards a more unified approach to reflection
detection. At the moment, it is not possible to
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compare existing models, as there is no publicly
available benchmark for this task. To address this
issue, we created an open-source annotated text
corpus of reflective and descriptive sentences from
students of various universities and disciplines. We
also provide the quantitative and qualitative analy-
sis of the gathered data and describe the annotation
procedure and quality assurance measures we took.

Our work has several limitations. Our annotators
are not native German speakers, which can influ-
ence labeling. However, this will be re-visioned
with later versions of the corpus, as we plan to
increase the number of annotators and include na-
tive speakers. Another drawback is the automatic
translation of the English data into German. While
we plan to quantitatively increase our corpus with
German data in the future, the Dundee sub-corpus
provides a valuable addition. This way, however, it
largely influence the results for language-specific
features such as subjunctive mood presence, which
can appear in translations, but which are still much
more common to German than to modern English.

We address the low inter-annotators agreement
problem with harmonization sessions and refine-
ment of the coding scheme to ensure coverage
of complicated instances. We report that with
each iteration, inter-annotator agreement increased
significantly. Thus, we reckon that a fruitful
discussion of linguists and specialists of the field
in the focus of the task, being a time-consuming
process, is the only probable answer to the
annotation of cognitive, subjective categories.

8 Future work

Sentence level segmentation has significant disad-
vantage compared to text level processing. Never-
theless, for modern classification algorithms, there
is a need for an immense amount of data points.
Thus, we decide to trade off context for the sake
of robustness. In the future, we aim to prove the
hypothesis that textual level reflection can still be
reconstituted, computing an overall reflectiveness
score. Finally, binary classification is only the first
step, while we plan to add a more granular reflec-
tion level categories according to (Fleck and Fitz-
patrick, 2010), sentiment polarity, emotions and
the position of the sentence in Gibb’s cycle (Gibbs,
1988). We also plan to expand the corpus with a
larger number of guided reflections from different
disciplines. Our overall goal is automated reflec-

tive essay analysis, which we plan to compare to
the existing results by (Ullmann, 2019; Wulff et al.,
2020), in order to propose an adequate level of
feedback that matches the student’s needs.
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A Data collection

The entire questionnaire, including the consent
form, the code for linguistic feature annotation
and the data-set divided into training and test
sets for the benchmark purposes are available on
OSF depository: https://osf.io/ug9r8/ and Github :
https://github.com/oanaucs/german reflective corpus.

A.1 Guided Reflection Questions (German)
1. Bitte denken Sie an die Erfahrung die Sie

während der Aufgabenlösung gemacht haben
- aus Ihrer Perspektive. Wer war dabei, was
haben Sie gelöst, wann und wo? Erklären
Sie bitte welche Entscheidungen und warum
Sie sie getroffen haben. Bitte schreiben Sie
vollständige Sätze.

2. Bitte reflektieren Sie über das Gelernte durch
die Aufgabenlösung. Was haben Sie gelernt?
Sind Sie selbstbewusster geworden? Wer-
den Sie das Gelernte in der Praxis anwen-
den? Was haben Sie vor? Was hätten Sie
besser machen können? Bitte schreiben Sie
vollständige Sätze.

3. Bitte denken Sie jetzt an die Schwierigkeiten
die während der Aufgabenlösung aufgetaucht
sind. Was waren die Herausforderungen?
Ist etwas unerwartetes passiert? Haben Ihre
vorherige Annahmen (z.B. Zeit für die Auf-
gabe) doch nicht gestimmt? Bitte schreiben
Sie vollständige Sätze.

4. Erklären Sie bitte wie Ihre Wahrnehmung
gegenüber das Thema verändert hat. Bitte
schreiben Sie vollständige Sätze.

5. Erklären Sie bitte wie Ihre Wahrnehmung
gegenüber Ihre Kompetenzen verändert hat.
Bitte schreiben Sie vollständige Sätze.

6. Erklären Sie bitte wie sich während und nach
der Aufgabenlösung gefühlt haben. Welche
Emotionen haben Sie erlebt? Wie haben sich
Ihre persönliche Überzeugungen verändert?
Bitte schreiben Sie vollständige Sätze.

A.2 Guided Reflection Questions (English)
1. Please think about the experience you had

while solving the task - from your perspective.
Who was there, what did you solve, when
and where? Please explain your decisions and
why you made them. Please write complete
sentences.

2. Please reflect on what you have learned
through the assignment. What was new? Have
you become more confident? Will you apply
what you have learned in practice? What do
you plan to do? What could you have done
better? Please write complete sentences.

3. Please think now about the difficulties that
arose during the task solution. What were the
challenges? Did something unexpected hap-
pen? Were your previous assumptions (e.g.,
time for the task) not correct after all? Please
write complete sentences.

4. Please explain how your perception towards
the subject has changed. Please write com-
plete sentences.

5. Please explain how your perception towards
your competencies has changed. Please write
complete sentences.

6. Please explain how you felt during the task
and after solving it. What emotions did you
experience? How did your personal beliefs
change? Please write complete sentences.
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Table 1: Linguistic features. The coloured features are the most relevant ones according to our analysis.
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Abstract

Manipuri is a low-resource, tonal language spo-
ken mainly in India’s northeastern state, Ma-
nipur. It has two tones - level and falling tones.
For an acceptable Automatic Speech Recog-
nition (ASR) system, integrating tonal cues
from a potent Tone Recognition model is essen-
tial. ASR research on tonal languages, African,
Asian and Indo-European tonal languages such
as Thai, Chinese, Vietnamese and Mandarin
have been done, but Manipuri is underexplored.
This paper focuses on the fundamental analy-
sis of the developed hand-crafted tonal contrast
dataset, ManiTo. It is observed that the height
and slope of the pitch contour can be used to
distinguish the two tones of the Manipuri lan-
guage.

1 Introduction

Automatic Speech Recognition (ASR) generates
the transcript of a spoken speech. It plays a signifi-
cant role in stopping the extinction of endangered
languages and is also required for fostering eco-
nomic growth and benefits. For improving the per-
formance of ASR, tone recognition carries a crucial
role in tonal languages where tone distinguishes
the meaning of the words. Intensive work has been
done on tonal languages like Mandarin, Thai, Viet-
namese, Chinese, etc., (Kaur et al., 2020), but no
work has been done on the ASR of Manipuri.
Manipuri is one of the Indian Tibeto-Burman lan-
guages spoken in Manipur, a northeastern state of
India. It is a tonal language in which the tone dif-
ferentiates the word’s meaning. So, robust tone
recognition can enhance the speech-understanding
tasks of Manipuri. It has its script known as Meitei
Mayek (Singh et al., 2007). The script has twenty-
seven main alphabets (Mapung Mayek), eight un-
released characters (Lonsum Mayek), eight vowel
signs (Cheitap Mayek), three punctuation marks, in-
cluding diacritics or tone marker (Khudam Mayek)

and Cheising Mayek for the numerals.
Manipuri has two tones (Thoudam, 1980; Khan,
1987; Chelliah, 1992; Devi, 2004; Singh et al.,
2007), level and falling tones. Each one of the
syllables in Manipuri bears one of the two tones.
The level tone is unmarked, while the falling tone
is marked with //̀ in English representation and
with the falling tone marker or lum mayek, “·” just
after the syllable in the Manipuri script. Some of
the tonal contrast words pair with their meanings
are shown in Figure 1.

Sl.
No.

Falling
Tone

Meaning Level Tone Meaning

1 UN∙
/ùn/

skin UN
/un/

ice,
snow

2 IN∙
/ìn/

 push IN
/in/

follow

3 ToH∙
/thò /ŋ

door ToH
/tho /ŋ

bridge

4 mi∙
/mì/

man mi
/mi/

spider

5 pu∙b
/pùb /ə

to borrow pub
/pubə/

to bring

6 ca∙
/cà/

wax ca
/ca/

tea

7 I∙
/ì/

blood I
/i/

thatch

8 KoI∙
/khòi/

navel KoI
/khoi/

bee/
fishing
hook

9 la∙
/là/

wide
basket

la
/la/

banana
leaf

10 siH∙
/sìŋ/

firewood siH
/si /ŋ

Ginger

11 sM∙
/s m/ə̀

hair sM
/səm/

Basket

12 mH∙
/m /ə̀ŋ

dream mH
/mə /ŋ

grave

Figure 1: List of tonal contrast word pairs with their
meaning.
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2 Related Works

Internationally, progressive work on tone recogni-
tion has been done for tonal languages like Man-
darin, Thai, Cantonese, and Vietnamese for the last
three decades. (Linkai et al., 2021) recognized lexi-
cal tones in Mandarin speech on the 863 corpora us-
ing a model that integrates multiple features at a dif-
ferent scale. Experimental results showed that their
technique achieved a Tone Error Rate of 10.5%.
(Nguyen et al., 2016) proposed an acoustic model
using the tone feature to investigate the effect of
tone in the Vietnamese Large Vocabulary Contin-
uous Speech. The result improved the percep-
tion of phonemes by 19.25% against the non-tonal
phonemes system. (Krittakom and Narissara, 2015)
analyzed Neuro-fuzzy based approach to recognize
Thai speech. Their dataset consisted of eight Thai
words recorded in different environments. The re-
sult showed that the system was robust to noise
and could yield higher recognition than other rec-
ognizers. In India, some work has been done on

the tonal languages Punjabi and Mizo. (Gogoi
et al., 2020) proposed a technique for Mizo tone
recognition using Support Vector Machine (SVM)
and Deep Neural Network (DNN) based classifiers.
The experiment is performed on a dataset obtained
from nineteen speakers. It achieved an accuracy
of 73.39% for the SVM model and 74.11% for the
DNN model. (Jyoti and Achyuta, 2020) proposed
an ASR system based on pitch-dependent features
and the probability of voicing estimated features.
The results significantly improved the word error
rate of the system.
However, there is no work done on the ASR of the
Manipuri Language, which motivates us to build a
dataset that contains the tonal contrast word pairs
of Manipuri and examine the tone information to
develop a robust ASR system for Manipuri.

3 Manipuri Tonal Contrast Dataset

A Manipuri tonal contrast dataset, ManiTo con-
sisting of 3000 speech samples collected from

Figure 2: Flowchart depicting the summary of the work done
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6 native speakers, 3 males and 3 females aged
20-35, is developed. The upper portion of the
flowchart in Figure 2 shows the steps for the de-
velopment of ManiTo. The corpus contains a
total of 50 tonal contrast word pairs collected
from different sources (Khan, 1987; Takhellam-
bam, 2014; Thoudam, 1980; Chelliah, 1997; Singh,
2019), five utterances of each pair recorded us-
ing Cool Edit 2000 in a laboratory as well as in a
quiet office environment. The recorded speech is
further examined and manually segmented, keep-
ing 1000 samples of silence at the prefix and suf-
fix of the speech sample and saved as .wav for-
mat. Each file has the naming convention: Word-
Name ToneType UtteranceID SpeakerID. For ex-
ample, un f 2 3.wav means the particular speech
sample is the falling tone“un” sound spoken by
speaker 3, second utterance. The corpus ManiTo
consists of hand-crafted labeled speech data of size
273MB.

4 Experimental Analysis

Praat, version 6.1.51 (Boersma and Van Heuven,
2001) tool is used to analyze speech data in Man-
iTo. The lower portion of the flowchart in Figure 2
shows the steps for analyzing the speech data.

4.1 Pitch Extraction

Feature extraction plays a vital role in developing
a robust tone recognition system. As the pitch con-
tour carries the salient information regarding tones,
the fundamental frequency (F0) is generally used
for tone recognition (Chao et al., 2019).
Initially, the pitch listing of a particular tonal con-
trast pair for a speaker, i.e., ten samples, 5 for
falling and 5 for level, are retrieved using Praat.
Praat is built with the most precise pitch extraction
algorithm (Boersma and Van Heuven, 2001). All
pitch values are collected and stored in different
files.

4.2 Normalization

Normalization is performed on each extracted pitch
listing value to compare the speech data efficiently
with one another. For particular word pairs of
a speaker, it contains 5 utterances of level tone
speech and 5 utterances of falling tone speech. The
normalization obtained the same length pitch list-
ing values of the specific tone type utterances, i.e.,
after the normalization, the five utterances will have
the same length of pitch listing values. Algorithm 1

shows the normalization method that we employed
on the recorded data.

Algorithm 1: Normalization of a particular
speech sample
Input:
f0[L]: Pitch listing containing L values
Lmax: Maximum Pitch listing length
Output:
Normf0[Lmax]: Pitch listing with Lmax

values
1 begin
2 Step 1: k ← 0 ▷ f0 index
3 Step 2: j ← 0 ▷ track insertion point
4 Step 3: if L < Lmax then
5 insertLoc ← L/ (Lmax − L)
6 for i← 0 to Lmax do
7 Normf0[i]← f0[k]
8 if j = insertLoc then
9 i← i+ 1

10 Normf0[i]← f0[k]
11 j ← 0

12 end
13 k ← k + 1
14 j ← j + 1

15 end
16 end
17 end

4.3 Results

The analysis on the Tonal Contrast word pair 10,
i.e., “sing” based on the pitch contour of each sam-
ple, is shown in Figure 3. The speech sounds of
three male and two female speakers are analyzed
separately as the female pitch is not comparable to
the male pitch. The left column shows the analysis
of male speech and the right for the female speech
data. Figure 3a shows the normalized pitch contour
of fifteen utterances of falling tone “sing” of the
three male speakers, Figure 3c shows level tone
normalized pitch contour, Figure 3e compares the
two tones. Similarly, for female speech sounds,
Figure 3b shows normalized pitch contour of ten
utterances of falling tone “sing” and, Figure 3d
shows the level tone and finally Figure 3f compares
the two tones. From the plotted graph, we can ini-
tially claim that we can use the slope and height of
pitch contour to distinguish the two tones, falling
and level tones of Manipuri. The pitch of the level
tone is lower than that of falling tone.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Normalized Pitch Contour of (a) 3 Male Speakers “sing” 15 utterances(falling tone) (b) 2 Female Speaker
“sing” 10 utterances(falling tone) (c) 3 Male Speakers “sing” 15 utterances(level tone) (d) 2 Female Speaker “sing”
10 utterances(level tone) (e) Comparison of male average falling and level pitch (f) Comparison of female average
falling and level pitch

5 Conclusion and Future Work

Initial analysis of the ManiTo, Manipuri Tonal Con-
trast dataset is performed. It is inferred that we can
use the pitch contour to distinguish the two tones,
falling and level tones. Further analysis is presently
being done to precisely differentiate the tones and
build a tone recognition system for Manipuri. Cur-
rently the dataset consists of 3000 samples from 6
speakers and unprocessed recordings from 3 more
speakers. In the future, we will extend the dataset

for 20 speakers and this will be made available for
the speech community.
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Abstract
A word frequency list is a list of unique words
in a language along with their frequency count.
It is generally sorted by frequency. Such a
list is essential for many NLP tasks, includ-
ing building language models, POS taggers,
spelling checkers, word separation guides, etc.,
in addition to assisting language learners. Such
lists are available for many languages, but a
large-scale word list is still not available for
Sinhala. We have developed a comprehensive
list of words, together with their frequency and
part-of-speech (POS), from a large textbase.
Unlike many other such lists, our list includes
a large number of low-frequency words (many
of which are erroneous), which enables the
analysis of such words, including the frequen-
cies of errors. In addition to the main list, we
have also prepared a list of linguistically ver-
ified words. The word frequency list and the
verified word list are the largest collections of
words lists that are available for the Sinhala lan-
guage.

1 Introduction

Word frequency lists are useful for analysing the
vocabulary of a language (Nation and Waring,
1997). They generally comprise a list of lexical
words sorted by frequency of occurrence in a cor-
pus, as a ranked list. Such lists can be used to build
a directory, for language learning and for teach-
ing. They are also useful in downstream applica-
tions such as part-of-speech (POS) tagging, syntac-
tic parsing, machine translation, speech processing
etc.
In this paper, first, we present a word frequency

list for Sinhala. We compiled a list of 2 mil-
lion unique words by considering published docu-
ments from multiple sources, representing diverse
domains. The raw corpus contained 127 million
word tokens. In addition to frequency, the list pro-
vides the POS Tag of each word. Second, we have

compiled a linguistically verified word list of over
280 thousand unique words.
These two word lists are currently the largest

available word lists for the Sinhala language.
Therefore, they would be very useful linguistic re-
sources for many downstream applications.
Further, both the word frequency list and veri-

fied word list are publicly released 1, for the pro-
gression of future research.

1.1 Objectives

In our work, we often encountered a word, and
needed to know if it is frequently used, a rare word,
or a misspelling. Therefore, we decided to take
a large dataset including common-crawl data and
other available data, and construct a list of words
seen in the wild. Rather than a curated corpus,
we wanted to use the largest dataset available. In-
stead of limiting ourselves to correctly spelled and
separated words, we decided to build a list which
includes incorrect words. As we often needed to
know the POS of each word, we also tagged each
word with a POS, even though the tagging may
sometimes be inaccurate.
We also needed lists of correct words, therefore

we decided to compile a list of linguistically veri-
fied words.
In this paper, Section 2 covers related work and

Section 3 describes how the lists were compiled.
Our results are analysed in Section 4, and Section
5 gives our conclusions and planned continuations.

2 Related Work

Word frequency lists have long been in use for lan-
guages such as Spanish, French, German and En-
glish. Before the advent of computing, they were
generated manually, but have become much easier

1https://github.com/nlpcuom/Word-Frequency-List-for-
Sinhala
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to generate using a computer (Davies and Davies,
2017; Tschirner et al., 2019; Lonsdale and Le Bras,
2009; Leech et al., 2014).
The main objectives of many word frequency

lists based on written or spoken corpora (Dang
et al., 2017) were for language teaching and learn-
ing.
However, word lists are valuable resources for

computational linguistics as well. They provide an-
notated datasets for downstream applications such
as POS taggers (Kucera and Francis, 1967), depen-
dency parsers (Silveira et al., 2014) etc.
More recently, frequency lists were generated

for non-Latin languages such as Tamil (Kumar,
2019) and Russian (Sherstinova et al., 2020). Fre-
quency lists were also generated for specific do-
mains such as literary genres and historical periods,
and even individual books and authors.
For Sinhala, a corpus based lexicon were done

by Weerasinghe et al. (2009). This contains 35K
unique words. They have constructed a word fre-
quency list extracted from publicly available Sin-
hala text documents from multiple domains. How-
ever, the list does not appear to be publicly acces-
sible.
More recently, Google has released a Sinhala

lexicon with about 42,000 entries (Jansche, 2017).
Text documents were crawled from the web at

scale (Schwenk et al., 2019; Wenzek et al., 2020)
for the progress of research in diverse domains.
Such crawled corpora are also available for Sin-
hala. To the best of our knowledge, the generated
word frequency lists had not considered these re-
cently web crawled data.

3 Methodology

3.1 Dataset for the Word Frequency List
As our dataset, we used publicly available Sinhala
text crawled from the web by the Common Crawl
project (Wenzek et al., 2020). We also included
government documents (Fernando et al., 2020) and
news sites (Isuranga et al., 2020). These docu-
ments contain text corresponding to modern usage
of the language. Hence the word list would be suit-
able for many downstream applications.
The corpus statistics of the data is in Table 1.

3.2 Data Cleaning and Pre-processing
The government documents dataset had been com-
piled manually and the text was of good quality.
Since the news data and common crawl data had

Domain Total
Sents.

Total
Tokens

Govt. Documents 77,694 0.75M
News 332,793 20M
Common crawl 5,000,324 106M

Table 1: Corpus Statistics

been crawled from the web, they needed to be
cleaned before use.
The data were tokenised using the Sinhala tok-

enizer (Farhath et al., 2018), to separate punctua-
tion and the words. As compound nouns, verbs
or particles used as suffixes, may be written with
or without white space, such words were not com-
bined or split, but considered them as they ap-
peared in the corpus.
The first cleaning step was to filter out words

with non-Sinhala characters, including English
and other foreign language words and numerals.
Scripts were developed using rules and regular ex-
pressions to remove such invalid words.
The data contained Unicode errors such as dupli-

cated modifiers, misplaced modifiers, separation
of modifiers into parts, etc. These were corrected
with the Unicode Error Corrector2, a rule-based
tool developed for Sinhala Unicode error correc-
tion. Some corrections were:
අ◌ාකර්ෂනය→ආකර්ෂනය
ෙ◌ඩාලර්→ ෙඩාලර්
එ + ◌්→ ඒ
නිරීක්◌්ෂණය→ නිරීක්ෂණය
The Sinhala yansaya and rakaransaya symbols

are formed using the Unicode zero-width joiner
(ZWJ) character. Use of these symbols is manda-
tory in Sinhala. However, some systems erro-
neously delete ZWJ characters, giving incorrect
words, e.g. කිකට් (cricket) is erroneously de-
picted as ක්රිකට්. Others divide a word into two,
e.g., කිකට් → ක් රිකට් by replacing the ZWJ with
a space.
These errors were corrected using our Zero-

Width Joiner Fix 3, which uses lists of valid words
and sub-words to identify where the ZWJ has been
deleted or replaced, and re-inserts the character.
As there remained further invalid words in the

list, they were removed based on a POS filtering.
A Sinhala POS Tagger (Fernando and Ranathunga,
2018) was used to tag the words. We removed

2https://nlp-tools.uom.lk/uniec/
3https://nlp-tools.uom.lk/zwjfix/
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the words tagged as Full Stop (FS), Punctua-
tion (PUNC), ForeignWord (FRW) and Unknown
(UNK). Subsequently, some of the obvious erro-
neous words were removed manually.
Sinhala contains many single character words

and particles, such as ඒ (that) ද (and) ලී (wood).
We included such words in our list as well.

3.3 Word Frequency list

After cleaning the final corpus statistics are shown
in Table 2.

Total Words
Tokens in original documents 127M
Total word count after cleaning 122,998,105
Total unique words 2,170,052

Table 2: Corpus statistics in-terms of token counts

We extracted the lemma of each word using Sin-
Morphy (Kumarasinghe et al., 2021), a morpho-
logical parser for Sinhala. The top 20 frequent
words are listed along with the lemma, POS and
frequency in Table 3.

Words Lemma Frequency POS Tag
ෙම් ෙම් 1067105 DET
ඒ ඒ 946049 ABB
ඇති ඇති 567890 NIP
සහ සහ 518043 CC
හා හා 511663 CC
එක එක 491217 NUM
මම ම 485869 PRP
බව බව 469031 POST
ද ද 453787 RP
නම් නම 438329 POST
කර කර 423842 VNF
වන වන 387674 VP
කරන කර 376601 VP
අතර අතර 353691 POST
මට ම 342623 PRP
ගැන ගැන 339464 POST
ෙමම ෙමම 326924 DET
නෑ නෑ 323017 NIP
නිසා නිසා 306021 POST
වූ ව 298454 VP

Table 3: Top 20 Frequent words

The most frequent words are mainly determin-
ers, particles, pronouns, etc. However, we see that
the POS tagging is sometimes not accurate.

3.4 Verified Words List
The words in the Word Frequency list were run
through a spelling checker (Liyanapathirana et al.,
2021), and the words accepted by it were taken as
correct. As it is infeasible to manually check all
the words which failed the spelling check, it was
decided to manually check the 3555 highest fre-
quency words which failed the spelling check. Of
these, 1836 were manually verified to be correct,
and added to the verified words list. This list com-
prises of 280,603 words. This is the largest list of
verified Sinhala words available.

4 Analysis

4.1 Analysis of the Word Frequency List
When the distribution of words was analysed, we
observed that 50% of the words in the corpus are
covered by 17% of the words in the word fre-
quency list. This means 17% words can be identi-
fied as the most commonly used words in Sinhala
language.
Subsequently we analysed the word counts

based on the POS Tag. The outcome is shown in
Table 4.

Gram.
Category

POS
Categories

Total
Words

Per.
%

Noun NNC,NNP,
PRP,NNJ,
VNN,NNP

67.8M 55.1

Verb VNF,VP,VFM 18.7M 15.2
Adjective JJ 9.0M 7.4
Adverb RB 1.4M 1.2
Other 26.1M 21.2

Table 4: Word counts based on POS Tag.

Words tagged as Common Noun (NNC),
Proper Noun(NNP), Pronoun(PRP), Adjecti-
val Noun(NNJ) and Verbal Noun(VNN) were
grouped into the Noun grammatical category.
Those tagged as Verb Non Finite(VNF), Verb
Finite(VFM) and Verb Participle(VP) were
considered as Verbs.
From the statistics in Table 4, we see that the

majority of words in the list are nouns. Sinhala is
a morphologically rich language, which means the
words are inflected based on the gender, number,
case, etc. As nouns have more morphological vari-
ants, they account for more entries in the list.This
emphasises the importance for linguistic tool sup-
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port for nouns in morphologically rich languages
such as Sinhala.
On the other hand number of verbs, adjectives

and adverbs in Sinhala is limited. Therefore the
representation of such words in the list is lower.
When we further analysed the words under each

POS category, we came across some issues.
Some words were incorrectly classified by the

POS tagger, eg: අකකර (acres) is a noun but was
incorrectly tagged as a non-finite verb (VNF) . We
plan to implement a better POS tagger at a later
date.
Further, some words contained spelling and

word separation issues, e.g. නිලධාරී → නිලධාරි
(official), අංකගණිතය→ අංක ගණිතය (arithmetic).
Thesemay or may not be considered errors depend-
ing on the point of view of the user.

4.2 Analysis of the Verified Word List

Each word in the linguistically verified word list
was parsed by the morphological parser (Kumaras-
inghe et al., 2021) and the most frequent lemmas
were analysed. The morphological parser is rule-
based, and covers both morphological rules as well
as sandhi-rules. Further these rules have been lin-
guistically verified. Therefore we believe the mor-
phological parser can provide reliable morpholog-
ical information for our word list.
Of the 280,603 unique words in the linguistically
verified word list, we obtained morphological in-
formation for 256,083 words, which is a coverage
of 91%. A total of 43,313 unique lemmas were
found. The information corresponding to the top
most 10 frequent lemmas can be found in Table 5.
The Total Words, in Table 5 corresponds to the to-
tal number of words from the word frequency list,
with the lemma.
It was an interesting observation that 50% of total
words in the word list were covered by only 10%
of unique lemmas.

5 Conclusion and Future work

Theword frequency list, comprising over 2million
words, is by far the largest word list for the Sin-
hala language. It is also the only one supplemented
with POS information. Although the list contains
many incorrect words and incorrect word separa-
tions, this is a feature, not a drawback, as it allows
us to analyse the frequencies of variant spellings
and compound words.
The verified word list of over 280 thousand

Lemma Total
Words
(’000)

Sample
Words

කර 1,674 කර, කරන, කරමින්...
ම 1,124 මම, මට, මා, මමත්, මටත්...
ඒ 1,072 ඒ, ඒත්, ඒයි, ඒය, ඒවල...
ෙම් 1,067 ෙම්, ෙම්ට, ෙම්ෙග්, ෙම්ටත්...
ව 902 වූ, වන්ෙන්, ෙවයි, ෙනොවන...
අප 865 අපි, අෙප්, අප, අපිට...
ය 738 ය, ගිය, ගිහින්, ගියා, යයි...
එක 723 එක, එෙක්, එෙකන්, එකත්...
බව 649 බව, බවයි, බැවිනි, බැවිණි...
නම 625 නම්, නමුත්, නම, නමක්...

Table 5: Top 10 Most Frequent Lemmas

words is also the largest such list for Sinhala. Al-
though many words and word inflections are not in
this list, it does covermost of the words in common
use.
As future work, we plan to compile a frequency

lists of morphosyntactic suffixes for Sinhala. We
also plan to compile lists of word bi-grams, tri-
grams, etc.
We also plan to compile domain-specific word

lists for government documents, news, textbooks,
web, etc.
These lists have been used to develop several

other tools, including a spelling checker and a sen-
tence generator, and are being used to identify
spelling error patterns, etc. It will be a useful tool
in many other areas of NLP.
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Abstract 

Part of speech tagging is a pre-processing 

step of various NLP applications. Mainly 

it is used in Machine Translation. This 

research proposes two POS taggers, i.e., 

an HMM-based and CRF based tagger. To 

develop this tagger, the corpus of 

manually annotated 30,000 sentences has 

been prepared with the help of language 

experts. In this paper, we have developed 

POS taggers for Sindhi Language (in 

Devanagari Script), a resource poor 

language, using HMM (Hidden Markov 

Model) and Conditional Random Field 

(CRF).Evaluation results demonstrated the 

accuracies of 76.60714% and 88.79% in 

the HMM, and CRF, respectively. 

1 Introduction 

The main aim of NLP is to create suitable 

algorithms for computers to understand human 

language. These language technology tools help 

the users in translation and understanding of 

languages. For example, with the help of machine 

translation, a person can communicate or share 

information in their native language. Although 

plenty of different language processing tools are 

available for some languages, still some of the 

languages have not been able to attract the 

attention of the research community. The Sindhi 

language is one of them. There are 22 official 

languages of India. Sindhi is one of them. In 

1967 it was recognized as an official language of 

India. The Eighth Schedules of the constitution of 

India includes the languages which are resource-

poor and need to preserved and developed. 

Sindhi was included in this schedule in the 

21stAmendment.  Although in India, Sindhi is 

officially recognized, but it is not an official 

language of any of the states in India. 

 

 The “International Education System” puts a big 

problem for Sindhi people. The upcoming Sindhi 

generation is unable to write and speak the Sindhi 

language, as their parents do not communicate 

with them in the Sindhi language. This may lead 

to the extinction of the Sindhi language. For 

language preservation, our prime need is to save 

its speakers by developing some language 

processing tools which help them to learn Sindhi. 

In the last few years, some work has been done in 

the Sindhi language in Arabic script. Sindhi 

Devanagari is more resource-poor than Sindhi 

Arabic. In this research work we have developed 

a SLP (Sindhi Language Processing) tool i.e., 

POS Part of Speech Tagger in Devanagari Script. 

 

 The words can be classified in various lexical 

categories, such as nouns, verbs, etc. These 

categories are also known as Parts of Speech. 

Parts of Speech define their morphological and 

syntactical behavior. POS Tagging is a task of 

classifying each word in a corpus to a given 

syntactic class such as noun, verb, etc. 

 

A word can belong to more than one lexical 

category, depending on its use in a sentence. The 

main objective of the POS tagging process is to 

remove this ambiguity. Tagger uses the contextual 

information to assign the tag. Part of Speech 

tagging is used in various applications of NLP, 

such as Machine Translation, Information 

retrieval, information extraction, spelling 

correction, and word sense disambiguation. This 

paper presents the development of two automatic 

taggers using Conditional (CRF) and Hidden 

Markov Model(HMM) .  

2 Related work 

POS tagging is assigning the syntactic or lexical 

category to a word in a sentence. POS tagging is a 

Part of Speech Tagging for a Resource Poor Language  

: Sindhi in Devanagari Script using HMM and CRF 
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fundamental task of NLP. It is an important pre-

processing task of various Natural Language 

Processing (NLP) applications such as in IR, Text 

summarization, machine translation etc. In this 

section, we will discuss the related work done in 

this area. 

 

2.2.1 Other Languages 

The work on automatic POS tagging was started 

in the early 1960s. Ekbal, A. et al. (2007) 

developed a POS tagger for Bengali language 

using condition random field approach with a tag 

set of 26 POS tag. For training they used 72,341 

words and 20 thousand words for testing. They 

got the accuracy of 90.3%.  

Hasan, M. F. et al. (2007) applied few stochastic 

approaches such as unigram, bigram HMM and 

Brills POS tagging on Hindi, Bangla and Telugu 

with different size of the corpus. They found that 

Brill’s transformation-based tagger’s performance 

is good in comparison to other approaches. 

 

Singh, T. D. et al. (2008) developed a POS tagger 

for Manipuri text using an unsupervised learning 

approach CRF. The system gave the Recall of 

70% precision of 77.78% and F-measure of 

73.68%. 

 

Sharma et al. (2011) used an HMM algorithm to 

improve the accuracy of existing Punjabi POS 

Tagger. This Bi-gram tagger resolves the problem 

of ambiguity for complex and compound 

sentences. They have taken the training corpus of 

20,000 tokens and a test corpus of 26 479 tokens. 

They achieved 90.11% accuracy.   

 

Garrette, D et al. (2013) discussed the various 

aspects of semi-supervised Learning of POS 

taggers. They work for Kinyarwanda and 

Malagasy two resource-poor languages and study 

the effect of various kind of data on POS- tagger. 

 

Singh, J., Joshi, N., & Mathur, I. (2013) used 

Statistical approach to develop Marathi POS 

tagger, i.e. Unigram, Bigram, Trigram and HMM. 

They achieved 77.38% accuracy for Unigram 

approach, 90.30% for Bigram, 91.46% for 

Trigram and 93.82% for HMM.  

 

Sunitha, C. (2015) research work proposed a 

hybrid approach for POS tagging (CRF and rule-

based approach) of Malayalam language. They 

used the tag set developed by IIIT Hyderabad. 

They got 94% accuracy. 

Pakray, P. et al.  (2015) developed various 

resources for Mizo language (an official language 

of Mizoram State) such as Mizo-to-English 

dictionary; tag set consist of 24 items and POS 

tagger.  

 

Buys et al. (2016) proposed a model, which 

uses a Wsabie, a discriminative embedding model 

train a morphological tagger. They evaluated this 

on 11 languages and concluded that this model 

performs very well when used for closely related 

languages. 

 

A CRF based approach was used by Sarkar, K. 

(2016) for developing POS Taggers for three 

language pairs, i.e. Bengali-English, Telugu- 

English and Hindi- English. They have got an 

average of 79.99 F1 scores.   

 

For Odia Language, a CRF++ based POS 

tagger was developed by Behera, P. (2017). For 

this, they manually prepared POS annotated, the 

corpus of 600thousand tokens, using BIS tag set. 

The tagger is trained on 2,36,793 tokens and 

tested with 1,28,646 tokens. They got 94.39% 

accuracy for the known data and 88.87% accuracy 

for unknown data. 

 

Mishra, P., Mujadia, V., & Sharma, D. M. 

(2018) presented an approach for POS tagging of 

resource poor language. This approach requires 

only the bilingual corpora of sentences. They have 

transferred the features of the resource-rich 

language to resource-poor language, for this they 

have used word alignment algorithm using Giza 

++.  

 

2.2.2 Sindhi language 

 

Maher and Memon (2010 A) developed a POS 

Tagger using Word Net approach. This tagger was 

tested on lexicon containing 26,366 tagged words, 

and the accuracy was 97.14%. This Tagger gave 

higher accuracy on the past and presented tense 

sentences, but on future tense sentences, it gave 

lesser accuracy. 

 

Maher and Memon (2010 B) developed the 

first POS tagging system for Sindhi (Perso-Arabic 

Script). They used a rule-based approach. The size 
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of the lexicon was 26,366 and useda tag set of 

size 67. They tested this tagger on 1,500 

sentences, which consisted of 6,783 words and 

obtained 96.28% accuracy. 

Motlani et al. (2015) built a POS Tagger for 

Devanagari Script of Sindhi language using 

Conditional Random Fields. They tested and 

trained the tagger using 10-fold cross-validation. 

They used BIS tag set, and the accuracy of tagger 

was 92.6%. 

 

 

3 The Approach 

 

POS Tagging approaches are broadly classified 

into rule-based, stochastic, and hybrid approaches. 

In the rule-based approach, handwritten 

disambiguation linguistic rules are used for 

tagging. Stochastic is also known as a data driven 

approach, which requires pre tagged corpus for 

training. Hybrid is a combination of rule-based 

and data driven. To develop a POS tagger, we 

have chosen the stochastic approach. This is a 

data driven approach. Rule based approach is time 

consuming and needs language expertise to write 

the rule. For morphologically rich language, it is 

impossible to write all the rules 

 

Stochastic approach is a probability-based 

approach. We have used two standard algorithms 

HMM (Hidden Markov Model) and CRF 

(Conditional Random Field) for POS tagging. 

HMM is an example of a Generative model, 

whereas CRF is an example of Discriminative 

model (Sutton, C., & McCallum, A. (2012)). For a 

particular data set, we cannot predict in advance 

which model will give the correct results. Each 

type of model is having its own limitations and 

delimitation. 

 

4 Corpus Annotation 

The stochastic approach is data driven. This 

requires the manually annotated corpus for 

training.  The stochastic approach gives better 

results when the manually annotated corpus is 

used for training.  In this sequence, we have 

manually annotated the corpus of 30000 sentences 

by using the guidelines described by Lata et al. 

(2012). For tagging, we have used the IL tag set. 

A tag set is a collection of tags used by a tagger. 

The tag set is described in the following tables: 

 

S. 

No. 

Tag  Description Example 

1.  NN  

 

Common 

Nouns 

किताबु,माणहू 

2.  NNP Proper 

Nouns 

(Name of 

Person) 

भारत, देहरादून 

3.  NST Noun 

Denotating 

Spatial and 

Temporal 

Expression 

अकियाां(आिे), 

पुकियाां(पीछे) 

4.  PRP  Proper 

Noun 

अव्ाांजे(आपिी), 

असाांजे(हमारे) 

5.  VM Verb Main थी(हो), रखण(रखना) 

6.  VAU

X 

Verb 

Auxiliary 

आहे(है), सघांदा(सिते) 

7.  JJ Adjective 

(Modifier of 

Noun) 

िमजोर(िमजोर),तेज(

तेज) 

8.  RB Adverb धीरे, जल्दी 

9.  PSP Post 

Position 

खाां(से),जे(िे) 

10.  RPD Particles कब(भी),त (तो) 

11.  QTF Quantifiers घकि (िम), 

रुिो ो॒(िेवल) 

12.  QTC Cardinals कहि(एि), ब(दो) 

13.  CCD Conjunction

s 

पर(बल्कि), ऐां(और) 
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14.  INTF Intensifier वधीि(अत्यकधि), 

तमाम(बहुत) 

15.  NEG Negative ननथा(नही ां) 

16.  SYM Symbol $, &, *, (, ) 

17.  ECH Echo Words हलिो -

फुलिो(हलिा/JJ   

फुलिा/ECH) 

18.  QO(

QTO) 

Ordinals पकहररयोां(पहला),कबयकन 

(दूसरे) किएां (तीसरे) 

19.  DMI Demonstrati

ve 

(Indefinite) 

कबयकन(किसी),िां कहां(कि

सी) 

20.  CCS Subordinato

r 

यकद(अिर),याने(अथाात

) 

21.  PRF Pronoun 

(Reflexive) 

खुकद(खुद),पांकहांजी(अप

नी) 

22.  DMD Demonstrati

ve (Deictic) 

इहो, ही 

(यह),इनजो(इसिा) 

Table 1:  Tag set for Sindhi Devanagari. 

 

5 POS Tagging using HMM 

For a given input sentence, we can calculate the 

best tag sequence using the following formula: 

T' = argmaxTP(W/T) * P(T)                            (1) 

Where P(T) is a prior probability of tag sequence 

(i.e., tag transition probability), and P(W/T) is 

emission probability. P(T) is calculated by using 

following formula: 

P(T) = P (t1)* P (t2/t1)* P (t3/t1t2) ...*(tn/t1...tn-1)  (2) 

According to bigram assumption: 

𝑃(𝑡𝑖/𝑡𝑖 − 1) =
𝑐(𝑡𝑖−1,𝑡𝑖)

𝑐(𝑡𝑖−1)
                                       (3) 

Where c(ti-1,ti) is the counting of how many 

times tag ti, comes after tag ti-1 (Previous tag). To 

calculate the emission probability: 

P(W/T)  =  P (w1/t1) ∗  P(w2/t2) . . . P(wi/
ti) ∗ . . . P(Wn/tn)                                                (4) 

 

∏
𝑖=1

𝑝(𝑤𝑖𝑡𝑖)
𝑛

                                                           (5) 

)(

),(
)/(

i

ii
ii

tc

twc
twP =                                     (6) 

Where c(wi/ ti) calculate the probabilities , that a 

given tag ti  is associated with given word 

wi.HMM algorithm chooses the most likely tag 

sequence with the help of a decoding algorithm, 

i.e. Viterbi algorithm. 

5.1 Experiments 

We have implemented the above algorithm in 

Python. Following table shows the Statistics of 

Training and Testing Data set: 

Data Set Number of Sentences 

Training Data Set 30000 

Testing Data Set 1000 

 

Table 2:  Data set for Experiment 

5.2 Evaluation 

Evaluation of output text is done by using the 

following formula: 

 Accuracy =

Total Number of correct POS tag generated by POS Tagger

Total Number of POS Tag 
 

We have tested this POS Tagger with 1000 

sentences, which consists of 15680 tokens and we 

found 12012 matches. So, the overall accuracy 

obtained is 76.60714%. 
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6 POS Tagging using CRF 

CRF was introduced by Lafferty et al., 2001.CRF 

is a discriminative undirected graphical model 

that belongs to the family of condition 

distribution. CRF is the most popular method 

used for structured prediction in the NLP task. In 

the discriminative approach, for a given input x 

and output y, the probability is calculated directly 

p(y|x) whereas in the generative model joint 

probability p(x,y) is generated. Structured means 

that the output of an algorithm is a structured 

object such as a tree or a sequence.  

CRF is used for the POS tagging task. This 

discriminative model x for a given observation 

sequence O=<o1, o2, o3…. oT> where 

observation is the sequence of tokens, and State 

sequence S=<s1, s2, s3……sT> is the POS tag. 

Conditional probabilities are calculated as: 

  −
=

= ),0,,1(
1

exp(
1

)/(

0

tststkfk
k

T

tZ
osP   (7) 

In the above equation, fk is a transition feature 

function, which is learned via input or observation 

sequence.  The weight of this function is k which 

defines the weight which is learned in training. 

The normalization factor Z0 is calculated using 

the following formula: 

 

  −=
=s k

tt

t

o tosskfkZ )),,,1(exp(
1

 (8) 

 

This makes all conditional probabilities sum equal 

to 0. 

We have used CRF++ 1for training and testing our 

tagger. Three files are required for CRF 

implementation.1 Training file 2. Testing File 3. 

Template File. The complete corpus is divided 

into 80-20 ratio, where 80% is used for training 

data, and 20 % is used for testing data. CRF 

model is developed in three steps: 

6.1 Creation of Training and Testing File 

All the words or token of a sentence must be 

represented using one token per line format.  

 
1 http://taku910.github.io/crfpp/ 

 

 

 

 
 

Figure 1: Sample Training File 

 

Sentence boundary is identified by putting an 

extra blank line. Each token is represented along  

with its features in fixed columns, which are 

separated by space. First Column represents the 

word or token, and the last column represents the 

output on which we train CRF. The remaining 

columns represent the value of the features we 

have used in CRF.     The sample training and the 

testing file are shown in the figure 1. 

 

6.2 Creation of Feature Template 

The template file defines the features used in 

CRF. Each line in a file represents one template. A 

macro used in a template will specify the token in 

input data, r specifies the row number from 

current token and c specifies the absolute position 

of the column. The sample of template is shown 

in the following figure.  

 
 

Figure 2: Sample Template File 

 

6.3 Training and Testing of CRF Model 

 

For training the command is: 
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crf_learntemplate_filetrain_filemodel_file 

 

Where the template file and train file which we 

have created in the previous step. For testing the 

command is: 

% crf_test -m model_filetest_files ... 

 

6.4 CRF Model Feature 

We have created a CRF model which includes 

the following features: 

• Word length: All the inflected words 

belong to open category that includes verbs 

and nouns. Inflection makes them lengthy. 

We included this feature as a binary feature. 

We have taken a word length of 3. If the 

word length exceeds 3 characters, we set 

the value 1 other wise 0.  

• Contextual information: The task of the 

POS tagger is to assign a correct syntactical 

category to a word. Some words are 

ambiguous in the corpus. For example, the 

word “Book” can be used as a Noun or 

Verb. To resolve this ambiguity, the POS 

tagger will use the context, i.e. the 

preceding word and the following word. We 

have used the context window of size 5, i.e. 

current word and two previous and two 

following words. 

• Auxiliary verbs: Auxiliary verb belongs to 

a closed category. We have prepared the list 

of 30 most frequently used auxiliary verbs. 

This feature is included as a binary feature 

if the token belongs to this list set the value 

of this feature 1 otherwise 0. Following are 

the few examples of Auxiliary verbs: 

घुरिजे चाहिए 

वेंहिय ूं जाती 

आिे  ि ै

वेंिा  जाते 

 

• Postposition: Post positions are the most 

frequently used token in the sentence. They 

also belong to a closed category. We have 

identified the 11 most frequently used post 

position. This feature is also used as a 

binary feature. Following are the few 

examples of Post Position.  

वटाूं(पाससे), वाूंगुि(तिि) 

त े(पि), ताूं (ऊपिसे) 

 

• Affix, i.e. prefix and suffix: Sindhi is a 

morphologically rich language, i.e. various 

forms of words are present. We can make 

various word forms, using affixation, i.e. by 

adding suffix and prefix. We have taken the 

length of the prefix 3 characters. It is 

proved that the length of 3 characters gives 

the best results (Motlani et al. (2015)).  We 

have used a different combination of prefix 

and suffix length to train the tagger for 

morphology. 

 

• Postposition: Post positions are the most 

frequently used token in the sentence. They 

also belong to a closed category. We have 

identified the 11 most frequently used post 

position. This feature is also used as a 

binary feature. Following are the few 

examples of Post Position.  

वटाूं(पाससे), वाूंगुि(तिि) 

त े(पि), ताूं (ऊपिसे) 

 

6.5 Results 

We have developed six CRF models. These 

models are evaluated using the aforementioned 

formulas. The following table shows the overall 

accuracy of various CRF model for each Tag. A 

final CRF model CRF_M7 is developed with all 

features and got 88.79% accuracy.  

 

 

CRF Model Features Accuracy (%) 

CRF_M0 No Feature 82.92 

CRF_M1 Context 85.53 

CRF_M2 Post Position 85.85 
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CRF_M3 Auxiliary Verb 85.96 

CRF_M4 Length 86.34 

CRF_M5 3 Prefix 96.93 

CRF_M6 3 Suffix 97.05 

CRF_M7 All Above Features 88.79 

 

Table 3:  Overall accuracy of CRF Model 

 

7 Conclusion and Future Work 

POS tagging is an important prerequisite task for 

any NLP research. In this research work we have 

developed two taggers for a resource poor 

language Sindhi in Devanagari script, using 

stochastic approach. For this we have used 

1.HMM and 2.CRF. First we have manually 

annotated the corpus of 30000 sentences. We have 

got accuracy of 76.60714% and 88.79% for 

HMM and CRF respectively.  

Sindhi is a morphologically, rich language. The 

various morphological features such as prefix, 

postfix and word length will help in defining the 

POS of a word. CRF can incorporate all these 

features in the model, and this is one of the main 

advantages of CRF over HMM. In future to 

handle the exceptional cases, we could merge the 

rule-based tagger with the statistical approach. We 

could use various other machine learning 

approaches such as SVM to develop the POS 

tagger. In addition we can develop other tools 

such as Named Entity Recognizer (NER) which 

will increase the accuracy of tagger. A robust 

tagger could be developed using an ensemble 

approach.  
 

Acknowledgments 

We would like to acknowledge lot of people for 

their help and support. Dr. Haso Dadlani (Ret. 

Head Department of Sindhi Govt. college Ajmer) 

for helping us in creating and annotating the 

data. Dr. Murlidhar Jetley for  providing all the 

necessary Sindhi Grammar books. 

References  

Behera, P. (2017). An Experiment with the CRF++ 

Parts of Speech (POS) Tagger for Odia. Language 

in India, 17(1). 

Ekbal, A., Haque, R., & Bandyopadhyay, S. (2007, 

December). Bengali part of speech tagging using 

conditional random field. In Proceedings of 

Seventh International Symposium on Natural 

Language Processing (SNLP2007) (pp. 131-136). 

Garrette, D., Mielens, J., & Baldridge, J. (2013). 

Real-world semi-supervised learning of POS-

taggers for low-resource languages. In Proceedings 

of the 51st Annual Meeting of the Association for 

Computational Linguistics (Volume 1: Long 

Papers) (Vol. 1, pp. 583-592). 

Hasan, M. F., UzZaman, N., & Khan, M. (2007). 

Comparison of Unigram, Bigram, HMM and 

Brill's POS tagging approaches for some South 

Asian languages. 

I. I. Ayogu, A. O. Adetunmbi, B. A. Ojokoh and S. A. 

Oluwadare, "A comparative study of hidden 

Markov model and conditional random fields on a 

Yorùba part-of-speech tagging task," 2017 

International Conference on Computing 

Networking and Informatics (ICCNI), 2017, pp. 1-

6, doi: 10.1109/ICCNI.2017.8123784. 

Lata, S., Chandra, S., Verma, P. and Arora, S. (2012). 

Standardization of POS Tag Set for Indian 

Languages Based on XML Internationalization 

Best Practices Guidelines. Proceedings of LREC 

(WILDRE) First Workshop on Indian Language 

Data:  Resources and Evaluation. Istanbul, Turkey. 

01-17. 

Mahar, J. A., &Memon, G. Q. (2010 A). Sindhi Part 

of Speech Tagging System using 

WordNet. International Journal of Computer 

Theory and Engineering, 2(4), 538. 

Mahar, J. A., &Memon, G. Q. (2010, B). Rule Based 

Part of Speech Tagging of Sindhi Language. 

In Signal Acquisition and Processing, 2010. 

ICSAP'10. International Conference on (pp. 101-

106). IEEE. 

Mishra, P., Mujadia, V., & Sharma, D. M. (2018). 

POS Tagging For Resource Poor Indian Languages 

Through Feature Projection. 

617



 

 

Motlani, R., Lalwani, H., Shrivastava, M., & Sharma, 

D. M. (2015). Developing Part-of-Speech Tagger 

for a Resource-Poor Language: Sindhi. 

In Proceedings of the 7th Language and 

Technology Conference (LTC 2015), Poznan, 

Poland. 

Pakray, P., Pal, A., Majumder, G., & Gelbukh, A. 

(2015, October). Resource building and parts-of-

speech (POS) tagging for the Mizo language. In 

2015 Fourteenth Mexican International Conference 

on Artificial Intelligence (MICAI) (pp. 3-7). IEEE. 

Sutton, C., & McCallum, A. (2012). An introduction 

to conditional random fields. Foundations and 

Trends® in Machine Learning, 4(4), 267-373. 

Sharma, S. K., &Lehal, G. S. (2011, June). Using 

hidden markov model to improve the accuracy of 

Punjabi pos tagger. In 2011 IEEE International 

Conference on Computer Science and Automation 

Engineering (Vol. 2, pp. 697-701). IEEE. 

Singh, J., Joshi, N., & Mathur, I. (2013, August). 

Development of Marathi part of speech tagger 

using statistical approach. In 2013 International 

Conference on Advances in Computing, 

Communications and Informatics (ICACCI) (pp. 

1554-1559). IEEE. 

Singh, T. D., Ekbal, A., & Bandyopadhyay, S. (2008). 

Manipuri POS tagging using CRF and SVM: A 

language independent approach. In proceeding of 

6th International conference on Natural Language 

Processing (ICON-2008) (pp. 240-245). 

Sunitha, C. (2015, August). A hybrid Parts of Speech 

tagger for Malayalam language. In 2015 

International Conference on Advances in 

Computing, Communications and Informatics 

(ICACCI) (pp. 1502-1507). IEEE 

 

618



Proceedings of the 18th International Conference on Natural Language Processing, pages 619–628
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)

Stress Rules from Surface Forms: Experiments with Program Synthesis

Saujas Vaduguru1 Partho Sarthi2 Monojit Choudhury3 Dipti Misra Sharma1

1 IIIT Hyderabad 2 University of Wisconsin, Madison∗
3 Microsoft Research India

1 {saujas.vaduguru@research.,dipti@}iiit.ac.in
2 sarthi@wisc.edu

3 monojitc@microsoft.com

Abstract

Learning linguistic generalizations from only
a few examples is a challenging task. Re-
cent work has shown that program synthesis
– a method to learn rules from data in the
form of programs in a domain-specific lan-
guage – can be used to learn phonological
rules in highly data-constrained settings. In
this paper, we use the problem of phonolog-
ical stress placement as a case to study how
the design of the domain-specific language in-
fluences the generalization ability when using
the same learning algorithm. We find that
encoding the distinction between consonants
and vowels results in much better performance,
and providing syllable-level information fur-
ther improves generalization. Program synthe-
sis, thus, provides a way to investigate how
access to explicit linguistic information influ-
ences what can be learnt from a small number
of examples.

1 Introduction

Deep neural models have driven recent success in
NLP, including models for tasks in phonology and
morphology. They have been applied to tasks such
as grapheme-to-phoneme conversion (Ashby et al.,
2021) and morphological reinflection (Pimentel
et al., 2021), and also been incorporated into theo-
ries of phonology (Wu et al., 2021). While neural
models are powerful learning machines, they re-
quire a large number of training examples, either
for supervised or for transfer learning. Addition-
ally, these models are not easily interpretable, and
understanding what stuctures and patterns these
models learn from data is a non-trivial task.

In this paper, we explore an different approach
to learning linguistic patterns from data – program
synthesis. Program synthesis (Gulwani et al., 2017)
is a method to learn interpretable rules in the form

∗Work done while at the Microsoft Research India

Word Stress pattern

sata 0100
hiha 0100

vatova 000100
kahasi 000100
Paona 01000

dehiaPhe 00001000

Table 1: An example of the task of predicting stress pat-
terns based on surface forms from the Cofan language.
Each phoneme in each word is labelled with 1 for pri-
mary stress or 0 for secondary stress.

of programs in a domain-specific language (DSL).
The design of the DSL allows for specifying do-
main information, such as various linguistic con-
cepts, and using these to guide learning from data.

Vaduguru et al. (2021) show that program syn-
thesis can be used to learn linguistic rules from a
small number of examples, and apply it to learn-
ing phonological rules that perform string-to-string
transformations. They demonstrate their method
for learning different types of rules, including mor-
phophonology, transliteration, and phonological
stress.

In this paper, we investigate how the design of
the DSL influences what rules are learnt from data.
To do this, we focus on learning rules that deter-
mine placement of phonological stress from data.
Phonological stress depends on both the position of
a syllable within words, and language-dependent
syllable weight hierarchies. This allows us to study
how encoding information about position within a
word and distinctions relevant to syllable weight
hierarchies affects a program synthesis system de-
signed to learn these rules from only a small num-
ber of examples.

We extend the formulation of phonological stress
placement as a string-to-string transformation prob-
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lem from Vaduguru et al. (2021) and develop a
program synthesis approach specific to stress. We
design different DSLs, each providing access to
different phonological abstractions. We compare
the results from using these different DSLs on data
from a variety of languages.

Through the example of using program synthe-
sis to learn stress rules, we seek to illustrate how
program synthesis can be used as a general frame-
work to compare how providing the same learning
algorithm access to different linguistic abstractions
can influence generalization from some given data.

2 Program Synthesis

Program synthesis is the task of finding a program
in a domain-specific language (DSL) that satisfies
certain constraints (Gulwani et al., 2017). This
approach allows us to encode domain-specific as-
sumptions about a task, and use generic search-
based (Polozov and Gulwani, 2015) or constraint-
based (Solar-Lezama, 2008) approaches to synthe-
size programs.

We apply program synthesis to learn rules for
stress placement. The programs that are synthe-
sized operate directly on the surface form of a word,
which is provided as a string. By varying the struc-
ture of the DSL, we control the kind of phonologi-
cal abstractions that are available to the synthesizer,
and observe the effects of this on learning and gen-
eralization.

2.1 Stress rules as programs

We model stress rules as string-to-string transfor-
mations. Formally, we synthesize program that im-
plements a function f : Σ∗ → {0, 1, 2, 3}∗, where
Σ is the set of phonemes in a language. f takes
as input a sequence of phonemes w1w2 . . . wn, and
assigns a “degree of stress” to each phoneme. 0
indicates that a phoneme is unstressed, 1 indicates
primary stress, 2 secondary stress, and 3 tertiary
stress. Since stress is applied at the level of the
syllable, we conventionally mark the first vowel of
a syllable with the degree of stress, treating it as
the ‘locus’ of stress within a syllable. We refer to
this output string composed of the degree of stress
for each phoneme in the input word as the stress
pattern for the word.

The programs we synthesize take the form of se-
quences of rules similar to rewrite rules (Chomsky
and Halle, 1968).

Each rule is of the form

φ−l · · ·φ−1X1 · · ·Xcφ1 · · ·φr → T (1)

A rule applies to a central phoneme which
satisfies a conjunction of predicates X1, . . . , Xc,
which appears in a context defined by the conjunc-
tion of predicates φ−l, . . . , φ−1 (which apply to l
phonemes to the left of the central phoneme) and
φ1, . . . , φr (which apply to r phonemes to the right
of the central phoneme). If the conjunction of all
predicates is satisfied, a transformation T is applied
to the phoneme.

The DSL defines the set of predicates P and set
of transformations T that can be used. We vary the
predicates (P) available to the synthesizer to define
different DSLs, each providing access to a different
classes of phonological abstractions. The transfor-
mation is a function that takes the phoneme as input
and outputs the degree of stress, and is of the form
ReplaceBy(s), where s is a value representing the
degree of stress.

2.2 Domain-specific languages

A domain-specific language is a declarative lan-
guage that defines the set of programs within which
we need to search. It is defined by a set of opera-
tors, their semantics, and a grammar that defines
rules to combine operators. Each operator also has
an associated score, which can be combined with
the scores for other operators in the program to
derive a ranking score that can be used to break
ties among multiple correct programs. By appropri-
ately choosing the operators, their semantics, and
the scores associated with them, we can control
domain-specific knowledge and preferences avail-
able to the synthesizer.

We use a DSL that implements rules of the form
described in Section 2.1 using if-then-else con-
structs. This allows us to define a sequence of
rules, the application of which is conditioned on a
conjunction of predicates. The first rule for which
the condition is satisfied is executed. The sequence
of rules is applied to each phoneme of the input to
obtain the degree of stress on that phoneme. This
is achieved using a Map operator.

As described in Section 2.1, the condition for the
IfThenElse constructs is defined as a conjunction
of predicates. Based on the set of predicates avail-
able to the DSL, we define a sequence of 4 DSLs,
each of which provides access to a different set of
phonological classes (sets of phonemes).
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output := Map(rules , input_phonemes)
rules := IfThenElse(C, T, rules) | T

Figure 1: IfThenElse statements in the DSL. A trans-
formation T is applied if the condition C is true, else a
transformation determined by the remaining rules is
applied.

A predicate is defined by a predicate type and a
class of phonemes to which it applies. We define
various classes, and use groups of these classes to
define different DSLs.

2.2.1 Classes of phonemes
The most basic set of classes is the set of single-
ton classes, each referring to one phoneme. We
then define classes of consonants and vowels. Most
stress systems do not distinguish between different
(short) vowels to determine syllable weight hier-
archies. Allowing this distinction to be made can
allow the synthesizer to learn rules that identify syl-
lable types as a sequence of vowels and consonants
in a specific order.

Phonemes that share phonological features are
also grouped into classes. We include vowel fea-
tures such as height and frontness, and also features
of consonants such as place and manner of articu-
lation.

Finally, we define classes based on syllable-level
information, such as whether a phoneme is the first
vowel of a long vowel, diphthong, open syllable,
or closed syllable. For our synthesizer, we define
these uniformly across languages. A diphthong
refers to a sequence of two different vowels. We
treat a syllable as closed when the vowel is fol-
lowed by multiple consonants, and break the sylla-
ble after the first consonant. A syllable that is not
closed is treated as open.

The classes that are available to each of the 4
DSLs we define – BASIC, CV, SYLLABLE, and
FEATURE – are shown in Figure 2.

2.2.2 Predicate types
We define a number of predicate types, which de-
termine the positions in the word to which the pred-
icate applies. In each of these cases, X refers to a
class of phonemes. We will illustrate how each of
this predicate types, defined for one unit, can be
used as part of a hypothetical stress rule.
IsX predicates determine whether a phoneme is

a member of a particular class. For example, since
consonants are not stressed, IsConsonant can be

BASIC

CV

FEATURE

SYLLABLE

vowel height
vowel frontness

voicing
place of articulation

manner of articulation

phonemes

consonants
vowels

long vowels
diphthongs

open syllables
closed syllables

Figure 2: Classes available to each DSL – BASIC, CV,
SYLLABLE, and FEATURE.

used to ensure the output at a consonant is 0.
IsKthX predicates take an additional argu-

ment K, and determine if a phoneme is the
Kth occurence of a member of a class in the
word. If a stress rule places primary stress on
the second closed syllable of a word, then the
IsKthClosedSyllable predicate can be used with
K = 2 to select that syllable. Note that K can also
be negative, to refer to units counting from the right
edge of the word.

Each of these predicates may apply to either
the central phoneme (one of the Xi from eq. (1)),
or phonemes in the context (one of the φi from
eq. (1)). We guide the synthesizer to prefer sim-
pler rules by ranking predicates that refer to nearby
phonemes (at a smaller displacement from the cen-
tral phoneme) above those that refer to more distant
phonemes. For IsKthX predicates, we rank predi-
cates that take a smaller absolute value of K higher
to guide the synthesizer to prefer rules that refer
to edges of the word over arbitrary positions in
between. We also define additional types of predi-
cates that can refer only to the central phoneme.1

PrefixContainsX predicates check whether
the prefix of the word up to, but not includ-

1These predicates are not included in the FEATURE DSL
due to the requirement of enumerating a very large number of
predicates.
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ing, the phoneme contains any instances of a
class. If a stress rule places primary stress
on the first occurrence of /e/ in a word, then
PrefixContainsPhoneme(e) can be used to en-
sure other occurrences of /e/ are not stressed.
SuffixContainsX predicates check whether the

suffix of the word after, but not including, the
phoneme contains any members of a class. Simi-
lar to the example above, if the last occurrence of
/e/ is to be stressed, PrefixContainsPhoneme(e)
can be used to ensure other occurrences are not
stressed.
WordContainsX predicates check whether a

member of the class exists anywhere in the word.
If a stress rule places stress on the first vowel of the
word if there are no long vowels in the word, then
WordContainsLongVowel can be used to ensure
stress is not placed on the first vowel incorrectly.

2.3 Synthesis algorithm

Synthesis begins with extracting phoneme-aligned
pairs from the words. Each example is a pair of a
phoneme and the degree of stress with which it is
labelled. The synthesis algorithm then learns rules
that map a phoneme (in its context) to the correct
label.

To synthesize IfThenElse constructs, we adapt
the LearnProgram, LearnBranch, and Learn-
Conj procedures from Kini and Gulwani (2015).
These procedures allow for learning decision lists,
which are sequences of predicate-transformation
pairs of the form 〈(p1, t1), (p2, t2), . . . , (pn, tn)〉,
where each pi is a conjunction of atomic predicates
introduced before, and ti is a transformation func-
tion. The list is constructed such that given a set
of examples X , the set can be partitioned into n
subsets such that for the ith subset Xi is does not
satisfy any of the predicates p1, . . . , pi−1, and satis-
fies pi, and the transformation ti results in the cor-
rect output for the examples in Xi. These decision
lists correspond to nested IfThenElse constructs.
An example is tested for the predicate pi. If the
predicate is true of the example, ti is executed, and
execution is terminated. If not, the else clause –
which represents the rest of the list – is executed.

The LearnProgram procedure learns a decision
list given a set of input-output examples X , opti-
mizing for a shorter list. The procedure maintains a
set R of examples which haven’t yet been covered
by any of the predicates of the decision list, which
is initialized with the entire set X . The procedure

then calls LearnBranch, which learns the next ele-
ment of decision list – a predicate that determines
when the item will apply, and a corresponding ac-
tion. Examples which satisfy the predicate are then
removed the from R. This is repeated till R is
empty.

LearnBranch starts by generating a set of candi-
date transformations. Each transformation divides
the set of examples into two – those it transforms
correctly, and those it does not. Then, the Learn-
Conj can be used to obtain conjunctions of candi-
date atomic predicates that are true for the most
examples in the former set, and false for all exam-
ples in the latter set. The conjunctions with the best
ranking scores (determined as the sum of the scores
for individual atomic predicates) are then each com-
bined with the transformation to obtain predicate-
transformation pairs. The predicate-transformation
pair that covers the largest number of examples is
then chosen as the next element of the decision list.

The LearnBranch and LearnConj procedures
require the synthesis of candidate atomic predi-
cates and transformations. These are synthesized
using the FlashMeta algorithm. Given the trans-
formation or predicate operator (as described in
Section 2.2), FlashMeta can be used to infer argu-
ments to the operator such that it satisfies a given
set of examples. Based on the examples, Flash-
Meta finds the position of phonemes to which a
predicate applies relative to the central phoneme (a
value between −l and r in eq. (1), where 0 refers
to the central phoneme), and values of additional
arguments to the predicate such as the value of K
in predicates of the type IsKthX. FlashMeta also
finds the output value for transformation operators.
To do this, FlashMeta uses the inverse seman-
tics of the operators, which constrains the values
of arguments given the behaviour of the operator
as input-output examples. Figure 3 illustrates the
working of the synthesis algorithm.

3 Dataset

We obtain data by consulting grammars and other
linguistic and phonological analyses of languages
listed in the STRESSTYP2 database (Goedemans
et al., 2014) or by Gordon (2002). The database
contains information about various lects and the
kinds of stress patterns exhibited by these lects.
The database also has links to the sources from
which the data was collected for compiling the
database, and these were the sources we consulted
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LearnProgram

LearnBranch

Input
examples

aba → 001
bab → 010

Phoneme-
level

examples
aba → 0
aba → 0
aba → 1
bab → 0
bab → 1
bab → 0

ReplaceBy(’1’)
bab → True
aba → True
aba → False
aba → False
bab → False
bab → False

ReplaceBy(’0’)
aba → True
aba → True
bab → True
bab → True
aba → False
bab → False

LearnConj

#1. IsPhoneme(’a’,0)
#2. IsKthPhoneme(’a’,0,-1)
#3.AND(IsPhoneme(’b’,1)

IsKthPhoneme(’a’,0,-1))

LearnConj

#4. IsPhoneme(’b’,0)
#5. IsPhoneme(’a’,1)
#6.NOT(IsKthPhoneme(’a’,0,-1))

a. 〈IsKthPhoneme(’a’, 0, -1), ReplaceBy(’1’)〉
b. 〈NOT(IsKthPhoneme(’a’, 0, -1)), ReplaceBy(’0’)〉 3

Figure 3: Illustration of the synthesis algorithm on a hypothetical case where the stress is on the last vowel, using
the BASIC DSL. The input examples are first used to generate phoneme-level examples. The LearnProgram proce-
dure then learns a decision list for the phoneme-level examples through calls to LearnBranch. The LearnBranch
procedure iterates through different candidate transformations (such as ReplaceBy(’0’) and ReplaceBy(’1’)).
For each transformation, the LearnConj procedure produces candidate conjunctions for when the transformation
applies and when it does not. The candidate which is true for the most number of cases where the transformation
applies, and none of the cases where it does not, is chosen. Here, this is #1 for the ReplaceBy(’1’) action and #6
for the ReplaceBy(’0’) action. The predicate-action pair which solves the most examples (here b) is then added
to the decision list, and the LearnBranch procedure is called again on the unsolved examples.

for examples of words with stress patterns marked.
All the words collected from these sources have
the stress marking attested in the source – there are
no cases of a given rule being used to predict the
stress pattern on words.

Once words and the corresponding stress pat-
terns are collected for a language, the set of words
is split into two parts – one to be used for synthe-
sizing programs (the training split) and the other
(the test split) to be used for evaluating the syn-
thesized rules. We ensure that all test examples
are marked with a stress rule that is attested in the
training examples.

We also use data from the stress problems pre-
sented in Vaduguru et al. (2021). These problems
are chosen from the Linguistics Olympiads, a set
of contests in linguistics for high school students.
They present a task that is of a similar form to
the tasks we study in this paper. These problems
present words from a language with stress marked,
and require a solver to use this data to infer the
stress rules for that language, just as we do for the
program synthesis system in this work. For these
problems, we preserve the train-test splits from
Vaduguru et al. (2021).

In total, we have data from 34 languages – 28
from the data we collect, and 6 from Linguistics
Olympiad problems. Each language has between

5 and 33 training examples, with an average of
11.3, and between 2 and 16 test examples, with an
average of 4.8.

4 Experiments

As described in Section 3, each language has a
number of pairs – of word and stress pattern – in the
training split. These are provided to the synthesis
system, which produces a program. Given that
the system checks shorter programs before longer
ones, programs that are found after a long search
are likely to be overfit to the given examples, and
unlikely to generalize to unseen cases. This is why
we terminate the synthesis if a program isn’t found
within 60 minutes. We also observe that for most
of the languages, synthesis terminates well before
this limit. For each language, we experiment with
each of the 4 DSLs described in Section 2.2.

We also experiment with two neural sequence-
to-sequence baselines, based on the LSTM and the
Transformer architecture respectively. We use the
implementation made available by Wu (2020), and
train models with the same hyperparameters as in
Vaduguru et al. (2021).

To evaluate the synthesized programs, we con-
sider the output of the program on words in the
test split. We only consider cases where the pre-
dicted stress pattern exactly matches the ground
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truth stress pattern as correct, and compute the
fraction of samples for which the predictions are
correct – the accuracy of the program on the test
set. We report the average accuracy for the set of
languages we consider. We also report the aver-
age accuracy separately for data from each source
– data which we collect and that chosen from Lin-
guistics Olympiads – to observe any differences
based on the source of data.

Additionally, we report the number of languages
for which a synthesizer acheives a test accuracy
of 100% or over 50%. This allows us to count the
number of languages for which the synthesizers
infer all, or a substantial fraction of, the rules of
stress placement.

4.1 Results

The results obtained are shown in Tables 2 and 3.
Language-wise results are presented in Appendix
A. As expected, we see that neural baselines
achieve low scores (except LSTM models on data
from the Olympiads). Using program synthesis
allows for significant gains over these baselines.

We observe that providing no information be-
yond the identity of the phonemes is not sufficient
to infer correct rules. This is seen in the low overall
accuracy obtained using the BASIC DSL, and the
fact that it doesn’t achieve perfect test accuracy for
any of the languages.

Providing the DSL with just the distinction be-
tween consonants and vowels results in a big jump
in performance. The CV DSL achieves a much
higher average test accuracy, and is able to infer
the rules fully in a number of languages.

Since stress placement is determined based on
syllables, it is not surprising that encoding distinc-
tions relevant to syllable weight hierarchies, such
as vowel length and open/closed-ness of syllables,
achieves the best performance. The SYLLABLE

DSL achieves the highest average test accuracy,
and the infers the rules fully in the highest number
of languages.

While providing access to other features of
phonemes in the FEATURE DSL does improve upon
providing only the consonant-vowel distinctions,
we see that it does not help as much as providing
access to syllable-level distinctions.

We also note the difference between different
sources here. Since Linguistics Olympiad prob-
lems are intended as reasoning challenges where
solvers have to infer rules, they pose a more diffi-

cult learning challenge for our program synthesis
system. This is seen in the lower accuracy obtained
using all the DSLs for these languages. We also
note that in these problems, access to syllable-level
distinctions provides a larger gains relative to ac-
cess to only consonant-vowel distinctions.

5 Analysis

We examine the synthesized programs for specific
languages to understand the reasons for different
levels of performance when using different DSLs,
and illustrate patterns in failures due to properties
of the DSL.

5.1 Benefits of the consonant-vowel
distinction

We see that providing the synthesizer access to
the distinction between vowels and consonants can
improve its performance significantly. A synthe-
sizer that does not have access to these needs to
infer from the data alone that different vowels may
behave in the same way, and that the behaviour
may be common in a variety of contexts. In the
absence of a large amount of data to provide nega-
tive evidence that occurrence in a specific context
determines the application of a rule, the synthesizer
tends to discover incorrect rules.

Consider the example of Lezgian. Stress is Lez-
gian is always placed on the second syllable of a
word. Using the BASIC DSL, the system discovers
rules such as

IfThenElse(
And(PrefixContainsPhoneme(’a’, v, i),
And(PrefixContainsPhoneme(’l’, v, i),

Not(
IsKthPhoneme(’f’, 0, 0, v, i)
))),

ReplaceBy (’1’))

This rule places stress on a phoneme if the prefix
of the word up to the phoneme contain /a/ and /l/,
and it is not the first occurrence of /f/ in the word.
It also learns the rule

IfThenElse(
SuffixContainsPhoneme(’i’, v, i),
ReplaceBy (’0’))

which does not place stress on a phoneme if
the phoneme /i/ occurs after it in the word. This
would lead to incorrect predictions if /i/ occurs in
the third syllable of the word. Such rules are clearly
overfit to the training data, and do not generalize
well.
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Languages BASIC CV SYLLABLE FEATURE LSTM Transformer

All 18.9 46.4 60.8 52.8 15.0 12.7

– Ours 18.8 52.8 63.9 57.1 13.2 12.8
– Olympiad 19.4 16.7 46.1 32.2 23.2 12.1

Table 2: Average accuracy across languages for each of the different DSLs for the entire set of languages and
grouped by source of data.

Languages BASIC CV SYLLABLE FEATURE

= 100% ≥ 50% = 100% ≥ 50% = 100% ≥ 50% = 100% ≥ 50%

All 0 7 8 17 12 21 11 18

– Ours 0 6 7 16 11 18 10 17
– Olympiad 0 1 1 1 1 3 1 1

Table 3: Number of languages where the system obtains perfect test accuracy, or test accuracy over 50%.

On the other hand, with the CV DSL, just the
rules

IfThenElse(
IsKthVowel (0, 1, v, i),
ReplaceBy(’1’),
ReplaceBy (’0’))

are learnt, which place stress on a phoneme if it
is the second vowel (indexing starts at 0), and does
not in all other cases. This illustrates the impor-
tance of access to such phonological distinctions
when rules need to be learnt from a small amount
of data.

5.2 Benefits from syllable-level distinctions
The benefits of being able to refer to syllable-level
information in rules is visible in the programs syn-
thesized for Sio. Stress in Sio depends on the
weight of the syllable. If the final syllable of the
word is a heavy syllable, it is stressed. If not heavy,
the penultimate syllable is stressed. One of the
rules the SYLLABLE grammar learns is

IfThenElse(
Not(SuffixContainsDiphthong(v, i)),
ReplaceBy (’1’))

While there are other constraints to placement,
this rule works towards ensuring that if the final
syllable contains a diphthong (which is part of a
heavy syllable), it is not stressed incorrectly.

To infer a rule about diphthongs correctly within
the CV DSL, predicates about the first vowel have
to be taken in conjunction with predicates about the
second vowel, and this conjunction has to be distin-
guished from many other competing conjunctions

which may also be consistent with the data. If other
conjunctions which don’t generalize beyond the
training data are simpler, these are ranked higher
and incorrectly chosen. Allowing the DSL to dis-
tinguish concepts such as diphthongs thus allows
for learning simpler rules in such situations.

5.3 Incorrect generalizations
However, providing access to syllable-level dis-
tinctions may also encourage the synthesizer to
discover incorrect generalizations. We see this in
the case of Tzutujil. Stress in Tzutujil is placed on
the final syllable of a word. With the CV DSL, the
following rules are learnt.

IfThenElse(
And(SuffixContainsVowel(v, i),
And(IsKthVowel (0, -2, v, i),

IsKthVowel (1, -1, v, i))),
ReplaceBy (’1’))

IfThenElse(
And(Not(SuffixContainsVowel(v, i)),

IsKthConsonant (-1, 0, v, i)),
ReplaceBy (’1’))

IfThenElse(
And(Not(SuffixContainsVowel(v, i)),

IsKthVowel (0, 1, v, i)),
ReplaceBy (’1’))

The first rule checks that if the suffix of the word
after a phoneme to be stressed contains a vowel, it
is the last vowel in the word. This is a case where
the rule for a diphthong is discovered in the CV

DSL. The other two rules ensure that a non-final
vowel is not stressed by checking that the suffix
doesn’t contain any vowels.
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The SYLLABLE DSL on the other hand discovers
the rule

IfThenElse(
Not(IsOpenSyllableVowel (0, v, i)),
ReplaceBy (’1’))

which incorrectly places stress on any vowel
that is part of an open syllable. This results in the
SYLLABLE DSL performing worse than the CV

DSL for Tzutujil.

5.4 Insufficient constraints for stress
placement

A common reason for failure is the failure to learn
sufficient constraints for the application of rules.
This results in sets of rules which allow primary
stress to be placed on multiple phonemes, or on
no phonemes, both of which are incorrect. We see
examples of this in the program synthesized for
stress in Cofan, where the penultimate syllable of
the word is stressed.

Using the CV DSL, the following are some of
the rules that are synthesized.

IfThenElse(
And(IsKthVowel (0, 1, v, i),

PrefixContainsPhoneme(’k’, v, i)),
ReplaceBy (’1’))

IfThenElse(
And(PrefixContainsPhoneme(’s’, v, i),

IsKthVowel (0, 0, v, i)),
ReplaceBy (’1’)

Neither of these rules are sufficiently general,
and rely on the presence of /k/ or /s/ in the prefix
of the word up to the phoneme, neither of which is
not relevant to the placement of stress. However,
another problem is that there is no constraint that
prevent both these rules applying to the same word.
This occurs for the Cofan word /sok1/. The pro-
gram incorrectly predicts that both syllables in this
word receive primary stress, which is not allowed.

The program synthesized with the SYLLABLE

DSL for the same data includes the rule

IfThenElse(
IsKthConsonant (-1, -2, v, i),

ReplaceBy (’1’))

This rule places stress on the phoneme follow-
ing the penultimate consonant of the word. When
the word ends with two open syllables, this rule
correctly predicts stress. However, for a word such
as /PaiPpa/, this rule does not apply. When other
rules also fail to apply, as is the case for this word,

no phoneme is predicted to be stressed. This vi-
olates the requirement that at least one syllable
receive primary stress.

6 Related work

6.1 Program synthesis for linguistics

Barke et al. (2019) and Ellis et al. (2015) present
program synthesis as a method for learning mor-
phophonological rules from examples. They as-
sume the existence of underlying forms, and infer
rules of inflection that map an underlying form to
the surface form using program synthesis. These
rules operate directly on features of the phoneme,
and not on the surface form of the words.

Sarthi et al. (2021) apply program synthesis to
the problem of grapheme-to-phoneme conversion
in Hindi and Tamil, which they pose as a string-
to-string transformation task. Their design of the
domain-specific languages captures specific phono-
logical processes in Hindi and Tamil.

Vaduguru et al. (2021) apply program synthesis
to learning phonological rules for string-to-string
transformations from a small number of examples.
They show that the method can be used to learn
rules for various phonological phenomena like mor-
phophonological rules, phonological rules relating
similar languages, and stress rules in a challeng-
ing set of problems drawn from the Linguistics
Olympiads. In this work, we focus on learning
rules for stress placement alone, which allows us
to specialize the DSL and investigate the effect of
encoding phonological knowledge in the DSL.

6.2 Learning rules of phonological stress

Dresher and Kaye (1990) develop a system that
learns stress patterns within the principles and pa-
rameters framework. Given words and the structure
of syllables in these words, their method learns the
parameters for principles relevant to the placement
of stress.

Gupta and Touretzky (1992) propose a
perceptron-based method for learning stress rules
for empirical data. They propose a model that
takes as input the weight of a syllable and predicts
a value corresponding to the type of stress on the
syllable.

Heinz (2006) proposes a method to learn rules
for quality-insensistive stress, where the stress
pattern depends only on the position and not on
the weight of a syllable. Using the property of
neighbourhood-distinctness, they propose a method
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that learns a finite-state machine to model stress
patterns.

While these works consider the learnability of
stress patterns using a model that assumes certain
features or properties of the input to be available,
we propose a generic method where the availabil-
ity of features can be controlled, and learning of
abstract composite concepts like syllable weights
from various primitive concepts can be investi-
gated.

7 Conclusion

In this paper, we explore the problem of learning
rules for the placement of phonological stress from
only a few examples using program synthesis. We
pose the problem as one of learning rules in the
form of programs for string-to-string transforma-
tions. By designing the domain-specific language
in which the rules are synthesized, we can control
the amount of linguistic information available to
the synthesizer.

We use the allowance to explicity provide the
learning algorithm access to linguistic information
to investigate how different linguistic concepts in-
fluence the rules that are learnt from data. To do
this, we develop a generic program synthesis algo-
rithm, and different domain-specific languages in
which programs are synthesized. Each algorithm
provides access to a different set of phonological
classes, which can be used to identify phonemes
that share common features.

We find that given a small number of examples,
a synthesizer that doesn’t have access to linguis-
tic information beyond phoneme identity is unable
to learn any useful rules. However, distinguish-
ing consonants and vowels proves extremely use-
ful, and distinguishing different types of syllables
proves even more so.

Thus, using synthesis of rules for stress as a
case study, we show how program synthesis can be
used as a way to compare how different primitive
concepts can be combined to learn rules for the
same data using the same learning algorithm. Such
methods can therefore be used to analyze what
concepts are necessary to learn various rules from
a limited number of samples, without changing
the way in which these concepts are combined.
Since program synthesis results in human-readable
programs, we can also understand how primitive
concepts are combined based on the data.
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Abstract

The pairing of natural language sentences with
knowledge graph triples is essential for many
downstream tasks like data-to-text generation,
facts extraction from sentences (semantic pars-
ing), knowledge graph completion, etc. Most
existing methods solve these downstream tasks
using neural-based end-to-end approaches that
require a large amount of well-aligned training
data, which is difficult and expensive to acquire.
Recently various unsupervised techniques have
been proposed to alleviate this alignment step
by automatically pairing the structured data
(knowledge graph triples) with textual data.
However, these approaches are not well suited
for low resource languages that provide two
major challenges: (1) unavailability of pair of
triples and native text with the same content
distribution and (2) limited Natural language
Processing (NLP) resources. In this paper, we
address the unsupervised pairing of knowledge
graph triples with sentences for low resource
languages, selecting Hindi as the low resource
language. We propose cross-lingual pairing of
English triples with Hindi sentences to miti-
gate the unavailability of content overlap. We
propose two novel approaches: NER-based fil-
tering with Semantic Similarity and Key-phrase
Extraction with Relevance Ranking. We use
our best method to create a collection of 29224
well-aligned English triples and Hindi sentence
pairs. Additionally, we have also curated 350
human-annotated golden test datasets for eval-
uation. We make the code and dataset publicly
available † and hope that this will help advance
further research in this critical area.

1 Introduction

The pairing of structural data (knowledge graphs,
Abstract Meaning Representations (AMRs), tables,

†https://www.dropbox.
com/sh/lrh5q9odadixmqx/
AABrTT7YjN6-xVLvviNpqQM6a?dl=0

*Equal Contribution

Hindi Sentence :

कपिल सिब्बल एक भारतीय राजनीतिज्ञ हैं
जिनका जन्म पंजाब के  जालंधर में हुआ था।

============================

English translated sentence :

Kapil Sibal is an Indian politician who
was born in Jalandhar, Punjab.


( Kapil Sibal, country of citizenship, India )

( Kapil Sibal, place of birth, Jalandhar )


( Kapil Sibal, occupation, politician )


Aligned Triples

Figure 1: A Cross-lingual English triple and Hindi text
Example (with English Translation)

databases, etc.) with natural languages sentences
has led to the development of many downstream
tasks such as Relation extraction (Ji et al., 2017),
Knowledge graph population (Vu et al., 2021), di-
alog generation (Wen et al., 2016), Generation of
natural text from structured data (Gardent et al.,
2017; Parikh et al., 2020; Mager et al., 2020), etc.

Most existing methods solve above downstream
tasks using neural-based end-to-end approaches
that require a large amount of well-aligned human-
annotated training data. However, the human-
annotated dataset is expensive and difficult to ob-
tain as annotators need to understand the structured
data and natural text across various domains thor-
oughly. To overcome the lack of labeled data and
difficulty in domain adaptation, unsupervised align-
ment has recently emerged as an active area of
research (Fu et al., 2020; Agarwal et al., 2020; Fan
and Gardent, 2020). Most of these unsupervised
approaches utilize a large amount of structural and
textual data having high content overlap. However,
extending these approaches to low resource lan-
guages still poses a challenge due to the lack of
structured data that has same content distribution
as textual data.

In this work, we propose cross-lingual pairing
of English triples with native language sentences
to mitigate the unavailability of semantic content
overlap for low resource languages. We select
Hindi as low resource language for evaluating the
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efficiency of cross-lingual alignment. We explore
alignment between the English triples present in
Wikidata (Vrandečić and Krötzsch, 2014) with sen-
tences extracted from Hindi Wikipedia articles.

Specifically, through this work, we aim to
achieve the following objectives:

1. We introduce solid baselines for the cross-
lingual alignment task and propose two novel
approaches: NER-based filtering with Seman-
tic Similarity and Key-phrase Extraction with
Relevance Ranking. All the approaches men-
tioned in the paper can be extended to multi-
ple languages, as we do not rely on language-
based heuristics.

2. We use our best method to create a collec-
tion of 26302 well-aligned English triples and
Hindi sentence pairs for training. Similarly,
we create validation dataset consisting of 2922
data instances. Additionally, we have also col-
lected 350 human-labeled gold test dataset to
evaluate alignment methods.

The remainder of the paper is organized as follows.
We discuss related work in Section 2. We discuss
the dataset creation details in Section 3. We explain
the proposed methods in Section 4. Additionally,
we present baselines, experimental settings, results,
and analysis in Section 5. Finally, we conclude
with a summary of our work and future directions
in Section 7.

2 Related work

Recently, there has been a lot of effort in creat-
ing automated structured data to text datasets in
various domains. (Lebret et al., 2016) introduced
a WikiBIO dataset by aligning opening sentences
with infoboxes in English Wikipedia articles on
person’s biographies. Several extensions of this
method of aligning Wikipedia text with infoboxes
have been proposed to create a dataset in different
languages (Nema et al., 2018) and domains (Qader
et al., 2018). Datasets created using these meth-
ods are constrained to a specific domain. (Fu et al.,
2020) alleviates this limitation by aligning knowl-
edge graph triples in Wikidata with opening sen-
tences in Wikipedia. It uses lexical overlap be-
tween the name entities present in a sentence, and
Wikidata triples for alignment. In addition to using
triples available in Wikidata (Wikipedia’s Knowl-
edge Graph), (Agarwal et al., 2020) introduced a

dataset that also incorporates sub-property infor-
mation in the form of quadruples. These datasets
focus on aligning either knowledge graph triples or
infoboxes with sentences present in Wikipedia arti-
cles. (Chen et al., 2021) introduced a dataset that
combined the structured information residing in
Wikidata and infoboxes with a given sentence. To
scale alignment of structured data with natural text
across various domains (Elsahar et al., 2018; Jin
et al., 2020) introduced sequential pipeline strategy
consisting of data collection, data filtering, entity
linking, and alignment. Additionally, it also sug-
gests incorporating a human-annotated test dataset
to evaluate the different alignment methods.

All of the previous approaches depend upon lex-
ical overlap between structured and textual data.
These approaches are ineffective for cross-lingual
alignment where structured data and textual data
are in different languages. Although, we can uti-
lize previously proposed strategies for dataset cre-
ation by translating either structured data or tex-
tual data to other languages. WebNLG 2020 (Cas-
tro Ferreira et al., 2020) shared task presents one
such cross-lingual aligned dataset where Shimo-
rina et al. (2019) performs automatic translation
and post editing of English sentences to Russian.
Final dataset consists of English triples aligned
with Russain sentences verbalizing those triples.
Such approaches do incur the loss due to auto-
matic translation though. Later, we demonstrate
that our proposed approach for cross-lingual align-
ment achieves comparatively better results.

3 Dataset Creation

3.1 Data collection

We use Wikidata as our Knowledge Graph (KG)
for obtaining English triples and Hindi Wikipedia
for fetching equivalent sentences. There exists an
unambiguous one-to-one mapping between Wiki-
data entities and Wikipedia articles, which enables
us to collect high-quality data for many entities.
We initially explored all domains and subdomains
of Wikipedia articles. We decided to choose the
person domain in Hindi Wikipedia as it contains
the maximum number of entities within a domain
(˜16% of Hindi Wikipedia), allowing us to create a
larger dataset. The article text and English triples
are fetched and pre-processed for each entity hav-
ing a Hindi Wikipedia page. Triples with non-
useful predicates like external identifiers, URLs,
etc., are removed. We extract the first three sen-
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tences from each article using sentence tokeniza-
tion in Hindi. This data acts as the input to our
alignment models, which predict a relevant set of
triples for each sentence out of that particular en-
tity’s entire candidate set of triples. We use our
best-proposed approach to create a total of 29224
English triple and sentences pair covering 12429
entities.

3.2 Test Set Annotation
We also collected a human-annotated test set of 460
structured data and text pairs, apart from the un-
supervised training and validation set. We sample
the 460 instances for annotation from the above-
collected data and present them to the user in our
specially developed web-based UI. The user can
see the sentence and all the candidate triples asso-
ciated with that entity. Two of the authors inde-
pendently annotated these instances. The Cohen’s
Kappa score i.e. inter-annotator agreement for the
annotations, was found to be 0.74. Finally, with the
help of a language expert, the final test data sam-
ples were agreed upon from annotations responses
of both the authors. We select 350 data instances as
test datasets on which we report the metrics scores
of our approaches. The remaining 110 samples are
used as internal validation set to tune the hyperpa-
rameters like threshold values.

The distribution of sentences and other statistics
across different domains can be found in table 1.

Domain Entity
count

Sentence
count

Sentence
count
(in test
data)

Avg
sen-
tence
length
(in test
data)

Avg
fact
count
(in test
data)

Actors 2106 5469 50 14.32 3.60
Cricketers 2316 4694 100 21.19 4.70
Politicians 3906 8916 100 18.64 3.47
Writers 2755 6629 50 15.65 1.78
Singers 739 1944 25 18.04 2.92
Journalists 607 1572 25 17.32 2.12
Total 12429 29224 350 17.52 3.08

Table 1: Table contains entity count and sentence count
for final aligned dataset across different domains. It also
presents statistics of manually annotated test data for
each domain.

4 Unsupervised Cross-lingual Alignment

Our alignment model aims to align the most rele-
vant English triples to Hindi sentences. We intro-
duce two novel approaches for cross-lingual sen-
tence and facts alignment task: 1) NER-based fil-
tering with Semantic Similarity and 2) Key-phrase
Extraction with Relevance Ranking.

NER-based filtering with Semantic Similarity
incorporates a novel idea for Named Entity Dis-
ambiguation. We used Nearest Neighbor-based
Search to find the most relevant English words for
the given Hindi words in the sentence by projecting
Hindi and English words in the same vector space.
We use Multilingual Unsupervised and Supervised
Embeddings (MUSE) (Lample et al., 2017) to ob-
tain multilingual vector representation and then
perform the Nearest Neighbor Search to obtain the
top-k candidates. The chosen candidates are further
filtered based on semantic similarity, which boosts
the precision of the model. We experiment with sev-
eral state-of-the-art multilingual transformer-based
models to find semantic similarities between facts
and sentences.

In Key-phrase Extraction with Relevance Rank-
ing, we extract key phrases from a Hindi sentence
based on simple POS-tag-based heuristics and then
rank extracted key phrases in the sentence to their
relevance with its corresponding constituent arti-
cle. We propose a new multilingual variant of Em-
bedRank (Bennani-Smires et al., 2018) to obtain
rankings. Top-k relevant triples are then selected
based on similarity scores with the key phrases of
a sentence.

4.1 NER-based filtering with Semantic
Similarity

To obtain matching English triples for a given Hindi
sentence s, the idea is to filter the triples using
named entity recognition before matching them on
semantic similarity. Our assumption is based on the
observation that if a triple has a Named Entity, then
the sentence with which it aligns will also have the
same or a variation of that Named Entity. If a triple
does not have a Named Entity, we consider it for
finding semantic similarity with the sentence.

We concatenate each word in the triple together
and then extract named entities from it. Our goal is
to find the overlap between the words in the Hindi
sentence to the Named Entities identified in the
triple. There can be multiple variations in how a
Named Entity is written in an Indian Language
such as Hindi. So, using a direct translation would
not suffice for the alignment objective. Addition-
ally, there might be translation loss associated with
it.

To circumvent this problem, we used a pipeline
approach consisting of two stages: 1) Filtering of
triples based on bucket approach, and 2) Semantic
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NER based
filtering Similarity

Triples

Output
Matching

Triples

Triple Embeddings

Figure 2: NER-based filtering + Semantic Similarity

similarity approach.
Filtering of triples based on bucket approach

creates a bucket of English words by retrieving top-
k nearest neighbor English words for each word
present in the given Hindi sentence s from the
common multilingual vector space created using
MUSE (Lample et al., 2017). Then we calculate
the intersection of the named entities identified in
triple with the previously created bucket of English
words for that Hindi sentence s. Finally, we obtain
a score for each triple by dividing the amount of
intersection by the total number of words present
across all the named entities. We retain facts hav-
ing score above a certain threshold, then proceed
with semantic similarity in the next stage.

Semantic similarity approach further refines
the triples obtained from the previous stage by cal-
culating the inner product between the Hindi sen-
tence representation and fact representation. Both
the sentence level representation and fact level rep-
resentation are obtained from multilingual trans-
former models as discussed in Section 5. Finally,
we retain triples above a certain threshold (differ-
ent threshold from the previous stage). We have
illustrated the pipeline approach in Figure 2.

4.2 Key-phrase Extraction with Relevance
Ranking

We extract the Hindi key phrases from the Hindi
Wikipedia article based on simple POS-tag-based
heuristics for this method. We define a phrase as
a key phrase if it contains at least zero or more
Adjectives followed by one or more Nouns. These
obtained key phrases are ranked on how semanti-
cally similar they are to the input Hindi Wikipedia
article. We call this process Key-phrase Extrac-
tion with Relevance Ranking. The ranking mech-
anism follows a multilingual variant of the Em-
bedRank (Bennani-Smires et al., 2018) method.
The intuition behind EmbedRank is to embed can-
didate phrases and the corresponding article in the
same high-dimensional vector space. Then, the
key phrases are ranked based on closeness with
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Figure 3: Method to return Top K triples from key
phrases

the article in the same vector space. Our variant is
explained in Algorithm 1.

Algorithm 1: Ranking key phrases with
respect to Article Relevance
1. Let N = { set of all key phrases in article
A}.

2. Concatenate all the key phrases in N and
let Nv← vector representation of the
concatenated key phrases.

3. For a sentence s in the article A, M ←
set of all extracted key phrases from s. So,
M ⊆ N .

4. For each key phrase K in M , let Kv←
vector representation of K.

5. Assign a score to K , where score =
similarity between Kv and Nv.

6. Rank all the key phrases in M based on
the score.

The process of obtaining similar triples from
ranked key phrases is explained in Figure 3. Af-
ter the key phrases are ranked for an article A,
we extract n-grams for each key phrase. We find
the vector embeddings for each n-gram and each
triple. Now, each n-gram is compared with each
triple, and a semantic similarity score is obtained.
We keep the best matching triple for each n-gram.
Then, we obtain the most similar triples per n-gram
for a key phrase. Among them, we select top-k
triples. These top-k triples form the most relevant
triples for a key phrase. We combine the results
from all key phrases in a Hindi sentence to obtain
sentence-level matches.
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5 Experiments

5.1 Baselines
We experimented with the following baselines:
Multilingual Universal Sentence Encoder (Yang
et al., 2019a) is a general-purpose sentence embed-
ding model for transfer learning and semantic text
retrieval tasks. It relies on a standard dual-encoder
neural framework with shared weights, trained in
a multi-task setting with an additional translation
bridging task. We use the same strategy to filter out
the fact triples as mentioned for mBERT.
Word Overlap uses K Nearest neighbor search
to choose K-most relevant English words for each
Hindi word present in the Hindi sentence. The
word search happens in a multilingual vector space
created using MUSE (Lample et al., 2017). We
keep all these top-K English words in a bucket.
Then, we calculate the overlap between words in
the triple and the English words in the bucket for
each sentence. If the overlap is above a certain
threshold, we classify that triple as aligned with
that sentence.
Static Sentence Similarity use MUSE (Lample
et al., 2017) to obtain multilingual word embed-
dings. We find the average of these word embed-
dings to create sentence representation for a Hindi
sentence. We average all the word embeddings in
a triple to obtain fact-level representation for that
triple. Finally, we find the cosine similarity be-
tween sentence level and fact level representation
and retain triples above a certain threshold for a
given Hindi sentence.
mBERT (Devlin et al., 2018) (multilingual Bidi-
rectional Encoder Representations from Transform-
ers) encodes both the Hindi sentence and list of
associated facts. Facts are verbalized by concate-
nating the subject, predicate, and object. We obtain
the vector representations by taking the average
of sub-word representation from the last layer of
mBERT (mean pooling). Then, we find the cosine
similarity score between the sentence and fact-level
representation. Finally, we retain fact triples whose
similarity score is greater than a certain threshold.
MuRIL (Khanuja et al., 2021) (Multilingual Repre-
sentations for Indian Languages) is pre-trained on
a significantly large amount of Indian text corpora
with an extensive vocabulary for Indian languages.
With MuRIL, we use the same strategy to filter out
the fact triples as mentioned for mBERT.
LaBSE (Feng et al., 2020)(Language-Agnostic
BERT Sentence Embedding) is a multilingual em-

bedding model that encodes text from different lan-
guages into a shared embedding space pre-trained
using the Masked Language Modeling and Transla-
tion Language Modeling objectives. With LaBSE,
we use the same strategy to filter out the fact triples
as mentioned for mBERT.
XLM-R (STS) and XLM-R (Paraphrase)
are sentence transformers that fine-tune XLM-
Roberta (Conneau et al., 2019) on semantic text
similarity (STS) (Cer et al., 2017) and on mul-
tilingual paraphrase dataset (Yang et al., 2019b)
respectively.

5.2 Experimental Settings

For the Word Overlap approach, we set the thresh-
old value to 1 and fixed k=5 in k nearest neighbor
retrieval. We translate the words which are out of
the vocabulary. For all multilingual transformer-
based methods: mBERT, MuRIL, LaBSE, multilin-
gual universal sentence encoder, XLM-R, we use
the base model available (consists 12 layers) on
Huggingface (Wolf et al., 2020).

Threshold value F1-Score
0.35 0.48
0.45 0.55
0.55 0.52
0.65 0.38

Table 2: Threshold values for sentence-triple semantic
similarity on internal validation set for XLM-R (base)

The threshold value is set to 0.45 for cosine sim-
ilarity after hyperparameter tuning on our internal
validation dataset. We tried various pooling strate-
gies like [CLS] token representation, sum pooling,
and mean pooling for sentence-level representation.
We found that mean pooling consistently performs
the best.

K F1-Score
3 0.65
4 0.72
5 0.74
6 0.66
7 0.67
8 0.68
9 0.66
10 0.63

Table 3: K value for K-Nearest neighbor for NER-based
filtering with Semantic Similarity method (tested on
internal validation set)
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Hindi Sentence :

आर के  नारायण भारत के  एक प्रसिद्ध
साहित्यकार थे।

========================

English translated sentence :

R.K.Narayan was a famous author of
India.


( R.K.Narayan, country of citizenship, India)

( R.K.Narayan, occupation, writer)

( R.K.Narayan, occupation, author)

( R.K.Narayan, occupation, novelist)


( R.K.Narayan, occupation, literateur)

( R.K.Narayan, occupation, poet)


Candidate Triples

( R.K.Narayan, country of citizenship, India)

( R.K.Narayan, occupation, writer)

( R.K.Narayan, occupation, author)


( R.K.Narayan, occupation, novelist)

( R.K.Narayan, occupation, literateur)


Gold Standard Annotated Triples

Hindi Sentence :

कपिल सिब्बल एक भारतीय राजनीतिज्ञ हैं
जिनका जन्म पंजाब के  जालंधर में हुआ था।

============================

English translated sentence :

Kapil Sibal is an Indian politician who
was born in Jalandhar, Punjab.


( Kapil Sibal, country of citizenship, India )

( Kapil Sibal, place of birth, Jalandhar )


( Kapil Sibal, occupation, politician )

( Kapil Sibal, occupation, lawyer )


( Kapil Sibal, country of citizenship, India )

( Kapil Sibal, place of birth, Jalandhar )


( Kapil Sibal, occupation, politician )


Figure 4: The first example is a predicted sample from the Key-phrase Extraction with Relevance Ranking approach.
The second example is a predicted sample for the NER based filtering with Semantic Similarity approach. The
prediction by each model is highlighted in bold in the candidate triples.

We determine the optimal K for K-Nearest neigh-
bors and the optimal similarity threshold by tuning
these hyperparameters on the internal validation set
consists of 110 instances. We provide the detailed
results of this hyperparameter search in Table 2
and Table 3. We obtain the optimal value for K in
K-Nearest Neighbors as 5. Similarly, we observe
the optimal value for the similarity threshold to
be 0.45. We use XLM-R (base) as the reference
transformer-based model as it is the best perform-
ing baseline.

For recognizing named entities, we use a BERT-
CRF tagger trained on the OntoNotes dataset
(Weischedel et al., 2017). We use AllenNLP (Gard-
ner et al., 2017) for our NER implementation.

For Key-phrase Extraction with Relevance Rank-
ing, we set n-gram values ∈ [2, 3] and use Stanford
coreNLP (Manning et al., 2014) to detect POS-tags.
We used XLM-R (Paraphrase) as the multilingual
transformer encoder with a similarity threshold of
0.45.

5.3 Evaluation Metric and Results

We use micro-average Precision, Recall and F1-
Score as our evaluation metrics.From the results in
Table 4, it is evident that MuRIL performs better
than mBERT as it is solely pre-trained on Indian
languages with extensive vocabulary size. Surpris-
ingly, a simple approach like word overlap has
higher recall than MuRIL. The reason is that it
searches k-nearest neighbors in a multilingual vec-
tor space, as explained in section 5.1. So, this pro-
cess captures more word variations while retrieving
the facts. XLM-R (paraphrase) model in baselines

performs better than other multilingual transform-
ers as it is fine-tuned on the downstream tasks spe-
cific to text similarity. LaBSE is pre-trained on
the translation language modeling loss. So, it ef-
fectively captures the semantic similarity between
facts and sentences of different languages.

We observe that Key-phrase Extraction with Rel-
evance Ranking has high precision. As the process
captures the relevance of each key phrase with its
article, it ensures to keep only those key phrases
that are highly relevant to the article. The matches
are refined further by n-gram matching with triples.

Surprisingly, NER-based filtering with Semantic
Similarity gives the highest performance in terms
of both precision and recall. This result shows that
the most relevant fact triples are significantly bi-
ased towards having named entities as the primary
factual information. Therefore, even though our
Key-phrase Ranking method considers the entire
context of an article to obtain relevant phrases, the
NER-based model still performs better.

6 Error Analysis

Key-phrase Extraction with Relevance Ranking:
As per the ranking mechanism, we keep only the
most relevant top ranked triples. However, we no-
tice that in some cases, especially where there are
multiple triples which convey similar information,
the model misses to capture all the relevant triples.
Only the highest rank triples are considered, which
leads to similar triples being missed out due to a
slightly lower rank. In Figure 4, the first example
is a predicted sample by the Key-phrase extraction
model. We observe that occupation:author and oc-
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S.no Approaches Precision Recall F1-Score
1 mBERT (mean pooling) 0.37 0.31 0.33
2 Static Sentence Similarity 0.38 0.48 0.42
3 Multilingual Universal Sentence Encoder 0.62 0.38 0.47
4 Word Overlap 0.50 0.52 0.51
5 LaBSE (mean pooling) 0.49 0.56 0.52
6 XLM-R (STS) 0.57 0.48 0.52
7 MuRIL (mean pooling) 0.55 0.51 0.53
8 XLM-R (paraphrase) 0.52 0.58 0.55
9 Key-phrase Extraction with Relevance Ranking 0.78 0.72 0.75
10 NER based filtering with Semantic similarity 0.79 0.83 0.81

Table 4: Precision, Recall and F1-score across different approaches.

cupation:novelist are missed out by the model, due
to the ranking mechanism.

NER based filtering with Semantic Similar-
ity: We notice that sometimes fact triples without
named entities are being missed by the model. The
second example in Figure 4 is a predicted sample
by the NER-based model. We observe that occupa-
tion: politician has been ignored by the model, as
”politician” is not a named entity.

7 Conclusion

We investigate the unexplored problem of cross-
lingual alignment of English triples with sentences
for low-resource languages like Hindi. This paper
demonstrates the result over several baselines rang-
ing from simple techniques like word overlap to
more complex approaches that use pre-trained lan-
guage models. Finally, we propose two novel meth-
ods of NER-based filtering with Semantic Simi-
larity and Key-phrase Extraction with Relevance
Ranking. We show through our experiments that
these approaches perform better than the baselines
on the human-annotated gold dataset, which we
have created as a part of this project. We created a
large dataset of English triples mapped with Hindi
sentences using our best-performing model, mak-
ing it publicly available for further research.

We plan to use the cross-lingual aligned dataset
for various NLP tasks like text generation, KB pop-
ulation, and concept extraction for future work.
Also, we are planning to extend this work to other
Indian languages. We strongly believe that our
alignment models and dataset will enhance the re-
search undertaken for low-resource languages in
the scientific community.

References

Oshin Agarwal, Heming Ge, Siamak Shakeri, and
Rami Al-Rfou. 2020. Knowledge graph based syn-
thetic corpus generation for knowledge-enhanced
language model pre-training. arXiv preprint
arXiv:2010.12688.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hoss-
mann, Michael Baeriswyl, and Martin Jaggi. 2018.
Simple unsupervised keyphrase extraction using sen-
tence embeddings. arXiv preprint arXiv:1801.04470.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh,
Chris van der Lee, Simon Mille, Diego Moussallem,
and Anastasia Shimorina. 2020. The 2020 bilingual,
bi-directional WebNLG+ shared task: Overview and
evaluation results (WebNLG+ 2020). In Proceed-
ings of the 3rd International Workshop on Natu-
ral Language Generation from the Semantic Web
(WebNLG+), pages 55–76, Dublin, Ireland (Virtual).
Association for Computational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Mingda Chen, Sam Wiseman, and Kevin Gimpel. 2021.
Wikitablet: A large-scale data-to-text dataset for gen-
erating wikipedia article sections. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 193–209.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

635



Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Frederique Lafor-
est, and Elena Simperl. 2018. T-rex: A large scale
alignment of natural language with knowledge base
triples. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018).

Angela Fan and Claire Gardent. 2020. Multilingual amr-
to-text generation. arXiv preprint arXiv:2011.05443.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2020. Language-
agnostic bert sentence embedding. arXiv preprint
arXiv:2007.01852.

Zihao Fu, Bei Shi, Wai Lam, Lidong Bing, and
Zhiyuan Liu. 2020. Partially-aligned data-to-text
generation with distant supervision. arXiv preprint
arXiv:2010.01268.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao.
2017. Distant supervision for relation extraction with
sentence-level attention and entity descriptions. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

Zhijing Jin, Qipeng Guo, Xipeng Qiu, and Zheng Zhang.
2020. Genwiki: A dataset of 1.3 million content-
sharing text and graphs for unsupervised graph-to-
text generation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2398–2409.

Simran Khanuja, Diksha Bansal, Sarvesh Mehtani,
Savya Khosla, Atreyee Dey, Balaji Gopalan,
Dilip Kumar Margam, Pooja Aggarwal, Rajiv Teja
Nagipogu, Shachi Dave, et al. 2021. Muril: Multi-
lingual representations for indian languages. arXiv
preprint arXiv:2103.10730.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043.
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Abstract
Proverbs are unique linguistic expressions
used by humans in the process of commu-
nication. They are frozen expressions and
have the capacity to convey deep semantic
aspects of a given language. This paper
describes ProverbNet, a novel online mul-
tilingual database of proverbs and compre-
hensive metadata equipped with a multi-
purpose search engine to store, explore, un-
derstand, classify and analyse proverbs and
their metadata. ProverbNet has immense
applications including machine translation,
cognitive studies and learning tools. We
have 2320 Sanskrit Proverbs and 1136
Marathi proverbs and their metadata in
ProverbNet and are adding more proverbs
in different languages to the network.

1 Introduction
According to Norrick (2015), proverbs are self-
contained, didactic linguistic units, and their
content is usually fixed and poetic. Proverbs
contain the same words as ordinary sentences,
but are frozen expressions and have a non-
compositional meaning, created by humans
and handed down through generations (Mei-
der, 2004). Proverbs can be used to present
facts, refer to human socio-cultural events,
give advice, and critique behavior (Lubis,
2019). Understanding of metaphorical ideas
and a priori knowledge is essential for get-
ting from the literal meaning of the proverb
to its hidden and intended meaning. The cru-
cial task of machine translation fails to trans-
late proverbs because of the inability to de-
tect proverbs automatically and incorrectness
of direct translation. As proverbs are just like
any other sentences, it is difficult to detect
them in textual corpus automatically. There

are a few proverbs that have counterparts in
other languages, and sometimes we can ob-
tain them via direct translation, but many
times, they are entirely different. Proverbs can
be categorized into various classes and cate-
gories (Lauhakangas, 2001). They are usually
static multi-word expressions having specific
keywords. In most cases, we cannot change
even a single word in the proverb. If done,
then it becomes a simple sentence without an
accepted non-compositional meaning.

For all languages in the Indo-European fam-
ily in India, Sanskrit is considered to be linked
to them historically. Sanskrit is one of the
oldest documented members of the Indo Eu-
ropean family (Woodard, 2008). Since it is
an ancient language, the wisdom embedded
in Sanskrit proverbs has been carried forward
for thousands of years. However, nowadays
the use of proverbs has reduced even in the
native spoken languages, let alone the use of
proverbs in the Sanskrit language. To pre-
serve these wisdom-packed proverbs, we re-
quire a digital database with the analysis of
the proverbs. Some compilations are found
having internet base. However, the collections
of Sanskrit proverbs found on the internet are
comparatively small and limited only to the
famous proverbs. People refer to these compi-
lations when they are in want of a particular
proverb, or the proverbs related to a particular
theme or concept. For such reference, a mere
compilation does not suffice. There should be
an online database in a searchable form. As far
as Indian languages are concerned, there are
no databases of proverbs available and our tool
removes this desideratum, and this Proverb-
Net may act as a single reference point.
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2 Literature Survey

To the best of our knowledge, no online mul-
tilingual database of proverbs with compre-
hensive metadata focused on Sanskrit and
other Indian Languages exists. We, there-
fore present a survey of related literature –
the sources from which we compiled proverbs,
proverbial analysis, cognition, multi-word ex-
pressions, wordnets, online proverb databases
and possible applications.

There are many offline collections of
proverbs. Ābhāṇakajagannātha by Jagannath
(Jagannath, 2009) is a compilation of new
proverbs in Sanskrit. Manwaring (1899) has
collected, translated and classified a total of
1910 Marathi proverbs. Bharatiya Kahavat
Sangraha by Naravane (1978) is a collection
of proverbs in three volumes of proverbs in fif-
teen Indian Languages and can be called as
the Gītā of Indian Proverbs. Bhosale (2016)
has composed a collection of proverbs from
Marathi language which may go into oblivion
soon and has tried to preserve these proverbs.
Such collections are essential in preserving the
treasure of language.

A vast amount of literature exists on prover-
bial analysis. Several books (Honeck and
Temple, 1994; Mieder et al., 1994; Honeck,
2016; Bhagwat, 1985; Brough, 1953) and ar-
ticles (Bronkhorst, 2005; Temple, 1999; Swin-
ney, 1979) provide deep insights into the jour-
ney of the meaning of a proverb from literal
meaning to its suggestive meaning. Meider
(2004) explores definitions, classification, ori-
gin, dissemination, collection, and various case
studies of proverbs. Grzybek (2014) presents
a semiotical study of proverbs in pragmati-
cal, syntactical, and semantical dimensions. A
psychological study suggests that the ability
or inability to explain meanings of proverbs
indicates the presence or absence of abstract
thinking abilities, and a strong understand-
ing of proverbs reveals essential insights into
how people conceptualise metaphorical ideas
(Gibbs and Beitel, 1995). According to Fer-
retti et al. (2007), people should be able to un-
derstand the non-compositional meanings of
proverbs directly without having to first think
about and reject their literal meanings.

Proverbs belong to a class of multi-word
expressions. Therefore, research conducted

for the identification and analysis of multi-
word expressions can be applied to the anal-
ysis of proverbs. Tsvetkov and Wintner (2014)
present a survey on analysing multi-word ex-
pressions and provides a more in-depth under-
standing of tasks related to multi-word expres-
sions like discovery, identification and transla-
tion.

When it comes to creating and populating
proverb databases, automatic identification of
proverbs from a textual corpus is beneficial.
Quite a few ways of automatically identify-
ing proverbs exist. Rassi et al. (2014) identify
proverbs and their variants by creating a fi-
nite state automaton with thirteen commonly
found syntactic patterns in proverbs and then
test on Brazilian Portuguese journalistic cor-
pus. Sidhu et al. (2010) describes a word-
based algorithm that splits input text and
known proverbs and to find proverb variants
in a given text and uses this to perform ma-
chine translation. Garg and Goyal (2014) per-
form automatic extraction of idioms, proverbs
and their variations from text using statistical
approaches.

A significant amount of research has been
done in the creation of lexical databases.
Princeton WordNet (G. A. Miller, 1990) is a
massive database of English lexicons. Sanskrit
wordnet (Kulkarni et al., 2010) is more than
just a dictionary and gives different relations
between synsets which represent unique con-
cepts. Indo wordnet (Bhattacharyya, 2010)
is a wordnet in multiple Indian Languages.
These wordnets are extensive, but their focus
is on single words and not multi-word expres-
sions or proverbs.

Online proverb databases usually attempt at
aggregating proverbs of one or two languages.
Lauhakangas (2013) created a multilingual
database of proverbs in European Languages.
Our database is focused towards Indian lan-
guages, contains more metadata, flexible cate-
gorisation, more features and addresses a dif-
ferent set of goals.

3 Main Contribution

We introduce ProverbNet, an intricate net-
work of multilingual proverbs equipped with
a multipurpose search engine that contains ex-
tensive metadata and detailed cognitive analy-
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Figure 1: ProverbNet Block Diagram

sis. We gather inspiration from Sanskrit Word-
Net (Kulkarni et al., 2010) and Indo WordNet
(Bhattacharyya, 2010) to design the interface.
In order to populate this database and amelio-
rate the data entry process, we have designed
an easy to use and elegant data entry inter-
face. We have also designed a search engine to
perform queries on this database. The block
diagram of the system is shown in figure 1. We
will now explain the system, and describe the
details of various fields and their importance
in the next section.

4 ProverbNet Database and Data
Entry Interface

We have designed ProverbNet to contain com-
prehensive metadata about proverbs. We
choose and present the data such that it ben-
efits both, an amateur reader and a proficient
researcher in Paremiology. The data entry in-
terface (figure 2) is fast, responsive, and el-
egant. The interface is written in React, a
JavaScript framework, and uses material-UI
components. Currently, we have 2320 San-
skrit proverbs in the ProverbNet database.
Amongst them, 1000 proverbs frequently oc-
cur in typical Sanskrit dialogues. Rest of
the proverbs are from Ābhāṇakajagannātha,
a book that comprises of 1320 new and rare
Sanskrit proverbs. We also have 1366 Marathi
proverbs, and we are adding proverbs of other

languages to the database.
The Data Entry Interface enhances the data

entry experience by providing various features
like language selectors for appropriate data
fields, phonetic transliteration from English
to any of the selected languages, and a vir-
tual keyboard to type in the desired language.
When the phonetic transliteration option is se-
lected, and a language for a particular text
box is chosen, one can type a word in English
and press space to get the phonetic transliter-
ation of the word into that language. If the
transliterated word is incorrect, the user can
press backspace to get more word recommen-
dations, and they can replace their word ac-
cordingly. A virtual keyboard of the selected
language appears under each text field when
the option is enabled. The interface has dif-
ferent types of input fields depending on the
type of data. On clicking the submit button,
the data gets validated and then gets entered
into the database. Now we explain the impor-
tance of the fields present in our database and
the data entry interface.

Proverb: The user can enter a proverb in
their language of choice.

Literal Meaning: The literal meaning of the
proverb, preferably in English. It is what
someone would say if they considered it as a
typical sentence without any figurative mean-
ing.
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Figure 2: Data entry interface

Secondary meanings: Most of the times,
the literal meaning of a proverb does not dis-
close the actual meaning it wants to convey.
Hence, after following the literal meaning of
the proverb, we have to advance to its sec-
ondary meaning, lakṣaṇā.

Suggestive meanings: A proverb is not ut-
tered in vacuum or isolation. A proverb is
almost always a reactionary utterance to ei-
ther refer to something that has happened
or to refer to something that will probably
take place. So knowing the context in which
we use the proverb becomes vital in under-
standing the essence of a proverb. The same
proverb can be uttered in multiple situations
by different speakers. This subjectivity is
not covered in secondary meaning (Lakṣaṇā)
as secondary meaning limits itself to figura-
tive meaning.Hence a third vṛtti is required
to reach the essence of a proverb. This
third vṛtti is termed vyañjanā, [the sugges-
tive power (meaning)] in Sanskrit linguistics.
The metaphorical meaning takes into consid-
eration how a proverb yields itself to multi-
ple situations. Understanding, the literal and
figurative meanings of a proverb, is only a
part of comprehending the proverb completely.
The comprehension of a proverb as a whole
(and not just the meaning) will be complete
only when the listener can relate the proverb

to different situations. Therefore the sug-
gestive meaning expresses the essence of the
proverb. Literal, figurative, and suggestive
meanings (i.e., Abhidhā, Lakṣaṇā, Vyañjanā)
of a proverb are present in the ProverbNet.
Proverbs are ‘frozen expressions’ with univer-
sally accepted fixed meanings hence the vari-
ations with reference to context will be mini-
mum.

Cognition of the proverb: Most proverbs
may allude to some universal truths or com-
mon human behaviours. Thus like morale of a
story, cognition of proverb gives morale of the
proverb wherever applicable.

Keywords and keyword categories:
Lauhakangas (2001) describes classifica-
tion of proverbs into different categories. For
better clustering of proverbs and search, we
enter certain keywords of those proverbs and
define categories. We select the important
words from the proverb or their synonyms as
keywords. Further, we classify these keywords
into emotions, animal names, body parts, and
similar categories. This facilitates the search
of proverbs containing specific words.

Type of proverb: The nature of proverbs are
classified into five broad categories, viz. obser-
vation, criticism, comment, suggestion, advice.
Based on the type of the proverb, the user may
select zero or more of these types.
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Observations: The user may enter any spe-
cific observations regarding the use of the
proverb. Sometimes proverb and its literal
meaning may lead to a positive outcome, but
the action is aimed at the elimination of harm-
ful things. For example, Mule Kuthār | The
English translation of the proverb is ‘Nipping
in the bud’, which means destroying a thing
from its root. While we normally perceive
destruction as bad, if the outcome is posi-
tive, the action may still be termed as good.
Since the proverb suggests destruction, the
observation for this proverb is ‘negative po-
larity’. Another example of negative polarity
is Vināshkale Viparitbuddhi | Here the words
have a negative tone, and the outcome is also
negative. On the other hand, carāti carato
bhaga:| is a proverb having neither a negative
tone nor a negative outcome. The observation
for this proverb is ‘positive polarity’.

Examples: The user may enter examples of
the proverb in a contextual paragraph. The
understanding of the use of proverb and its
nuances grows with repeated exposure to a
proverb. Therefore, examples would help the
reader understand the use of proverb and show
a possible usage of the proverb as well.

Reference: The user may enter the source
of a proverb if available. In Sanskrit, many
proverbs originate from Sanskrit Subhaṣhitas.
Many Subhaṣhitas have a structure where the
first line or first three lines provide an ex-
ample, and the last line summarises the ob-
servation. The last line is commonly used
as proverb rather than quoting entire shloka.
Many of us are not even aware that a partic-
ular sūkti is part of a verse. If we understand
the whole verse, it becomes easier to under-
stand the essence of that sūkti on the backdrop
of the thought/ idea conveyed in the whole
verse. E.g. Maunm sarvārthsadhanm | keep-
ing mum or remaining silent is beneficial. It is
the last caraṇa, i.e. line of the following verse.

Ātmno mukhdosheṇ badhyante shuksārikāh |
Bakāstatra na badhyante Maunm sarvārthsadhanm ||

Parrots are caged because of their quality
of imitating the human language in a sweet
voice, but cranes are not caged because they
do not speak. Therefore remaining silent is al-
ways beneficial (keeps you free). When we un-
derstand this sūkti on the backdrop of parrots
being caged and the cranes remaining free, we

experience the specific shade of this proverb.
The same is with a philosophical sūkti which
has been drawn on the Bhagavadgītā, Up-
aniṣhad, Bhāgavatapurāṇa. Thus taking into
consideration the background or the source of
the sūkti helps us in extracting scent of the
meaning from the proverb.

For some proverbs, there is reference to a
story. Knowledge of the story is essential for
complete cognition. A case from English lan-
guage is ‘David v/s Goliath’. While a reader
may comprehend it as a tussle between two
persons, if the story of David and Goliath is
known, one understands it as a fight of a small
person with a mightier one. It is better to be
aware of the story behind the shloka to com-
prehend the proverb completely.

For example, the complete shloka of the
proverb Fatātopo Bhayankarh | is

Nirvisheṇāpi sarpeṇ kartavyā mahati fanā |
Viṣamstu na vāpyastu fatātopo Bhayankarh ||

However, even understanding the śloka does
not complete the comprehension until the
story is told. Thus, the proverb may become
part of the regular vocabulary, but the śloka
may not. Here, we have given the complete
subhāṣita/śloka and its source wherever avail-
able. Related context and references are also
provided where necessary. This helps in better
cognition of the proverb.

Parallels in other languages: One can enter
proverbs that have equivalent or similar mean-
ings in other languages. Historically, proverbs
from Sanskrit can be said to have come down
into modern Indian languages sometimes with
variations. It is also observed that proverbs
in different languages express a similar con-
cept. Such similar proverbs may help a reader
better understand the nuanced meaning of a
proverb in Sanskrit. It will also throw light
on how a proverb may have undergone change
when it moved from Sanskrit to other lan-
guage. An example is illustrated in figure 5.
There is already an existing book of parallel
proverbs in Indian languages spanning more
than 1000 proverbs across around 10 Indian
languages including Sanskrit (Naravane, 1978).
We will be using it as a resource for building
the database. However there is no metadata
i.e., it is not searchable for similar proverbs,
opposite proverbs, keyword search etc. Along
with these features the ProverbNet explains
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primary, secondary and suggestive meanings
of the proverbs and it also contains the exam-
ples of the usage.

Specifics: Wherever applicable, the user can
add specific references to Mythology, History
or Culture. For example, Ishvarechā baliyasee
| is related to Indian mythology due to refer-
ence to God Shankara. The proverb naro vā
kuñjaro vā is related to history as it has ref-
erence to a story from Mahābhārata and we
can say that the usage of this proverb has
started after Mahābhārata. The proverb va-
sudhaiva kuṭumbakam has specific reference
to Indian culture as this thought encompasses
the essence of Indian philosophy.

Process of cognition through the process of
Shābdabodha: The following kārikā tells us
the process of Shābdabodha.

Padjnyānm hi karaṇm dvāram tartar padārthdhi |
Shābdabodh falam tatra vṛttidhi sahakāriṇi ||

It means: (padajñāna) cognition of the word
(maybe the sound or the alphabets) is an in-
strumental cause (the most effective means in
Shābdabodh). Cognition of the meaning of
the word (padārthdhi) is the gateway of the
śābdabodha, vṛtti helps us to lead to the final
goal that is śābdabodha, and the result is the
verbal cognition. In order to cognise a proverb
through the theory of śābdabodha, we analyse
proverbs through each of these aspects. This
theory is not only limited to Sanskrit, and we
can apply this theory to other languages as
well. Following are the steps in the process of
cognition.

• Padajñāna - cognition of words of the sen-
tence

• Padārthjnyānm – After identifying the
words of the sentence by their sounds or
by the sequence of alphabets, we under-
stand their meanings.

• vṛtti - ( ṣakti, lakṣaṇā, vyanjanā ) to un-
derstand the meanings of the word we
have to rely on the ṣakti or the primary
meaning or the denotative power. How-
ever, when meanings are incompatible,
we have to go to the secondary meaning
that is lakṣaṇā. Vyañjanā is the sugges-
tive meaning of the sentence. The literal
meaning of an utterance is only a part of
its whole meaning. The suggestive power

helps us to go beyond the primary and the
secondary meaning.

• Saktigraha - We consider different ways of
ṣaktigraha to understand the ṣakti.

• Akaṇkṣā, Yogyatā, Sannidhi - These
are three conditions, meaning mutual
expectancy of words, compatibility of
words and proximity of words respectively.
When these three conditions are fulfilled,
cognition of the text is done successfully.

If a proverb yields to all these aspects, then
we say that the proverb is cognisable through
the theory of Śābdabodha. We illustrate this
process in detail with the help of an example
in Appendix A.

Classification: There are various ways to
classify proverbs. Classification of proverbs by
any criteria is a complicated question, and no
comprehensive and standardized solution ex-
ists. Each type of classification has its validity,
its practical uses, and also its drawbacks. Ku-
usi (1972), a Professor of Finnish and Compar-
ative Folk Poetry Studies and paremiologist
found three aspects, i.e. the idea, structure,
and basic core necessary for the classification
of proverbs. He proposed that the proverbs
with a common idea would be called synony-
mous proverbs, those with the common scheme
would be called proverbs with shared structure
and proverbs with images and phrases having
the same meaning would be called proverbs
with a common basic core. We use and ex-
tend his classification to adapt to Sanskrit and
other languages. We classify proverbs in the
following broad categories. Subcategories will
be explained in Appendix B.

1. Proverb Structure: A proverb is an ex-
pression or a comment on a particular sit-
uation. The lesser the words, the stronger
the essence. Thus the structure of the
proverb has a great significance in convey-
ing the expression effectively.

2. Proverbial Formulae: All languages pos-
sess certain structural formulae that ex-
hibit a high degree of peculiarity towards
the proverb as a linguistic form (Coinnigh,
2015). In Sanskrit proverbs, the follow-
ing proverbial formulae are widely found:
Itah.. tath, yatra.. tatra, yathā.. tathā,
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yādṛṣm.. tādṛṣm, x vā.. y vā, x vā.. y na
vā, na x na y, yah/yā.. sah/sā

3. Themes: Proverbs have a situational sig-
nificance, and hence the circumstances
for which we use proverbs show a wide
range of themes. Therefore, theme be-
comes an essential basis for classification
of proverbs. In ’International type sys-
tem of proverbs’, Matti Kussi provides
a framework of specific themes for clas-
sificational international proverbs. Using
Matti Kussi’s framework as a base, this
ProverbNet will explore and contribute to
the thematic classification of proverbs

Now, after the data is recorded in the data
entry interface, it gets added to the database
after performing several validity checks. We
have modelled the ProverbNet architecture as
a relational database with separate tables for
appropriate data elements. Every data entry
has a distinct reference ID, is the primary key
of the information table, and increments au-
tomatically. We put the single-valued entries,
namely, literal meaning, secondary meaning,
type of proverb, cognition, references, specific
observations, historical specifics, social and
cultural specifics, lingual specifics, and each of
their languages in a single table called the in-
formation table. We store the remainder of
the data elements, i.e. the ones that have
more than one multiplicity, namely proverbs,
suggestive meanings, the process of cognition,
keywords and categories, classification, and ex-
amples in separate tables. This arrangement
of data is a natural choice and benefits the
search algorithm, which we will explain in the
next section.

5 Search

We have designed a search interface (figure 3)
to search for proverbs in the desired language.
The search takes input a single or a multi-word
query in a language specified by the user. The
search interface has a transliteration option to
type in English, and the text automatically
gets transliterated to the selected language. It
also has a virtual keyboard to type in the de-
sired language. On submitting, the interface
sends the search request to the back-end server
for processing. On getting the response, we dis-

play the search results in a convenient format
inspired by the Indo Wordnet (Bhattacharyya,
2010). The search interface has buttons to fil-
ter output proverbs by language. The proverbs
are displayed as cards and have a button to ex-
pand them and display their stored metadata.
It also has a feature to perform an in-depth
search and get more results. Users can also
specify the type of the query to search specific
metadata.

User searches can vary from getting a
proverb by entering a part of it to find the
processes of cognition of proverbs related to a
specific theme. One can search for proverbs by
typing in the entire proverb ( bhavitavyānām
dvārāṇi bhavanti sarvatra |). If they do not
know the entire proverb, they can type a few
words of the proverb as well (bhavitavyānām
bhavanti). If they want to find out a proverb
with a given meaning, they can type the
meaning of the proverb and get the proverbs
that have the entered meaning. The mean-
ing can be literal, secondary or suggestive (No
one can change the destiny, or destiny is in-
evitable). Therefore, ProverbNet acts as a the-
saurus of proverbs as well. One can search for
proverbs containing specific keywords (bhav-
itavya, dvāra) or their categories (fate). To
get complete śloka, or get proverbs written
in specific reference, or get entire proverbs
by a particular author, one can enter the ref-
erence name or the author name (Śhākunta-
lam, Kālidāsa). Users can get proverbs that
have similar processes of cognition, classifica-
tion, and other metadata.

The output of a sample query is shown in
figure 3. The search currently uses a two-step
algorithm to get the relevant output. We as-
sume that the user will generally enter key-
words, classification, or a part of the proverb
as the search query. The first step of the algo-
rithm is to match proverb prefixes (includes
full proverb) with the search query, match
exact keywords or categories, and classifica-
tion. Make individual queries on each table
and collate the results. If there are matches,
return them. If no matches are present, exe-
cute the second step of the search. Another
way to trigger the second step is to click the
button called ’more results’ provided in the
search interface. The second step is to per-
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Figure 3: Search interface

form a broader search. We break the search
query into individual words and remove cer-
tain words (e.g. a, and, the), search each word
in all of the fields of the database, and return
those proverbs not returned in the previous
step. This step yields a more extensive collec-
tion of proverbs, and they are lesser relevant
to the search query than those returned in the
first step. We also have another selector in
the interface that to specify the type of search
query if needed (e.g. meaning, classification)
to get more relevant and narrower search re-
sults. Selecting the option enables search in
only those specific fields.

6 Applications

There are quite a few possible applications
of ProverbNet. ProverbNet can be used as
an online resource for authors and readers
to understand proverbs, as the literal trans-
lation may not lead to a comprehensive under-
standing. Furthermore, The current state-of-
the-art systems fail to translate proverbs cor-
rectly, and there is a need for such a multi-
lingual resource for correct automatic transla-
tion of proverbs. Also, ProverbNet will help
get closer to solving the problem of word sense
disambiguation. ProverbNet can also become
a learning resource as an educational applica-

tion. Finally, ProverbNet will be useful to get
equivalent proverbs in different languages in
one place.

7 Future Work

We are adding proverbs from other languages
to ProverbNet. The design of ProverbNet en-
sures little changes to add newer languages.
We plan to implement deep learning models
to identify proverbs and use ProverbNet for
automatic translation. We are also working
towards clustering the different entries to cre-
ate newer entries, so the equivalent proverbs
in different data entries get clubbed together.
For users having difficulty reading the words in
the language present in the database, we plan
to add automatic transliteration and transla-
tion of metadata in different languages.
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Appendix A: Process of Cognition
Example

Let us apply process of cognition to: Ni-
rastapādape deshe eraṇdopi dṛmāyate |

1. Padjnyānm: Nirastapādape deshe eraṇ-
dopi dṛmāyate

2. padārthjnyānm – After identifying all the
words either by their sounds or by the sequence
of alphabets, next step is to understand their
meanings. The next step is understanding the
vṛtti, i.e. the relation of word and word mean-
ing. To understand the meanings of the word
we have to rely on the ṣakti or the primary
meaning or the denotative power. To under-
stand the ṣakti let us consider the different
ways of ṣaktigraha.
vyākaraṇa - Grammar. drumāyate - gener-
ally in Sanskrit verbs originate from roots like
verb gaccha – root gam, verb yaccha – root da.
However, there are certain verbs created from
Nouns which are called nāmadhātū. They de-
rive a root from a noun which they consider
to be the most suitable, the most appropriate

to convey their thought. drumāyate: takes
the place of a tree, pādapa: it is a compound,
pādai: pibati | (upapada tatpuruṣa) one who
drinks through their legs – a tree which drinks
water through its roots.
koṣa: – Dictionary. nirasta– deprived or void
of,eraṇḍa: castor bean plant. Thus the pri-
mary meaning of the proverb attained by the
abhidhā ṣakti is: In a place where there is no
vegetation, even a castor plant takes the place
of a tree. This would have been called a mere
description of a castor plant. But since we use
the words eraṇdopi dṛmāyate, even a castor
plant takes the place of a tree indicates that
this sentence wants to say something more
than its literal meaning. Thus here abhidhā
ṣakti does not suffice. We have to go to the
next level, i.e. lakṣaṇā or figurative mean-
ing. But before going to the secondary mean-
ing let us examine whether the words in the
given frozen expression satisfy the conditions
of ākaṇkṣā, yogyatā, Sannidhi.

Since words are occurring in immediate se-
quence, condition of Sannidhi ( phonetic con-
tiguity) is fulfilled. In this sentence, we have a
verb, related kartā to that verb and the other
related words also tell us their connection with
the verb. So the condition of ākaṇkṣā syntac-
tic expectancy ) is also fulfilled. In this expres-
sion eraṇd dṛmāyate these two words are in-
compatible. Because the plant of eraṇd grows
up to two to four feet, it is a plant with a small
number of leaves and not the tree. Still, it is
called a tree. Thus these are incompatible with
each other. Though there is no compatibility
of words in this expression, this expression is
not considered meaningless. It is generally ob-
served that many of the proverbs hold incom-
patible words and still express deep meaning.
The deliberate use of incompatible words in
proverbs makes us more attentive towards its
meaning. Now let us move to the secondary
meaning.

3. The primary meaning attained by the de-
notative power does not seem meaningful, so
we consider the next level, i.e. the secondary
meaning or the lakṣaṇā. The secondary mean-
ing of the proverb/ meaning attained by the
lakṣaṇā is : When everyone around is of
mediocre capacity, one with even a few acco-
lades becomes the hero. The secondary mean-
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Figure 4: Classification Example

ing tells us the implied meaning of the proverb.
The same proverb can be uttered in multi-
ple situations by different speakers. Lakṣaṇā
does not cover subjectivism as lakṣaṇā limits
itself to figurative meaning. Hence we have to
go further and find out the suggestive mean-
ing (vyanjanā) expressed through this proverb.
There can be many suggestive meanings de-
pending upon the situation, the intention of
the speaker, the way the listener receives it.

4. Suggestive Meanings: It is quite natu-
ral to compare oneself to his surroundings and
feel a sense of accomplishment. Calling oneself
better than those around, aids only in boost-
ing the ego. If the general average of the com-
pany is kept low, one may not even know there
are bigger things out there in the world. Peo-
ple should raise the bar of self-assessment by
keeping the company of noble people.

5. Cognition of the Proverb: Be an achiever
in harsh surroundings than being the best
amid trivial situations.

Appendix B: Classification of
Proverbs

An example of classification is shown in fig-
ure 4. Following is the detailed explanation of

classification that we use in ProverbNet.

B.1 Structural Classification
1. Sentence Type: Proverbs appear in a
variety of different sentence types; from a
syntactic perspective, these sentences may
be classified into simple, and non-simple (
compound, complex) (Coinnigh, 2015). Sim-
ple sentences are typically simple, declarative,
non-oppositional, and they do not contain
any stylistic markers. E.g. ati sarvatra var-
jayet (affirmative) , amantram akṣram nāsti
(negative). compound/complex sentence are
sentences containing one or more dependent
clauses in addition to the main clause. E.g.
yādṛṣm vapate beejam tādṛṣm labhte falam,
yah kriyāvān s pandith |

2. Sentence Functions: We classify sen-
tences based on the function they perform in
the communication. Proverbs may belong the
following categories.

(a) Advisory/potential – in Sanskrit the po-
tential (vidhyartha) form is used to de-
note advisory function. E.g. ati sarva-
tra varjayet| kaṇtakenaiva kaṇtakam ud-
dharet |
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(b) Rhetoric - A question asked to create a
dramatic effect or to make a point rather
than to get an answer. E.g. kṛshe kasyasti
sauhṛdam? andhasya deepen kim?

(c) Comparative – Denotes comparison be-
tween two objects. In Sanskrit the suf-
fixes we use tara, īyasa, varaṃ to denote
comparison. E.g. Janani janmabhumis-
cha swargādpi gariyasi | Varam sarpo n
durjanah |

(d) Complement ( x is y ) - It is a word,
phrase, or clause that is necessary to com-
plete the meaning of a given expression.
In Complement sentence type of proverb,
we use one object to denote another ob-
ject. E.g. yah kriyāvān sah pandith|
guṇāh pujāsthanam|

(e) Informative sentence – a sentence which
provides general information. E.g. jal-
bindu nipaten kramaṣah puryate ghath|
sāhase shree prativasti|

(f) criticism - proverbs that criticise things,
people, actions, behaviour. E.g. kṛśe
kasyāsti sauhṛdam|

(g) observation - proverbs that contain gen-
eral observations. E.g. Fatātopo
Bhayankarh |

(h) comment - proverbs that provide general
comments, these proverbs can sometimes
also be classified as observations. E.g.
Maunm sarvārthsadhanm|

(i) suggestion - It is an advice, suggestion.
E.g. Mule Kuthār|

B.2 Proverbial Formulae
If applicable, we classify proverbs according to
the following formulae:

1. Itah.. that – ito vyāghrh tato tati

2. yatra.. tatra – yatra yatra dhumo tatra
tatra vahni

3. yathā.. tathā - yathā rājā tathā prajā

4. yādṛṣm.. tādṛṣm - yādṛṣm vapate beejam
tādṛṣm labhte falam

5. x vā.. y vā - naro vā kunjaro vā

6. x vā y.. na vā - dātā bhavti vā na vā

7. na x.. na y - kāmāturaṇām na bhayam na
lajjā

8. yah/yā.. sah/sā - yah kriyāvān sah pan-
dith

It is seen that structurally Marathi proverbs
are comprised of two distinct parts. Very often
a distinct rhyme scheme is seen in these two
parts of a proverb. There is no specific the-
ory that explains the reason for such a rhyme
scheme based structure. However since the
proverbs have their roots in colloquial (oral)
use of language, one may conclude that owing
to the oral nature of proverbs and its brief, con-
cise and crisp structure rhyme scheme might
have been incorporated into proverbs. We
classify proverbs as rhyming or not rhyming,
and following are some examples of rhyming
proverbs.

• ati udār to sadā nadār

• sāpalyamadhye wāgh sāpade, bāyakā
mule māriti khade

• dev tāri tyālā kon māri

• khāin tar tupāshi nāhitar upāshi

• āiji rāṇi bāyji rāṇi, toṇd dhuvāyalā kon
deil pāṇi

B.3 Thematic Classification
(A) Natural Elements: human behaviour ex-

plained through natural elements

(a) water, fire, earth, sea, soil, flora
(b) animals
(c) weather

(B) Cause-Effect Relationship

(a) cause-effect
(b) positive cause leading towards posi-

tive effect
(c) negative cause leading towards nega-

tive effect
(d) negative cause (contribution) leading

towards a positive output

(C) Relativity
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Figure 5: Equivalent proverbs in different languages

(a) one is better than other
(b) one is bigger than other

(D) Concept of Morality

(a) good – bad
(b) pride – humility
(c) youth – old age
(d) noble – wicked
(e) sin – good deed
(f) virtue – vice

(E) Group Behavioural Observations (subject
to morality of the respective community)

(a) quality having a positive connotation
(b) quality having a negative connota-

tion

(F) Human Attitude

(a) optimistic
(b) pessimistic

(G) Human Nature

(a) condemnation: laziness, greed, ego,
selfishness, cowardice, treachery, mis-
ery, foolishness,

(b) praise: hardworking, bravery, patri-
otism, politeness, kindness, generos-
ity, cleverness, truthfulness, dexter-
ity, enterprise, intelligence,

(H) Social Position: Based on,

(a) class: wealth, poverty, money
(b) caste: hierarchy
(c) gender: man-woman relationship
(d) power : strength (powerful/

privileged) – weakness (power-
less/unprivileged)

(I) Universal Truth

(J) Temporal - As most of the Sanskrit
proverbs have their origin from various
verses and various ancient scriptures, this
aspect of classification is essential. We
can have four subdivisions under this
them. They are:

(a) from Vedic scriptures: Four Vedas,
Upaniṣhads, Brāhman, Āraṇyakas

(b) from epics: Rāmāyaṇa and Mahāb-
hārata

(c) from classical literature: plays,
poems of renowned poets, Pan-
chatantra, vidurniti, Kautilya
arthashāstra, triṣatak by Bhṛtṛhari,
subhāshitaratna-bhāndāgāram and
others

(d) modern/ contemporary proverbs: āb-
hāṇakajagannātha

(K) Relationship :

(a) relatives
(b) friends
(c) social relationship
(d) relationship with animals, plants, na-

ture
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Abstract

This extended abstract highlights the research
ventures and findings in the domain of speech
intelligibility improvement. Till this point, an
effort has been to simulate the Lombard ef-
fect, which is the deliberate human attempt to
make a speech more intelligible when speak-
ing in the presence of interfering background
noise. To that end, an attempt has been made
to shift the formants away from the noisy re-
gions in spectrum both sub-optimally and opti-
mally. The sub-optimal shifting methods were
based upon Kalman filtering and EM approach.
The optimal shifting involved the use of opti-
mization to maximize an objective intelligibil-
ity index after shifting the formants. A trans-
fer learning framework was also set up to bring
down the computational complexity.

1 Motivation of Research

While much of the research focus has been on im-
provement in quality of speech signals, certain
applications call for proper intelligibility of the
speech rather than how pleasing it is to the listener.
Thus, the prime motivation of the current research
is to ensure that information is not lost to noise and
is communicated in a robust manner, especially at
very low SNR levels.

2 Key Issues; Identified and Addressed

The most common causative factor of loss in speech
intelligibility is the presence of background noise.
When noise occupies the same regions of the spec-
trum as speech, the intelligibility falls drastically.
One solution is to shift the formants away from the
noisy regions in the spectrum. The result would
be that the information content in those formants
would also be shifted away from the noise and
would thus cease to be afflicted by it. The details
of formant shifting are given in (Nathwani et al.,
2016).

Figure 1: Transformation Function (TF) obtained
through CLPSO and Transfer Learning (TL) via left (L)
and right (R) shifting.

3 Major Contributions

Following have been the major contributions so far:

1. The first major contribution was the imple-
mentation of Comprehensive Learning Parti-
cle Swarm Optimization (CLPSO) (Rahmati
et al., 2014) for optimization of 5 parameters
a Trapezoidal Delta Function based formant
shifting framework.

2. One drawback of this optimization was the
enormous time-complexity which rendered
the approach unsuitable for real-time applica-
tions. To address this issue, the next contri-
bution was made. A Transfer Learning (TL)
framework was developed which transferred
the learning across languages.

3. In parallel, another attempt was made to re-
duce the time complexity by replacing the
Trapezoidal formant shifting with a Gaus-
sian one. Therefore, the next contribution
was training a Gaussian delta function using
CLPSO to optimize a set of 3 (instead of 5)
shaping parameters.

4. Since Gaussian is a statistical shape, it al-
lowed the incorporation of noise in the TL
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Table 1: Universal TL performance measured on STOI for EN(TR)→FR(BB) and compared with Trap based TL

SNR
STOIO

NM CLPSO (Trap) TL-Lang (Trap) CLPSO (Gauss) TL-Noise (Gauss) TL-Univ (Gauss)
FR(BB) STOIM

FR(BB)→FR(BB) STOIM
EN(BB)→FR(BB) STOIM

FR(BB)→FR(BB) STOIM
FR(TR)→FR(BB) STOIM

EN(TR)→FR(BB)

-8 0.44 0.57 (+29.54%) 0.47 (+6.82%) 0.58 (+31.82%) 0.57 (+29.54%) 0.56 (+27.27%)
-14 0.31 0.45 (+45.16%) 0.34 (+9.68%) 0.47 (+51.61%) 0.47 (+51.61%) 0.44 (+41.94%)
-26 0.25 0.34 (+36.00%) 0.27 (+8.00%) 0.36 (+44.00%) 0.35 (40.00%) 0.32 (+28.00%)

framework which was earlier not considered.
Thus, the next contribution was the develop-
ment of another TL framework for transfer-
ring the learning from one noise environment
(source) to another (target).

5. The final contribution was the amalgamation
of both the TL approaches to form a universal
TL framework.

4 Methodologies

The foundation of the current work lies in shifting
the formants away from noisy regions in speech.
To that end, the mathematical representation of this
shifting through a Gaussian delta function can be
represented as shown:

F̂ =





h
(µ−δf1) + F, if δf1 ≤ F < µ

−h
(δf2−µ) + F, if µ ≤ F ≤ δf2
F, otherwise

δf1 = max(0 Hz, f(< µ @ TF = 0))

δf2 = min(f(> µ @ TF = 0), 4000 Hz)
(1)

For the universal TL framework, the formant
shifting is applied after the parameters have been
modified for the new combination of language and
noise at a certain SNR. This universal TL can be
mathematically represented as:

µT = µS ±min(|FTavg
FSavg

× µS |,

|µtn ∼ µsn
µsn

% of µS |)

σT = σS ±
σtn ∼ σsn

σsn
% of σS

(2)

The subscripts ‘S’ & ‘T’ denote the source and
target transformation functions respectively, and
the subscripts ‘sn’ & ‘tn’ denote the Gaussian ap-
proximation of the magnitude spectra of the two
noises being compared. FTavg and FSavg are the av-
erage formant frequencies of the target and source
languages respectively. The modification of mean

is contributed to by both language and noise trans-
fer. The modification in standard deviation is con-
trolled by noise transfer alone.

5 Experiments and Results

The pipeline of the experiments conducted started
with the generation of a Trapezoidal Delta function
through CLPSO for a certain combination of Lan-
guage, Noise type and SNR level. This led to a
certain improvement in Short Time Objective Intel-
ligibility (STOI) (Taal et al., 2010) for that specific
combination. Thereafter transfer was done across
languages and the results were compared with that
obtained through direct training through CLPSO.
Next, the CLPSO was used to obtain the Gaussian
Delta function for a combination as discussed be-
fore. Thereafter, transfer was done across noises,
followed by a combination of language and noise.
These results can be exemplified by one of the cases
of training and transfer, as shown in Table 1. The
table compares the CLPSO training of both Trape-
zoidal as well as Gaussian Delta functions, fol-
lowed by the transfer across Languages and Noises
respectively. The final column of the Table shows
the results of the universal TL framework working
on Languages and Noises simultaneously. It can be
seen that the CLPSO training performs better us-
ing Gaussian than Trapezoid. Also transfer across
Noises improves intelligibility more than transfer
across Languages for this particular setup. Further-
more, the universal TL results seem to approach
the results as obtained through direct training.

6 Future Plans and Road-map for Thesis

The work done up to this point has provided cer-
tain insightful results. These results will be used as
prior information to train a Neural Network to de-
velop a fully autonomous system that is scalable in
terms of applications. Thus, the thesis is projected
to be consisting of two parts. The former dealing
with intelligibility improvement of speech using
basic machine learning and optimization, while the
latter handling these issues through the employ-
ment of deep neural networks.
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Abstract

Based on the modular architecture of
a task-oriented Spoken Dialogue System
(SDS), the presented work focussed on
constructing all the system components
as statistical models with parameters
learned directly from the data by resolv-
ing various language-specific and language-
independent challenges. In order to under-
stand the research questions that underlie
the SLU and DST module in the perspec-
tive of Indic languages (Hindi), we collect
a dialogue corpus: Hindi Dialogue Restau-
rant Search (HDRS) corpus and compare
various state-of-the-art SLU and DST mod-
els on it. For the dialogue manager (DM),
we investigate the deep-learning reinforce-
ment learning (RL) methods, e.g. actor-
critic algorithms with experience replay.
Next, for the dialogue generation, we in-
corporated Recurrent Neural Network Lan-
guage Generation (RNNLG) framework
based models. For speech synthesisers as
a last component in the dialogue pipeline,
we not only train several TTS systems but
also propose a quality assessment frame-
work to evaluate them.

1 Introduction
Recently, substantial improvements in speech
recognition performance have enticed the re-
search community to build natural conversa-
tional interfaces in the form of a spoken di-
alogue system (SDS) (Jurafsky and Martin,
2019). This paper is concerned broadly with
designing a complete spoken dialogue system
in an Indic language scenario, i.e. Hindi. No
significant work has been done earlier to pro-
mote the research and development of a Hindi
spoken dialogue system. Hence, it becomes
critical for the current work to address the
issues and challenges unveiled for the Hindi

language through introducing new datasets,
methods and measures to build and evaluate
all the integral modules of the Hindi SDS.

A typical SDS structure is based on a mod-
ular pipeline design connecting five principal
components in a specific order (Pieraccini and
Huerta, 2005): Automatic Speech Recogni-
tion (ASR), Spoken Language Understanding
(SLU), Dialogue Manager (DM), Natural Lan-
guage Dialogue Generation (NLDG) and Text-
To-Speech Synthesiser (TTS). The work pre-
sented in this paper demonstrates how these
components are developed individually and in-
tegrated at the end to develop a real-world spo-
ken dialogue system in Hindi.

In a statistical spoken dialogue system, the
aim is to replace each of the aforementioned
components with a statistical model with pa-
rameters estimated from data (Young, 2002,
2010). The overall goal is to build a data-
driven dialogue system with the ability to get
improved over time and be perceived as be-
having human-like by the users. The compo-
nents of such systems are based on statistical
methods, i.e. probabilistic distribution, neural
network models, which allow them to handle
uncertainty in both their inputs and outputs
(Young et al., 2013; Zhang et al., 2001).

As the Hindi text contains lots of lexi-
cal/morphological ambiguities, therefore, it
becomes a key challenge for DST and NLDG
models to appropriately detect the DAs, un-
derstand the utterances and generate natural
responses. Hindi is very rich in inflectional
morphology. There is usually a limit of 8-9 in-
flected word forms of nouns in English (Yule,
2020), but in Hindi, it is more than 40 (Goyal
and Lehal, 2008; Vikram, 2013). The way a
language is spoken and written gets changed
from place to place. It leads to the introduc-
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tion of variations where the meaning of a sen-
tence is the same, but the way to express gets
changed (Geeraerts et al., 2012).

Other language-related challenges that a
Hindi SDS have to deal with are code-mixing
(Ramanathan et al., 2009), hidden informa-
tion (Miller et al., 1994), echo-words (Mohan,
2006), etc. Code-mixing is the mixing of more
languages in the conversation. There are many
cases in the corpus where the user had ex-
pressed some words from English during the
conversation. (Example: “मुझे कम रेंज वाले रसे्तरां
कɃ तलाश ह।ै” (“I am looking for low (cost) range
restaurants.”)). Here the word “रेंज” (range) is
an English word that gives an indication of the
cost.

2 Contributions

This research contributes at the following lev-
els:

1. HDRS corpus: It raises the key research
questions that underlie the SLU and DST
module in building a Hindi dialogue sys-
tem for the restaurant domain. Both
traditional embeddings, i.e. Word2Vec,
GloVE & FastText as well as BERT based
embeddings are experimented.

2. A2CER: We incorporate the advan-
tage actor-critic with experience replay
(A2CER) algorithm (Wang et al., 2017)
for dialogue policy learning which has re-
cently been shown to be performing well
on simple gaming environments and com-
pare its performance with other state-of-
the-art methods on a dialogue task.

3. Hindi NLG corpus: A corpus of unstruc-
tured input-output pair of dialogue-act
(system’s) and corresponding natural re-
sponse is collected and released. The
RNNLG framework based models are ex-
perimented on it.

4. Quality Assessment of TTS: A novel
evaluation framework: LBOE (Learning-
Based Objective Evaluation), is developed
for the quality assessment of various TTS
systems. For the experiment, several “off-
the-self” TTS systems: USS, HMM, CLU
and DNN, have been trained from scratch.

User

Speech
Recognition

Spoken Language
Understanding

Dialogue State
Tracking

Previous Belief StateDialogue
 Management

Natural Language
Dialogue Generation

Text-to-Speech
Synthesis

dialogue acts

word

speech

Turn-level
Prediction

User input
(Text Hypothesis)

System
Action

Textual
Response

Audio
Input

Audio
Output

Updated Belief State

Figure 1: The pipeline of the core components in
statistical spoken dialogue systems.

3 SILPA1: a Hindi SDS
We design our Hindi SDS by dividing it into
five modules in a pipeline architecture (Pier-
accini and Huerta, 2005) and connecting them
in a specific order, as shown in Figure 1. The
remainder of the section discusses the contri-
butions specific to these modules.

3.1 HDRS: Language Understanding
& State Tracking

For the empirical analysis of language-specific
and language-independent challenges in dia-
logue state tracking, we release a dialogue cor-
pus (HDRS) to train SLU/DST models in a
new language Hindi with better annotations
and high language-variability with significant
corpus size (Malviya et al., 2021).

An SLU/DST component takes a sentence
as input and maps it to an output dialogue act
representing underlying semantics. For exam-
ple, the utterance:

‘̀मैं एक महगंा रसे्तरां खोज रहा हँू जहाँ राजस्थानी खाना िम-
लता हो।’
can be represented as:

inform(type=restaurant,price
range=महगंा,food=राजस्थानी).

3.2 Modelling Dialogue Management
We model the dialogue policy with RL ap-
proaches where the system’s goal is to choose
a sequence of system responses (actions) given
the observed belief state achieving the max-
imum total reward, whereby the success of
the dialogue mainly determines the reward.
In this work, we have explored and inves-
tigated the current state-of-the-art methods

1SILPA (SILPAssistant): The name is based on our
Lab’s name SILP (Speech, Image & Langauge Process-
ing) Lab
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of policy optimisation for a task-oriented di-
alogue system, i.e. GP-SARSA, DQN, A2C.
Inspired by (Wang et al., 2017), we present
a new method that combines the strength
of experience-replay in A2C (A2CER) policy
learning for better dialogue modelling.

3.3 Natural Language Dialogue
Generation

Obtaining the dialogue act from the dialogue
manager, the Natural Language Dialogue Gen-
eration (NLDG) module transforms this ab-
stract semantics notation (system dialogue
act) back into a text representation (Singh
et al., 2019). For example, the dialogue act:

request(food)
can be transformed to:

“आप िकस प्रकार का भोजन खाना चाहेंगे?”
In our work, we have explored several

state-of-the-art RNNLG-based models with
discussing their performances on language-
related (Hindi) challenges. All the models are
experimented on our own Hindi dataset, col-
lected on the restaurant domain.

3.4 Speech Synthesis & Quality
Evaluation

At the last step in the SDS pipeline, the
speech synthesis component converts the cho-
sen text or the symbolic linguistic representa-
tion into a speech waveform. For the current
study, we aim to cover leading TTS technolo-
gies as used in research as well as state-of-the-
art commercial systems. Both TTS datasets,
i.e. IIT-Madras, CMU, are used to build four
types of unmodified “off-the-shelf” TTS sys-
tems: Unit selection synthesis (USS), Hidden
Markov Model (HMM), Clustergen synthesis
(CLU) and DNN synthesis (Tacotron 2). This
forms the corpus and sets the background for
our proposed ‘LBOE’ framework.

4 Dialogue Agent & Web Interface
We incorporated and adapted the multi-
domain statistical dialogue System toolkit
PyDial-Toolkit (Ultes et al., 2017) to build our
dialogue agent “SILPAssistant”. The Agent
is the main component responsible for the di-
alogue interaction. The general architecture
of the dialogue system with a speech interface
is shown in Figure 2. The Agent can com-
municate to the user in both texts as well as

Dialogue Policy
(System Reply)

Dialogue Server

Dialogue
Generator

Semantic 
Decoder

Belief Tracker

Texthub

O
ntology

Agent

SILPAssistant

ASR TTS

HTTP/JSON

Speech Client

Figure 2: The general architecture of SILPA. The
Agent resides at the core, and the interfaces Tex-
thub, Dialogue Sever provide the link to the envi-
ronment.

speech. For the text-based interaction, Tex-
thub utility is provided, which simply con-
nects the Agent to a terminal. To enable
speech-based dialogue, the Dialogue-Server
works as an interface between the Agent and
the Speech-Client.

5 Conclusion & Future Studies
The current work has examined the challenges
of developing a conversational system built
upon native Indian languages for a real-world
task. The original contributions of this the-
sis include: the development of an HDRS
corpus on which various state-of-the-art SLU
and DST models, i.e. NBT, GLAD, GCE,
GSAT, Simple-BERT and SUMBT, are im-
plemented and compared; the RNNLG mod-
els, i.e. H-LSTM, SC-LSTM, MSC-LSTM
and ENC-DEC, have been experimented and
used to train corpus-based NLDG module on
a self-collected corpus in an Indic language
Hindi; construction of dialogue policy with
RL based approaches, i.e. GP-SARSA, DQN,
A2C (Actor-Critic), A2CER (proposed), on
the user-system act pairs generated by a user
simulator; proposing a novel framework LBOE
for quality assessment of a synthesised speech
generated from various TTS engines, i.e. USS,
HMM, CLU and DNN.

In the current work, we have explored a
unimodal natural-language based dialogue sce-
nario. As the human-to-human conversation is
multimodal, involving various linguistic forms
and non-verbal signals (Firdaus et al., 2021), a
multimodal human-to-computer conversation
should therefore be more intuitive.
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Abstract

Simplified definitions of complex terms help
learners to understand any content better.
Comprehending readability is critical for the
simplification of these contents. In most cases,
the standard formula based readability mea-
sures do not hold good for measuring the com-
plexity of definitions of financial terms. Fur-
thermore, some of them works only for cor-
pora of longer length which have at least 30
sentences. In this paper, we present a tool for
evaluating readability of definitions of finan-
cial terms. It consists of a Light GBM based
classification layer over sentence embeddings
(Reimers et al., 2019) of FinBERT (Araci,
2019). It is trained on glossaries of several
financial textbooks and definitions of various
financial terms which are available on the web.
The extensive evaluation shows that it outper-
forms the standard benchmarks by achieving a
AU-ROC score of 0.993 on the validation set.

1 Introduction

The notion of readability assumes a central posi-
tion in the emerging financial literature on textual
analysis. Readability as a concept is difficult to
define precisely. Readability can be broadly de-
fined as a measure of how easy a text document
is to read. In this exercise we aim to examine the
readability measure for terms present in a finan-
cial glossary and compare various formula based
approaches for measuring readability. These in-
clude “Automated Readability Index (ARI)” (Smith
and Senter, 1967), “Flesch Reading Index (FRI)”
(Flesch, 1948), “Dale-Chall formula (DCF)” (Chall
and Dale, 1995) and “SMOG Index Score (SIS)”
(Mc Laughlin, 1969). At the very outset, all these
measures calculate a readability score based on U.S
education system’s grade level or years of educa-
tion a reader might require to understand a text
content. We further explore the limitations of these

measures in the context of financial terms and de-
velop a transfer learning-based system to measure
readability of their definitions.

Inspired by the approach followed by
(Chakraborty et al., 2021), we collect finan-
cial terms and their definitions from seven different
sources. We crawl the data dictionary of a
popular financial website, Investopedia1. The
other six sources are text books related to finance.
We extract financial terms and their definitions
from glossaries of these books by transforming
them to HTML format. The data distribution is:
NCERT-“Introductory Macro-economics” (149
records), Investopedia (6204 records), (Samuelson
and Nordhouse, 2009) (350 records), (Brealey
et al., 2012) (177 records), (Hull, 2003) (531
records), (Bodie and Kane, 2020) (525 records),
(Mishkin and Eakins, 2006) (465 records).

Among these sources, we assign a readability
score of 1 to the definitions present in NCERT, In-
vestopedia and (Samuelson and Nordhouse, 2009).
For the remaining sources we assign a readability
score of 0. We do this because the content of the
former three sources are simple. They are read by
school going kids and people in general. The latter
four sources constitute of complex graduate level
textbooks. We use 80% data for training and the
remaining for validation. Finally, we extract ARI,
FRI, DCF and SIS scores for each of the definitions
using the textstat2 library.

2 Model Development & Results

In this section, we discuss various approaches we
explored and their performances. Firstly, using
standard methods we calculate Area under Receiver
Operating Characteristic curve (AU-ROC) which

1https://www.investopedia.com/
financial-term-dictionary-4769738 accessed on 1st Oct
2021

2https://pypi.org/project/textstat/ accessed on 1st Oct 2021
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Figure 1: Financial Readability Flow Chart and Tool

is 0.742 for ARI, 0.435 for FRI, 0.413 for DCF and
0.730 for SIS. After that, we represent the defini-
tions numerically using TF-IDF (ngrams: 1 to 4)
and train several machine learning based models
for classification like Logistic Regression, Random
Forest and so on. We also experiment by replac-
ing TF-IDF with “sentence-transformers” based
embeddings (Reimers et al., 2019) with FinBERT
(Araci, 2019) (768 dimensions). We also try other
classification based approaches like XGBoost, Cat-
Boost and lightGBM. We have summarised the
model performances on the validation set in Ta-
ble 1. We perform these experiments on Google
Colab. Analysing the results we conclude that a
lightGBM (20 min-child samples, 31 num-leaves)
based classifier trained over sentence transform-
ers embeddings (Reimers et al., 2019) having Fin-
BERT (Araci, 2019) gives the best performance
(AU-ROC 0.993). Moreover, it outperforms all the
standard methods of measuring readability (like
ARI, FRI, DCF and SIS) in terms of AU-ROC on
the validation set.
Our contributions: a) Preparation of a corpus
comprising glossaries of financial terms and their
definitions b) FinRead- a tool to assess the read-
ability of such definitions as shown in Figure 1.
In the future, we want to improve the overall qual-
ity of the system by increasing the size and quality
of the corpora.
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Abstract

In the proposed demo, we will present a
new software - Linguistic Field Data Man-
agement and Analysis System - LiFE - an
open-source, web-based linguistic data man-
agement and analysis application that allows
for systematic storage, management, sharing
and usage of linguistic data collected from the
field. The application allows users to store
lexical items, sentences, paragraphs, audio-
visual content including photographs, video
clips, speech recordings, etc, along with rich
glossing / annotation; generate interactive and
print dictionaries; and also train and use natu-
ral language processing tools and models for
various purposes using this data. Since its a
web-based application, it also allows for seam-
less collaboration among multiple persons and
sharing the data, models, etc with each other.

The system uses the Python-based Flask
framework and MongoDB (as database) in the
backend and HTML, CSS and Javascript at
the frontend. The interface allows creation of
multiple projects that could be shared with the
other users. At the backend, the application
stores the data in RDF format so as to allow its
release as Linked Data over the web using se-
mantic web technologies - as of now it makes
use of the OntoLex-Lemon for storing the lex-
ical data and Ligt for storing the interlinear
glossed text and then internally linking it to
the other linked lexicons and databases such
as DBpedia and WordNet. Furthermore it pro-
vides support for training the NLP systems us-
ing scikit-learn and HuggingFace Transform-
ers libraries as well as make use of any model
trained using these libraries - while the user in-
terface itself provides limited options for tun-
ing the system, an externally-trained model
could be easily incorporated within the appli-
cation; similarly the dataset itself could be eas-
ily exported into a standard machine-readable
format like JSON or CSV that could be con-
sumed by other programs and pipelines. The

system is built as an online platform; however
since we are making the source code available,
it could be installed by users on their internal /
personal servers as well.

1 Introduction

Linguistic data management and analysis tools
have always been a requirement of field linguists.
A huge amount of data is collected and analysed by
field linguists for a large number of languages in-
cluding relatively lesser-known, minoritised and en-
dangered languages of the world and these need to
be properly stored, analysed and made accessible to
the larger community. On the other hand, there are
a huge number of languages across the globe (in-
cluding the kinds mentioned above), whose data is
not available for building any kind of language tech-
nology tools and applications. In order to tackle
this multi-faceted problem of storing, processing,
retrieving and analysing the primary linguistic data,
an integrated system with an easily-accessible and
user-friendly interface aimed at linguists needs to
be made available. “LiFE” is developed with the
intent of providing a practical intervention in the
field by making available an organised framework
for management, analysis, sharing (as linked data)
and processing of primary linguistic field data in-
cluding development of digital and print lexicons,
sketch grammars and fundamental language pro-
cessing tools such as part-of-speech tagger and
morphological analysers. The software provides
an easy-to-use, intuitive interface for performing
all the tasks and there is an emphasis on automat-
ing the tasks as far as possible. For example,
given some initial input, the system incrementally
trains automated methods for inter-linear glossing
of the dataset (which improves as more data is
stored in the system) and subsequent generation
of sketch grammar as well as NLP tools for the
language. Similarly, the system automatically in-
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fers and links the entries in the lexicon and inter-
linear glossed data using Lemon (more specifically
OntoLex-Lemon) (McCrae et al., 2017) and Ligt
(Chiarcos and Ionov, 2019).

2 Motivation and Features

Linguistic field data storage, management, sharing
and linked data generation has largely developed
independent of each other. As such while there
are quite a few tools and applications aimed at
field linguists (or community members interested
in fieldwork for their own language) for collec-
tion and management of data as well as generating
lexicon, such as FieldWorks Language Explorer
(FLEx)1 (Butler and Volkinburg, 2007) (Manson,
2020); Toolbox2 (Robinson et al., 2007); Lexique-
Pro3 (Guérin and Lacrampe, 2007); WeSay4 (Per-
lin, 2012) (Albright and Hatton, 2008) and a few
other platforms for archiving and providing access
to the data, the prominent ones being Endangered
Languages Archive (ELAR)5 (Nathan, 2010); The
Language Archive (TLA)6 (Cho, 2012); SIL Lan-
guage and Culture Archive7, etc. The Open Lan-
guage Archives Community (OLAC)8, which is
a consortium of over 60 participating linguistic
archives of various kinds (including the ones men-
tioned above and others for storage and access of
linguistic data, especially of endangered languages)
has also recently joined the Linguistic Linked Data
Open Cloud which paves the way for providing a
large amount of such data as linked data (Simons
and Bird, 2003). However none of the tools and
platforms directly provide an interface for storing
or (largely) automatically generating the primary
linguistic data as linked data or provide a seamless
two-way between the NLP tools and libraries and
linguistic data management softwares.

On the other hand, the linked data community
has developed tools for supporting generation of
linked data, especially linked data lexicons. One
of the best-known tools for this is VocBench (VB),
which is a fully-fledged open-source web-based
thesaurus management platform with the feature of
collaborative development of multilingual datasets

1https://software.sil.org/fieldworks/
2https://software.sil.org/shoebox/,

https://software.sil.org/toolbox/
3https://software.sil.org/lexiquepro/
4https://software.sil.org/wesay/
5https://www.elararchive.org/
6https://archive.mpi.nl/tla/
7https://www.sil.org/resources/language-culture-archives
8http://www.language-archives.org/archives

compatible with semantic Web standards. It pro-
vides the facilities of generating lexicons, thesauri,
and linked data ontologies to the large organisa-
tions, companies, and user communities (Stellato
et al., 2020). However tools like these focus on
generating Linked Data which is generally not very
user-friendly for field linguists nor do they provide
options for automating the tasks or linking to the
NLP ecosystem.

The primary motivation for building this plat-
form is to provide a tool that acts as a bridge be-
tween field linguists (who are primarily engaged in
data collection from low-resource and endangered
languages, building lexicons, writing grammatical
descriptions and also producing educational and
other kinds of materials for the communities that
they work with), linked data community (who are
primarily engaged in meaningfully connecting data
from different languages and resources using the
semantic web techniques) and the NLP community
(who primarily makes use of the linguistic data
from multiple languages; could potentially provide
support in automating the tasks carried out by field
linguists; and also provide tools and technologies
for the marginalised and under-privileged linguistic
communities). As such in its current state the app
provides the following functionalities -

• It provides a user-friendly interface for stor-
ing, sharing and making publicly available
the linguistic field data including interlinear
glossed text, lexicon and associated multime-
dia content.

• It provides reasonable automation for tasks
such as generating lexicon, sketch grammar,
etc by providing interfaces for training as well
as using pre-trained NLP models needed for
automating various tasks. The tool currently
supports training various algorithms of the
scikit-learn and HuggingFace Transformers
library as well as using the models trained
using these libraries.

• It provides interface for exporting the data in
structured formats such as RDF, JSON and
CSV that could be directly used for NLP ex-
periments and modelling.

During the demo we will present these features
and the interface of the tool in detail and also briefly
train the participants in using it.
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3 Presenters

The demo will be given by the developers of this
application which include the following -

1. Ritesh Kumar is Assistant Professor of Lin-
guistics and coordinator of the masters pro-
gram in computational linguistics at Dr. Bhim-
rao Ambedkar University, Agra. he is working
in the field of computational linguistics and
language documentation and description for
over last 10 years. He has conceptualised,
mentored and co-developed this app.

2. Siddharth Singh is a software engineer and is
currently pursuing his MSc in Computational
Linguistics from Dr. Bhimrao Ambedkar Uni-
versity. He is the principal developer of the
app,

3. Shyam Ratan is pursuing his Mphil in Com-
putational Linguistics and is a co-developer
of the app.

4. Sonal Sinha is pursuing her Mphil in Compu-
tational Linguistics and is a co-developer of
the app.
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Abstract
Agriculture is an important aspect of India’s
economy, and the country currently has one
of the highest rates of farm producers in the
world. Farmers need hand holding with sup-
port of technology. A chatbot is a tool or as-
sistant that you may communicate with via in-
stant messages. The goal of this project is to
create a Chatbot that uses Natural Language
Processing with a Deep Learning model. In
this project we have tried implementing Multi-
Layer Perceptron model and Recurrent Neural
Network models on the dataset. The accuracy
given by RNN was 97.83%.

1 Introduction

Agriculture contributes around 16 percent of In-
dia’s GDP and employs about 52 percent of the
country’s population, making it a significant part
of the country’s economic growth. According to
the Farmers’ Portal, agriculture’s rapid expansion
is necessary not just for self-sufficiency but also
for earning vital foreign exchange. One of the rea-
sons for this is that individuals in the farming in-
dustry are relatively sluggish to accept emerging
innovations. Field officers have traditionally vis-
ited farmlands to give training, guidance, and as-
sistance to farmers. The data demonstrates that
mobile connection is increasing at an exponential
rate, which helps IT services promote agricultural
information. The government is having difficulty
disseminating important agricultural information.
Furthermore, the difficulties are exacerbated by
the dissemination of disinformation. These issues
exist as a result of the huge linguistic variety and
the rural population’s lack of trust in contemporary
technologies. In such a situation, using mobile de-
vices to disseminate agricultural information looks
to be a viable option 1 (K., 2020). Chat-Bot sys-

1https://en.wikipedia.org/wiki/Agriculture_
in_India/

tems are a type of natural language processing that
demands the system to be taught in human lan-
guage in order to meet the user’s demands. Agri-
culture is the most important sector for a country’s
development. Farmers are now unaware of the
most modern technology and methods employed
in agriculture. The challenge of extracting mean-
ingful answers using machine learning techniques
has been researched by numerous machine learn-
ing specialists, and sophisticated machine learning
approaches have been created. These methods are
used to obtain the correct answer. We may name
this an Agriculture Question Answering System,
since the farmer can ask the system a question,
and the system will answer (Heller et al., 2005;
Beaudry et al., 2019; Sutoyo et al., 2019). With the
advancement of technology, farmers must study
and address the challenges. As a result, the goal
is to create a chatbot system that delivers accurate
responses to queries. According to a major study in
the field of chatbot systems, there is no agriculture-
specific system that can provide precise and rapid
answers to farmers’ questions. To solve this is-
sue, the suggested system uses the RNN (Recur-
rent Neural Network) deep learning method to of-
fer accurate responses to the queries asked.

2 Problem Statement

The traceability software from Source Trace gives
you complete visibility into the agricultural value
chain. It has an influence on farmers’ lifestyles,
helps an organization adopt data-driven agricul-
ture, and fosters trust and improved interaction
with stakeholders. Agriculture employed half of
India’s workforce and provided 17–18% of the
country’s GDP. Agriculture and related industries
such as animal husbandry, forestry, and fisheries
accounted for 15.4% of GDP in 2016 and em-
ployed around 31% of the workforce in 2014. The
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Figure 1: Dataset format

goal of this project is to create a Chatbot that uses
natural language processing to facilitate remote in-
teraction between users/farmers and the agricul-
ture environment. We aim to create a chatbot that
can answer basic questions from farmers and give
possible agricultural knowledge and solutions. Be-
cause this chatbot has been educated in natural lan-
guage processing, it can learn on its own and im-
provise responses. The study’s target audience is
agriculturists or farmers. Their work will be based
on the model established. As a consequence, agri-
culturists will be able to benefit from the study’s
findings. It has an influence on farmers’ liveli-
hoods, helps organizations adopt data-driven agri-
culture, and fosters trust and improved interaction
with stakeholders. The farmers’ favorable reaction
suggests that conversational intelligence, as a tech-
nology supplied via the omnipresent smartphone,
can be a useful tool for improving information ac-
cess in rural areas for those with low literacy and
technological expertise.

3 Methodology

3.1 Dataset source and format

The dataset used for this project is taken from data
world repository. A multidisciplinary or special-
ized conversational chatbot is possible. The chat-
bot’s capabilities are influenced by the amount of
data utilised to train it. The data is saved as a
json file. Tags, patterns, responses, and context are

used to organise the data: (.A and Anto, 2013)
Tags: Possible classes of user intention for ask-

ing a question.
Patterns: The ways in which users usually ask

questions relating to a particular tag.
Responses: Predefined responses for each tag

in the dataset from which the model can choose to
respond to a particular question.

Context: Contextual words relating to a tag for
easy and better classification of what the user in-
tends with their request.

3.2 Workflow diagram
Businesses must understand the workflow of these
bots in order to build a chatbot that offers appealing
outcomes(Weng, 2019). From the time the chatbot
receives a user’s query until the time it delivers an
answer, the data travels through a number of algo-
rithms that assist the chatbot in comprehending the
input. Specifically, most chatbots use several cate-
gorization techniques to build up their fundamental
architecture Figure 2.

3.3 Data preprocessing
The data has been extracted in json format itself
using google colab. Using json.loads() the data is
loaded into the system. Google Research’s Collab-
oratory, or ”Colab” for short, is a product. Colab
is a web-based Python editor that allows anybody
to create and run arbitrary Python code. It’s no-
tably useful for machine learning, data analysis,
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Figure 2: Chatbot Architecture

and teaching. On Google Colab I went with CPU
runtime in the first notebook and with the GPU
runtime in the second. Then the runtime has been
changed to GPU to process the codes faster. We
can’t just fit a machine learning or deep learning
model to the raw text. To begin, we must divide
words, handle punctuation and cases, and more in
order to prepare the data for modelling. In NLP,
cleaning up text data is job specific. For this con-
versational chatbot we’re building, we can do the
following. With our intents JSON file loaded, we
can now begin to organize our documents, words
and classification classes (.A and Anto, 2016).

• Tokenization

• Stemming

• Lemmatization

• Removal of stop words

• Spelling correction

• Normalization

• Removal of punctuation marks

• Creation of training data

1)Tokenization: Tokenization is the process
of breaking down a text corpus into constituent
words, such as breaking down a phrase, sentence,
paragraph, or even an entire text document into

smaller units like individual words or terms. A
token is the name given to each of these smaller
components. Tokenization can be done manually
using white space splitting or using specific tools
in libraries like NLTK. After tokenization we or-
ganized the dataset into words, classes and docu-
ments list.

2) Word stemming : The process of creating
morphological variations of a root/base word is
known as stemming. Stemming algorithms or
stemmers are terms used to describe stemming pro-
grammes. The terms “chocolates,” “chocolatey,”
and “choco” are reduced to the root word “choco-
late,” while “retrieval,” “retrieved,” and “retrieves”
are reduced to the stem “retrieve.” NLTK has Lan-
casterStemmer class with the help of which we can
easily implement Lancaster Stemmer algorithms
for the word we want to stem.

3) Lemmatization : Lemmatization is the act of
combining a word’s several inflected forms into a
single item that can be examined. Lemmatization
is similar to stemming, except it gives the words
context. As a result, it connects words that have
similar meanings to one another. The words are
morphologically analysed during lemmatization.

4)Removal of stop words: Stop word removal is
supported by NLTK, and the list of stop words may
be found in the corpus module. To eliminate stop
words from a phrase, break your text into words
and then check to see if the word is in the NLTK
list of stop words.

5) Spelling correction: It is the process of cor-
recting a word’s spelling. Because brute force com-
parisons are extremely time intensive, most spell
correction algorithms employ min-edit functions.
We need to utilise word lengthening first in or-
der for min-edit features to operate properly. As
a result, word lengthening affects our spell cor-
rection. Although NLTK lacks a spell-checking
module, there are several libraries that can accom-
plish this function. For this, I’ll be utilising the
pyspellchecker module. Pyspellchecker is a li-
brary for assessing if a word is misspelt and, de-
pending on word frequency, what the likely right
spelling is.

6) Text case conversion: We’ll use this approach
to change the words to lower case or upper case.
Although sometimes ignored, one of the simplest
and most efficient forms of text preparation is to
lowercase all of your text data. It can be used to
solve most text mining and NLP issues, and it may
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Figure 3: Data after transformation (bag of words)

be very useful when your dataset isn’t very huge.
It also greatly improves anticipated output consis-
tency.

7) Removal of punctuation marks: Noise reduc-
tion is the process of eliminating letters, numbers,
and text fragments that might obstruct your text
analysis. One of the most important text prepara-
tion procedures is noise reduction. It’s also quite
domain-specific. The framework’s replacement
duties continue with noise reduction. While the
first two major steps of our framework (tokeniza-
tion and normalisation) could be applied to almost
any text chunk or project as-is (barring the decision
of which exact implementation to use, or skipping
certain optional steps, such as sparse term removal,
which does not apply to every project), noise re-
moval is a much more task-specific section of the
framework.

8) Creation of training data: Bag of Words
(BOW) is a vector space representational model for
unstructured text that is one of the simplest. A vec-
tor space model is a mathematical model for repre-
senting unstructured text (or any other data) as nu-
meric vectors, with each dimension of the vector
corresponding to a distinct feature property. Each
text document is represented as a numeric vector
in the bag of words model, with each dimension
being a single word from the corpus and the value
being its frequency in the document, occurrence
(denoted by 1 or 0), or even weighted values. The
term comes from the fact that each text is repre-

sented as a ’bag’ of its own words, with no concern
for word ordering, sequences, or grammar (Jiao,
2020; Bhagwat, 2018).

We need to translate the words into bags of
words with arrays containing 0/1. The array length
will be equal to vocabulary size, and 1 will be set
when a word from the current pattern is located
in the given position. Training data —  X (pattern
converted into array [0,1,0,1..., 0]), Y (intents con-
verted into array [1, 0, 0, 0,...,0], there will be sin-
gle 1 for intents array).The transformed data is as
follows in Figure 3.

3.4 Model implementation
The processed data is used for intent classification
using the models so that the model gives promising
results. The data is modelled using two deep neural
network models that is Multi-Layer Perceptron and
Recurrent Neural network model.

1) Multilayer Perceptron (MLP)
A feedforward network having one input layer,

one output layer, and at least one hidden layer is
known as a multilayer perceptron. Non-linear acti-
vation functions, such as the hyperbolic tangent or
logistic function, are used to categorize data that
is not linear in nature. Every node in the current
layer is connected to every node in the following
layer, making the network fully connected. After
that, the layers are fully connected in a chronologi-
cal order (input to output), which is known as feed-
forward: input -> hidden -> output. Tensorflow’s
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tflearn framework is used to build the MLP net-
work. The fundamental neural network we’ll be
utilizing is called a Multilayer Perceptron (MLP
for short) (Weng, 2019), and it’s shown in Figure
4.

Figure 4: Neural Network – Multilayer Perceptron
(MLP)

Certainly, Multilayer Perceptrons have a com-
plex sounding name. However, they are consid-
ered one of the most basic neural networks, their
design being:

• Input layer – layer “I”

• Hidden layer(s) – layer “H”

• Output layer – layer “O”

2) Recurrent Neural Network
The goal of a Recurrent Neural Network (RNN)

is to keep the prior neuron state. This enables the
neural network to maintain context and provide
output depending on past states. RNNs are ideal
for chatbots since preserving context during a dis-
cussion is critical to comprehending the user. A
RNN model’s design is shown in Figure 5.

Figure 5: RNN Architecture

We have created the RNN model in following
steps:

Step 1: First, we must establish a network
model, which will most likely be the Sequential
model: the network will be described as a series of

layers, each with its own size and activation func-
tion that may be customized. The input layer will
be the initial layer in these models, and it will need
us to determine the size of the input we will be feed-
ing to the network. After this more and more lay-
ers can be added and customized until we reach the
final output layer (.A and Anto, 2016).

Step 2: After we’ve created the network’s struc-
ture in this way, we must compile it, which turns
the simple series of layers we’ve previously speci-
fied into a complicated set of matrix operations that
determine how the network acts. We must specify
the optimization algorithm that will be used to train
the network, as well as the loss function that will
be minimized, in this section.

Step 3: Once this is done, we can train or fit the
network.

Step 4: The network is trained. Now we can use
it to make predictions on new data.

Keras is used to create the RNN model. Keras is
a high-level open source library for creating neural
network models. It was created by François Chol-
let, a Google Deep Learning researcher. Its fun-
damental idea is to make the process of creating a
neural network, training it, and then utilising it to
generate predictions as simple as possible for any-
one with a basic understanding of programming,
while still allowing developers to fully customize
the parameters of the ANN (Weng, 2019).

3.5 Translation of user input data
Once the model is well fitted on the data the next
step in creating a chatbot is the creation of a func-
tion for translating the user input sentences to the
system understandable format. Before we can be-
gin processing intents, we need a way to produce
a bag-of-words from user input. The function will
process the sentences and converts it into bag of
words array. A function has been created that com-
prises of the major data preprocessing steps and the
bag of words array creation steps.

3.6 Response generation
Creating effective chatbots is a difficult task. Cre-
ating high-quality natural language replies for
chatbots, in particular, is a difficult and time-
consuming process that frequently relies on high-
quality training data and extensive subject knowl-
edge. As a result, it’s critical to include special-
ists with the necessary subject expertise in the chat-
bot answer creation process. However, existing
tool support for including domain experts in the
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response creation process is limited, typically lim-
iting users to exchanging disconnected prototypes
and spreadsheets. We describe a method in this re-
search that allows chatbot developers to efficiently
involve domain experts in the chatbot answer cre-
ation process.

The easiest technique, however, still necessi-
tates the creation of some templates in a specific
language. It decreases the amount of text input
while increasing the number of examples available
to train the model. The creation of responses is a
crucial stage in the development of a chatbot. I
have created response processor using two func-
tions they are classify and response. The intents
are classified using the classify function and appro-
priate response are generated using the response
function. Response processor consist of two main
functions: Classify for intent classification and re-
sponse to give appropriate response. I worked on
these functions in the view of creating proper re-
sponses. Once the chatbot understands the user’s
message, the next step is to generate a response.
One way is to generate a simple static response.
Another way is to get a template based on intent
and put in some variables. The steps that are in-
volved in creating a response processor is as fol-
lows:

• Generate probabilities from the model

• Filter out predictions below a threshold

• Sort by strength of probability

• Return tuple of intent and probability

• If we have a classification then find the match-
ing intent tag

• Loop as long as there are matches to process

• Find a tag matching the first result

• Check if this intent is contextual and applies
to this user’s conversation

• A random response from the intent

Response() classifies each sentence it re-
ceives. Our classifier is fast expanding and uses
model.predict(). The model’s probabilities are
compared to our purpose specifications to provide
a list of possible replies. If one or more categories
exceed a certain threshold, we check to determine
if a tag fits a purpose and proceed accordingly.

We’ll consider our categorization list as a stack,
removing items from it when we discover a good
match, or until the stack is empty.

The performance of the response processor is
checked using some test data and it gave an excel-
lent performance on predicting the outputs.

4 Result

In this project I have tried implementing Multi-
Layer Perceptron model and Recurrent Neural Net-
work models on the dataset. The accuracy given
by both the models are comparable, but RNN
achieved an accuracy score of 97.83% whereas
MLP resulted in an accuracy of 96.97%. The main
benefit of RNN over feed forward neural networks
is that RNN can represent a collection of records
(i.e. time collection), allowing each pattern to be
considered to be reliant on the preceding one. In
this example, the algorithm is trained using a com-
bination of the knowledge base and behavioral in-
tent scenarios.

The performance of both the models are then
evaluated by fitting them for predictions in the
response processor. Response processor was de-
signed in such a way that the intent classification
is done using the trained models and it produces
tuples with class labels and corresponding accu-
racy of predictions made. The below Figure 6 and
Figure 7 shows the performance evaluation of the
models in the response processor.

Figure 6: Predictions by RNN model.

5 Conclusion

Using natural language technology, this chatbot
can help underprivileged areas by answering ques-
tions about agriculture, horticulture, and animal
husbandry. Through a messaging app, the farmer
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Figure 7: Predictions by MLP model

will be able to get agricultural information as well
as localized information such as current market
prices for specific commodities in his/her district
and disease management. A farmer can send a
direct message to our intelligent answering sys-
tem and receive a response. Our approach would
allow farmers to ask as many questions as they
want, at any time, allowing current farming tech-
nologies to reach a larger number of farmers faster.
Agriculture chatbots play a critical role in the agri-
culture industry, assisting all farmers and others
interested in agricultural operations by analyzing
queries and providing relevant information. This
Question-Answer system is capable of answering
most inquiries without the need for human interac-
tion and with excellent accuracy. This would re-
sult in greater human resource use and the avoid-
ance of needless expenditures associated with the
establishment of additional contact centres.

Above all, I believe the method aids in the analy-
sis of farmers’ mindsets as well as the structure of
India’s agricultural sector. While the technology
provides a safe communication route for farmers,
it also aids policymakers in comprehending their
wants and concerns. The data analysis also reveals
which sectors or seasons demand special attention
from farmers. As a result, the decision support sys-
tem makes effective use of all available resources
to address the problem of lack of awareness and
knowledge in India’s agricultural industry.
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Abstract

Image Captioning as a task that has
seen major updates over time. In recent
methods, visual-linguistic grounding of the
image-text pair is leveraged. This includes
either generating the textual description
of the objects and entities present within
the image in constrained manner, or gen-
erating detailed description of these enti-
ties as a paragraph. But there is still a
long way to go towards being able to gen-
erate text that is not only semantically
richer, but also contains real world knowl-
edge in it. This is the motivation behind
exploring image2tweet generation through
the lens of existing image-captioning ap-
proaches. At the same time, there is lit-
tle research in image captioning in Indian
languages like Hindi. In this paper, we re-
lease Hindi and English datasets for the
task of tweet generation given an image.
The aim is to generate a specialized text
like a tweet, that is not a direct result of
visual-linguistic grounding that is usually
leveraged in similar tasks, but conveys a
message that factors-in not only the visual
content of the image, but also additional
real world contextual information associ-
ated with the event described within the
image as closely as possible. Further, We
provide baseline DL models on our data
and invite researchers to build more sophis-
ticated systems for the problem.

1 Introduction

Generating a textual description of an image
is called image captioning. It can be an easy
process for most adults, but for a machine
to generate a rich and vivid description is a
difficult task. Image captioning requires to rec-
ognize the important objects, their attributes
and their relationships in an image. It also

needs to generate syntactically and semanti-
cally correct sentences. This task involves the
knowledge of both computer vision and natural
language processing.

Image Captioning has been a very popular
research area since the last decade. Even be-
fore the boom of neural network based tech-
niques people tried various hand crafted fea-
tures such as Local Binary Patterns (LBP)
(Ojala et al., 2000), Scale-Invariant Feature
Transform (SIFT) (Lowe, 2004), the Histogram
of Oriented Gradients (HOG) (De Marneffe
et al., 2006) along with classical ML methods
like SVM for Image Captioning. On the other
hand, while using neural network based tech-
niques, features are learned automatically from
training data and they can handle a large and
diverse set of images (Karpathy and Fei-Fei,
2015; Vinyals et al., 2015; Xu et al., 2015).
Moreover, the availability of large and new
datasets has made the learning-based image
captioning an interesting research area. The
popular datasets for English Image Captioning
are - Flickr30K Dataset (Young et al., 2014),
MS COCO (Lin et al., 2014), and Google Con-
ceptual Caption dataset (Sharma et al., 2018).
However, there is almost no research of image
captioning in Hindi and/or Indian languages.

Image captioning is important for many rea-
sons. For example, they can be used for au-
tomatic image indexing. Image indexing is
important for Content-Based Image Retrieval
(CBIR) and therefore, it can be applied to
many areas, including biomedicine, commerce,
the military, education, digital libraries, and
web searching.

Image2Tweet takes one step ahead of regular
image captioning task. It involves generating
captions that are not only semantically rich
but also contain some real world knowledge
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(Sharma, 2020). The task is that given an im-
age, the machine has to generate a tweet from
it. An example is provided in figure 1. Gen-
erating this level of detailed tweets requires
person identification (Sachin Tendulkar), Ob-
ject detection (BJP logo) etc.

In this paper, we describe the image2tweet
task and release a new dataset for the task
and also release a novel hindi dataset to ig-
nite the Image Captioning research for Indian
languages.

Figure 1:
COCO Style: A man in front of a crowd.

Conceptual Caption: A closeup of a mid-aged
man, and a parade.

Expected Image2Tweet: Sachin Tendulkar
and BJP parade.

2 Related Work

There are quite a few popular image caption-
ing datasets. Flickr30k (Young et al., 2014)
consists of 30K images and each image has
5 captions. COCO (Lin et al., 2014) dataset
consists of 330K images and each image has 5
captions. Google Conceptual Caption (Sharma
et al., 2018) has approximately 3.3 million im-
ages and each image has only one caption. How-
ever, such datasets use commonly found images
over the web and couple the images with alt-
text descriptions. Most of the descriptions use
proper nouns (such as characters, places, loca-
tions, organizations, etc.). Such proper nouns
pose some problems because a image caption-
ing model is difficult to learn such fine-grained
proper noun inference from the input image
pixels. At the same time, there is very little re-
search done on Hindi image captioning. To the
best of our knowledge, ours is the first dataset
to generate tweet from images and to release a
Hindi dataset.

Deep learning methods are the most popular
to solve the image captioning task. Jiang et al.
(2018) proposed novel Recurrent Fusion Net-
work (RFNet), which exploits complementary
information from multiple encoders to tackle
image captioning. Xu et al. (2015) propose
an encoder-decoder method which incorporate
spatial attention mechanism to help the model
to determine which regions to focus in an image.
Yang et al. (2016) propose a framework called
ReviewNet. Zhou et al. (2020) proposed a Uni-
fied Vision-Language Pre-Training for Image
Captioning which can be easily fine tuned.

Similar to caption generator meme gener-
ation has also been a eye-catching task for
researchers. the task is to generate memes
based on the image. unlike captioning, here
in meme generation it has to generate text
for multiple persons, if multiple persons are
involved in meme image. Kurochkin (2020)
released a dataset consisting of 650K meme
instances. They applied GPT-2(Radford et al.,
2019) model for meme generation and observed
that machine generated meme text’s are not
that engaging as human generated.

3 Task Description

Image Captioning for English is well stud-
ied paradigm and researchers have tried vari-
ous methods like hand crafted features (Ojala
et al., 2000; Lowe, 2004; De Marneffe et al.,
2006) along with classical ML methods like
SVM. During the last decade numerous of Big
datasets have been released and quite a few ef-
forts can be noticed but there is a still shortage
of works in Indic Languages.

Image2Tweet is a shared task where we move
a step forward from image captioning. The
task is to generate a tweet like a human/news
reporter given an image. We release datasets
for two languages - English and Hindi. Figures
2 and 3 show an instance from the English and
Hindi data respectively.

3.1 Evaluation Metric
For Image Captioning, most used metrics are
n-gram based matching metrics such as BLEU,
ROUGE, METEOR, and CIDEr.

Popular Image Captioning datasets like
Flickr30k (Young et al., 2014), COCO (Lin
et al., 2014), and Google Conceptual Caption
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Figure 2: Tweet: Finance Minister Nirmala
Sitharaman presents the full Budget of the second

term of the Narendra Modi government
#BudgetSession2020 #BudgetWithTimes

#UnionBudget2020

Figure 3: Tweet: िपंकिसटी में सुबह से हो रही झमाझम
बािरश िकसी के िलए राहत तो कहीं आफत #jaipur

#Monsoon2017.

(Sharma et al., 2018) provide multiple captions
per image, as the same image can be described
in many different ways. So, in these datasets,
while evaluating they calculate the score be-
tween the system generated caption and all
the reference captions in the gold data. Now,
in our task having multiple tweets for a given
image is difficult to collect, and having only
one reference tweet will affect the evaluation
score.

Since having multiple tweets for an image
would be difficult, we assume that similar im-
ages may have similar tweets. With this in
mind we apply content based similarity match
on the collected data and keep all the similar
images in one cluster. The released data is pre-
processed accordingly, and all the clusters are
marked along with image ids. For evaluation,
we use CIDEr, where the score will be calcu-
lated between system generated tweet vs. all
the tweets belong to the similar image cluster
provided in the dataset.

4 Dataset

The data consists of image-tweet pairs. We
provide 2 dataset - English and Hindi. The
Hindi data is collected by crawling tweets from
two well known Hindi Newspapers - Dainik
Bhaskar and Dainik Jagran. The English data
is crawled from the twitter handle of Times
of India. We use Twitter API1 to crawl the
tweets. We collect total 70k Tweets for English
Image2Tweet and 51K for Hindi Image2Tweet.
Table 1 gives the data statistics.

Dataset English Hindi
Training 48792 35701

Validation 10209 7652
Test 10411 7652
Total 69412 51005

Table 1: Train, Validation and Test data split for
the English and Hindi datasets.

Figures 4 and 5 show the word clouds of
Hindi and English tweets respectively. We ob-
serve that most of the words are related to
politics and Covid-19.

Clustering is the necessary part of making
1https://developer.twitter.com/en/docs/

twitter-api
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Figure 4: Word cloud of English dataset. Most of
the words are related to Politics and Covid-19.

Figure 5: Word cloud of Hindi dataset. Most of
the words are related to Politics and Covid-19.

Figure 6: An example of a cluster from English
data. All the tweet objects are related to political
elections in India.

Figure 7: An example of a cluster from English
data. All the tweet objects are related to cricket.

of the dataset, as mentioned in the previous
section. For clustering we first remove unnec-
essary links, symbols and numbers. However
keeping the hashtags and mentions can help in
the process of clustering similar tweets (with-
out symbols ’@’ and hashtags). In the next
step we remove the words which doesn’t add
meaning to sentence, stopwords.

Figure 6 and 7 show and example of En-
glish and Hindi cluster respectively. We can
see that the tweet objects within a cluster are
related/similar to each other. Our aim is to
do multimodal clustering, Image+Text, hence
we implement an algorithm in which similarity
score between tweet object are calculated with
every other tweet object and stored in the form
of 2D dictionary, each row sorted in reverse or-
der. ith row contains the similarity score of ith
tweet object with every other object in reverse
order. As for every pair of tweet data there are
two entries (dict[i][j] & dict[j][i]), we eliminate
that entry which is in lower relative position
among those two rows. After that for every
row we consider at most 5 element with high-
est similarity score and combine them to make
a cluster group. Hence. each cluster has at
most 6 tweet objects (1 tweet object and its 5
neighbors). The formula to calculate similarity
between 2 tweet objects is :
Sim(i, j) = W1 ∗ textSim(i, j) + W2 ∗

imgSim(i, j)

textSim(i,j) function calculates the similarity
between the textual part of the tweet object
using the weighted average of overlap of uni-
grams, bigrams and trigrams. imgSim(i,j) func-
tion calculates the cosine similarity between
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the feature vectors of the images extracted us-
ing DenseNet (Huang et al., 2017). Overall
similarity is just the weighted average of both
the similarity, where w1 + w2 = 1 and (w1,
w2) ε [0,1].

The datasets are available at https://
competitions.codalab.org/competitions/35702.

5 Baseline

We develop our baseline using BERT (Devlin
et al., 2018) and VGG-19(Simonyan and Zisser-
man, 2014). The BERT model is pre-trained
on whole English Wikipedia and Brown corpus
for next sentence prediction objective.

We design is a two branch model (refer fig-
ure 8). While training, the image embedding
obtained from VGG-19 is passed to one branch
and the text is passed to the other branch. In
the first branch the image embedding is passed
to dense layer. In the second branch the text is
sent to BERT tokenizer and its output passed
to the pre-trained BERT. Then the output
from the last layer of BERT is passed to an
LSTM layer which is given as an input to max
pooling and to and average polling. The out-
put vectors of max pooling and average pooling
are concatenated. After this, we concatenate
the outputs from both the branches, and give
the concatenated vector as input to an LSTM
followed by a dense layer. The output vector of
this dense layer is used to generate the words
in Tweet.

For training we use Adam optimiser, and
train it with a mini-batch size of 32. The
learning rate is set to 1e -5. The max caption
length is set to 34. While testing, we pass
the image vector and the sequence of words
generated so far and will predict the next word.
Likewise we go on until the end token appears.
We use greedy search method to generate the
whole tweet.

The baseline code is available at https://
github.com/git-rishabh-jha/Image2Tweet.

6 Results

Table 2 shows the results of the baseline sys-
tem. The results are poor since we use a rela-
tively simple approach to establish the baseline.
There is a huge scope of improvement in the re-
sults, for which we encourage more innovative
approaches.

Figure 8: Architecture diagram of baseline model.

Table2 shows the results of the baseline on
the image2tweet datasets. The results are poor
since we use a relatively simple approach to
establish the baseline. There is a huge scope
of improvement in the results, for which We
encourage more innovative approaches.

Table 3 shows the result of the baseline
trained and tested on popular image caption-
ing datasets. The results are much better than
on our image2tweet datasets, which shows that
image2tweet is a unique and more difficult task
than image captioning.

7 Conclusion

In this paper we define the task image2tweet
and release datasets in Hindi and English for
the task. The English and Hindi datasets con-
sists of 70k and 51k image-tweet pairs respec-
tively. We cluster the similar tweets in our
dataset for better evaluation of the system gen-
erated tweets. Generated tweets are evaluated
using Cider. Further, we provide VGG19 +
BERT based baseline systems for our data.

Image2tweet is more difficult than traditional
image captioning and we believe it needs fur-
ther research attention. Future work includes
collecting data for more languages, building
more complex systems for the task etc.
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System CIDEr BLEU-4 METEOR ROUGE
Baseline-English 0.0003 0.02 0.00013 0.00013
Baseline-Hindi 0.0004 0.03 0.00023 0.00023

Table 2: Results of baseline systems on Hindi and English datasets

Dataset BLEU-4
Flickr30K 23.6

COCO 21.3
Conceptual Captions 20.3

Table 3: Results of baseline systems on popular image captioning datasets.
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