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Introduction

Preface by the General Chair and Program Chairs
Welcome to *SEM, the Joint Conference on Lexical and Computational Semantics! Now at its eighth
edition, *SEM brings together research on all aspects of semantics, including semantic representations,
semantic processing, theoretical semantics, multilingual semantics, and several others. Over the past few
years, the increased interest we have witnessed in field of natural language processing has also resulted
in an increased interest in semantics, and *SEM has become the main forum to present and discuss the
most recent advances in this research area.

We are pleased to present this volume containing the papers accepted at *SEM 2019, co-located with
NAACL in Minneapolis, USA, on June 6-7, 2019. Similar to the last edition, *SEM received a high
number of submissions, which allowed us to compile a diverse and high-quality program. We received
a total of 96 submissions. Out of these, 32 papers were accepted (19 long, 13 short), for an overall
acceptance rate of 33%.

Submissions were reviewed in nine different areas:

• Lexical semantics and word representations

• Semantic composition and sentence representations

• Discourse, dialogue and generation

• Machine learning for semantic tasks

• Multilinguality

• Human semantic processing

• Theoretical and formal semantics

• Semantics in NLP applications

• Resources and evaluations

The papers were evaluated by a program committee consisting of 16 area chairs, assisted by a panel of
332 reviewers. Each submission was reviewed by three reviewers, who were furthermore encouraged
to discuss any divergence in evaluations. The papers in each area were subsequently ranked by the area
chairs. The final selection was made by the program co-chairs after an independent check of all the
reviews and discussion with the area chairs. Reviewers’ recommendations were also used to shortlist a
set of papers nominated for the Best Paper Award.

The final *SEM 2019 program features 16 oral presentations and 16 posters. We are also very excited to
have two excellent keynote speakers: Sam Bowman (New York University, joint keynote with SemEval
2019), who will talk about “Task-Independent Sentence Understanding”; and Ellen Riloff (University of
Utah), who will discuss her work on “Identifying Affective Events and the Reasons for their Polarity.”

We are deeply thankful to all area chairs and reviewers for their help in the selection of the program, for
their readiness in engaging in thoughtful discussions about individual papers, and for providing valuable
feedback to the authors.
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We are grateful to Soujanya Poria for his help in publicizing the conference, and to Kilian Evang for
his dedication and thoroughness in turning the program into the proceedings you now have before your
eyes. We would also like to thank Priscilla Rasmussen, for all the help she has provided with all our
organizational aspects.

We hope you will enjoy the conference, and you will find it inspiring and stimulating!

Ekaterina Shutova and Lun-Wei Ku, Program Co-Chairs
Rada Mihalcea, General Chair
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Invited Talk: Identifying Affective Events and the Reasons for their
Polarity
Ellen Riloff

University of Utah, USA

Abstract: Recognizing affective states is essential for narrative text understanding and for ap-
plications such as conversational dialogue, summarization, and sarcasm recognition. Many tools
have been developed to recognize explicit expressions of sentiment, but affective states can also be
inferred from events. This talk will focus on “affective events”, which are generally desirable or
undesirable experiences that implicitly suggest an affective state for the experiencer. For example,
buying a home is usually desirable and associated with a positive affective state, but being laid off
is undesirable and associated with a negative state. First, we will describe a weakly supervised
learning method to induce affective events from a text corpus by optimizing for semantic consis-
tency. Second, we aim to characterize affective events based on Human Needs Categories, which
often explain people’s motivations, goals, and desires. We will present a co-training model for
Human Needs categorization that uses an event expression classifier and an event context classifier
to learn from both labeled and unlabeled texts.

Bio: Ellen Riloff is a Professor in the School of Computing at the University of Utah. Her primary
research area is natural language processing, with an emphasis on information extraction, affective
text analysis, semantic class induction, and bootstrapping methods that learn from unannotated
texts. Prof. Riloff has served as the General Chair for the EMNLP 2018 conference, Program Co-
Chair for the NAACL HLT 2012 and CoNLL 2004 conferences, on the NAACL Executive Board
for 2004-2005 and 2017-2018, the Computational Linguistics Editorial Board, and the Transac-
tions of the Association for Computational Linguistics (TACL) Editorial Board. In 2018, Prof.
Riloff was named a Fellow of the Association for Computational Linguistics (ACL).
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Invited Talk: Task-Independent Sentence Understanding
Sam Bowman

New York University, USA

Abstract: This talk deals with the goal of task-independent language understanding: building
machine learning models that can learn to do most of the hard work of language understanding
before they see a single example of the language understanding task they’re meant to solve, in
service of making the best of modern NLP systems both better and more data-efficient. I’ll survey
the (dramatic!) progress that the NLP research community has made toward this goal in the last
year. In particular, I’ll dwell on GLUE—an open-ended shared task competition that measures
progress toward this goal for sentence understanding tasks—and I’ll preview a few recent and
forthcoming analysis papers that attempt to offer a bit of perspective on this recent progress.

Bio: Sam Bowman has been on the faculty at NYU since 2016, when he finished his PhD with
Chris Manning and Chris Potts at Stanford. At NYU, he is a core member of the new school-level
Data Science unit, which focuses on machine learning, and a co-PI of the CILVR machine learning
lab. Prof. Bowman’s research focuses on data, evaluation techniques, and modeling techniques for
sentence understanding in natural language processing, and on applications of machine learning to
scientific questions in linguistic syntax and semantics. He is an area chair for *SEM 2018, ICLR
2019, and NAACL 2019; he organized a twenty-three person team at JSALT 2018 and earned a
2015 EMNLP Best Resource Paper Award and a 2017 Google Faculty Research Award.
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Minneapolis, June 6–7, 2019. c©2019 Association for Computational Linguistics

SURel: A Gold Standard for Incorporating Meaning Shifts
into Term Extraction

Anna Hätty1,2, Dominik Schlechtweg2, Sabine Schulte im Walde2

1Robert Bosch GmbH
2Institute for Natural Language Proessing (IMS), University of Stuttgart

anna.haetty@de.bosch.com, {schlecdk,schulte}@ims.uni-stuttgart.de

Abstract
We introduce SURel, a novel dataset for Ger-
man with human-annotated meaning shifts be-
tween general-language and domain-specific
contexts. We show that meaning shifts of term
candidates cause errors in term extraction, and
demonstrate that the SURel annotation reflects
these errors. Furthermore, we illustrate that
SURel enables us to assess optimisations of
term extraction techniques when incorporating
meaning shifts.

1 Introduction

Domain-specific terms often undergo meaning
shifts from general-language use to their respec-
tive domain-specific language use. For example,
the German noun Schnee predominantly means
‘snow’ in its general-language usage, and ‘beaten
egg whites’ in the cooking domain. Terms
with these characteristics are referred to as sub-
technical terms and pose a problem for term ex-
traction: Their hybrid character makes it hard for
humans to rank them along with unambiguous
terms, and hard for computational models to clas-
sify them as terms, because of the strong bias to-
wards their general-language meanings.

In this study, we present SURel (Synchronic
Usage Relatedness), a novel dataset for meaning
shifts from general to domain-specific language,
based on human annotations on the degrees of se-
mantic relatedness between contexts of term can-
didates. We illustrate that SURel reflects the error
that is commonly made by term extraction mea-
sures for sub-technical terms when relying on a
general-language reference corpus. In a first ex-
periment, we predict the meaning shift automat-
ically and use SURel for evaluation. We then in-
corporate the model’s prediction as a factor into an
established term extraction measure, to correct the
error in termhood prediction caused by meaning
shifts.

2 Meaning Shifts in Terminology

Sub-Technical Terms Terms are linguistic units
that characterize specialized domains (Kageura
and Umino, 1996), thus representing opposite ex-
tremes of words that are not specific to a domain
(Sager, 1990). Sub-technical terms (Cowan, 1974;
Trimble, 1985; Baker, 1988; Chung and Nation,
2003; Pérez, 2016) occupy intermediary positions
on the continuum, because they undergo meaning
shifts from general to domain-specific language
usage. Baker (1988) distinguishes two types of
sub-technical terms with general-language usage:
words with a restricted domain-specific meaning
(e.g., effective means ‘take effect’ in biology), and
words with a complete meaning shift (e.g., bug in
computer science).

Sub-technical terms are a major problem for
term extraction measures which often operate on
the word type rather than the word sense level.
Pérez (2016) provides empirical evidence that
50% of legal terminology is represented by sub-
technical terms. Lay people often do not even no-
tice their terminological character due to their pre-
dominant general-language use (Hätty and Schulte
im Walde, 2018).

Term Extraction Techniques One of the main
strands of term extraction methodologies are con-
trastive techniques, which compare a term candi-
date in a domain-specific and a general-language
corpus (Ahmad et al., 1994; Rayson and Garside,
2000; Drouin, 2003; Kit and Liu, 2008; Bonin
et al., 2010; Kochetkova, 2015; Lopes et al., 2016;
Mykowiecka et al., 2018, i.a.). For these meth-
ods sub-technical terms are problematic, because
their meanings are biased towards their general-
language use. An illustration is given in Figure 1.

Contrastive term extraction measures are usu-
ally designed to identify terms with meaning sta-
bility, i.e., the meaning in a domain-specific cor-
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pus is the same as the meaning in a general-
language corpus. If a term candidate undergoes
a meaning shift, either a meaning reduction takes
place, i.e., only a subset of the general-language
meanings occurs in a domain-specific corpus, or
we find a complete meaning change. Both reduc-
tion and change cause errors in the term extraction
results, which are stronger for meaning change in
comparison to meaning reduction.

It is evident that there are occurrences of senses
in the general-language corpus which should not
be considered as term meanings (see hatchings).

Figure 1: Influence of meaning shifts on a term’s sense
distributions across languages.

With very few exceptions, sub-technical terms
are not explicitly addressed by contrastive mea-
sures. Drouin (2004) mentions in his qualitative
analysis that some polysemous terms are not found
by his extraction system. Menon and Mukundan
(2010) and Pérez (2016) do explicitly tackle the
extraction of sub-technical terms. Their systems
rely on a term candidate’s collocation frequencies
in a domain and a general reference corpus. But
due to the lack of a gold standard, they only per-
form a qualitative analysis.

This is where our work comes into play: sub-
technical terms could be extracted in the same
way as terms, if only the corresponding meanings
were taken into account when comparing general-
language and domain-specific uses. Our novel
dataset SURel captures meaning shifts of term
candidates and thus serves as a gold standard for
the strength of the expected error produced by con-
trastive term extraction techniques when applied
to sub-technical terms.

3 The Dataset: SURel1

Dataset Creation SURel was created analo-
gously to DURel (Schlechtweg et al., 2018), a
dataset for meaning shifts across time. Our novel
dataset comprises a manual annotation of mean-
ing relatedness between uses of target words in
a general-language and a domain-specific corpus.
The strength of relatedness between uses defines
whether the meanings of a word are related or dif-
fer, thus indicating if a meaning shift took place.

As general-language corpus (GEN) we sub-
sampled SdeWaC (Faaß and Eckart, 2013), a
cleaned version of the web corpus DEWAC (Ba-
roni et al., 2009). As domain-specific corpus
(SPEC), we crawled cooking-related texts from
several categories (recipes, ingredients, cook-
ware, cooking techniques) from the German cook-
ing recipe websites kochwiki.de and Wikibooks
Kochbuch2. The reduced SdeWaC contains ≈126
million words, SPEC contains≈1.3 million words.

We selected 22 target words which occurred in
both GEN and SPEC, and which we expected to
exhibit different degrees of domain-specific mean-
ing shift. For each target word we randomly sam-
pled 20 use pairs (i.e., combinations of two con-
texts) from GEN, SPEC and across both, a to-
tal of 60 use pairs per word and 1,320 use pairs
overall. Four native speakers annotated the use
pairs on a scale from 1 (unrelated meanings) to 4
(identical meanings), reaching a strong mean pair-
wise agreement of ρ =0.88. The ranking of the
22 target words by their average strength of re-
latedness between general-language and domain-
specific uses is shown in Figure 2. On the left are
target words with highly related meanings in GEN

and SPEC; on the right are words with strongly
different meanings.3

Dataset Analysis In the following, we analyse
the meaning relatedness of use pairs within and
across GEN and SPEC. Figure 3 shows examples
of annotations that nicely correspond to cases of
meaning stability, reduction and change, respec-
tively. The y-axes show how often the use pairs
were rated as 1–4. In Figure 3 top left we find
Schnittlauch ‘chive’ with strongly related mean-
ings within and across GEN and SPEC, thus in-
dicating meaning stability. Top right, we find

1The dataset is available at
www.ims.uni-stuttgart.de/data/surel.

2de.wikibooks.org/wiki/Kochbuch
3Find an overview of the dataset in the Appendix.
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Figure 2: Ranking of target words by average strength
of meaning relatedness between GEN and SPEC.

Messer ‘knife’ with more related meanings in
SPEC than in GEN, and even less strongly related
meanings across GEN and SPEC, thus indicating
meaning reduction. In Figure 3 at the bottom
we find Schnee ‘snow’/‘beaten egg whites’ with
strongly related meanings within GEN and also
within SPEC but very different meanings when
comparing GEN and SPEC uses, thus indicating a
meaning shift. The three examples are taken from
the two extremes and a mid position in Figure 2.

4 Incorporating Meaning Shifts into
Automatic Term Extraction

After illustrating that the relatedness scores in
SURel reflect degrees of meaning shifts from gen-
eral to domain-specific language usage, the cur-
rent section demonstrates that (a) a standard mea-
sure for automatic term extraction does not capture
variants of meaning shifts, and (b) we can utilise
SURel to modify existing measures to incorporate
meaning shifts into termhood prediction.

A Standard Term Extraction Measure We
selected one of the simplest standard contrastive
term extraction measures, the Weirdness Ratio
(WEIRD) (Ahmad et al., 1994), which is still
commonly used or adapted (Moreno-Ortiz and
Fernández-Cruz, 2015; Cram and Daille, 2016;
Roesiger et al., 2016; Hätty et al., 2017, i.a.).
It encompasses just the basic ingredients for
termhood prediction, a comparison of word
frequencies in relation to corpus sizes:

WEIRD(x) =
fspec(x)/sspec
fgen(x)/sgen

,

Figure 3: Examples indicating meaning stability (top),
meaning reduction (centre) and meaning change (bot-
tom). COMPARE denotes cross-corpora relatedness (cf.
Schlechtweg et al., 2018).

where fspec and fgen correspond to the frequen-
cies of a term candidate x in a general and a
domain-specific corpus, and sspec and sgen are the
respective sizes of the corpora.4

The left panel in Figure 4 shows the ranking
of the SURel target words after computing their
WEIRD scores, with decreasing termhood scores
for targets from left to right. The figure clearly il-
lustrates that WEIRD ranks the targets words with
strongest meaning shifts in SURel lowest, inde-
pendently of their termhood: targets with high
SURel scores are ranked as most terminological
by WEIRD and occupy the first ranks (Messer-
spitze, Eiweiß, . . . ), and targets with low SURel

4We use versions of our corpora which are limited to con-
tent words to be consistent with following experiments.
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scores are ranked as the least terminological ones
and occupy the last ranks (. . . , Form, schlagen).

To further investigate this bias, we looked up the
SURel targets in (a) Wiktionary and Wikipedia,
(b) the German dictionary Duden and (c) popular
German translation dictionaries (Langenscheidt
and PONS). If a word was assigned a cooking or
gastronomy tag in any of these resources, we cat-
egorised it as a domain term. In this way, ten of
our targets5 were categorised as terms; seven of
them are among the ten most non-terminologically
ranked targets by WEIRD. This confirms that ter-
mhood predictions by WEIRD as a representative
of contrastive termhood measures are strongly in-
fluenced by terminological meaning shifts.

Although the influence of meaning shifts might
not be equally evident in other term extrac-
tion measures as in our simple example measure
WEIRD, any other measure heavily relying on a
general-language word frequency distribution will
to some extent be negatively influenced by termi-
nological meaning shifts. Consequently, we need
to correct the bias caused by meaning shifts. In
the following, we show that we can use SURel to
assess factors that potentially reduce the bias.

Correcting the Meaning Shift For automati-
cally predicting meaning shifts we rely on a state-
of-the-art model for diachronic meaning change
(Hamilton et al., 2016). We learn two separate
word2vec SGNS vector spaces for GEN and SPEC.
In order to compare the target vectors across
spaces the spaces are aligned, i.e., the best rotation
of one vector space onto the other is computed.
This corresponds to the solution of the orthogonal
Procrustes problem (Schönemann, 1966). IfG and
S are the matrices for the general and the specific
vector spaces, then we rotate G by GW where
W = UV T , with U and V retrieved from the sin-
gular value decomposition STG = UΣV T . Fol-
lowing standard practice we then length-normalize
and mean-center G and S in a pre-processing step
(Artetxe et al., 2017). After the alignment, cosine
similarity between the vectors of the same word
in both spaces is computed. The cosine score of
the two vectors of a word w predicts the strength
of meaning change of w between GEN and SPEC,
ranging from 0 (complete change) to 1 (stability).6

5Eiweiß, Messerspitze, Paprika, abschrecken, Strudel,
Schuß, Schnee, Form, schlagen, Hamburger

6Since Messerspitze occurred too few times in GEN, we
did not compute a shift value and assumed no shift.

As input for the model, we use POS-tagged ver-
sions of our corpora, keeping only content words.

Evaluating the output of the model on the
SURel dataset, we reach a Spearman’s rank-order
correlation coefficient of ρ=0.866 between the
model’s change predictions and SURel meaning-
shift ranks. Inspecting the nearest neighbors
(NNs) of our target words in Figure 3 confirms
the ability of the model to predict strengths of
meaning shifts. For example, the NNs for Schnee
change completely (from mud, leaves, foggy in the
GEN space to egg whites, foamy, beat in the SPEC

space), while for Schnittlauch all nearest neigh-
bors in both spaces are cooking-related.

Finally, to correct WEIRD for the meaning-shift
error, we incorporate the model’s predictions
of meaning change into the WEIRD formula,
where α(x) corresponds to the model’s predicted
strength of meaning change for word x:

WEIRDMOD(x) =
fspec(x)/sspec

(α(x) · fgen(x))/sgen
.

The right panel in Figure 4 shows the rank-
ing of the SURel target words based on their
WEIRDMOD scores, again with decreasing ter-
mhood scores for targets from left to right. The
plot clearly shows that WEIRDMOD improves
over WEIRD regarding the negative bias for
meaning-shifted targets: now shifted target words
do not gather in one part of the plot but occur
across ranks. While WEIRD only reaches an av-
erage precision of 0.45, WEIRDMOD reaches an
average precision of 0.59.

In the same way as we incorporated the Hamil-
ton measure of semantic change into WEIRD, we
could rely on other contrastive term extraction
techniques and incorporate further measures of se-
mantic change. SURel can be utilised to evaluate
modifications and thus to optimise termhood pre-
diction techniques regarding the sub-technical ter-
minological meaning shift bias.

5 Extension and Discussion

We presented a gold standard for meaning shifts
and how to use it for term extraction. Since our
meaning shift prediction method works quite well
with the however rather small dataset, we extend
the target set and further compute the shifts for all
nouns, verbs and adjectives in the cooking corpus
with a frequency ≥ 50 in both SPEC and GEN.
This results in shift values for 1,125 words. In the
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Figure 4: SURel target words ranked by WEIRD (left panel) and WEIRDMOD (right panel), with termhood predic-
tion strength decreasing from left to right; the y-axes show the SURel GEN–SPEC relatedness score.

following, we use the extended dataset for remarks
on challenges for term extraction.

First, our dataset contains mostly words with
at least some relevance to the cooking domain.
The intuition behind this is, that for clearly un-
terminological words (e.g. anderes ‘different’, al-
ternativ ‘alternative’, komplett ‘complete’, Ganze
‘whole’) there should not be a meaning shift to-
wards the domain. In practice, when applying
our method, our system predicts a high degree of
meaning shift for those words. Many of those
words seem to be highly versatile in GEN and in
SPEC. Additionally, especially problematic are
words which occur without context in many cases
(Galerie ‘[picture] gallery’, Inhaltsverzeichnis ‘ta-
ble of contents’), or words with repeating similar
context (e.g. Wikipedia, Artikel ‘article’, Thema
‘topic’ in the reoccurring sentence ‘Wikipedia has
one article to the topic ...’ in the SPEC corpus).
For the latter two cases, it is possible to filter the
corpus beforehand, but the first case is more diffi-
cult.

We achieve some promising results with the fol-
lowing method: We compute a second shift value,
but this time shuffle the sentences across the cor-
pora while preserving the target word’s context
sentence frequencies in each corpus. By that we
obtain some kind of ground truth value for the
word’s context variance. The assumption here is
that if a word already has strongly varying con-
texts throughout the corpora, then the high shift
across corpora is most likely a result from that.
We finally substract the shuffling value from the
shift value. In the resulting ranked list, this method

separates the unterminologic elements to the one
end and a lot of terms with meaning shift to
the other end: altbacken ‘dowdy/stale’, gedämpft
‘low voice/steamed’, Schnee, Fond ‘fund/stock’,
Auflauf ‘crowd/casserole’, Form ‘shape/(baking)
mould’ together with other cooking-related words
like Spaghetti, Pfannkuchen ‘pancake’, Pommes
‘French fries’, Ananas ‘pineapple’, where the
latter words have a lower original shift value.
However, other sub-technical terms like schla-
gen ‘beat/whip (cream)’, abschrecken ‘discour-
age/chill ’, binden ‘tie/thicken (sauce)’ are still
among the unterminologic elements, most likely
because they have rather varying contexts in GEN

as well. Nevertheless, for terms with meaning
shifts identified with the described method the
original shift value could be used to correct a ter-
mhood measure.

6 Conclusion

We presented SURel, a German dataset for mean-
ing shift annotations from general to domain-
specific language, focusing on the language of
cooking. Meaning shifts are relevant for con-
trastive term extraction systems, because the af-
fected terms are typically biased towards their
general-language use and, consequently, might not
be recognized as terms. SURel can be used as a
gold standard for predicting meaning shifts, and
these predictions can be used to optimize term
extraction measures. A case study incorporat-
ing a state-of-the-art diachronic semantic change
measure into a simple term extraction model con-
firmed this potential of SURel.
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Appendix

lexeme POS translations MRS freq. GEN freq. SPEC

Strudel NN whirlpool, strudel (a pastry) 1.05 232 46
Schnee NN snow, beaten egg whites 1.05 2,228 53
schlagen VV beat, whip (e.g. cream) 1.10 14,693 309
Gericht NN court, dish 1.15 13,263 1,071
Schuß NN shot (e.g. gunshot, shot of milk) 1.42 2,153 117
Hamburger NN citizen of Hamburg, hamburger 1.53 5,558 46
abschrecken VV discourage, chill (with cold water) 1.75 730 170
Form NN shape, (baking) mould 2.25 36,639 851
trennen VV separate 2.65 5771 170
Glas NN glass (e.g. material, drinking glass, jar) 2.70 3,830 863
Blech NN iron plate, baking tray 2.95 409 145
Prise NN pinch (e.g. of humour, tobacco, salt) 3.10 370 622
Paprika NN bell pepper, paprika 3.33 377 453
Messerspitze NN point of a knive, pinch (e.g. of salt) 3.43 39 49
Mandel NN tonsil, almond 3.45 402 274
Messer NN knife 3.50 1,774 925
Rum NN rum 3.55 244 181
Salz NN salt 3.74 3,087 5,806
Eiweiß NN protein, egg white 3.75 1,075 3,037
Schokolade NN chocolate 3.98 947 251
Schnittlauch NN chives 4.00 156 247
Gemüse NN vegetable 4.00 2,696 1,224

Table 1: SURel dataset. MRS (mean relatedness score) denotes the compare rank as described in
(Schlechtweg et al., 2018), where high values denote low change. Translations are illustrative for
possible meaning shifts, while further senses might exist.
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Abstract

Usage similarity estimation addresses the se-
mantic proximity of word instances in differ-
ent contexts. We apply contextualized (ELMo
and BERT) word and sentence embeddings
to this task, and propose supervised models
that leverage these representations for predic-
tion. Our models are further assisted by lexical
substitute annotations automatically assigned
to word instances by context2vec, a neural
model that relies on a bidirectional LSTM. We
perform an extensive comparison of existing
word and sentence representations on bench-
mark datasets addressing both graded and bi-
nary similarity. The best performing models
outperform previous methods in both settings.

1 Introduction

Traditional word embeddings, like Word2Vec and
GloVe, merge different meanings of a word in a
single vector representation (Mikolov et al., 2013;
Pennington et al., 2014). These pre-trained em-
beddings are fixed, and stay the same indepen-
dently of the context of use. Current contextual-
ized sense representations, like ELMo and BERT,
go to the other extreme and model meaning as
word usage (Peters et al., 2018; Devlin et al.,
2018). They provide a dynamic representation of
word meaning adapted to every new context of
use.

In this work, we perform an extensive compar-
ison of existing static and dynamic embedding-
based meaning representation methods on the us-
age similarity (Usim) task, which involves esti-
mating the semantic proximity of word instances
in different contexts (Erk et al., 2009). Usim
differs from a classical Semantic Textual Simi-
larity task (Agirre et al., 2016) by the focus on
a particular word in the sentence. We evalu-
ate on this task word and context representations
obtained using pre-trained uncontextualized word

Eleven CIRA members [have been [convicted of 

criminal charges and others are] awaiting trial].

So what started out as a perfectly lovely stroll ended [up 
as [a public wrestling match between grandma and] 

baby girl], with baby girl loving very second of it . 

So what started out as a perfectly lovely stroll ended [up as [a public  
wrestling match between grandma and] baby girl], with  

baby girl loving very second of it . 

grass clippings can be brought out to the landfill at anytime for no *charge* and may not be placed in city cans .

the tag consists of a tiny chip , [about the [size of a 

match head that serves ] as a ] portable database .

this is at least 26 weeks by the [week in [which the 

approved match with the child ] is made ].

grass clippings can be brought out to the [landfill at [anytime 

for no charge and may not ] be placed in city cans ] 

Figure 1: We use contextualized word representations
built from the whole sentence or smaller windows
around the target word for usage similarity estimation,
combined with automatic substitute annotations.

embeddings (GloVe) (Pennington et al., 2014),
with and without dimensionality reduction (SIF)
(Arora et al., 2017); context representations ob-
tained from a bidirectional LSTM (context2vec)
(Melamud et al., 2016); contextualized word em-
beddings derived from a LSTM bidirectional lan-
guage model (ELMo) (Peters et al., 2018) and gen-
erated by a Transformer (BERT) (Devlin et al.,
2018); doc2vec (Le and Mikolov, 2014) and
Universal Sentence Encoder representations (Cer
et al., 2018). All these embedding-based meth-
ods provide direct assessments of usage similar-
ity. The best representations are used as features
in supervised models for Usim prediction, trained
on similarity judgments.

We combine direct Usim assessments, made by
the embedding-based methods, with a substitute-
based Usim approach. Building up on previous
work that used manually selected in-context sub-
stitutes as a proxy for Usim (Erk et al., 2013; Mc-
Carthy et al., 2016), we propose to automatize the
annotation collection step in order to scale up the
method and make it operational on unrestricted
text. We exploit annotations assigned to words
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in context by the context2vec lexical substitution
model, which relies on word and context repre-
sentations learned by a bidirectional LSTM from
a large corpus (Melamud et al., 2016).

The main contributions of this paper can be
summarized as follows:

• we provide a direct comparison of a wide
range of word and sentence representation
methods on the Usage Similarity (Usim) task
and show that current contextualized repre-
sentations can successfully predict Usim;

• we propose to automatize, and scale up, pre-
vious substitute-based Usim prediction meth-
ods;

• we propose supervised models for Usim pre-
diction which integrate embedding and lexi-
cal substitution features;

• we propose a methodology for collecting new
training data for supervised Usim prediction
from datasets annotated for related tasks.

We test our models on benchmark datasets con-
taining gold graded and binary word Usim judg-
ments (Erk et al., 2013; Pilehvar and Camacho-
Collados, 2019). From the compared embedding-
based approaches, the BERT model gives best re-
sults on both types of data, providing a straight-
forward way for word usage similarity calculation.
Our supervised model performs on par with BERT
on the graded and binary Usim tasks, when using
embedding-based representations and clean lexi-
cal substitutes.

2 Related Work

Usage similarity is a means for representing word
meaning which involves assessing in-context se-
mantic similarity, rather than mapping to word
senses from external inventories (Erk et al., 2009,
2013). This methodology followed from the grad-
ual shift from word sense disambiguation models
that would select the best sense in context from a
dictionary, to models that reason about meaning
by solely relying on distributional similarity (Erk
and Padó, 2008; Mitchell and Lapata, 2008), or al-
low multiple sense interpretations (Jurgens, 2014).
In Erk et al. (2009), the idea is to model meaning
in context in a way that captures different degrees
of similarity to a word sense, or between word in-
stances.

Due to its high reliance on context, Usim can
be viewed as a semantic textual similarity (STS)
(Agirre et al., 2016) task with a focus on a spe-
cific word instance. This connection motivated us
to apply methods initially proposed for sentence
similarity to Usim prediction. More precisely,
we build sentence representations using different
types of word and sentence embeddings, ranging
from the classical word-averaging approach with
traditional word embeddings (Pennington et al.,
2014), to more recent contextualized word rep-
resentations (Peters et al., 2018; Devlin et al.,
2018). We explore the contribution of each sep-
arate method for Usim prediction, and use the best
performing ones as features in supervised models.
These are trained on sentence pairs labelled with
Usim judgments (Erk et al., 2009) to predict the
similarity of new word instances.

Previous attempts to automatic Usim prediction
involved obtaining vectors encoding a distribution
of topics for every target word in context (Lui
et al., 2012). In this work, Usim was approx-
imated by the cosine similarity of the resulting
topic vectors. We show how contextualized rep-
resentations, and the supervised model that uses
them as features, outperform topic-based methods
on the graded Usim task.

We combine the embedding-based direct Usim
assessment methods with substitute-based repre-
sentations obtained using an unsupervised lexi-
cal substitution model. McCarthy et al. (2016)
showed it is possible to model usage similarity
using manual substitute annotations for words in
context. In this setting, the set of substitutes pro-
posed for a word instance describe its specific
meaning, while similarity of substitute annota-
tions for different instances points to their seman-
tic proximity.1 We follow up on this work and
propose a way to use substitutes for Usim predic-
tion on unrestricted text, bypassing the need for
manual annotations. Our method relies on sub-
stitute annotations proposed by the context2vec
model (Melamud et al., 2016), which uses word
and context representations learned by a bidirec-
tional LSTM from a large corpus (UkWac) Baroni
et al. (2009).

1McCarthy et al. use the substitute annotations as features
for predicting Usim, clustering instances and estimating the
partitionability of words into senses. This offers a way to
distinguish between lemmas with distinct senses and others
with fuzzy semantics, which would be more challenging in
annotation tasks and automatic processing.
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Sentences Substitutes

The local papers took photographs of
the footprint.

GOLD: newspaper, journal
AUTO-LSCNC: press, newspaper, news, report, picture
AUTO-PPDB: newspaper, newsprint

Now Ari Fleischer, in a pitiful letter to
the paper, tries to cast Milbank as the
one getting his facts wrong.

GOLD: newspaper, publication
AUTO-LSCNC: press, newspaper, news, article, journal, thesis,
periodical, manuscript, document
AUTO-PPDB: newspaper

This is also at the very essence or heart
of being a coach.

GOLD: trainer, tutor, teacher
AUTO-LSCNC: teacher, counsellor, trainer, tutor, instructor
AUTO-PPDB: trainer, teacher, mentor, coaching

We hopped back onto the coach – now
for the boulangerie!

GOLD: coach, bus, carriage
AUTO-LSCNC: bus, car, carriage, transport
AUTO-PPDB: bus, train, wagon, lorry, car, truck, carriage, vehicle

Table 1: Example pairs of highly similar and dissimilar usages from the Usim dataset (Erk et al., 2013) for the
nouns paper (Usim score = 4.34) and coach.n (Usim score = 1.5), with the substitutes assigned by the annotators
(GOLD). For comparison, we give the substitutes selected for these instances by the automatic substitution method
(context2vec) used in our experiments from two different pools of substitutes (AUTO-LSCNC and PPDB). More
details on the automatic substitution configurations are given in Section 4.2.

3 Data

3.1 The LexSub and Usim Datasets
We use the training and test datasets of the
SemEval-2007 Lexical Substitution (LexSub) task
(McCarthy and Navigli, 2007), which contain in-
stances of target words in sentential context hand-
labelled with meaning-preserving substitutes. A
subset of the LexSub data (10 instances x 56 lem-
mas) has additionally been annotated with graded
pairwise Usim judgments (Erk et al., 2013). Each
sentence pair received a rating (on a scale of 1-
5) by multiple annotators, and the average judg-
ment for each pair was retained. McCarthy et al.
(2016) derive two additional scores from Usim
annotations that denote how easy it is to parti-
tion a lemma’s usages into sets describing distinct
senses: Uiaa, the inter-annotator agreement for a
given lemma, taken as the average pairwise Spear-
man’s ρ correlation between ranked judgments of
the annotators; and Umid, the proportion of mid-
range judgments over all instances for a lemma
and all annotators.

In our experiments, we use 2,466 sentence pairs
from the Usim data for training, development
and testing of different automatic Usim predic-
tion methods. Our models rely on substitutes
automatically assigned to words in context us-
ing context2vec (Melamud et al., 2016), and on
various word and sentence embedding representa-

tions. We also train a model using the gold substi-
tutes, to test how well our models perform when
substitute quality is high. Performance of the dif-
ferent models is evaluated by measuring how well
they approximate the Usim scores assigned by an-
notators. Table 1 shows examples of sentence
pairs from the Usim dataset (Erk et al., 2013) with
the GOLD substitutes and Usim scores assigned by
the annotators. The Usim score is high for simi-
lar instances, and decreases for instances that de-
scribe different meanings. The semantic proximity
of two instances is also reflected in the similarity
of their substitutes sets. For comparison, we also
give in the Table the substitutes selected for these
instances by the automatic context2vec substitu-
tion method used in our experiments (more details
in Section 4.2).

3.2 The Concepts in Context Corpus

Given the small size of the Usim dataset, we ex-
tract additional training data for our models from
the Concepts in Context (CoInCo) corpus (Kremer
et al., 2014), a subset of the MASC corpus (Ide
et al., 2008). CoInCo contains manually selected
substitutes for all content words in a sentence, but
provides no usage similarity scores that could be
used for training. We construct our supplementary
training data as follows: we gather all instances
of a target word in the corpus with at least four
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substitutes, and keep pairs with (1) no overlap in
substitutes, and (2) minimum 75% substitute over-
lap.2 We view the first set of pairs as examples
of completely different usages of a word (DIFF),
and the second set as examples of identical usages
(SAME). The two sets are unbalanced in terms of
number of instance pairs (19,060 vs. 2,556). We
balance them by keeping in DIFF the 2,556 pairs
with the highest number of substitutes.

We also annotate the data with substitutes using
context2vec (Melamud et al., 2016), as described
in Section 4.2. We apply an additional filtering
to the sentence pairs extracted from CoInCo, dis-
carding instances of words that are not in the con-
text2vec vocabulary and have no embeddings. We
are left with 2,513 pairs in each class (5,026 in to-
tal). We use 80% of these pairs (4,020) together
with the Usim data to train our supervised Usim
models described in Section 4.3.3

3.3 The Word-in-Context dataset
The third dataset we use in our experiments is the
recently released Word-in-Context (WiC) dataset
(Pilehvar and Camacho-Collados, 2019), version
0.1. WiC provides pairs of contextualized tar-
get word instances describing the same or differ-
ent meaning, framing in-context sense identifica-
tion as a binary classification task. For example,
a sentence pair for the noun stream is: [‘Stream
of consciousness’ – ‘Two streams of development
run through American history’]. A system is ex-
pected to be able to identify that stream does not
have the same meaning in the two sentences.

WiC sentences were extracted from example
usages in WordNet (Fellbaum, 1998), VerbNet
(Schuler, 2006), and Wiktionary. Instance pairs
were automatically labeled as positive (T) or
negative (F) (corresponding to the same/different
sense) using information in the lexicographic re-
sources, such as presence in the same or differ-
ent synsets. Each word is represented by at most
three instances in WiC, and repeated sentences are
excluded. It is important to note that meanings
represented in the WiC dataset are coarser-grained
than WordNet senses. This was ensured by ex-
cluding WordNet synsets describing highly sim-

2Full overlap is rare since annotators propose somewhat
different sets of substitutes, even for instances with the same
meaning. Full overlap is observed for only 437 of all consid-
ered CoInCo pairs (0.3%).

3We will make the dataset available at https://
github.com/ainagari. 20% of the extracted examples
were kept aside for development and testing purposes.

ilar meanings (sister senses, and senses belong-
ing to the same supersense). The human-level
performance upper-bound on this binary task, as
measured on two 100-sentence samples, is 80.5%.
Inter-annotator agreement is also high, at 79%.
The dataset comes with an official train/dev/test
split containing 7,618, 702 and 1,366 sentence
pairs, respectively.4

4 Methodology

We experiment with two ways of predicting us-
age similarity: an unsupervised approach which
relies on the cosine similarity of different kinds of
word and sentence representations, and provides
direct Usim assessments; and supervised models
that combine embedding similarity with features
based on substitute overlap. We present the di-
rect Usim prediction methods in Section 4.1. In
Section 4.2, we describe how substitute-based fea-
tures were extracted, and in Section 4.3, we intro-
duce the supervised Usim models.

4.1 Direct Usage Similarity Prediction

In the unsupervised Usim prediction setting, we
apply different types of pre-trained word and sen-
tence embeddings as follows: we compute an em-
bedding for every sentence in the Usim dataset,
and calculate the pairwise cosine similarity be-
tween the sentences available for a target word.
Then, for every embedding type, we measure the
correlation between sentence similarities and gold
usage similarity judgments in the Usim dataset,
using Spearman’s ρ correlation coefficient. We ex-
periment with the following embedding types.

GloVe embeddings are uncontextualized word
representations which merge all senses of a word
in one vector (Pennington et al., 2014). We use
300-dimensional GloVe embeddings pre-trained
on Common Crawl (840B tokens).5 The represen-
tation of a sentence is obtained by averaging the
GloVe embeddings of the words in the sentence.

SIF (Smooth Inverse Frequency) embeddings are
sentence representations built by applying dimen-
sionality reduction to a weighted average of un-
contextualized embeddings of words in a sentence

4The test portion of WiC had not been released at the time
of submission. We contacted the authors and ran the evalua-
tion on the official test set, to be able to compare to results re-
ported in their paper (Pilehvar and Camacho-Collados, 2019).

5https://nlp.stanford.edu/projects/
glove/
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(Arora et al., 2017). We use SIF in combination
with GloVe vectors.

Context2vec embeddings (Melamud et al., 2016).
The context2vec model learns embeddings for
words and their sentential contexts simultane-
ously. The resulting representations reflect: a) the
similarity between potential fillers of a sentence
with a blank slot, and b) the similarity of contexts
that can be filled with the same word. We use a
context2vec model pre-trained on the UkWac cor-
pus (Baroni et al., 2009) 6 to compute embeddings
for sentences with a blank at the target word’s po-
sition.

ELMo (Embeddings from Language Models) rep-
resentations are contextualized word embeddings
derived from the internal states of an LSTM bidi-
rectional language model (biLM) (Peters et al.,
2018). In our experiments, we use a pre-trained
512-dimensional biLM.7 Typically, the best lin-
ear combination of the layer representations for
a word is learned for each end task in a super-
vised manner. Here, we use out-of-the-box em-
beddings (without tuning) and experiment with the
top layer, and with the average of the three hidden
layers. We represent a sentence in two ways: by
the contextualized ELMo embedding obtained for
the target word, and by the average of ELMo em-
beddings for all words in a sentence.

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018). BERT
representations are generated by a 12-layer bidi-
rectional Transformer encoder that jointly condi-
tions on both left and right context in all layers.8

BERT can be fine-tuned to specific end tasks, or its
contextualized word representations can be used
directly in applications, similar to ELMo. We try
different layer combinations and create sentence
representations, in the same way as for ELMo: us-
ing either the BERT embedding of the target word,
or the average of the BERT embeddings for all
words in a sentence.

Universal Sentence Encoder (USE) makes use
of a Deep Averaging Network (DAN) encoder
trained to create sentence representations by
means of multi-task learning (Cer et al., 2018).

6http://u.cs.biu.ac.il/˜nlp/resources/
downloads/context2vec/

7https://allennlp.org/elmo
8This is an important difference with the ELMo archi-

tecture which concatenates a left-to-right and right-to-left
model.

USE has been shown to improve performance on
different NLP tasks using transfer learning.9

doc2vec is an extension of word2vec to the
sentence, paragraph or document level (Le and
Mikolov, 2014). One of its forms, dbow (dis-
tributed bag of words), is based on the skip-gram
model, where it adds a new feature vector repre-
senting a document. We use a dbow model trained
on English Wikipedia released by Lau and Bald-
win (2016).10

We test the above models with representations
built from the whole sentence, and using a smaller
context window (cw) around the target word. Sen-
tences in the WiC dataset are quite short (7.9 ±
3.9 words), but the length of sentences in the Usim
and CoInCo datasets varies a lot (27.4 ± 13.2 and
18.8 ± 10.2, respectively). We want to check
whether information surrounding the target word
in the sentence is more relevant, and sufficient for
Usim estimation. We focus on the words in a con-
text window of ± 2, 3, 4 or 5 words at each side
of a target word. Then, we collect their word em-
beddings to be averaged (for GloVe, ELMo and
BERT), or derive an embedding from this specific
window instead of the whole sentence (for USE).

We approximate Usim by measuring the cosine
similarity of the resulting context representations.
We compare the performance of these direct as-
sessment methods on the Usim dataset and report
the results in Section 5.

4.2 Substitute-based Feature Extraction

Following up on McCarthy et al.’s (2016) sense
clusterability work, we also experiment with a
substitute-based approach for Usim prediction.
McCarthy et al. showed that manually selected
substitutes for word instances in context can be
used as a proxy for Usim. Here, we propose an
approach to obtain these annotations automatically
that can be applied to the whole vocabulary.

Automatic LexSub We generate rankings of can-
didate substitutes for words in context using the
context2vec method (Melamud et al., 2016). The
original method selects and ranks substitutes from
the whole vocabulary. To facilitate comparison
and evaluation, we use the following pools of
candidates: (a) all substitutes that were proposed

9https://tfhub.dev/google/
universal-sentence-encoder/2

10https://github.com/jhlau/doc2vec
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for a word in the LexSub and CoInCo annota-
tions (we call this substitute pool AUTO-LSCNC);
(b) the paraphrases of the word in the Paraphrase
Database (PPDB) XXL package (Ganitkevitch
et al., 2013; Pavlick et al., 2015) (AUTO-PPDB).11

In the WiC experiments, where no substitute an-
notations are available, we only use PPDB para-
phrases (AUTO-PPDB). We obtain a context2vec
embedding for a sentence by replacing the target
word with a blank. AUTO-LSCNC substitutes are
high-quality since they were extracted from the
manual LexSub and CoInCo annotations. They
are semantically similar to the target, and con-
text2vec just needs to rank them according to how
well they fit the new context. This is done by mea-
suring the cosine similarity between each substi-
tute’s context2vec word embedding and the con-
text embedding obtained for the sentence.

The AUTO-PPDB pool contains paraphrases
from PPDB XXL, which were automatically ex-
tracted from parallel corpora (Ganitkevitch et al.,
2013). Hence, this pool contains noisy para-
phrases that should be ranked lower. To this end,
we use in this setting the original context2vec
scoring formula which also accounts for the simi-
larity between the target word and the substitute:

c2v score =
cos(s, t) + 1

2
× cos(s, C) + 1

2
(1)

In formula (1), s and t are the word embeddings
of a substitute and the target word, and C is the
context2vec vector of the context. Following this
procedure, context2vec produces a ranking of can-
didate substitutes for each target word instance in
the Usim, CoInCo and WiC datasets, according to
their fit in context. Every candidate is assigned a
score, with substitutes that are a good fit in a spe-
cific context being higher-ranked than others. For
every new target word instance, context2vec ranks
all candidate substitutes available for the target in
each pool. Consequently, the automatic annota-
tions produced for different instances of the target
include the same set of substitutes, but in different
order. This does not allow for the use of measures
based on substitute overlap, which were shown to
be useful for Usim prediction in McCarthy et al.
(2016). In order to use this type of measures, we
propose ways to filter the automatically generated
rankings, and keep for each instance only substi-
tutes that are a good fit in context.

11http://paraphrase.org/

Substitute Filtering We test different filters to
discard low quality substitutes from the annota-
tions proposed by context2vec for each instance.

• PPDB 2.0 score: Given a ranking R of n
substitutes R = [s1, s2, ..., sn] proposed by
context2vec, we form pairs of substitutes in
adjacent positions {si↔ si+1}, and check
whether they exist as paraphrase pairs in
PPDB. We expect substitutes that are para-
phrases of each other to be similarly ranked.
If si and si+1 are not paraphrases in PPDB,
we keep all substitutes up to si and use this as
a cut-off point, discarding substitutes present
from position si+1 onwards in the ranking.

• GloVe word embeddings: We measure the
cosine similarity (cosSim) between GloVe
embeddings of adjacent substitutes {si ↔
si+1} in the ranking R obtained for a new
instance. We first compare the similarity of
the first pair of substitutes (cosSim(s1, s2))
to a lower bound similarity threshold T. If
cosSim(s1, s2) exceeds T, we assume that
s1 and s2 have the same meaning, and use
cosSim(s1, s2) as a reference similarity value,
S, for this instance. The middle point be-
tween the two values, M = (T + S)/2, is
then used as a threshold to determine whether
there is a shift in meaning in subsequent
pairs. If cosSim(si, si+1) < M , for i > 1,
then only the higher ranked substitute (si) is
retained and all subsequent substitutes in the
ranking are discarded. The intuition behind
this calculation is that if cosSim is much
lower than the reference S (even if it exceeds
T ), substitutes possibly have different senses.

• Context2vec score: This filter uses the score
assigned by context2vec to each substitute,
reflecting how good a fit it is in each con-
text. context2vec scores vary a lot across
instances, it is thus not straightforward to
choose a threshold. We instead refer to the
scores assigned to adjacent pairs of substi-
tutes in the ranking produced for each in-
stance, R = [s1, s2, ..., sn]. We view the pair
with the biggest difference in scores as the
cut-off point, considering it reflects a degra-
dation in substitute fit. We retain only substi-
tutes up to this point.

• Highest-ranked X substitutes. We also test
two simple baselines, which consist in keep-
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ing the 5 and 10 highest-ranked substitutes
for each instance.

We test the efficiency of each filter on the por-
tion of the LexSub dataset (McCarthy and Nav-
igli, 2007) that was not annotated for Usim. We
compare the substitutes retained for each instance
after filtering to its gold LexSub susbtitutes using
the F1-score, and the proportion of false positives
out of all positives. Filtering results are reported
in Appendix A. The best filters were GloVe word
embeddings (T = 0.2) for AUTO-LSCNC, and the
PPDB filter for AUTO-PPDB.

Feature Extraction After annotating the Usim
sentences with context2vec and filtering, we ex-
tract, for each sentence pair (S1, S2), a set of fea-
tures related to the amount of substitute overlap.

• Common substitutes. The proportion of
shared substitutes between two sentences.

• GAP score. The average of the Generalized
Average Precision (GAP) score (Kishida,
2005) taken in both directions (GAP (S1, S2)
and GAP (S2, S1)). GAP is a measure that
compares two rankings considering not only
the order of the ranked elements but also their
weights. It ranges from 0 to 1, where 0 means
that rankings are completely different and 1
indicates perfect agreement. We use the fre-
quency in the manual Usim annotations (i.e.
the number of annotators who proposed each
substitute) as the weight for gold substitutes,
and the context2vec score for automatic sub-
stitutes. We use the GAP implementation
from Melamud et al. (2015).

• Substitute cosine similarity. We form sub-
stitute pairs (S1 ↔ S2) and calculate the av-
erage of their GloVe cosine similarities. This
feature shows the semantic similarity of sub-
stitutes, even when overlap is low.

4.3 Supervised Usim Prediction
We train linear regression models to predict Usim
scores for word instances in different contexts us-
ing as features the cosine similarity of the different
representations in Section 4.1, and the substitute-
based features in 4.2. For training, we use the
Usim dataset on its own (cf. Section 3.1), and
combined with the additional training examples
extracted from CoInCo (cf. Section 3.2).

To be able to evaluate the performance of our
models separately for each of the 56 target words

in the Usim dataset, we train a separate model for
each word in a leave-one-out setting. Each time,
we use 2,196 pairs for training, 225 for develop-
ment and 45 for testing.12 Each model is eval-
uated on the sentences corresponding to the left
out target word. We report results of these ex-
periments in Section 5. The performance of the
model with context2vec substitutes from the two
substitute pools is compared to that of the model
with gold substitute annotations. We replicate the
experiments by adding CoInCo data to the Usim
training data.

To test the contribution of each feature, we per-
form an ablation study on the 225 Usim sentence
pairs of the development set, which cover the full
spectrum of Usim scores (from 1 to 5). We report
results of the feature ablation in Appendix C.

We also build a model for the binary Usim
task on the WiC dataset (Pilehvar and Camacho-
Collados, 2019), using the official train/dev/test
split. We train a logistic regression classifier on
the training set, and use the development set to se-
lect the best among several feature combinations.
We report results of the best performing models on
the WiC test set in Section 5. For instances in WiC
where no PPDB substitutes are available (133 out
of 1,366 in the test set) we back off to a model that
only relies on the embedding features.

5 Evaluation

Direct Usim Prediction Correlation results be-
tween Usim judgments and the cosine similarity of
the embedding representations described in Sec-
tion 4.1 are found in Table 2. Detailed results for
all context window combinations are given in Ap-
pendix B. We observe that target word BERT em-
beddings give best performance in this task. Se-
lecting a context window around (or including) the
target word does not always help, on the contrary
it can harm the models. Context2vec sentence rep-
resentations are the next best performing represen-
tation, after BERT, but their correlation is much
lower. The simple GloVe-based SIF approach for
sentence representation, which consists in apply-
ing dimensionality reduction to a weighted aver-
age of GloVe vectors of the words in a sentence, is
much superior to the simple average of GloVe vec-
tors and even better than doc2vec sentence repre-
sentations, obtaining a correlation comparable to

12With the exception of 4 lemmas which had 36 pairs, and
one which had 44.
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Context Embeddings Correlation

Full
sentence

GloVe 0.142
SIF 0.274
c2v 0.290
USE 0.272
doc2vec 0.124
ELMo av 0.254
BERT av 4 0.289

Target
word

ELMo av 0.166
ELMo top 0.177
BERT top 0.514
BERT av 4 0.518

cw=2 ELMo top 0.289
cw=3
(incl.
target)

GloVe 0.180
ELMo av 0.280
BERT av 4 0.395

cw=5
(incl.
target)

USE 0.221
ELMo av 0.266
ELMo top 0.263
BERT top 0.309

Table 2: Spearman ρ correlation of different sentence
and word embeddings on the Usim dataset using differ-
ent context window sizes (cw). For BERT and ELMo,
top refers to the top layer, and av refers to the average
of layers (3 for ELMo, and the last 4 for BERT).

that of USE.

Graded Usim To evaluate the performance of our
supervised models, we measure the correlation of
the predictions with human similarity judgments
on the Usim dataset using Spearman’s ρ. Results
reported in Table 3 are the average of the corre-
lations obtained for each target word with gold
and automatic substitutes (from the two substitute
pools), and for each type of features, substitute-
based and embedding-based (cosine similarities
from BERT and context2vec). We also report
results with the additional CoInCo training data.
Unsurprisingly, the best results are obtained by
the methods that use the gold substitutes. This
is consistent with previous analyses by Erk et al.
(2009) who found overlap in manually-proposed
substitutes to correlate with Usim judgments. The
lower performance of features that rely on auto-
matically selected substitutes (AUTO-LSCNC and
AUTO-PPDB) demonstrates the impact of substi-
tute quality on the contribution of this type of
features. The addition of CoInCo data does not
seem to help the models, as results are slightly
lower than in the only Usim setting. This can be
due to the fact that CoInCo data contains only ex-
treme cases of similarity (SAME/DIFF) and no in-

termediate ratings. The slight improvement in the
combined settings over embedding-based models
is not significant in AUTO-LSCNC substitutes, but
it is for gold substitutes (p < 0.001). 13

For comparison to the topic-modelling ap-
proach of Lui et al. (2012), we evaluate on the
34 lemmas used in their experiments. They re-
port a correlation calculated over all instances.
With the exception of the substitute-only setting
with PPDB candidates, all of our Usim models get
higher correlation than their model (ρ = 0.202),
with ρ = 0.512 for the combination of AUTO-
LSCNC substitutes and embeddings. The average
of the per target word correlation in Lui et al.
(2012) (ρ = 0.388) is still lower than that of
our AUTO-LSCNC model in the combined setting
(ρ = 0.500).

Binary Usim We evaluate the predictions of our
binary classifiers by measuring accuracy on the
test portion of the WiC dataset. Results for the best
configurations for each training set are reported
in Table 4. Experiments on the development set
showed that target word BERT representations and
USE sentence embeddings are the best-suited for
WiC. Therefore, ‘embedding-based features’ here
refers to these two representations. Results on
the development set can be found in Appendix D.
All configurations obtain higher accuracy than the
previous best reported result on this dataset (59.4)
(Pilehvar and Camacho-Collados, 2019), obtained
using DeConf vectors, which are multi-prototype
embeddings based on WordNet knowledge (Pile-
hvar and Collier, 2016). Similar to the graded
Usim experiments, adding substitute-based fea-
tures to embedding features slightly improves the
accuracy of the model. Also, combining the Co-
InCo and WiC data for training does not have a
clear impact on results, even in this binary classi-
fication setting.

6 Discussion

Results reported for Usim are the average correla-
tion for each target word, but the strength of the
correlation varies greatly for different words for
all models and settings. For example, in the case
of direct Usim prediction with embeddings us-
ing BERT target, Spearman’s ρ ranges from 0.805
(for the verb fire) to -0.111 (for the verb suffer).
This variation in performance is not surprising,

13As determined by paired t-tests, after verifying the nor-
mality of the differences with the Shapiro-Wilk test
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Training set Features Gold
c2v c2v

AUTO-LSCNC AUTO-PPDB

Usim
Substitute-based 0.563 0.273 0.148
Embedding-based 0.494 0.494 0.494
Combined 0.626 0.501 0.493

Usim + CoInCo
Substitute-based - 0.262 0.129
Embedding-based - 0.495 0.495
Combined - 0.501 0.491

Table 3: Graded Usim results: Spearman’s ρ correlation results between supervised model predictions and graded
annotations on the Usim test set. The first column reports results obtained using gold substitute annotations for each
target word instance. The last two columns give results with automatic substitutes selected among all substitutes
proposed for the word in the LexSub and CoInCo datasets (AUTO-LSCNC), or paraphrases in the PPDB XXL
package (AUTO-PPDB). The Embedding-based configuration uses cosine similarities from BERT and context2vec.

Training set Features Accuracy

WiC

Embedding-based 63.62
Combined 64.86
DeConf embeddings (Pilehvar and Camacho-Collados, 2019) 59.4
Random baseline (Pilehvar and Camacho-Collados, 2019) 50.0

WiC + CoInCo
Embedding-based 63.69
Combined 64.42

Table 4: Binary Usim results: Accuracy of models on the WiC test set. The Embedding-based configuration
includes cosine similarities of BERT target and USE. The Combined setting uses, in addition, substitute overlap
features (AUTO-PPDB).

since annotators themselves found some lemmas
harder to annotate than others, as reflected in the
Usim inter-annotator agreement measure (Uiaa)
(McCarthy et al., 2016). We find that BERT tar-
get word embeddings results correlate with Uiaa
per target word (ρ = 0.59, p < 0.05), showing
that the performance of this model depends to a
certain extent on the ease of annotation for each
lemma. Uiaa also correlates with the standard
deviation of average Usim scores by target word
(ρ = 0.66, p < 0.001). Indeed, average Usim
values for the word suffer do not exhibit high vari-
ance as they only range from 3.6 to 4.9. Within
a smaller range of scores, a strong correlation is
harder to obtain. The negative correlation between
Uiaa and Umid (−0.46, p < 0.001) also suggests
that words with higher disagreement tend to ex-
hibit a higher proportion of mid-range judgments.
We believe that this analysis highlights the differ-
ence between usage similarity across target words
and encourages a by-lemma approach where the
specificities of each lemma are taken into account.

7 Conclusion

We applied a wide range of existing word and
context representations to graded and binary us-
age similarity prediction. We also proposed

novel supervised models which use as features
the best performing embedding representations,
and make high quality predictions especially in
the binary setting, outperforming previous ap-
proaches. The supervised models include features
based on in-context lexical substitutes. We show
that automatic substitutions constitute an alterna-
tive to manual annotation when combined with the
embedding-based features. Nevertheless, if there
is no specific reason for using substitutes for mea-
suring Usim, BERT offers a much more straight-
forward solution to the Usim prediction problem.

In future work, we plan to use automatic Usim
predictions for estimating word sense partition-
ability. We believe such knowledge can be useful
to determine the appropriate meaning representa-
tion for each lemma.
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fan Thater. 2014. What substitutes tell us - analy-
sis of an “all-words” lexical substitution corpus. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 540–549, Gothenburg, Sweden. As-
sociation for Computational Linguistics.

Jey Han Lau and Timothy Baldwin. 2016. An empiri-
cal evaluation of doc2vec with practical insights into
document embedding generation. In Proceedings
of the 1st Workshop on Representation Learning for
NLP, pages 78–86, Berlin, Germany. Association for
Computational Linguistics.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International conference on Machine
Learning, pages 1188–1196, Beijing, China.

Marco Lui, Timothy Baldwin, and Diana McCarthy.
2012. Unsupervised estimation of word usage simi-
larity. In Proceedings of the Australasian Language
Technology Association Workshop 2012, pages 33–
41, Dunedin, New Zealand.

Diana McCarthy, Marianna Apidianaki, and Katrin
Erk. 2016. Word sense clustering and clusterability.
Computational Linguistics, 42(2):245–275.

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In
Proceedings of the Fourth International Workshop
on Semantic Evaluations (SemEval-2007), pages
48–53, Prague, Czech Republic. Association for
Computational Linguistics.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning Generic Context Em-
bedding with Bidirectional LSTM. In Proceedings
of the 20th SIGNLL Conference on Computational

18



Natural Language Learning, pages 51–61, Berlin,
Germany. Association for Computational Linguis-
tics.

Oren Melamud, Omer Levy, and Ido Dagan. 2015. A
simple word embedding model for lexical substitu-
tion. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing,
pages 1–7, Denver, Colorado.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the Inter-
national Conference on Learning Representations,
Scottsdale, Arizona.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings
of ACL-08: HLT, pages 236–244, Columbus, Ohio.
Association for Computational Linguistics.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification . In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 425–430, Beijing, China. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Mohammad Taher Pilehvar and José Camacho-
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A Filtering experiments

Tables 5 and 6 contain results obtained using the
different substitute filters described in Section 4.2.
We measure the quality of the substitutes retained
in the automatic ranking produced by context2vec
after filtering against gold substitute annotations
in LexSub data. Here, we only use the portion
of LexSub data that does not contain Usim judg-
ments.

We measure filtered substitute quality against
the gold standard using the F1-score, and the
proportion of false positives (FP) over all posi-
tives (TP+FP). Table 5 shows results for annota-
tions assigned by context2vec using the the Lex-
Sub/CoInCo pool of substitutes (AUTO-LSCNC).
Table 6 shows results for context2vec annotations
with the PPDB pool of substitutes (AUTO-PPDB).

Filter F1 FP/(TP + FP )

Highest 10 0.332 0.776
Highest 5 0.375 0.695
PPDB 0.333 0.643
GloVe (T = 0.1) 0.371 0.675
GloVe (T = 0.2) 0.373 0.661
GloVe (T = 0.3) 0.353 0.641
c2v score 0.326 0.671
No filter 0.248 0.848

Table 5: Results of different substitute filtering strate-
gies applied to annotations assigned by context2vec
when using the LexSub/CoInCo pool of substitutes
(AUTO-LSCNC).

Filter F1 FP/(TP + FP )

Highest 10 0.245 0.838
Highest 5 0.290 0.766
PPDB 0.268 0.731
GloVe (T = 0.1) 0.266 0.778
GloVe (T = 0.2) 0.268 0.769
GloVe (T = 0.3) 0.266 0.750
c2v score 0.250 0.675
No filter 0.142 0.920

Table 6: Results of different substitute filtering strate-
gies applied to annotations assigned by context2vec
when using the PPDB pool of substitutes (AUTO-
PPDB).

B Direct Usage Similarity Estimation

Correlations between gold Usim scores for all
words and cosine similarities of different embed-
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ding types can be found in Tables 7 and 8.

Embeddings Correlation

Full sentence
embedding

GloVe 0.142
SIF 0.274
c2v 0.290
USE 0.272
doc2vec 0.124
ELMo av 0.254
ELMo top 0.248
BERT av 4 0.289

Target word
embedding

ELMo av 0.166
ELMo top 0.177
BERT top 0.514
BERT av 4 0.518
BERT concat 4 0.516
BERT 2nd-to-last 0.486

Table 7: Correlations of sentence and word embed-
dings on the Usim dataset using different context win-
dow sizes (cw). For BERT and ELMo, top refers to the
top layer, and av refers to the average of layers (3 for
ELMo, and the last 4 for BERT). concat 4 refers to the
concatenation of the last 4 layers of BERT.

C Feature Ablation on Usim

Results of feature ablation experiments on the
Usim development sets are given in Table 9.

D Dev experiments on WiC

Table 10 shows the accuracy of different configu-
rations on the WiC development set.

Context Embeddings Correlation

cw=2

ELMo top 0.289
ELMo av 0.280
BERT av 4 0.344
GloVe 0.140

cw=3

ELMo top 0.282
ELMo av 0.279
BERT av 4 0.339
GloVe 0.163

cw=4

ELMo top 0.270
ELMo av 0.263
BERT av 4 0.311
GloVe 0.160

cw=5

ELMo top 0.266
ELMo av 0.263
BERT av 4 0.309
GloVe 0.162

cw=2 (incl. target)

ELMo av 0.284
ELMo top 0.278
BERT av 4 0.416
GloVe 0.159
USE 0.146

cw=3 (incl. target)

ELMo av 0.280
ELMo top 0.273
BERT av 4 0.395
GloVe 0.180
USE 0.184

cw=4 (incl. target)

ELMo av 0.267
ELMo top 0.265
BERT av 4 0.365
GloVe 0.176
USE 0.191

cw=5 (incl. target)

ELMo av 0.266
ELMo top 0.263
BERT av 4 0.359
GloVe 0.175
USE 0.221

Table 8: Correlations of different sentence and word
embeddings on the Usim dataset using different context
window sizes (cw).
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Ablation Gold AUTO-LSCNC AUTO-PPDB

None 0.729 0.538 0.524
Sub. similarity 0.701 0.537 0.524
Common sub. 0.722 0.538 0.524
GAP 0.730 0.537 0.523
c2v 0.730 0.539 0.523
Bert av 4 target 0.700 0.348 0.283

Table 9: Results of feature ablation experiments for systems trained and tested on the Usim dataset with gold
substitutes (Gold) as well as automatic substitutes from different pools, Lexsub/CoInCo (AUTO-LSCNC) and PPDB
(AUTO-PPDB). Rows indicate the feature that is removed each time. Numbers correspond to the average Spearman
ρ correlation on the development set across target words.

Training set Features Accuracy

WiC

BERT av 4 last target word 65.24
c2v 57.69
ELMo top cw=2 61.11
USE 63.68
SIF 60.97
Only substitutes 55.41
BERT av 4 target word & USE 67.95
Combined 66.81

WiC + CoInCo

BERT av 4 target word 64.96
c2v 58.12
ELMo top cw=2 61.11
USE 63.53
SIF 59.97
Only substitutes 56.13
BERT av 4 target word & USE 68.66
Combined 66.81

Table 10: Accuracy of different features and combinations on the WiC development set. On this dataset, the two
best types of embeddings, that were chosen for the Embedding-based and Combined configurations, were BERT
(target word, average of the last 4 layers) and USE. Both Only-substitutes and Combined use features of automatic
substitutes from the PPDB pool, and back off to the Embedding-based model when there were no paraphrases
available for the target word in the PPDB.
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Abstract

Most word embeddings today are trained by
optimizing a language modeling goal of scor-
ing words in their context, modeled as a multi-
class classification problem. Despite the suc-
cesses of this assumption, it is incomplete: in
addition to its context, orthographical or mor-
phological aspects of words can offer clues
about their meaning. In this paper, we de-
fine a new modeling framework for training
word embeddings that captures this intuition.
Our framework is based on the well-studied
problem of multi-label classification and, con-
sequently, exposes several design choices for
featurizing words and contexts, loss functions
for training and score normalization. Indeed,
standard models such as CBOW and FAST-
TEXT are specific choices along each of these
axes. We show via experiments that by com-
bining feature engineering with embedding
learning, our method can outperform CBOW
using only 10% of the training data in both the
standard word embedding evaluations and also
text classification experiments.

1 Introduction

The distributional hypothesis (Firth, 1935; Harris,
1954) has been a cornerstone in NLP. For exam-
ple, Firth (1935) writes:

. . . the complete meaning of a word
is always contextual, and no study of
meaning apart from a complete context
can be taken seriously.

Operationally, in modern NLP, word embeddings
capture this idea and are typically trained using
neural language models or word collocations (e.g.
Bengio et al., 2003; Collobert and Weston, 2008;
Mikolov et al., 2013b; Pennington et al., 2014; Pe-
ters et al., 2018; Devlin et al., 2018).

Is word meaning exclusively defined by its con-
text? In this paper, we argue that while the word

usage plays a crucial role in defining its meaning
(perhaps, centrally so), it is not the only mecha-
nism that endows meaning to words. Indeed, Firth
writes in the paragraph before the above quote:

. . . a certain component of the mean-
ing of a word is described when you say
what sort of a word it is, that is when
you identify it morphologically. . .

The composition of a word, (i.e., its orthography
and morphology) may offer cues about its mean-
ing even if the word is not commonly used, thus
allowing us to understand unseen words. For ex-
ample, we can elide over misspellings of words
(e.g., Bbeijing) because we observe the similari-
ties in the orthography between words.

By ignoring word-level information, many ex-
isting off-the-shelf word embedding approaches
suffer from two shortcomings. First, they need
a great amount of training data to get high qual-
ity word embeddings. Second, even with large
amounts of training data, some words (e.g., neol-
ogisms, misspellings, technical terms) will not be
seen frequently enough to provide statistical sup-
port for good embeddings.

In this paper, we are motivated by the observa-
tion that both the context of a word and its own in-
ternal information contribute to word meaning. To
model this in an easy-to-extend manner, we need a
new perspective about training word embeddings
that not only admits arbitrary word and context
features, but also supports conceptual tools to sys-
tematically reason about the various model design
aspects in terms of familiar modeling techniques.

A common method for training word embed-
dings is to construct a word prediction problem,
and obtain the word embeddings as a side ef-
fect. One instantiation of the word prediction task,
namely CBOW (Mikolov et al., 2013a), frames it
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as the multi-class classification problem of pre-
dicting a word given a context. We argue that the
task is more appropriately framed as multi-label
classification — multiple words can fit in the same
context. Moreover, since the label set (all words)
is massive, word prediction is an instance of eX-
treme Multi-label Learning (XML) (Balasubrama-
nian and Lebanon, 2012; Bhatia et al., 2015; Bi
and Kwok, 2013, inter alia).

Framing word prediction as an XML problem
allows us to define a unifying framework for word
embeddings. Consequently, we can systemati-
cally analyze the problem of training word em-
beddings using lessons from the XML literature.
In particular, we can featurize both inputs and out-
puts — in our case, contexts and words. Apart
from featurization, loss functions and normaliza-
tion of probability are also design choices avail-
able. We show that our approach subsumes sev-
eral standard word embedding learning methods:
specific design choices give us familiar models
such as CBOW (Mikolov et al., 2013a) and FAST-
TEXT (Bojanowski et al., 2017)1.

Our experiments study the interplay between
the amount of data needed to train embeddings,
and the features for words and contexts. We show
that, when trained on the same amount of data,
using word and context features outperforms the
original CBOW and FASTTEXT on both the stan-
dard analogy evaluation and a variant where words
have introduce typographical errors. Featurizing
words and contexts reduces data dependency for
training and can achieve similar results as CBOW
and FASTTEXT trained on a 10x larger corpus. Fi-
nally, we also show that the trained embeddings
offer better representations for an text classifica-
tion evaluation.

In summary, the contributions of this work are:
(i) We propose a new family of models for word
embeddings that allow both word orthography and
context to inform its embeddings via user de-
signed features. (ii) We show that our model fam-
ily generalizes several well-known methods such
as CBOW and FASTTEXT. (iii) Our experiments
show that exploiting word and context features
gives better embeddings using significantly lower
amounts of training data. (iv) Our experiments
also show that while global normalization is the
more appropriate formulation, in practice, the av-

1In order to have a fair comparison, we always use the
CBOW variant of FASTTEXT in this paper.

erage number of words in a context is too small for
global normalization to prove advantageous.

2 Preliminaries & Notation

In this section, we will briefly look at the tasks of
word prediction and extreme multi-label classifi-
cation with the goal of defining notation.

Word prediction The task of word prediction
is commonly used to train word embeddings (e.g.
Bengio et al., 2003; Mikolov et al., 2013b). A typ-
ical example of this class of models (that includes
CBOW and several others) frames the problem as
using the context around a word to predict it. The
context is defined via a fixed-size window around
the word to be predicted.

Suppose y denotes a target word and x repre-
sents its context. Then CBOW embeddings are
trained by minimizing the log loss:

arg min
θ

∑

(x,y)∈D
− logP (y|x; θ) (1)

Here, D is the set of all training documents and
θ are the parameters which defined the probabil-
ity distribution and are learned. The trained word
embeddings are part of the learned parameters.

Extreme Multi-label Learning Suppose we
have a classification task with a set of labels L. A
multi-label classification problem (e.g. Zhang and
Zhou, 2014) is one where inputs can be associated
with more than one label. Given an input x, the
goal is to predict a subset Y of the label set. One
general strategy to model a multi-label problem is
to define a scoring function f(x,Y; θ) which uses
parameters θ to score sets Y ⊆ L as being cor-
rect for the input x. We can train such a model by
minimizing a loss function ` over a training set D:

arg min
θ

∑

(x,Y)∈D
` (f(x,Y; θ)) (2)

When the label set L is large, both training and
prediction can become problematic because enu-
merating all subsets of L is infeasible. We
call such problems eXtreme multi-label learning
(XML) problems (e.g. Bhatia et al., 2015).

3 Rethinking Word Embeddings

In this section, we will look at assumptions that
underlie the use of word prediction to train word
embeddings.
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Words & Features Many embedding methods
are built on the assumption that the context de-
fines the meaning of a word, thus accounting for
the pervasiveness of the word prediction task to
train word embeddings. However, we argue this
assumption is incomplete.

The meaning of a word is defined not only by its
context, but also the word itself. For example, con-
sider the word googlize. Such made-up words may
have only limited or no context. Yet, we may be
able to infer their meaning (devoid of context) by
appealing to our understanding of their parts. In
our example, the word is composed of google and
-ize, both of which have their own meanings and
the composition (google + -ize) gives cues as to
what googlize may mean. A reader may use their
understanding of the word google and the fact that
-ize is a common suffix to create verbs to hypoth-
esize the meaning of the word.

The above example illustrates the following
principle: A word is not the smallest meaning unit,
but the most common one. We argue that we should
utilize the internal information of words when we
train word embeddings.

Some recent work (e.g. Pinter et al., 2017; Kim
et al., 2018; Bojanowski et al., 2017; Schick and
Schütze, 2018) applies our assumptions implic-
itly by using character-level information to em-
bed words. While character-based features help
capture the internal structure of the word, several
other aspects may be helpful, e.g. linguistically
motivated prefixes and suffixes, the shape of the
word and other possible features. §4.4 describes
the various choices we explore.

Word Prediction as XML The second inherent
assumption in word prediction is that we can frame
the problem of predicting a word that fits a context
as a multi-class classification problem. However,
in nearly all contexts, more than one word could
fit. For example, consider the sentence The run-
ning is chasing after a rabbit. It can be
completed with many words filling the blank, such
as fox, dog, hound.

Seen this way, word prediction models are bet-
ter framed as the multi-label classification prob-
lem of using the context to predict all words that
could occur in the context. In the example above,
we would use the sentence with the blank to jointly
predict all the words such as fox, dog, hound that
can occupy the blank. Using the notation from
§2, the input x to the problem is a context and all

words that could occur in the context form the la-
bel set Y for that input. The label set is a subset
of all labels L, i.e., the entire vocabulary. Follow-
ing this intuition, in the rest of the paper, we will
use labels and words interchangeably. Note that
since the vocabulary is large, we have an extreme
multi-label learning problem at hand.

4 A unifying framework

In this section, we will formalize the intuition il-
lustrated in §3. We will see that this effort re-
veals several design choices involving normaliza-
tion, loss functions, label costs, and featurization.

4.1 Modeling Words in Context
Our goal is to frame word prediction as a multi-
label classification problem to (i) predict a subset
of words for a context, and, (ii) generate embed-
dings for each word.

Suppose we have a word y in a context x. Let
the functions φ and ψ denote any feature functions
that operate on the word and context respectively.
We model the score of the word y given the context
x by projecting their feature representations into a
common d dimensional space with two matrices
V and W . The matrices are the parameters to be
learned during training. Using these projections,
the scoring function of a pair (x, y) is defined as:

S(x, y) = [Wφ(y)]T [V ψ(x)] (3)

Using the score for a pair (x, y), we can now as-
sign scores to a set of words for a context. In any
context, some words are more frequent than oth-
ers. Suppose we denote the frequency of a label
y in a context x as nx(y). We can then define the
score of a set of words Y as the weighted sum of
each word in the set:

Score(x,Y) =
∑

y∈Y
nx(y)S(x, y) (4)

The matrices V and W will be used to compute
word embeddings; we will discuss this further in
the comparison to CBOW in §5.2.

4.2 Normalization and Loss Functions
As a prelude to defining loss functions for train-
ing, we need to decide how to normalize the scor-
ing functions defined above: we have the choice of
local or global normalization. With local normal-
ization, we contrast each label in the set of true
labels against all other labels individually; with
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global normalization, we contrast the true label set
against other possible subsets of labels.

As an illustration, suppose the label set Y for
a context x contains two labels y1 and y2. With
local normalization, we seek parameters that si-
multaneously make S(x, y1) higher than S(x, y2)
and S(x, y2) higher than S(x, y1). Moreover, lo-
cal normalization does not prevent a third label y3
from having a positive score as long as it is less
than the scores of the valid labels. As a result, the
set of highest scoring labels could be invalid even
though all the local constraints are satisfied. To
fix this, we can design a globally normalized loss
function that demands the score of valid subset Y
to be higher than all other subsets of L.

Irrespective of whether the scores are locally
or globally normalized, for the XML problem of
word prediction, we can use several loss functions
for training. To compare to CBOW and FAST-
TEXT, we will focus on log loss here. We refer the
interested reader to the supplementary material for
details about the global and local hinge loss for the
problem.

For a locally normalized log loss, the probabil-
ity of a pair (x, y) can be defined as:

P (y|x) =
eS(x,y)∑

y′∈L
eS(x,y′)

(5)

The local log loss is defined as the negative log of
this probability for a word y that occurs in a con-
text x. Note that each valid word contrasts against
all other words in the vocabulary L.

For a globally normalized log loss, the proba-
bility of a label Y for an input x is:

P (Y|x) =
eScore(x,Y)∑

Y⊆L
eScore(x,Y)

(6)

The global log loss is the negative log of this prob-
ability for a set Y of words that are valid in a con-
text x. Note that the valid set Y contrasts against
all other possible subsets of the vocabulary.

4.3 Training
A final consideration for training concerns the fact
that frequent words can dominate the loss function
unless special care is taken. Sub-sampling of fre-
quent words is commonly used to deal with this
problem, where a word y will be retained with
probability g(y), which is inversely proportional

to its frequency. In this work, we adopt the strat-
egy of cost-sensitive classification which lets di-
rectly augment the loss functions. Different labels
(i.e., words) are assigned different costs based on
their frequency using a cost function cx(y).

Suppose we have a word y in a context x, whose
frequency is nx(y). We will use the word sub-
sampling probability g(y) above to define the cost
for the pair (x, y) as the expected frequency of the
pair in the training set. That is,

cx(y) = nx(y)g(y) (7)

We use the subsampling frequency from word2vec
to define g(y) as follows:2

g(y) = min

(
1,

(√
n(y)

α
+ 1

)
· α

n(y)

)
(8)

Here, n(y) is the context-independent frequency
of label y in the whole corpus and α is a hyper-
parameter.

Using these costs, the final form of local log loss
can be shown to be:

`ll(x,Y) = −
∑

y∈Y
cx(y) logP (y|x)

= −
∑

y∈Y
cx(y) log

eS(x,y)

∑
y′∈L

eS(x,y′)

= −
∑

y∈Y
cx(y)S(x, y) +

∑

y∈Y
cx(y) log

∑

y′∈L
eS(x,y′)

(9)

For global loss, we can achieve a similar effect
by rewriting the weighting term in Eq. 4 with the
cost. The global log loss is:

`gl(x,Y) = − logP (Y|x)

= − log

∏
y∈Y

exp (cx(y)S(x, y))

∑
Y⊆L

∏
y′∈Y

exp (cx(y′)S(x, y′))

(10)

Direcly computing the denominator is expen-
sive. However, we know that:
∑

Y⊆L

∏

y′∈Y

exp
(
cx(y′)S(x, y′)

)

= exp(0) + exp (cx(y1)S(x, y1)) + exp (cx(y2)S(x, y2)) + . . .

+ exp (cx(y1)S(x, y1)) exp (cx(y2)S(x, y2)) . . .

+ exp (cx(y1)S(x, y1)) . . . exp
(
cx(y|L|)S(x, y|L|)

)

=
∏

y∈L
(exp (cx(y)S(x, y)) + 1)

(11)

2The implementation and the description in the paper are
different. We are following the implementation and not the
paper. The implementation can be found here:https://code.
google.com/archive/p/word2vec/
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Then, the global log loss can be rewritten as:

`gl(x,Y) = −
∑

y∈Y
cx(y)S(x, y)+

∑

y′∈L
log
(
exp

(
cx(y′)S(x, y′)

)
+ 1
)

(12)
Note that both local and global models are dom-

inated by the O(|L|) summation, which suggests
they have same computational cost.

4.4 Featurizing Words and Contexts

In the scoring function of a pair (x, y), i.e., Eq. 3,
we use two feature functions φ and ψ to extract
features from the label and context respectively.
This design choice dictates the information we
wish to provide to the model about words and
contexts. CBOW and word2vecf uses indicators
for the target words, while FASTTEXT uses both
the words and their constituent character ngrams.
For context, CBOW and FASTTEXT aggregate the
same features as the target word, but over the con-
text words. Word2vecf (Levy and Goldberg, 2014)
uses dependency information to featurize the con-
text. We generalize these by allowing user or do-
main dependent features. The output of feature
functions φ and ψ is a sparse vector and each di-
mension is a binary value, which indicates the ex-
istence of corresponding feature.

Though the φ and ψ functions, we can easily in-
corporate extra information into word embeddings
from other resources. For example, we can use
hand-crafted gazetteers to indicate whether two
words can belong to the same type. If both Beijing
and Paris are in a list of locations, we can identify
similarity between the words without any context.
Such resources may provide information that we
can not learn from the context.

5 Analysis of Modeling Choices

In this section, we discuss the advantages of the
framework described in §4 and its connections to
CBOW embeddings.

5.1 Word Embeddings

In the framework described in §4, we are not learn-
ing the word embeddings, but feature embeddings.
Each column of W and V represents the embed-
ding of a certain feature. Given features for a
word, we can compute its the embeddings of a
word w by computing either Wφ(w) or V ψ(w).

This perspective of feature embeddings presents
three advantages.

First, we provide a mechanism for incorporating
human knowledge into word embeddings. Feature
engineering can be combined with our model nat-
urally. Moreover, using informative features can
help produce high quality embeddings even with
smaller document collections (e.g., all documents
related to a specific project in a company).

Second, because a feature can be shared by dif-
ferent words, each training update for a feature
will update all the word embeddings containing
this feature. This can lead to better generalization.

Third, it presents an elegant solution for the out-
of-vacabulary (OOV) problem. Once we define
the feature template, we can extract features of any
word, then we can compute the embedding for it.
Some recent work (Pinter et al., 2017; Kim et al.,
2018; Zhao et al., 2018; Artetxe et al., 2018) ad-
dress the OOV problem using pre-trained embed-
dings and mimicking them by training a second
model using substrings of a given word. Instead,
here we can use arbitrary features and do not need
pre-trained embeddings.

5.2 CBOW: A Specific Instance
In this subsection, we will show that CBOW is an
instance of our framework. We can rewrite the
overall loss on a given dataset D using the local
log loss function from Eq. 9 as:

`ll(D, θ) =
∑

(x,Y)∈D

∑

y∈Y
−cx(y) logP (y|x)

=
∑

(x,Y)∈D

∑

y∈Y
−nx(y)g(y) logP (y|x)

(13)
As before, nx(y) is the frequency of label y for
the context x, g(y) is the probability of keeping
this label y and θ denotes the matrices V and W .

Now, suppose we have a different dataset D′

that is constructed from D as follows: for every
(x,Y) ∈ D, for every y ∈ Y , add nx(y) copies of
(x, y) to the new dataset D′. Now, D′ is a multi-
class classification dataset, where each x is asso-
ciated with only one label y in a single example.
More importantly, D′ is exactly the input-output
pairing used to train CBOW. With this new dataset
representation, we can write the total loss over the
dataset D′ as:

`CBOW(D′, θ) =
∑

(x,y)∈D′
− logP (y|x) (14)
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In both `ll(D, θ) and `CBOW(D′, θ), P (y|x) is
given by Equation 5. If the label features φ(y)
consists only of indicators for the label (i.e., the
target word) and the context features ψ(x) is the
average of the indicators for the words in the con-
text, then these two loss functions are identical. In
other words, CBOW is an instance of our model
that minimizes local log loss, and uses these spe-
cific features. A similar argument applies for
FASTTEXT and word2vecf as well.

There are two important differences: First,
CBOW used sub-sampling to reduce the impact
of frequent words, while we use costs cx(y) for
this purpose. Second, in CBOW, the matrix V is
used as word embeddings. As mentioned above, in
fact, both V andW generate word embeddings for
a word w as Wφ(w) and V ψ(w). Based on pre-
liminary experiments, we observed that concate-
nating Wφ(w) and V ψ(w) produces the best em-
beddings. In this work, we use this concatenation
strategy to embed words.

5.3 Local vs. Global Normalization

Given the two normalization methods (§4.2),
which one should we pick? In theory, local nor-
malization for word prediction can be problematic
as described in §4.2. However, in practice, CBOW,
FASTTEXT and word2vecf all use multiclass clas-
sification (i.e., local normalization) and work well.
This apparent gap between the theory and prac-
tice can be explained by the observation that while
many words may indeed fit in a given context, the
key criterion is the label density — that is, the ratio
of the number of valid labels (|Y|) to the number
of all possible labels (|L|). For the XML prob-
lem of word prediction, the label density is small
enough that the problem can be approximated as
a multiclass problem. In other words, because |L|
is large, the average value of |Y||L| is small enough
that it is close to 1

|L| . Unless we have dense labels
in specialized document collections, we do not ex-
pect globally normalized models to outperform lo-
cally normalized ones.

6 Experiments

In this section, we empirically verify that our
approach: (i) achieves similar performance as
CBOW using the same training set and features,
(ii) can outperform CBOW and FASTTEXT with
only 10% of the training data if extra features are
used, (iii) creates embeddings that generalize bet-

ter by evaluating analogies on datasets with mis-
spellings, and, (iv) offers a better feature represen-
tation for an extrinsic evaluation of text classifi-
cation. The overall goal of our experiments is to
understand the dependence between dataset size,
features, and the quality of embeddings produced.

We conduct our experiments on the training
set of the 1 billion language model benchmark
corpus (Chelba et al., 2014), consisting of 700M
words (with 550K unique words). For all exper-
iments, the embedding size of W and V is 300
and the context window size is set to five words to
the left and right of a word. The hyper-parameter
α from Eq. 8 is 0.001 (following CBOW’s im-
plementation). To compare to CBOW and FAST-
TEXT, we use log loss on all our experiments.
We optimized the loss using Adam (Kingma and
Ba, 2015) and used dropout with keep probabil-
ity 0.6. Based on preliminary trials, we projected
the matrix W onto a unit ball. For efficient learn-
ing, we also used the negative sampling approach
from word2vec. More experiment setup details are
available in supplementary material.

Table 1 summarizes all the feature templates we
used. In the table, the feature Gazetteers is a set of
lists containing names of entities from Wikipedia,
grouped by category. Each list represents an en-
tity type such as cities, organizations, days of the
week, etc. If the current word matches one of the
words in the list, the corresponding feature is ac-
tivated. The Quirk feature is a collection of pre-
fixes and suffixes types from Quirk et al. (1987).
For example, un- is a negative prefix and -ness is
a noun suffix. For the context feature function ψ,
we summed the above features over all the context
words.

We implement our model using Pytorch3. We
train our model on a Nvidia DGX machine using
one Tesla (16G video memory) GPU. We train 70
epochs for both local log loss and global log loss.
For all experiments, prediction accuracy is used as
the evaluation metric.

6.1 Analogy Evaluation

In this subsection, we evaluate our models on these
traditional analogy evaluation tests (Mikolov et al.,
2013a), in particular the Google and the MSR
analogy tests.4 These evaluations focus on an

3https://pytorch.org/
4Although the Google and Microsoft analogy datasets

have been shown to be problematic (Linzen, 2016), they are
the most commonly used evaluation datasets.
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Features Description

Word word itself. e.g. <Beijing>

Prefix and suffix Prefix and suffix up to length 3.
e.g. 0#1#B, 0#2#Be, 0#3#Bei

substring word substrings from length 3 to 6
e.g. n-grams@Bei, n-grams@eij

Quirk
Known prefix and suffix types from
Quirk et al. (1987),
e.g. quirk@Conversion

Word shape word shape of the word.
e.g. shape@Xxxx

Gazetteers Indicators for gazetteer matches
e.g. gaz@Locations

MISC isalpha? isPrintable? isdigit?
e.g. special@alpha special@printable

Default The default feature for every word,
functions as a bias feature.

Table 1: Extra feature templates for learning word em-
beddings. This table uses the word Beijing as an ex-
ample. We use gazetteers from the EDISON pack-
age (Sammons et al., 2016).

Model Features Google MSR

CBOW word 0.398 0.463
Fasttext subwords 0.424 0.584

local model word 0.416 0.426
global model word 0.431 0.410
local model all 0.494 0.724

global model all 0.480 0.692

Table 2: Comparison between different models trained
on 10% corpus using a closed vocabulary. The last two
rows use features from Table 1.

analogy question of the form A:B::C:?, and the
goal is to use word embeddings to find the word
that best fills the question slot. Because these re-
sults are highly related to the vocabulary used to
search for the answers, we divide this evaluation
into two different vocabularies: closed and open.
Closed vocabulary means it comes directly from
the training set; while open vocabulary means it is
composed of words coming from the training set
and evaluation set. Open vocabulary can ensure
there are no OOV words during the evaluation.
Our model and FASTTEXT can generate embed-
dings for OOV words, while CBOW can not. We
evaluate CBOW only on the closed vocabulary.

First, we compare our model with CBOW and
FASTTEXT trained only on 10% of the corpus
with a closed vocabulary (Table 2). Using only

Model Features Google MSR

Fasttext-10% subwords 0.310 0.507
Fasttext-100% subwords 0.490 0.686

local model all 0.415 0.763
global model all 0.395 0.719

Table 3: Comparison between our models and FAST-
TEXT using open vocabulary. FASTTEXT is trained on
10% and 100% corpus; our models are all trained on
10% corpus with extra features defined in Table 1.

words as features, our model achieves better per-
formance than CBOW on the Google analogy set,
and close performance on the MSR set. This dif-
ference might be caused by the different optimiza-
tion algorithms. The global model is close in per-
formance to the local model — this is is expected
because the global model is approximated by lo-
cal model when the density of label is small, and
the global model is optimizing for a more strin-
gent goal. With all features, our models (both lo-
cal and global) outperform both CBOW and FAST-
TEXT by a large margin.

Second, we compare our model (trained on 10%
of the data) with FASTTEXT using an open vocab-
ulary (Table 3). The first row FASTTEXT is trained
on 10% of the data. Our model significantly out-
performs it. To understand the impact of the extra
features, we compare it with FASTTEXT trained on
the entire corpus (second row). On the MSR set,
our 10% model with extra feature still outperforms
FASTTEXT. We believe the underperformance of
our 10% model against the 100% FASTTEXT em-
beddings on the Google data may be due to the
fact that the data contains more complex relations
between words, and our feature templates may not
be expressive enough.

6.2 Analogies with Typographical Errors

One important advantage of our model is it can dy-
namically produce embeddings for unseen words
using the feature embeddings. To verify its use-
fulness, we need a set of words that do not have
any context in a training corpus, but are still mean-
ingful. Misspelt words are a natural set of such
words. Such words usually do not occur in the
training set and their meanings are defined by their
orthographical similarity to the correct word. Us-
ing only word features, CBOW can not deal with
OOV words; we only compare against FASTTEXT

for this task.
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Google MSR
degree 1 degree 2 degree 3 degree 1 degree 2 degree 3

Fasttext-10% 0.212 0.159 0.035 0.374 0.259 0.073
Fasttext-100% 0.348 0.217 0.036 0.503 0.323 0.080

local model 0.373 0.263 0.066 0.685 0.531 0.185
global model 0.341 0.227 0.054 0.634 0.449 0.134

Table 4: Misspelling evaluation results. Different degrees mean how many words in the quadruple has been
changed into a misspelling word. FASTTEXT is trained on 10% and 100% corpus while our model trained on
10% corpus with extra features. CBOW can not generate embeddings for OOV words, which means we can not
compare with CBOW on this task.

We create new misspelling datasets by ran-
domly replacing, deleting or inserting one char-
acter of each word in MSR and Google analogy
datasets. Then we apply the standard analogy test
on these misspelling datasets. Table 4 shows the
misspelling analogy test results. Different degrees
indicate how many words in the analogy quadru-
ple have been changed into a misspelling word.
The results show that our model can outperform
FASTTEXT in every degree, indicating extra fea-
tures can capture these similarities between mis-
spelling words and their corrections.

6.3 Extrinsic Task: Dataless Classification

In this subsection, we report the results of an ex-
trinsic evaluation of our trained embeddings. In
most extrinsic tasks, embeddings are usually used
as a representation of examples which are the in-
puts of a classifier. As a consequence, the per-
formance on these extrinsic tasks is determined
by two factors: the quality of representation and
the quality of that classifier. Assigning credit to
these two factors for any changes in classifier per-
formance can be difficult.

What we need is a task where performance de-
pends only on the quality of the feature represen-
tation. Dataless text classification (Chang et al.,
2008) has this characteristic, where the goal is to
predict a label for a document without any labeled
data. Following Chang et al. (2008), we use the 20
Newsgroup dataset (Lang, 1995) to construct ten
binary classification problems. Each label in this
dataset is mapped to a short list of words that de-
scribe the label, as specified by the original work.

We frame this task as a nearest neighbor task.
Each word in the documents and label expansions
will be assigned an embedding. We use the aver-
age of all the words in the documents and expan-
sions as their embeddings and measure Euclidean

Models Features Accuracy

CBOW-10% word 0.524
CBOW-100% word 0.569
Fastext-10% subwords 0.509

Fastext-100% subwords 0.537
local model all 0.593

global model all 0.567

Table 5: Dataless task evaluation results. FASTTEXT
and CBOW are trained on 100% corpus while our
model trained on only 10% corpus.

distance between the labels and a document. For
each document, closest label will be chosen as the
predicted label.

Table 5 shows the average accuracy of these
ten binary classification problem. By using ex-
tra features, our model can substantially outper-
form FASTTEXT and CBOW, even when they were
trained on 100% of the corpus.

7 Discussion and Related Work

Word and Label Embeddings Word embed-
dings are ubiquitous across NLP and word pre-
diction is a common approach to train them. Our
modeling unifies this task with multi-label clas-
sification. There are other approaches for train-
ing word embeddings, such as skipgram (Mikolov
et al., 2013b), and Glove (Pennington et al., 2014).
A similar formalization of such approaches is a di-
rection for future research.

The idea of embedding labels in a classification
task has been previously explored (e.g. Amit et al.,
2007; Weston et al., 2011; Srikumar and Manning,
2014). In this paper, we make a formal connection
between these lines of work and the word embed-
ding literature.
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Feature Engineering The feature functions φ
and ψ in the scoring function (Eq. 3) provide a sys-
tematic way to combine feature engineering and
embedding learning. Consequently, the rich his-
tory of feature engineering in NLP becomes appli-
cable for constructing word embeddings.

In this work, we use context independent fea-
tures such as prefix, suffix and word shape. Such
character-level features have been used for other
NLP tasks (e.g. Sapkota et al., 2015) However,
contextual features can also be incorporated into
this framework (e.g. Akbik et al., 2018). Further-
more, such contextual features could be informed
by traditional feature functions such as POS tags
of neighboring words.

eXtreme Multi-label Learning (XML)
Embedding-based methods are widely used
in extreme multi-label classification (e.g. Bhatia
et al., 2015; Balasubramanian and Lebanon,
2012; Bi and Kwok, 2013). However, all these
embedding-based methods are not used in word
prediction context. In this paper, we point out that
essentially, they are the same problem. This paper
is the first attempt to combine these two areas;
fruitful exchange of ideas between the them may
lead both to better predictors and embeddings.

8 Conclusion

In this paper, we argue that assumption that con-
text defines meaning, which is used by most word
embedding models is incomplete. Besides the
context, the internal information of a word also
characterizes its meaning. Using this assumption,
we reframe the word prediction task as a multi-
label classification problem. This new perspective
reveals a family of embedding learning models,
which allows different featurizations, loss func-
tions and normalizations. We show that CBOW
is one particular instance of our framework, with
specific choices for these options. Our experi-
ments demonstrate the value of word and context
features for constructing word embeddings.
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A Local and Global Hinge Loss

We model the score of a word y given the context
x by projecting them into a common space with
two matrices V and W . The scoring function of
pair (x, y) is defined as:

S(x, y) = [Wφ(y)]T [V ψ(x)] (15)
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where φ and ψ are two feature functions. This
scoring function is the same as we saw for log loss
in the body of the paper.

A.1 Local Hinge Loss
In this subsection, we will define local hinge loss
for word embedding learning under multi-label
formulation. Local hinge loss means we want to
contrast the target word against all other words in
the vocabulary. In our modeling framework, the
local hinge loss can be defined as:

`lh(x,Y) =
∑

y∈Y

[
cx(y) max

y′∈L

[
S(x, y′) + ∆(y, y′)− S(x, y)

]]

(16)

Here, ∆(y, y′) represents the Hamming distance
between the ground truth y and any other label y′.
That is, it takes the value 1 when y 6= y′ and 0
otherwise.

A.2 Global Hinge Loss
For the local hinge loss above, we treat each label
associated with the input x as being independent.
In contrast, for the global hinge loss, we compare
scores for subsets of labels. Given a set of ground
truth labels for an example, our goal is to maxi-
mize the gap between this set and all other subsets
of labels.

Let us formalize this intuition. As before, let x
denote a context. Let Y denote its corresponding
gold label set. Every set of labels that does not
agree with this subset Y will be penalized. We
define the global hinge loss to be:

`gh(x,Y) = max
Y⊆L


∑

y∈Y
S(x, y) + ∆(Y,Y)−

∑

y∈Y

S(x, y)




(17)

Here, ∆ denotes the cost-sensitive Hamming dis-
tance between the true set of labels Y and any
other set of labels Y . It can be written as:

∆(Y,Y) =
∑

y∈L
1[y ∈ Y]⊕ 1[y ∈ Y]cx(y)

where 1[·] is the indicator function and ⊕ rep-
resents the XOR operation. Essentially, the loss
adds up the costs cx(y) for all labels that are mis-
predicted, either by mistakenly including a label
that is not in the gold set, or by missing one that
is in it. The costs cx(y) are the same as defined in
the main body of the paper.

Combining the equations above and re-
organizing the summations, we can get the final

form of the global hinge loss:

`gh(x,Y) =
∑

y∈Y
max (cx(y)− S(x, y), 0) +

∑

y/∈Y
max(cx(y) + S(x, y), 0)

(18)
The global hinge loss can be interpreted as a sum
of two terms: the first term penalizes labels that
should have been predicted, but have scores less
than their costs, and the second term penalizes la-
bels that should not have been predicted, but have
scores that are more than the negative costs.

As in the log loss in the body of the paper, with
hinge loss as well, both global and local normal-
ization require O(|L|) computation.

B Hyper-parameters for experiments

Table 6 shows the hyper-parameters for our exper-
iments.

Hyper-parameters Setting

10% corpus
vocabulary size 155, 525

100% corpus
vocabulary size 552, 402

Window size 5

α in
subsamping 0.001

embedding
dimension 300

minimum word
frequency 5

negative
sampling size 6

dropout probability 0.6

Table 6: Hyper-parameters in the all experiments.
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Abstract

Various NLP problems – such as the predic-
tion of sentence similarity, entailment, and dis-
course relations – are all instances of the same
general task: the modeling of semantic rela-
tions between a pair of textual elements. A
popular model for such problems is to embed
sentences into fixed size vectors, and use com-
position functions (e.g. concatenation or sum)
of those vectors as features for the prediction.
At the same time, composition of embeddings
has been a main focus within the field of Statis-
tical Relational Learning (SRL) whose goal is
to predict relations between entities (typically
from knowledge base triples). In this article,
we show that previous work on relation pre-
diction between texts implicitly uses composi-
tions from baseline SRL models. We show that
such compositions are not expressive enough
for several tasks (e.g. natural language infer-
ence). We build on recent SRL models to ad-
dress textual relational problems, showing that
they are more expressive, and can alleviate is-
sues from simpler compositions. The resulting
models significantly improve the state of the
art in both transferable sentence representation
learning and relation prediction.

1 Introduction

Predicting relations between textual units is a
widespread task, essential for discourse analy-
sis, dialog systems, information retrieval, or para-
phrase detection. Since relation prediction often
requires a form of understanding, it can also be
used as a proxy to learn transferable sentence rep-
resentations. Several tasks that are useful to build
sentence representations are derived directly from
text structure, without human annotation: sen-
tence order prediction (Logeswaran et al., 2016;
Jernite et al., 2017), the prediction of previous
and subsequent sentences (Kiros et al., 2015; Jer-
nite et al., 2017), or the prediction of explicit dis-

course markers between sentence pairs (Nie et al.,
2017; Jernite et al., 2017). Human labeled re-
lations between sentences can also be used for
that purpose, e.g. inferential relations (Conneau
et al., 2017). While most work on sentence simi-
larity estimation, entailment detection, answer se-
lection, or discourse relation prediction seemingly
uses task-specific models, they all involve predict-
ing whether a relation R holds between two sen-
tences s1 and s2. This genericity has been noticed
in the literature before (Baudiš et al., 2016) and it
has been leveraged for the evaluation of sentence
embeddings within the SentEval framework (Con-
neau et al., 2017).

A straightforward way to predict the probability
of (s1, R, s2) being true is to represent s1 and s2
with d-dimensional embeddings h1 and h2, and to
compute sentence pair features f(h1, h2), where
f is a composition function (e.g. concatenation,
product, . . . ). A softmax classifier gθ can learn to
predict R with those features. gθ ◦ f can be seen
as a reasoning based on the content of h1 and h2
(Socher et al., 2013).

Our contributions are as follows:

– we review composition functions used in tex-
tual relational learning and show that they
lack expressiveness (section 2);

– we draw analogies with existing SRL mod-
els (section 3) and design new compositions
inspired from SRL (section 4);

– we perform extensive experiments to test
composition functions and show that some of
them can improve the learning of representa-
tions and their downstream uses (section 6).

2 Composition functions for relation
prediction

We review here popular composition functions
used for relation prediction based on sentence em-
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beddings. Ideally, they should simultaneously ful-
fill the following minimal requirements:

– make use of interactions between representa-
tions of sentences to relate;

– allow for the learning of asymmetric relations
(e.g. entailment, order);

– be usable with high dimensionalities (param-
eters θ and f should fit in GPU memory).

Additionally, if the main goal is transferable
sentence representation learning, compositions
should also incentivize gradually changing sen-
tences to lie on a linear manifold, since trans-
fer usually uses linear models. Another goal can
be learning of transferable relation representa-
tion. Concretely, a sentence encoder and f can
be trained on a base task, and f(h1, h2) can be
used as features for transfer in another task. In
that case, the geometry of the sentence embed-
ding space is less relevant, as long as the f(h1, h2)
space works well for transfer learning. Our evalu-
ation will cover both cases.

A straightforward instantiation of f is concate-
nation (Hooda & Kosseim, 2017):

f[,](h1, h2) = [h1, h2] (1)

However, interactions between s1 and s2 cannot
be modeled with f[,] followed by a softmax regres-
sion. Indeed, f[,](h1, h2)θ can be rewritten as a
sum of independent contributions from h1 and h2,
namely θ[0:d]h1 + θ[d:2d]h2. Using a multi-layer
perceptron before the softmax would solve this
issue, but it also harms sentence representation
learning (Conneau et al., 2017; Logeswaran et al.,
2018), possibly because the perceptron allows for
accurate predictions even if the sentence embed-
dings lie in a convoluted space. To promote inter-
actions between h1 and h2, element-wise product
has been used in Baudiš et al. (2016):

f�(h1, h2) = h1 � h2 (2)

Absolute difference is another solution for sen-
tence similarity (Mueller & Thyagarajan, 2016),
and its element-wise variation may equally be
used to compute informative features:

f−(h1, h2) = |h1 − h2| (3)

The latter two were combined into a popular in-
stantiation, sometimes refered as heuristic match-
ing (Tai et al., 2015; Kiros et al., 2015; Mou et al.,

2016):

f�−(h1, h2) = [h1 � h2, |h2 − h1|] (4)

Although effective for certain similarity tasks,
f�− is symmetrical, and should be a poor choice
for tasks like entailment prediction or prediction
of discourse relations. For instance, if Re de-
notes entailment and (s1, s2)= (“It just rained”,
“The ground is wet”), (s1, Re, s2) should hold but
not (s2, Re, s1). The f�− composition function is
nonetheless used to train/evaluate models on en-
tailment (Conneau et al., 2017) or discourse rela-
tion prediction (Nie et al., 2017).

Sometimes [h1, h2] is concatenated to
f�−(h1, h2) (Ampomah et al., 2016; Conneau
et al., 2017). While the resulting composition
is asymmetrical, the asymmetrical component
involves no interaction as noted previously. We
note that this composition is very commonly used.
On the SNLI benchmark,1 12 out of the 25 listed
sentence embedding based models use it, and 7
use a weaker form (e.g. omitting f�).

The outer product ⊗ has been used instead
for asymmetric multiplicative interaction (Jernite
et al., 2017):

f⊗(h1, h2) = h1⊗h2 where (h1⊗h2)i,j = h1ih2j
(5)

This formulation is expressive but it forces gθ to
have d2 parameters per relation, which is pro-
hibitive when there are many relations and d is
high.

The problems outlined above are well known in
SRL. Thus, existing compositions (except f⊗) can
only model relations superficially for tasks cur-
rently used to train state of the art sentence en-
coders, like NLI or discourse connectives predic-
tion.

3 Statistical Relational Learning models

In this section we introduce the context of statisti-
cal relational learning (SRL) and relevant models.
Recently, SRL has focused on efficient and expres-
sive relation prediction based on embeddings. A
core goal of SRL (Getoor & Taskar, 2007) is to
induce whether a relationR holds between two ar-
bitrary entities e1, e2. As an example, we would
like to assign a score to (e1, R, e2) = (Paris, LO-
CATED IN, France) that reflects a high probability.

1nlp.stanford.edu/projects/snli/, as of
February 2019.
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Model Scoring function Parameters

Unstructured ||e1 − e2||p -
TransE ||e1 + wr − e2||p wr ∈ Rd

RESCAL eT1Wre2 Wr ∈ Rd
2

DistMult < e1, wr, e2 > wr ∈ Rd
ComplEx Re < e1, wr, e2 > wr ∈ Cd

Table 1: Selected relational learning models. Un-
structured is from (Bordes et al., 2013a), TransE from
(Bordes et al., 2013b), RESCAL from (Nickel et al.,
2011), DistMult from (Yang et al., 2015) and (Trouil-
lon et al., 2016). Following the latter, < a, b, c > de-
notes

∑
k akbkck. Re(x) is the real part of x, and p is

commonly set to 1.

In embedding-based SRL models, entities ei have
vector representations in Rd and a scoring function
reflects truth values of relations. The scoring func-
tion should allow for relation-dependent reason-
ing over the latent space of entities. Scoring func-
tions can have relation-specific parameters, which
can be interpreted as relation embeddings. Table 1
presents an overview of a number of state of the art
relational models. We can distinguish two families
of models: subtractive and multiplicative.

The TransE scoring function is motivated by
the idea that translations in latent space can
model analogical reasoning and hierarchical re-
lationships. Dense word embeddings trained on
tasks related to the distributional hypothesis natu-
rally allow for analogical reasoning with transla-
tions without explicit supervision (Mikolov et al.,
2013). TransE generalizes the older Unstructured
model. We call them subtractive models.

The RESCAL, Distmult, and ComplEx scoring
functions can be seen as dot product matching be-
tween e1 and a relation-specific linear transforma-
tion of e2 (Liu et al., 2017). This transformation
helps checking whether e1 matches with some as-
pects of e2. RESCAL allows a full linear mapping
Wre2 but has a high complexity, while Distmult is
restricted to a component-wise weighting wr�e2.
ComplEx has fewer parameters than RESCAL but
still allows for the modeling of asymmetrical re-
lations. As shown in Liu et al. (2017), ComplEx
boils down to a restriction of RESCAL where Wr

is a block diagonal matrix. These blocks are 2-
dimensional, antisymmetric and have equal diag-
onal terms. Using such a form, even and odd in-
dexes of e’s dimensions play the roles of real and
imaginary numbers respectively. The ComplEx
model (Trouillon et al., 2016) and its variations

tied 
weights

h₁

relation representation f(h₁, h₂)

sentence 
encoder

s₁

h₂

sentence 
encoder

s₂

softmax gθ 
Statistical 
Relational 
Learning 
model

relations probabilities/scores

Figure 1: Implicit SRL model in text relation prediction

(Lacroix et al., 2018) yield state of the art perfor-
mance on knowledge base completion on numer-
ous evaluations.

4 Embeddings composition as SRL
models

We claim that several existing models (Conneau
et al., 2017; Nie et al., 2017; Baudiš et al.,
2016) boil down to SRL models where the sen-
tence embeddings (h1, h2) act as entity embed-
dings (e1, e2). This framework is depicted in fig-
ure 1. In this article we focus on sentence em-
beddings, although our framework can straightfor-
wardly be applied to other levels of language gran-
ularity (such as words, clauses, or documents).

Some models (Chen et al., 2017b; Seo et al.,
2017; Gong et al., 2018; Radford et al., 2018; De-
vlin et al., 2018) do not rely on explicit sentence
encodings to perform relation prediction. They
combine information of input sentences at ear-
lier stages, using conditional encoding or cross-
attention. There is however no straightforward
way to derive transferable sentence representa-
tions in this setting, and so these models are out
of the scope of this paper. They sometimes make
use of composition functions, so our work could
still be relevant to them in some respect.

In this section we will make a link between
sentence composition functions and SRL scor-
ing functions, and propose new scoring functions
drawing inspiration from SRL.

4.1 Linking composition functions and SRL
models

The composition function f� from equation 2
followed by a softmax regression yields a score
whose analytical form is identical to the Distmult
model score described in section 3. Let θR de-
note the softmax weights for relation R. The logit
score for the truth of (s1, R, s2) is f(h1, h2)θR =
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(a) Score map of (s1, Rto the past, s2) over possible sentences
s2 using Unstructured composition.

(b) Score map of (s1, Rto the past, s2) over possible sentences
s2 using TransE composition.

(c) Score map of (s1, Rentailment, s2) over possible sentences
s2 using DistMult composition.

(d) Score map of (s1, Rentailment, s2) over possible sentences
s2 using ComplEx composition.

Figure 2: Possible scoring function values according to different composition functions. s1 and R are fixed and
color brightness reflects likelihood of (s1, R, s2) for each position of embedding s2. (b) and (d) are respectively
more expressive than (a) and (c).

(h1�h2)θR which is equal to the Distmult scoring
function < h1, θR, h2 > if h1, h2 act as entities
embeddings and θR as the relation weight wR .

Similarly, the composition f− from equation 3
followed by a softmax regression can be seen as
an element-wise weighted score of Unstructured
(both are equal if softmax weights are all unitary).

Thus, f�− from 4 (with softmax regression)
can be seen as a weighted ensemble of Unstruc-
tured and Distmult. These two models are respec-
tively outperformed by TransE and ComplEx on
knowledge base link prediction by a large margin
(Trouillon et al., 2016; Bordes et al., 2013a). We
therefore propose to change the Unstructured and
Distmult in f�− such that they match their respec-
tive state of the art variations in the following sec-
tions. We will also show the implications of these
refinements.

4.2 Casting TransE as a composition

Simply replacing |h2 − h1| with

ft(h1, h2) = |h2 − h1 + t|, where t ∈ Rd (6)

would make the model analogous to TransE. t is
learned and is shared by all relations. A relation-
specific translation tR could be used but it would
make f relation-specific. Instead, here, each di-
mension of ft(h1, h2) can be weighted according

to a given relation. Non-zero t makes ft asym-
metrical and also yields features that allow for the
checking of an analogy between s1 and s2. Sen-
tence embeddings often rely on pre-trained word
embeddings which have demonstrated strong ca-
pabilities for analogical reasoning. Some analo-
gies, such as part-whole, are computable with off-
the-shelf word embeddings (Chen et al., 2017a)
and should be very informative for natural lan-
guage inference tasks. As an illustration, let us
consider an artificial semantic space (depicted in
figures 2a and 2b) where we posit that there is a
“to the past” translation t so that h1 + t is the em-
bedding of a sentence s1 changed to the past tense.
Unstructured is not able to leverage this semantic
space to correctly score (s1, Rto the past, s2) while
TransE is well tailored to provide highest scores
for sentences near h1 + t̂ where t̂ is an estimation
of t that could be learned from examples.

4.3 Casting ComplEx as a composition

Let us partition h dimensions into two equally
sized sets R and I, e.g. even and odd dimension
indices of h. We propose a new function fC as
a way to fit the ComplEx scoring function into a
composition function.

fC(h1, h2) = [hR1 � hR2 + hI1 � hI2 ,
hR1 � hI2 − hI1 � hR2 ]

(7)
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fC(h1, h2) multiplied by softmax weights θr
is equivalent to the ComplEx scoring function
Re < h1, θr, h2 >. The first half of θr weights
corresponds to the real part of ComplEx rela-
tion weights while the last half corresponds to the
imaginary part.
fC is to the ComplEx scoring function what f�

is to the DistMult scoring function. Intuitively,
ComplEx is a minimal way to model interactions
between distinct latent dimensions while Distmult
only allows for identical dimensions to interact.

Let us consider a new artificial semantic space
(shown in figures 2c and 2d) where the first di-
mension is high when a sentence means that it just
rained, and the second dimension is high when the
ground is wet. Over this semantic space, Distmult
is only able to detect entailment for paraphrases
whereas ComplEx is also able to naturally model
that (“it just rained”, Rentailment, “the ground is
wet”) should be high while its converse should not.

We also propose two more general versions of
fC :

fCα(h1, h2) = [hR1 � hR2 , hI1 � hI2 ,
hR1 � hI2 − hI1 � hR2 ]

(8)

fCβ (h1, h2) = [hR1 � hR2 , hI1 � hI2 ,
hR1 � hI2 , hI1 � hR2 ]

(9)

fCα can be seen as Distmult concatenated with
the asymmetrical part of ComplEx and fCβ can be
seen as RESCAL with unconstrained block diago-
nal relation matrices.

5 On the evaluation of relational models

The SentEval framework (Conneau et al., 2017)
provides a general evaluation for transferable sen-
tence representations, with open source evalua-
tion code. One only needs to specify a sen-
tence encoder function, and the framework per-
forms classification tasks or relation prediction
tasks using cross-validated logistic regression on
embeddings or composed sentence embeddings.
Tasks include sentiment analysis, entailment, tex-
tual similarity, textual relatedness, and paraphrase
detection. These tasks are a rich way to train or
evaluate sentence representations since in a triple
(s1, R, s2), we can see (R, s2) as a label for s1
(Baudiš et al., 2016). Unfortunately, the rela-
tional tasks hard-code the composition function

from equation 4. From our previous analysis, we
believe this composition function favors the use of
contextual/lexical similarity rather than high-level
reasoning and can penalize representations based
on more semantic aspects. This bias could harm
research since semantic representation is an im-
portant next step for sentence embedding. Train-
ing/evaluation datasets are also arguably flawed
with respect to relational aspects since several re-
cent studies (Dasgupta et al., 2018; Poliak et al.,
2018; Gururangan et al., 2018; Glockner et al.,
2018) show that InferSent, despite being state of
the art on SentEval evaluation tasks, has poor per-
formance when dealing with asymmetrical tasks
and non-additive composition of words. In addi-
tion to providing new ways of training sentence
encoders, we will also extend the SentEval evalu-
ation framework with a more expressive composi-
tion function when dealing with relational transfer
tasks, which improves results even when the sen-
tence encoder was not trained with it.

6 Experiments

Our goal is to show that transferable sentence rep-
resentation learning and relation prediction tasks
can be improved when our expressive composi-
tions are used instead of the composition from
equation 4. We train our relational model adap-
tations on two relation prediction base tasks (T ),
one supervised (T = NLI ) and one unsupervised
(T = Disc) described below, and evaluate sen-
tence/relation representations on base and trans-
fer tasks using the SentEval framework in order
to quantify the generalization capabilities of our
models. Since we use minor modifications of In-
ferSent and SentEval, our experiments are easily
reproducible.

6.1 Training tasks

Natural language inference (T = NLI)’s goal is
to predict whether the relation between two sen-
tences (premise and hypothesis) is Entailment,
Contradiction or Neutral. We use the combination
of SNLI dataset (Bowman et al., 2015) and MNLI
dataset (Williams et al., 2018). We call AllNLI
the resulting dataset of 1M examples. Conneau
et al. (2017) claim that NLI data allows univer-
sal sentence representation learning. They used
the f�,− composition function with concatenated
sentence representations in order to train their In-
fersent model.
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name N task C representation(s) used

MR 11k sentiment (movies) 2 h1

SUBJ 10k subjectivity/objectivity 2 h1

MPQA 11k opinion polarity 2 h1

TREC 6k question-type 6 h1

SICKms 10k NLI 3 fm,s(h1, h2)
MRPCms 4k paraphrase detection 2 (fm,s(h1, h2) + (fm,s(h2, h1))/2
PDTBms 17k discursive relation 5 fm,s(h1, h2)
STS14 4.5k similarity - cos(h1, h2)

Table 2: Transfer evaluation tasks. N = number of training examples; C = number of classes if applicable. h1, h2
are sentence representations, fm,s a composition function from section 4.

We also train on the prediction of discourse con-
nectives between sentences/clauses (T = Disc).
Discourse connectives make discourse relations
between sentences explicit. In the sentence I live
in Paris but I’m often elsewhere, the word but
highlights that there is a contrast between the two
clauses it connects. We use Malmi et al.’s (2018)
dataset of selected 400k instances with 20 dis-
course connectives (e.g. however, for example)
with the provided train/dev/test split. This dataset
has no other supervision than the list of 20 con-
nectives. Nie et al. (2017) used f�,− concatenated
with the sum of sentence representations to train
their model, DisSent, on a similar task and showed
that their encoder was general enough to perform
well on SentEval tasks. They use a dataset that is,
at the time of writing, not publicly available.

6.2 Evaluation tasks

Table 2 provides an overview of different transfer
tasks that will be used for evaluation. We added
another relation prediction task, the PDTB coarse-
grained implicit discourse relation task, to Sent-
Eval. This task involves predicting a discursive
link between two sentences among {Comparison,
Contingency, Entity based coherence, Expansion,
Temporal}. We followed the setup of Pitler et al.
(2009), without sampling negative examples in
training. MRPC, PDTB and SICK will be tested
with two composition functions: besides SentE-
val composition f�,−, we will use fCβ ,− for trans-
fer learning evaluation, since it has the most gen-
eral multiplicative interaction and it does not pe-
nalize models that do not learn a translation. For
all tasks except STS14, a cross-validated logistic
regression is used on the sentence or relation rep-
resentation. The evaluation of the STS14 task re-
lies on Pearson or Spearman correlation between
cosine similarity and the target. We force the com-
position function to be symmetrical on the MRPC

task since paraphrase detection should be invariant
to permutation of input sentences.

6.3 Setup

We want to compare the different instances of f .
We follow the setup of Infersent (Conneau et al.,
2017): we learn to encode sentences into h with
a bi-directional LSTM using element-wise max
pooling over time. The dimension size of h is
4096. Word embeddings are fixed GloVe with 300
dimensions, trained on Common Crawl 840B.2

Optimization is done with SGD and decreasing
learning rate until convergence.

The only difference with regard to Infersent is
the composition. Sentences are composed with
six different compositions for training according
to the following template:

fm,s,1,2(h1, h2) = [fm(h1, h2), fs(h1, h2), h1, h2]
(10)

fs (subtractive interaction) is in {f−, ft}, fm
(multiplicative interaction) is in {f�, fCα , fCβ}.
We do not consider fC since it yielded inferior re-
sults in our early experiments using NLI and Sent-
Eval development sets.
fm,s,1,2(h1, h2) is fed directly to a softmax re-

gression. Note that Infersent uses a multi-layer
perceptron before the softmax, but uses only lin-
ear activations, so f�,−,1,2(h1, h2) is analytically
equivalent to Infersent when T = NLI .

6.4 Results

Having run several experiments with different ini-
tializations, the standard deviations between them
do not seem to be negligible. We decided to take
these into account when reporting scores, con-
trary to previous work (Kiros et al., 2015; Con-
neau et al., 2017): we average the scores of 6 dis-
tinct runs for each task and use standard deviations

2https://nlp.stanford.edu/projects/glove/
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Models trained on natural language inference (T = NLI )

m,s MR SUBJ MPQA TREC MRPC�
− PDTB�

− SICK�
− STS14 T AVG

�,− 81.2 92.7 90.4 89.6 76.1 46.7 86.6 69.5 84.2 79.1
α,− 81.4 92.8 90.5 89.6 75.4 46.6 86.7 69.5 84.3 79.1
β,− 81.2 92.6 90.5 89.6 76 46.5 86.6 69.5 84.2 79.1
�, t 81.1 92.7 90.5 89.7 76.5 46.4 86.5 70.0 84.8 79.2
α, t 81.3 92.6 90.6 89.2 76.2 47.2 86.5 70.0 84.6 79.2
β, t 81.2 92.7 90.4 88.5 75.8 47.3 86.8 69.8 84.2 79.1

Table 3: SentEval and base task evaluation results for the models trained on natural language inference (T = NLI );
AllNLI is used for training. All scores are accuracy percentages, except STS14, which is Pearson correlation
percentage. AVG denotes the average of the SentEval scores.

Models trained on discourse connective prediction (T = Disc)

m,s MR SUBJ MPQA TREC MRPC�
− PDTB�

− SICK�
− STS14 T AVG

�,− 80.4 92.7 90.2 89.5 74.5 47.3 83.2 57.9 35.7 77
α,− 80.4 92.9 90.2 90.2 75 47.9 83.3 57.8 35.9 77.2
β,− 80.2 92.8 90.2 88.4 74.9 47.5 82.9 57.7 35.9 76.8
�, t 80.2 92.8 90.2 90.4 74.6 48.5 83.4 58.6 36.1 77.3
α, t 80.2 92.9 90.3 90.3 75.1 47.8 83.2 58.3 36.1 77.3
β, t 80.2 92.8 90.3 89.7 74.4 47.9 83.7 58.2 35.7 77.2

Table 4: SentEval and base task evaluation results for the models trained on discourse connective prediction (T =
Disc). All scores are accuracy percentages, except STS14, which is Pearson correlation percentage. AVG denotes
the average of the SentEval scores.

under normality assumption to compute signifi-
cance. Table 3 shows model scores for T = NLI ,
while Table 4 shows scores for T = Disc. For
comparison, Table 5 shows a number of important
models from previous work. Finally, in Table 6,
we present results for sentence relation tasks that
use an alternative composition function (fCβ ,−) in-
stead of the standard composition function used in
SentEval.

For sentence representation learning, the base-
line, f�− composition already performs rather
well, being on par with the InferSent scores of the
original paper, as would be expected. However,
macro-averaging all accuracies, it is the second
worst performing model. fCα,t,1,2 is the best per-
forming model, and all three best models use the
translation (s = t). On relational transfer tasks,
training with fCα,t,1,2 and using complex Cβ for
transfer (Table 6) always outperforms the baseline
(f�,−,1,2 with�− composition in Tables 3 and 4).
Averaging accuracies of those transfer tasks, this
result is significant for both training tasks at level
p < 0.05 (using Bonferroni correction accounting
for the 5 comparisons). On base tasks and the aver-
age of non-relational transfer tasks (MR, MPQA,
SUBJ, TREC), our proposed compositions are on
average slightly better than f�,−,1,2. Representa-
tions learned with our proposed compositions can

still be compared with simple cosine similarity: all
three methods using the translational composition
(s = t) very significantly outperform the baseline
(significant at level p < 0.01 with Bonferroni cor-
rection) on STS14 for T = NLI . Thus, we believe
fCα,t,1,2 has more robust results and could be a bet-
ter default choice than f�,−,1,2 as composition for
representation learning. 3

Additionally, using Cβ (Table 6) instead of �
(Tables 3 and 4) for transfer learning in relational
transfer tasks (PDTB, MRPC, SICK) yields a sig-
nificant improvement on average, even when m =
� was used for training (p < 0.001). Therefore,
we believe fCβ ,− is an interesting composition for
inference or evaluation of models regardless of
how they were trained.

7 Related work

There are numerous interactions between SRL and
NLP. We believe that our framework merges two
specific lines of work: relation prediction and
modeling textual relational tasks.

Some previous NLP work focused on compo-
sition functions for relation prediction between

3Note that our compositions are also beneficial with re-
gard to convergence speed: on average, each of our proposed
compositions needed less epochs to converge than the base-
line f�,−,1,2, for both training tasks.
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Comparison models

model MR SUBJ MPQA TREC MRPC�
− PDTB�

− SICK�
− STS14 AVG

Infersent 81.1 92.4 90.2 88.2 76.2 46.7- 86.3 70 78.9
SkipT 76.5 93.6 87.1 92.2 73 - 82.3 29 -
BoW 77.2 91.2 87.9 83 72.2 43.9 78.4 54.6 73.6

Table 5: Comparison models from previous work. InferSent represents the original results from Conneau et al.
(2017), SkipT is SkipThought from Kiros et al. (2015), and BoW is our re-evaluation of GloVe Bag of Words from
Conneau et al. (2017). AVG denotes the average of the SentEval scores..

T = Disc T = NLI

m,s MRPCβ− PDTBβ− SICKβ− AVG MRPCβ− PDTBβ− SICKβ− AVG

�,− 74.8 48.2 83.6 68.9 76.2 47.2 86.9 70.1
α,− 74.9 49.3 83.8 69.3 75.9 47.1 86.9 70
β,− 75 48.8 83.4 69.1 75.8 47 87 69.9
�, t 74.9 48.7 83.6 69.1 76.2 47.8 86.8 70.3
α, t 75.2 48.6 83.5 69.1 76.2 47.6 87.3 70.4
β, t 74.6 48.9 83.9 69.1 76.2 47.8 87 70.3

Table 6: Results for sentence relation tasks using an alternative composition function (fCβ ,−) during evaluation.
AVG denotes the average of the three tasks.

text fragments, even though they ignored SRL and
only dealt with word units. Word2vec (Mikolov
et al., 2013) has sparked a great interest for this
task with word analogies in the latent space.
Levy & Goldberg (2014) explored different scor-
ing functions between words, notably for analo-
gies. Hypernymy relations were also studied, by
Chang et al. (2018) and Fu et al. (2014). Levy et al.
(2015) proposed tailored scoring functions. Even
the skipgram model (Mikolov et al., 2013) can
be formulated as finding relations between con-
text and target words. We did not empirically ex-
plore textual relational learning at the word level,
but we believe that it would fit in our framework,
and could be tested in future studies. Numerous
approaches (Chen et al., 2017b; Seok et al., 2016;
Gong et al., 2018; Joshi et al., 2019) were pro-
posed to predict inference relations between sen-
tences, but don’t explicitely use sentence embed-
dings. Instead, they encode sentences jointly, pos-
sibly with the help of previously cited word com-
positions, therefore it would also be interesting
to try applying our techniques within their frame-
work.

Some modeling aspects of textual relational
learning have been formally investigated by
Baudiš et al. (2016). They noticed the genericity
of relational problems and explored multi-task and
transfer learning on relational tasks. Their work
is complementary to ours since their framework
unifies tasks while ours unifies composition func-

tions. Subsequent approaches use relational tasks
for training and evaluation on specific datasets
(Conneau et al., 2017; Nie et al., 2017).

8 Conclusion

We have demonstrated that a number of existing
models used for textual relational learning rely on
composition functions that are already used in Sta-
tistical Relational Learning. By taking into ac-
count previous insights from SRL, we proposed
new composition functions and evaluated them.
These composition functions are all simple to im-
plement and we hope that it will become standard
to try them on relational problems. Larger scale
data might leverage these more expressive compo-
sitions, as well as more compositional, asymmet-
ric, and arguably more realistic datasets (Dasgupta
et al., 2018; Gururangan et al., 2018). Finally, our
compositions can also be helpful to improve in-
terpretability of embeddings, since they can help
measure relation prediction asymmetry. Analo-
gies through translations helped interpreting word
embeddings, and perhaps anlyzing our learned t
translation could help interpreting sentence em-
beddings.
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Abstract

Multi-relational semantic similarity datasets
define the semantic relations between two
short texts in multiple ways, e.g., similarity,
relatedness, and so on. Yet, all the systems
to date designed to capture such relations tar-
get one relation at a time. We propose a
multi-label transfer learning approach based
on LSTM to make predictions for several rela-
tions simultaneously and aggregate the losses
to update the parameters. This multi-label re-
gression approach jointly learns the informa-
tion provided by the multiple relations, rather
than treating them as separate tasks. Not only
does this approach outperform the single-task
approach and the traditional multi-task learn-
ing approach, it also achieves state-of-the-art
performance on all but one relation of the Hu-
man Activity Phrase dataset.

1 Introduction

Semantic similarity, or relating short texts or sen-
tences1 in a semantic space – be those phrases,
sentences or short paragraphs – is a task that re-
quires systems to determine the degree of equiv-
alence between the underlying semantics of the
two sentences. Although relatively easy for hu-
mans, this task remains one of the most difficult
natural language understanding problems. The
task has been receiving significant interest from
the research community. For instance, from 2012
to 2017, the International Workshop on Seman-
tic Evaluation (SemEval) has been holding the
Semantic Textual Similarity (STS) shared tasks
(Agirre et al., 2012, 2013b, 2015, 2016; Cer et al.,
2017), dedicated to tackling this problem, with
close to 100 team submissions each year.

In some semantic similarity datasets, an exam-
ple consists of a sentence pair and a single anno-
tated similarity score, while in others, each pair

1In this work, we do not consider word level similarity.

comes with multiple annotations. We refer to the
latter as multi-relational semantic similarity tasks.
The inclusion of multiple annotations per exam-
ple is motivated by the fact that there can be dif-
ferent relations, namely different types of simi-
larity between two sentences. So far, these rela-
tions have been treated as separate tasks, where
a model trains and tests on one relation at a time
while ignoring the rest. However, we hypothesize
that each relation may contain useful information
about the others, and training on only one rela-
tion inevitably neglects some relevant information.
Thus, training jointly on multiple relations may
improve performance on one or more relations.

We propose a joint multi-label transfer learning
setting based on LSTM, and show that it can be an
effective solution for the multi-relational semantic
similarity tasks. Due to the small size of multi-
relational semantic similarity datasets and the re-
cent success of LSTM-based sentence representa-
tions (Wieting and Gimpel, 2018; Conneau et al.,
2017), the model is pre-trained on a large corpus
and transfer learning is applied using fine-tuning.
In our setting, the network is jointly trained on
multiple relations by outputting multiple predic-
tions (one for each relation) and aggregating the
losses during back-propagation. This is differ-
ent from the traditional multi-task learning set-
ting where the model makes one prediction at a
time, switching between the tasks. We treat the
multi-task setting and the single-task setting (i.e.,
where a separate model is learned for each rela-
tion) as baselines, and show that the multi-label
setting outperforms them in many cases, achieving
state-of-the-art performance on all but one relation
of the Human Activity Phrase dataset (Wilson and
Mihalcea, 2017).

In addition to success on multi-relational se-
mantic similarity tasks, the multi-label transfer
learning setting that we propose can easily be
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Figure 1: Overview of the multi-label architecture.

paired with other neural network architectures and
applied to any dataset with multiple annotations
available for each training instance.

2 Multi-Label Transfer Learning

We introduce a multi-label transfer learning set-
ting by modifying the architecture of the LSTM-
based sentence encoder, specifically designed for
multi-relational semantic similarity tasks.

2.1 Architecture
We employ the “hard-parameter sharing” setting
(Caruana, 1998), where some hidden layers are
shared across multiple tasks while each task has its
own specific output layer. As shown in Figure 1,
using an example of a semantic similarity dataset
with two relations, sentence L and sentence R in a

pair are first mapped to word vector sequences and
then encoded as sentence embeddings. Up to this
step, the choice of the word embedding matrix and
sentence encoder is flexible, and we outline our
choice in the sections to follow. For each relation
that has been annotated with a ground-truth label,
a dedicated output dense layer takes the two sen-
tence embeddings as input and outputs a probabil-
ity distribution across the range of possible scores.
The output dense layers follow the methods of Tai
et al. (2015).

With two such dense output layers, two losses
are calculated, one for each relation. The total loss
is calculated as the sum of the two losses for back-
propagation which updates all parameters in the
end-to-end network.

2.2 Model
We use InferSent (Conneau et al., 2017) as the sen-
tence encoder due to its outstanding performances
reported on various semantic similarity tasks.

Due to the small sizes of the evaluation datasets,
we use the sentence encoder pre-trained on
the Stanford Natural Language Inference corpus
(Bowman et al., 2015) and Multi-Genre Natu-
ral Language Inference corpus (Williams et al.,
2018), and transfer to the semantic similarity tasks
using fine-tuning. In this process, the output lay-
ers for multi-label learning discussed above are
stacked on top of the InferSent network, forming
an end-to-end model for training and testing on se-
mantic similarity tasks.

2.3 Comparison with Multi-Task Learning
Neither multi-task nor multi-label learning have
been used for multi-relational semantic similarity
datasets. For these datasets, either multi-task or
multi-label learning can be achieved by treating
each relation as a “task.” The key differences be-
tween the two are the relations involved in each
forward-backward pass and the timing of the pa-
rameter updates.

Consider a training step in the two-relation ex-
ample in Figure 1:

A multi-task learning model would pick a
batch of sentences pairs, only consider Label L,
only calculate Loss L, and all parameters except
those of dense layer dR are updated. Then, within
the same batch,2 the model would only consider

2In general multi-task learning, a new batch is picked af-
ter switching tasks. In multi-relational semantic similarity
datasets, each task is a relational label, which shares the same
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Label R, only calculate Loss R, and all parameters
except those of dense layer dL are updated.

A multi-label learning model (our model)
would pick a batch of sentences pairs, consider
both Label L and Label R, calculate Loss L and
Loss R, aggregate them as the total loss, and up-
date all parameters.

3 Experiments

To show the effectiveness of the multi-label trans-
fer learning setting, we experiment on three se-
mantic similarity datasets with multiple relations
annotated, and use one LSTM-based sentence en-
coder that has been very successful in many down-
stream tasks.

3.1 Datasets
We study three semantic similarity datasets with
multiple relations with texts of different lengths,
spanning phrases, sentences, and short paragraphs.

Human Activity Phrase (Wilson and Mihalcea,
2017): a collection of pairs of phrases regard-
ing human activities, annotated with the following
four different relations.

• Similarity (SIM): The degree to which the
two activity phrases describe the same thing,
semantic similarity in a strict sense. Exam-
ple of high similarity phrases: to watch a film
and to see a movie.

• Relatedness (REL): The degree to which the
activities are related to one another, a general
semantic association between two phrases.
Example of strongly related phrases: to give
a gift and to receive a present.

• Motivational alignment (MA): The degree to
which the activities are (typically) done with
similar motivations. Example of phrases with
potentially similar motivations: to eat dinner
with family members and to visit relatives.

• Perceived actor congruence (PAC): The de-
gree to which the activities are expected to be
done by the same type of person. An exam-
ple of a pair with a high PAC score: to pack a
suitcase and to travel to another state.

The phrases are generated, paired and scored
on Amazon Mechanical Turk.3 The annotated
input.

3https://www.mturk.com/

scores range from 0 to 4 for SIM, REL and MA,
and −2 to 2 for PAC. The evaluation is based on
the Spearman’s ρ correlation coefficient between
the systems’ predicted scores and the human
annotations. There are 1,000 pairs in the dataset.
We also use the supplemental 1,373 pairs from
Zhang et al. (2018) in which 1,000 pairs are
randomly selected for training and the rest are
used for development. We then treat the original
1,000 pairs as a held-out test set so that our results
are directly comparable with those previously
reported.

SICK (Marelli et al., 2014b,a): the Sentences
Involving Compositional Knowledge benchmark,
which includes a large number of sentence pairs
that are rich in the lexical, syntactic and semantic
phenomena. Each pair of sentences is annotated
in two dimensions: relatedness and entailment.
The relatedness score ranges from 1 to 5, and
Pearson’s r is used for evaluation; the entailment
relation is categorical, consisting of entailment,
contradiction, and neutral. There are 4439 pairs
in the train split, 495 in the trial split used for
development and 4906 in the test split. The
sentence pairs are generated from image and
video caption datasets before being paired up
using some algorithm. Due to the lack of human
supervision in the process, some sentence pairs
display minimal difference in semantic compo-
nents, making the SICK tasks simpler than the
others we study.

Typed-Similarity (Agirre et al., 2013b): a col-
lection of meta-data describing books, paintings,
films, museum objects and archival records taken
from Europeana,4 presented as the pilot track in
the SemEval 2013 STS shared task. Typically, the
items consist of title, subject, description, and so
on, describing a cultural heritage item and, some-
times, a thumbnail of the item itself. For the pur-
pose of measuring semantic similarity, we con-
catenate all the textual entries such as title, creator,
subject and description into a short paragraph that
is used as input, although the annotations might
be informed of the image aspects of the meta-data.
Each pair of items is annotated on eight dimen-
sions of similarity: general similarity, author, peo-
ple involved, time, location, event or action in-
volved, subject and description. There are 750

4http://www.europeana.eu/
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pairs in the train split, of which we randomly sam-
ple 500 for training and 250 for development, and
721 in the test split. Pearson’s r is used for evalu-
ation.

3.2 Baselines
We compare the multi-label setting with two base-
lines:

• Single-task, where each relation is treated
as an individual task. For each relation, a
model with only one output dense layer is
trained and tested, ignoring the annotations
of all other relations.

• Multi-task, where only one relation is in-
volved during each round of feed-forward
and back-propagation.

3.3 Experimental Details
In each experiment, we use stochastic gradient de-
scent and a batch size of 16. We tune the learn-
ing rate over {0.1, 0.5, 1, 5} and number of epochs
over {10, 20}. For each dataset discussed above,
we tune these hyperparameters on the develop-
ment set. All other hyperparameters maintain their
values from the original code.5 In the single-task
setting, the model is trained and tested on each re-
lation, ignoring the annotations of other relations.
In the multi-task settings, the model is trained and
tested on all the relations in a dataset. In the multi-
task setting, relations are presented to the model in
the order they are listed in the result tables within
each batch.

4 Evaluation

The results are shown in Tables 1, 2 and 3. For
every experiment (represented by a cell in the ta-
bles), 30 runs with different random seeds are
recorded and the average is reported. For each
relation (each column in the tables), let the true
mean performance of multi-label learning, single-
task baseline and multi-task baseline be µMLL,
µsingle, µMTL, respectively. Two one-sided Stu-
dent’s t-tests are conducted to test if multi-label
learning outperforms the baselines for that rela-
tion. The significance level is chosen to be 0.05.
A down-arrow ↓ indicates that our proposed multi-
label learning underperforms a baseline, while an
up-arrow ↑ indicates that our proposed multi-label
learning outperforms a baseline.

5https://github.com/facebookresearch/InferSent

5 Discussion

5.1 Results
For the Human Activity Phrase dataset, the single-
task setting already achieves state-of-the-art per-
formances on SIM, REL and PAC relations, sur-
passing the previous best results reported by
Zhang et al. (2018), which achieved Spearman’s
correlation coefficient of .710 in SIM, .715 in
REL, .690 in MA and .549 in PAC. This ap-
proach is based on fine-tuning a bi-directional
LSTM with average-pooling pre-trained on trans-
lated texts (Wieting and Gimpel, 2018). Using
multi-label learning, our model is able to gain a
statistically significant improvement in the perfor-
mance of REL compared to the single-task setting,
while maintaining performance for the other re-
lations. The traditional multi-task setting, how-
ever, performs significantly worse than the other
settings.

For the entailment task on the SICK dataset,
our multi-label setting outperforms the single-
task baseline and the previous best results of In-
ferSent. These best results consisted of an accu-
racy of 86.3% achieved using a logistic regres-
sion classifier and sentence embeddings gener-
ated by pre-trained InferSent as features (Conneau
et al., 2017). In the relatedness task, this set-
ting achieved a Pearson’s correlation coefficient of
.885, which even our our multi-label setting is un-
able to beat. However, the multi-label setting does
have a statistically significant performance gain
compared to the single-task setting in the related-
ness task, while the traditional multi-task setting
underperforms the other settings.

For the Typed-Similarity dataset, the previous
best results are achieved using rich feature engi-
neering without the use of sentence embeddings,
with a different scoring scheme for each relation
(Agirre et al., 2013a). While this method yielded
better results than all of the transfer learning ap-
proaches we compare, it should be noted that this
approach is specific to tackling this dataset, un-
like the transfer learning settings that are gener-
alizable to other scenarios. One potential reason
for the discrepancy in performance is that some
relations such as time, people involved, or events
may be easily or sometimes trivially captured by
information retrieval techniques such as named
entity recognition. Using sentence embeddings
and transfer learning for all the relations, though
simpler, may face greater challenge in the rela-
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general author people time location event subject description
MLL .744 .721 .640 .713 .751 .611 .697 .737
Single .750↓ .690↑ .619↑ .712 .744↑ .606↑ .694↑ .718↑
MTL .718↑ .689↑ .611↑ .697↑ .723↑ .579↑ .669↑ .714↑

Table 1: The performance in Pearson’s r on the Typed-Similarity dataset, in accordance with the specification of
the dataset to allow for direct comparison with previous results. The results of single task and multi-task learning
(MTL) are followed by ↑ if it is statically significantly lower than those of multi-label learning (MLL), and they
are followed by ↓ otherwise.

SIM REL MA PAC
MLL .720 .721 .682 .557
Single .719 .717↑ .682 .555
MTL .683↑ .686↑ .651↑ .515↑

Table 2: The performance in Spearman’s ρ on the Hu-
man Activity Phrase dataset.

Relatedness Entailment
MLL .882 86.7
Single .874↑ 86.4↑
MTL .871↑ 86.2↑

Table 3: The performance in Pearson’s r on the SICK
dataset, in accordance with the specification of the
dataset to allow for direct comparison with previous re-
sults.

tions mentioned above. Among the three transfer
learning approaches, our multi-label setting is still
superior, outperforming the single-task setting in
over half of the relations, and outperforming the
multi-task setting in all relations.

5.2 Empirical Recommendation

While our results above show that multi-label
learning is almost always the most effective way to
transfer sentence embeddings in multi-relational
semantic similarity tasks, in some situations sim-
ply training with one relation might yield better
performance (such as the general similarity rela-
tion in the Typed-Similarity dataset). This sug-
gests that the choice of multi-label learning or
single-task learning can be tuned as a hyperparam-
eter empirically for the optimal performance on a
task.

5.3 Other Considerations and Discussions

In the multi-label setting, we calculate the total
loss by summing the loss from each dimension.
We also explore weighting the loss from each di-

mension by factors of 2, 5 and 10, but doing so
hurts the performance for all dimensions.

In the multi-task setting, we attempt different
ordering of the dimensions when presenting them
to the model within a batch of examples, but the
difference in performance is not statistically sig-
nificant. Furthermore, the multi-task setting takes
about n times longer to train than the multi-label
setting, where n is number of dimensions of anno-
tations.

6 Conclusions

We introduced a multi-label transfer learning set-
ting designed specifically for semantic similarity
tasks with multiple relations annotations. By ex-
perimenting with a variety of relations in three
datasets, we showed that the multi-label setting
can outperform single-task and traditional multi-
task settings in many cases.

Future work includes exploring the perfor-
mance of this setting with other sentence en-
coders, as well as multi-label datasets outside of
the domain of semantic similarity. This may in-
clude NLP datasets annotated with author infor-
mation for multiple dimensions, or computer vi-
sion datasets with multiple annotations for scenes.
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Abstract

We develop and investigate several cross-
lingual alignment approaches for neural sen-
tence embedding models, such as the super-
vised inference classifier, InferSent, and se-
quential encoder-decoder models. We eval-
uate three alignment frameworks applied to
these models: joint modeling, representation
transfer learning, and sentence mapping, using
parallel text to guide the alignment. Our re-
sults support representation transfer as a scal-
able approach for modular cross-lingual align-
ment of neural sentence embeddings, where
we observe better performance compared to
joint models in intrinsic and extrinsic evalua-
tions, particularly with smaller sets of parallel
data.

1 Introduction

Probabilistic sentence representation models gen-
erally fall into two categories: bottom-up com-
positional models, where sentence embeddings
are composed from word embeddings via a lin-
ear function like averaging, and top-down compo-
sitional models that are trained with a sentence-
level objective, typically within a neural architec-
ture. Sequential data like sentences can be mod-
eled using recurrent, recursive, or convolutional
networks, which can implicitly learn intermediate
sentence representations suitable for each learn-
ing task. Depending on the training objective,
these intermediate representations sometimes en-
code enough semantic and syntactic features to
be suitable as general-purpose sentence embed-
dings. For examples, it was shown in Conneau
et al. (2017a) that a model trained to maximize in-
ference classification accuracy can yield generic
representations that perform well across a wide
set of extrinsic classification benchmarks. Other
training objectives, like denoising auto-encoders
or neural sequence to sequence models (Hill et al.,

2016), can also yield general-purpose representa-
tions with different characteristics. While bottom-
up models can achieve superior performance in
tasks that are independent of syntax, such as topic
categorization, neural models often yield repre-
sentations that encode syntactic and positional fea-
tures, which results in superior performance in
tasks that rely on sentence structure (Aldarmaki
and Diab, 2018).

General-purpose sentence embeddings can be
used as features in various classification tasks, or
to directly assess the similarity of a pair of sen-
tences using the cosine measure. It is often de-
sired to generalize word and sentence embeddings
across several languages to facilitate cross-lingual
transfer learning (Zhou et al., 2016) and mining of
parallel sentences (Guo et al., 2018). For word em-
beddings, cross-lingual learning can be achieved
in various ways (Upadhyay et al., 2016), such
as learning directly with a cross-lingual objective
(Shi et al., 2015) or post-hoc alignment of mono-
lingual word embeddings using dictionaries (Am-
mar et al., 2016), parallel corpora (Gouws et al.,
2015; Klementiev et al., 2012), or even with no
bilingual supervision (Conneau et al., 2017b; Al-
darmaki et al., 2018). For bottom-up composition
like vector averaging, word-level alignment is suf-
ficient to yield cross-lingual sentence embeddings.
For top-down sentence embeddings, the efforts in
cross-lingual learning are more limited. Typically,
a multi-faceted cross-lingual learning objective is
used to align the sentence models while training
them, as in Soyer et al. (2014). Cross-lingual sen-
tence embeddings can also be learned via a neural
machine translation framework trained jointly for
multiple languages (Schwenk and Douze, 2017).

While they indeed yield cross-lingual embed-
dings, the joint training models in existing liter-
ature pose some practical limitations: simultane-
ous training requires massive computational re-
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sources, particularly for sequential models like the
bi-directional LSTM networks typically used to
encode sentences. In addition, the joint frame-
work does not allow post-hoc or modular training,
where new languages can be added and aligned to
existing pre-trained encoders. More recently, Con-
neau et al. (2018) proposed an approach for cross-
lingual sentence embeddings by aligning encoders
of new languages to a pre-trained English encoder
using parallel corpora. Such approach promises
to be more suitable for modular training of gen-
eral sentence encoders, although so far it has only
been evaluated in natural language inference clas-
sification.

In this paper, we develop and evaluate three
alignment frameworks: joint modeling, represen-
tation transfer learning, and sentence mapping,
applied on two modern general-purpose sentence
embedding models: the inference-based encoder,
InferSent (Conneau et al., 2017a), and the sequen-
tial denoising auto-encoder, SDAE (Hill et al.,
2016). For most approaches, we rely on par-
allel sentences as sentence-level dictionaries for
cross-lingual supervision. We report the perfor-
mance on sentence translation retrieval and cross-
lingual document classification. Our results sup-
port representation transfer as a scalable approach
for modular cross-lingual alignment that works
well across different neural models and evaluation
benchmarks.

2 Related Work

Learning bilingual compositional representations
can be achieved by optimizing a bilingual objec-
tive on parallel corpora. In Pham et al. (2015), dis-
tributed representations for bilingual phrases and
sentences are learned using an extended version
of the paragraph vector model (Le and Mikolov,
2014) by forcing parallel sentences to share one
vector. In Soyer et al. (2014), cross-lingual com-
positional embeddings are learned by optimizing a
joint bilingual objective that aligns parallel source
and target representations by minimizing the Eu-
clidean distances between them, and a monolin-
gual objective that maximizes the similarity be-
tween similar phrases. The monolingual objec-
tive was implemented by maximizing the sim-
ilarity between random phrases and subphrases
within the same sentence. Cross-lingual represen-
tations can also be induced implicitly within a ma-
chine learning framework that is trained jointly for

multiple language pairs. In Schwenk and Douze
(2017), encoders and decoders for the given lan-
guages are trained jointly using a neural sequence
to sequence model (Sutskever et al., 2014) using
parallel corpora that are partially aligned; that is,
each language within a pair is also part of at least
one other parallel corpus. Neural machine trans-
lation can also be achieved with a single encoder
and decoder that handles several input languages
(Johnson et al., 2017), but the latter has not been
evaluated as a general-purpose sentence represen-
tation model. According to Hill et al. (2016),
the quality of the representations induced using a
machine translation objective is lower than other
neural models trained with different compositional
objectives, such as Denoising Auto-Encoders and
Skip-Thought (Kiros et al., 2015). Mono-lingual
evaluation of sentence representation models can
be found in Hill et al. (2016), Aldarmaki and Diab
(2018), and Conneau and Kiela (2018). In Aldar-
maki and Diab (2016), a modular training objec-
tive has been proposed for cross-lingual sentence
embedding. However, their application was lim-
ited to the specific matrix factorization model they
discussed. More recently, Conneau et al. (2018)
proposed a modular transfer learning objective and
evaluated it on neural sentence encoders using
cross-lingual natural language inference classifi-
cation. Our representation transfer framework is
very similar to their approach, although we use a
simpler loss function. In addition, we evaluate the
framework as a general-purpose sentence encoder
and compare it to other frameworks.

3 Approach

We selected two modern general-purpose sentence
embedding models, the Inference-based classifica-
tion model (InferSent) described in Conneau
et al. (2017a), and the Sequential Denoising Auto-
Encoder (SDAE) described in Hill et al. (2016).
Both are implemented using a bidirectional LSTM
network as an encoder followed by a classification
or decoding network. We describe three possible
cross-lingual alignment frameworks:

Joint cross-lingual modeling: We extend the
monolingual objective of each model to multiple
languages to be trained simultaneously via direct
cross-lingual interactions in the objective function.
This is in line with most existing cross-lingual ex-
tensions for top-down compositional models
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Representation transfer learning: We directly
optimize the sentence embeddings of new lan-
guages to match their translations in a parallel lan-
guage (i.e. English). A similar approach was in-
dependently developed in Conneau et al. (2018).

Sentence mapping: Following the modular
alignment framework for word embeddings
(Smith et al., 2017), we fit an orthogonal trans-
formation matrix on monolingual embeddings
using a parallel corpus as a dictionary. Sentence
mapping has been evaluated for word averaging
models in Aldarmaki and Diab (2019).

3.1 Architectures

Most neural sentence embedding models are based
on a sequential encoder—typically a bi-directional
Long Short-Term Memory (Schuster and Paliwal,
1997)—followed by either a sequential decoder or
a classifier. These models can be categorized ac-
cording to their training objective:

Classification Accuracy: Sentence encoders
can be trained by maximizing the accuracy in
an extrinsic evaluation task. For example,
InferSent (Conneau et al., 2017a) is trained on
the Stanford Natural Language Inference (SNLI)
dataset for inference classification (Bowman et al.,
2015sss). This type of model requires labeled
training data, which can make it challenging to ex-
pand across different languages.

Reconstruction: Using raw monolingual data,
sentence encoders can be trained by minimizing
the reconstruction loss, where a decoder is trained
simultaneously to reconstruct the input sentence
from the intermediate representation—e.g. Se-
quential Auto-Encoder (SAE) and Sequential De-
noising Auto-Encoder (SDAE) (Hill et al., 2016).
The latter introduces textual noise on the input
sentence to make the embeddings more robust.

Translation: In Neural Machine Translation
(NMT), a model is trained to maximizes the accu-
racy of generating a translation from the interme-
diate representation of the source sentence. Unlike
modern NMT systems that rely on attention mech-
anisms, this model is trained for the purpose of
sentence embedding, so only the intermediate rep-
resentations are used as input to the decoder. This
model requires parallel corpora for training.

The three objectives above are illustrated in Fig-
ures 1 and 2. We use the single-layer bidirectional

LSTM encoder architecture with max-pooling de-
scribed in Conneau et al. (2017a) for all encoders,
and an LSTM decoders for SDAE and NMT.

All birds fly

Word Embeddings

LSTM

Sentence Embedding

(a) Unrolled LSTM encoder

All birds fly

Encoder LSTM

Sentence Embedding

Penguins fly

Encoder LSTM

Sentence Embedding

Softmax Inference Classifier

{ Entailment — Contradiction — Neutral }

(b) InferSent architecture

Figure 1: Illustrations of neural sentence embedding archi-
tectures based on LSTM encoders. (a) shows an unrolled
LSTM encoder with word embeddings. (b) shows InferSent
architecture with a softmax classification network on top of
the encoder.

All birds fly

Encoder LSTM

Sentence Embedding

Decoder LSTM

All birds fly

(a) SAE objective

Alle Vögel fliegen

Encoder LSTM

Sentence Embedding

Decoder LSTM

All birds fly

(b) NMT objective

Figure 2: Illustrations of LSTM encoder-decoder archi-
tectures for sentence embeddings. (a) Sequential Auto-
Encoder objective, where the input and output are the same
sentence. (b) Neural Machine Translation objective, where
the output is a translation of the input sentence from a par-
allel corpus.
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3.2 Joint Cross-Lingual Modeling
We first discuss our joint cross-lingual neural
models based on the above architectures. Note
that joint modeling requires modifying the archi-
tecture and objective function of each model in
a way that includes simultaneous interactions of
cross-lingual sentence embeddings. This can be
achieved in various ways with any degree of com-
plexity, but we specifically aim to evaluate a direct
extension of each loss function without extraneous
objectives or constraints.

3.2.1 Joint Cross-Lingual Encoder-Decoder
The Sequential Denoising Auto-Encoder (SDAE)
is trained to reconstruct the original input sen-
tence from the intermediate sentence representa-
tion, where the input is corrupted with linguis-
tic noise, such as word substitutions and reorder-
ing (Hill et al., 2016). This allows the model to
robustly learn sentence representations from raw
monolingual data. The Neural Machine Transla-
tion model, as depicted in Figure 2, has an identi-
cal architecture, with the only difference being the
language of the input sentence. A cross-lingual ex-
tension of SDAE naturally leads to the NMT objec-
tive. We combine the SDAE and NMT objectives in
a joint architecture, where multiple encoders are
trained simultaneously with a single shared de-
coder. We alternate the input language (and the
encoder) in each training batch, and the interme-
diate sentence embeddings are used as input to
the shared decoder. Since the decoder is trained
to predict the target sentence from the interme-
diate sentence representation regardless of input
language identity, the encoders are expected to be
updated in a way that results in consistent cross-
lingual embeddings. Joint multi-lingual NMT has
been previously shown to yield cross-lingual rep-
resentations, as in Schwenk and Douze (2017).

3.3 Joint Cross-Lingual InferSent
Since InferSent is trained with an extrinsic
classification objective, bilingual or multilingual
optimization requires annotated data in each lan-
guage. At the time of development, the SNLI
dataset was only available in English1, so we
translated the training and evaluation datasets to
Spanish and German using Amazon Translate.
Note that in practice, machine translation might

1Other cross-lingual natural language inference corpora
are now publicly available (Conneau et al., 2018), but our
experiments were conducted before their release.

not be a viable option, especially if we try to ex-
tend the model to low-resource languages. Mod-
ern NMT systems require millions of parallel sen-
tences to achieve good translation performance.
For our purposes, the translated data allow us to
assess the performance in different settings.

Alle Vögel fliegen

German Encoder

Sentence Embedding

Penguins fly

English Encoder

Sentence Embedding

Softmax Inference Classifier

{ Entailment — Contradiction — Neutral }

Figure 3: Illustrations of a joint training step, where differ-
ent languages are used for the premise and hypothesis.

Similar to the joint SDAE/NMT model, we train
encoders for all languages simultaneously. Since
the input to the classifier consists of an ordered
pair of sentences, we randomly pick a language
for the premise and a language for the hypothesis
in each training batch and use their respective en-
coders. A single classifier is shared regardless of
the input languages. Similar to the monolingual
case, the model is trained to maximize the perfor-
mance in the inference classification task, which
is cross-lingual in this case. An illustration of a
training example is shown in Figure 3, where the
premise is in German and the hypothesis in En-
glish.

3.4 Representation Transfer Learning
In the representation transfer framework, we use a
monolingual pre-trained model to guide the train-
ing of additional encoders without the original su-
pervised training objective. Using a parallel cor-
pus that has source sentences aligned with English
translations, we first generate the representations
for the English sentences using a pre-trained SDAE
or InferSent model. Then, we use these repre-
sentations as a target to train an encoder for the
other language in a supervised manner. The pivot
encoder remains unchanged and only the new en-
coder is updated during training to ensure that in-
dependently trained encoders will still be aligned.
Several functions can be used to achieve this, such
as the L1 or L2 loss to minimize the distances be-
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All birds fly

English Encoder

Sentence Vector

Alle Vögel fliegen

German Encoder

Sentence Vector

Target Vector
–COPY–

L1 Loss

–UPDATE–

Pre-trained
–FIXED–

Figure 4: Representation transfer model, with pre-trained English encoder and L1 loss.

tween the source and target representations, or to
maximize the cosine of the angle between them.
Empirically, we observed no notable difference
between these alternatives.2 The transfer learning
approach is illustrated in Figure 4.

3.5 Sentence Mapping
We follow the approach used for word-level trans-
formation, where a dictionary is used to fit an or-
thogonal transformation matrix from the source to
the target vector space (Smith et al., 2017). To ex-
tend this to sentences, we use a parallel corpus as a
dictionary, and fit a transformation matrix between
their sentence embeddings. After training, we ap-
ply the learned transformation post-hoc on newly
generated sentence embeddings.

4 Evaluation

In a well-aligned cross-lingual vector space, sen-
tences should be clustered with their transla-
tions across various languages. As discussed in
Schwenk and Douze (2017) this can be measured
with sentence translation retrieval: the accuracy of
retrieving the correct translation for each source
sentence from the target side of a test parallel cor-
pus. This is done using nearest neighbor search
with the cosine as a similarity measure. While not
exactly an intrinsic evaluation metric, this scheme
is the closest measure of alignment quality at the
sentence level across all features in the vector
space.

We used bottom-up embeddings composed us-
ing weighted averaging with smooth inverse fre-
quency (Arora et al., 2017; Aldarmaki and Diab,
2018), which has been shown to work well as
monolingual sentence embeddings compared to

2We settled on using Adam optimization (Kingma and
Ba, 2014) with L1 loss.

other bottom-up approaches. We use skipgram
with subword information (Bojanowski et al.,
2017) , i.e. FastText, for the word embeddings,
which are also used as input to the neural mod-
els. We applied static dictionary alignment us-
ing the approach and dictionaries in Smith et al.
(2017), in addition to sentence mapping using
the parallel corpora. We trained the monolingual
FastText word embeddings and SDAE models
using the 1 Billion Word benchmark (Chelba et al.,
2014) for English, and WMT’12 News Crawl data
for Spanish and German (Callison-Burch et al.,
2012). We used WMT’12 Common Crawl data
for cross-lingual alignment, and WMT’12 test sets
for evaluations. We used the augmented SNLI
data described in (Dasgupta et al., 2018) and their
translations for training the mono-lingual and joint
InferSent models. For all datasets and lan-
guages, the only preprocessing performed was to-
kenization.

One of our evaluation objective is to assess
the minimal bilingual data requirements for each
framework, so we split the training parallel cor-
pora into subsets of increasing size from 1,000 to
1 million sentences, where we double the size in
each step. We report sentence translation retrieval
accuracies in all language directions, using en for
English, es for Spanish, and de for German 3.

4.1 Results
The results of the various SDAE models com-
pared with the baselines are shown in Figure
5. With less than 100K parallel sentences, the
joint SDAE/NMTmodel yielded poor performance
compared to all models, but with 100K and more

3This evaluation scheme was recently introduced in Al-
darmaki and Diab (2019) with data splits that are now avail-
able for download. Note that we used slightly older datasets
in our experiments.
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Figure 5: Nearest neighbor translation accuracy as a func-
tion of (log) parallel corpus size. (sent) to sentence-level
mapping, and (dict) refers to the baseline (using a static
dictionary for mapping). The legend shows the average ac-
curacies of each model using 1M parallel sentences.

data, the model quickly exceeded the performance
of all others by a large margin. Transfer learning
achieved the second best performance, although
it lagged behind the joint model with large par-
allel sets. With small amounts of parallel text, all
models outperformed the joint SDAE/NMT, partic-
ularly the word based FastText models. Sen-
tence mapping performed on average better than
the static dictionary baseline, but FastText sen-
tence mapping was generally better.

Figure 6 shows the results of the InferSent
alignment models. Note that the joint InferSent
model was trained with supervision using the
translated SNLI data instead of the variable-size
parallel corpora, so the performance is constant
with respect to the number of parallel sentences.
The joint model did not learn to align the cross-
lingual sentences. Possible explanations of this
failure are discussed in section 4.3.

Overall, the transfer learning model worked
well for InferSent resulting in high transla-

1K 10K 100K 1M

.2

.5

.8

1

N
N

ac
cu

ra
cy

es→ en

1K 10K 100K 1M

.2

.5

.8

1
en→ es

1K 10K 100K 1M

.2

.5

.8

1

N
N

ac
cu

ra
cy

de→ en

1K 10K 100K 1M

.2

.5

.8

1 en→ de

1K 10K 100K 1M

.2

.5

.8

1

# parallel sentences

N
N

ac
cu

ra
cy

es→ de

1K 10K 100K 1M

.2

.5

.8

1

# parallel sentences

de→ es

InferSent (transfer) 85.99%
InferSent (sent) 76.76%
InferSent (joint) 18.88%
FastText (sent) 69.18%
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Figure 6: Nearest neighbor translation accuracy as a func-
tion of (log) parallel corpus size. (sent) to sentence-level
mapping, and (dict) refers to the baseline (using a static
dictionary for mapping). The legend shows the average ac-
curacies of each model using 1M parallel sentences.

tion retrieval accuracies even with relatively small
amounts of parallel text (∼ 5K sentences). Sen-
tence mapping also performed better than the
word-based baselines with additional parallel data
(> 20K).

4.2 Overall Evaluation
In this section, we compare the overall perfor-
mance of different types of models on sentence
translation retrieval. We plotted the average cross-
lingual accuracy (averaged over all language di-
rections) by the best performing variant of each
model in Figure 7. With small amounts of par-
allel text, around 5K sentences, the best perfor-
mance was achieved using InferSent trans-
fer model. The model continued to yield the
highest performance until it was exceeded by
the joint SDAE/NMT model at 500K sentences.
The representation transfer models for SDAE ex-
ceeded the FastText model at around 20K sen-
tences, and achieved comparable performance to
InferSent sentence mapping.
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Language Monolingual Nearest Neighbors
Query: Tons of people are gathered around the statue

Spanish
There are several people sitting around a table.
There are several people outside of a building.
There are multiple people present.

English
The people are taking photos of the statue.
A group of people looking at a statue.
People are gathered by the water.

Query: A vehicle is crossing a river

Spanish
A sedan is stuck in the middle of a river.
People are crossing a river.
A taxi cab is driving down a path of snow.

English

A person is near a river.
People are crossing a river.
A Land Rover is splashing water as it crosses a
river.

Table 1: Mono-lingual nearest neighbors (or their transla-
tions) of a sample of query sentences from SNLI test set
using joint InferSent encoders. Phrases similar to the
query sentences are shown in bold.

4.3 Analysis of Joint InferSent Performance

The joint InferSent model was trained to max-
imize the cross-lingual classification accuracy on
cross-lingual inference data. The cross-lingual in-
ference classification performance was compara-
ble to the monolingual case for each language.
The monolingual accuracies were around 83%,
79%, and 79% for English, German, and Span-
ish, respectively. The cross-lingual accuracy was
around 79%. Given this relatively high perfor-
mance in NLI classification and the poor perfor-
mance in cross-lingual translation retrieval, we
surmise that the 3-way classification objective is
not demanding enough to learn general-purpose
semantic representations. In addition, high per-

Language Cross-lingual Nearest Neighbors
Query: Tons of people are gathered around the statue

Spanish

Food and wine are on the table that has many
people surrounding it.
Some people enjoying their brunch together in
the outdoor seating area of a restaurant...
The group of people are game developers creat-
ing a new video game in their office.

English

The group of people are flying in the air on their
unicorns .
A group of people are standing around with
smiles on their faces...
A group of people dressed as clowns stroll into
the Bigtop Circus holding signs.

Query: A vehicle is crossing a river

Spanish

People and a baby are crossing the street at a
crosswalk to get home.
The person in the picture is riding a bike slowing
up hill , pumping the pedals as hard as they can.
The man , wearing scuba gear , jumps off the side
of the boat into the ocean below.

English

A person in a coat with a briefcase walks down
a street next to the bus lane.
A man waterskiing in a river with a large wall in
the background.
A person waterskiing in a river with a wall in
the background.

Table 2: Cross-lingual nearest neighbors (or their transla-
tions) of a sample of query sentences from SNLI test set
using joint InferSent encoders. Phrases similar to the
query sentences are shown in bold.

formance in a specific extrinsic evaluation task is
not necessarily an indication of general embed-
ding quality.

Tables 1 and 2 show examples of monolingual
and cross-lingual nearest neighbors (or their En-
glish translations) from the hypotheses in SNLI
test sets. The cross-lingual nearest neighbors did
share several semantic aspects with the query sen-
tence; subjects or verbs or combinations of these
were observed in nearest neighbors. However, the
exact translations were not the nearest neighbors
in most cases, and the nearest neighbors often in-
cluded several extraneous pieces of content not
present in the query sentence. The mono-lingual
nearest neighbors, on the other hand, were more
semantically similar to each other, not only in the
semantic features that are present, but also in their
exclusions of dissimilar details.

We surmise that only a subset of semantic fea-
tures were learned by the InferSent objective
given the specific characteristics of the SNLI train-
ing sets. In other words, the model was not pushed
to preserve the full semantic content since only a
small subset of features were useful for entailment
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relationships. The higher similarity among mono-
lingual nearest neighbors is likely an artifact of the
underlying word embeddings passing through the
same encoder network.

4.4 Extrinsic Evaluation

Relying on a single measure is never sufficient to
probe all characteristics of a vector space. Ex-
trinsic evaluation can be another useful tool to
measure the effectiveness of various cross-lingual
models, although extrinsic tasks typically measure
specific and narrow aspects of semantics. Never-
theless, we can still gain some insights about cer-
tain characteristics of these models and their ap-
plicability. One of the most widely used tasks for
cross-lingual evaluation is the Cross-Lingual Doc-
ument Classification benchmark (CLDC), where a
model is trained in one language and tested on an-
other (Schwenk and Li, 2018; Klementiev et al.,
2012).

We report the average classification accuracies
in CLDC across all language directions (a total of
six directions) using the datasets in Schwenk and
Li (2018); the multi-layer perceptron was used as
a classifier trained for each source language, then
tested in the remaining two.

The highest accuracy was achieved using
FastText vectors, followed by InferSent
transfer and sentence mapping models. With
large enough parallel corpora, the performance of
SDAE/NMT exceeded the transfer model, but with
smaller data, SDAE transfer model achieved con-
sistently higher performance.

These results are consistent with the trend of
these models in mono-lingual topic categorization
(Aldarmaki and Diab, 2018), where word aver-
aging achieved consistently higher performance
than all neural models. This indicates that cross-
lingual models share the same semantic charac-
teristics as their underlying mono-lingual counter-
parts. We should underscore that CLDC is a rather
coarse categorization task where documents are
classified into four categories. Note also that the
FastText model achieved relatively high per-
formance even when it was aligned with only 1K
parallel sentences, a condition in which sentence
translation retrieval accuracy was less that 40%.
This poor correlation with sentence translation re-
trieval accuracies indicates that neither evaluation
framework is reliable on its own. Our intuition is
that sentence translation retrieval is a more com-
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Figure 8: Average cross-lingual document classification
accuracy as a function of (log) parallel corpus size. The
legend shows the average accuracies of each model using
1M parallel sentences.

prehensive measure since all features in the vec-
tor space weigh equally in calculating the cosine
similarity; on the other hand, a supervised classi-
fier weighs features according to their correlations
with the target classes.

5 Conclusions

We explored different approaches for cross-lingual
alignment of top-down sentence embedding mod-
els: joint modeling, representation transfer, and
sentence mapping. With sufficient amounts of par-
allel text, joint modeling yielded superior perfor-
mance in the joint SDAE and NMT model, while
joint InferSent failed to yield good alignments.
Our results underscore the difficulty of joint mod-
eling itself in addition to its relatively high data
and memory requirements. With smaller amounts
of parallel text, representation transfer worked
reasonably well across all models, whereas sen-
tence mapping was generally worse. Moreover,
the transfer and sentence mapping frameworks en-
able modular training where additional languages
can be added without retraining existing models
and without labeled training data (as in InferSent),
which allows scaling neural models to more lan-
guages with less resources. In extrinsic evalua-
tion using cross-lingual document classification,
transfer models achieved consistently better per-
formance than joint models. Between the two sen-
tence embedding models we evaluated, InferSent
yielded better performance than SDAE and NMT,
except in the joint framework.
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In practice, joint and transfer learning can be
combined in various ways according to data avail-
ability and modeling choices. A multi-task frame-
work can be used to optimize both objectives at
once. Given the lower data cost of representation
transfer models, a joint model can be trained first
for a set of resource-rich languages, followed by
transfer learning for low-resource languages.
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Abstract

There is a growing awareness of the need to
handle rare and unseen words in word rep-
resentation modelling. In this paper, we fo-
cus on few-shot learning of emerging concepts
that fully exploits only a few available con-
texts. We introduce a substitute-based context
representation technique that can be applied
on an existing word embedding space. Pre-
vious context-based approaches to modelling
unseen words only consider bag-of-word first-
order contexts, whereas our method aggre-
gates contexts as second-order substitutes that
are produced by a sequence-aware sentence
completion model. We experimented with
three tasks that aim to test the modelling of
emerging concepts. We found that these tasks
show different emphasis on first and second or-
der contexts, and our substitute-based method
achieved superior performance on naturally-
occurring contexts from corpora.

1 Introduction

As language vocabulary follows the zipfian dis-
tribution, we expect to encounter a large number
of rare and unseen words no matter how large the
training corpus is. The effective handling of such
words is thus crucial for Natural Language Pro-
cessing (NLP).

Attempts to learn rare and unseen word repre-
sentations can be categorized into the following
three approaches: (1) constructing target word em-
beddings from the subword components (Pinter
et al., 2017; Bojanowski et al., 2017), (2). lever-
aging definitions or relational structures from ex-
ternal resources such as Wordnet (Bahdanau et al.,
2017; Pilehvar and Collier, 2017), and (3) mod-
elling the target word from few available contexts.
Our paper falls into the last approach.

We demonstrate improvements in performance
by employing an alternative context representa-
tion, second-order lexical substitutes, as opposed

to the traditional bag of word context representa-
tions. In line with previous research in this area,
we evaluate our methodology on three tasks that
measure the quality of the induced unseen word
representation from contexts (Lazaridou et al.,
2017; Herbelot and Baroni, 2017; Khodak et al.,
2018). Our results reveal that the three tasks in-
volve different types of contexts which put dif-
ferent emphasis on first or second order con-
texts. Our second-order substitute-based method
achieves the best performance for modelling rare
words in natural contexts from corpora. In the
tasks in which both first order and second order
contexts are important, the ensemble of these two
types of contexts yields superior performance. 1

2 Related work

2.1 First-order context

The most naive way of inducing new word repre-
sentation from contexts is to simply take the av-
erage of context word embeddings that co-occur
with the target word in a sentence. With stop
words removed, this simple method has proven to
be a strong baseline as shown in Lazaridou et al.
(2017) and Herbelot and Baroni (2017). A poten-
tial improvement from the simple additive base-
line model is that we weigh words with ISF (in-
verse sentence frequency). We follow the defini-
tion of ISF in Samardzhiev et al. (2018) and im-
plement it as a baseline model in our study. More
recently, Khodak et al. (2018) learn a transforma-
tion matrix to reconstruct pre-trained word embed-
dings, which essentially learns to highlight infor-
mative dimensions. Along a different line, Herbe-
lot and Baroni (2017) take a high-risk learning rate
and processing strategy for new words but would
require the contexts that come at the beginning of
the training to be maximally informative. Recent

1The experiments can be reproduced at https://
github.com/qianchu/rare_we.git.
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work implements a memory-augmented word em-
bedding model (Sun et al., 2018) however our sys-
tem shows comparable or superior performance on
the two intrinsic tasks that they use (Table 1 below
and Table 1 of their paper).

2.2 Second-order substitute-based context

An alternative to a bag-of-words representation is
a second-order substitute vector generated by a
language model for the target word’s slot. For
example, we can represent the context ‘It is a

move.’ as a substitute vector [big 0.35, good
0.28, bold 0.05, ...] with the numbers indicat-
ing fitness weights of each substitute in the con-
text (Melamud et al., 2015; Yatbaz et al., 2012;
Melamud et al., 2015). Melamud et al. (2016)
later on introduced context2vec which trains both
context and word embeddings in a similar setup
to CBOW (Mikolov et al., 2013) except that the
context is represented with a Bidirectional LSTM
rather than as a bag of words. In this way, con-
text2vec captures sequence information in the con-
text, and is able to produce high-quality substitutes
for a sentence-completion task, while overcoming
the sparseness issues in the previous substitute-
based approaches. Kobayashi et al. (2017) fine-
tune this context2vec representation to compute
entity representations in a discourse for the lan-
guage modelling task.

A related application of second-order substi-
tutes is word sense induction. Baskaya et al.
(2013) represent contexts as second-order substi-
tutes and apply co-occurrence modelling on top
of the instance id - substitute pairs. Alagić et al.
(2018) propose a similar method to our paper
and showed that second-order lexical substitutes
and first-order contexts complement each other in
word sense induction. Our paper provides alter-
native evidence for the use of lexical substitutes in
the setting of rare word modelling with analysis on
the effect from different contexts.

.

3 Proposed Method

In this paper, we make a simple modification from
the previous work by representing the context of
an unseen word as the weighted sum of the lexi-
cal substitute vectors in a continuous embedding
space such as the word2vec space. This can be
seen as a post-processing technique applied on
an existing embedding space. The substitutes

and their fitness scores are generated from con-
text2vec. Compared with the context2vec repre-
sentation itself, our method isolates the effect of
the second-order substitutes and can be applied on
top of an existing pre-trained embedding space.
For each context, we generate the top N most
likely substitutes at the slot of the unseen word by
computing the nearest neighbours from the con-
text2vec context representation. 2 We then com-
pute the centroid of these substitutes from our base
word embedding space, weighted by each substi-
tute’s fitness, cosine similarity, to the context rep-
resentation. Let ContextVec 3 be the context
representation produced by context2vec, S′ be the
set of the top 20 substitute target word vectors pro-
duced by context2vec, S be the same 20 substitutes
that we look up in our base word embedding space,
and f(S′

i) be the normalized fitness score of S′
i as

defined in equation 1. The substitute-based con-
text (SC), and thus the unseen word representa-
tion for this context, is defined in equation 2. If
the unseen word occurs multiple times, we average
the unseen word representations across the multi-
ple contexts.

f(S′
i) =

cosine(ContextVec,S′
i)∑20

j=1 cosine(ContextVec,S′
j)

(1)

SC =

20∑

i=1

f(S′
i) ∗ Si (2)

To directly compare with the previous studies,
we take the word2vec embedding model and the
1.6B Wikipedia training corpus provided by Her-
belot and Baroni (2017) for our substitute-based
method and for training Context2vec. Model pa-
rameters for training Context2vec, as listed in Ap-
pendix A, are fine-tuned on the training sets of the
intrinsic tasks as there are no development sets.

4 The definitional Nonce dataset (Nonce)

Nonce is introduced in Herbelot and Baroni (2017)
as a task that challenges the models to reconstruct
target word embeddings from single wikipedia
definitions. The quality of the representations is
evaluated by measuring how close they are to the
original word embeddings trained from the whole

2From experiments on the training sets of the tasks (No-
tice that there are no development sets), we found that N=20
is optimal.

3Symbols in bold indicate vectors
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Nonce Chimera
Methods MRR Med. Rank 2 Sent. 4 Sent. 6 Sent.
word2vec (Lazaridou et al., 2017) 0.00007 111012 0.1459 0.2457 0.2498
Additive (Lazaridou et al., 2017) 0.03686 861 0.3376 0.3624 0.4080
Additive ISF 0.04493 531 0.3964 0.4016 0.4107
nonce2vec (Herbelot and Baroni, 2017) 0.04907 623 0.3320 0.3668 0.3890
a la carte (Khodak et al., 2018) 0.07058 166 0.3634 0.3844 0.3941
mem2vec (Sun et al., 2018) 0.05416 518 0.3301 0.3717 0.3897
context2vec(Melamud et al., 2016) 0.04577 536 0.3574 0.3376 0.3692
substitutes 0.05152 1442 0.3946 0.3662 0.4424
substitutes + additive ISF 0.06074 577 0.4167 0.3879 0.4469

Table 1: Comparison with baselines and the previously-reported state-of-the-art results on the Chimera and Nonce
datasets. The Chimera dataset is evaluated with Spearman Rank coefficients. The top half of the table contains
first-order context methods and the bottom half has methods using second-order context or ensemble methods
using first and second order.

Wikipedia corpora. Following Herbelot and Ba-
roni (2017), we report in the Nonce columns of Ta-
ble 1 the mean reciprocal rank (MRR) and median
rank (Med. Rank) of the gold-vector (trained from
the whole Wikipedia) in the ranked list of nearest
neighbours from the induced representation in the
300 test cases.

We see strong performance from first-order
context representation especially the a la carte
method. Manual observations show that defini-
tions are designed to be maximally informative
with many synonyms, hypernyms or words seman-
tically related to the target word in the context,
and the first-order context models can easily ex-
ploit this information. Also, the sequential con-
text around the target word in a definition may not
reflect the context in which a target word will be
typically used in a corpus. The good performance
of first-order context models is therefore to be ex-
pected. Furthermore, the Nonce task tests how
well the model reconstructs the original embed-
ding but does not probe into the semantic prop-
erties or relations captured in the induced word
representations. A la carte is thus especially suit-
able for this task as it has been explicitly trained
to match the original embedding. However, we
demonstrate in the following experiments that the
superior performance from a la carte may not al-
ways be transferred to other tasks.

5 The Chimera dataset (Chimera)

In the Chimera dataset, Lazaridou et al. (2017) in-
troduce unseen novel concepts (chimeras), each of
which is formed by combining two related nouns

Additive ISF substitutes
drowning civet
drown tapir
drowns langur
shoos crocodile
undresses opossum

Table 2: Nearest neighbours produced by additive ISF
and substitutes approaches for the Chimera concept
elephant bison in the context ‘but his pleasure soon
turns to distress when he sees that a baby is stuck in
the mud and drowning .’ (from the Chimeras dataset)

(For example, buffalo and elephant). Each novel
concept is accompanied by 2, 4 or 6 natural con-
texts that originally belong to the related nouns.
The model needs to induce representation for these
novel concepts from the contexts. The quality of
the representations is evaluated by similarity judg-
ment with probe words. Following Herbelot and
Baroni (2017) and Lazaridou et al. (2017), we re-
port in the Chimera columns of Table 1 the average
Spearman Rank coefficients against human anno-
tations for 110 test cases in each sentence condi-
tion .

We observe that the additive ISF model turns
out to be the strongest of the first-order context
models, outperforming all the other previously-
reported results. We see immediate improvement
when we represent the context as substitutes in
the 6 sentence condition. We see further improve-
ment when combining both additive ISF (first or-
der) and substitutes (second order contexts), which
yields the best performance in 2 sentence and 6
sentence conditions. The positive effect of the
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Figure 1: Spearman Rank coefficients averaged across 100 trials on CRW in various context conditions

ensemble method from combining first-order and
second-order contexts shows that the two differ-
ent contexts capture complementary information
in this task. This is especially due to the fact that
the contexts were controlled for informativeness
so as to have different degrees of overlap with
feature norms. Therefore at least some, but not
all, contexts will have a high bag-of-word overlap
with features that are semantically related to the
concepts (Lazaridou et al., 2017). These contexts
will easily benefit from first-order contexts alone.
However, for the other contexts where there is few
or even no overlap with feature norms in the con-
text words, it is the contextual sequence, and thus
second-order context, that will give the maximum
information about the target word. We show such
an example with the nearest neighbours of the rep-
resentations induced by our substitutes model and
additive ISF in Table 2. We can see that while
the additive ISF representation is easily affected
by unrelated words in the sentence, the substitutes
approach clearly has at least identified that the tar-
get word is likely to be a kind of animal.

6 The Contextual Rare Words dataset
(CRW)

The Contextual Rare Words dataset (CRW) was
introduced by Khodak et al. (2018). It consists
of a subset of 562 word pairs from the original
Rare Word (RW) Dataset (Luong et al., 2013).
For each pair, the second word is the rare word
and is accompanied by 255 contexts. We follow
the experiment setup in Khodak et al. (2018) and
use their pre-trained vectors on the subcorpus that
does not contain any of the rare words from the
dataset. This subcorpus is also used to train the
context2vec model that generates substitutes. As
in Khodak et al. (2018), we randomly choose 2,
4, 6..128 number of contexts as separate condi-
tions for 100 trials, and use these contexts to pre-
dict the rare word representations. Cosine similar-
ity is computed between the rare word representa-
tion from the given rare word contexts in the trial
(2,4..128) and the embedding of the other word in
the pair from the pre-trained vectors. The cosine-
similarity of each pair is compared against simi-
larity judgments from human annotations. The av-
erage Spearman Rank coefficients against human
annotations across the trials are reported in Figure
1. Standard deviations are reported in Appendix
B.
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We see dramatic improvement from the substi-
tutes method over all the other methods includ-
ing the previous state-of-the-art a la carte in this
datasets which come from corpora-based natural
contexts of rare words. The result here suggests
that, in natural contexts, the sequence information
rather than bag of words plays a more important
role in predicting a target word’s meaning.

We also notice that applying second order in-
formation on word2vec space consistently outper-
forms Context2vec alone which generates the sec-
ond order substitutes. We suspect that this is be-
cause the context representation induced by con-
text2vec is more syntactically-oriented whereas
the tasks in our study mainly test semantic re-
lations. We confirm this assumption by follow-
ing Herbelot and Baroni (2017) to test the target
word embeddings produced by context2vec on the
MEN dataset (Bruni et al., 2014). We find that
context2vec (Spearman ρ = 0.65) correlates less
with human’s semantic relatedness judgment than
word2vec (Spearman ρ = 0.75) on this dataset.
Isolating the second order information from Con-
text2vec and applying it on the word2vec space
as an external constraint effectively preserves the
semantic relations present in word2vec and at the
same time provides a paradigmatic view which
finds a both syntactically and semantically appro-
priate position for the rare word.

7 Conclusion

To conclude, our paper teases apart the effect
of second-order context by proposing a simple
second-order substitute-based method that can
post-process and improve over an existing embed-
ding space. Our substitute-based method achieves
the state-of-the-art performance when modelling
emerging concepts in natural contexts from cor-
pora. This is not surprising as the substitutes con-
tain rich linguistic constraints from their surround-
ing contextual sequences to inform the word rep-
resentation. We plan to investigate whether the
second order information is also the key element
in the success of the recently-proposed language
model embeddings (Peters et al., 2018; Devlin
et al., 2018), for example, by testing whether the
performance of these contextualized embeddings
correlate more with first-order context representa-
tion or the second-order substitute context across
the different tasks in this study. However, we need
further research to find ways to bring type-level

and token-level representations of these contextu-
alized embeddings into the same space for these
tasks.

Also, as we found that definitions seem to ex-
hibit different properties from natural contexts in
corpora, it may be advisable to model definitions
and corpora contexts differently. An aspect that
we did not cover in this paper is the morpholog-
ical information from target words. As contexts,
definitions and subword information can provide
complementary information (Schick and Schütze,
2019), in future work, we plan to leverage sub-
words, contexts and definitions together in mod-
elling rare or unseen words.
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batchsize: 800;
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Abstract

Recent studies have shown that pre-trained
contextual word embeddings, which assign
the same word different vectors in different
contexts, improve performance in many tasks.
But while contextual embeddings can also be
trained at the character level, the effective-
ness of such embeddings has not been stud-
ied. We derive character-level contextual em-
beddings from Flair (Akbik et al., 2018), and
apply them to a time normalization task, yield-
ing major performance improvements over the
previous state-of-the-art: 51% error reduction
in news and 33% in clinical notes. We ana-
lyze the sources of these improvements, and
find that pre-trained contextual character em-
beddings are more robust to term variations,
infrequent terms, and cross-domain changes.
We also quantify the size of context that pre-
trained contextual character embeddings take
advantage of, and show that such embeddings
capture features like part-of-speech and capi-
talization.

1 Introduction
Pre-trained language models (LMs) such as ELMo
(Peters et al., 2018), ULMFiT (Howard and Ruder,
2018), OpenAI GPT (Radford et al., 2018), Flair
(Akbik et al., 2018) and Bert (Devlin et al., 2018)
have shown great improvements in NLP tasks
ranging from sentiment analysis to named entity
recognition to question answering. These models
are trained on huge collections of unlabeled data
and produce contextualized word embeddings, i.e.,
each word receives a different vector representa-
tion in each context, rather than a single common
vector representation regardless of context as in
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014).

Research is ongoing to study these models and
determine where their benefits are coming from

(Peters et al., 2018; Radford et al., 2018; Khandel-
wal et al., 2018; Qi et al., 2018; Zhang and Bow-
man, 2018). The analyses have focused on word-
level models, yet character-level models have been
shown to outperform word-level models in some
NLP tasks, such as text classification (Zhang et al.,
2015), named entity recognition (Kuru et al., 2016),
and time normalization (Laparra et al., 2018a).
Thus, there is a need to study pre-trained contex-
tualized character embeddings, to see if they also
yield improvements, and if so, to analyze where
those benefits are coming from.

All of the pre-trained word-level contextual em-
bedding models include some character or sub-
word components in their architecture. For ex-
ample, Flair is a forward-backward LM trained
over characters using recurrent neural networks
(RNNs), that generates pre-trained contextual word
embeddings by concatenating the forward LM’s
hidden state for the word’s last character and the
backward LM’s hidden state for the word’s first
character. Flair achieves state-of-the-art or compet-
itive results on part-of-speech tagging and named
entity tagging (Akbik et al., 2018). Though they
do not pre-train a LM, Bohnet et al. (2018) simi-
larly apply a bidirectional long short term memory
network (LSTM) layer on all characters of a sen-
tence and generate contextual word embeddings
by concatenating the forward and backward LSTM
hidden states of the first and last character in each
word. Together with other techniques, they achieve
state-of-the-art performance on part-of-speech and
morphological tagging. However, both Akbik et al.
(2018) and Bohnet et al. (2018) discard all other
contextual character embeddings, and no analyses
of the models are performed at the character-level.

In the current paper, we derive pre-trained con-
textual character embeddings from Flair’s forward-
backward LM trained on a 1-billion word corpus of
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English (Chelba et al., 2014), and observe if these
embeddings yield the same large improvements for
character-level tasks as yielded by pre-trained con-
textual word embeddings for word-level tasks. We
aim to analyze where improvements come from
(e.g., term variations, low frequency words) and
what they depend on (e.g., embedding size, context
size). We focus on the task of parsing time normal-
izations (Laparra et al., 2018b) , where large gains
of character-level models over word-level models
have been observed (Laparra et al., 2018a). This
task involves finding and composing pieces of a
time expression to infer time intervals, so for exam-
ple, the expression 3 days ago could be normalized
to the interval [2019-03-01, 2019-03-02).

We first take a state-of-the-art neural network for
parsing time normalizations (Laparra et al., 2018a)
and replace its randomly initialized character em-
beddings with pre-trained contextual character em-
beddings. After showing that this yields major per-
formance improvements, we analyze the improve-
ments to understand why pre-trained contextual
character embeddings are so useful. Our contribu-
tions are:
• We derive pre-trained contextual character

embeddings from Flair (Akbik et al., 2018),
apply them to a state-of-the art time normal-
izer (Laparra et al., 2018a), and obtain major
performance improvements over the previous
state-of-the-art: 51% error reduction in news
and 33% error reduction in clinical notes.
• We demonstrate that pre-trained contextual

character embeddings are more robust to
term variations, infrequent terms, and cross-
domain changes.
• We quantify the amount of context leveraged

by pre-trained contextual character embed-
dings.
• We show that pre-trained contextual character

embeddings remove the need for features like
part-of-speech and capitalization.

2 Framework

The parsing time normalizations task is based
on the Semantically Compositional Annotation of
Time Expressions (SCATE) schema (Bethard and
Parker, 2016), in which times are annotated as
compositional time entities. Laparra et al. (2018a)
decomposes the Parsing Time Normalizations task
into two subtasks: a) time entity identification us-
ing a character-level sequence tagger which detects
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Figure 1: Architecture of Laparra et al. (2018a)’s time
identification system. The input is the 4th of May (trun-
cated for space). 4th is a DAY-OF-MONTH, with an im-
plicit LAST over the same span. At the feature layer, 4
is a digit (Nd), t and h are lowercase letters (Ll), and
4th has the cardinal number (CD) part-of-speech tag.

the spans of characters that belong to each time ex-
pression and labels them with their corresponding
time entity; and b) time entity composition using
a simple set of rules that links relevant entities to-
gether while respecting the entity type constraints
imposed by the SCATE schema. These two tasks
are run sequentially using the predicted output of
the sequence tagger as input to the rule-based time
entity composition system. In this paper, We focus
on the character-level time entity identifier that is
the foundation of Laparra et al. (2018a)’s model.

The sequence tagger is a multi-output RNN with
three different input features, shown in Figure 1.
Features are mapped through an embedding layer,
then fed into stacked bidirectional Gated Recur-
rent Units (bi-GRUs), and followed by a softmax
layer. There are three types of outputs per Laparra
et al. (2018a)’s encoding of the SCATE schema, so
there is a separate stack of bi-GRUs and a softmax
for each output type. We keep the original neu-
ral architecture and parameter settings in Laparra
et al. (2018a), and experiment with the following
embedding layers:
Rand(128): the original setting of Laparra et al.

(2018a), where 128-dimensional character em-
beddings are randomly initialized.

Rand(4096): 4096-dimensional character embed-
dings are randomly initialized, matching the di-
mensionality of the Flair forward-backward LM
hidden states, i.e., matching the dimensionality
of Cont(4096).

Cont(4096): 4096-dimensional pre-trained con-
textual character embeddings are derived by run-
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Model Domain Ident. Parsing Interv.
Rand(128)-ori News 61.5 51.2 76.4
Rand(128) News 59.4 50.5 64.6
Rand(4096) News 64.8 54.1 68.2
Cont(4096) News 80.3 66.8 81.5
Rand(128)-ori Clinical 84.7 57.9 72.1
Rand(128) Clinical 92.8 65.3 82.1
Rand(4096) Clinical 93.2 65.3 83.8
Cont(4096) Clinical 95.2 67.3 85.8

Table 1: Results on Identification (Ident.), Parsing
and Interval extraction (Interv.) of time expressions
for News and Clinical domain. Rand(128)-ori refers
to the original implementation, and Rand(128) and
Cont(4096) refer to our re-implementation1.

ning Flair forward-backward character-level LM
Flair’s forward and backward character-level lan-
guage models over the text, and concatenating
the hidden states from forward and backward
character-level LMs for each character .

We evaluate in the clinical and news domains, the
former being more than 9 times larger and the latter
having a more diverse set of labels. Three differ-
ent evaluation metrics are used for parsing time
normalization tasks: identification of time entities,
which evaluates the predicted span (offsets) and
the SCATE type for each entity; parsing of time
entities, which evaluates the span, the SCATE type,
and properties for each time entity; interval extrac-
tion, which interprets parsed annotations as inter-
vals along the timeline and measures the fraction of
the correctly parsed intervals. The SemeEval task
description paper (Laparra et al., 2018b) has more
details on dataset statistics and evaluation metrics.

3 Results

Table 1 shows that the model using pre-trained
contextual character embeddings, Cont(4096), out-
performs the model of Laparra et al. (2018a) on all
three metrics: identification of time entities, pars-
ing, and interval extraction. For identification, our
primary focus as we are only modifying the identifi-
cation portion of Laparra et al. (2018a), Cont(4096)
reduces error by 51% (59.4 to 80.3 F1) on news,
and by 33% (92.8 to 95.2 F1) on clinical notes.
For the following experiments, we only use the
identification metric to evaluate the performance.

1We upgraded Keras from 1.2 to 2.1 and fixed a code bug
that allowed predictions to be made on padding tokens.

Domain Dev Test
Rand(128) News 76.5 59.4
Rand(4096) News 82.7 64.8
Cont(4096) News 87.4 80.3
Rand(128) Clinical 92.9 92.8
Rand(4096) Clinical 92.6 93.2
Cont(4096) Clinical 94.7 95.2

Table 2: Performance (F1) of time entity identification.

News Clinical
Dev Test Dev Test

Variation
+var +8.4 +15.0 +1.2 +1.3
-var +1.6 +8.7 +1.2 +1.4

Frequency
≤10 +8.1 +17.6 +2.0 +4.2
>10 +2.4 +5.0 +1.1 +1.1

Table 3: Effect of term variations and frequency: im-
provement in F1 of Cont(4096) over Rand(4096).

4 Where the improvements come from

4.1 Larger character embeddings

Table 2 compares different embedding sizes. Mov-
ing from random 128-dimensional to random 4096-
dimensional embeddings improves the model:
Rand(4096) statistically outperforms2 Rand(128)
on news dev (p = 0.0001), news test (p = 0.0291),
and clinical test (p = 0.0301), though it is not sta-
tistically different on clinical dev (p = 0.2524).
Pre-trained contextual embeddings provide addi-
tional benefits: Cont(4096) significantly outper-
forms Rand(4096) on all datasets (p < 0.001 in
all cases). We conclude that pre-trained contex-
tual character embeddings provide more than just
greater model capacity.

4.2 Robustness to variants and frequency

Table 3 shows how pre-trained contextual character
embeddings improve performance on both term
variations and low frequency words.

We define term variations as time entities that
appear in the training data in the following pat-
terns: both upper-case and lower-case, e.g., DAY,
Day, and day; abbreviation with and without punc-
tuation, e.g., AM and A.M.; or same stem, e.g.,
Month and Months, previously and previous. In the
dev and test sets, 30.4-35.6% of entities are term
variations. The first 2 rows of table 3 show the
performance improvements in F1 of Cont(4096)

2We used a paired bootstrap resampling significance test.
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Train Target Dev Test
Rand(128) Clinical News 63.4 65.5
Rand(4096) Clinical News 62.6 66.9
Cont(4096) Clinical News 68.3 78.5
Rand(128) News Clinical 45.3 46.3
Rand(4096) News Clinical 43.8 44.3
Cont(4096) News Clinical 57.1 59.5

Table 4: Effect of domain change on performance: (F1)
on News and Clinical datasets.

over Rand(4096) on time entities with (+var) and
without (-var) term variations. Cont(4096) is al-
ways better than Rand(4096) so all differences are
positive, but the improvements in +var are much
larger than those of -var in the news domain (+8.4
vs. +1.6 and +15.0 vs. +8.7). In the clinical do-
main, where 9 times more training data is available,
both +var and -var yield similar improvements. We
conclude that pre-trained contextual character em-
beddings are mostly helpful with term variations
in low data scenarios.

We define infrequent terms as time entities that
occur in the training set 10 or fewer times. In the
dev and test sets, 73.9-86.9% of terms are infre-
quent, with about one third of infrequent terms
being numerical3. The bottom two rows of table 3
show the improvements in F1 of the Cont(4096)
over Rand(4096) on frequent (>10) and infrequent
(≤10) terms. Cont(4096) is always better than
Rand(4096), and in both domains the improve-
ments on low frequency terms are always greater
than those on high frequency terms (+8.1 vs. +2.4
in news dev, +17.6 vs. +5.0 in news test, etc.).
We conclude that pre-trained contextual character
embeddings improve the representations of low fre-
quency words in both low and high data settings.

4.3 Robustness to domain differences

To illustrate the ability of pre-trained contextual
character embeddings to handle unseen data, we
train the models in one domain and evaluate in the
other, as shown in Table 4. We find that Rand(128)
and Rand(4096) achieve similar cross-domain per-
formance, e.g., Rand(128) achieves 63.4% ofF1 on
news dev and Rand(4096) achieves 62.6% F1. But
Cont(4096) achieves much better cross-domain per-
formance than Rand(128) or Rand(4096): 78.5%
vs. 65.5% or 66.9% F1 on news test, 59.5% vs.
46.3% or 44.3% on clinical test, etc. All these

3Numbers are common in time expressions.

improvements are significant (p < 0.001). We
conclude that pre-trained contextual character em-
beddings generalize better across domains.

4.4 Greater reliance on nearby context

Inspired by Khandelwal et al. (2018)’s analysis of
the effective context size of a word-based language
model, we present an ablation study to measure per-
formance when contextual information is removed.
Specifically, when evaluating models, we retain
only the characters in a small window around each
time entity in the dev and test sets, and replace all
other characters with padding characters.

Figures 2a and 2b evaluate the Cont(4096),
Rand(4096) and Rand(128) models across differ-
ent context window sizes on the news dev and test
set, respectively. Rand(128) performs similarly
across all context sizes, suggesting that it makes
little use of context information. Both Rand(4096)
and Cont(4096) depend heavily of context: with-
out any context information (context size 0), they
perform worse than Rand(128). Cont(4096) is sen-
sitive to the nearby context, with a ∼10 point gain
on news dev and ∼15 point gain on news test from
just the first 10 characters of context, putting it
easily above Rand(128). Rand(4096) doesn’t ex-
ceed the performance of Rand(128) until at least
50 characters of context.

Figures 2c and 2d shows similar trends in the
clinical domain, except that the Rand(128) model
now shows a small dependence on context, with
a ∼5 point drop on clinical dev and a ∼3 drop on
clinical test in the no-context setting. Cont(4096)
again makes large improvements in just the first 10
characters, and Rand(4096) now takes close to 100
characters of context to reach the performance of
Rand(128). We conclude that pre-trained contex-
tual character embeddings make better use of local
context, especially within the first 10 characters.

4.5 Encoding word categories

We perform a feature ablation to see if pre-trained
contextual character embeddings capture basic syn-
tax (e.g., part-of-speech) like pre-trained contex-
tual word embeddings do (Peters et al., 2018; Ak-
bik et al., 2018). Table 5 shows that removing
both part-of-speech and unicode category features
from Cont(4096) does not significantly change
performance: news dev (p = 0.8813), news test
(p = 0.1672), clinical dev (p = 0.5367), clinical
test (p = 0.8537). But ablating part-of-speech tags
and unicode character categories does decrease per-
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Figure 2: Effect of the context information on the performances for Cont(4096), Rand(4096) and Rand(128) on
the dev and test sets. The dashed lines are the performances of models using the original context setting.

News Clinical
Set Dev Test Dev Test

Rand(128) C 73.6 56.1 91.9 92.1
Rand(128) CUP 76.5 59.4 92.9 92.8
Rand(4096) C 80.5 62.4 91.7 92.2
Rand(4096) CUP 82.7 64.8 92.6 93.2
Cont(4096) C 87.9 78.1 94.7 95.5
Cont(4096) CUP 87.4 80.3 94.7 95.2

Table 5: Effect of features on performance: Perfor-
mance (F1) with different feature sets, including char-
acters (C), part-of-speech tags (P), and unicode charac-
ter categories (U).

formance for both Rand(128) and Rand(4096) in
all cases. For example, Rand(4096) with all fea-
tures achieves 82.7 F1 on news dev, significantly
better than the 80.5 F1 of using only characters
(p = 0.0467). We conclude that pre-trained con-
textual character embeddings encode a variety of
word category information such as part-of-speech,
capitalization, and punctuation.

5 Conclusion

We derive pre-trained character-level contextual
embeddings from Flair (Akbik et al., 2018), a word-

level embedding model, inject these into a state-of-
the-art time normalization system, and achieve ma-
jor performance improvements: 51% error reduc-
tion in news and 33% in clinical notes. Our detailed
analysis concludes that pre-trained contextual char-
acter embeddings are more robust to term varia-
tions, infrequent terms, and cross-domain changes;
that they benefit most from the first 10 characters
of context; and that they encode part-of-speech,
capitalization, and punctuation information.
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A Appendices
A.1 Examples of the improvement

We analyzed a few examples where Cont(4096)
makes correct predictions, but Rand(4096) does
not.

Robustness to variants
“. . . with year-earlier profit of millions. . . ”
In this sentence, the Cont(4096) model labeled ear-
lier correctly, while the Rand(4096) model missed
it. In the news training set, earlier occurs a few
times, but none of them have “-” nearby.

Robustness to frequency
“. . . in the first days after President. . . ”
In this sentence, the Cont(4096) model labeled first
correctly, while the Rand(4096) model labeled it
incorrectly. In the news training set, first only oc-
curred once when followed by another time entity,
but there were several similar sentences for second
and third in the training set.

Robustness to word order
“. . . until twenty years after the first astronauts. . . ”
“. . . comes barely a month after Qantas. . . ”
“. . . Retaliating 13 days after the deadly. . . ”
In each of the sentences above, the Cont(4096)
model labeled after correctly, while Rand(4096)
labeled it incorrectly. In the training set, there
were a few examples where after occurred near a
time entity, but always before the time entity (e.g.,
after ten years, after 22 months, after three days,
after a 16-hour flight) rather than after it as in the
examples above. Cont(4096) may have learned a
better representation for after that allows it to be
less dependent on exact word order.
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Abstract

Chatbots (i.e., bots) are becoming widely used
in multiple domains, along with supporting bot
programming platforms. These platforms are
equipped with novel testing tools aimed at im-
proving the quality of individual chatbots. Do-
ing so requires an understanding of what sort
of bots are being built (captured by their under-
lying conversation graphs) and how well they
perform (derived through analysis of conver-
sation logs). In this paper, we propose a new
model, BOT2VEC, that embeds bots to a com-
pact representation based on their structure
and usage logs. Then, we utilize BOT2VEC
representations to improve the quality of two
bot analysis tasks. Using conversation data
and graphs of over than 90 bots, we show that
BOT2VEC representations improve detection
performance by more than 16% for both tasks.

1 Introduction

As conversational systems (i.e., chatbots) become
more pervasive, careful analysis of their capabil-
ities becomes important. Conversational systems
are being used for a variety of support, service,
and sales applications that were formerly handled
by human agents. Thus, organizations deploying
such systems must be able to understand bots be-
havior to improve their performance. In many
cases, such an analysis can be viewed as a classi-
fication task whose goal is to check whether a bot
or a particular instance of a conversation satisfies
some property (e.g., is the conversation success-
ful?). Models for these downstream classification
tasks should benefit from conditioning on repre-
sentations that capture global bot behavior.

For a conversation itself, there exists a natural
way to represent it as the concatenation of the hu-
man and bot utterances. As for a bot, the question
of its representation is more complicated: bots are

∗ Work was done while working at IBM.

complex objects that execute logic in order to drive
conversations with users. How should they best be
represented?

Many commercial companies provide bot pro-
gramming platforms. These platforms provide
tools and services to develop bots, monitor and
improve their quality. Due to the increasing pop-
ularity of bots, thousands or tens of thousands of
bots could be deployed by different companies on
each platform1. Although bots might have differ-
ent purposes and different underlying structures,
the ability to understand bot behavior at a high
level could inspire new tools and services bene-
fitting all bots on the platform. In this work, we
explore a commercial platform, and study differ-
ent bot representations.

Inspired by the success of recently proposed
learned embeddings for objects such as graphs
(Narayanan et al., 2017), nodes (Grover and
Leskovec, 2016), documents (Le and Mikolov,
2014) and words (Mikolov et al., 2013a), we pro-
pose a new model, BOT2VEC, that learns bot
embeddings, and propose both content and graph
based representations. While previous graph em-
bedding representations consider static local struc-
tures in the graph (Narayanan et al., 2017; Grover
and Leskovec, 2016), our graph representation is
based on dynamic conversation paths. As bots are
usually represented on bot platforms as some form
of directed graph, with conversations represented
as traversals on the graph, this approach seems
reasonable. It captures the way the bot is actually
used, in addition to how it is structured.

In this paper, our goal is to consider various bot
embeddings and two different but realistic classi-
fication tasks, and test whether some bot represen-
tations are more appropriate for these tasks. The
first task, at the level of entire bots, aims to detect

1https://www.techemergence.com/chatbot-comparison-
facebook-microsoft-amazon-google/
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Figure 1: Example of a customer support bot graph.

whether the bot is in production (i.e., in use with
real human users) or not. The second task, at the
conversation level within each bot, aims to detect
problematic conversations with a deployed bot in
support of focusing improvement efforts.

The main contributions of this paper are three-
fold: (1) this is the first research that leverages in-
formation from multiple bots in order to improve
bot quality, (2) this is the first research to propose
an embedding approach for bots based on their
structure and how this structure is exploited dur-
ing conversations, and (3) we empirically evaluate
these representations for two classification tasks
using data from more than 90 conversational bots.

We find that our proposed representations lead
to more than 16% improvement in classification
for our two tasks, with our structure-based repre-
sentation performing better than our content-based
representation. This suggests that the representa-
tions explored in this paper are valuable across a
range of possible tasks.

2 Bot Overview

Although different programming models can be
used to create bots, in practice, most commercial
conversational system platforms represent the con-
versation control flow for bots as graphs. In this
paper, we use a bot paradigm based on one of the
publicly available commercial platforms, but it is
quite general and can be adapted to fit to other bot
programming platforms. Our example in Figure 1
shows a part of a customer support bot graph, and
we use it to explain how such a graph is used in

the context of a conversation.
At every step (i.e., every turn) of a conversation

with a bot, the human user expresses an utterance
and the bot analyzes it, determines how to respond
and updates its internal state. This determination
is executed by traversing the graph, starting from
a special node called the root node, and moving
along the nodes of the graph according to a given
set of rules as described below. Note that this de-
scription aims to present and explain key abstrac-
tions rather than the implementation details of an
actual bot platform.

2.1 Graph Components

Every node in the graph has two internal parts: a
user intent, and an optional reply of the bot. Given
a user utterance, an intent classifier is used to de-
termine whether the user utterance matches the in-
tent associated with the node. For example, the
Technical problem node has been defined to cap-
ture cases where users encounter a technical prob-
lem with a product, and this is what is being ex-
pressed in the utterance at hand (e.g., “I’m hav-
ing some issues with my headset”). In this case,
the classifier should be able to classify this utter-
ance as relevant to this intent. In practice, the in-
tent classifier is trained from examples of utter-
ances and their corresponding intents, written by
bot programmers.

Every node has two optional outgoing edges: a
positive edge and a negative edge. If a user ut-
terance has been classified positively, the optional
node answer is presented to the user, and the exe-
cution moves to the node which is the target of the
positive edge. When the execution moves along
a positive edge, it is possible to obtain additional
input from the user, and continue the evaluation
using this input. If a user utterance has been clas-
sified negatively, the execution moves to the node
which is the target of the negative edge. As shown
in Figure 1, we represent nodes connected by neg-
ative edges along the vertical axis, and nodes con-
nected by positive edges along the horizontal axis.

When there is no positive edge and the classi-
fication is positive, the execution stops, and the
system waits for the next user utterance. When
there is no negative edge and the classification is
negative, execution jumps back to the root node to
resume evaluation from the start.

In addition to the nodes that we just described,
there are special sink nodes (in our example, the
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Agent: Hi, I’m Eva a virtual assistant, how may I help you?
Customer: I’m having some issues with my headset
Agent: Which model are you using?
Customer: A wireless one.
Agent: Please make sure that they are charged.
Customer: Yes they are, and they work well with other de-
vices...
Agent: Got you. In this case go and try our echo test.
Customer: Well, I’ll stop by one of your stores and see a tech-
nician.
Agent: I’m not trained on that yet, but I’m still learning. You
may want to rephrase your question and try again.
Customer: What is your closest location?
Agent: Check here to see our locations in your city.

Figure 2: Example of a possible conversation.

Anything Else node), which are not the source of
any edges, and which typically trigger a special
default message like “I’m still in a learning phase,
is there anything else I can help you with?’’. As
bots support only a limited set of intents, this
mechanism is used to let the user know that some
intent is beyond the knowledge of the bot, and to
initiate a recovery process.

2.2 Graph Execution
A conversation starts by traversing the graph from
the root node. The root node is special in that it
does not expect a user utterance, and it only has
a positive edge. Its optional response, which can
be a greeting message for example, is only output
once at the beginning of the conversation.

Consequently, a user utterance defines a path in
the graph, and each conversation between a human
and the bot can be represented as a sequence of
paths in the graph. Figure 2 shows an example of
such a conversation.

The nodes that are evaluated for the first user
utterance in Figure 2 (“I’m having some issues
with my headset”) are marked in bold in Figure 1.
Thus, the path that is created by the analysis of
this utterance starts with the root node Welcome,
then moves to the Make a payment node, check-
ing whether this utterance expresses the user in-
tention to make a payment. Since it is not, con-
trol moves to the Account operation node, and
then, in turn, to the Store information node, along
the negative edges, until it reaches the Techni-
cal problem node. Here, the internal classifier de-
termines that the utterance indeed expresses that
the user encountered a technical problem. As a
result, the control moves along the positive edge
to the Headset problem node. Once the node’s re-
ply is presented to the user (“Which model are you

using?”), the system then waits for the next user
utterance. The next user utterance (“A wireless
one.”) leads to the Wireless model node, hence the
resulting path for this utterance is a continuation of
the previous path.

Note that nodes connected vertically by neg-
ative edges represent alternative understand-
ings of an utterance. That is, in our ex-
ample, an utterance can be identified as Ac-
count operation, Store information or Techni-
cal problem, etc. Nodes connected by horizon-
tal positive edges represent specializations of the
analysis. That is, after the utterance is classified
as Technical problem, moving along the positive
edge will check whether the utterance expresses
a Headset problem, or (moving again vertically
along negative edges) a HD problem or, alterna-
tively, a Battery problem.

In addition, special jump nodes are nodes
that allow the conversation to jump to a des-
ignated node. In our example the node below
Charge headset, that refers to the Echo test node,
is a jump. Such jump nodes are not essential, but
simplify the graph by preventing duplication of
subgraphs.

2.3 Notations

We define the depth of the bot graph as the max-
imum number of nodes from left to right (ignor-
ing the root node), i.e. nodes connected by pos-
itive edges. The depth of a node v is defined as
the number of positive edges used to traverse the
graph from the root node to v. In our example
from Figure 1 the depth of the graph is 5, while
the depth of Headset problem is 2. We define the
level l as the set of all the nodes whose depth is l.
We define the width of the graph at level l as the
maximum number of nodes connected by negative
edges at this level. In our example, the width of
level 1 is 6, while the width of level 2 is 3.

To further simplify notations, we consider a grid
layout that defines coordinates for the nodes from
left to right and from top to bottom. For example,
node Technical problem is mapped to (4), which
means that it is the 4th node from top to bottom
at level 1. The node Headset problem is mapped
to (4,1), meaning that it is the 1st node at level
2 of the 4th node at level 1. Similarly, the node
HD problem is mapped to coordinate (4,2) and
Wireless model is (4,1,2). Note that nodes located
deeper in the graph are mapped to a longer list of
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coordinates. The maximal possible length of a co-
ordinate for a node is the depth of the graph.

2.4 Bot Behavior

The graph of a bot determines its behavior, and
thus, the structure of the graph captures interest-
ing properties of the bot. For example, there are
bots designed to handle simple Q&A conversa-
tions, as opposed to bots that handle filling in the
details of complex transactions. For Q&A bots,
the graph is likely to be of depth 1, with many
nodes at this level, representing various alternative
questions and answers. For bots handling complex
conversations, the graphs are likely to be deeper in
order to handle more complicated cases. In gen-
eral, bots handling narrow use-cases and which
are very specific in their dialog capabilities, are
likely to have fewer nodes and more jumps to sink
nodes. Thus, in order to capture the bot behavior
we should consider the different characteristics of
its graph, and this is what we would like to capture
in our representation.

3 Bot2Vec Framework

3.1 Representation Learning

In this work, we employ a neural network model
to learn the BOT2VEC representation. The train-
ing input to this model is either a content-based
representation or a structure-based representation
of conversations between a human and a bot. Both
are described in the following sections. The result
of the training is a vector representation for each
bot in the dataset.

To learn this BOT2VEC representation, a fully
connected network with N hidden layers is used.
During training, the input to this network is the
representation of a conversation (either content-
based or structure-based), and the ground truth is a
one-hot vector of the bot that handled this conver-
sation. In other words, given a conversation c, the
network predicts which bot handled c using soft-
max, that is a distribution over the bots. Thus, the
output layer vector of the model has the size of the
number of bots in the dataset. Once the model is
trained, the representation of a bot b is the weights
vector Vb·, where V is the output embedding ma-
trix (the weights matrix connecting the last hidden
layer to the output layer).

The motivation for choosing this representa-
tion is that the training procedure (using cross-
entropy loss) should drive similar bots to simi-

lar representations, given that they handle simi-
lar conversations. In the context of learning word
representations using the Word2Vec skip-gram
model (Mikolov et al., 2013b), the output embed-
dings were found to be of good quality (Press and
Wolf, 2017). Hereafter, we denote the content-
based model as BOT2VEC-C, and the structure-
based model as BOT2VEC-S.

We now describe how a conversation is rep-
resented using its textual content and using its
bot graph structure which is used as input for the
model.

3.2 Content-based Representation

Conversations between users and bots occur in
natural language, and as shown in Figure 2, are
composed of user utterances and bot responses.
The first step for creating our textual representa-
tion of a single conversation is to build a vocab-
ulary, which is the union of all terms across all
conversations of all the bots in the dataset. We
first mask tokens that might reveal the bot’s iden-
tity, such as bot names, URLs, HTML tags etc. To
neglect additional bot specific words (which are
probably infrequent), we take the k most popular
terms to be the vocabulary.

Now, for a given conversation, we create two
vectors with term frequency (TF) entries accord-
ing to the template just defined, one for the user
utterances and one for the bot responses. The con-
versation is then represented as their concatena-
tion.

3.3 Structure-based Representation

Our goal in this representation is to characterize
bot behavior by analyzing its conversations with
respect to the structure of the bot graph. This
learned representation should capture the charac-
teristics of how bots are being utilized. We would
like to capture, for example, which nodes are be-
ing visited during a conversation with a user, at
which nodes the conversation turns end, etc.

Recall that each conversation can be repre-
sented as a sequence of paths on the bot graph (a
path for each turn). We now describe how to rep-
resent a path as a vector (bin vector below), and
how to aggregate paths of a single conversation.

Bin vector To be able to compare bots with dif-
ferent bot graph structures, we define a common
fixed size bin vector to represent paths of different
bots.
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bin 1 bin 2 bin 3 bin 1 bin 2 bin 1

section 1 section 2 section 3

(1),(1,1),(2),

(2,1),(3,1),

(4,1)

(1,2),(2,2),(3),

(4),(4,2)

(1,1,1),(1,1,1,1),
(2,1,1),(2,2,1),

(4,1,1),(4,1,1,1),
(4,1,2,1)

(2,3),(4,3),

(5),(6)
(1,1,1,2),(4,1,2) (1,1,1,1,1),

(1,1,1,1,2)

Figure 3: A mapping of a bot graph to the bin vector.

Algorithm 1 Mapping a node to section and bin
nl: node depth
nw: node width

input D: graph depth
w = w1, w2, . . . , wD: graph width at each level
S: number of sections
b = b1, b2, . . . , bS : number of bins per section

output ns: section index
nb: bin index

1: ns = b (nl−1)
d
× S + 1c

2: nb = b (nw−1)
wl

× bns + 1c
3: return ns, nb

We create a bin vector such that each node in the
bot graph is mapped to a single bin based on its co-
ordinates in the graph. Each bin vector is divided
into S sections, and each section s is divided into
bs bins (Figure 3). Since the idea is to represent
a conversation path in a standardized and com-
pact way across different bots, each level in the
bot graph is mapped to a section in the bin vector,
and each node in the bot graph is mapped to a bin
in the appropriate section (see Algorithm 1). Sev-
eral levels might be mapped to the same section,
and several nodes can be mapped to the same bin
(sections do not necessarily have the same number
of bins). The number of sections and bins in the
bin vector are set based on the depths and widths
of all the bot graphs (e.g., the average depth of
the graphs and the average width of each level in
the graphs). For example, the bin vector in Fig-
ure 3 represents the mapping of all nodes for the
bot graph in Figure 1. This bin vector has 3 sec-
tions. There are 3 bins in section 1, 2 bins in sec-
tion 2, and 1 bin in section 3.

Utterance modeling We now explain how each
utterance is represented using the bin vector. As
mentioned above, each user utterance in a conver-
sation is represented by a path in the bot graph,
whose nodes can be mapped to sections and bins
in the bin vector. In order to capture how every
utterance is being analyzed by the bot, we distin-
guish between different types of nodes in the path:

1. A success (s) node is the last node of the path,
if it is not a sink node.

section 1 section 2 section 3

1 2 30

bin 1 bin 2 bin 3 bin 1 bin 2 bin 1

Turn 1:

Turn 5:

aggregated

r ufs
0 2 30

r ufs
0 0 40

r ufs
0 0 70

r ufs
0 0 20

r ufs
0 0 20

r ufs

section 1 section 2 section 3

1 2 30

bin 1 bin 2 bin 3 bin 1 bin 2 bin 1

r ufs
0 1 40

r ufs
0 0 40

r ufs
0 0 70

r ufs
0 0 20

r ufs
0 0 20

r ufs

section 1 section 2 section 3

2 12 160

bin 1 bin 2 bin 3 bin 1 bin 2 bin 1

r ufs
0 7 180

r ufs
0 1 181

r ufs
1 2 320

r ufs
1 1 80

r ufs
0 0 100

r ufs

Figure 4: Bin vector representation of turns in a con-
versation.

2. A failure (f) node is the last node of the path,
if it is a sink node.

3. All the other nodes that belong to the path are
regular (r) nodes.

4. Nodes that do not belong to the path are un-
involved (u) nodes.

When representing a path, we consider the type
of the node it is mapped to, in the corresponding
bins in the bin vector: each bin maintains 4 coun-
ters, one counter for each type of node mentioned
above (success, failure, regular and uninvolved).
That is, the mapping of the first user utterance
“I’m having some issues with my headset” to the
bin vector is as follows:

• The first node in the bot graph that is visited
is Make a payment (1). This node is mapped
to the first bin in section 1 of the bin vector.
Thus the regular counter is set to 1 for this
bin.

• The second node traversed in the bot graph
is Account operation (2), which is mapped
to the same first bin of section 1 of the bin
vector. Hence, the regular counter of this bin
is set to 2 in the bin vector.

• Similarly, nodes Store information (3) and
Technical problem (4) are visited, and that
sets the regular counter of bin 2 in section
1 to 2.

• Finally, the Headset problem (4, 1) node is
visited, and that sets the success counter of
bin 1 in section 1 to 1, as this is the last node
that is being visited for this utterance. Now
we can update the uninvolved counters of the
bins according to the nodes that were not vis-
ited during the traversal.
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When this path is mapped to the bin vector, we
obtain the vector as shown in “Turn 1” of Figure 4.

Conversation modeling As the input to the
model is a conversation, we now describe how it
is represented. We aggregate the bin vectors of
the user utterances paths by summing each counter
based on the node types (s, f , r or u) across all
the bins in the matching sections. This aggrega-
tion captures different patterns of the conversation,
such as how many times nodes which are mapped
to a bin are visited, how many turns ended suc-
cessfully in the mapped nodes vs. how many turns
failed in these nodes, etc. Figure 4 depicts the de-
tailed vectors for the first and the fifth customer
utterance from Figure 2, as well as the aggregated
vector obtained for the whole conversation.

4 Classification Tasks

BOT2VEC representations could be used for a va-
riety of bot analytics tasks. In this research, we
have examined two such tasks.

Detecting production bots Several companies
provide bot development platforms that are used to
create and manage conversational bots. Based on
analyses of the logs of one commercial platform,
we have found that a large percentage of bots are
not being used with real users. From the platform
provider perspective, understanding bots interac-
tion with actual users could inspire the develop-
ment of new tools and services that could assist all
of bots that use the platform. Thus, it is impor-
tant to first determine which bots are used in pro-
duction, rather than in debugging or testing. This
is made difficult by the fact that bot testing often
involves somewhat realistic simulations of conver-
sations. Thus, in this binary classification task, a
bot should be classified as either a production bot
or not, given all of its conversations.

Detecting egregious conversations Once in
production, bot log analysis forms the basis for
continuous improvement. Finding the areas most
in need of improvement is complicated by the fact
that bots may have thousands of conversations per
day, making it hard to find conversations failing
from causes such as faulty classification of user
intent, bugs in dialog descriptions, and inadequate
use of conversational context. Recently, a new
analysis (Sandbank et al., 2018), aims at detect-
ing egregious conversations, those in which the bot
behaves so badly that a human agent, if available,

Figure 5: Bots summary: #conversations, #nodes and
depth.

would be needed to salvage them. Finding these
egregious conversations can help identify where
improvement efforts should be focused. In this
task, a conversation c should be classified as egre-
gious or not, with the BOT2VEC representation
potentially improving performance.

5 Experiments

5.1 Data
We collected two months of data from 92 bots, in-
cluding their graphs and conversations logs. The
bot domains included health, finance, banking,
travel, HR, IT support, and more. Figure 5 sum-
marizes the information about number of conver-
sations, number of nodes and graph depth for the
bots. In total, we collected 1.3 million conversa-
tions, with a minimum of 110 conversations and a
maximum of 161, 000 conversations per bot. For
62% of the bots, the number of conversations var-
ied between 1000 to 10, 000. Bot graph depth
ranged from 2 to 52 levels with an average depth
of 7; the total number of nodes ranged from 11 to
1088 with an average of 160 nodes per bot.

5.2 Experimental Setting
Common bin vector As explained, to capture
comparable behavior across bots, we create one
common bin vector using the average depth and
average width for each level of the bots graphs.
Specifically, first, based on the average depth, we
define the number of sections to be 7. Then we set
the number of bins for each section (based on the
average width per level per bot) to 108, 10, 6, 17,
8, 4, and 1, respectively.

Bot2Vec implementation details
Content-based: The content-based model input is
comprised of two vectors of size k = 5000 each ,
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Model F1-score % improvement
BOT-STAT 0.519 -
BOT2VEC-C 0.545 5.0
BOT2VEC-S 0.616 18.6

Table 1: Production bots detection - classification re-
sults on the test set.

one vector representing the user utterances and the
second vector representing the bot responses. The
two vectors are concatenated and passed through
a fully connected layer with 5000 units. We also
calculate the squared difference of the two vectors
and an element-wise multiplication of the vectors
to capture the interaction between the user and the
bot. The three vectors are then concatenated and
passed through another two fully connected layers
with 1000 and 100 units.
Structure-based: The input is a single vector with
the size of 616 (the total number of bins (154)
times the 4 counters per bin). This input vector
is passed through two fully connected layers with
100 and 20 units.

For both models, the last hidden layer is con-
nected to the output layer (with a size equal to the
total number of bots). All hidden layers consists of
ReLU activation units, and are regularized using
dropout rate of 0.5. The models were optimized
using an Adam optimizer with a 0.001 learning
rate.

5.3 Task 1 - Production Bots Detection

Ground truth To annotate bots, we randomly
sampled 100 conversations from our dataset. The
sampled conversations were tagged by two dif-
ferent expert judges. Given a full conversation,
each judge tagged the conversation as production
or test/debugging. If more than 50% of the con-
versations were tagged as production, then the bot
was tagged as production. In addition, if the bot
was annotated as not-production, the experts had
to provide a list of reasons for their choice (e.g.,
repeating users ids, repeating bot response, etc.).
We generated true binary labels by considering a
bot to be a production bot if both judges agreed.
Judges had a Cohen’s Kappa coefficient of 0.95
which indicates a high level of agreement. This
process generated the production bot class size of
40 (44% of the 92 bots).

Baseline model Inspired by (McIntire et al.,
2010; Zhang et al., 2018) we implemented a base-
line model denoted BOT-STAT as follows: for

Model F1-score % improvement
EGR 0.537 -
bot-STAT 0.597 11.0
BOT2VEC-C 0.617 14.8
BOT2VEC-S 0.626 16.4

Table 2: Egregious conversations - classification results
on the test set.

each bot we calculated features, such as the num-
ber of unique customer sentences, number of con-
versations, number of unique agent responses, and
statistical measures (mean, median, percentile) of
the following metrics: number of turns of a con-
versation, number of tokens in each turn in a con-
versation, and the time of a turn in a conversation.
In total we implemented 17 features.

In our implementation we used an SVM clas-
sifier (as we only have 92 samples), measured the
F1-score of the production bot class, and evaluated
the models using 10-fold cross-validation.

Results Table 1 depicts the classification results
for the three models we explored. The BOT2VEC-
S model outperformed the other models with a
relative improvement of 18.6% over the baseline.
The performance of the BOT2VEC-C is slightly
better than the baseline which indicates that the in-
formation that was captured by the content of the
conversations was helpful to detect the usage of
the bot. The structure-based representation, how-
ever, seems to capture bot variability more effec-
tively, i.e. the coverage of visited nodes, different
conversations patterns, etc.

5.4 Task 2 - Egregious Conversations
Detection

Ground truth To collect ground truth data, we
randomly sampled 12 bots (from the production
bots), and for each bot 100 conversations were an-
notated following the methodology in (Sandbank
et al., 2018), namely, given the full conversation,
each judge tagged whether the conversation was
egregious or not. Judges had a Cohen’s Kappa co-
efficient of 0.93 which indicates a high level of
agreement. The size of the egregious class varied
between the bots, ranging from 8% to 48% of the
conversations. All the conversations were aggre-
gated to one dataset.

Baseline model We implemented the state-of-
the-art EGR model, presented in (Sandbank et al.,
2018). In addition, our models are an extension of
the EGR model, such that for each conversation,
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its bot representation vector was concatenated to
the EGR model’s original feature vector.

We measured the F1-score of the egregious
class, and evaluated the models using 10-fold
cross-validation.

Results Table 2 summarizes the classification
results for all models. Specifically, the BOT2VEC-
S outperforms all other models with a relative
improvement of 16.4%. This suggests that the
structure-based representation of the bot encapsu-
lates information which helps the model to distin-
guish between egregious and non-egregious con-
versations. Moreover, although the EGR model
receives the text of the conversation as input, the
content-based representation of the bot also helped
to improve the performance of the task.

5.5 Structure-based Analysis
In practice, bots belong to various application do-
mains like banking, IT and HR. Motivated by
the semantic similarities between word embed-
dings (Mikolov et al., 2013b), we further analyzed
the structure representation BOT2VEC-S w.r.t bots
that belong to the same domain. For the set of
production bots, IT, HR, and the banking domains
were prominent with 10, 7, and 6 bots respectively,
while the other bots belonged to a long tail of do-
mains like travel, medical, etc. For the prominent
domains (that had more than 5 bots), we calculated
the average cosine distance between vector repre-
sentations for pairs of bots that belong to the do-
main vs. pairs of bots from different domains. We
find that the average distance between bots within
their domain is 0.614, while the distance between
bots from different domains is 0.694. Thus, the
representations of bots that belong to the same do-
main appear to have, as one would expect, a higher
level of similarity.

6 Related Work

Despite the popularity of chatbots, research on
bot representations and usage analysis is still un-
der explored. Works on chatbot representations
are mostly concentrated on neural response gen-
eration (Xu et al., 2017; Li et al., 2016; Herzig
et al., 2017) and slot filling (Ma and Hovy, 2016;
Kurata et al., 2016). In these works, conversa-
tion history is used to generate the next bot re-
sponse. Other works use conversation represen-
tations for improving specific tasks useful in di-
alog, like intent detection (Kato et al., 2017), dia-

log act detection (Kumar et al., 2018), and improv-
ing fluency and coherency (Gangadharaiah et al.,
2018). Yuwono et al. (2018) learn the quality of
chatbot responses by combining word representa-
tions of human and chatbot responses using neural
approaches. The main difference between these
works and ours is that we analyze multiple bots
within a service to generate representations use-
ful to each whereas others analyze a single bot at
a time. In addition, we show that our representa-
tions are beneficial across different tasks. Finally,
none of these works consider the structure of the
bot as part of the representation.

Learning embeddings for different objects is
one of the most explored tasks2. As mentioned
above, graphs and nodes representations were pro-
posed in (Narayanan et al., 2017; Grover and
Leskovec, 2016). Both works considered static lo-
cal structures in graphs, whereas our graph repre-
sentation is based on dynamic conversation paths.
The work in (Mikolov et al., 2013b) suggested a
Word2Vec skip-gram model such that a word is
predicted given its context. In our work, we take a
similar approach fitted to the more complex struc-
ture of bots, and predict a bot id given a represen-
tation of a conversation.

Recently, Guo et al. (2018); Pereira and Dı́az
(2018) presented a chatbot usage analysis over
several bots. Guo et al. (2018) compared the per-
formance of various chatbots that participated in
the Alexa prize challenge and implemented the
same scenario. To do so, the authors used dif-
ferent measures such as conversational depth and
breadth, users engagement, coherency, and more.
Pereira and Dı́az (2018) suggested a list of quality
attributes, and analyzed 100 popular chatbots in
Facebook Messenger. Our work focuses on learn-
ing bot representations targeted towards classifica-
tion tasks on the level of bots and their conversa-
tions.

7 Conclusions

In this paper, we suggest two BOT2VEC models
that capture a bot representation based either on
the structure of the bot or the content of its con-
versations. We showed that utilizing these repre-
sentations improves two platform analysis tasks,
both for bot level and conversation level tasks. Fu-
ture work includes extension of the model to en-
capsulate both the content and the structure based

2https://github.com/MaxwellRebo/awesome-2vec
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representations combined together using sequen-
tial neural networks (such as RNN).
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Abstract

Word embeddings have recently been shown
to reflect many of the pronounced societal bi-
ases (e.g., gender bias or racial bias). Existing
studies are, however, limited in scope and do
not investigate the consistency of biases across
relevant dimensions like embedding models,
types of texts, and different languages. In this
work, we present a systematic study of biases
encoded in distributional word vector spaces:
we analyze how consistent the bias effects
are across languages, corpora, and embedding
models. Furthermore, we analyze the cross-
lingual biases encoded in bilingual embedding
spaces, indicative of the effects of bias transfer
encompassed in cross-lingual transfer of NLP
models. Our study yields some unexpected
findings, e.g., that biases can be emphasized or
downplayed by different embedding models or
that user-generated content may be less biased
than encyclopedic text. We hope our work cat-
alyzes bias research in NLP and informs the
development of bias reduction techniques.

1 Introduction

Recent work demonstrated that word embeddings
induced from large text collections encode many
human biases (e.g., Bolukbasi et al., 2016; Caliskan
et al., 2017). This finding is not particularly surpris-
ing given that (1) we are likely project our biases in
the text that we produce and (2) these biases in text
are bound to be encoded in word vectors due to the
distributional nature (Harris, 1954) of the word em-
bedding models (Mikolov et al., 2013a; Pennington
et al., 2014; Bojanowski et al., 2017). For illustra-
tion, consider the famous analogy-based gender
bias example from Bolukbasi et al. (2016): “Man
is to computer programmer as woman is to home-
maker”. This bias will be reflected in the text (i.e.,
the word man will co-occur more often with words
like programmer or engineer, whereas woman will
more often appear next to homemaker or nurse),

and will, in turn, be captured by word embeddings
built from such biased texts. While biases encoded
in word embeddings can be a useful data source for
diachronic analyses of societal biases (e.g., Garg
et al., 2018), they may cause ethical problems for
many downstream applications and NLP models.

In order to measure the extent to which various
societal biases are captured by word embeddings,
Caliskan et al. (2017) proposed the Word Embed-
ding Association Test (WEAT). WEAT measures
semantic similarity, computed through word em-
beddings, between two sets of target words (e.g.,
insects vs. flowers) and two sets of attribute words
(e.g., pleasant vs. unpleasant words). While they
test a number of biases, the analysis is limited in
scope to English as the only language, GloVe (Pen-
nington et al., 2014) as the embedding model, and
Common Crawl as the type of text. Following the
same methodology, McCurdy and Serbetci (2017)
extend the analysis to three more languages (Ger-
man, Dutch, Spanish), but test only for gender bias.

In this work, we present the most comprehen-
sive study of biases captured by distributional word
vector to date. We create XWEAT, a collection
of multilingual and cross-lingual versions of the
WEAT dataset, by translating WEAT to six other
languages and offer a comparative analysis of bi-
ases over seven diverse languages. Furthermore,
we measure the consistency of WEAT biases across
different embedding models and types of corpora.
What is more, given the recent surge of models for
inducing cross-lingual embedding spaces (Mikolov
et al., 2013a; Hermann and Blunsom, 2014; Smith
et al., 2017; Conneau et al., 2018; Artetxe et al.,
2018; Hoshen and Wolf, 2018, inter alia) and their
ubiquitous application in cross-lingual transfer of
NLP models for downstream tasks, we investigate
cross-lingual biases encoded in cross-lingual em-
bedding spaces and compare them to bias effects
present of corresponding monolingual embeddings.
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Our analysis yields some interesting findings: bi-
ases do depend on the embedding model and, quite
surprisingly, they seem to be less pronounced in
embeddings trained on social media texts. Further-
more, we find that the effects (i.e., amount) of bias
in cross-lingual embedding spaces can roughly be
predicted from the bias effects of the corresponding
monolingual embedding spaces.

2 Data for Measuring Biases

We first introduce the WEAT dataset (Caliskan
et al., 2017) and then describe XWEAT, our mul-
tilingual and cross-lingual extension of WEAT de-
signed for comparative bias analyses across lan-
guages and in cross-lingual embedding spaces.

2.1 WEAT

The Word Embedding Association Test (WEAT)
(Caliskan et al., 2017) is an adaptation of the Im-
plicit Association Test (IAT) (Nosek et al., 2002).
Whereas IAT measures biases based on response
times of human subjects to provided stimuli, WEAT
quantifies the biases using semantic similarities be-
tween word embeddings of the same stimuli. For
each bias test, WEAT specifies four stimuli sets:
two sets of target words and two sets of attribute
words. The sets of target words represent stimuli
between which we want to measure the bias (e.g.,
for gender biases, one target set could contain male
names and the other females names). The attribute
words, on the other hand, represent stimuli towards
which the bias should be measured (e.g., one list
could contain pleasant stimuli like health and love
and the other negative war and death). The WEAT
dataset defines ten bias tests, each containing two
target and two attribute sets.1 Table 1 enumerates
the WEAT tests and provides examples of the re-
spective target and attribute words.

2.2 Multilingual and Cross-Lingual WEAT

We port the WEAT tests to the multilingual and
cross-lingual settings by translating the test vocab-
ularies consisting of attribute and target terms from
English to six other languages: German (DE), Span-
ish (ES), Italian (IT), Russian (RU), Croatian (HR),
and Turkish (TR). We first automatically translate
the vocabularies and then let native speakers of the
respective languages (also fluent in English) fix the

1Some of the target and attribute sets are shared across
multiple tests.

incorrect automatic translations (or introduce bet-
ter fitting ones). Our aim was to translate WEAT
vocabularies to languages from diverse language
families2 for which we also had access to native
speakers. Whenever the translation of an English
term indicated the gender in a target language (e.g.,
Freund vs. Freundin in DE), we asked the trans-
lator to provide both male and female forms and
included both forms in the respective test vocabu-
laries. This helps avoiding artificially amplifying
the gender bias stemming from the grammatically
masculine or feminine word forms.

The monolingual tests in other languages are
created by simply using the corresponding transla-
tions of target and attribute sets in those languages.
For every two languages, L1 and L2 (e.g., DE and
IT), we create two cross-lingual bias tests: we pair
(1) target translations in L1 with L2 translations of
attributes (e.g., for T2 we combine DE target sets
{Klavier, Cello, Gitarre, . . . } and {Gewehr, Schw-
ert, Schleuder, . . .} with IT attribute sets {salute,
amore, pace, . . .} and {abuso, omicidio, trage-
dia, . . .}), and vice versa, (2) target translations
in L2 with attribute translations in L1 (e.g., for
T2, IT target sets {pianoforte, violoncello, chitarra,
. . . } and {fucile, spada, fionda, . . .} with DE at-
tribute sets {Gesundheit, Liebe, Frieden, . . .} and
{Missbrauch, Mord, Tragödie, . . .}). We did not
translate or modify proper names from WEAT sets
3–6. In our multilingual and cross-lingual exper-
iments we, however, discard the (translations of)
WEAT tests for which we cannot find more than
20% of words from some target or attribute set in
the embedding vocabulary of the respective lan-
guage. This strategy eliminates tests 3–5 and 10
which include proper American names, majority
of which can not be found in distributional vocabu-
laries of other languages. The exception to this is
test 6, containing frequent English first names (e.g.,
Paul, Lisa), which we do find in distributional vo-
cabularies of other languages as well. In summary,
for languages other than EN and for cross-lingual
settings, we execute six bias tests (T1, T2, T6–T9).

3 Methodology

We adopt the general bias-testing framework from
Caliskan et al. (2017), but we span our study over
multiple dimensions: (1) corpora – we analyze the

2English and German from the Germanic branch of Indo-
European languages, Italian and Spanish from the Romance
branch, Russian and Croatian from the Slavic branch, and
finally Turkish as a non-Indo-European language.
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Test Target Set #1 Target Set #2 Attribute Set #1 Attribute Set #2

T1 Flowers (e.g., aster, tulip) Insects (e.g., ant, flea) Pleasant (e.g., health, love) Unpleasant (e.g., abuse)
T2 Instruments (e.g., cello, guitar) Weapons (e.g., gun, sword) Pleasant Unpleasant
T3 Euro-American names (e.g., Adam) Afro-American names (e.g., Jamel) Pleasant (e.g., caress) Unpleasant (e.g., abuse)
T4 Euro-American names (e.g., Brad) Afro-American names (e.g., Hakim) Pleasant Unpleasant
T5 Euro-American names Afro-American names Pleasant (e.g., joy) Unpleasant (e.g., agony)
T6 Male names (e.g., John) Female names (e.g., Lisa) Career (e.g. management) Family (e.g., children)
T7 Math (e.g., algebra, geometry) Arts (e.g., poetry, dance) Male (e.g., brother, son) Female (e.g., woman, sister)
T8 Science (e.g., experiment) Arts Male Female
T9 Physical condition (e.g., virus) Mental condition (e.g., sad) Long-term (e.g., always) Short-term (e.g., occasional)

T10 Older names (e.g., Gertrude) Younger names (e.g., Michelle) Pleasant Unpleasant

Table 1: WEAT bias tests.

consistency of biases across distributional vectors
induced from different types of text; (2) embedding
models – we compare biases across distributional
vectors induced by different embedding models (on
the same corpora); and (3) languages – we measure
biases for word embeddings of different languages,
trained from comparable corpora. Furthermore, un-
like Caliskan et al. (2017), we test whether biases
depend on the selection of the similarity metric.
Finally, given the ubiquitous adoption of cross-
lingual embeddings (Ruder et al., 2017; Glavaš
et al., 2019), we investigate biases in a variety of
bilingual embedding spaces.

Bias-Testing Framework. We first describe the
WEAT framework (Caliskan et al., 2017). Let X
and Y be two sets of targets, and A and B two sets
of attributes (see §2.1). The tested statistic is the
difference between X and Y in average similarity
of their terms with terms from A and B:

s(X,Y,A,B) =
∑

x∈X
s(x,A,B)−

∑

y∈Y
s(y,A,B) , (1)

with association difference for term t computed as:

s(t, A,B) =
1

|A|
∑

a∈A
f(t,a)− 1

|B|
∑

b∈B
f(t,b) , (2)

where t is the distributional vector of term t
and f is a similarity or distance metric, fixed to
cosine similarity in the original work (Caliskan
et al., 2017). The significance of the statistic is
validated by comparing the score s(X,Y,A,B)
with the scores s(Xi, Yi, A,B) obtained for dif-
ferent equally sized partitions {Xi, Yi}i of the set
X ∪Y . The p-value of this permutation test is then
measured as the probability of s(Xi, Yi, A,B) >
s(X,Y,A,B) computed over all permutations
{Xi, Yi}i.3 The effect size, that is, the “amount
of bias”, is computed as the normalized measure of
separation between association distributions:

µ ({s(x,A,B)}x∈X)− µ ({s(y,A,B)}y∈Y )

σ ({s(w,A,B)}w∈X∪Y )
, (3)

3If f is a distance rather than a similarity metric, we mea-
sure the probability of s(Xi, Yi, A,B) < s(X,Y,A,B).

where µ denotes the mean and σ standard deviation.

Dimensions of Bias Analysis. We analyze the bias
effects across multiple dimensions. First, we an-
alyze the effect that different embedding models
have: we compare biases of distributional spaces
induced from English Wikipedia, using CBOW
(Mikolov et al., 2013b), GLOVE (Pennington et al.,
2014), FASTTEXT (Bojanowski et al., 2017), and
DICT2VEC algorithms (Tissier et al., 2017). Sec-
ondly, we investigate the effects of biases in differ-
ent corpora: we compare biases between embed-
dings trained on the Common Crawl, Wikipedia,
and a corpus of tweets. Finally, and (arguably)
most interestingly, we test the consistency of bi-
ases across seven languages (see §2.2). To this
end, we test for biases in seven monolingual FAST-
TEXT spaces trained on Wikipedia dumps of the
respective languages.

Biases in Cross-Lingual Embeddings. Cross-
lingual embeddings (CLEs) are widely used in mul-
tilingual NLP and cross-lingual transfer of NLP
models. Despite the ubiquitous usage of CLEs, the
biases they potentially encode have not been ana-
lyzed so far. We analyze projection-based CLEs
(Glavaš et al., 2019), induced through post-hoc
linear projections between monolingual embed-
ding spaces (Mikolov et al., 2013a; Artetxe et al.,
2016; Smith et al., 2017). The projection is com-
monly learned through supervision with few thou-
sand word translation pairs. Most recently, how-
ever, a number of models have been proposed that
learn the projection without any bilingual signal
(Artetxe et al., 2018; Conneau et al., 2018; Hoshen
and Wolf, 2018; Alvarez-Melis and Jaakkola, 2018,
inter alia). Let X and Y be, respectively, the
distributional spaces of the source (S) and tar-
get (T) language and let D = {wi

S , w
i
T }i be the

word translation dictionary. Let (XS ,XT ) be the
aligned subsets of monolingual embeddings, cor-
responding to word-aligned pairs from D. We
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Metric T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Cos 1.7 1.6 -0.1∗ -0.2∗ -0.2∗ 1.8 1.3 1.3 1.7 -0.6∗

Euc 1.7 1.6 -0.1∗ -0.2∗ -0.1∗ 1.8 1.3 1.3 1.7 -0.7∗

Table 2: WEAT bias effects (EN FASTTEXT embed-
dings trained on Wikipedia) for cosine similarity and
Euclidean distance. Asterisks indicate bias effects that
are insignificant at α < 0.05.

then compute the orthogonal matrix W that mini-
mizes the Euclidean distance between XSW and
XT (Smith et al., 2017): W = UV>, where
UΣV> = SVD(XTXS

>). We create compa-
rable bilingual dictionaries D by translating 5K
most frequent EN words to other six languages and
induce a bilingual space for all 21 language pairs.

4 Findings

Here, we report and discuss the results of our multi-
dimensional analysis. Table 2 shows the effect
sizes for WEAT T1–T10 based on Euclidean or
cosine similarity between word vector represen-
tations trained on the EN Wikipedia using FAST-
TEXT. We observe the highest bias effects for
T6 (Male/Female – Career/Family), T9 (Physi-
cal/Mental deseases – Long-term/Short-term), and
T1 (Insects/Flowera – Positive/Negative). Impor-
tantly, the results show that biases do not depend on
the similarity metric. We observe nearly identical
effects for cosine similarity and Euclidean distance
for all WEAT tests. In the following experiments
we thus analyze biases only for cosine similarity.

Word Embedding Models. Table 3 compares
biases in embedding spaces induced with differ-
ent models: CBOW, GLOVE, FASTTEXT, and
DICT2VEC. While the first three embedding meth-
ods are trained on Wikipedia only, DICT2VEC em-
ploys definitions from dictionaries (e.g., Oxford
dictionary) as additional resources for identifying
strongly related terms.4 We only report WEAT test
results T1, T2, and T7–T9 for DICT2VEC, as the
DICT2VEC’s vocabulary does not cover most of
the proper names from the remaining tests.

Somewhat surprisingly, the bias effects seem
to vary greatly across embedding models. While
GLOVE embeddings are biased according to all
tests,5 FASTTEXT and especially CBOW exhibit
significant biases only for a subset of tests. We

4Two terms A and B are strongly related if B appears in
the definition of A and vice versa (Tissier et al., 2017).

5This is consistent with the original results obtained by
Caliskan et al. (2017).

WEAT CBOW GLOVE FASTTEXT DICT2VEC

T1 1.20 1.41 1.67 1.35
T2 1.38 1.45 1.55 1.66
T3 −0.28∗ 1.16 −0.09∗ –
T4 −0.35∗ 1.36 −0.17∗ –
T5 −0.36∗ 1.40 −0.18∗ –
T6 1.78 1.75 1.83 –
T7 1.28 1.16 1.30 1.48
T8 0.39∗ 1.28∗ 1.30 1.30
T9 1.55 1.35 1.72 1.69
T10 0.09∗ 1.17 −0.61∗ –

Table 3: WEAT bias effects for spaces induced (on EN
Wikipedia) with different embedding models: CBOW,
GLOVE, FASTTEXT, and DICT2VEC methods. Aster-
isks indicate bias effects that are insignificant at α <
0.05.

Corpus T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

WIKI 1.4 1.5 1.2 1.4 1.4 1.8 1.2 1.3 1.3 1.2
CC 1.5 1.6 1.5 1.6 1.4 1.9 1.1 1.3 1.4 1.3
TWEETS 1.2 1.0 1.1 1.2 1.2 1.2 −0.2∗0.6∗0.7∗ 0.8∗

Table 4: WEAT bias effects for GLOVE embeddings
trained on different corpora: Wikipedia (WIKI), Com-
mon Crawl (CC), and corpus of tweets (TWEETS). As-
terisks indicate bias effects that are insignificant at
α < 0.05.

hypothesize that the bias effects reflected in the dis-
tributional space depend on the preprocessing steps
of the embedding model. FASTTEXT, for instance,
relies on embedding subword information, in or-
der to avoid issues with representations of out-of-
vocabulary and underrepresented terms: additional
reliance on morpho-syntactic signal may make
FASTTEXT more resilient to biases stemming from
distributional signal (i.e., word co-occurrences).
The fact that the embedding space induced with
DICT2VEC exhibits larger bias effects may seem
counterintuitive at first, since the dictionaries used
for vector training should be more objective and
therefore less biased than encyclopedic text. We be-
lieve, however, that the additional dictionary-based
training objective only propagates the distributional
biases across definitionally related words. Gener-
ally, we find these results to be important as they
indicate that embedding models may accentuate or
diminish biases expressed in text.

Corpora. In Table 4 we compare the biases of em-
beddings trained with the same model (GLOVE)
but on different corpora: Common Crawl (i.e.,
noisy web content), Wikipedia (i.e., encyclopedic
text) and a corpus of tweets (i.e., user-generated
content). Expectedly, the biases are slightly
more pronounced for embeddings trained on the
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XW EN DE ES IT HR RU TR

T1 1.67 1.36 1.47 1.28 1.45 1.28 1.21
T2 1.55 1.25 1.47 1.36 1.10 1.46 0.83
T6 1.83 1.59 1.67 1.72 1.83 1.87 1.85
T7 1.30 0.46∗ 1.47 1.00 0.72∗ 0.59∗−0.88
T8 1.30 0.05∗ 1.16 0.10∗ 0.13∗ 0.37∗ 1.72
T9 1.72 0.82∗ 1.71 1.57 −0.40∗ 1.73 1.09∗

Avgall 1.56 0.92 1.49 1.17 0.81 1.22 0.88
Avgsig 1.68 1.4 1.54 1.45 1.46 1.54 1.30

Table 5: XWEAT effects across languages (FASTTEXT
embeddings trained on Wikipedias). Avgall : average
of effects over all tests; Avgsig : average over the sub-
set of tests yielding significant biases for all languages.
Asterisks indicate bias effects that are insignificant at
α < 0.05.

XW EN DE ES IT HR RU TR

EN – 1.09∗ 1.58 1.49 0.72∗ 1.17∗ 1.20∗

DE 1.53 – 1.50 1.45 0.55∗ 1.35 1.07∗

ES 1.52 0.79∗ – 1.38∗ 0.60∗ 1.37∗ 1.09∗

IT 1.33∗ 0.69∗ 1.27 – 0.53∗ 0.82∗ 0.80∗

HR 1.47 1.30∗ 1.29 1.18∗ – 1.14∗ 1.11∗

RU 1.47 0.72∗ 1.35 1.35 0.77∗ – 0.80∗

TR 1.41 0.90∗ 1.37∗ 1.45 0.29∗ 0.64∗ –

Table 6: XWEAT bias effects (aggregated over all six
tests) for cross-lingual word embedding spaces. Rows:
targets language; columns: attributes language. Aster-
isks indicate the inclusion of bias effects sizes in the
aggregation that were insignificant at α < 0.05.

Common Crawl than for those obtained on encyclo-
pedic texts (Wikipedia). Countering our intuition,
the corpus of tweets seems to be consistently less
biased (across all tests) than Wikipedia. In fact, the
biases covered by tests T7–T10 are not even signifi-
cantly present in the vectors trained on tweets. This
finding is indeed surprising and the phenomenon
warrants further investigation.

Multilingual Comparison. Table 5 compares the
bias effects across the seven different languages.
Whereas many of the biases are significant in all
languages, DE, HR, and TR consistently display
smaller effect sizes. Intuitively, the amount of bias
should be proportional to the size of the corpus.6

Wikipedias in TR and HR are the two smallest ones –
thus they are expected to contain least biased state-
ments. DE Wikipedia, on the other hand, is the
second largest and low bias effects here suggest
that German texts are indeed less biased than texts
in other languages. Additionally, for (X)WEAT T2,
which defines a universally accepted bias (Instru-

6The larger the corpus the larger is the overall number of
contexts in which some bias may be expressed.

ments vs. Weapons), TR and HR exhibit the small-
est effect sizes, while the highest bias is observed
for EN and IT. We measure the highest gender bias,
according to (X)WEAT T6, for TR and RU, and the
lowest for DE.

Biases in Cross-Lingual Embeddings. We report
bias effects for all 21 bilingual embedding spaces
in Table 6. For brevity, here we report the bias
effects averaged over all six XWEAT tests (we
provide results detailing bias effects for each of
the tests separately in the supplementary materials).
Generally, the bias effects of bilingual spaces are in
between the bias effects of the two corresponding
monolingual spaces (cf. Table 5): this means that
we can roughly predict the amount of bias in a
cross-lingual embedding space from the same bias
effects of corresponding monolingual spaces. For
example, effects in cross-lingual spaces increase
over monolingual effects for low-bias languages
(HR and TR), and decrease for high-bias languages
(EN and ES).

5 Conclusion

In this paper, we have presented the largest study
to date on biases encoded in distributional word
vector spaces. To this end, we have extended pre-
vious analyses based on the WEAT test (Caliskan
et al., 2017; McCurdy and Serbetci, 2017) in multi-
ple dimensions: across seven languages, four em-
bedding models, and three different types of text.
We find that different models may produce embed-
dings with very different biases, which stresses the
importance of embedding model selection when
fair text representations are to be created. Surpris-
ingly, we find that the user-generated texts, such as
tweets, may be less biased than redacted content.
Furthermore, we have investigated the bias effects
in cross-lingual embedding spaces and have shown
that they may be predicted from the biases of cor-
responding monolingual embeddings. We make
the XWEAT dataset and the testing code publicly
available,7 hoping to fuel further research on biases
encoded in word representations.
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XW1 EN DE ES IT HR RU TR

EN – 1.28 1.63 1.62 1.59 1.49 1.32
DE 1.55 – 1.28 1.45 1.41 1.03 1.29
ES 1.45 1.25 – 1.28 1.21 1.31 1.09
IT 1.18 1.10 1.28 – 1.29 0.61 1.09
HR 1.57 1.62 1.59 1.62 – 1.62 1.63
RU 1.41 1.12 1.20 1.38 1.46 – 1.29
TR 1.23 1.21 1.06 1.26 1.24 1.04 –

Table 7: XWEAT T1 effect sizes for cross-lingual em-
bedding spaces. Rows denote the target set language,
column the attribute set language.

XW2 EN DE ES IT HR RU TR

EN – 1.35 1.51 1.48 1.60 1.56 1.15
DE 1.37 – 1.25 1.19 1.31 1.47 1.16
ES 1.55 1.50 – 1.53 1.50 1.57 1.22
IT 1.54 1.37 1.28 – 1.47 1.39 1.27
HR 1.19 1.25 0.72 1.09 – 1.26 0.81
RU 1.46 1.26 1.23 1.08 1.13 – 0.71
TR 1.29 1.44 1.21 1.4 1.25 1.57 –

Table 8: XWEAT T2 effect sizes for cross-lingual em-
bedding spaces. Rows denote the target set language,
column the attribute set language.

A Additional Results

For completeness, we report detailed results on bias
effects for each of the six XWEAT tests and bilin-
gual word embedding spaces for all 21 language
pairs. Tables 7 to 12 show bias effects for XWEAT
tests T1, T2, and T6–T9.

XW6 EN DE ES IT HR RU TR

EN – 1.77 1.81 1.88 1.83 1.78 1.89
DE 1.82 – 1.77 1.85 1.84 1.74 1.86
ES 1.71 0.95 – 1.81 1.80 1.61 1.50
IT 1.76 1.58 1.703 – 1.72 1.77 1.76
HR 1.68 1.65 1.66 1.43 – 1.74 1.73
RU 1.86 1.74 1.74 1.82 1.86 – 1.80
TR 1.90 1.66 1.77 1.82 1.77 1.55 –

Table 9: XWEAT T6 effect sizes for cross-lingual em-
bedding spaces. Rows denote the target set language,
column the attribute set language.

XW7 EN DE ES IT HR RU TR

EN – 0.34∗ 1.36 1.33 0.26∗ 0.46∗ 0.49∗

DE 1.51 – 1.60 1.42 0.23∗ 1.33 −0.62∗
ES 1.63 0.24∗ – 1.26 0.60∗ 1.29 1.55
IT 1.12 0.65∗ 1.01 – 0.51∗−0.20∗−1.08
HR 1.46 0.94 0.95 1.27 – 0.62∗ 0.00∗

RU 1.19 −0.51∗ 1.30 1.09 0.81∗ – −0.79∗
TR 1.22 0.07∗ 0.81∗ 1.30 −0.23∗−0.48∗ –

Table 10: XWEAT T7 effect sizes for cross-lingual em-
bedding spaces. Rows denote the target set language,
column the attribute set language.

XW8 EN DE ES IT HR RU TR

EN – 0.68∗ 1.49 1.01 −0.38∗−0.06∗ 0.71∗

DE 1.17 – 1.43 1.10 −0.09∗ 1.06 1.16
ES 1.13 −0.69∗ – 0.61∗−0.19∗ 0.67∗−0.18∗
IT 0.75∗−0.76∗ 0.87 – −0.18∗−0.52∗ 0.04∗

HR 1.36 0.42∗ 0.92 0.76∗ – −0.16∗ 0.90
RU 1.09 −0.84∗ 0.96 0.99 0.19∗ – 1.00
TR 0.93 0.06∗ 1.49 1.21 −0.47∗−0.43∗ –

Table 11: XWEAT T8 effect sizes for cross-lingual em-
bedding spaces. Rows denote the target set language,
column the attribute set language.

XW9 EN DE ES IT HR RU TR

EN – 1.12 1.66 1.61 −0.59∗ 1.76 1.65
DE 1.74 – 1.68 1.66 −1.39 1.46 1.57
ES 1.64 1.48 – 1.79 −1.34 1.75 1.37
IT 1.62 0.19∗ 1.47 – −1.63 1.87 1.74
HR 1.54 1.89 1.87 0.96∗ – 1.73 1.59
RU 1.82 1.54 1.64 1.72 −0.84∗ – 0.80∗

TR 1.88 0.98∗ 1.88 1.70 −1.80 0.58∗ –

Table 12: XWEAT T9 effect sizes for cross-lingual em-
bedding spaces. Rows denote the target set language,
column the attribute set language.
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Abstract
We introduce a novel topic modeling approach
based on constructing a semantic set cover
for clusters of similar documents. Specifi-
cally, our approach first clusters documents us-
ing their Tf-Idf representation, and then covers
each cluster with a set of topic words based
on semantic similarity, defined in terms of a
word embedding. Computing a topic cover
amounts to solving a minimum set cover prob-
lem. Our evaluation compares our topic mod-
eling approach to Latent Dirichlet Allocation
(LDA) on three metrics: 1) qualitative topic
match, measured using evaluations by Ama-
zon Mechanical Turk (MTurk) workers, 2) per-
formance on classification tasks using each
topic model as a sparse feature representation,
and 3) topic coherence. We find that qual-
itative judgments significantly favor our ap-
proach, the method outperforms LDA on topic
coherence, and is comparable to LDA on doc-
ument classification tasks.

1 Introduction

Topic modeling is one of the core research prob-
lems in natural language processing. Approaches
to topic modeling range from simple vector com-
parisons to probabilistic graphical models (Deer-
wester et al., 1990; Hofmann, 1999; Blei et al.,
2003; Mimno and McCallum, 2012). Neverthe-
less, despite the many approaches proposed over
the years, probabilistic topic modeling methods
in general, and Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) in particular, have become ar-
guably the dominant paradigm. For example, it
remains the algorithm of choice in the Amazon’s
healthcare NLP toolkit (Amazon Web Services,
2018).

However, there have been concerns about the
performance of probabilistic models, particularly
in the context of datasets comprised of short doc-
uments, such as tweets (Davidson et al., 2017;

Yan et al., 2013; Hong and Davison, 2010; Mit-
tos et al., 2018; Steinskog et al., 2017). This is
primarily because the sparsity posed by short texts
makes it hard for the model to sufficiently account
for word co-occurrences, which form the basis of
the definition of a topic in the sense of a multi-
nomial distribution over words. Additionally, the
language used on Twitter is informal in nature,
uses slang and non-dictionary words, and often
lacks proper grammatical structure. Moreover, the
complexity of the probabilistic topic modeling ap-
proaches makes it difficult to interpret the spe-
cific choices they make about topics and their con-
stituent words.

In this paper, we propose a novel approach to
topic modeling which is conceptually simple and
highly interpretable. Our approach is based on two
hypotheses about the nature of short texts, such
as tweets: first, that such texts can be grouped
into relatively few disjoint clusters representing a
similar mix of subjects (nominally, we call these
clusters topics, recognizing that any such cluster
may be comprised of multiple topics), and second,
that each such subject mix can be adequately sum-
marized by a small number of concepts (words).
Both of these are distinct from LDA, which mod-
els a topic as a probability distribution over a large
number of words. While LDA models each text
as a mixture of multiple topics, we assert that each
tweet falls into a single cluster. A more fundamen-
tal qualitative distinction of our approach from
LDA is that it is deterministic in nature, and ad-
mits a much more compact representation of the
corpus, since each topic, or cluster, is represented
by only a small number of words.

To operationalize our hypotheses, we propose
a two-step approach to topic modeling. First,
we cluster documents based on their similarity in
terms of Tf-Idf feature representation. Second,
given the clustering, we attempt to find a set of
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words for each cluster that forms a description of
the cluster. Specifically, we use a word embed-
ding, along with a document representation in the
same semantic space, to cover each cluster with a
small set of topic words that are semantically simi-
lar to the documents. More precisely, we say that a
word (concept) in a dictionary covers a document
if it is among the k most similar words in the se-
mantic embedding space. To cover a collection of
documents thereby becomes a minimum set cover
problem instance. While the set cover problem is
computationally hard, it admits a fast greedy ap-
proximation algorithm (Chvatal, 1979), which we
utilize to construct the topic descriptions for each
document cluster.

Our evaluation combines qualitative and quan-
titative metrics. We first qualitatively compare
our approach to LDA by asking MTurk subjects
for their judgments about the quality of respective
choices of topics for a random sample of docu-
ments from a cluster. We do this through two con-
ceptually different ways, and observe a significant
and systematic advantage of our approach over
LDA. Quantitatively, we compare our approach
and LDA in terms of standard intrinsic topic co-
herence and performance in text classification. On
the intrinsic topic coherence metric, our approach
fares significantly better than LDA for 4 out of the
5 datasets we use, and the two are comparable on
the fifth dataset. Finally, we consider two classifi-
cation tasks, spam and hate speech prediction, in
which topic modeling is used as a sparse feature
representation. In this task, we find that both ap-
proaches yield similar performance.

2 Related Work

One of the earlier and more influential topic
modeling methods was Latent Semantic Analy-
sis (LSA) (Deerwester et al., 1990) which per-
forms a singular value decomposition on the term-
document matrix to discover concepts. Probabilis-
tic Latent Semantic Analysis (pLSA) Hofmann
(1999) tackles the limitations of LSA – namely
potential negative values in the SVD, and the lack
of a proper probability distribution – using a la-
tent variable model, where topics are the latent
variables. Arguably the most influential approach
to the topic modeling domain is Latent Dirich-
let Allocation (Blei et al., 2003). LDA can be
thought of as an extension to pLSA, where the
priors are Dirichlet distributions. LDA continues

to be widely used in topic modeling, and several
derivatives exist – each catering to a specific task,
or corpus-structure (Blei et al., 2007; Blei and Laf-
ferty, 2006; Yan et al., 2013).

Concerns about the performance of such prob-
abilistic topic models with short text data (eg.
tweets) have been illustrated by Davidson et al.
(2017); Yan et al. (2013); Hong and Davison
(2010); Mittos et al. (2018); Steinskog et al.
(2017). Poor performance is attributed to the
sparsity of short text data, which provide insuf-
ficient information for an approach like LDA to
capture word co-occurrence. Yan et al. (2013)
tackle this by explicitly modeling co-occurrence
throughout the corpus to enhance topic learning.
However, this approach requires O(m2) memory
(wherem is the size of the vocabulary) to maintain
all biterms (2-grams) and their frequencies in the
corpus, making it inefficient in practice.

Weng et al. (2010) aggregate tweets by the same
user into pseudo-documents, yet this approach
suffers from a dependence on the availability of
user-information, or disproportionate distribution
of tweets over users. Hong and Davison (2010)
aggregate tweets containing the same word, which
improves performance relative to LDA. Combin-
ing documents based on single words however in-
duces heavy biases on the topics discovered. In
our approach, we include a clustering step that can
be thought of as an aggregation method. Docu-
ments that are semantically similar are grouped
together into a cluster instead of a pseudo docu-
ment, where similarity is a function of all words in
the document.

Rangarajan Sridhar (2015) propose learning a
vector space representation of words in a corpus
using Word2Vec, similarly to our approach, ex-
cept without Tf-Idf weights, and then fitting a mix-
ture of gaussians on the resulting vectors using
standard EM. However, the dimensionality of a
Word2Vec representation is typically high (50-300
in practice), where gaussian mixtures are known to
perform poorly (Krishnamurthy, 2011). Dimen-
sionality reduction on the Word2Vec space is typ-
ically used to alleviate this problem, but it reduces
the strength of the representation in the process.

In addition to probabilistic topic modeling, doc-
ument clustering was successfully used in topic
modeling by Aker et al. (2016), who use a su-
pervised framework to train a learning model
that predicts similarity scores between comments
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from news articles. A graph consisting of docu-
ments as nodes and similarity-weighted edges is
then passed to the Markov Clustering Algorithm
(Van Dongen, 2000). A major drawback of this ap-
proach is the dependence on availability of ground
truth data to begin with.

3 Topic Modeling Using a Semantic
Cover

We propose a simple topic modeling framework
comprised of two steps. First, we cluster doc-
uments based on similarity. Second, we extract
a set of topics from each cluster by leveraging a
word embedding. The intuition behind the cluster-
ing step is that it splits a corpus into qualitatively
similar groups of documents. Thus, we expect it
to be possible to summarize the subject of each
cluster by a small collection of topic words. The
second step aims at summarizing each cluster of
documents using a small set of topic words. The
property we seek in this step is that the topic words
chosen are semantically representative of the clus-
ter. To achieve this goal, we leverage recent ad-
vances in neural word embeddings which empir-
ically demonstrated that such embeddings are se-
mantically meaningful (Mikolov et al., 2013a,b).
Semantic similarity between words is roughly cap-
tured by cosine similarity in the embedded space.
Specifically, we first represent documents in the
same embedding space as words, and define the
problem of the choice of topic extraction as a set
cover problem instance. In the set cover instance,
a potential topic word covers a collection of docu-
ments if the word is similar to these in the embed-
ding space.

3.1 Document Clustering

Our first step is to partition the set of documents
in the corpus into a collection of clusters. For this
purpose, we first transform each document into its
Tf-Idf representation. Depending on the dataset,
any standard clustering approach may be used to
partition the documents. In our case, we run spec-
tral clustering (Ng et al., 2002) over the documents
in their Tf-Idf form, where we use cosine similar-
ity between vectors as the similarity metric.

3.2 A Set Cover Approach for Topic
Extraction

Having obtained a collection of clusters, we treat
them independently, with the goal of extracting a

small set of representative topic words for each
cluster, which adequately represents the subject of
the documents in the cluster. To this end, we first
represent words, as well as documents, in a vec-
tor space using a word embedding. Aiming for a
small set of words is useful both in reducing the
effort required for human interpretation, as well
as forming a compact representation of a set of
documents for quantitative tasks such as document
classification.

Figure 1: Extracting topic words with set cover

Each document (green) in a cluster is connected to its 2 most
similar words (blue). The aim is to find the smallest set of

words such that the union of the edges originating from them
covers all documents in the cluster. In this case, w1 and w2

form the cover.

Suppose that we have a dictionary W (a collec-
tion of words, which is a superset of words that ac-
tually occur in the cluster), with each word embed-
ded in a real vector space, i.e., for each w ∈ W ,
w ∈ Rn. Moreover, suppose that each document d
is represented in the same embedding space. First,
we associate each wordw ∈W with a set of docu-
ments, D(w), based on their similarity in the em-
bedding space. Let s(w, d) be a similarity score
between a word w and a document d. Given a
document d, letWk(d) be the set of k most similar
words to d in terms of s(w, d).

Definition 1 A word w k-covers a document d if
w ∈Wk(d).

Now, the set Dk(w) is the set of all documents d
in the cluster k-covered by a word w. Next, we
define our topic representation for a cluster C of
documents as a set cover.

Definition 2 A collection of wordsWC k-covers a
cluster of documents C if C ⊆ ∪w∈WC

Dk(w). A
collection of wordsWC (k, 1−δ)-covers a cluster
C if |C ∩ (∪w∈WC

Dk(w))|/|C| ≥ 1− δ.
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In words, a collection of words WC covers a clus-
ter if each document in the cluster is covered by
some word w ∈ WC . If the cover is partial, in the
sense that at least a fraction 1−δ (i.e., most) of the
documents are covered, we call it the 1− δ cover.
At this point, it is important to note that in prin-
ciple the cover WC need not include solely words
found in the documents in cluster C.

Having defined what it means for a collection of
topical words to cover (exactly or approximately)
a document cluster (really, an arbitrary collection
of documents), we now observe that our aim is to
find a small cover—that is, the smallest number
of topic words that adequately cover a document
cluster. Next, we define this notion precisely.
Definition 3 Given a k and δ, a minimum (k, 1−
δ) cover for a document cluster C is a collection
W ∗C which is a 1−δ cover such that |W ∗C | ≤ |WC |
for any other (k, 1 − δ) cover WC of a document
cluster C.

Embedding Words and Documents
To derive a word embedding, we can use one of the
standard embedding approaches which has been
demonstrated to roughly correspond to semantic
relationships among words. We chose Word2Vec
for this purpose, although other such embedding
approaches can presumably be used in its place.
While we used the Tf-Idf representation of docu-
ments in clustering, this is not well-suited to topic
extraction using set cover, since it does not embed
documents in the same semantic space as words.

To address this, we represent the documents in
a new embedded space by computing a weighted
average of Word2Vec (Mikolov et al., 2013a) rep-
resentations of words occurring in the document,
with Tf-Idf as the weighting scheme. Using Tf-
Idf weighting in conjunction with a Word2Vec
representation helps alleviate issues that the in-
dividual representations face when used indepen-
dently. Used in isolation, the standard Tf-Idf rep-
resentation only allows us to compute similari-
ties between documents, but not between words -
given that words in this case are simply orthonor-
mal one-hot vectors. Using only the Word2Vec
representation allows us to compare similarity be-
tween words, but does not, by itself, represent doc-
uments. As Tf-Idf is an information-measure of
how important a word is to a document, it is natu-
rally an apt weighting scheme to represent a doc-
ument as the weighted centroid of the vectors cor-
responding to the words in the document.

As we describe in the sections to follow, this
also allows us to find topic-words for documents
that might not necessarily be contained in the doc-
uments themselves. To define this representation
precisely, suppose that t is the Tf-Idf representa-
tion of a document over a word dictionary W , and
let V be the matrix with columns corresponding to
words embedded in real space using Word2Vec.
Then the embedded document representation is
defined by

d = V t/m,

where m is the number of words in the document.

Computing the Minimum Semantic Set Cover
Given the definition of the minimum semantic
cover for a cluster of documents, along with an
embedding of both words and documents in the
same space, we can now extract the topics for each
cluster using a greedy algorithm inspired by the
O(n log n) greedy solution for set-cover (Chvatal,
1979), as follows.

We first convert the documents and words in the
embedded space to an unweighted bipartite graph,
using our notion of (k, 1 − δ)-cover. Let V1 be a
set of vertices where each vertex corresponds to a
word w in the corpus dictionary, W . Let V2 be a
set of vertices, where each vertex corresponds to a
document d in the corpus D. We add an edge be-
tween a word w and a document d if w (k, 1− δ)-
covers d in the sense of cosine similarity between
words and documents, s(w, d), in the embedded
space. Thus, the graph G = {(V1 ∪ V2), E}.
We also have for each document, a cluster assign-
ment from the spectral-clustering step, i.e. D =
∪i=1,...,nCi, where n is the total number of clus-
ters (topics), such that each document belongs to
exactly one cluster Ci.

Then, to construct a minimum semantic set
cover for a cluster, we proceed as follows. Let
the set of topic words, Ti for the ith cluster, Ci

be an empty set. Let V2,i = {d ∈ V2 : d ∈ Ci},
i.e. V2,i is the subset of vertices in V2 correspond-
ing to documents in the ith cluster. Let V1,i =
∪d∈V2,i

N(d), where N(d) represents node neigh-
borhood. In words, V1,i is the subset of corpus
words that cover at least one document in cluster
Ci, i.e. the set ∪d∈Ci

Wk(d).
Let Gi be the subgraph of G induced on Vi,1 ∪

V2,i. The greedy algorithm to find the minimum
set-cover for a cluster Ci proceeds by picking the
node in V1,i that covers the maximum number of
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documents in V2,i. In the case of a tie, we pick
all nodes with maximum degree. The words cor-
responding to the selected vertices are placed in
Ti, then the selected nodes, their neighbors in Gi

and the edges between them are removed from the
graph. We then recompute the degrees of all nodes
affected by this removal of edges. This process is
repeated until we have covered a desired fraction
(1 − δ) of the cluster. Algorithm 1 details topic-
word extraction using set-cover.

Algorithm 1 Greedy Set Cover

1: for Cluster Ci do
2: Label Set Ti ← ∅
3: V2,i = {v ∈ V2 : v ∈ Ci}
4: V1,i = {N(v) ∀v ∈ V2,i}
5: Gi = Subgraph of G induced on

V2,i ∪ V1,i
6: k = δ|V2,i|
7: while |V2,i| > k do
8: Sort V1,i in descending order of

degree
9: Remove the highest degree node(s),

v∗ and place in Ti
10: Remove all neighbors of v∗ and

corresponding edges from Gi

11: Recompute degrees for V1,i
12: end while
13: end for

4 Evaluation Methodology

We evaluate our approach in comparison with
LDA—the de facto standard in topic modeling—
both in qualitative and quantitative terms. Our
qualitative evaluation involves human judgments
about the appropriateness of topic choices for a
subsample of texts. We complement this with two
quantitative metrics, one with respect to a stan-
dard topic coherence measure, and the second in
using topic models for text classification tasks.
Throughout, we refer to our approach as set cover.
Moreover, in our experiments, the Word2Vec vec-
tors are derived by training a skip-gram model on
the corpus, with a sliding window of size 4 and the
number of dimensions set to 500. Additionally, we
compute the minimum 1-cover (i.e. δ = 0), that
is, we ensure that all documents in the cluster are
covered.

4.1 Qualitative Evaluation

Given the common use of topic modeling in ob-
taining qualitative insight from text, our first eval-
uation approach involves human judgments of
quality. This evaluation echos other human eval-
uations of topic modeling, such as by Steinskog
et al. (2017) for the topic-intrusion detection task.
Also noteworthy is the work by Chang et al.
(2009), who demonstrated the poor correlation of
the popular perplexity metric (Blei et al., 2003)
with human judgments.

For our qualitative evaluation, we set up a se-
ries of experiments on Amazon Mechanical Turk
(MTurk). For these tasks, we use 4 sets from the
health news tweets collected by (Karami et al.,
2018) and YouTube comments about 23andMe
(we provide specific details in a later section). To
ensure fairness to LDA—our chosen baseline—we
do this in two different settings based on how we
group documents into topically related subsets.

Matched Clusters
In the first setup, we take the document clusters
produced by spectral clustering as given, and fo-
cus the comparison between LDA and set cover on
the particular choice of topical words these gener-
ate. In this case, we produce a correspondence be-
tween a given cluster and an LDA topic by choos-
ing an LDA topic which maximizes the likelihood
that the cluster was produced by the topic. More
precisely, we assign a cluster C to the topic j
which maximizes

∑

i∈C
P (i|j),

where P (i|j) is the LDA-derived likelihood that a
document i reflects a topic j. We then generate the
collection of topic words for a given cluster using
LDA in a standard way. Specifically, we choose
the n most probable words in the associated LDA
topic, where n is set as the number of topic words
produced by the set cover.

In the experiment, we assign a random clus-
ter to a subject, who is then presented with the
documents in this cluster (or a random subsam-
ple of these, if the cluster is too large), the choice
of topic words based on LDA, and the choice of
topic words based on set cover. Additionally, we
also ask the subjects for judgments of a collection
of n randomly chosen words from the cluster to
calibrate the results. We then ask participants to
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judge how well a topic (i.e., the collection of topic
words) describes the given set of documents, and
score each result on a 5-point Likert scale, with 1
being very poor and 5 very good.

Independent Clusters
One may naturally object that the above compari-
son is unfair to LDA insofar as we are choosing
the clusters and then retrofitting LDA topics to
these. We therefore ran a second set of qualita-
tive experiments in which LDA topics were used
to derive clusters of similar documents. Specifi-
cally, we clustered all documents based on their
associated likelihood given a topic; that is, a doc-
ument i was assigned to an LDA topic j which
maximizes P (i|j). This gives us a collection of
document clusters, which we can then present to
human subjects for judgment. As before, we used
the top most probable n words from an LDA topic
as the topic description presented to human sub-
jects. The set cover approach, on the other hand,
used spectral clustering as before. Since the set
of documents presented for judgment is now dif-
ferent for the two approaches, we omitted the ran-
dom words for calibration. Consequently, while
we still presented the subjects with the same 5-
point Likert scale as before, this scale is now cal-
ibrated differently, as will be made evident in the
results section.

4.2 Quantitative Evaluations

To quantitatively compare our algorithms, we use
the standard intrinsic topic coherence metric, and
two classification tasks to compare the strengths
of the sparse representation produced. The topic
coherence (Stevens et al., 2012) for a set T of topic
words is defined as follows:

Coherence(T ) =
∑

(wi,wj)∈T
log

N(wi, wj) + λ

N(wj)
,

whereN(w) is the number of documents that con-
tain the word w and λ is a smoothing factor. We
compute average coherence scores over 5 runs,
varying cluster sizes between 5 and 25.

Document Classification Accuracy
We set up two classification tasks. The first task
is to classify short text messages as Ham or Spam.
The second task is to classify tweets as offensive,
hate speech or neither. For both, we use topic
modeling approaches to arrive at a sparse feature

representation of a document. For LDA, the fea-
ture vector for a document is comprised of the
probabilities that a document was generated by
each of the topics. For the set cover approach, we
construct binary feature vectors that represent the
occurrence of topic words in the cluster to which
the document is assigned. Given the above feature
representations, we use a Linear Support Vector
Classifier. For the multi-class problem, we use a
One-vs-Rest approach with Linear Support Vec-
tor Classifiers for both classification tasks. We
maintain a 60%-40% train-test split over the cor-
pus, and average accuracy over 5 runs, varying the
number of topics between 5 and 25.

4.3 Data
Our evaluation used several datasets which we de-
scribe briefly below.

Twitter - Health News tweets from more than
15 health news agencies were collected by Karami
et al. (2018). The dataset contains separate files for
tweets collected from each source. Each source
is observed to have had trends in tweets, which
implicitly form topic clusters.

YouTube Comments - 23andMe We collected
a sample of 800 YouTube comments from the
top 50 YouTube video results for the search term
‘23andMe’. This dataset is qualitatively different
from the Twitter corpus, showing greater variation
in document length and significantly more noise.

Twitter - Hate and Offensive Speech A set
of 24802 tweets based on a hate speech lexicon
were collected and labelled into 3 categories - hate
speech, offensive speech and neither by Davidson
et al. (2017). This dataset is used in one of our two
classification tasks.

Ham/Spam Short Messages 5574 short text
messages were classified as legitimate (ham) or
spam by Almeida et al. (2013). This forms the
basis of the second classification task.

5 Results

5.1 Qualitative Evaluations
In the first set of MTurk experiments, where
topics from both algorithms were shown in the
same task, we asked human judges to score topics
from 4 document clusters, collecting 20 responses
for each. For instance, the Fox News dataset
contains a set of tweets posted in 2015 about the
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measles outbreak in California, linked to Disney
theme parks. The topic words for the measles
outbreak cluster identified by the two algorithms
are shown in Table 1. Here, we see that LDA
picks certain irrelevant terms for the shown cluster
sample (‘u’, ‘rare’), while completely missing
the term ‘measles’, which is a key subject of the
documents (we note that we remove stop-words
during preprocessing using NLTK (Loper and
Bird, 2002)). The set cover approach, on the other
hand, is able to identify highly pertinent words.
We refer to this experiment as Matched Clusters.
This can be thought of as reflecting the propriety
of the chosen topic words conditional on the
clusters of similar documents. The average scores
are shown in Table 2.

Cluster
Sample

· Disneyland measles outbreak linked
to low vaccination rates

·More measles cases tied to Disneyland
Illinois day care

· Amid US measles outbreak few rules
on teacher vaccinations

· US measles count rises to 121; most
linked to Disneyland

·Measles cases turn attention to bounty
of childhood vaccines

· FDA Commissioner says measles
outbreak alarming

LDA study, cancer, say, vaccine, died, disney-
land, u, rare, woman, treatment

Set Cover measles, cases, linked, disney, disneyland,
alarming, almost, amid, amidst, bounty

Table 1: Topic Words - Measles Outbreak, 2015

Dataset
(Cluster)

Random LDA Set Cover

US News
(Superfoods)

2.9 3 4.35

Fox News
(Disneyland
Measles)

1.95 3.05 4.45

US News
(Parenting)

1.95 1.6 4.5

YouTube
(23andMe,
Sale of Info)

2.35 2.7 4.1

Table 2: Average Turker scores for Matched Clusters
on a 5-point Likert scale.

Our second set of experiments for clusters cho-
sen independently for the two algorithms was con-
ducted on a significantly larger scale. We up-
loaded 5 clusters per dataset, and collected 40 re-
sponses per cluster, resulting in a total of 2000
data points, 1000 for each algorithm. We refer to
this experiment as Independent Clusters. Table 3
shows example topic words identified by LDA and
Set Cover. The advantages of the clustering step
in our approach are evident in this example - the
set cover cluster contains documents that are more
closely related to one another.

More importantly, it is worth noting the choice
of the term ‘delay’ in the set cover topic words
- while the term does not itself appear in the en-
tire cluster, it is semantically related to documents
in the cluster referring to the long wait Maryland
residents had to endure to sign up for Obamacare.
This is precisely the reason for using a word-
embedding such as Word2Vec in our approach -
topic words are not restricted to words in the clus-
ter and yet appear to be semantically meaningful.
The average judgments from MTurk for these ex-
periments are reported in Table 4.

In both experiments, we can see that set cover
consistently outperforms LDA, often by a large
margin. We also performed a two sided indepen-
dent samples t-test on the scores. The differences
between the means in Table 4 are statistically sig-
nificant; all but 23andMe for p < 0.0001, and the
significance for 23andMe is for p < 0.05. It is
interesting to note that set cover performs slightly
better in terms of evaluation scores in the Matched
Clusters study, suggesting that it is judged favor-
ably particularly in the context of random calibra-
tion and LDA.

Since the clusters are fixed in these experiments,
the results reflect the particular advantage of the
set cover method itself in choosing descriptive
words for a collection of similar documents. The
Independent Clusters study, in contrast, serves
more as an evaluation of each approach in an
end-to-end fashion, and here, too, the difference
is substantial. However, the LDA scores in this
case are generally comparable or higher than in
the Matched Clusters experiments, which suggests
that the advantage of set cover over LDA may be
primarily due to its better choice of topic words,
which is its main novelty, rather than the cluster-
ing approach.
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Cluster Sample Algorithm
(Data set)

Topic
Words

· People are having sex after heart bypass surgery, and USN is ON IT:

·Most Americans dont know what causes cancer. Do you? WorldCancerDay

· Can a fitness tracker help me with my diet as well? USNTechChat

· In honor of World Cancer Day, reports on 7 Innovations in Cancer Therapy

· How to call a truce & build a healthy relationship with food:

· Check out our 2015 BestDiets rankings! Wed love your feedback

LDA (USNews)

surgery
cancer
know
usntech-
-chat
child
say
reports
lose
medical
like

· Obamacare Bump: 10 Million Got Insurance, Survey Shows

· #AskNBCNews: Obamacare Deadline Day Questions

· Obamacare draws last-minute shoppers; site gets nearly 2 million visits

· Supreme Court Hears Argument on Charged Obamacare Case

· Communty health centers at center of Obamacare

· The Longest Wait: Maryland Residents Wait in LIne for Last-Ditch Obamacare

Set Cover (NBC)

obamacare
million
get
new
deadline
health
may
questions
court
delay

Table 3: Topic Words - Independent Clusters

Dataset LDA Set
Cover

23andMe Mean 3.94 4.16
Var 0.95 0.79

NY Times Mean 2.42 3.515
Var 1.493 1.039

NBC Mean 2.315 4.06
Var 1.265 0.836

Fox Mean 2.835 3.965
Var 1.388 1.023

US News Mean 3.085 3.78
Var 1.327 1.09

Table 4: Average Turker scores for Independent
Clusters on a 5-point Likert scale.

5.2 Quantitative Evaluations

Topic Coherence
The first quantitative comparison between set
cover and LDA is in terms of the topic coherence
metric. For each dataset, we plot topic coherence
as a function of the number of topics ranging from
5 to 25 (for the set cover approach, the number
of topics corresponds to the number of clusters).
Figure 2 presents the topic coherence results. In
nearly all of these cases (with the few apparent ex-
ceptions), set cover scores significantly better on
this metric than LDA. It is also notable that set
cover tends to improve as we increase the number
of topics, whereas this is typically not the case for
LDA (New York Times Health News tweets is an

(a) 23andMe (YouTube) (b) Fox Health News
(tweets)

(c) NBC Health News
(tweets)

(d) NY Times Health News
(tweets)

(e) US News (Health) tweets

Figure 2: Topic Coherence.

exception, where set cover scores decrease with
the number of topics, while LDA scores increase
slightly, so that for a large number of topics the
two approaches are indistinguishable).
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Classification
The final evaluation uses two objective document
classification tasks to compare the effectiveness of
set cover and LDA in producing a sparse feature
representation for such tasks. We present clas-
sification accuracy by varying number of topics
again from 5 to 25. Figure 3 shows classification
results. While LDA appears to be slightly better
in the Ham/Spam email classification case, and is
occasionally better in the Hate/Offensive speech
classification task, the differences are quite small,
with both achieving accuracy in the 87-89% range
in the former, and 77-78% in the latter.

Figure 3: Classification accuracy comparison.

6 Discussion

The reason for LDA’s observed inferiority in the
qualitative experiments can be traced back to the
fact that LDA allows each document to be gener-
ated from a mix of topics. However, in most short-
text corpora, documents usually pertain to a single
topic. Additionally, the number of documents be-
longing to each topic in a corpora is not (explic-
itly) captured by LDA.

With the set cover approach, the clustering step
provides us this information - clusters need not
be of uniform size, and such a clustering is easy

to learn. This may explain, for instance, why
LDA completely misses the word ‘measles’ in the
Matched Clusters sample shown in Table 1. The
number of documents about the measles outbreak
in the corpora are relatively few, and treating this
set of documents independently of other docu-
ments in the corpus makes it easier to identify this
theme.

The topic coherence experiments show that the
topic words learnt using set cover are more likely
to co-occur across the corpus as compared to
those learnt with LDA, thereby suggesting that set
cover’s choice of topic words is more meaningful.
The results of the classification task are notewor-
thy, given that our model is far less complex than
LDA, and yet produces almost as effective a sparse
representation.

7 Conclusion

In this paper, we introduced a conceptually simple
and highly interpretable deterministic topic mod-
eling algorithm based on constructing a semantic
set cover over clusters of documents in a corpus.
Unlike popular probabilistic topic modeling meth-
ods, our algorithm performed well on short text
data, thereby overcoming the limitations imposed
by corpus-sparsity. We demonstrated that our ap-
proach significantly outperforms LDA on qualita-
tive scores by human judges as well as the standard
topic coherence metric, and that it is comparable
to LDA for document classification.

One limitation of our approach is the depen-
dence on a good clustering of documents, in the
sense that documents are meaningfully grouped
together by the clustering algorithm used, given
a dataset. Additionally, we rely on a word embed-
ding, which may not be easy to learn over datasets
where terms do not recur in the same contexts fre-
quently. A potential solution to this is to learn the
embedding on the union of said dataset with an-
other corpus of similar (thematic and structural)
nature, where term co-occurrences are more fre-
quent.

Finally, as future work, we aim to explore set-
cover based topic modeling where the covering
threshold set as the top-k similar words to a doc-
ument varies for each topic. Hopefully, this will
allow us to capture the notion that some topics
are sufficiently captured by a smaller set of words
whereas others may need a larger threshold to fully
capture their semantics.
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Abstract

We introduce MCScript2.0, a machine
comprehension corpus for the end-to-end
evaluation of script knowledge. MCScript2.0
contains approx. 20,000 questions on approx.
3,500 texts, crowdsourced based on a new
collection process that results in challenging
questions. Half of the questions cannot be
answered from the reading texts, but require
the use of commonsense and, in particular,
script knowledge. We give a thorough analysis
of our corpus and show that while the task is
not challenging to humans, existing machine
comprehension models fail to perform well
on the data, even if they make use of a
commonsense knowledge base. The dataset
is available at http://www.sfb1102.
uni-saarland.de/?page_id=2582

1 Introduction

People have access to a wide range of common-
sense knowledge that is naturally acquired during
their lifetime. They make frequent use of such
knowledge while speaking to each other, which
makes communication highly efficient. The con-
versation in Example 1 illustrates this: For Max,
it is natural to assume that Rachel paid during her
restaurant visit, even if this fact was not mentioned
by Rachel.

(1) Rachel: “Yesterday, I went to this new Ar-
gentinian restaurant to have dinner. I en-
joyed a tasty steak.”
Max: “What did you pay?”

Script knowledge is one of the most important
types of commonsense knowledge and subsumes
such information (Schank and Abelson, 1977). It
is defined as knowledge about everyday situations,
also referred to as scenarios. It subsumes informa-
tion about the actions that take place during such
situations, and their typical temporal order, referred

to as events, as well as the persons and objects that
typically play a role in the situation, referred to
as participants. In the example, script knowledge
subsumes the fact that the paying event is a part of
the eating in a restaurant scenario.

Recent years have seen different approaches to
learning script knowledge, centered around two
strands: Work around narrative chains that are
learned from large text collections (Chambers and
Jurafsky, 2008, 2009), and the manual induction
of script knowledge via crowdsourcing (Regneri
et al., 2010; Wanzare et al., 2016). Script knowl-
edge has been represented both symbolically (Jans
et al., 2012; Pichotta and Mooney, 2014; Rudinger
et al., 2015) and with neural models (Modi and
Titov, 2014; Pichotta and Mooney, 2016). Scripts
have been evaluated mostly intrinsically (Wanzare
et al., 2017; Ostermann et al., 2017). An exception
is MCScript (Ostermann et al., 2018a), a reading
comprehension corpus with a focus on script knowl-
edge, and a predecessor to the data set presented
in this work. Previous work has shown, however,
that script knowledge is not required for perform-
ing well on the data set (Ostermann et al., 2018b).
Hence, to date, there exists no evaluation method
that allows one to systematically assess the contri-
bution of models of script knowledge to the task of
automated text understanding.

Our work closes this gap: We present MC-
Script2.0, a reading comprehension corpus focused
on script events and participants. It contains more
than 3,400 texts about everyday scenarios, together
with more than 19,000 multiple-choice questions
on these texts. All data were collected via crowd-
sourcing. About half of the questions require the
use of commonsense and script knowledge for find-
ing the correct answer (like the question in Ex-
ample 1), a notably higher number than in MC-
Script. We show that in comparison to MCScript,
commonsense-based questions in MCScript2.0 are
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T (...) We put our ingredients together to
make sure they were at the right temper-
ature, preheated the oven, and pulled out
the proper utensils. We then prepared the
batter using eggs and some other materi-
als we purchased and then poured them
into a pan. After baking the cake in the
oven for the time the recipe told us to, we
then double checked to make sure it was
done by pushing a knife into the center.
We saw some crumbs sticking to the knife
when we pulled it out so we knew it was
ready to eat !

Q1 When did they put the pan in the oven and
bake it according to the instructions?
After eating the cake. 7

After mixing the batter. X
Q2 What did they put in the oven?

The cake mix. X
Utensils. 7

Figure 1: Example text fragment from MCScript2.0

also harder to answer, even for a model that makes
use of a commonsense database. Thus, we argue
that MCScript2.0 is the first resource which makes
it possible to evaluate how far models are able to
exploit script knowledge for automated text under-
standing.

Figure 1 shows a text snippet from a text in MC-
Script2.0, together with two questions with answer
alternatives1. To find an answer for question 1,
information about the temporal order of the steps
for baking a cake is required: The cake is put in
the oven after mixing the batter, and not after eat-
ing it—a piece of information not given in the text,
since the event of putting the cake in the oven is not
explicitly mentioned. Similarly, one needs script
knowledge about which participants are typically
involved in which events to know that the cake mix
rather than the utensils is put into the oven. Both
incorrect answer candidates are distractive: The
utensils as well as the action of eating the cake are
mentioned in the text, but wrong answers to the
question. Our contributions are as follows:

• We present a new collecting method for chal-
lenging questions whose answers require com-
monsense knowledge and in particular script
knowledge, as well as a new resource that was
created with this method.

1More text samples are given in the Supplemental Material.

• We show that the task is simple for humans,
but that existing benchmark models, includ-
ing a top-scoring machine comprehension
model that utilizes a resource for common-
sense knowledge, struggle on the questions
in MCScript2.0; especially on questions that
require commonsense knowledge.

• We compare MCScript2.0 to MCScript, the
first machine comprehension resource for eval-
uating models of script knowledge. We show
that in comparison to MCScript, the number
of questions that require script knowledge is
increased by a large margin and that such ques-
tions are hard to answer. Consequently, we
argue that our dataset provides a more robust
basis for future research on text understanding
models that use script knowledge.

2 Why another Machine Comprehension
Dataset on Script Knowledge?

MCScript (Ostermann et al., 2018a) is the first ma-
chine comprehension dataset designed to evaluate
script knowledge in an end-to-end machine com-
prehension application, and to our knowledge the
only other existing extrinsic evaluation dataset for
script knowledge. Recent research has shown, how-
ever, that commonsense knowledge is not required
for good performance on the dataset (Ostermann
et al., 2018b; Merkhofer et al., 2018).

We argue that this is due to the way in which
questions were collected. During the collection
process, workers were not shown a text, but only
a very short description of the text scenario. As a
result, many questions ask about general aspects
of the scenario, without referring to actual details.
This leads to the problem that there are many ques-
tions with standardized answers, i.e. questions that
can be answered irrespective of a concrete read-
ing text. Examples 2 and 3 show two such cases,
where the correct answer is almost exclusively in
the shower and on the stove, independent of the
text or even scenario.

(2) Where did they wash their hair?

(3) Where did they make the scrambled eggs?

Merkhofer et al. (2018) found that such infor-
mation can essentially be learned from only the
training data, using a simple logistic regression
classifier and surface features regarding words in
the text, question and answer candidates.
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Also, many questions require vague inference
over general commonsense knowledge rather than
script knowledge. Example 4 illustrates this: The
simple fact that planting a tree gets easier if you
have help is not subsumed by script knowledge
about planting a tree, but a more general type of
commonsense knowledge.

(4) Text: Once you know where to dig , select
what type of tree you want. (...) Dig a hole
large enough for the tree and roots . Place
the tree in the hole and then fill the hole
back up with dirt . (...)
Q: Would it have been easier to plant the
tree if they had help?
yes X
no 7

We inspected a random sample of 50 ques-
tions from the publicly available development set
that were misclassified by the logistic model of
Merkhofer et al. (2018). We found that for over
90% of the inspected questions, the use of script
knowledge would be only marginally relevant.

We present a new data collection method and
corpus that results in a larger number of challeng-
ing questions that require script knowledge. In
particular, we define a revised question collection
procedure, which ensures a large proportion of non-
trivial commonsense questions.

3 Corpus Creation

Texts, questions, and answer candidates are re-
quired for a multiple choice machine comprehen-
sion dataset. Our data collection process for texts
and answers is based on the MCScript data and the
methods developed there, but with several crucial
differences. Like Ostermann et al. (2018a), we cre-
ate the data set via crowdsourcing. The question
collection is revised to account for the shortcom-
ings found with MCScript.

Similarly to Ostermann et al. (2018a), we are
interested in questions that require inference over
script knowledge for finding a correct answer. Cre-
ating such questions is challenging: When ques-
tions are collected by showing a reading text and
asking crowdsourcing workers to write questions,
their answer can usually be read off the text. The
authors of MCScript thus decided to not show a
reading text at all, but only a short summary of the
text scenario. This resulted in too general ques-
tions, so we decided for a third option: We identi-

fied a number of target sentences in the reading text
and guided workers to formulate questions about
script-related details in these sentences. The target
sentences were then hidden from the text, meaning
that relevant information would have to be inferred
from common sense during the answer collection
and also in the task itself. In the following sections,
we describe the three data collection steps in detail.

3.1 Text Collection

As a starting point, we reused all texts from MC-
Script (2,119 texts on 110 scenarios) for our data
set. To increase the topical coverage and diver-
sity of the data set, we added texts for 90 new
scenarios to our collection. As for MCScript, we
selected topically different and plausible everyday
scenarios of varying complexity, which were not
too fine-grained (such as opening a window). The
scenarios were taken from 3 sources: First, we
extracted scenarios from several script collections
(Wanzare et al., 2016; Regneri et al., 2010; Singh
et al., 2002) that are not part of MCScript. Second,
we inspected the spinn3r blog story corpus (Burton
et al., 2009), a large corpus of narrative blog stories
and identified additional scenarios in these stories.
Third, we added new scenarios that are related to
existing ones or that extend them.

We collected 20 texts per new scenario, using
the same text collection method as Ostermann et al.
(2018a): We asked workers to tell a story about a
certain everyday scenario “as if talking to a child”.
This instruction ensures that the resulting stories
are simple in language and clearly structured. Texts
collected this way have been found to explicitly
mention many script events and participants (Modi
et al., 2016; Ostermann et al., 2018a). They are
thus ideal to evaluate script-based inference.

3.2 Question Collection

For the question collection, we followed Oster-
mann et al. (2018a) in telling workers that the data
are collected for a reading comprehension task for
children, in order to get linguistically simple and
explicit questions. However, as mentioned above,
we guide workers towards asking questions about
target sentences rather than a complete text.

As target sentences, we selected every fourth
sentence in a text. In order to avoid selecting target
sentences with too much or too little content, we
only considered sentences with less than 20 tokens,
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Figure 2: Screenshot of an item in the participant question collection experiment.

but that contained 2 or more noun phrases.2

In a series of pilot studies, we then showed the
texts with highlighted target sentences to workers
and asked them to write questions about these sen-
tences. We however found, that in many cases, the
written questions were too general or nonsensical.

We concluded that an even more structured task
was required and decided to concentrate on ques-
tions of two types: (1) questions that ask about
participants, and (2) questions about the tempo-
ral event structure of a scenario. Participants are
usually instantiated by noun phrases (NPs), while
events are described by verb phrases (VPs). We
thus used Stanford CoreNLP (Manning et al., 2014)
to extract both NPs and VPs in the target sentences
and split up the experiment into two parts: In the
first part, workers were required to write questions
that ask about the given noun phrase. Figure 2
shows a screenshot of an item from the first part.
The first column shows the reading text with the
target sentence highlighted. The second columns
shows all extracted phrases with a field for one
question per phrase.3 Full details of the experiment
instructions are given in the Supplemental Material.

In the second part, we then asked workers to
write a temporal question (when, how long, etc.)
using the given verb phrase. We found that an exact
repetition of the NP instructions for the second
part (“ask about the given verb phrase”) resulted in
unnatural questions, so we adapted the instructions.
A screenshot of the VP experiment is given in the
Supplemental Material.

We showed each text to two workers and asked

2All parameters were selected empirically, by testing dif-
ferent values and analyzing samples of the resulting data.

3If the noun phrase was part of a prepositional phrase or
a construction of the form “NP of NP”, we took the whole
phrase instead, because it is more natural to ask for the com-
plete phrase. In order to avoid redundancy, we only looked at
NPs that had no other NPs as parents. We also excluded noun
phrases that referred to the narrator (I, me etc.).

them to write one question per VP or NP. Workers
were only allowed to work on either the VP or
the NP part, since the instructions could easily be
confused. In order to exclude yes/no questions, we
did not accept inputs starting with an auxiliary or
modal verb. Also, all questions needed to contain
at least 4 words. We asked workers to use they to
refer to the protagonist of the story and other types
of mentions (e.g. pronouns like I, you, we or the
word narrator) were not accepted.

3.3 Answer Collection

For collecting answer candidates we hid the target
sentences from the texts and showed them with
up to 12 questions, to keep the workload at an
acceptable level. If there were more questions for
a text, we selected 12 questions at random.

Since the target sentences are hidden in the texts,
it can be expected that some questions cannot be an-
swered from the text anymore. However, the neces-
sary information for finding an answer might be in-
ferred from script knowledge, so workers were ex-
plicitly told that they might need commonsense to
find an answer. Some answers can still be read off
the text, if other parts of the texts contain the same
information as the hidden target sentences. For
other questions, neither the text nor script knowl-
edge provides sufficient information for finding an
answer.

As for the creation of MCScript, workers first
had to conduct a 4-way classification for each ques-
tion to account for these cases: text-based (answer
is in the text), script-based (answer can be inferred
from script knowledge), unfitting (question doesn’t
make sense), unknown (answer is not known). Hav-
ing such class annotations is not only useful for
evaluation, but it also sensitizes workers for the
fact that they are explicitly allowed to use back-
ground knowledge.

In the experiment, workers were also instructed
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text-based script-based text-or-script unfitting unknown
9,357 12,433 2,403 3,240 6,457

total answerable: 24,193 total not answerable: 9,397

Table 1: Distribution of question labels, before validation.

to write both a correct and a plausible incorrect
answer for questions labeled as text-based of script-
based. We follow (Ostermann et al., 2018a) and
require workers to write an alternative question if
the labels unfitting or unknown are used, in order
to level out the workload.

We presented each question to 5 workers, result-
ing in 5 judgements and up to 5 incorrect and cor-
rect answer candidates per question. For the final
data set, we considered questions with a majority
vote (3 out of 5) on text-based or script-based. We
also included questions without a majority vote, but
for which at least 3 workers assigned one of text-
based or script-based. In that case, we assigned
the new label text-or-script and also accepted the
question for the final data set. This seemed rea-
sonable, since at least 3 workers wrote answers for
the question, meaning it could still be used in the
final data collection. The remaining questions were
discarded.

3.4 Answer Candidate Selection
In a last step, we selected one correct and one incor-
rect answer from all possible candidates per ques-
tion for the data set. To choose the most plausible
correct answer candidate, we adapt the procedure
from Ostermann et al. (2018a): We normalize all
correct answers (lowercasing, normalizing num-
bers4, deleting stopwords5) and then merge candi-
dates that are contained in another candidate, and
candidate pairs with a Levenshtein (1966) distance
of less than 3. The most frequent candidate is then
selected as correct answer. If there was no clear
majority, we selected a candidate at random.

To select an incorrect answer candidate, we
adapt the adversarial filtering algorithm from
Zellers et al. (2018). Our implementation uses
a simple classifier that utilizes shallow surface fea-
tures. The algorithm selects the incorrect answer
candidate from the set of possible candidates that
is most difficult for the classifier, i.e. an incorrect
answer that is hard to tell apart from the correct

4We used text2num, https://github.com/
ghewgill/text2num.

5and, or, to, the, a

answer (e.g. the incorrect answers in Figure 1: eat-
ing and utensils are also mentioned in the text). By
picking incorrect answers with the adversarial fil-
tering method, the dataset becomes robust against
surface-oriented methods.

Practically, the algorithm starts with a random as-
signment, i.e. a random incorrect answer candidate
per question. This assignment is refined iteratively,
such that the most difficult candidate is selected.
In each iteration, the algorithm splits the data into
a random training part and a test part. The classi-
fier is trained on the training part and then used to
classify all possible candidates in the test part. The
assignment of answer candidates in the test data is
then changed such that the most difficult incorrect
answer candidate per question is picked as incorrect
answer. After several iterations through the whole
dataset, the number of changed answer candidates
usually stagnates and the algorithm converges.

For MCScript2.0, we use the logistic classifier
mentioned in Section 2, which only uses surface
features and is thus well suited for the filtering
algorithm. Implementation details and pseudocode
are given in the Supplemental Material.

4 Corpus Analysis

4.1 General Statistics

In total, MCScript2.0 comprises 19,821 questions
on 3,487 texts, i.e. 5.7 questions on average per
text. The average length of texts, questions and
answers is 164.4 tokens, 8.2 tokens and 3.4 tokens,
respectively.

In the data collection process, we crowdsourced
1,800 new texts, resulting in a total of 3,919 texts
for 200 scenarios. On average, there are 1.98 target
sentences per text. In the question collection, we
gathered 42,132 questions that were then used for
the answer collection. For 8,242 questions, there
was no clear majority on the question label. Ta-
ble 1 shows the label distribution on the remaining
33,890 questions. 24,193 of these could be an-
swered, i.e. 71%.

To increase data quality, we conducted a manual
validation of the data. Four student assistants re-
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placed erroneous answers and deleted nonsensical
questions, question duplicates and incoherent texts.

During validation, 152 texts were found to be
incoherent and discarded (along with all questions).
Additionally, 3,388 questions were deleted because
they were nonsensical or duplicates. 1,620 correct
and 2,977 incorrect answers were exchanged, resp.,
because they were inappropriate. If a question dele-
tion resulted in texts without any questions, or if
a text did not have any answerable questions, the
text was discarded, too.

After question validation, the final dataset com-
prises 9,935 questions that are labeled as script-
based, 7,908 as text-based, and 1,978 as text-or-
script.

4.2 Questions

Figure 3 gives the distribution over question types,
which we extracted by looking at the first word
in the question. The largest number of questions
are what questions, most of which ask about par-
ticipants of a script. When questions make up the
second largest group, asking for temporal event
structure. During the VP question experiment,
some workers ignored that we asked for tempo-
ral questions only, which resulted in a number of
how questions.

MCScript2.0 contains 50% questions labeled as
script-based, which is a notably larger amount as
compared to the approximately 27% of questions in
MCScript labeled as script-based. The number of

script-based questions varies between the question
types, as can be seen in Figure 4. While when and
how questions require script knowledge for finding
an answer in more than 60% of cases, less than half
of what questions do so. A simple explanation for
this could be that when or how questions typically
ask for events, while what questions ask for par-
ticipants. Events are usually referred only once in
a text, i.e. with the hiding of the respective event
mention, the needed information has to be inferred.
Participants in contrast tend to appear more often
throughout a story.

Example 5 below illustrates this. Question 1
was originally asked about a sentence in which the
plates are set for the dinner guests. The guests still
appear in another sentence, so the answer can be
inferred from the text. For question 2, in contrast,
script knowledge is required for finding an answer:
The event of bringing the items to the table is not
mentioned anymore, so the information that this
happens typically after counting plates and silver-
ware needs to be inferred.

(5) T: (...) I was told that there would be 13
or 14 guests. First I counted out 14 spoons,
then the same number of salad forks, dinner
forks, and knives. (...) I set each place with
one napkin, one dinner fork, one salad fork,
one spoon, and one knife. (...)
Q1: Who are the plate and cup for?
dinner guests X the neighbor 7

Q2: When did they bring the items over to
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the table?
after counting them X
after placing them on the table 7

5 Experiments

We test three benchmark models on MCScript2.0
that were also evaluated on MCScript, so a direct
comparison is possible. For the experiments, we
split the data into a training set (14,191 questions
on 2,500 texts), a development set (2,020 questions
on 355 texts) and a test set (3,610 questions on 632
texts). All texts of 5 randomly chosen scenarios
were assigned completely to the test set, so a part
of the test scenarios are unseen during training.

5.1 Models
Logistic Regression Classifier
As first model, we reimplemented the logistic re-
gression classifier proposed by Merkhofer et al.
(2018), which was also used in the adversarial fil-
tering algorithm. The classifier employs 3 types of
features: (1) Length features, encoding the length
of the text, answer and questions on the word and
character level, (2) overlap features, encoding the
amount of literal overlap between text, question,
and answers, and (3) binary lexical patterns encod-
ing the presence or absence of words or combina-
tions of words in answer, text and question.

Attentive Reader
As second model, we implement an attentive reader
(Hermann et al., 2015). We adopt the formulation
by Ostermann et al. (2018a) (originally by Chen
et al. (2016)). All tokens in text, question and
answers are represented with word embeddings. Bi-
directional gated recurrent units (GRUs, Cho et al.
(2014)) process the text, question and answers and
transform them into sequences of contextualized
hidden states. The text is represented as a weighted
average of the hidden states with a bilinear attention
formulation, and another bilinear weight matrix is
used to compute a scalar as score for each answer.
For a formalization, we refer to Ostermann et al.
(2018a) and Chen et al. (2016).

Three-way Attentive Network (TriAN)
As third model, we use a three-way attentive net-
work (Wang et al., 2018), the best-scoring model of
the shared task on MCScript6. Various types of in-

6Code available at https://github.com/
intfloat/commonsense-rc

formation are employed to represent tokens: Word
embeddings, part of speech tags, named entity em-
beddings, and word count/overlap features, similar
to the logistic classifier. Three bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) modules are
used to encode text, question and answers. The re-
sulting hidden representations are reweighted with
three attention matrices and then summed into vec-
tors using three self-attention layers.

Additionally, token representations are enhanced
with ConceptNet (Speer et al., 2017) relations
as a form of induced commonsense knowledge.
ConceptNet is a large database of commonsense
facts, represented as triples of two entities with a
predicate. Relevant ConceptNet relations between
words in the answer and the text are queried from
the database and represented with relation embed-
dings, which are learned end-to-end during training
and appended to the text token representations.

In contrast to Wang et al. (2018), we use the non-
ensemble version of TriAN without pretraining on
RACE (Lai et al., 2017), for better comparability to
the other models.

5.2 Human Upper Bound
To assess human performance, 5 student assistants
performed the reading comprehension task on 60
texts each. To assess agreement, 20 texts were an-
notated by all students. The annotators reached
averaged pairwise agreement of 96.3% and an av-
erage accuracy of 97.4%, which shows that this is
a simple task for humans.

5.3 Results
Overall Performance. Table 2 gives details about
the performance of the 3 benchmark models on the
test set, and on script-based (accscr) and text-based
(acctxt) questions in the test set. As can be seen, the
logistic model scores worst, presumably because
it has been used for the adversarial filtering algo-
rithm and the data are thus most challenging for this
model. TriAN performs best, clearly outperform-
ing the attentive reader. TriAN is apparently supe-
rior in its way of text processing, since it employs
a richer text representation and exploits attention
mechanisms on more levels, which is reflected by
a higher accuracy on text-based questions. In con-
trast, script-based questions seem to be challenging
for TriAN. This is interesting, because it shows that
ConceptNet alone cannot provide sufficient infor-
mation for answering the kind of questions that can
be found in MCScript2.0.
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Figure 5: Performance of the models on question types.

acc accscr acctxt
Logistic Model 0.61 0.56 0.67
Attentive Reader 0.65 0.63 0.68
TriAN 0.72 0.67 0.78

Humans 0.97

Table 2: Accuracy on test set, and on script/text-based
questions (accscr, acctxt) on MCScript2.0. The maxi-
mum per column is printed in bold.

Comparison to MCScript. Since the same
models were used for MCScript, a comparison of
their performance on both datasets is possible. Re-
sults on MCScript are given in Table 3.7 As can be
seen, the performance of all three models is worse
on MCScript2.0, showing that the dataset is gen-
erally more challenging. In contrast to MCScript,
script-based questions in MCScript2.0 are clearly
harder to answer than text-based questions: All
models perform worse on script-based questions
as compared to text-based questions. In compar-
ison to MCScript, the performance of TriAN is
12% lower. This indicates that the new mode of
question collection and the answer selection via
adversarial filtering resolve some of the difficulties
with MCScript.

To assess whether the performance difference
to MCScript is due to the 90 new scenarios being
more challenging, we additionally evaluated the
models on these scenarios only. We found no per-
formance difference on the new vs. old scenarios.

Influence of Adversarial Filtering. To find out
how large the influence of the new question collec-
tion method and the answer selection via adversar-
ial filtering is, we conducted an additional experi-
ment: We applied the answer selection method of
Ostermann et al. (2018a) to our data set to create

7For the attentive reader, numbers were taken from (Oster-
mann et al., 2018b). The other models were retrained (and in
the case of the logistic model re-implemented), since no exact
numbers on script/text-based questions were published.

acc accscr acctxt
Logistic Model 0.79 0.76 0.81
Attentive Reader 0.72 0.75 0.71
TriAN 0.80 0.79 0.81

Humans 0.98

Table 3: Accuracy on the test set and on script/text-
based questions (accscr, acctxt) on MCScript. The
maximum per column is printed in bold.

an alternative version of the data that is not based
on adversarial filtering. Correct answers were se-
lected to have the lowest possible overlap with the
reading text. Incorrect answers were selected using
the majority voting technique described in Section
3.4.

We found that the adversarial filtering accounts
for around two thirds of the total accuracy differ-
ence of TriAN as compared to MCScript, i.e. one
third of the difference can be attributed to the new
question collection. This means that both mod-
ifications together add to the larger difficulty of
MCScript2.0.

Question Types. Figure 5 shows the perfor-
mance of the models on single question types, as
identified in Section 4. It is clear that when ques-
tions are most challenging for all models. The
logistic classifier performs almost at chance level.
As far as TriAN is concerned, we found that many
cases of errors ask for the typical temporal order of
events, as Example 6 illustrates:

(6) Q: When did they put the nozzle in their
tank?
before filling up with gas. X
after filling up with gas. 7

The event of put the nozzle in the tank is not
mentioned in the shown version of the text, so it
is not possible to read off the text when the event
actually took place.
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How questions are the least difficult questions.
This can be explained with the fact that many how
questions ask for numbers that are mentioned in
the text (e.g. How long did they stay in the sauna?
or How many slices did they place onto the paper
plate?). The answer to such questions can often
be found with a simple text lookup. Another part
of how questions asks for the typical duration of
an activity. These questions often have similar an-
swers irrespective of the scenario, since most of the
narrations in MCScript2.0 span a rather short time
period. Such answers can easily be memorized by
the models.

Especially for TriAN, what and who questions
seem to be easy. This could be explained with
the fact that ConceptNet contains lots of informa-
tion about entities and their relations to each other,
apparently also covering some information about
script participants, which seems to be useful for
these question types.

6 Related Work

Recent years have seen a number of datasets that
evaluate commonsense inference. Like our corpus,
most of these data sets choose a machine com-
prehension setting. The data sets can be roughly
classified along their text domain:

News Texts. Two recently published machine
comprehension data sets that require commonsense
inference are based on news texts. First, NewsQA
(Trischler et al., 2017) is a dataset of newswire texts
from CNN with questions and answers written by
crowdsourcing workers. During data collection,
full texts were not shown to workers as a basis for
question formulation, but only the text’s title and
a short summary, to avoid literal repetitions and
support the generation of non-trivial questions re-
quiring background knowledge. Second, ReCoRD
(Zhang et al., 2018) contains cloze-style questions
on newswire texts that were not crowdsourced, but
automatically extracted by pruning a named entity
in a larger passage from the text.

Web Texts. Other corpora use web documents.
An example is TriviaQA (Joshi et al., 2017), a cor-
pus that contains automatically collected question-
answer pairs from 14 trivia and quiz-league web-
sites, together with web-crawled evidence docu-
ments from Wikipedia and Bing. While a major-
ity of questions require world knowledge for find-
ing the correct answer, it is mostly factual knowl-
edge. CommonsenseQA (Talmor et al., 2018) con-

tains a total of over 9000 multiple-choice questions
that were crowdsourced based on knowledge base
triples extracted from ConceptNet. Texts were only
added post-hoc, by querying a web search engine
based on the formulated question, and by adding
the retrieved evidence texts to the questions and
answers.

Fictional Texts. NarrativeQA (Kočiský et al.,
2018) is a reading comprehension dataset that
largely differs from other corpora by means of text
length. Instead of providing short reading texts,
models have to process complete books or movie
scripts and answer very complex questions.

Because of their domains, the aforementioned
data sets evaluate a very broad notion of com-
monsense, including e.g. physical knowledge (for
trivia texts) and knowledge about political facts (for
newswire texts). However, none of them explicitly
tackle script knowledge.

7 Conclusion

We presented MCScript2.0, a new machine com-
prehension dataset with a focus on challenging in-
ference questions that require script knowledge or
commonsense knowledge for finding the correct
answer. Our new question collection procedure re-
sults in about half of the questions in MCScript2.0
requiring such inference, which is a much larger
amount compared to a previous dataset.

We evaluate several benchmark models on MC-
Script2.0 and show that even a model that makes
use of ConceptNet as a source for commonsense
knowledge struggles to answer many question in
our corpus. MCScript2.0 forms the basis of a
shared task organized at the COIN workshop.8
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A Supplemental Material

A.1 Additional Data Sample

(7) T: I am at work . I have a guest sit at the
bar . The ordered themselves a beer . I
check that he is of age , and that his license
is valid . I then go to the beer cooler , and
grab a nice cold mug , and fill it up with
beer . I place a napkin down and set the
beer on top in front of the bar guest . I
present him the check and tell him no rush
, whenever he is ready . He then places his
cash with the receipt . I go to cash him out
, offer to be right back with his change ,
and he responds with , ” Keep the change ”
. I like nights like this .
Q: Why did they receive a nice tip?
the customer was happy with the service X
the customer was in a rush 7

Q: When was the check printed?
after the order X
before the order 7

Q: What did they create at the computer
and print?
the check X
change 7

(8) T: I wanted to throw a Bachelorette Party
for my best friend . She lives in Dallas ,
but she wants to have her party in New
Orleans for a girls weekend . The first
thing we did was talk about the theme of
the party . We decided on the theme of
“ Something Blue ” . We would have all
colors of blue and activities that have titles
with the word blue for the whole weekend .
She gave me a list of 20 girls . I created
an invitation that had blue and included a
picture of her . I also included an itinerary
of our weekend activities with all of our
fun “ blue ” titles , to set the fun mood
. I sealed them before hand writing the
addresses and adding a stamp . Next , they
were off to the post office , so everyone
could be invited to our fun weekend .
Q: What was printed out?
itinerary X
invitations to a weddingy 7

Q: When was each invitation placed into
their blue envelope?
Before handwriting addresses X

After adding stamps 7

Q: Where did she place the invitations?
Post office X
Dallas 7

(9) T: The restaurant was terrible again and I
probably should not have given it another
chance . The management at the store
level is obviously not paying attention to
me so it is time to right to headquarters . I
opened the word processing program on
my computer and opened a new document
. I went all the way to the right side and
entered my street address on one line and
the city , state and zip code below that .
Next I entered the date and then moved all
the way to the left and entered the street
address of the restaurant headquarters
and the city , state and zip code of the
headquarters . I started the letter with Dear
Sir and on the next lines , proceeded to
explain the problems I had been having
with this particular location , it ’s service
and food . I explained that I had tried
to resolve it at store level but had been
unsuccessful . On the final line , I went all
the way to right and entered ‘ Sincerely ’
and hit return a couple times , then added
my name below that . I folded it and put it
an addressed and stamped envelope , and
mailed it to the company headquarters .
Q: What did they print out?
The letter X
The receipt from the restaurant 7

Q: When did they sign above their printed
name?
After the letter was printed X
After putting the letter in the envelope. 7

Q: What they did they sign?
The letter X
The receipt at the restaurant 7

A.2 Crowdsourcing Details

All data were collected using Amazon Mechani-
cal Turk9. We paid $0.50 for each item in the text
and answer collection experiment. For the ques-
tion collection experiment, we paid $0.50 per item,
if the text contained 4 or more target sentences,

9https://www.mturk.com

114



and $0.30 per item if fewer target sentences were
highlighted.

A.3 Implementation Details

For implementation details and preprocessing
of the logistic model and TriAN, we follow
(Merkhofer et al., 2018) and (Wang et al., 2018),
respectively. NLTK10 was used as preprocessing
tool for the Attentive Reader.

The learning rate was tuned to 0.002 and 0.1
for TriAN and the attentive reader, resp. and the
hidden size for both models to 64. As in the original
formulation, dropout was set to 0.5 for the attentive
reader and to 0.4 for TriAN. Batch size was set
to 32 and both models were trained for 50 epochs.
The model with the best accuracy on the dev data
was used for testing.

A.4 Adversarial Filtering

Data: data set D, a randomly initialized
assignment S, and a classifier C

Result: Ŝ
repeat

split the data into test batches of size b,
such that each batch contains all
questions for b texts;

for Dtest in batches do
Dtrain ←− D\Dtest;
Dtrain ←− compile(Dtrain);
train C on Dtrain;
for all instances
< Ti, Qi, a

+
i , < a−i,0...a

−
i,j > in Dtest

do
use C to classify all incorrect
answer candidates a−i,0...a

−
i,j ;

set si,j to the index of the answer
candidate with the highest
probability of being correct;

end
end

until number of changed assignments
stagnates or increases;

Algorithm 1: Adversarial Filtering for MC-
Script2.0

Formally, let a dataset be defined as a list of tu-
ples 〈ti, qi, a+i , 〈a−i,0...a−i,j〉〉, where ti is a reading
text, qi is a question on the text, a+i is the correct an-
swer (as selected via majority vote, s. last Section)

10https://www.nltk.org

and 〈a−i,0...a−i,j〉 is a list of 3 to 5 incorrect answer
candidates11. The aim of the algorithm is to find
an assignment Ŝ = {s0,0...si,j}, where each si,j is
the index of the most difficult answer candidate in
〈a−i,0...a−i,j〉.

A dataset that is compiled with the assignment
S is a list of instances < ti, qi, a

+
i , a

−
i >, such that

there is only one incorrect answer candidate per
question, according to the indices given by S.

Once the algorithm converges, Ŝ is used to com-
pile the final version of the dataset, D̂, which con-
tains incorrect answer candidates that are most
likely to be correct.

For the batch size we tried values in
{50, 100, 250, 500}, but we found that for all val-
ues, the performance of the classifier would drop
close to chance level after one iteration only. We
set b = 250, since the performance was closest to
chance after convergence with that setting. Also,
we defined that the algorithm converges if the num-
ber of changed assignments since the last iteration
is ≤ 50.

11Note that since there are several questions per text, the
value of ti may appear in several instances.
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A.5 Screenshot of the VP-based Question
Collection Experiment.
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A.6 Screenshot of the Instructions for the
NP-based Question Collection
Experiment.
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Abstract
Multimodal semantic models that extend lin-
guistic representations with additional percep-
tual input have proved successful in a range
of natural language processing (NLP) tasks.
Recent research has successfully used neural
methods to automatically create visual repre-
sentations for words. However, these works
have extracted visual features from complete
images, and have not examined how differ-
ent kinds of visual information impact perfor-
mance. In contrast, we construct multimodal
models that differentiate between internal vi-
sual properties of the objects and their exter-
nal visual context. We evaluate the models
on the task of decoding brain activity associ-
ated with the meanings of nouns, demonstrat-
ing their advantage over those based on com-
plete images.

1 Introduction
Multimodal models combining linguistic and vi-
sual information have enjoyed a growing interest
in the field of semantics. Recent research has
shown that such models outperform purely lin-
guistic models on a range of NLP tasks, including
modelling semantic similarity (Silberer and Lap-
ata, 2014), lexical entailment (Kiela et al., 2015),
and metaphor identification (Shutova et al., 2016).
Despite this success, little is known about the na-
ture of semantic information learned from images
and why it is useful. For instance, some concepts
may be better characterised by their own (inter-
nal) visual properties and others by the (external)
visual context, in which they appear. However,
existing neural multimodal semantic approaches
use entire images to learn visual word represen-
tations, without differentiating between these two
kinds of visual information. In contrast, we inves-
tigate whether differentiating between internal vi-
sual properties and external visual context is ben-
eficial compared to learning visual representations

from complete images. We construct three multi-
modal models combining linguistic and visual in-
formation: using (1) internal visual features ex-
tracted from an object’s bounding box, (2) exter-
nal visual features outside the bounding box, i.e.
the visual context, and (3) visual features extracted
from complete images. Figure 1 visualises the dif-
ferent visual information extracted from an image.
We use skip-gram (Mikolov et al., 2013) as our
linguistic model and extract visual representations
from a convolutional neural network (CNN) pre-
trained on the ImageNet classification task (Fei-
Fei, 2010).

We evaluate the models in their ability to decode
patterns of brain activity associated with the mean-
ings of nouns, obtained via brain imaging. This
choice of task allows us to assess the importance
of each type of visual information in human se-
mantic processing. Specifically, we perform two
experiments: (1) using the Visual Genome (Kr-
ishna et al., 2016) dataset of images where ob-
jects are manually annotated with bounding boxes,
and (2) using images retrieved from Google Image
Search and automatically segmenting them using a
Faster R-CNN (FRCNN) model (Ren et al., 2015).
We find that all of our multimodal models are able
to decode brain activity patterns and that the mod-
els relying on internal visual properties are supe-
rior to all others.

2 Related Work
Multimodal Semantics Multimodal models are
inspired by cognitive science research, suggest-
ing that human semantic knowledge relies on
perceptual and sensori-motor experience (Louw-
erse, 2011). Contemporary approaches use deep
CNNs trained on image classification tasks to ex-
tract visual representations of words. Kiela and
Bottou (2014) extract visual word representations
from feature extraction layers in CNNs and con-
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(a) VIS-WHOLE (b) VIS-INTERNAL (c) VIS-EXTERNAL

Figure 1: An example of images processed to ex-
tract the internal and external visual features using the
bounding box around the concept.

catenate them with linguistic representations ob-
tained from a skip-gram model. Their results pre-
sented empirical improvements over the previous
bag-of-visual-words method (Bruni et al., 2012).
Other approaches use restricted Boltzmann ma-
chines (Srivastava and Salakhutdinov, 2012), re-
cursive neural networks (Socher et al., 2014) and
autoencoders (Silberer and Lapata, 2014).

Decoding Brain Activity Research in neuro-
science supports the view that concepts are rep-
resented as patterns of neural activation and, sim-
ilarly to distributed semantic representations, are
naturally encoded in neural semantic vector space
(Haxby et al., 2001; Huth et al., 2012; Anderson
et al., 2013). Mitchell et al. (2008) were the first to
employ distributional semantic models to predict
neural activation in the human brain using data ob-
tained via functional Magentic Resonance Imag-
ing (fMRI). Murphy et al. (2012); Devereux et al.
(2010); Pereira et al. (2013) have since success-
fully tested a wider range of distributional models
in this task.

Recent research shows that multimodal models
grounded in the visual modality strongly corre-
late with neural activation patterns associated with
word meaning. Anderson et al. (2013) construct
semantic models using visual data and show a high
correlation to brain activation patterns from fMRI.
While Anderson et al. (2015) find that linguistic-
only semantic models better predict brain activity
associated with linguistic processing, and image-
based semantic models better predict similarity
within the visual processing portions of the brain.
Bulat et al. (2017) compare and evaluate a range
of distributional semantic models in their ability
to predict brain activity associated with concepts.
Two key differences between our work and both
Anderson et al. (2013) and Anderson et al. (2015)
are 1) we make use of neural-network-based vi-
sual features as opposed to SIFT features (Lowe,

Figure 2: Semantic model similarity encoding. Where
the coloured columns represent semantic vectors from
the same model (i.e. VIS-INTERNAL). The bottom row
represents the similarity codes for the concept “Leg”,
calculated by computing the Pearson correlation be-
tween “Leg” and the other semantic vectors from the
dataset.

2004), and 2) we perform a word-level decoding
analysis as opposed to representational similarity
analysis (Kriegeskorte et al., 2008).

We aim to further our understanding of the role
of vision in semantic processing by evaluating our
models on the task of decoding brain activity as-
sociated with the meanings of nouns.

3 Data
Visual Data In the first experiment, we used the
Visual Genome (Krishna et al., 2016) dataset of
images manually-annotated for objects and their
bounding boxes. In the second experiment, we
trained Faster-RCNN networks on manually anno-
tated images from ImageNet (Deng et al., 2009;
Fei-Fei, 2010), and then processed images re-
trieved from Google Images to construct a dataset
of automatically-annotated images. Both Visual
Genome and ImageNet were selected as they con-
tain bounding box annotations around objects.

Brain Imaging Data We used a dataset of
brain activity patterns associated with the mean-
ings of nouns created by Mitchell et al. (2008)
(MITCHELL). The dataset includes 60 concrete
nouns from 12 semantic categories, such as vehi-
cles or vegetables. fMRI images were recorded
when participants were presented with line draw-
ings of the objects and the corresponding nouns.
We use 50 nouns from the dataset in our experi-
ments, since 10 of the nouns were not covered by
the Visual Genome and ImageNet datasets.

Following Mitchell et al. (2008), we select the
500 voxels with the most stable activation pro-
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Model P1 P2 P3 P4 P5 P6 P7 P8 P9 Mean
LINGUISTIC 0.90 0.77 0.85 0.86 0.83 0.70 0.84 0.62 0.78 0.79

VIS-INTERNAL 0.90 0.81 0.85 0.82 0.75 0.66 0.79 0.63 0.73 0.77
VIS-EXTERNAL 0.82 0.72 0.76 0.81 0.62 0.62 0.73 0.59 0.73 0.71

VIS-WHOLE 0.84 0.69 0.77 0.80 0.63 0.61 0.75 0.60 0.75 0.71
MM-INTERNAL 0.92 0.81 0.86 0.88 0.82 0.69 0.84 0.62 0.79 0.80
MM-EXTERNAL 0.90 0.78 0.85 0.88 0.79 0.70 0.85 0.63 0.82 0.80

MM-WHOLE 0.90 0.76 0.83 0.87 0.79 0.67 0.84 0.63 0.82 0.79
VIS-COMBINED 0.89 0.80 0.82 0.84 0.70 0.66 0.78 0.61 0.77 0.76
MM-COMBINED 0.91 0.80 0.87 0.88 0.80 0.78 0.85 0.63 0.81 0.81

Table 1: Average decoding accuracies for the models trained on Visual Genome per participant and the mean over
participants. Vis=visual, MM=multimodal, COMBINED=explicitly differentiates internal and external features.

file across concepts. We perform leave-two-out
cross validation and select voxels independently
for each of the cross validation folds during train-
ing. The stability score for a voxel is measured
across six presentations of a word and is approxi-
mated as the average pairwise Pearson correlation
among activation profiles over the training words
in a cross-validation fold. The 500 voxels with the
highest stability score are chosen and combined
into a vector, used to evaluate how well the multi-
modal models can decode brain activity patterns.

4 Methods
We construct three visual models using three types
of visual information: the internal features of the
object, the external context surrounding it, and the
whole image. These representations are then com-
bined with linguistic representations to create the
multimodal models.

4.1 Learning linguistic representations
We use the skip-gram model with negative
sampling (Mikolov et al., 2013) to learn 100-
dimensional word embeddings from a lemmatized
2015 copy of Wikipedia (Rimell et al., 2016).

4.2 Learning visual representations
Object detection and segmentation We use the
FRCNN unified object detection model (Ren et al.,
2015) to automatically detect objects and their
bounding boxes in images associated with our
nouns. FRCNN combines a region proposal net-
work (RPN) with Fast R-CNN, an object detection
network, and minimizes computational cost dur-
ing training and testing by sharing convolutional
layers between the networks. To maximize accu-
racy, we train an FRCNN network for each seman-
tic class in the MITCHELL dataset, starting from a
VGG16 network (Simonyan and Zisserman, 2014)
pre-trained on the PASCAL VOC 2007 data set.

The pre-trained model contains many useful
lower level features and therefore we expect fine-

tuning a pre-trained model to yield optimal results.
We train the networks using ImageNet images an-
notated with bounding boxes. We collected an av-
erage of 303 images per concept, with the follow-
ing nouns lacking annotated images: foot, arm,
eye, igloo, pliers and carrot. Images were split
into 10% test, 40% train, and 50% train-validation
sets. We trained the networks using approximate
joint training. We tuned the step-size to 3000 and
used the following default hyperparameter values:
learning rate policy: “step”; base learning rate:
0.001; average loss: 100; momentum: 0.9; weight
decay: 0.0005; gamma: 0.1. After training, the
mean average precision (mAP) score across all se-
mantic classes was 0.73.

Extracting visual features We retrieve 60 im-
ages per word using Google Image Search. We
then create three sets of images for every word:
the INTERNAL image (containing the object de-
noted by the word), an EXTERNAL image (con-
taining its visual context), and the original WHOLE

image. To generate the internal images, we crop
and extract each object from within the annotated
bounding boxes. To generate external images, we
fill in the annotated bounding box area with black
pixels, leaving only the visual context (black pix-
els are used as a simple way to represent no infor-
mation). All images are re-scaled to 256x256 and
the original aspect ratios are maintained, padding
any remaining area with black pixels.

We use a Caffe (Jia et al., 2014) implementation
of a pre-trained AlexNet model (Krizhevsky et al.,
2012) to extract a visual representation for each
of the images. We first take an image as input to
the network, perform a forward pass, and extract
the pre-softmax layer in the network (FC7) as a
representation of the image. We use the MMfeat
toolkit (Kiela, 2016) to load the AlexNet model
and extract visual representations for the INTER-
NAL, EXTERNAL, WHOLE images corresponding
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Model Mean
LINGUISTIC 0.79

VIS-INTERNAL 0.80
VIS-EXTERNAL 0.74

VIS-WHOLE 0.80
MM-INTERNAL 0.81
MM-EXTERNAL 0.81

MM-WHOLE 0.82
VIS-COMBINED 0.79
MM-COMBINED 0.82

Table 2: Average decoding accuracies over the nine
participants for the semantic models trained on the au-
tomatically annotated images. Naming convention fol-
lows Table 1

.
to the nouns in our data set.

4.3 Multimodal Models
We construct multimodal models by concatenat-
ing L2-normalised linguistic and visual represen-
tations. This strategy, known as middle fusion, has
been shown successful in previous multimodal se-
mantics research (Kiela and Bottou, 2014). We
combine the linguistic model with each of our
visual models, resulting in the three kinds of
multimodal models: INTERNAL, EXTERNAL and
WHOLE. Furthermore, we construct two combined
models: a COMBINED visual-only model concate-
nating the internal and external models, and a
COMBINED multimodal model concatenating the
internal, external, and linguistic models.

4.4 Decoding Brain Activity
We evaluate our models in their ability to decode
brain activity associated with unseen words, i.e. to
predict the correct label associated with their fMRI
patterns. We follow the same procedure as Ander-
son et al. (2016), computing a semantic model sim-
ilarity matrix consisting of semantic model sim-
ilarity codes for each of the 50 nouns from the
Mitchell et al. (2008) dataset. Similarly, we con-
struct a brain activity similarity matrix consisting
of brain activity similarity codes of the 50 nouns.
This process is visualised in Figure 2, where the
coloured columns represent semantic model vec-
tors for each word in the dataset, and the bottom
row represents the resulting similarity codes for
the concept “Leg”.

We perform leave-two-out cross validation,
selecting the semantic model similarity codes
(−→s i,−→s j) and brain activity similarity codes
(−→a i,−→a j) for two nouns. We remove the i-th and
j-th elements from each of the similarity codes
as these entries correspond to the nouns being
tested. Figure 3 visualises an example of the de-
coding procedure. Decoding is successful if the

Figure 3: Visualisation of leave-two-out cross valida-
tion for semantic model similarity decoding. Visuali-
sation from (Anderson et al., 2016).

sum of Pearson correlations for the correct pair-
ings is greater than the sum of Pearson correlations
for the incorrect pairings, resulting in decoding ac-
curacy of 1 for this pair and 0 otherwise. The ex-
pected chance-level decoding accuracy is 50% if a
model were to match word labels with similarity
vectors at random.

5 Experiments
We first experiment with a set of manually-
annotated images from Visual Genome and then
with images where objects and their bounding
boxes have been automatically detected using FR-
CNN networks.
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5.1 Manually annotated images

Experimental Setup We use 50 nouns from the
MITCHELL dataset and assess each model’s ability
to decode brain activity vectors using leave-two-
out cross validation, resulting in 1225 (50 choose
2) cross-validation folds per model.

Results The results, presented in Table 1,
demonstrate that all semantic models decode brain
activity patterns significantly above chance lev-
els1. The INTERNAL visual-only model achieves
a mean accuracy of 0.77, significantly2 outper-
forming (V={36, 43}, all p<0.015) the EXTER-
NAL and WHOLE visual-only models, using the
paired Wilcoxon signed rank test. The INTERNAL

and EXTERNAL multimodal models both achieve a
mean accuracy of 0.80, outperforming the WHOLE

multimodal model with a mean of 0.79. Finally,
the COMBINED multimodal model outperforms
the INTERNAL and EXTERNAL multimodal mod-
els, and significantly outperforms (V=35, p<0.02)
the WHOLE multimodal model with a mean accu-
racy of 0.81. These results demonstrate that it is
beneficial to differentiate between internal and ex-
ternal visual information, but that both are useful
for semantic processing, with the internal visual
features having the most prominent influence.

We investigated the errors produced during the
cross-validation folds, and found the INTERNAL

visual-only model outperforms its EXTERNAL and
WHOLE counterparts systematically for all but one
semantic class: kitchen utensils, where the EX-
TERNAL visual-only model obtains the fewest er-
rors. Overall, these results suggest that internal
visual features are superior in this task and corre-
late strongly with the patterns of human semantic
representation.

5.2 Automatically annotated images

Experimental Setup For each of our 50 nouns
from the MITCHELL dataset, we retrieve 60 im-
ages using Google Image Search. The images are
annotated using FRCNNs and then processed to

1Using permutation testing with 1000 repeats, we found
all models perform significantly above chance level. We fol-
low the same shuffling procedure detailed in Anderson et al.
(2017) to obtain a null distribution of chance-level decoding
accuracies. The p-value of decoding accuracy is the propor-
tion of chance-level accuracies greater than or equal to the
observed cross-validated decoding accuracy.

2When comparing two models, we used paired Wilcoxon
signed rank tests (two-tailed) to tell us whether their mean
accuracy scores significantly differ from each other.

create INTERNAL, EXTERNAL and WHOLE mod-
els. We follow the same evaluation procedure as
in the previous experiment, performing 1225 (50
choose 2) cross-validation folds.

Results The results, presented in Table 2,
demonstrate that all models decode brain activity
vectors significantly above chance level. They also
show multimodal models constructed with auto-
matic object detection perform on par with rep-
resentations learned from manually annotated im-
ages. Overall, we observe a similar trend, i.e. the
INTERNAL visual-only model significantly outper-
forms (V=43, p<0.015) the EXTERNAL visual-
only model (mean accuracies of 0.80 and 0.74).

Our qualitative analysis has shown that the IN-
TERNAL visual model outperforms the others for
the following semantic classes, in both experi-
ments: building, furniture and insect. We find the
WHOLE visual-only model has fewer class-level
errors in this experiment. We believe this is due to
the quality of the images; the Visual Genome im-
ages contain more objects per image on average,
making the external visual context more variable
compared to images from Google Images.

Besides corroborating the findings of the previ-
ous experiment on the importance of the internal
visual features, these results show that high qual-
ity visual representations capturing the objects’ in-
ternal properties and their visual context can be
learned through automatic object detection tech-
niques, decreasing the reliance on human anno-
tated datasets (albeit some annotated data is re-
quired to train the object detection system) and al-
lowing for a greater scalability of the models.

6 Conclusion
Our results show that multimodal semantic mod-
els correlate with human neural semantic repre-
sentations associated with concrete concepts, and
the visual-only model using internal visual fea-
tures outperforms the other visual-only models in
most cases. Similar performance across models
using manual and automatically annotated images
demonstrates progress in object detection systems,
presenting opportunities to expand to other tasks
where evaluation datasets may not be covered by
manually annotated image datasets.
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Abstract

We present path2vec, a new approach for
learning graph embeddings that relies on struc-
tural measures of pairwise node similarities.
The model learns representations for nodes in
a dense space that approximate a given user-
defined graph distance measure, such as e.g.
the shortest path distance or distance measures
that take information beyond the graph struc-
ture into account. Evaluation of the proposed
model on semantic similarity and word sense
disambiguation tasks, using various WordNet-
based similarity measures, show that our ap-
proach yields competitive results, outperform-
ing strong graph embedding baselines. The
model is computationally efficient, being or-
ders of magnitude faster than the direct com-
putation of graph-based distances.

1 Introduction

Developing applications making use of large
graphs, such as networks of roads, social media
users, or word senses, often involves the design of
a domain-specific graph node similarity measure
sim : V × V → R defined on a set of nodes V of
a graph G = (V,E). For instance, it can represent
the shortest distance from home to work, a com-
munity of interest in a social network for a user,
or a semantically related sense to a given synset in
WordNet (Miller, 1995). There exist a wide vari-
ety of such measures greatly ranging in their com-
plexity and design from simple deterministic ones,
e.g. based on shortest paths in a network (Lea-
cock and Chodorow, 1998) to more complex ones,
e.g. based on random walks (Fouss et al., 2007;
Pilehvar and Navigli, 2015; Lebichot et al., 2018).
Naturally, the majority of such measures rely on
walks along edges E of the graph, often resulting
in effective, but prohibitively inefficient measures
requiring complex and computationally expensive
graph traversals. Also, there are measures that in

addition take e.g. corpus information into account
beyond what is directly given in the graph, see e.g.
(Budanitsky and Hirst, 2006). We propose a solu-
tion to this problem by decoupling development
and use of graph-based measures. Namely, once a
node similarity measure is defined, we learn vec-
tor representations of nodes that enable efficient
computation of this measure. We represent nodes
in a graph with dense embeddings that are good
in approximating such custom, e.g. application-
specific, pairwise node similarity measures. Sim-
ilarity computations in a vector space are several
orders of magnitude faster than computations di-
rectly using the graph. Additionally, graph em-
beddings can be of importance in privacy-sensitive
network datasets, since in this setup, explicitly
storing edges is not required anymore. The main
advantage over other graph embeddings is that our
model can learn a custom user-defined application
or domain specific similarity measure.

We show the effectiveness of the proposed ap-
proach intrinsically on a word similarity task,
by learning synset vectors of the WordNet graph
based on several similarity measures. Our model
is not only able to closely approximate vari-
ous measures, but also to improve the results of
the original measures in terms of (1) correlation
with human judgments and (2) computational ef-
ficiency, with gains up to 4 orders of magni-
tude. Our method outperforms other state-of-the-
art graph embeddings models.

Besides, we evaluate it extrinsically in a WSD
task (Navigli, 2009) by replacing the original
structural measures with their vectorized counter-
parts in a graph-based WSD algorithm by Sinha
and Mihalcea (2007), reaching comparable perfor-
mance. Because of being inspired by the word2vec
architecture, we dub our model ‘path2vec’1 mean-

1https://github.com/uhh-lt/path2vec
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ing it encodes paths (or other similarities) between
graph nodes into dense vectors.

Our first contribution is an effective and effi-
cient approach to learn graph embeddings based
on a user-defined custom similarity measure sim
on a set of nodes V , e.g. the shortest path dis-
tance. The second contribution is an applica-
tion of state-of-the-art graph embeddings to word
sense disambiguation task.

2 Related Work

Various methods have been employed in NLP to
derive lexical similarity directly from geometri-
cal properties of the WordNet graph, from ran-
dom walks in (Rao et al., 2008) to kernels in
(Ó Séaghdha, 2009). More recently, representa-
tion learning on graphs (Bordes et al., 2011) re-
ceived much attention in various research commu-
nities; see (Hamilton et al., 2017a) for a thorough
survey on the existing methods. All of them (in-
cluding ours) are based on the idea of projecting
graph nodes into a latent vector space with a much
lower dimensionality than the number of nodes.

The method described in this paper falls into the
category of ‘shallow embeddings’, meaning that
we do not attempt to embed entire communities
or neighborhoods: our aim is to approximate dis-
tances or similarities between (single) nodes. Ex-
isting approaches to solving this task mostly use
either factorization of the graph adjacency ma-
trix (Cao et al., 2015; Ou et al., 2016) or ran-
dom walks over the graph as in Deepwalk (Perozzi
et al., 2014) and node2vec (Grover and Leskovec,
2016). A completely different approach is taken
by Subercaze et al. (2015), who directly embed
the WordNet tree graph into Hamming hypercube
binary representations. Their model is dubbed
‘Fast similarity embedding’ (FSE) and also op-
timizes one of our objectives, i.e. to provide a
much quicker way of calculating semantic simi-
larities based on WordNet knowledge. However,
the FSE embeddings are not differentiable, lim-
iting their use in many deep neural architectures,
especially if fine-tuning is needed.

TransE (Bordes et al., 2013) interprets enti-
ties as vectors in the low-dimensional embeddings
space and relations as a translation operation be-
tween two entity vectors. For a triplet (head, re-
lation, tail) which holds, the embedding of the tail
is close to the embedding of the head plus embed-
ding of the relation. TransH (Wang et al., 2014)

models each relation as a specific hyperplane and
projects entity vectors onto the hyperplane. If con-
nection holds then projected vectors of head and
tail are connected by a translation vector with low
error. As a result, entities have different represen-
tations for hyperplanes of different relations where
they are involved. TransR (Lin et al., 2015) ex-
tends TransE (Bordes et al., 2013) and TransH
(Wang et al., 2014), and is based on the idea that
an entity may have a few aspects and different rela-
tions are focused on them. So the same entities can
be close or far from each other depending on the
type of the relation. TransR projects entity vectors
into a relation specific space, and learns embed-
dings via translation between projected entities.

We quantitatively compare path2vec to these
methods in Section 5. We did not compare our ap-
proach to the GraphSAGE embeddings (Hamilton
et al., 2017b) and Graph Convolutional Networks
(Schlichtkrull et al., 2018), since they make use of
input node features, which are absent in our setup.

Also note that unlike retro-fitting and similar
techniques (Rothe and Schütze, 2015; Pilehvar
and Collier, 2016; Mrkšić et al., 2017), our ap-
proach does not use any training corpus or pre-
trained input embeddings. The synset representa-
tions are trained on the WordNet graph alone.

3 Learning Graph Metric Embeddings

Definition of the Model The path2vec model
learns low-dimensional vectors for the graph
nodes {vi, vj} ∈ V (synsets in the case of Word-
Net) such that the dot products between pairs of
the respective vectors (vi·vj) are close to the user-
defined similarities between the nodes sij . This
first component of the objective encodes poten-
tially long distances in the graph (the global struc-
ture). In addition, the model reinforces direct con-
nections between nodes: We add to the objec-
tive similarities vi · vn and vj · vm between the
nodes vi and vj and their respective adjacent nodes
{vn : ∃(vi, vn) ∈ E} and {vm : ∃(vj , vm) ∈ E}
to preserve local structure of the graph. Therefore,
the model preserves both global and local relations
between nodes by minimizing the following loss
function L:

1

|B|
∑

(vi,vj)∈B

(
(vT

i vj − sij)2 − α(vT
i vn + vT

j vm)
)
,

where sij = sim(vi, vj) is the value of a ‘gold’
similarity measure between a pair of nodes vi and
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vj , vi and vj are the embeddings of the first and
the second node, B is a training batch, α is a regu-
larization coefficient. The second term (vi · vn +
vj · vm) in the objective function is a regularizer
which aids the model to simultaneously maximize
the similarity between adjacent nodes (which is
maximum by definition) while learning the simi-
larity between the two target nodes.

We use negative sampling to form a training
batch B adding n negative samples (sij = 0) for
each real (sij > 0) training instance: each real
node (synset) pair (vi, vj) with ‘gold’ similarity
sij is accompanied with n ‘negative’ node pairs
(vi, vk) and (vj , vl) with zero similarities, where
vk and vl are randomly sampled nodes from V .
Embeddings are initialized randomly and trained
with the Adam optimizer (Kingma and Ba, 2014)
with early stopping.2

Once the model is trained, the computation of
node similarities is approximated with the dot
product of the learned node vectors, making the
computations efficient: ŝij = vi · vj .

Relation to Similar Models Our model is simi-
lar to the Skip-gram model (Mikolov et al., 2013),
where pairs of words (vi, vj) from a training cor-
pus are optimized to have their corresponding vec-
tors dot product vi · ṽj close to 1, while randomly
generated pairs (‘negative samples’) are optimized
to have their dot product close to 0. In the Skip-
gram model, the target is to minimize the log like-
lihood of the conditional probabilities of context
words vj given current words vi, which is in the
case on the negative sampling amounts to mini-
mization of: L = −∑(vi,vj)∈Bp

log σ(vi · ṽj) −
∑

(vi,vj)∈Bn
log σ(−vi · ṽj)

)
, where Bp is the

batch of positive training samples, Bn is the batch
of the generated negative samples, and σ is the sig-
moid function. The model uses local information.
However, in path2vec, the target values sij for the
dot product are not binary, but can take arbitrary
values in the [0...1] range, depending on the path-
based measure on the input graph, e.g. the normal-
ized shortest path length in the WordNet between
motor.n.01 and rocket.n.02 is 0.389.

Further, in our model there is no difference be-
tween ‘word’ and ‘context’ spaces: we use a single

2In our experiments, we identified the optimal values of
n = 3 negative samples, batch size of |B| = 100, training for
15 epochs, α = 0.01. We report on the influence of the em-
bedding dimensionality parameter d in Section 5. We found
it also beneficial to use additionally L1 weight regularization.

embedding matrix, with the number of rows equal
to the number of nodes and column width set to the
desired embedding dimensionality. Finally, unlike
the Skip-gram, we do not use any non-linearities.

Another closely related model is Global Vec-
tors (GloVe) (Pennington et al., 2014), which
approximates the co-occurrence probabilities in
a given corpus. The objective function to
be minimized in GloVe model is L =∑

(vi,vj)∈B f(sij)(vi · ṽj − log sij + bi + bj)
2,

where sij counts the number of co-occurrence of
words vi and vj , bi and bj are additional biases
for each word, and f(sij) is a weighting function
to give appropriate weight for rare co-occurrences.
Like the Skip-gram, GloVe also uses two embed-
ding matrices, but it relies on global information.

4 Computing Pairwise Similarities

4.1 Selection of the Similarity Measures

Our aim is to produce node embeddings that cap-
ture given similarities between nodes in a graph.
In our case, the graph is WordNet, and the nodes
are its 82,115 noun synsets. We focused on nouns
since in WordNet and SimLex999 they are repre-
sented better than other parts of speech. Embed-
dings for synsets of different part of speech can be
generated analogously.

The training datasets consist of pairs of noun
synsets and their ‘ground truth’ similarity val-
ues. There exist several methods to calculate
synset similarities on the WordNet (Budanitsky
and Hirst, 2006). We compile four datasets,
with different similarity functions: Leacock-
Chodorow similarities (LCH); Jiang-Conrath sim-
ilarities calculated over the SemCor corpus ( JCN-
S); Wu-Palmer similarities (WuP); and Shortest
path similarities (ShP). LCH similarity (Leacock
and Chodorow, 1998) is based on the shortest
path between two synsets in the WordNet hyper-
nym/hyponym taxonomy and its maximum depth,
while JCN similarity (Jiang and Conrath, 1997)
uses the lowest common parent of two synsets in
the same taxonomy. JCN is significantly faster but
additionally requires a corpus as a source of proba-
bilistic data about the distributions of synsets (‘in-
formation content’). We employed the SemCor
subset of the Brown corpus, manually annotated
with word senses (Kucera and Francis, 1982).

WuP similarities (Wu and Palmer, 1994) are
based on the depth of the two nodes in the tax-
onomy and the depth of their most specific ances-
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tor node. ShP is a simple length of the shortest
path between two nodes in the graph. We used the
NLTK (Bird et al., 2009) implementations of all
the aforementioned similarity functions.

Pairwise similarities for all synset pairs can be
pre-computed. For the 82,115 noun synsets in the
WordNet, this results in about 3 billion unique
synset pairs. Producing these similarities using
10 threads takes about 30 hours on an Intel Xeon
E5-2603v4@1.70GHz CPU for LCH, and about
5 hours for JCN-S. The resulting similarities lists
are quite large (45 GB compressed each) and thus
difficult to use in applications. But they can be
used in path2vec to learn dense embeddings Rd

for these 82,115 synsets, such that d � 82, 115
and the dot products between the embeddings ap-
proximate the ‘raw’ WordNet similarity functions.

4.2 Pruning the Dissimilar Pairs of Nodes

In principle, one can use all unique synset pairs
with their WordNet similarities as the training
data. However, this seems impractical. As ex-
pected due to the small-world nature of the Word-
Net graph (Steyvers and Tenenbaum, 2005), most
synsets are not similar at all: with JCN-S, the over-
whelming majority of pairs feature similarity very
close to zero; with LCH, most pairs have similarity
below 1.0. Thus, we filtered low-similarity pairs
out, using similarity threshold of 0.1 for the JCN-
S and ShP datasets, 0.3 for the WuP dataset and
1.5 for the LCH dataset (due to substantial differ-
ences in similarities distributions, as shown in Fig-
ure 1). This dramatically reduced the size of the
training data (e.g., to less than 1.5 million pairs
for the JCN-S dataset and to 125 million pairs for
the LCH dataset), thus making the training much
faster and at the same time improving the quality
of the resulting embeddings (see the description of
our evaluation setup below).

With this being the case, we additionally pruned
these reduced datasets by keeping only the first
50 most similar ‘neighbors’ of each synset: the
rationale behind this is that some nodes in the
WordNet graph are very central and thus have
many neighbors with high similarity, but for our
procedure only the nearest/most similar ones suf-
fice. This again reduced training time and im-
proved the results, so we hypothesize that such
pruning makes the models more generally applica-
ble and more focused on the meaningful relations
between synsets. The final sizes of the pruned

Figure 1: Distribution of similarities between WordNet
noun synsets with different distance measures.

Figure 2: Distributions of pairwise similarities in
path2vec models trained on different measures.

training datasets are 694,762 pairs for the JCN-S,
4,008,446 pairs for the LCH, 4,063,293 pairs for
the ShP and 4,100,599 pairs for the WuP3.

Note also that the LCH similarity can take val-
ues well above 1.0. After the pruning, we scaled
similarities in all datasets to the [0...1] range by
unity-based normalization. Also, in some rare
cases, NLTK produces JCN similarities of in-
finitely large values (probably due to the absence
of particular synsets in SemCor). We clipped these
similarities to the value of 1. All the datasets were
shuffled prior to training.

3All the datasets and the trained graph embeddings can
be downloaded from https://github.com/uhh-lt/
path2vec
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5 Experiment 1: Intrinsic Evaluation
based on Semantic Similarity

Experimental Setting It is possible to evalu-
ate the models by calculating the rank correlation
of their cosine similarities with the corresponding
similarities for all the unique pairs from the train-
ing dataset, or at least a large part of them. Suber-
caze et al. (2015) evaluated their approach on LCH
similarities for all unique noun synset pairs from
WordNet Core (about 5 million similarities total);
their model achieves Spearman rank correlation of
0.732 on this task. However, this kind of evalua-
tion does not measure the ability of the model to
produce meaningful predictions, at least for lan-
guage data: the overwhelming part of these unique
pairs are synsets not related to each other at all.
For most tasks, it is useless to ‘know’ that, e.g.,
‘ambulance’ and ‘general’ are less similar than
‘ambulance’ and ‘president’. While the distances
between these node pairs are indeed different on
the WordNet graph, we find it much more impor-
tant for the model to be able to robustly tell really
similar pairs from the unrelated ones so that they
could benefit applications.

As a more balanced and relevant test set, we
use noun pairs (666 total) from the SimLex999
semantic similarity dataset (Hill et al., 2015).
SimLex999 contains lemmas; as some lemmas
may map to several WordNet synsets, for each
word pair we choose the synset pair maximizing
the WordNet similarity, following (Resnik, 1999).
Then, we measure the Spearman rank correlation
between these ‘gold’ scores and the similarities
produced by the graph embedding models trained
on the WordNet. Further on, we call this evalua-
tion score the ‘correlation with WordNet similar-
ities’. This evaluation method directly measures
how well the model fits the training objective4.

We also would like to check whether our mod-
els generalize to extrinsic tasks. Thus, we addi-
tionally used human-annotated semantic similar-
ities from the same SimLex999. This additional
evaluation strategy directly tests the models’ cor-
respondence to human judgments independently
of WordNet. These correlations were tested in two
synset selection setups, important to distinguish:

1. WordNet-based synset selection (static
4Note, however, that it does not mean testing on the train-

ing data: for example, 75% of synset pairs from the Sim-
Lex999 are not present in our pruned JCN-S training dataset;
for the LCH dataset it is 82%. Evaluating these absent pairs
only does not substantially change the results.

synsets): this setup uses the same lemma-to-synset
mappings, based on maximizing WordNet similar-
ity for each SimLex999 word pair with the cor-
responding similarity function. It means that all
the models are tested on exactly the same set of
synset pairs (but the similarities themselves are
taken from SimLex999, not from the WordNet).

2. Model-based synset selection (dynamic
synsets): in this setup, lemmas are converted
to synsets dynamically as a part of the evalua-
tion workflow. We choose the synsets that max-
imize word pair similarity using the vectors from
the model itself, not similarity functions on the
WordNet. Then the resulting ranking is evaluated
against the original SimLex999 ranking.

The second (dynamic) setup in principle allows
the models to find better lemma-to-synset map-
pings than those provided by the WordNet simi-
larity functions. This setup essentially evaluates
two abilities of the model: 1) to find the best pair
of synsets for a given pair of lemmas (sort of a dis-
ambiguation task), and 2) to produce the similar-
ity score for the chosen synsets. We are not aware
of any ‘gold’ lemma-to-synset mapping for Sim-
Lex999, thus we directly evaluate only the sec-
ond part, but implicitly the first one still influ-
ences the resulting scores. Models often choose
different synsets. For example, for the word pair
‘atom, carbon’, the synset pair maximizing the
JCN-S similarity calculated on the ‘raw’ WordNet
would be ‘atom.n.02 (‘a tiny piece of anything’),
carbon.n.01 (‘an abundant nonmetallic tetravalent
element’)’ with the similarity 0.11. However, in
a path2vec model trained on the same gold sim-
ilarities, the synset pair with the highest similar-
ity 0.14 has a different first element: ‘atom.n.01
(‘the smallest component of an element having
the chemical properties of the element’)’, which
seems to be at least as good a decision as the one
from the raw WordNet.

Baselines path2vec is compared against five
baselines (more on them in Section 2): raw Word-
Net similarities by respective measures; Deep-
walk (Perozzi et al., 2014); node2vec (Grover and
Leskovec, 2016); FSE (Subercaze et al., 2015);
and TransR (Lin et al., 2015).

DeepWalk, node2vec, and TransR models were
trained on the same WordNet graph. We used
all 82,115 noun synsets as vertices and hyper-
nym/hyponym relations between them as edges.
Since the node2vec C++ implementation accepts

129



Selection of synsets
Model JCN-S LCH ShP WuP

WordNet 1.0 1.0 1.0 1.0

TransR 0.568 0.776 0.776 0.725
node2vec 0.726 0.759 0.759 0.787
Deepwalk 0.775 0.868 0.868 0.850
FSE 0.830 0.900 0.900 0.890

path2vec 0.931 0.935 0.952 0.931

Table 1: Spearman correlation scores with WordNet
similarities on the 666 noun pairs in SimLex999.

an edge list as input, we had to add a self-
connection for all nodes (synsets) that lack edges
in WordNet. During the training of DeepWalk and
node2vec models, we tested different values for
the number of random walks (in the range from
10 to 100), and the vector size (100 to 600). For
DeepWalk, we additionally experimented with the
window size (5 to 100). All other hyperparameters
were left at their default values. FSE embeddings
of the WordNet noun synsets were provided to us
by the authors, and consist of 128-bit vectors.

Discussion of Results Table 1 presents the com-
parison of path2vec and the baselines with regards
to how well they approximate the WordNet simi-
larity functions output (the raw WordNet similari-
ties always get the perfect correlation in this eval-
uation setup). All the reported rank correlation
value differences in this and other tables are statis-
tically significant based on the standard two-sided
p-value. We report the results for the best models
for each method, all of them (except FSE) using
vector size 300 for comparability.

Path2vec outperform other baseline embed-
dings, achieving high correlation with the raw
WordNet similarities. This shows that our simple
model can approximate different graph measures.
Figure 2 shows the similarities’ distributions in the
resulting models, reflecting the original measures’
distributions in Figure 1.

As expected, vector dimensionality greatly in-
fluences the performance of all graph embedding
models. As an example, Figure 3 plots the perfor-
mance of the path2vec models trained on JCN-S
and WuP datasets, when using ‘dynamic synset se-
lection’ evaluation setup (that is, each model can
decide for itself how to map SimLex999 lemmas
to WordNet synsets). The red horizontal line is
the correlation of WordNet similarities with Sim-
Lex999 human scores. For the path2vec models,

Selection of synsets
Model JCN-S LCH ShP WuP

WordNet 0.487 0.513 0.513 0.474

TransR 0.394 0.395 0.395 0.379
node2vec 0.426 0.434 0.434 0.400
Deepwalk 0.468 0.468 0.468 0.450
FSE 0.490 0.502 0.502 0.483

path2vec 0.501 0.470 0.512 0.491

Table 2: Spearman correlations with human Sim-
Lex999 noun similarities (WordNet synset selection).

there is a tendency to improve the performance
when the vector size is increased, until a plateau is
reached beyond 600 dimensions. Note that Deep-
walk5 does not benefit much from increased vector
size, while node2vec6 yields strangely low scores
for 200 dimensions. Interestingly, path2vec and
Deepwalk models consistently outperform the raw
WordNet (this is also true for FSE). This means
these embeddings are in some sense ‘regularized’,
leading to better ‘disambiguation’ of senses be-
hind SimLex999 word pairs and eventually to bet-
ter similarities ranking.

In Tables 2 and 3, we select the best 300D
path2vec models from the experiments described
above and compare them against the best 300D
baseline models and 128D FSE embeddings in
static and dynamic evaluation setups. When
WordNet-defined lemma-to-synset mappings are
used (Table 2), the raw WordNet similarities
are non-surprisingly the best, although FSE and
path2vec embeddings achieve nearly the same per-
formance (even slightly better for the JCN-S and
WuP mappings). Following them are the Deep-
walk models, which in turn outperform node2vec
and TransR. In the dynamic synset selection setup
(see Table 3), all the models except node2vec and
TransR are superior to raw WordNet, and the best
models are FSE and path2vec ShP/WuP, signifi-
cantly outperforming the others. Path2vec models
trained on JCN-S and LCH are on par with Deep-
walk and much better than node2vec and TransR.
We believe it to interesting, considering that it
does not use random walks on graphs and is con-
ceptually simpler than FSE.

Note that word embedding models trained on
text perform worse than the WordNet-based em-

5The reported best Deepwalk models were trained with
the number of walks 10 and window size 70.

6The reported best node2vec models were trained with the
number of walks 25.
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Figure 3: Evaluation on SimLex999 noun pairs, model-based synset selection: JCN-S (left) and WuP (right).

Model Correlation

TransR (Lin et al., 2015) 0.386
node2vec (Grover and Leskovec, 2016) 0.462
Deepwalk (Perozzi et al., 2014) 0.533
FSE (Subercaze et al., 2015) 0.556

Raw WordNet JCN-S 0.487
Raw WordNet LCH 0.513
Raw WordNet ShP 0.513
Raw WordNet WuP 0.474

path2vec JCN-S 0.533
path2vec LCH 0.532
path2vec ShP 0.555
path2vec WuP 0.555

Table 3: Spearman correlations with human Sim-
Lex999 noun similarities (model synset selection).

beddings (including path2vec) on the semantic
similarity task. For example, the word2vec model
of vector size 300 trained on the Google News cor-
pus (Mikolov et al., 2013) achieves Spearman cor-
relation of only 0.449 with SimLex999, when test-
ing only on nouns. The GloVe embeddings (Pen-
nington et al., 2014) of the same vector size trained
on the Common Crawl corpus achieve 0.404.

6 Experiment 2: Extrinsic Evaluation
based on Word Sense Disambiguation

Experimental Setting As an additional extrin-
sic evaluation, we turned to word sense disam-
biguation task, reproducing the WSD approach
from (Sinha and Mihalcea, 2007). The original al-
gorithm uses WordNet similarities; we tested how
using dot products and the learned embeddings in-
stead will influence the WSD performance.

The employed WSD algorithm starts with build-
ing a graph where the nodes are the WordNet

synsets of the words in the input sentence. The
nodes are then connected by edges weighted with
the similarity values between the synset pairs
(only if the similarity exceeds a threshold, which is
a hyperparameter; we set it to 0.95). The final step
is selecting the most likely sense for each word
based on the weighted in-degree centrality score
for each synset (in case of ties, the first synset is
chosen). Figure 4 shows a graph generated for the
sentence ‘More often than not, ringers think of the
church as something stuck on the bottom of the
belfry’. Note that we disambiguate nouns only.

Discussion of Results Table 4 presents the WSD
micro-F1 scores using raw WordNet similarities,
300D path2vec, Deepwalk and node2vec mod-
els, and the 128D FSE model. We evaluate on
the following all-words English WSD test sets:
Senseval-2 (Palmer et al., 2001), Senseval-3 (Mi-
halcea et al., 2004), and SemEval-15 Task 13 (Ra-
ganato et al., 2017). Raw WordNet similarities are
still the best, but the path2vec models are consis-
tently the second after them (and orders of mag-
nitude faster), outperforming other graph embed-
ding baselines. The largest drop between the origi-
nal and vector-based measures is for JCN-S, which
is also the only one which relies not only on graph
but also on external information from a corpus,
making it more difficult to approximate (see also
Figure 2, where this measure distribution seems
to be the most difficult to reproduce). Note that
both the original graph-based measures and graph
embeddings do not outperform the most frequent
sense (MFS) baseline, which is in line with the
original algorithm (Sinha and Mihalcea, 2007).

Here our aim was not to improve WSD systems
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Figure 4: A sentence graph for WSD, where a column lists all the possible synsets of a corresponding word.

Model Senseval2 Senseval3 SemEval-15

Random sense 0.381 0.312 0.393

Baselines (various graph embeddings)

TransR 0.540 0.466 0.536
node2vec 0.503 0.467 0.489
Deepwalk 0.528 0.476 0.552
FSE 0.536 0.476 0.523

WordNet (graph-based measures)

JCN-S 0.620 0.558 0.597
LCH 0.547 0.494 0.550
ShP 0.548 0.495 0.550
WuP 0.547 0.487 0.542

path2vec (vector-based measures)

JCN-S 0.511 0.463 0.508
LCH 0.527 0.472 0.536
ShP 0.534 0.489 0.563
WuP 0.543 0.489 0.545

Table 4: F1 scores on all-words WSD tasks.

but to compare path2vec against other graph em-
bedding methods in an extrinsic, task-based eval-
uation. This is also the reason why we do not
compare against many other existing WordNet-
based WSD systems: we are interested only in the
approaches which learn dense representations of
graph nodes, as path2vec does.

7 Computational Efficiency Evaluation

Pairwise Similarity Computation One of the
reasons to use path2vec embeddings is computa-
tional efficiency. Directly employing the Word-
Net graph to find semantic similarities between
synsets is expensive. The dot product computa-
tion is much faster as compared to shortest path
computation (and other complex walks) on a large

graph. Also, dense low-dimensional vector repre-
sentations of nodes take much less space than the
pairwise similarities between all the nodes.

The time complexity of calculating the short-
est path between graph nodes (as in ShP or LCH)
is in the best case linear in the number of nodes
and edges (Leacock and Chodorow, 1998). JCN-S
compares favorably since it is linear in the height
of the taxonomy tree (Jiang and Conrath, 1997);
however, it still cannot leverage highly-optimized
routines and hardware capabilities, which makes
the use of vectorized representations so efficient.
Calculating Hamming distance between binary
strings (as in the FSE algorithm) is linear in the
sum of string lengths, which are equivalent of vec-
tor sizes (Hamming, 1950). At the same time,
the complexity of calculating dot product between
float vectors (as in path2vec) is linear in the vec-
tor size by the definition of the dot product and is
easily and routinely parallelized.

As an example, let us consider the popular prob-
lem of ranking the graph nodes by their similar-
ity to one particular node of interest (finding the
‘nearest neighbors’). Table 5 shows the time for
computing similarities of one node to all other
WordNet noun nodes, using either standard graph
similarity functions from NLTK, Hamming dis-
tance between 128D binary embeddings, or dot
product between a 300D float vector (representing
this node) and all rows of a 82115 × 300 matrix.
Using float vectors is 4 orders of magnitude faster
than LCH, 3 orders faster than JCN, and 2 orders
faster than Hamming distance.

Construction of the Training Set Despite its
computational efficiency at test time, construct-
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Model Running time

LCH in NLTK 30 sec.
JCN-S in NLTK 6.7 sec.
FSE embeddings 0.713 sec.
path2vec and other float vectors 0.007 sec.

Table 5: Computation of 82,115 similarities between
one noun synset and all other noun synsets in WordNet.

ing a training dataset for path2vec (following the
workflow described in Section 4) requires calcu-
lating pairwise similarities between all possible
pairs of graph nodes. This leads to a number of
similarity calculations quadratic in the number of
nodes, which can be prohibitive in case of very
large graphs. However, instead of this, the train-
ing datasets for path2vec can be constructed much
faster by taking the graph structure into account.
In essence, this implies finding for each node v the
set of other nodes directly connected to it or to its
direct graph neighbors (set of second order graph
neighbors, V2). Then, graph similarity is calcu-
lated only for the pairs consisting of each v and
the nodes in their respective V2; these pairs consti-
tute the training dataset (the same thresholds and
normalization procedures apply).

The amount of pairwise similarity calculations
is then linear in the number of nodes times the av-
erage number of neighbors in V2, which is much
better. Particularly, in the case of WordNet, each
node (synset) has 36 synsets in its V2 on average,
and half of the nodes do not have any neighbors at
all. Thus, only 2,935,829 pairwise similarity cal-
culations are needed, 1,000 times less than when
calculating similarities between all synset pairs.

Following that, e.g., the training dataset for
JCN-S can be constructed in 3 minutes, instead
of 5 hours, with similar speedups for other graph
distance measures. The training datasets con-
structed in this ‘fast’ way showed negligible per-
formance decrease compared to the ‘full’ datasets
(0.07...0.03 drop in the semantic similarity experi-
ments, and< 0.03 drop in the WSD experiments).
It means that when using path2vec in practical
tasks, one can construct the training dataset very
quickly, preserving embeddings performance.

8 Discussion and Conclusion

We presented path2vec, a simple, effective, and ef-
ficient model for embedding graph similarity mea-
sures. It can be used to learn vector representa-
tions of graph nodes, approximating shortest path

distances or other node similarity measures of in-
terest. Additionally, if the similarity function is
based on the shortest path, this paves the way to a
quick and efficient calculation of the shortest dis-
tance between two nodes in large graphs.

Our model allow for much more efficient graph
distances calculations (3 or 4 orders of magnitude
faster depending on a similarity measure). In ap-
plications one could replace path-based measures
with dot product between path2vec embeddings,
gaining significant speedup in distance computa-
tion between nodes. Thus, our model could be
used to speed up various other graph-based al-
gorithms that make use of node distance com-
putations, such as Floyd (1962) algorithm, Dijk-
stra (1959) algorithm, or algorithms for computing
node betweenness centrality (Brandes, 2001).

In this paper, we used our model to learn em-
beddings of WordNet synsets and showed that in
the semantic similarity task, the resulting repre-
sentations perform better than the state-of-the-art
graph embedding approaches based on random
walks. Interestingly, the learned embeddings can
outperform the original WordNet similarities on
which they were trained. path2vec was also evalu-
ated on the WSD task (it has not been done before
for graph embeddings, to our knowledge), again
outperforming other approaches.

However, path2vec can be trained on arbitrary
graph measures and is not restricted to the shortest
path or to only tree-structured graphs. In the fu-
ture, we plan to explore the possibility of training
embeddings able to approximate multiple similar-
ity metrics at once. Another direction of further
research is to apply our model to other types of
data, such as social networks or graph of roads.
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Abstract
Language usage varies across different demo-
graphic factors, such as gender, age, and ge-
ographic location. However, most existing
document classification methods ignore demo-
graphic variability. In this study, we exam-
ine empirically how text data can vary across
four demographic factors: gender, age, coun-
try, and region. We propose a multitask neural
model to account for demographic variations
via adversarial training. In experiments on
four English-language social media datasets,
we find that classification performance im-
proves when adapting for user factors.

1 Introduction

Different demographic groups can show sub-
stantial linguistic variations, especially in online
data (Goel et al., 2016; Johannsen et al., 2015).
These variations can affect natural language pro-
cessing models such as sentiment classifiers. For
example, researchers found that women were
more likely to use the word weakness in a positive
way, while men were more likely to use the word
in a negative expression (Volkova et al., 2013).

Models for text classification, the automatic cat-
egorization of documents into categories, typi-
cally ignore attributes about the authors of the
text. With the growing amount of text generated
by users online, whose personal characteristics are
highly variable, there has been increased atten-
tion to how user demographics are associated with
the text they write. Promising recent studies have
shown that incorporating demographic factors can
improve text classification (Volkova et al., 2013;
Hovy, 2015; Yang and Eisenstein, 2017; Li et al.,
2018). Lynn et al. (2017) refer to this idea as user
factor adaptation and proposed to treat this as a
domain adaptation problem in which demographic
attributes constitute different domains. We extend
this line of work in a number of ways:

• We assemble and publish new datasets con-
taining four demographic factors: gender, age,
country, and US region. The demographic at-
tributes are carefully inferred from profile in-
formation that is separate from the text data.

• We experiment with neural domain adaptation
models (Ganin et al., 2016), which may pro-
vide better performance than the simpler mod-
els used in prior work on user factor adaptation.
We also propose a new model using a multitask
framework with adversarial training.

• Our approach requires demographic attributes
at training time but not at test time: we learn
a single representation to be invariant to demo-
graphic changes. This approach thus requires
fewer resources than prior work.

In this study, we treat adapting across the de-
mographic factors as a domain work problem,
in which we consider each demographic factor
as a domain. We focus on four different de-
mographic factors (gender, age, country, region)
in four English-language social media datasets
(Twitter, Amazon reviews, Yelp hotel reviews, and
Yelp restaurant reviews), which contain text au-
thored by a diversity of demographic groups.

We first conduct an exploratory analysis of
how different demographic variables are associ-
ated with documents and document labels (Sec-
tion 2). We then describe a neural model for
the task of document classification that adapts to
demographic factors using a multitask learning
framework (Section 3). Specifically, the model is
trained to predict the values of the demographic at-
tributes from the text in addition to predicting the
document label. Experiments on four social media
datasets show that user factor adaptation is impor-
tant for document classification, and that the pro-
posed model works well compared to alternative
domain adaptation approaches (Section 4).
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2 Exploratory Analysis of User Factors

We begin with an empirical analysis of how text
is related to various demographic attributes of its
authors. We first present a description of the de-
mographic attributes. We then conduct qualitative
analyses of demographic variations within the col-
lected data on three cascading levels: document,
topic and word. The goal is to get a sense of the ex-
tent to which language data varies across different
user factors and how these factors might interact
with document classification. This will motivate
our adaptation methods later and provide concrete
examples of the user factors that we have in mind.

2.1 Data

We experiment with four corpora from three social
media sources:

• Twitter: Tweets were labeled with whether
they indicate that the user received an in-
fluenza vaccination (i.e., a flu shot) (Huang
et al., 2017), used in a recent NLP shared
task (Weissenbacher et al., 2018).

• Amazon: Music reviews from Amazon la-
beled with sentiment.

• Hotel: Hotel reviews from Yelp labeled with
sentiment.

• Restaurant: Restaurant reviews from Yelp
labeled with sentiment.

The latter three datasets were collected for this
study. All documents are given binary labels. For
the Amazon and Yelp data, we encode reviews
with a score >3 (out of 5) as positive and ≤3
as negative. For the Yelp data, we removed re-
views that had fewer than ten tokens or a helpful-
ness/usefulness score of zero.

2.1.1 User Attribute Inference
Previous work on user factor adaptation consid-
ered the factors of gender, age, and personal-
ity (Lynn et al., 2017). We similarly consider gen-
der and age, and instead of personality, we con-
sider a new factor of geographic location. For lo-
cation, we consider two granularities as different
factors, country and region.

These factors must be extracted from the data.
One of our goals is to infer these factors in a way
that is completely independent of the text used for
classification. This is in contrast with the approach

used by Lynn et al. (2017), who inferred the at-
tributes from the text of the users, which could ar-
guably confound the interpretation of the results,
as domains are defined using the same informa-
tion available to the classifier. Thus, we used only
information from user profiles to obtain their de-
mographic attributes.

Gender and Age. We inferred user gender and
age through the user’s profile image using the
Microsoft Facial Recognition API.1 Recent com-
parisons of different commercial face APIs have
found the Microsoft API to be the most accu-
rate (Jung et al., 2018) and least biased (Buo-
lamwini and Gebru, 2018). We filtered out users
that are inferred to be younger than 12 years old.
If multiple faces are in an image, we used the first
result from the API. Gender is encoded with two
values, male and female. For simplicity, we also
binarized the age values (≤30 and >30).

Country and Region. We define two factors
based on the location of the user. For the Twit-
ter data, we inferred the location of each user with
the Carmen geolocation system (Dredze et al.,
2013), which resolves the user’s location string in
their profile to a structured location. Because this
comes from the user profile, it is generally taken
to be the “home” location of the user. For Ama-
zon and Yelp, we collected user locations listed
in their profiles, then used pattern matching and
manual whitelisting to resolve the strings to spe-
cific locations (city, state, country). To construct
user factors from location data, we first created
a binary country variable to indicate if the user’s
country is the United States (US, the most com-
mon country in the data) or not. Among US users,
we resolved the location to a region. We follow the
US Census Bureau’s regional divisions (Bureau,
2012) to categorize the users into four regional cat-
egories: Northeast (NE), Midwest (MW), South
(S) and West (W). We labeled Washington D.C. as
northeast in this study; we excluded other territo-
ries of the US, such as Puerto Rico and U.S. Virgin
Islands, since these locations do not contain much
data and do not map well to the four regions.

Accuracy of Inference Attributes inferred with
these tools will not be perfectly accurate. Al-
though such inaccuracies could lead to suboptimal

1https://azure.microsoft.com/en-us/
services/cognitive-services/face/
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training, this does not affect our classifier evalu-
ation, since we do not use demographic labels at
test time. Nonetheless, we provide a rough es-
timate of the accuracy of the attributes extracted
from faces. We randomly sampled 100 users
across our datasets. Two annotators reviewed each
image and guessed the gender and age of the user
(using our binary categories) based on the pro-
file image. A third annotator chose the final label
when the first two disagreed (annotators disagreed
on gender in 2% of photos and age in 15% of pho-
tos). Our final annotations agreed with the Face
API’s gender estimates 88% of the time across
the four datasets (ranging from 84% to 100%),
and age estimates 68% of the time across the four
datasets (ranging from 56% to 92%).

2.1.2 Data Summary

We show the data statistics along with the full
demographic distributions in the Table 1. While
our study does not require a representative sample
from the data sources, since our primary goal is
to evaluate whether we can adapt models to differ-
ent demographics, we observe some notable dif-
ferences between the demographics of our collec-
tion and the known demographics of the sources.
Namely, the percentage of female users is much
higher in our data than among Twitter users (Tien,
2018) and Yelp users (Yelp, 2018) as estimated
from surveys. This discrepancy could stem from
our process of sampling only users who had profile
images available for demographic inference, since
not all users provide profile photos, and those
who do may skew toward certain demographic
groups (Rose et al., 2012).

2.1.3 Privacy Considerations

While our data collection includes only public
data, due to the potential sensitivity of user pro-
file information, we stored only data necessary for
this study. Therefore, we anonymized the personal
information and deleted user images after retriev-
ing the demographic attributes from the Microsoft
API. We only include aggregated information in
this paper and do not publish any private informa-
tion associated with individuals including exam-
ple reviews. The dataset that we share will include
our model inferences but not the original image
data; instead, the dataset will provide instructions
on how the data was collected in enough detail that
the approach can be replicated.

2.2 Are User Factors Encoded in Text?
It is known that the user factors we consider are as-
sociated with variability in language, including in
online content (Hovy, 2015). For example, age af-
fects linguistic style (Wagner, 2012), and language
styles are highly associated with the gender of on-
line users (Hovy and Purschke, 2018). Dialectical
differences also cause language variation by loca-
tion; for example, “dese” (these) is more common
among social media users from the Southern US
than other regions of the US (Goel et al., 2016).

Our goal in this section is to test whether these
variations hold in our particular datasets, how
strong the effects are, and which of our four fac-
tors are most associated with language. We do this
in two ways, first by measuring predictability of
factors from text, and second by qualitatively ex-
amining topic differences across user groups.

2.2.1 User Factor Prediction
We explore how accurately the text documents can
predict user demographic factors. We do this by
training classifiers to predict each factor. We first
downsample without replacement to balance the
data for each category. We shuffle and split the
data into training (70%) and test (30%) sets. We
then build logistic regression classifiers using TF-
IDF-weighted 1-, 2-, and 3-grams as features. We
use scikit-learn (Pedregosa et al., 2011) to imple-
ment the classifiers and accuracy scores to mea-
sure the predictability. We show the absolute im-
provements of scores in Table 2.

The results show that user factors are encoded
in text well enough to be predicted significantly.
Twitter data shows the best predictability towards
age, and the two Yelp datasets show strong classi-
fication results for both gender and country. We
also observe that as the data size increases, the
predictability of language usage towards demo-
graphic factors also increases. These observations
suggest a connection between language style and
user demographic factors in large corpora.

2.2.2 Topic Analysis
We additionally examine how the distribution of
text content varies across demographic groups. To
characterize the content, we represent the text with
a topic model. We trained a Latent Dirichlet Allo-
cation (Blei et al., 2003) model with 10 topics us-
ing GenSim (Řehůřek and Sojka, 2010) with de-
fault parameters. After training the topic model,
each document d is associated with a probability
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# Docs # Users
Gender Age Country Region
F M ≤30 >30 US ¬US NE MW S W

Twitter 9.8K 9.8K .575 .425 .572 .428 .772 .228 .104 .120 .145 .631
Amazon 40.4K 34.3K .333 .667 .245 .755 .900 .100 .097 .096 .132 .675

Hotel 169K 119K .576 .424 .450 .550 .956 .044 .297 .166 .271 .266
Restaurant 713K 811K .547 .453 .451 .549 .892 .108 .305 .181 .302 .212

Table 1: Dataset statistics including user demographic distributions for four user factors.

Gender Age Country Region
Demographic Factors

Topic 0

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

Topic 7

Topic 8

Topic 9

To
pi

c 
Ra

tio
s

0.224 0.011 -0.043 -0.017
-0.065 0.162 -0.040 0.049
-0.392 0.256 0.042 -0.183
-0.336 -0.584 0.134 0.069
-0.140 0.831 -0.230 0.413
-0.642 0.175 0.026 -0.559
-0.436 1.000 -1.597 0.912
0.124 -1.262 0.498 -0.176
0.564 -2.391 0.851 0.367
0.218 -0.669 0.100 0.208

Twitter

Gender Age Country Region
Demographic Factors

Topic 0

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

Topic 7

Topic 8

Topic 9

To
pi

c 
Ra

tio
s

0.193 -0.077 0.140 0.005
0.211 0.007 0.040 0.020
0.041 0.009 -0.080 0.079
-0.097 -0.035 -0.132 0.027
-0.176 -0.108 -0.140 0.033
-0.411 0.009 -0.162 -0.152
-0.405 0.095 -0.017 -0.055
-0.487 0.269 -0.006 -0.267
-1.422 0.091 0.778 -0.504
0.215 0.414 0.667 -0.058

Amazon

Gender Age Country Region
Demographic Factors

Topic 0

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

Topic 7

Topic 8

Topic 9

To
pi

c 
Ra

tio
s

-0.209 0.102 -0.136 -0.061
0.043 -0.016 0.023 0.016
0.028 0.030 0.045 0.032
0.093 -0.032 0.068 -0.002
0.239 -0.165 0.068 0.009
0.348 -0.200 0.294 0.103
0.261 -0.181 0.331 0.280
0.258 -0.348 0.490 0.122
0.435 -0.345 0.096 0.393
0.645 -1.323 1.000 -3.914

Yelp Hotel

Gender Age Country Region
Demographic Factors

Topic 0

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

Topic 7

Topic 8

Topic 9

To
pi

c 
Ra

tio
s

-0.123 0.015 -0.270 -0.005
0.027 0.018 0.169 0.044
-0.038 0.021 0.200 0.010
-0.019 0.025 0.089 -0.018
0.099 -0.027 0.020 -0.025
0.232 -0.108 -0.012 -0.045
0.415 -0.176 -0.086 -0.077
0.501 -0.286 -0.305 -0.182
0.097 -0.049 -0.197 0.102
-0.092 0.340 -0.992 -0.064

Yelp Restaurant

Figure 1: Topic distribution log ratios. A value of 0 means that demographic groups use that topic in equal amounts,
while values away from 0 mean that the topic is discussed more by one demographic group than the other group(s)
in that factor.

Gender Age Country Region
Twitter +9.6 +15.3 +9.0 +3.3

Amazon +15.2 +12.2 +18.0 +13.0
Hotel +17.2 +10.9 +25.4 +11.6

Restaurant +19.0 +13.2 +32.8 +17.5

Table 2: Predictability of user factors from language
data. We show the absolute percentage improvements
in accuracy over majority-class baselines. For example,
the majority-class baselines of accuracy scores are ei-
ther .500 for the binary prediction or .250 for the region
prediction.

distribution over the 10 topics. The model learns
a multinomial topic distribution P (Z|D) from a
Dirichlet prior, where Z refers to each topic and
D refers to each document. For each demographic
group, we calculate the average topic distribu-
tion across the documents from that group. Then
within each factor, we calculate the log-ratio of
the topic probabilities for each group. For exam-
ple, for topic k for the gender factor, we calculate
log2

P (Topic=k|Gender=female)
P (Topic=k|Gender=male) . The sign of the log-

ratio indicates which demographic group is more
likely to use the topic. We do this for all factors;
for region, we simply binarize the four values for
the purpose of this visualization (MW + W vs. NE
+ S). Results are shown in Figure 1.

The topic model was trained without remov-
ing stop words, in case stop word usage varies
by group. However, because of this, the topics
all look very similar and are hard to interpret,

so we do not show the topics themselves. What
we instead want to show is the degree to which
the prevalence of some topics varies across de-
mographic attributes, which are extracted indepen-
dently from the text used to train the topic models.
We see that while most topics are fairly consistent
across demographic groups, most datasets have at
least a few topics with large differences.

2.3 Are Document Categories Expressed
Differently by Different User Groups?

While text content varies across different user
groups, it is a separate question whether those
variations will affect document classification. For
example, if men and women discuss different top-
ics online, but express sentiment in the same way,
then those differences will not affect a sentiment
classifier. Prior work has shown that the way peo-
ple express opinions in online social media does
vary by gender, age, geographic location, and po-
litical orientation (Hinds and Joinson, 2018); thus,
there is reason to believe that concepts like sen-
timent will be expressed differently by different
groups. As a final exploratory experiment, we now
consider whether the text features that are predic-
tive of document categories (e.g., positive or neg-
ative sentiment) also vary with user factors.

To compare how word expressions vary among
the demographic factors, we conduct a word-
level feature comparison. For each demographic
group, we collect only documents that belong to
that group and then calculate the n-gram features
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Twitter Amazon Hotel Restaurant
Data

Gender

Age

Country

Region

De
m

og
ra

ph
ic 

Fa
ct

or
s

0.644 0.888 0.932 0.926

0.638 0.910 0.952 0.960

0.782 0.866 0.912 0.916

0.662 0.808 0.922 0.910

Figure 2: Overlap in most predictive classification fea-
tures across different demographic groups, calculated
for each demographic factor and each dataset. Darker
color indicates less variation in word usage across de-
mographic groups.

(same features as in Section 2.2) that are most as-
sociated with the document class labels. Using
mutual information, we select the top 1,000 fea-
tures for each attribute. Then within each demo-
graphic factor (e.g., gender), we calculate the per-
centage of top 1,000 features that overlap across
the different attribute values in that factor (e.g.,
male and female). Specifically, if S0 is the set of
top features for one attribute and S1 is the set of
top features for another attribute, the percent over-
lap is calculated as |S0 ∩ S1|/1000. Results are
shown in Figure 2. Lower percentages indicate
higher variation in how different groups express
the concepts being classified (e.g., sentiment). The
Twitter data shows the most variation while the
Yelp hotel data shows the least variation.

3 Model

Models for user factor adaptation generally treat
this as a problem of domain adaptation (Volkova
et al., 2013; Lynn et al., 2017). Domain adap-
tation methods are used to learn models that can
be applied to data whose distributions may differ
from the training data. Commonly used methods
include feature augmentation (Daume III, 2007;
Joshi et al., 2013; Huang and Paul, 2018) and
structural correspondence learning (Blitzer et al.,
2006), while recent approaches rely on domain ad-
versarial training (Ganin et al., 2016; Chen et al.,
2016; Liu et al., 2017; Huang et al., 2018). We
borrow concepts of domain adaptation to construct
a model that is robust to variations across user fac-
tors.

In our proposed Neural User Factor Adapta-
tion (NUFA) model, we treat each variable of in-
terest (demographic attributes and document class
label) as a separate, but jointly modeled, predic-
tion task. The goal is to perform well at predict-
ing document classes, while the demographic at-
tribute tasks are modeled primarily for the purpose
of learning characteristics of the demographic
groups. Thus, the model aims to learn discrimina-
tive features for text classification while learning
to be invariant to the linguistic characteristics of
the demographic groups. Once trained, this clas-
sifier can be applied to test documents without re-
quiring the demographic attributes.

Concretely, we propose the multitask learning
framework in Figure 3. The model extracts fea-
tures from the text for the demographic attribute
prediction tasks and the classification task, as well
as joint features for all tasks in which features
for both demographics and document classes are
mapped into the same vector space. Each fea-
ture space is constructed with a separate Bidi-
rectional Long Short-Term Memory model (Bi-
LSTM) (Hochreiter and Schmidhuber, 1997).

Because language styles vary across groups, as
shown in Section 2.2, information from each task
could be useful to the other. Thus, our intuition
is that while we model the document and de-
mographic predictions as independent tasks, the
shared feature space allows the model to transfer
knowledge from the demographic tasks to the text
classification task and vice versa.

However, we want to keep the feature space
such that the features are predictive of document
classes in a way that is invariant to demographic
shifts. To avoid learning features for the document
classifier that are too strongly associated with user
factors, we use adversarial training. The result is
that the demographic information is encoded pri-
marily in the features used for the demographic
classifiers, while learning invariant text features
that work across different demographic groups for
the document classifier.

Domain Sampling and Model Inputs. Our
model requires all domains (demographic at-
tributes) to be known during training, but not all
attributes are known in our datasets. Instead of
explicitly modeling the missing data, we simply
sample documents where all user attributes of in-
terest are available. At test time, this limitation
does not apply because only the document text is
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Figure 3: Neural User Factor Adaptation (NUFA) model. NUFA optimizes for two major tasks, demographic
prediction (blue blocks and arrows) and text classification (light orange blocks and arrows). During the training
phase, documents labeled with demographic information go through the demographic classifier, and documents
with class labels go through the document classifier. This helps NUFA learn representations that are useful for
classifying documents versus representations that are useful for predicting demographics. At test time, documents
are given only to the document classifier, leaving out the demographic classifiers.

required as input to the document classifier.

Shared Embedding Space. We use a common
embedding layer for both document and demo-
graphic factor predictions. The goal is that the
trained embeddings will capture the language vari-
ations that are associated with the demographic
groups as well as document labels. Parameters are
initialized with pre-trained embeddings (Mikolov
et al., 2013; Pennington et al., 2014).

K+2 Bi-LSTMs. We combine ideas from two
previous works on domain adaptation (Liu et al.,
2017; Kim et al., 2017). Kim et al. (2017) pro-
posedK+1 Bi-LSTMs, whereK is the number of
domains, and Liu et al. (2017) proposed to com-
bine shared and independent Bi-LSTMs for each
prediction task. In our model, we create one inde-
pendent Bi-LSTM for each demographic domain
(blue), one independent Bi-LSTM for the docu-
ment classifier (orange), and one shared Bi-LSTM
that is used in both the demographic prediction
and document classification tasks (yellow). The
intuition is to transfer learned information to one
and the other through this shared Bi-LSTM while
leaving some free spaces for both document la-
bel and demographic factors predictions. We then
concatenate outputs of the shared LSTM with each
task-independent LSTM together. This helps the
text classifier capture demographic knowledge.

Demographic Classifier. We adjust the degree
to which the demographic classifiers can discrimi-
nate between attributes. To find a balance between
the invariant knowledge and differences across
user demographic factors, we apply domain adver-
sarial training (Ganin et al., 2016) (the blue block
indicating the “gradient reversal layer”) to each
domain prediction task. The predictions use the
final concatenated representations, where the pre-
diction is modeled with a softmax function for the
region and a binary sigmoid function for the other
user demographic factors.

Document Classifier. We feed the concatenated
outputs of the document and shared Bi-LSTMs to
one layer feed-forward network (the orange block
indicating the “dense layer”). Finally, the docu-
ment classifier outputs a probability via a sigmoid.

Joint Multitask Learning. We use the categor-
ical cross-entropy loss to optimize the K + 1 pre-
diction tasks jointly. One question is how to as-
sign importance to the multiple tasks. Because
our target is document classification, we assign
a cost to the domain prediction loss (Ldomain).
Each prediction task has its own weight, αk. The
final loss function is defined as L = Ldoc +∑K

k=1 αkLdomain,k. In summary, the proposed
model learns and adapts to user demographic fac-
tors through three aspects: shared embeddings,
shared Bi-LSTMs, and joint optimization.
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4 Experiments

We experiment with document classification on
our four corpora using various models. Our goal
is to test whether models that adapt to user factors
can outperform models that do not, and to under-
stand which components of models can facilitate
user factor adaptation.

4.1 Data Processing

We replaced hyperlinks, usernames, and hashtags
with generic symbols. Documents were lower-
cased and tokenized using NLTK (Bird and Loper,
2004). The corpora were randomly split into train-
ing (80%), development (10%), and test (10%)
sets. We train the models on the training set and
find the optimal hyperparameters on the develop-
ment set. We randomly shuffle the training data at
the beginning of each training epoch. The evalua-
tion metric is weighted F1 score.

4.2 Baselines: No Adaptation

We compare to three standard classifiers that do
not perform adaptation.

N-gram. We extract TF-IDF-weighted features
of 1-, 2-, and 3-grams on the corpora, using the
most frequent 15K features with the minimum fea-
ture frequency as 2. We trained a logistic regres-
sion classifier using the SGDClassifier imple-
mentation in scikit-learn (Pedregosa et al., 2011)
using a batch size of 256 and 1,000 iterations.

CNN. We used Keras (Chollet et al., 2015)
to implement the Convolutional Neural Network
(CNN) classifier described in Kim (2014). To keep
consistent, we initialize the embedding weight
with pre-trained word embeddings (Mikolov et al.,
2013; Pennington et al., 2014). We only keep the
15K most frequent words and replace the rest with
an “unk” token. Each document was padded to a
length of 50. We keep all parameter settings as de-
scribed in the paper. We fed 50 documents to the
model each batch and trained for 20 epochs.

Bi-LSTM. We build a bi-directional Long
Short Term Memory (bi-LSTM) (Hochreiter and
Schmidhuber, 1997) classifier. The classifier is
initialized with the pre-trained word embeddings,
and we initialize training with the same parame-
ters used for the NUFA.

4.3 Adaptation Models

We consider two baseline domain adaptation mod-
els that can adapt for user factors, a non-neural
method and a neural model. We then provide the
training details of our proposed model, NUFA. Fi-
nally, we consider two variants of NUFA that ab-
late components of the model, allowing us to eval-
uate the contribution of each component.

FEDA. Lynn et al. (2017) used a modifica-
tion of the “frustratingly easy” domain adaptation
(FEDA) method (Daume III, 2007) to adapt for
user factors. We use a modification of this method
where the four user factors and their values are
treated as domains. We first extract domain-
specific and general representations as TF-IDF-
weighted n-gram (1-, 2, 3-grams) features. We
extract the top 15K features for each domain
and the general feature set. With this method,
the feature set is augmented such that each fea-
ture has a domain-specific version of the feature
for each domain, as well as a general domain-
independent version of the feature. The fea-
tures values are set to the original feature val-
ues for the domain-independent features and the
domain-specific features that apply to the doc-
ument, while domain-specific features for docu-
ments that do not belong to that domain are set
to 0. For example, using gender as a domain, a
training document with a female author would be
encoded as [Fgeneral, Fdomain,female, 0], while a
document with a male author would be encoded
as [Fgeneral, 0, Fdomain,male]. Different from prior
work with FEDA for user-factor adaptation, at test
time we only use the general, domain-independent
features; the idea is to learn a generalized feature
set that is domain invariant. This is the same ap-
proach we used in recent work using FEDA to
adapt classifiers to temporal variations (Huang and
Paul, 2018).

DANN. We consider the domain adversarial
training network (Ganin et al., 2016) (DANN) on
the user factor adaptation task. We use Keras
to implement the same network and deploy the
same pre-trained word embeddings as in NUFA.
We then set the domain prediction as the demo-
graphic factors prediction and keep the document
label prediction as the default. We train the model
with 20 epochs with a batch size of 64. Finally,
we use the model at the epoch when the model
achieves the best result on the development set for
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the final model.

NUFA. We initialize the embedding weights by
the pre-trained word embeddings (Mikolov et al.,
2013; Pennington et al., 2014) with 200 dimen-
sional vectors. All LSTMs are fixed outputs as
200-dimension vectors. We set the dropout of
LSTM training to 0.2 and the flip gradient value
to 0.01 during the adversarial training. The dense
layer has 128 neurons with ReLU activation func-
tion and dropout of 0.2. User factors and docu-
ment label predictions are optimized jointly using
Adam (Kingma and Ba, 2015) with a learning rate
of 0.001 and batch size of 64. We train NUFA
for up to 20 epochs and select the best model on
the development set. For single-factor adaptation
(next section), we set α to 0.1; for multi-factor
adaptation, we use a heuristic for setting α de-
scribed in that section. We implemented NUFA
in Keras (Chollet et al., 2015).

NUFA–s. To understand the role of the shared
Bi-LSTM in our model, we conduct experiments
on NUFA without the shared Bi-LSTM. We follow
the same experimental steps as NUFA and denote
it as NUFA−s (NUFA minus shared Bi-LSTM).

NUFA–a. To understand the role of the adver-
sarial training in our model, we conduct experi-
ments of the NUFA without adversarial training,
denoted as NUFA−a (NUFA minus adversarial).

4.4 Results

4.4.1 Single-Factor Adaptation
We first consider user factor adaptation for each of
the four factors individually. Table 3 shows the re-
sults. Adaptation methods almost always outper-
form the non-adaptation baselines; the best adap-
tation model outperforms the best non-adaptation
model by 1.5 to 5.5 points. The improvements
indicate that adopting the demographic factors
might be beneficial for the classifiers. User fac-
tor adaptation thus appears to be important for text
classification.

Comparing the adaptation methods, our pro-
posed model (NUFA) is best on three of four
datasets. On the Hotel dataset, the n-gram model
FEDA is always best; this seems to be a dataset
where neural methods perform poorly, since even
the n-gram baseline with no adaptation often out-
performed the various neural models. Whether a
neural model is the best choice depends on the

Twitter Amazon Hotel Rest.
No Adaptation

N-gram .866 .793 .857 .866
CNN .879 .776 .825 .846

Bi-LSTM .869 .776 .842 .875
Adaptation (Gender)

FEDA .814 .809 .865 .874
DANN .864 .832 .813 .855

NUFA−s .880 .845 .857 .869
NUFA−a .874 .842 .852 .868

NUFA .886 .844 .854 .881
Adaptation (Age)

FEDA .813 .801 .865 .873
DANN .856 .824 .811 .851

NUFA−s .872 .843 .850 .879
NUFA−a .882 .841 .852 .878

NUFA .885 .839 .857 .880
Adaptation (Country)

FEDA .826 .768 .865 .877
DANN .868 .828 .827 .855

NUFA−s .882 .844 .854 .879
NUFA−a .880 .838 .855 .877

NUFA .896 .843 .854 .879
Adaptation (Region)

FEDA .826 .780 .864 .869
DANN .875 .825 .823 .852

NUFA−s .874 .833 .854 .878
NUFA−a .882 .838 .854 .875

NUFA .893 .848 .853 .880

Table 3: Performance (weighted F1) of no adaptation
and single user factor adaptation. For each dataset,
the best score within each demographic domain is ital-
icized; the best score overall is bolded.

dataset, but among the neural models, NUFA al-
ways outperforms DANN. Finally, the full NUFA
model most often outperforms the variants with-
out the shared Bi-LSTM (NUFA−s) and without
adversarial training (NUFA−a).

4.4.2 Multi-Factor Adaptation
Finally, we experiment with adapting to all four
user factors together. Recall that each domain pre-
diction task in NUFA is weighted by αk. Initially,
we simply used a uniform weighting, αk = α/K,
but we find that we can improve performance with
non-uniform weighting. Because optimizing the α
vector would be expensive, we instead propose a
heuristic that weighs the domains based on how
much each domain is expected to influence the
text. We define αk = sk/(

∑
k′ sk′), where sk
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Twitter Amazon Hotel Rest.
Baseline Adaptation

FEDA .806 .778 .867 .869
DANN .880 .828 .830 .858

Proposed Model
NUFA .887 .848 .853 .879

NUFA+w .901 .852 .855 .885

Table 4: Results of adaptation for all four user factors.

is the F1 score of demographic attribute predic-
tion for domain k from Table 2. We denote this
method as NUFA+w, which refers to this addi-
tional weighting process.

Table 4 shows that combining all user factors
provides a small gain over single-factor adapta-
tion; the best multi-factor result is higher than
the best single-factor result for each dataset. As
with single-factor adaptation, FEDA works best
for the Hotel datasets, while NUFA+w works best
for the other three. Without adding weighting
to NUFA, the multi-factor performance is com-
parable to single-factor performance; thus, task
weighting seems to be critical for good perfor-
mance when combining multiple factors.

5 Related Work

Demographic prediction is a common task in
natural language processing. Research has shown
that social media text is predictive of demographic
variables such as gender (Rao et al., 2010, 2011;
Burger et al., 2011; Volkova et al., 2015) and loca-
tion (Eisenstein et al., 2010; Wing and Baldridge,
2011, 2014). Our work is closely related to these,
as our model also predicts demographic variables.
However, in our model the goal of demographic
prediction is primarily to learn representations that
will make the document classifier more robust to
demographic variations, rather than the end goal
being demographic prediction itself.

Demographic bias has been shown to be en-
coded in machine learning models. Word em-
beddings, which are widely used in classification
tasks, are prone to learning demographic stereo-
types. For example, a study by Bolukbasi et al.
(2016) found that the word “programmer” is more
similar to “man” than “woman,” while “reception-
ist” is more similar to “woman.” To avoid learn-
ing biases, researchers have proposed adding de-
mographic constraints (Zhao et al., 2017) or using
adversarial training (Elazar and Goldberg, 2018).

While our work is not focused specifically on re-
ducing bias, our goals are related to it in that our
models are meant to learn document classifiers
that are invariant to author demographics.

6 Conclusion

We have explored the issue of author demograph-
ics in relation to document classification, showing
that demographics are encoded in language, and
the most predictive features for document classi-
fication vary by demographics. We showed that
various domain adaptation methods can be used
to build classifiers that are more robust to demo-
graphics, combined in a neural model that out-
performed prior approaches. Our datasets, which
contain various attributes including those inferred
through facial recognition, could be useful in other
research (Section 5). We publish our datasets2 and
source code.3
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Abstract

Knowledge graphs, which provide numerous
facts in a machine-friendly format, are incom-
plete. Information that we induce from such
graphs – e.g. entity embeddings, relation rep-
resentations or patterns – will be affected by
the imbalance in the information captured in
the graph – by biasing representations, or caus-
ing us to miss potential patterns. To par-
tially compensate for this situation we describe
a method for representing knowledge graphs
that capture an intensional representation of
the original extensional information. This rep-
resentation is very compact, and it abstracts
away from individual links, allowing us to find
better path candidates, as shown by the results
of link prediction using this information.

1 Introduction

Knowledge graphs have become a very useful
framework to organize and store knowledge. Their
interconnected nature is not just a natural way to
represent facts, but it has potential that the separate
storage of facts does not have, such as: (i) we can
use it as a relational model of meaning, and de-
rive jointly representations for nodes (entities) and
edges (relations); (ii) the structure can be explored
to discover systematic patterns that reveal interest-
ing and exploitable regularities, such as paths con-
necting nodes in direct relations, (iii) discovering
and inducing new connections.

Link prediction methods in knowledge graphs
(see (Nickel et al., 2016) for an overview) pre-
dict additional edges in the graph, based on in-
duced node and edge representations that encode
the structure of the graph and thus capture regular-
ities (such as homophily).

Lao and Cohen (2010) introduced a new method
that predicts direct links based on paths that con-
nect the source and target nodes. Such paths are
not only useful for link prediction (Lao et al.,

2011; Gardner et al., 2014), but also for finding
explanations for direct links and help with targeted
information extraction to fill in incomplete knowl-
edge repositories (Yin et al., 2018; Zhou and Nas-
tase, 2018).

These approaches rely on the structure of the
knowledge graph, which is inherently incomplete.
This incompleteness can affect the process in dif-
ferent ways, e.g. it leads to representations for
nodes with few connection that are not very in-
formative, it can miss relevant patterns/paths (or
derive misleading patterns/paths).

In this paper we investigate whether a higher-
level view of a graph – an abstract graph that cap-
tures an intensional view of the original exten-
sional graph – can help derive more robust and
informative patterns. Such patterns are paths (i.e.
sequences of relations) that could be used not only
for link prediction, but also for targeted informa-
tion extraction for completing the graph with ex-
ternal information. This abstract graph will con-
tain only one edge for each relation type, that
will connect a node representing the relation’s do-
main (or source) to its range (or target). Ad-
ditional edges will link the nodes to capture set
relations (intersection, subset, superset) informa-
tion between the different relations’ domains and
ranges. This step drastically reduces the graph
size, making many different graph processing ap-
proaches more tractable. We investigate whether
in this graph that represents a more general ver-
sion of the information in the original KG, good
patterns/paths are stronger and easier to find, be-
cause the aggregated view compensates for indi-
vidual missing edges throughout the graph. We
test the extracted paths through the link predic-
tion task on Freebase (Bollacker et al., 2008) and
NELL (Carlson et al., 2010a), using Gardner et al.
(2014)’s experimental set-up: pairs of nodes are
represented using their connected paths as fea-
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tures, and a model for predicting the direct rela-
tions is learned and tested on training and test sets
for 24 relations in Freebase and 10 relations in
NELL. Our analysis shows that we find different
and much fewer paths than the PRA method does
(mostly because the abstract paths do not contain
back-and-forth sequences of generalizing or type
relations). The paths found in the abstract graphs
lead to better performance on NELL than the PRA
paths, which could be explained by the fact that
NELL’s relation inventory was designed to cap-
ture interdependencies (Carlson et al., 2010a). On
Freebase the results we obtain are lower, but this
could be due to a different negative sampling pro-
cess. Inspection of the paths produced reveal that
they seem to capture legitimate dependencies.

2 Related Work

Representing facts in a knowledge graph has mul-
tiple advantages: (i) they provide knowledge in an
easily accessible and machine-friendly format; (ii)
they facilitate various ways of encoding this infor-
mation and deriving representations for nodes and
edges that reflect their connectivity in the graph;
(iii) they allow for the discovery of connectivity
patterns, and possibly more.

In recent years, projecting the knowledge graph
in an n-dimensional vector space, or learning em-
beddings for predicting missing facts has attracted
a lot of interest. Embedding models aim to map
entities, relations and triples to vector space such
that additional facts can be inferred from known
facts using notions of vector similarity. A class of
embedding models that aim to factorize the graph
are termed as latent factor models. Neural net-
work based models such as ER-MLP (Dong et al.,
2014), NTN (Socher et al., 2013), RNNs (Nee-
lakantan et al., 2015; Das et al., 2016) and Graph
CNNs (Schlichtkrull et al., 2018) are examples of
embedding models while RESCAL (Nickel et al.,
2012), DistMult (Yang et al., 2015), TransE (Bor-
des et al., 2013), ComplEx (Trouillon et al., 2017)
are examples of latent factor models.

Lao and Cohen (2010) introduced a novel way
to exploit information in knowledge graphs: using
weighted extracted paths as features in four dif-
ferent recommendation tasks, which can be mod-
eled as typed proximity queries. The idea of us-
ing paths in the graph has then been applied to the
task of link prediction (Lao et al., 2011), and ex-
tended to incorporate textual information (Gard-

ner et al., 2014). Lao et al. (2011) obtain paths
for given node pairs using random walks over the
knowledge graph. To be used as features shared by
multiple instances, the information about nodes on
the paths is removed, transforming the actual paths
into ”meta-paths”.

The paths themselves can be incorporated in
different ways in a model – as features (Lao et al.,
2011; Gardner et al., 2014), as Horn clauses to
provide rules for inference in KGs whether di-
rectly or through scores that represent the strength
of the path as a direct relation (Neelakantan et al.,
2015; Guu et al., 2015), also taking into ac-
count information about intermediary nodes (Das
et al., 2017; Yin et al., 2018). Gardner and
Mitchell (2015) perform link prediction using ran-
dom walks but do not attempt to connect a source
and target node, but rather to characterize the lo-
cal structure around a (source or target) node us-
ing such localized paths. Using these subgraph
features leads to better results for the knowledge
graph completion task.

We focus here on discovering useful and ex-
planatory paths, not on optimizing or further im-
proving the KGC task. Using paths can lead to in-
terpretable models because the paths can help ex-
plain the predicted fact. Meng et al. (2015) present
a method to automate the induction of meta-
paths in large heterogeneous information networks
(a.k.a. knowledge graphs) for given node pairs,
even if the given node pairs are not connected by
a direct relation.

Path information is also found to improve per-
formance since paths help the model learn logical
rules. However, mining paths from a large knowl-
edge graph is often computationally expensive
since it involves performing a traversal through
the graph. To overcome this limitation (Das et al.,
2017) proposed deep reinforcement learning and
(Chen et al., 2018) proposed RNNS for generat-
ing paths. However, many datasets suffer from
paths sparsity, lack of enough paths connecting
source target pairs, resulting in poor performance
for many relations.

Wang et al. (2013) have a different approach –
they start with patterns in the form of first-order
probabilistic rules, which they then ground in a
small subgraph of a large knowledge graph.

The approach we present here combines dif-
ferent elements of these previous approaches in a
novel way: we build an abstract graph to find pat-
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terns that would be similar to those used by (Wang
et al., 2013). To test the quality of these paths we
ground them using the original KG and use these
grounded paths in a learning framework similar to
(Gardner et al., 2014).

3 Abstract Graphs and Abstract Paths

Knowledge graphs are incomplete in an imbal-
anced way. Figures 1a-1b show how much the
relation and node frequencies for Freebase 15k
and NELL vary, and the fact that numerous
nodes and edges have very low frequency (each
data point corresponds to a node/relation, and
the value is the degree of the node/frequency of
the relation respectively). Freebase and NELL
have a helpful characteristic: they have strongly
typed relations, i.e. the source and target of
a relation have a very specific type. NELL
for example, has relations such as like Ac-
torStarredinMovie, StateHasLake, and Freebase
has /film/film/rating, /book/literary series/author,
whose arguments have type Person, Movie, State,
etc.

Previous work has shown that using node type
information – provided in Freebase through the
domain and range types for each relation – can
help optimize computation for link prediction by
filtering the entity matrix for each relation based
on the relation’s domain and range types (Chang
et al., 2014), improve prediction by adding a fac-
tor in the loss function that accounts for the type of
the entities involved in a relation (Kotnis and Nas-
tase, 2017), or improve predictions based on paths
in the graph by using the types of intermediary en-
tities (Yin et al., 2018).

Entity types and the type of the domain and
range of a relation have been proven to be useful
for improving link prediction models. We inves-
tigate here the hypothesis that by relying on the
fact that such strong constraints on the arguments
of relations in Freebase exist, we can build an in-
tensional graph of the knowledge repository that is
smaller and thus easier to analyze than the full KG.
We also hypothesize that at this abstract level we
can induce better patterns/paths that are indicative
of direct relations, because individual missing re-
lation instances will not obfuscate useful patterns.
We verify whether these patterns are good by test-
ing their usefulness for link prediction. Finding
qualitative patterns would have additional benefits,
as they could be used to explain direct relation, and

fill in the KG through targeted information extrac-
tion (Zhou and Nastase, 2018).

3.1 Abstract graphs

A knowledge graph (KG) is an extensional
representation of a relation schema, where each
instance of a relation type r corresponds to an
edge connecting two nodes, a source s and a target
t, usually represented as a triple: < s, r, t >.
We replace this representation with an intesional
representation, where we have only one edge for
each relation type, and draw additional edges
to capture set relations (intersection, subset,
superset) between the (original graph’s) relations’
domain and ranges. These edges are weighed with
the size of the overlap between the sets. Formally:

for a knowledge graph
KG = (V, E ,R)

with:
vertices V = {v1, ..., vn},
relation typesR = {r1, ..., rk}
relation instances (i.e. edges)
E = {(vi, rx, vj)|vi, vj ∈ V; rx ∈ R},

we build the abstract graph
KGA = (VA, EA,RA)

with:
vertices VA = {V1,s, V1,t, V2,s, V2,t, ..., Vk,s, Vk,t},
where:
the source node of relation ri in the abstract graph
is the set of source nodes (the domain) of relation
ri in KG:
Vi,s = {vx|(vx, ri, ∗) ∈ E}
the target node of relation ri in the abstract graph
is the set of target nodes (the range) of ri in KG:
Vi,t = {vx|(∗, ri, vx) ∈ E}
relation typesRA = R∪Rset where:
R is the set of relation types of KG,
Rset = {intersection, subset, superset}1.
weighted edges
EA = {(Vi,s, ri, Vi,t, 1)|ri ∈ R, Vi,s, Vi,t ∈ VA}
∪ {(Vi,x, r, Vj,y, w)|r ∈ Rset, Vi,x, Vj,y ∈ VA

w = overlap(Vi,x, Vj,y))}

where the weight of a set relation between KGA’s
nodes quantifies the overlap between the two sets:
overlap(Vi,x, Vj,y) =

|Vi,x∩Vj,y |
|Vi,x|

1There is no equal relation because if two sets are equal
there will be only one node to represent them.
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(a) Freebase (b) NELL

Figure 1: Knowledge graphs statistics on a logarithmic scale: relation and nodes frequencies for Freebase and
NELL (the version used by (Gardner et al., 2014) and in this paper). Every data point is the degree of a node (top
plots), or frequency of a relation (bottom plots). The data points are ordered monotonically, the x axis is just an
index.

Building such a graph makes sense only for
knowledge repositories that have strongly typed
relations – like Freebase and NELL – but we do
not require knowledge of the types of the relations’
domains and ranges. Such information is not fine-
grained enough: for example, the relation capital
has a type City as a domain, but capital cities are a
very small subset of the set of all cities. Using an
”atomic” node to represent the domain/range of a
relation would not allow us to make finer grained
connections and distinctions between the domains
and ranges of the existing relations.

Figure 2 shows a subset of the abstract graph
built from the Freebase dataset. The blue edges
are set relations – intersection, superset, subset –
between the domains and ranges of a subset of the
relations in the dataset. The black edges corre-
spond to the actual relations in the dataset.

3.2 Abstract paths

The Path Ranking Algorithm formalism originally
proposed by (Lao and Cohen, 2010) performs two
main steps to represent of a pair of nodes in a
graph: (i) feature selection – adding paths that
connect the node pair; (ii) feature computation –

Figure 2: An abstract graph built on a subset of the
Freebase dataset. The blue edges are set relations be-
tween the domains and ranges of the included relations,
the black edges are the actual relations from the dataset.
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KB variation Freebase NELL
Original graph Abstract graph Original graph Abstract graph

# nodes # edges # nodes # edges # nodes # edges # nodes # edges
KB 20M 67M 4086 22,946 1.2M 3.4M 587 2746
KB + SVO 30M 97M 35,905 1.7M 20M 71M 68,149 512,503
KB + Vector SVO 30M 97M 4112 23,257 1.3M 4.3M 613 3383
KB + Clustered SVO 30M 125M 4138 24,098 1.3M 3.9M 639 3818

Table 1: Graph statistics on the datasets used by (Gardner et al., 2014), and their abstract versions

associating a value for each added path.
Obtaining paths from a large graph is a compu-

tationally intensive problem, particularly in graphs
that have numerous nodes with high degrees. Fig-
ure 1a shows that about 60% of Freebase nodes
have degree higher than 10, which leads to an ex-
ponential growth in the number of paths starting in
a node. Algorithms that harness path information
often mine paths either by performing costly ran-
dom walks (Guu et al., 2015), traversals (Gardner
et al., 2014; Neelakantan et al., 2015; Das et al.,
2016) or by constructing paths through generative
models (Das et al., 2017; Ding et al., 2018). Here,
we adopt a different approach, by abstracting the
graph first, then finding paths in this graph through
traversal algorithms.

For a relation ri, we start at its domain (source)
node Vi,s and search for a path to its range (tar-
get) node Vi,t using breadth first search. We con-
strain this path to contain at most k ”proper” rela-
tions2, and we do not allow consecutive set rela-
tions, thus forcing the algorithm to move from one
”proper” relation to another through a set relation
that connects the range of one with the domain of
the next. An abstract path, just like a meta-path ex-
tracted by previous work, is a sequence of relation
types: πj =< rj,1, rj,2, ...rj,m >, some of which
are ”proper” relations, some are set relations.

Because of the more general view of the graph,
we lose information about individual paths (i.e. in-
stances of a path in the original graph). Because of
this, the paths we extract are hypothetical, but will
have associated a confidence score based on the
frequency of occurrence of relations in the origi-
nal KG, and the strength of the connection of the
range of one relation on the path with the domain
of the next one. The weight of an abstract path πj
is computed as:

w(πj) =
m∏

i=1

w(rj,i)

2In our experiments we used k = 5

where the weight w(rj,i) of an individual relation
is defined based on whether ri,j is a ”proper” rela-
tion or a set relation as:

w(rj,i) =

{ |{<∗,rj,i,∗>∈E}
|E| if rj,i ∈ R

overlap(rj,i) if rj,i ∈ Rset

We use this weight to rank abstract relations for
potential filtering, and to compute the weight of its
grounding for specific node pairs.

3.3 Grounded paths
The abstract paths are hypothetical paths that
could connect the source s and target t of a <
s, r, t > tuple. They can be used in different ways,
e.g. (i) as features in a link prediction system (e.g.
(Gardner et al., 2014)), (ii) to fill in larger por-
tions of the graph by producing, rather than find-
ing, groundings of the path for specific instances.

In the work presented here we test the abstract
paths through the link prediction task, so we will
try to ground abstract paths for relation instances
in the training and test data. After finding the set of
abstract paths {πi,r} associated with a relation r,
for a given instance of the relation r –< s, r, t > –
we can (try to) ground the paths as follows: (i) we
first eliminate set relations from the abstract paths:
at this point set relations between relation types
domain and ranges are not useful (they were nec-
essary only for the connectivity and search process
in the abstract graph). Set relations have no coun-
terpart in the extensional graph, as at this level
nodes themselves make the connection between
successive relations (ii) starting at the source node,
we follow again a breadth first traversal, constrain-
ing at each step the type of relation to follow based
on the ”cleaned up” abstract path.

We compute the weight of a grounded path
gp =< v0, rx1 , v1, ..., vl−1, rxl

, vl > (where v0 =
s and vl = t) as a combination of the weight of the
corresponding abstract path π =< r1, ..., rm >
(rxi ∈ π) and specific information for the current
node pair (s, t):
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w(π) =
∏l

i=1w(vi−1, ri, vi)
where the weights of the relations on the grounded
path reflect the specificity of the relation to its
source node:

w(vi−1, ri, vi) =

{
1

|{<vi−1,ri,∗>∈E} if ri ∈ gp
1 if ri ∈ Rset

4 Experiments

Because we want to compare the abstract paths
found using the abstract graph with paths found
using PRA, we use the experimental set-up of
(Gardner et al., 2014), where we replace the fea-
ture selection and feature computation steps with
the approach presented here. A big difference will
be caused by the negative sampling, which also
makes the results not directly comparable. The is-
sues are explained in the negative sampling para-
graph below. The data thus obtained is used for
training a linear regression model (similarly to
(Gardner et al., 2014)), and tested on the provided
test sets and evaluated using mean average preci-
sion (MAP).

4.1 Data

We build abstract graphs and paths from the Free-
base and NELL data described in (Gardner et al.,
2014). We then use the extracted paths for link
prediction.

The graphs built by Gardner et al. (2014) cover
several variations, where the KGs were enhanced
with < subject, verb, object > triples extracted
from dependency parses of ClueWeb documents.
Table 1 shows the statistics for each original and
abstract graph. The generated abstract graph is
several degrees of magnitude smaller compared
to the original KG. The abstract graph approach
we present here does not fit well the combina-
tion of the knowledge base (Freebase or NELL)
with unstructured SVO triples, because we rely on
strongly typed relations to build node sets. The
SVO triples bring in numerous low frequency re-
lations, that without additional processing are not
beneficial. The results presented by Gardner et al.
(2014) show that this configuration very rarely
(and never overall) leads to better results than the
other graph variations. The numerous relation
types brought in by the SVO triples also lead to
high computation time for the abstract graph: its
shortcoming is the computation of set relations be-
tween the different relations’ domains and ranges,

KG Avg. no. inst min max
NELL train 650.7 81 1468
NELL test 163.2 21 367
Freebase train 122.9 10 600
Freebase test 41.6 4 200

Table 2: Statistics on the size of the training and test
sets

which grows quadratically with the number of re-
lation types. We will skip this graph variation in
the rest of the experiments presented here.

Gardner et al. (2014) use these graphs to gen-
erate paths for augmenting the representation of
node pairs, for link prediction, for a subset of 24
relation types from Freebase’s inventory, and 10
relations from NELL. Each relation has a training
and test set, whose numbers vary quite a bit, as
shown through the statistics in Table 2.

Negative sampling The number of negative
instances used in (Gardner et al., 2014) is not
clearly stated. Both the number and methods of
generating the negative samples can impact the
results (Kotnis and Nastase, 2018). We use (up to)
200 negative samples for each positive pair: for a
pair (s, t) in the provided training or test sets for
each relation r, we make 100 negative samples
by corrupting the source s, and 100 negative
samples by corrupting the target t. The corrupted
s′ and t′ are chosen from r’s domain Vr,s and
range Vr,t respectively, such that these corrupted
triples are not part of the training, test or graph. If
100 instances do not exist, we extract as many as
possible.

Neg(s, r, t) = {(s′, r, t)|s′ ∈ Vr,s, (s′, r, t) 6∈ E}
∪ {(s, r, t′)|t′ ∈ Vr,t, (s, r, t′) 6∈ E}

Because the relations are strongly typed, pro-
ducing negative instances by corrupting the
source/target nodes from the relation’s domain and
range leads to difficult negative instances. In-
stances with source and target nodes that don’t
match the argument types of the direct relation we
want to predict can be filtered out before the link
prediction.

Representing instances For each of these 24
Freebase and 10 NELL relations we mine paths in
the abstract graph using depth first traversal. An
example of abstract path found for the NELL rela-
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Source_401

Source_266 Source_260

Target_260Target_266

Target_401stadium located in city

inters

stadium home team                 
inters

                    team plays in city

inters

Figure 3: An abstract path for relation StadiumLocate-
dInCity from NELL

tion StadiumLocatedInCity is shown in figure 3.
Each of the 24 Freebase and 10 NELL relations

has a set of training and test examples. After build-
ing abstract paths, for each instance < s, r, t >
in these datasets we will ground the correspond-
ing abstract paths as described in Section 3.3. For
each relation type the set of features representing
the corresponding data will be twice the number of
abstract paths. We produce two features for each
abstract path: one that is the weight of this path,
and one that is the weight of its grounding for a
given relation instance. If a relation instance does
not have a grounding for an abstract path, the val-
ues of these features will be 0.

4.2 Results and discussion

The overall results of the experiments are pre-
sented in Table 3, and the relation-level results are
in Tables 4 for NELL, and 5 for Freebase.

graph Freebase NELL
MAPG MAPKGA

MAPG MAPKGA

KB 0.278 0.186 0.193 0.246
KBCl 0.326 0.233 0.276 0.411
KBVec 0.350 0.223 0.301 0.306

Table 3: Results on the three graph variations of Free-
base and NELL as reported by (Gardner et al., 2014)
(G) and using abstract graphs (KGA).

Overall, the results indicate that enhanc-
ing Freebase and NELL with additional facts
from textual sources leads to better results,
particularly when these additional facts (<
subject, verb, object > triples) are processed and
clustered using low dimensional dense representa-
tions (Gardner et al.; Gardner et al. (2014; 2013)
use embeddings obtained by running PCA on the
matrix of SVO triples).

Freebase has 4200+ relation types, and NELL
500+. More than 500 relation types in Freebase
have less than 10 instances, wheres NELL does
not have this issue (see Figures 1a and 1b). Be-
cause we test the approach for knowledge graph
completion using classification based on the pat-
terns as features, having features that appear too

Relation PRA
best

KB KB Cl KB
Vec

ActorStarredInMovie 0.037 0 0 0
AthletePlaysForTeam 0.589 0.145 0.089 0.136
CityLocatedInCountry 0.347 0.078 0.071 0.057
JournalistWritesForPub. 0.319 0.317 0.515 0.436
RiverFlowsThroughCity 0.076 0.027 0.146 0.058
SportsTeamPos.ForSport 0.217 0 0.615 0
StadiumLocatedInCity 0.321 0.316 0.414 0.110
StateHasLake 0.000 0 0.688 0.681
TeamPlaysInLeague 0.947 0.910 0.916 0.917
WriterWroteBook 0.202 0.661 0.659 0.661

Table 4: Relation results for the NELL KB. The second
column is the best result for each relation reported by
(Gardner et al., 2014).

few times will not help the system find a robust
model. For the purpose of the presented experi-
ments we filter the Freebase abstract graph to use
only relation types that have at least 10 instances
(Table 1 shows the statistics for this configura-
tion).

It is not surprising that overall the results for
NELL are higher – NELL has been designed on
the principle of coupled learning, where connec-
tions between different relations are the basis of
the resource and its continuous growth (Carlson
et al., 2010b). It also has more training data for
each relation (see table in Section 4.1). There is
no consistent trend – for some relations using the
paths extracted with this approach leads to better
results, for others it does not (although, as we fre-
quently mentioned, the fact that we used different
negative sampling methods, the results are not di-
rectly comparable).

A more complete picture emerges when we look
at the paths found, and compare them with the
paths obtained with the PRA approach3. For all
Freebase KG configurations, Gardner et al. (2014)
have 1000 paths for most relations (approx. 6
of the relations have between 230 and 973). For
NELL the number varies more, between 58 and
5509, 6 of the relations have more than 1000 meta-
paths. With the abstract graphs the numbers are
much lower. For Freebase we find between 1 and
258 abstract paths, most of the relations (21) hav-
ing fewer than 30 abstract paths for all KG con-
figurations. For NELL we find between 1 and 157
paths, 5 of the relations having more than 100 ab-

3We used the archive shared by Matt Gardner https:
//github.com/matt-gardner/pra, in particular the
translated paths for each relation.
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Relation PRA KB KB Cl KB
best Vec

/amusement/parks/park rides 0.013 0.503 0.503 0.503
/arch./arch./ struc. designed 0.376 0 0 0
/astronomy/constel./contains 0.017 0.503 0.503 0.503
/autom./auto. class/examples 0.006 0 0 0
/autom./model/auto. class 0.768 0.009 0.009 0.009
/aviation/airline/hubs 0.336 0.279 0.279 0.330
/book/literary series/author 0.830 0.461 0.461 0.461
/comp./sw genre/sw. in genre 0.001 0.002 0.002 0.002
/edu./field of study/ jour-
nals in this disc.

0.003 0.005 0.005 0.005

/film/film/rating 0.914 0.087 0.096 0.136
/geo./island/body of water 0.602 0.286 0.286 0.286
/geo./lake/basin countries 0.437 0.083 0.075 0.112
/geo./lake/cities 0.177 0.003 0.442 0.442
/geo./river/cities 0.066 0 0.127 0.127
/ice h./h. player/h. position 0.364 0.007 0.007 0.007
/loc./adm. division/ country 0.991 0.189 0.199 0.199
/medicine/disease/symptoms 0.078 0.035 0.088 0.060
/medicine/drug/drug class 0.169 0 0.212 0.002
/people/ethnicity/lang. spoken0.226 0.128 0.135 0.115
/spaceflight/astronaut/miss. 0.848 0.272 0.272 0.272
/transp./bridge/body of water
spanned

0.727 0.190 0.384 0.384

/tv/tv prog. cr./prog. created 0.181 0.646 0.646 0.646
/vis. art/art period movement/
assoc. artists

0.046 0.318 0.340 0.340

/vis. art/vis. artist/assoc. per.
or mov.

0.295 0.474 0.509 0.516

Table 5: Statistics of the number of instances in the
training and testing sets for the relations analyzed, and
the number of paths extracted for each set (in parenthe-
ses the number of abstract paths for each graph).

stract paths. The overlap between the sets of paths
discovered with the two methods is very small:
for Freebase the average overlap with respect to
PRA is around 0.004 (for the different graph con-
figurations), and with respect to the abstract paths
around 0.2; for NELL around 0.003 relative to
PRA and 0.27 relative to the abstract paths.

We note that overall, the system found more
paths than what could be grounded for the
given training instances for both Freebase and
NELL. Another general observation is that rela-
tions for which we found the most patterns (Ath-
letePlaysForTeam and StateHasLake for NELL,
/medicine/disease/symptoms and /film/film/rating
for Freebase) do not necessarily perform the best.

NELL The results for each relation in terms of
average precision are presented in Table 4. We
include the best result on PRA (on any varia-
tion of the graph), as reported by (Gardner et al.,
2014), although since we used different negative

instances the results are not directly comparable.
Several of the NELL target relations have interest-
ing patterns in the abstract graph, in particular Sta-
diumLocatedInCity, TeamPlaysInLeague. In sev-
eral cases, the algorithm has discovered ”parallel”
relations. For the relation WriterWroteBook, the
most useful feature is the relation AgentCreated,
which connects many of the source-target pairs in
the WriterWroteBook relation. We found a simi-
lar situation with the relation JournalistWritesFor-
Publication, which has WorksFor paralleling it in
the graph.

Looking at specific relations, the paths ex-
tracted from the abstract graph are more focused.
An example of this is the relation StadiumLocate-
dInCity. Numerous paths detected by PRA seem
irrelevant, as illustrated by the following (highest
frequency) paths:

generalizations→ generalizations−1

generalizations→ generalizations−1

→ generalizations→ generalizations−1

generalizations→ generalizations−1

→ CityHotels
generalizations→ generalizations−1

→ StadiumLocatedInCity
generalizations→ generalizations−1

→ BuildingLocatedInCity

The paths found in the abstract graph, as the ex-
ample in Figure 3 shows, seem to capture more
informative relation interdependencies.

Our system does not always find high qual-
ity patterns. It also finds surprising and most
probably idiosyncratic patterns. In particular, for
the StateHasLake relation, from the paths found,
some very unexpected ones had groundings for
the given training data:

Agric.Prod.GrowingInStateOrProv.−1

→ Agric.Prod.GrowingInStateOrProv.
→ StateHasLake

MaleMovedToStateOrProv.−1

→MaleMovedToStateOrProv.
→ StateHasLake

While the first rule could be justified (having
lakes may favour the growing of certain types
of agricultural products), the second one seems
completely accidental. With a stronger filtering
method based on the computed path scores we
could eliminate some of these false patterns.

154



Paths extracted using PRA

/type/object/type→ /type/object/type−1 → /film/content rating/film−1

/film/performance/film−1 → /type/object/type→ /type/object/type−1

→ /film/performance/film→ /film/film/rating

/type/object/type→ /type/object/type−1 → /film/film/rating

/film/performance/film−1 → /type/object/type→ /type/object/type−1

→ /film/performance/film→ /film/content rating/film−1

/film/film genre/films in this genre−1 → /film/film/genre−1 → /film/film/rating

/film/film/genre→ /film/film/genre−1 → /film/film/rating

/film/film/language→ /film/film/language−1 → /film/film/rating

Paths extracted using abstract graphs

/film/film/edited by → /film/editor/film→ /film/film/rating

/film/film/directed by → /film/producer/film→ /film/film/rating

/film/film/cinematography → /film/cinematographer/film→ /film/film/rating

/film/film/costume design by → /film/film/costumer designer costume design for film
→ /film/film/rating

/film/film/music→ /film/music/contributor film→ /film/film/rating

/film/film/film production design by → /film/film prod. designer/films prod. designed
→ /film/film/rating

Table 6: Sample relations extracted using PRA and abstract graphs, respectively

Freebase The fine-grained results for Freebase,
in terms of average precision, are presented in Ta-
ble 5. We make the same observation as for NELL
– for several relations, the paths obtained from the
abstract graph are different and more focused than
the PRA ones. For the relation /film/film/rating for
which the PRA approach gives very high results
with the abstract graph has lower scores, some of
the highest scoring paths found by the PRA are
presented in Table 6. For comparison we also in-
clude the highest rated paths obtained using the
abstract graph. While some of these paths were
also found by the PRA, they are much lower in
the list of extracted paths. The highest weighted
paths found in the abstract graph connect specific
properties of films with their rating.

An archive containing the abstract graphs, the
abstract paths, the train/test data, negative samples
and the groundings of the abstract paths for these
relations for the variations of Freebase and NELL
presented here is available from the University of
Heidelberg4.

4https://www.cl.uni-heidelberg.de/
english/research/downloads/resource_
pages/AbstractGraphs/AbstractGraphs.
shtml

5 Conclusions

We proposed and evaluated a method for obtaining
paths from large knowledge graphs by compress-
ing them into their intensional versions. We relied
on the fact that these graphs have strongly typed
relations, such that their domain and ranges con-
sist of homogeneous sets that have overlaps only
with the domains and ranges of a small number
of other relations. This compression step leads
to a smaller graph to work with, where we found
paths that seem to capture qualitative patterns in
the data. The results on link prediction on Free-
base and NELL show the advantage of using such
paths for some of the relations, but the task does
not showcase the full potential of this represen-
tation. Further work will explore the potential
of such patterns as explanatory links between di-
rectly connected nodes, or as a source of additional
patterns for filling in the knowledge graphs not
only with missing links, but also missing nodes,
either by predicting intermediate nodes or by us-
ing the paths as patterns for targeted information
extraction.
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Abstract

Negation often conveys implicit positive
meaning. In this paper, we present a corpus
of negations and their underlying positive in-
terpretations. We work with negations from
Simple Wikipedia, automatically generate po-
tential positive interpretations, and then col-
lect manual annotations that effectively rewrite
the negation in positive terms. This proce-
dure yields positive interpretations for approx-
imately 77% of negations, and the final corpus
includes over 5,700 negations and over 5,900
positive interpretations. We also present base-
line results using seq2seq neural models.

1 Introduction

Negation is present in every human language. It
is in the first place a phenomenon of semantical
opposition. As such, negation relates an expres-
sion e to another expression with a meaning that
is in some way opposed to the meaning of e (Horn
and Wansing, 2015). Sentences containing nega-
tion are generally (a) less informative than affir-
mative ones (e.g., Milan is not the capital of Italy
vs. Rome is the capital of Italy), (b) morphosyn-
tactically more marked—all languages have neg-
ative markers while only a few have affirmative
markers, and (c) psychologically more complex
and harder to process (Horn and Wansing, 2015).

Negation often conveys implicit positive mean-
ings (Rooth, 1992). This meaning ranges from im-
plicatures to entailments, and we refer to it as pos-
itive interpretations. Consider the following text
from Simple Wikipedia:1 An abjad is an alpha-
bet in which all its letters are consonants. Though
vowels can be added in some abjads, they are not
needed to write a word correctly. Some exam-
ples of abjads are the Arabic alphabet and the

1https://simple.wikipedia.org/wiki/
Abjad

1 Mr. Smith apologized for
::
not getting involved.

Mr. Smith apologized for staying passive.
2 I

::::
never heard of this guy before they started doing

these commercials on television and radio.
I heard of this guy after they started doing these com-
mercials on on television and radio.

3 In Hinduism, beef is
::
not allowed to be eaten.

In Hinduism, chicken is allowed to be eaten.
In other religions, beef is allowed to be eaten.

Table 1: Three sentences containing a negation and
their positive interpretations (italics).

Hebrew alphabet. Humans intuitively understand
that the negation (second sentence) implies the
following positive interpretation: Though vowels
can be added in some abjads, only consonants are
needed to write a word correctly. Table 1 shows
three sentences containing negation and their un-
derlying positive interpretations. Positive interpre-
tations do not have any negation cues (e.g., not,
never) and Example 3 shows that some negations
may have more than one underlying positive inter-
pretation depending on the context.

Revealing the underlying positive interpretation
of negation is challenging. First, we need to iden-
tify which tokens are intended to be negated (e.g.,
getting involved and before in Examples 1 and 2
from Table 1). Second, we need to rewrite those
tokens to generate an actual positive interpretation
(e.g., getting involved: staying passive).

This paper presents a corpus of negations and
their underlying positive interpretations.2 The
main contributions are: (a) deterministic pro-
cedure to generate potential positive interpreta-
tions from negations, (b) corpus of negations and
their positive interpretations manually annotated,
(c) detailed analysis including which subtrees in
the dependency tree are more likely to be rewrit-
ten and qualitative analysis of positive interpreta-

2Available at: https://zahrasarabi.com
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tions. Additionally, we establish baseline results
with sequence-to-sequence neural models.

2 Background and Definitions

Negation is well-understood in grammars and the
valid ways to express negation are documented
(Quirk et al., 2000; van der Wouden, 1997). In this
paper, we focus on verbal negations, i.e., when the
negation mark—usually an adverb such as never
and not—is grammatically associated with a verb.
Positive Interpretations. In philosophy and lin-
guistics, it is accepted that negation conveys pos-
itive meaning (Horn, 1989). This positive mean-
ing ranges from implicatures, i.e., what is sug-
gested in an utterance even though neither ex-
pressed nor strictly implied (Blackburn, 2008), to
entailments. Other terms used in the literature in-
clude implied meanings (Mitkov, 2005), implied
alternatives (Rooth, 1985) and semantically sim-
ilar (Agirre et al., 2013). We do not strictly fit
into any of this terminology, we reveal positive in-
terpretations as intuitively done by humans when
reading text. Note that a positive interpretation
is a statement that does not contain negation, not
a statement that conveys positive sentiment. For
example, The seller didn’t ship the right parts
implicitly conveys The seller shipped the wrong
parts, which has negative sentiment.
Potential Positive Interpretations. Given a sen-
tence containing negation, we use the term poten-
tial positive interpretation to refer to positive in-
terpretations that are automatically generated by
replacing selected tokens with a placeholder. If the
placeholder can be rewritten so that the result is an
affirmative statement that is true given the origi-
nal sentence, potential positive interpretations be-
come actual positive interpretations.
Negation and natural language understanding.
Generating positive interpretations from negation
has several potential applications.

First, while neural machine translation is in
general superior to phrase-based methods, that is
not the case when translating negation (Bentivogli
et al., 2016). Since our positive interpretations ef-
fectively rewrite negation-containing sentences to
remove the negation, we argue that they have the
potential to help machine translation.

Second, current benchmarks for natural lan-
guage inference (Bowman et al., 2015), do not
include challenging examples with negation. As
a result, state-of-the-art approaches (Chen et al.,

2017) trained on these benchmarks are unable to
solve text-hypothesis pairs that contain negation.
Indeed, we tested the aforecited systems with 100
text-hypothesis pairs from our corpus (text: sen-
tence with negation, hypothesis: positive interpre-
tation with correctness score of 4; see examples in
Table 7), and discovered that 48 of them are pre-
dicted contradiction, 30 neutral and only 22 en-
taioment (the correct prediction is entailment for
all of them). While relatively small, we argue that
the corpus presented here is a step towards lan-
guage understanding when negation is present.

3 Previous Work

From a theoretical perspective, it is accepted that
negation has scope and focus, and that the focus
yields positive interpretations (Horn, 1989; Rooth,
1992). Scope is “the part of the meaning that is
negated” and focus “the part of the scope that is
most prominently or explicitly negated” (Huddle-
ston and Pullum, 2002).

Scope of negation detection has received a lot
of attention (Özgür and Radev, 2009; Packard
et al., 2014), mostly using two corpora: BioScope
(Szarvas et al., 2008), and CD-SCO (Morante and
Daelemans, 2012). F-scores are 0.96 for negation
cue detection, and 0.89 for negation cue and scope
detection (Velldal et al., 2012; Li et al., 2010).

Identifying the focus of negation is generally
more challenging than the scope. The challenge
lies on determining which tokens within the scope
are intended to be negated. The largest corpus
to date is PB-FOC, which was released as part
of the *SEM-2012 Shared Task (Morante and
Blanco, 2012). PB-FOC annotates the semantic
role most likely to be the focus in the 3,993 nega-
tion in PropBank (Palmer et al., 2005). Anand
and Martell (2012) refine PB-FOC and argue that
27.4% of negations with a focus annotated in PB-
FOC do not actually have a focus. Sarabi and
Blanco (2016) present a complementary approach
grounded on syntactic dependencies. All of these
efforts identify the tokens that are the focus of
negation. We build upon them and generate actual
positive interpretations from negation.

4 Corpus Creation

This section details our data collection and anno-
tation effort. We follow 5 steps. First, we de-
scribe the source corpus. Second, we ouline the
procedure to select negations so that the annota-
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# %

# negations 1 negation 69,365 93.3%
≥2 negations 4,981 7.7%

# tokens
≤5 683 0.9%
>5 & ≤25 50,070 67.3%
>25 23,593 31.7%

Table 2: Basic counts for sentences containing negation
in Simple Wikipedia.

# %

N
eg

at
io

n
Ty

pe
s

Verbal root 24,125 32.4%
not root 31,386 42.2%

Nominal 11,003 14.8%
Adjectival 2,325 3.1%
Other 5,507 7.4%
All 74,346 100.0%

Table 3: Distribution of negation type in Simple
Wikipedia.

Figure 1: The most frequent negated verb lemmas in
Simple Wikipedia.

tion effort is feasible. Third, we discuss the steps
to automatically generate potential positive inter-
pretations. Fourth, we detail the annotation effort
to rewrite placeholders in the potential positive in-
terpretations to generate actual positive interpreta-
tions. Fifth, we present the final validation strat-
egy to ensure quality of the final corpus.

4.1 Selecting the Source Corpus: Simple
Wikipedia

We chose to work with Simple Wikipedia texts.3

Simple Wikipedia is a version of Wikipedia that
is written in basic English. Compared to regular
Wikipedia, articles in Simple Wikipedia use sim-
pler words, shorter sentences, and simple gram-
mar. These characteristics help us to reduce the
overhead of dealing with complex sentences and
leads to a more realistic learning task. We pro-
cess Simple Wikipedia with spaCy (Honnibal and
Johnson, 2015) to obtain part-of-speech tags and
dependency trees. Inspired by Fancellu et al.

3Version 2018-03-01; available at https://dumps.
wikimedia.org/simplewiki/

(2016), we identify sentences containing negation
using the following cues: n’t, not, never, no, noth-
ing, nobody, none, nowhere. Note that this method
selects negations that would be discarded if we re-
lied only on dependency type neg.

Table 2 shows basic counts for sentences con-
taining at least one negation in Simple Wikipedia.
93% of them contain only one negation, and 67%
have medium length (between 6 to 25 tokens).
Table 3 categorizes the Simple Wikipedia nega-
tions based on their type. We identify negation
types using the part-of-speech tag of the syntactic
head of the negation cue, i.e., the syntactic par-
ent or governor of the negation cue. More than
70% of the negations in Simple Wikipedia are ver-
bal negations, and the verb is the root of the de-
pendency tree in 44% of them. Finally, Figure 1
shows the most frequent verbal negations in Sim-
ple Wikipedia. We observe that many verbs and
in particular the verb to be are very frequent, and
there is a long tail of (relatively) infrequent verbs.

4.2 Selecting Negations

Working with all negation types in Simple
Wikipedia is out of the scope of this paper. After
doing pilot annotations and manual examination,
we decided to limit the negation types grounded
on the counts presented in Section 4.1. Table 4
summarizes the filters and the number of nega-
tions that remain after running each filter. We ap-
ply sequentially five filters (Filters 1–5) on nega-
tions and four filters (Filters 6–9) on sentences.
Filter 1 discards non-verbal negations (recall that
74.6% of negations are verbal, Table 3). Filter 2
discards those verbal negations which are not the
root of the dependency tree. Filter 3 discards in-
frequent verbal negations, more specifically, those
whose verbs occurred less than five times. Filter
4 caps the number of verbal negations per verb
to 200 negations to increase verb coverage (recall
that some verbs are negated very frequently, Fig-
ure 1). Filter 5 discards verbal negations with part-
of-speech tag interjection (less than 1%, e.g., They
said “no” to his offer). Filter 6 discards sentences
whose length is not greater than five tokens and
less than 26 tokens (recall that most sentences con-
taining negation satisfy this filter: 67.3%, Table 2).
Filter 7 discards sentences with more than one ver-
bal negation (93% of sentences containing nega-
tion only contain one, Table 2). Filter 8 discards
negated sentences in question form (i.e., the first
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Filters # %
Initial # - 74,346 100.0

Negations

F1: non verbal 58,756 79.0
F2: not root 27,370 36.8
F3: infrequent 18,618 25.0
F4: limit freq 16,185 21.7
F5: intj 16,136 21.1

Sentences

F6: limit len 13,859 19.1
F7: multi negs 10,614 14.8
F8: questions 10,476 14.6
F9: other 7,469 10.1

Table 4: Initial number of negations in Simple
Wikipedia, and how many remain after each filter.

token has any of the following part-of-speech tags:
WDT, WP, WRB). Filter 9 discards sentences that
include any of the following tokens: because, un-
til, but, if, except. The final dataset consists of
7,469 negations, which are approximately 10% of
negations in Simple Wikipedia.

4.3 Generating Potential Positive
Interpretations

We convert each negation into its positive coun-
terpart in four steps following the rules by Hud-
dleston and Pullum (2002): remove the negation
cue, remove auxiliaries, fix third-person singu-
lar and past tense, and rewrite negatively-oriented
polarity-sensitive items. These steps can be imple-
mented using straightforward regular expressions.
For example, the positive counterpart of The seller
did not ship the right part, is The seller shipped
the right parts. Then, we automatically generate
all plausible positive interpretations of the nega-
tion by traversing the dependency tree and select-
ing all direct dependents of the negated verb. We
filter out subtrees whose syntactic dependency is
aux, auxpass, punct (auxiliary, passive auxiliary
and punctuation). We also exclude the verb. These
exceptions were defined after manual examination
of several examples. Finally, we replace the se-
lected subtrees with a placeholder.

Table 5 shows the number of negations depend-
ing on how many positive interpretations are gen-
erated. We generate two or more potential positive
interpretations for over 84% of negations.

4.4 Rewriting Placeholders

In order to rewrite placeholders in potential posi-
tive interpretations and collect actual positive in-
terpretations, we implement an annotation inter-

# pot. positive interpretations # %
1 1,132 15.53
2 3,723 51.07
3 2,004 27.49
4 437 5.99
5 29 0.39
6 3 0.04

All 7,469 100.00

Table 5: Distribution of negations by number of poten-
tial positive interpretations generated.

face using Amazon Mechanical Turk Sandbox.4

This rewriting process was done in-house by one
linguistics student. A second annotator validated
the rewrites independently (Section 4.5).

Each negation along with its context and all its
potential positive interpretations are grouped into
a Human Intelligence Task (HIT) for annotation
purposes. Each HIT presents a set of instructions
to the annotator along with examples. Potential
positive interpretations are presented in consecu-
tive rows, and each token in a cell. The place-
holders generated in Section 4.3 are presented as
blank cells and the annotator fills the blanks (or, in
other words, the annotator rewrites placeholders)
based on the context around the negation or world
knowledge. A sample HIT along with the answers
collected is shown in Figure 2.

In the rest of the paper, we use unknown an-
swer to refer to placeholders for which the anno-
tator cannot find a rewriting. We divide unknown
answers into invalid and not specified, and ask the
annotator to distinguish between them. Invalid is
used to refer to placeholders that cannot be rewrit-
ten. Not specified describes placeholders that hy-
pothetically can be rewritten but the answer is un-
known given the context. We also provide an extra
empty box at the bottom of the interface for ad-
ditional positive interpretations. If the annotator
cannot find any answers for the rewrites, she can
write a positive interpretation from scratch.

4.5 Validating Positive Interpretations

In order to validate the rewrites of placeholders
and resulting positive interpretations (Section 4.4),
a second annotator validates them. We create a
similar interface to the one in Figure 2, but this
time we only show the negation in context (Text in
Figure 2), and one positive interpretation at a time
(i.e., potential positive interpretation for which the

4https://requester.mturk.com/
developer/sandbox
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Figure 2: Sample negation along with its context and automatically-generated potential positive interpretations.
The annotation process reveals three positive interpretations: “Relationships that end are normaly called breakups,”
“Marriages which end are rarely called breakups,” and “Marriages which end are normaly called divorce.”

placeholder was rewritten). The annotator deter-
mines correctness and novelty as follows.

Correctness measures whether a positive inter-
pretation is true given the negation in context. It is
measured using the following scale:

1. After reading the text, it is clear that the pos-
itive interpretation is false.

2. After reading the text, the positive interpreta-
tion is probably false, but I am not sure.

3. After reading the text, the positive interpreta-
tion is probably true, but I am not sure.

4. After reading the text, it is clear that the pos-
itive interpretation is true.

Novelty measures whether the meaning con-
veyed by a positive interpretation is already ex-
plicitly stated in the text, and it is measured using
the following numeric scale:

1. The positive interpretation is stated explicitly
in the text with the very same words. I could
copy and paste chunks from text and get the
positive interpretation.

2. The positive interpretation is not stated in the
text with the same words. The positive inter-
pretation and the text have synonyms in com-
mon, but I could not get the positive interpre-
tation simply copying and pasting from text.

3. The positive interpretation is not stated in the
text with the same words. Additionally, there
are few synonyms in common between the
positive interpretation and text.

5 Corpus Analysis

The procedure described in Section 4 gener-
ates 15,875 potential positive interpretations from
7,469 negations. Out of all potential positive inter-
pretations, we rewrite 3,831 with an actual answer
and annotate 12,044 with an unknown answer

Known Unknown Total
not spec. invalid

# % # % # %
prep 953 29 2089 63 262 8 3305
dobj 763 30 1652 65 121 5 2537
advmod 700 50 629 45 68 5 1398
nsubj 511 11 3860 83 295 6 4667
nsubjpass 212 14 1267 82 62 4 1542
ccomp 207 34 357 58 52 8 617
xcomp 168 38 248 57 21 5 438
advcl 131 18 534 73 63 9 729
agent 60 29 142 68 5 2 208
Other 128 27 250 53 99 20 477

Table 6: Corpus analysis. For each dependency type
(left column), we show the number of potential posi-
tive interpretations generated with known and unknown
rewrites (and not specified and invalid rewrites).

(11,030 not specified and 1,014 invalid). We also
rewrite a new positive interpretation from scratch
for 2,158 negations for which we cannot find any
actual rewrites. Overall, we rewrite 5,989 posi-
tive interpretations for 5,770 unique negations. In
other words, the procedure in Section 4 yields a
positive interpretation for 77% of negations.

Table 6 shows the distribution of known vs un-
known rewrites per dependency type, where de-
pendency type refers to the dependency type from
the selected subtree of the verb to the verb it-
self. Out of all dependency types, advmod and
xcomp (adverbial modifier and open clausal com-
plement respectively) have the highest ratios of
known rewrites, and nsubj (nominal subject) has
the most unknown answers. In other words, the
easiest placeholders to rewrite are those whose
syntactic function is adverbial modifier or open
clausal complement, and the most challenging are
those whose syntactic function is nominal subject.

To understand high-level characteristics of
negations and their positive interpretations beyond
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Category Subcat. Examples %

Quantities specific Members of Congress cannot serve for more than three out of any six years. 3%
abstract Many do not use their real names, as Everett does. 22%

Times actual Since 2012, this channel never goes off the air during the day. 4%
abstract Rabbits should not be bred too early though. 11%

Objects - It does not need sunlight to grow and can stay in the same pot for many years. 9%
Adjectives - Crops did not grow as well when they were close together. 27%
Proper nouns - Cosworth does not currently provide engines to any American open wheel racing se-

ries.
2%

Others - The mass number is not shown on the periodic table. 22%

Table 7: Categories and subcategories discovered in a sample of 100 negations and all their positive interpretations.

dependency types, we explore a random sample
of 100 negations and all their positive interpreta-
tions. We discover six major categories (quanti-
ties, times, objects, adjectives, proper nouns and
others) and 4 subcategories (Table 7):
• The first category is quantities and includes

both specific and abstract quantities. An ex-
ample of abstract quantity is Many do not
use their real names, as Everett does and its
corresponding positive interpretation Few use
their real names, as Everett does. A fourth
of positive interpretations in the sample were
obtained after rewriting quantities.
• The second category is time and includes

both actual and abstract times. An exam-
ple of actual time is Since 2012, this chan-
nel never goes off the air during the day and
its positive interpretation Before 2012, this
channel went off the air during the day. 15%
of positive interpretations in the sample were
obtained rewriting temporal expressions.
• The third category is objects and refers to

positive interpretations obtained by rewriting
verbal objects. An example is It does not
need sunlight to grow and its positive inter-
pretation It needs water to grow. 9% of pos-
itive interpretations in the sample were ob-
tained after rewriting the verbal objects.
• The fourth category is adjectives and refers to

positive interpretations obtained by rewriting
adjectives. An example is Crops did not grow
as well when they were close together and
its positive interpretation Crops grew poorly
when they were close together. 27% of pos-
itive interpretations in the sample were ob-
tained after rewriting adjectives.
• The fifth category is proper nouns. An ex-

ample is Cosworth does not currently pro-
vide engines to any American open wheel
racing series and its positive interpretation
IndyCar Series currently provide engines to

American open wheel racing series. 2% of
positive interpretation in the sample were ob-
tained after rewriting proper nouns.

5.1 Annotation Quality

To assess the quality of the rewrites and posi-
tive interpretations, we ask a second annotator to
validate them based on two criteria: correctness
and novelty (Section 4.5). Recall that correctness
ranges from 1 (minimum) to 4 (maximum) and
novelty from 1 (minimum) to 3 (maximum). We
assess novelty only if positive interpretations are
correct (correctness scores 3 or 4). Figure 3 re-
ports the validation results. Out of all positive in-
terpretations obtained during the annotation pro-
cess, 90% are either correct (77%) or probably
correct (13%) (correctness scores 4 and 3), and
95% of them are either very novel (52%) or novel
(43%). This validation scores mean not only that
positive interpretations are sound given the origi-
nal negation (correctness score), but also that they
are not explicitly stated in the context and thus re-
veal implicit meaning (novelty score).

5.2 Annotation Examples

Table 8 presents three negations, all potential posi-
tive interpretations, and manual annotations along
with the correctnes and novelty scores.

Example (1) is a simple negated clause. The
procedure described in Section 4.3 generates four
potential positive interpretations, and three of
them were rewritten. Given Phosgene usually
does not cause its worst effects right away and its
context, the following positive interpretations are
deemed correct (correctness = 4) with different de-
grees of novelty (2, 3 and 1 respectively): Phos-
gene rarely causes its worst effects right away (In-
terpretation 1.2), Phosgene usually causes mild ef-
fects right away (Interpretation 1.3), and Phosgene
usually causes its worst effects 12 hours after a
person breathes it in (Interpretation 1.4). Note that
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1 Context: Phosgene can be a liquid or a gas. As a gas, it is heavier than air, so it can stay near the ground (where people
can breathe it in for long periods of time). It smells like freshly cut grass or moldy hay. Along with being a choking
agent, phosgene is also a blood agent. This means it keeps oxygen from getting into the body’s cells. Without oxygen,
a person’s cells will die, and the person will suffocate. Phosgene usually does not cause its worst effects right away.
The worst symptoms do not happen until 12 hours after a person breathed in phosgene. The person usually dies within
24 to 48 hours.
Sentence containing negation: Phosgene usually does not cause its worst effects right away.

Correctness Novelty
- Interpretation 1.1: [NS] usually causes its worst effects right away. - -
- Interpretation 1.2: Phosgene rarely causes its worst effects right away. 4 2
- Interpretation 1.3: Phosgene usually causes mild effects right away. 4 3
- Interpretation 1.4: Phosgene usually causes its worst effects 12 hours after a person
breathes it in.

4 1

2 Context: Hungary uses Central European Time (CET) which is 1 hour ahead of Coordinated Universal Time (UTC+1).
Hungary has not observed summer time since 1916.
Sentence containing negation: Hungary has not observed summer time since 1916.

Correctness Novelty
- Interpretation 2.1: [NS] has observed summer time since 1916. - -
- Interpretation 2.2: Hungary has observed Central European Time since 1916. 4 1
- Interpretation 2.3: Hungary has observed summer time prior to 1916. 4 2

3 Sentence containing negation: This does not stop him from finding ways to try to get more money.
Correctness Novelty

- Interpretation 3.1: This stops [NS] from finding ways to try to get more money. - -
- Interpretation 3.2: This stops him [NS]. - -
- Addtl. Interpretation: He’s always trying to get more money despite being rich. 4 3

Table 8: Sentences containing negation (and context if relevant to obtain positive interpretations), all automatically-
generated positive interpretations, positive interpretations manually annotated (italics indicate placeholder rewrit-
ings), and validation scores (correctness and novelty).

Figure 3: Distribution of correctness (top) and novelty
(bottom) scores in our corpus.

Interpretation 1.1 is most likely correct, but con-
text does not provide clues about which chemicals
cause their worst effects right away and thus it is
annotated not specified (NS).

Example (2) has three potential positive inter-
pretations, and we rewrite two of them. Note that
Intepretation 2.2, Hungary has observed Central
European Time since 1916, is correct but not novel
because it is explicitly stated in the context. Inter-
pretation 2.3 is correct but received novelty score

of 2 because it only replaces since with prior to.
Example (3) shows an example in which rewrit-

ing placeholders is not successful. The additional
interpretation, however, reveals that He has the in-
tention of getting more money. Context, which is
not shown in Table 8, support the correctness and
validation scores (e.g., He is wealthy).

6 Experiments

The task of generating positive interpretations
from a sentence containing negation can be ap-
proached with sequence-to-sequence (seq2seq)
models (input: sentence containing negation, out-
put: positive interpretation). In this section,
we present baseline results with existing seq2seq
models. Specifically, we experiment with a ba-
sic seq2seq model (Cho et al., 2014), two seq2seq
models with attention (Luong et al., 2015; Bah-
danau et al., 2014), and Google’s neural machine
translation (NMT) system (Wu et al., 2016), which
is also seq2seq model with attention and arguably
the most complex. We acknowledge that these sys-
tems are usually trained with orders of magnitude
more examples, and comparing them when trained
with our fairly small corpus may be unfair because
they were designed for other tasks. Our goal is not
to obtain the best results possible, but rather pro-
vide baseline results for our task and corpus.
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Models Short Sentences Long Sentences
BLEU Gram. Corr. BLEU Gram. Corr.

seq2seq (basic) (Cho et al., 2014) 10.31 23% 5% 2.13 6% 1%
seq2seq + attention (Bahdanau et al., 2014) 20.51 65% 22% 9.20 41% 12%
seq2seq + attention (Luong et al., 2015) 28.08 68% 30% 14.53 51% 19%
seq2seq + Google’s NMT attention (Wu et al., 2016) 12.54 42% 15% 4.40 12% 3%

Table 9: Results (BLEU-4, grammaticality and correctness) obtained with the test set.

The 3,831 negations become source sentences
and the correct positive interpretations become tar-
get sentences. We randomly select 100 short sen-
tences (up to 12 tokens) and 100 long sentences
(over 12 tokens) for testing, 200 sentences for de-
velopment, and the remainder for training. All
positive interpretations collected from a negation
are assigned to the testing, development or training
splits in order to ensure a more realistic scenario.
Evaluation and Results. We use three metrics
to evaluate the models: BLEU-4, correctness and
grammaticality. BLEU-4 is automated, convenient
and useful for development purposes. While larger
BLEU-4 scores generally indicate better correct-
ness and grammaticality scores, we do not observe
a linear correlation (Table 9). Correctness is mea-
sured manually with the scale presented in Section
4.5. Finally, grammaticality is measured manually
using the following numeric scale:

1. The sentence is not grammatical at all, e.g., it
does not contain a verb.

2. The sentence is mostly ungrammatical, e.g.,
it contains a verb but the word order is wrong.

3. The sentence has a few grammatical issues,
e.g., the subject-verb agreement is wrong,
missing punctuation.

4. The sentence is grammatically correct (re-
gardless of its correctness).

Table 9 shows the results. In general terms, re-
sults are better for short sentences than long ones.
This is not surprising given the small size of our
corpus. The basic seq2seq model performs poorly:
it barely generates any correct positive interpre-
taions, and most are ungrammatical. Adding at-
tention performs better. The best results are with
the system by Luong et al. (2017): 30% of the
short positive interpretations generated are correct,
and 68% grammatical. We believe Google’s NMT
performs the worst because of the small corpus.

We also conduct a manual analysis of the cor-
rect positive interpretations generated by the best
system. Following with the categories described
in Section 5 and Table 7, 37% of them belong to
the adjectives category, 27% to abstract quanti-

ties, 17% to objects, and 10% to abstract time.

7 Conclusions

We have presented a corpus of negations and their
positive interpretations. Positive interpretations
do not contain negations, range from implica-
tures to entailments, and are intuitively understood
by nonexperts when reading the negations. We
work with verbal negations selected from Sim-
ple Wikipedia, automatically generate potential
positive interpretation by replacing subtrees with
placeholders, and manually collect rewrites for the
placeholders in order to obtain actual positive in-
terpretations. This strategy yields positive inter-
pretations for 77% of negations, and manual vali-
dation step ensures both correctnes and novelty.

Neural machine translation struggles with nega-
tion, and natural language inference benchmarks
do not account for the intricacies of negation (Sec-
tion 2). While small, we believe the corpus pre-
sented here is a step towards enabling natural lan-
guage understanding when negation is present.
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Abstract

To model conditionals in a way that reflects
their acceptability, we must include some
means of making judgements about whether
antecedent and consequent are meaningfully
related or not. Enthymemes are non-logical ar-
guments which do not hold up by themselves,
but are acceptable through their relation to a
topos, an already-known general principle or
pattern for reasoning. This paper uses en-
thymemes and topoi as a way to model the
world-knowledge behind these judgements. In
doing so, it provides a reformalisation (in
TTR) of enthymemes and topoi as networks
rather than functions, and information state
update rules for conditionals.

1 Introduction

The content of the antecedent and consequent of
a conditional, not just their truth or falsity, makes
a difference to whether we find the conditional ac-
ceptable or not, generally rejecting those that seem
disconnected (Douven, 2008). If we are to model
conditionals in a way that reflects their acceptabil-
ity, we must include some means of making those
judgements. Enthymemes are non-logical argu-
ments which do not hold up by themselves, but
are acceptable through their relation to a topos,
an already-known general principle or pattern for
reasoning. Arguments and justifications in inter-
action tend to be underpinned by general princi-
ples and rules of thumb, rather than being truly
‘logical’. For models of dialogue to be adequate
then, these non-logical arguments need to be han-
dled – namely, as proposed by Breitholtz (2014a),
through incorporating enthymemes and topoi into
the dialogue model. Apart from the evidence from
their own acceptability conditions, which corre-
late strongly with judgements of high conditional
probability, conditional structures are also asso-
ciated with ‘that kind of thinking’, being used

as plain-language explanations of particular topoi
(e.g. “if something is a bird, then it flies” in Bre-
itholtz, 2014b), or used as materials on reasoning
in any number of experiments (e.g. Pijnacker et al.,
2009). If we are going to explicitly recognise the
use of such ‘rule’ type objects in discourse, then
conditionals are one place where they show up, at
least sometimes.

This paper has two aims. First, to propose a for-
malisation of enthymemes and topoi that is geared
towards relating them to more complex rule-based
world knowledge, including a distinction between
knowledge about causality, non-causality, and am-
biguity about causality. Second, to account for the
acceptability (or not) of conditionals by proposing
an enthymeme-like structure as associated with
if -conditionals, such that topoi can enhance their
content and are used in judging whether a given
conditional is acceptable or not. The acceptabil-
ity of conditionals is linked to perceived rela-
tionships between the antecedent and consequent
cases: with enthymemes and topoi, whose pres-
ence in the model is independently justified, we
can incorporate this non-arbitrarily into the dia-
logue state.

The rest of this section will provide some back-
ground. Section 2 is focused on enthymemes,
topoi, and specification of the alternative formal-
ism, while Section 3 uses this in a proposal of
update rules associated with conditionals. Lastly,
Section 4 provides a conclusion. This paper draws
on work on enthymemes and topoi elsewhere in
Breitholtz (2014a,b) etc., and will likewise use
Type Theory with Records (Cooper, 2012, here-
after referred to by the acronym TTR) for formal-
isation.

1.1 Enthymemes and Topoi

Enthymemes are incomplete non-logical argu-
ments that get treated as complete ones. They are
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incomplete in that to be accepted, they must be
identified as a specific instance of a more general
pattern that is already in the agent’s resources – a
topos. Topoi encode world knowledge that comes
as a ‘rule of thumb’, such as characteristics typical
of groups, and a speaker may hold contradictory
topoi as equally valid in different scenarios, with
no clash experienced unless both are used at the
same time. Speakers make enthymemetic argu-
ments by linking what on the surface might techni-
cally be non-sequiturs, but are easily identified as
an argument using accepted principles. For exam-
ple, a speaker might say “Let’s go left here, it’s a
shortcut”. This argument invokes the assumption
that shorter routes are better, and that therefore the
left turn being a shortcut is a good reason to take it
– but they might equally say “it’s longer”, invok-
ing an assumption that a longer route is preferable.

Topoi have been proposed to be a resource
available to speakers, and consequently a means
to address non-monotonic reasoning (Breitholtz,
2014b), the treatment of non-logical rules as ex-
pressing necessity, and contradictory claims being
equally assertable, as in the route-taking example
above (Breitholtz, 2014a).

To these ends, they have been formalised in
TTR for use in dialogue (Breitholtz and Cooper,
2011), as functions from records to record types,
as in this example (Breitholtz, 2014a):

(1) a. Topos:

λr : [x : Ind
cbird : bird(x)

]([cfly : fly(r.x)])
b. Enthymeme:

λr : [x = Tweety : Ind
cbird : bird(x)

]([cfly : fly(Tweety)])
Both are of type Rec → RecType, and the fields of
the specified record types match, but fields of the
enthymeme have been restricted to specific values.
A function to a record type does not by itself in-
dicate what happens once we have access to that
type. For these functions to be useful, they are ad-
ditionally governed by a theory of action, which
will license various actions that can be performed
with the type, e.g. judging that the original situa-
tion is additionally of that type, judging that there
exists some situation of the type described, or cre-
ating something of that type (Cooper, in prep).

1.2 Conditionals
The assumption that conditionals express a propo-
sition is fundamental to most linguistic work on

the topic, both that which follows the commonly
accepted restrictor theory of conditional semantics
based on the work of Lewis (1975), Kratzer (1986)
and Heim (1982), and that which does not (e.g.
Gillies (2010)).

By conditionals being ‘propositional’, we mean
that adding an if -clause to some indicative clause
does not fundamentally change the kind of seman-
tic object it is: for indicative clause “I’m going
home”, just as the conjunction ”I’m going home
and I’m watching a film” still expresses a proposi-
tion, so does “If this doesn’t get interesting soon,
I’m going home”.

As mentioned at the beginning, the acceptabil-
ity of conditionals correlates strongly with their
conditional probability: the more likely the con-
sequent is in the antecedent-case, the more ac-
ceptable the conditional tends to be be. Stalnaker
(1970) proposed that the probability of a condi-
tional and the conditional probability of the con-
sequent on the antecedent are one and the same, in
what is usually referred to as the Equation. That
is, the overall probability P (if this doesn’t get in-
teresting then I’m going home) is the same as the
conditional probability P (I’m going home∣This
doesn’t get interesting). A subsequent proof by
Lewis (1976) found that there is no single proposi-
tion based on the antecedent and consequent such
that its probability will consistently match the con-
ditional probability. Therefore one could have a
propositional theory of conditionals, or validate
the Equation – but not both.

However, conditional probability seems so im-
portant to the meaning of conditionals that in
the view of some non-linguists, (e.g. Edgington,
1995; Bennett, 2003) conditionals should properly
be considered be probabilistic, directly expressing
the conditional probability of the consequent on
the antecedent, P(cons∣ant). Subsequent empir-
ical work overwhelmingly supports the intuition
behind the original Equation, and shows that con-
ditional probability does indeed tend to correlate
with acceptability (e.g. Evans et al., 2003; Oaks-
ford and Chater, 2003). Conditional probability
thus needs to be taken seriously, whether one be-
lieves it is the core content of a conditional or
not: indeed, figuring out how propositional the-
ories can accommodate its relationship to accept-
ability is an important issue (e.g. Douven and Ver-
brugge, 2013). Conditional probability is also not
the only factor in acceptability: it is further moder-
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ated by whether there appears to be a connection
between antecedent and consequent (Skovgaard-
Olsen et al., 2016). To make these judgements, we
need to know about the relationships between the
antecedent and consequent states.

As a note, this paper remains technically ag-
nostic about whether the propositional or proba-
bilistic analysis is correct: your mileage may vary
on whether the update rules in Section 3 should
also add a proposition associated with if p, q to
the agent’s knowledge base, were they to be more
comprehensively specified. The underlying ac-
ceptability issue, and the potential use of topoi in
the metrics underlying those acceptability judge-
ments, means that this does not impact on the core
of the proposals here.

1.3 TTR: a brief overview
Since it will be used later, this section provides a
very brief introduction to TTR.

A central idea in TTR is the judgement of ob-
jects as being of some type. If a is judged to be of
type T , this is written as a ∶ T . Several of these
judgements, or requirements for judgements, can
be collected in structured objects as records and
record types. In a record type, fields consist of
a label and type, while fields in a record consist
of a label and a value. For a record r to be of a
record type RT, it must have fields with the labels
specified in RT, and the values in those fields in r
must be the types specified by the equivalently la-
belled fields in RT. For example, the records in (2)
and (3) are both of the record type (4), provided
that x is of type T1. The type of a field need not
be stand-alone either: it may also be constructed
from a predicate and arguments, like the field d in
(5).

(2) [a = x]
(3) ⎡⎢⎢⎢⎢⎢⎢⎣

a = x
b = y
c = z

⎤⎥⎥⎥⎥⎥⎥⎦

(4) [a ∶ T1]
(5) ⎡⎢⎢⎢⎢⎣

a ∶ T1
d ∶ p(a)

⎤⎥⎥⎥⎥⎦

(6) ⎡⎢⎢⎢⎢⎣
a ∶ T1
b ∶ T2

⎤⎥⎥⎥⎥⎦
(7) ⎡⎢⎢⎢⎢⎣

a ∶ T1
c ∶ T3

⎤⎥⎥⎥⎥⎦
There also exist sub- and super-type relations

between types. One record type is a subtype of
another if it is a more specified version of it. This
means that it has at least the same fields as the su-
pertype, whose types are the same type or subtypes
of the equivalent fields in the supertype. For ex-
ample, (6) and (7) are different types, but are both
subtypes of the more general (4). A record of type

(6) is not necessarily of type (7), but will be of
type (4). Depending on whether x ∶ T1, y ∶ T2 and
z ∶ T3, the record in (3) will be of all three types.

2 Enthymemes, Topoi and Other
Knowledge

Given that their presence in an agent’s resources
has already been motivated, topoi are a natural
way to account for the required knowledge about
some ‘dependence’ between antecedent and con-
sequent. Enthymemes and topoi are snippets of
reasoning, rather than complex networks, but they
should also be related explicitly to other rule-like
world knowledge, which includes the possibility
of multiple relationships between more than two
cases, and knowledge of explicitly causal rela-
tions. If we are going to use topoi to express the
kind of knowledge that also forms such networks
(i.e. informative about causality or related proba-
bilities), then they should be in the same form as
that knowledge: the alternative, to keep rule-like
topoi apart from knowledge about rule-based(ish)
systems, is counter-intuitive.

Bayesian networks (a combination of directed
acyclic graphs and probability distributions) are
a common way to encode causal relations. They
have two components, the first of which is a di-
rected acyclic graph, with the various variables as
nodes, and directed edges describing any direct
relationships. Graphs and networks are a useful
way to describe relationships, and express a more
complex set of relationships than a linear chain of
functions. The graph structure is in accordance
with constraints about what direct parenthood in
the graph can mean – that the parent is part of the
minimal set of preceding nodes whose value de-
termines the probability distribution of the child.

The second component to a Bayesian Network
is a set of probability functions for determining the
values of variables given the values of their par-
ents – their conditional probabilities. Associated
probabilities are also a natural means of modelling
learning, by adjusting the confidence in a given
rule on the basis of evidence and experience, al-
low us to make explicit the level of confidence in
a judgement beyond a binary. For unreliable rules,
a high (but below 1) probability can be used to ex-
press that they are likely to be correct in a given
case, but not certain.
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2.1 Graphical Topoi

The proposal is as follows. Topoi and enthymemes
are of the same type as any other ‘relational’
knowledge, by which I mean knowledge about
causal and correlational relations. This knowledge
can be encoded as a graph: topoi and enthymemes
as usually discussed are minimal examples, con-
taining only two nodes. The direction(s) of the
links between connected nodes, along with addi-
tional constraints, indicate either causal or non-
causal relations via directed or bi-directed links re-
spectively.

Where there is a bi-directional link somewhere
in a path between two nodes, their relationship is
confirmed as non-causal. Where there is an ab-
sence of any path between two nodes, the rela-
tionship may be treated as potential independence,
while where there are links in one direction only,
the relationship may be treated as potential causal-
ity. However, neither the potential independence
or causality is locked in: there should be a dis-
tinction between merely lacking information, and
having confirmation about an absence. Certainty
about independence or causality is expressed via
constraints explicitly preventing the creation of
any path that would violate them.

The choice of bi-directed rather than undirected
edges to express non-causality is motivated by a
desire for the difference in belief from potentially
causal to non-causal to be something that changes
easily (i.e. with the addition of information, not
replacement of one thing with another of a differ-
ent type), and for creation of a ‘casual’ (not a typo)
middle-ground, where only one direction is of rel-
evance and there is no strong commitment either
way. It can be treated as potentially causal, being
the only direction of interest, but whether this is
the whole story between the two is not specified.

All this is meant to allow for a more complex
set of relationships than expressed in your average
topos which, as stated earlier, is a minimal case
with just two nodes. The original example can be
thought of as follows, graphs with only two nodes:

(8) a. Topos:

[x : Ind
cbird : bird(x)

]1 [cfly : fly(1.x)]20.95

b. Enthymeme:

[x = Tweety : Ind
cbird : bird(Tweety)

]1 [cfly : fly(Tweety)]20.95

Once x is filled (as ‘Tweety’), this should be re-
flected in any other nodes where the same variable
appears. The confidence rating of 0.95 has been
somewhat arbitrarily set here for topoi to imply
high confidence without certainty. Generally, the
confidence rating associated with a link in a known
network should be subject to change on the ba-
sis of experience, increasing or decreasing as their
predictions are borne out or subverted. Topoi as
‘rules of thumb’ are particularly robust to contra-
dictory evidence, with the same agent in different
contexts accepting and using topoi that lead to op-
posite conclusions: see, for example, notions op-
posites attract vs. birds of a feather flock together.
Integration of ordinary learning with the potential
for entrenched ‘against all evidence’ beliefs is a
larger topic that is not addressed here, but will be
necessary in future work.

Enthymemes are distinguished from other ar-
guments by the fact they don’t hold up by them-
selves, but are instead accepted on the basis of
identification with a topos – this doesn’t include
arguments that are accepted despite being un-
supported. However, the terms enthymeme and
topos will continue to be used here: this is
partly for convenience, but also because once the
context indicates that an enthymemetic argument
is being made (such as a recognisable sugges-
tion+motivation pattern like “Let’s go left here, it’s
a shortcut”), an unsupported ‘enthymeme’, once
accepted, can be used to establish a potential new
topos (Breitholtz, 2015).

2.2 Graphical Topoi in TTR
This subsection provides a treatment in TTR of
the above proposal. The variable at each node
is a RecType, representing a situation, with the
probability of a RecType being across whether it
is true or false (for type T, whether ∃a ∶ T). Let
RecTypei be a RecType associated with an index,
and ProbInfo be a constraint on some probability.
The supertype of enthymemes and topoi, rather
than a function Rec→RecType, is the type Net-
work:

(9) Network =def⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes :{RecTypei}
links :{⟨RecTypei, RecTypei⟩}
probs :{ProbInfo}
cindex : ∀⟨x′j , yp⟩, ∈ links, x′j ⊑r xi ∈ nodes, i = j,∀⟨zq, x′′k⟩ ∈ links, x′′k ⊑r xi ∈ nodes, i = k.
clinks : ∀⟨x′i, y′p⟩ ∈ links, ∃xi, yp ∈ nodes, x′i ⊑r xi, y′p ⊑r yp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The nodes field is the set of nodes in the graph,
while the links field is the set of directed edges
between them, each ‘link’ being an ordered pair.
Let ⊑r indicate a subtype relation where subtyp-
ing is through restriction of one or more fields i.e.
not through the specification of extra fields. The
first constraint cindex enforces co-indexing, that
if subtypes of a node are included in members
of links, they all share the same index. The sec-
ond constraint clinks specifies that any members of
links are between (potentially restricted subtypes
of) members of nodes. For ease of reading and
the sake of space, the constraints will not be re-
peated in further examples. In a link ⟨xi, xj⟩, the
specification of member xi may use j to indicate
some r ∶ xj , and vice versa, e.g. where a is some
field in xi and b is some field in xj , in xi we can
specify that a = j.b.

Causality, non-causal correlation and indepen-
dence are interpreted on the basis of the mem-
bers of links. Where a path is a sequence of in-
dices ⟨1, . . . , k⟩ such that for each i, i + 1 there
is ⟨xi, xi+1⟩ ∈ links, the node indexed i is a pre-
decessor of the node indexed j (shorthand: pre-
decessor(i, j, links)) if there is a path from i to j,
given the contents of links. In this way the set links
can be checked for evidence that two nodes are in
a non-causal relation (if there is a bi-directional
predecessor relation somewhere in a path between
the two, e.g. if ⟨xi, xj⟩, ⟨xj , xi⟩ ∈ links), are poten-
tially independent (there is no predecessor relation
at all between the two), or in a potentially causal
relation (one is a predecessor of the other, but not
the other way around). We can distinguish direct
and indirect causality by whether a minimal path
with a direct link ⟨xi, xj⟩ is possible or not. As a
rule, when we talk about causality, we will mean
direct causality.

For n ∶ Network containing nodes xi and xj , in-
dependence and causality can be expressed in up-
dated n′ as follows, where a.b indicates the merge
of two records, a record containing all fields from
both, and a . b indicates their asymmetric merge
(see Cooper and Ginzburg, 2015), where in event
of a field appearing in both records, the field from
b is the one found in the merge, effectively over-
writing the field of a.

(10) Independence of i and j:
n′ = n.⎡⎢⎢⎢⎣
cindij : ¬predecessor(i, j, links)∧¬predecessor(j, i, links)

⎤⎥⎥⎥⎦

(11) Direct causality from i to j:
n′ = n.⎡⎢⎢⎢⎣
ccauseij : ⟨i, j⟩ ∈ links∧¬predecessor(j, i, links)

⎤⎥⎥⎥⎦
(12) Indirect causality from i to j:

n′ = n.⎡⎢⎢⎢⎣
cindcausij : predecessor(j, i, links)∧¬predecessor(j, i, links)

⎤⎥⎥⎥⎦
The original example can now be rewritten as (13):

(13) Topos:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes =⎧⎪⎪⎨⎪⎪⎩[
x : Ind
cbird : bird(x)

]1,[x : Ind
cfly : fly(x)

]2⎫⎪⎪⎬⎪⎪⎭:{RecTypei}
links =⎧⎪⎪⎨⎪⎪⎩⟨[

x : Ind
cbird : bird(x)

]1,[x = 1.x : Ind
cfly : fly(x)

]2 ⟩⎫⎪⎪⎬⎪⎪⎭:{⟨RecTypei, RecTypei⟩}
probs =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

x = r.x : Ind
cfly : fly(x)

⎤⎥⎥⎥⎥⎦2 ∣ r :
⎡⎢⎢⎢⎢⎣

x : Ind
cbird : bird(x)

⎤⎥⎥⎥⎥⎦1
⎞⎟⎟⎟⎠ = 0.95

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
:{ProbInfo}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14) Enthymeme: as above, but all vari-

ants indexed with 1 are replaced with

[x = Tweety : Ind
cbird : bird(x)

]1
An Enth is defined as a Network containing a node
that has at least one field restricted to a specific
object, removing its generality. A Topos is a Net-
work in which no fields are restricted to a specific
object.

An enthymeme e may be identified with a topos
t if its nodes and links have equivalents in t, that
is if for every node xi ∈ e.nodes,∃yp ∈ t.nodes
such that xi ⊑ yp and for any links ⟨x′i, x′j⟩ ∈
e.links,∃⟨y′p, y′q⟩ ∈ t.links such that x′i ⊑ y′p and
x′j ⊑ y′q. This may be by a clear match for the topos
fields, but may also include the types of fields in
the enthymeme as subtypes of fields in the topos1.

3 Conditionals and Reasoning

Having reformalised topoi and enthymemes as an
object intended for more general correlational and
causal knowledge, i.e. like a Bayesian network2

we turn back to conditionals.
1as in the example “Give a coin to the porter, he carried

the bags all the way here” from (Breitholtz, 2014b), where
carrying someone else’s bags is recognised as a subtype of
work, and the enthymemetic argument is on the basis of a
topos like work should be rewarded

2though not strictly: the graph of a Bayesian network
should be acyclic, while these do allow for cycles
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Firstly, and as mentioned at the beginning, ex-
pressing this kind of relational knowledge is (both
intuitively and according to empirical evidence)
strongly associated with conditionals, and exis-
tence of a dependence relation and high condi-
tional probability usually determine their accept-
ability. Van Rooij and Schulz (2019) suggest a
way to combine these two features into a single
measure, the relative difference the state of the
parent in a relation makes to the likelihood of
the child. Pleasingly, with some independence
assumptions this measure works not only for the
‘causal’ direction typically expressed by condi-
tionals (if there’s fire, there’s smoke), but for the
reverse as expressed by evidential conditionals (if
there’s smoke, there’s fire). However, for it to
do so, the direction of the relationship still has to
be recognised even when the ‘usual’ roles of an-
tecedent as parent and consequent as child have
flipped. This kind of structural knowledge is
topoic.

Secondly, and while it feels almost trivial to
point out, we use conditionals to tell each other
new things, e.g. the speaker explaining their expe-
riences with “if you done anything wrong well you
get, you get the cane and anything else” (BNC,
H5G 78). When we are informed of something
through the use of a conditional, we don’t nec-
essarily know beforehand that they lie in such a
relation: otherwise they would only be useful to
draw attention to connections we haven’t made,
not to tell each other things that are entirely new.
Indeed, Skovgaard-Olsen et al. (2016) found evi-
dence that when faced with a conditional, people
assume that there is a positive connection between
antecedent and consequent unless they have rea-
son to believe otherwise. It is not so much that an
acceptable conditional has to be backed up by pre-
existing knowledge about the relation between the
antecedent and consequent cases, but at the very
least it should not clash with any.

Breitholtz (2014a) mentions how an en-
thymemetic argument can be recognised on the
basis of the current conversational game/expected
rules (with the specific example of knowledge that
a suggestion may be followed by the speaker pro-
viding a motivation), or by an explicit lexical cue.
With the above in mind, I will suggest that use of
an if -conditional is one such linguistic cue.

3.1 Enthymemetic Conditionals

The overall suggestion is as follows. If -
conditionals are associated with the making of
enthymeme-like arguments. Note that I say
“enthymeme-like arguments”, not “enthymemetic
arguments”. Enthymemes depend on identifica-
tion with a previously-known topos, while condi-
tionals can be used to teach new relations, rather
than just make statements that rely on existing
knowledge to make sense. Although they are
structured like the characterisation of enthymemes
and topoi above, they are not all strictly speak-
ing ‘enthymemetic’. The content of a conditional
can be checked against the topoi in the agent’s re-
sources. Given a match with a topos, an enhanced
version can be added to the agent’s knowledge.

Even without a guiding topos, conditionals al-
low us to express or learn information via an as-
sumption that there is a positive connection be-
tween antecedent and consequent – provided we
do not already know that the two are independent,
or that the consequent shouldn’t follow from the
antecedent. If no supporting topos is found, a
more minimal version can be added without the
benefit of any extra details a topos might have pro-
vided.

The direction of antecedent as parent is ‘default’
in the sense that it should be preferred if distinct
topoi in both directions are available, and is the di-
rection assumed in case neither a supporting topos
nor a conflicting one is found. The topoi in an
agent’s resources may conflict with each other, and
by necessity one of them was learned first: despite
this, a conditional does not lead to formation of an
acceptable enthymeme when such a clashing topos
is already present. If there only exists a potential
match for the nodes in a topos that specifies there
is definitely no link, or is a conflicting link, then
the conditional should be rejected.

The processes of comparing a potential enthye-
meme with a topos and of updating structured
knowledge on the basis of a conditional can be
thought of algorithmically as follows:

(15) Match between an enthymeme and topos:
Search known topoi for topos with a node
matching the first enthymeme node
If none: no match, false.
If found: check topos for nodes matching each
further node in enthymeme.
If any failure: resume searching topoi.
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If found: check each edge in enthymeme has
an equivalent in topos.
If any failure: resume searching topoi.
If found: check any constraints in enthymeme
have an equivalent in topos.
If found: match, true.
If any failure: resume searching topoi.

(16) Enhancing an enthymeme with a topos:
Make new copy of topos.
For each node in topos with an equivalent in
enthymeme, add any further specification.
For any node in topos with no equivalent node
in enthymeme, but with elements also found
in a node that was further specified, update ac-
cordingly.

(17) Updating with a conditional:
Check for conflicting topos.
If found, reject.
If not found, check for topos matching
ant→cons equivalent link.
If found, enhance ant→cons and add.
If not found, check for topos matching
ant←cons equivalent link.
If found, enhance ant←cons and add.
If not found, add ant→cons.

Below are illustrations of what should be un-
derstood from the evidential conditional “If the
glass fell, the cat pushed it”, given knowledge of a
topos equivalent to if someone pushes something,
the thing falls.

(18) Ant. content:

⎡⎢⎢⎢⎢⎢⎣
x = obj3
cglass = glass(obj3)
cfall = fall(obj3)

⎤⎥⎥⎥⎥⎥⎦

(19) Cons. content:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x = obj4
y = obj3
ccat = cat(obj4)
cpush = push(obj4, obj3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20) Topos:⎡⎢⎢⎢⎢⎢⎣

x : Ind
y : Ind
cpush : push(x, y)

⎤⎥⎥⎥⎥⎥⎦1
[x = 1.y : Ind
cfall : fall(x)

]20.95

(21) Enhanced enthymeme:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x = obj4 : Ind
y = obj3 : Ind
ccat : cat(x)
cpush : push(x, y)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
1

⎡⎢⎢⎢⎢⎢⎣
x = obj3 : Ind
cglass : glass(x)
cfall : fall(x)

⎤⎥⎥⎥⎥⎥⎦2
0.95

The following subsections describe dialogue
state update rules associated with conditionals,
characterised in TTR.

3.2 Enthymemetic Conditionals in TTR
To begin with, the type of an information state is
minimally given as (22), broadly following the de-
cisions for the place of enthymemes and topoi in
Breitholtz (2014a) etc.

(22) InfoState =def⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

priv : [Topoi :{Topos}]

shrd :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

enths :{Enth}
Topoi :{Topos}
Moves : list(LocProp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23) Update rule =def

[pre : InfoState
effects : Infostate

]
The information state has two parts: the agent’s
private resources, and their representation of the
shared context. The private resources include a set
of general topoi which they can use as resources.
A public Topoi field tracks which topoi have been
introduced onto the dialogue gameboard. The gen-
eral form for update rules is given in (23): pre de-
scribes the preconditions for states to which the
rule can be applied, and effects the changes.

Next we will add a few useful functions on the
basis of some of the content of Section 2.1: a
means to describe whether there is a successful
match between an enthymeme and a topos, and
a means to reference the result of an enthymeme
that has been enriched by the content of a topos.

(24) enthMatch(e : Enth, t : Topos) : Bool,
true iff all of the following hold

(i) All e’s nodes are subtypes of t’s nodes:∀xi ∈ e.nodes,∃yp ∈ t.nodes
such that xi ⊑ yp,

(ii) All e’s links are subtypes of t’s links:∀⟨x′i, x′j⟩ ∈ e.links,∃⟨y′p, y′q⟩ ∈ t.links
such that x′i ⊑ y′p and x′j ⊑ y′q,

(iii) For any constraints on links in e, the
same constraints hold for equivalent
links in t:∀cindij ∈ e, ∃cindpq ∈ t or cindqp ∈ t,
xi ∈ e.nodes, yp ∈ t.nodes, xi ⊑ yp and
xj ∈ e.nodes, yq ∈ t.nodes, xj ⊑ yq.
Likewise for all ccauseij ∈ e, there is an
equivalent ccausepq ∈ t.

(25) enhanceEnth(e : Enth, t : Topos) : Enth,
e′ such that e′ is an asymmetric merge of t
and e,
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where the sets in nodes, links and probs
undergo asymmetric union such that for
any nodes xi ∈ e.nodes, yp ∈ t.nodes,
xi ⊑ yp, the corresponding node zu ∈
e′.nodes = yp . xi.
Likewise for any subtypes x′i and y′p, x′i ⊑
y′p in members of e.links, t.links, e.probs
and t.probs.
That is, the asymmetric aspect of the
merge is at the level of the indexed nodes,
not the fields containing them.

The update rules for each case are given in the
subsections below. There are three rules given:
where there is a supporting topos in the ‘default’
direction, where there is not but there is a support-
ing topos in the reverse direction, and where there
is neither support nor a clash.

3.2.1 Recognising a supporting topos
First are the update rules for when the agent has
a topos linking the two parts of the conditional:
The update in case of a supporting topos in the
ant→cons direction is given in (26):

(26) default direction, ant→cons:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pre :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

priv :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Topoi :{Topos}
t : Topos
cmember : t ∈ Topoi
cdef : enthMatch(x ∶X , t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
shrd : [Moves[0] = Assert(if(a, b)) : LocProp]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
effects :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

shrd :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

enths = pre.shrd.enths

∪ enhanceEnth(x ∶X , t) :{Enth}
Topoi = pre.shrd.Topoi ∪ pre.priv.t :{Topos}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where X is the type⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes ={a.sit-type1, b.sit-type2}: RecTypei

links ={⟨a.sit-type1, b.sit-type2⟩}: ⟨RecTypei, RecTypei⟩
probs ={P(b.sit-type2∣ r : a.sit-type1) = 0.95}: ProbInfo

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This rule may be applied following assertion of a
conditional, where an agent knows a topos t that
matches an enthymeme based on the content of the
conditional, with a link from antecedent to con-
sequent. In this case, the agent may add such an
enthymeme enhanced with the topos to their enths,
and add the underlying topos to the set of currently
active topoi in the conversation.

Where such an option does not exist, a topos
with only a link from consequent to antecedent
can be used, as described in (27). The enthymeme
added to enths in this case will contain a link only
in the ant←cons direction.

(27) alternative direction, ant←cons:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pre :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

shrd : [Moves[0] = Assert(if(a, b)) : LocProp]

priv :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Topoi :{Topos}
t : Topos
cmember : t ∈ Topoi
cno-def : ∄t′, t′ ∈ Topoi∧ enthMatch(x ∶X , t′)
calt : enthMatch(y ∶ Y , t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
effects :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

shrd :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

enths = pre.shrd.enths

∪ enhanceEnth(y ∶ Y , t) :{Enth}
Topoi = pre.shrd.Topoi ∪ pre.priv.t :{Topos}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where X is as defined in (26), and Y is the type⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes ={a.sit-type1, b.sit-type2}: RecTypei

links ={⟨b.sit-type2, a.sit-type1⟩}:{⟨RecTypei,RecTypei⟩}
probs ={P(a.sit-type1∣ r : b.sit-type2) = 0.95}:{ProbInfo}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Relative to (26), the update rule for this case has

a constraint in its preconditions that there are no
topoi with a link in the ant→cons direction, and
the enthymeme is instead enhanced by a topos that
does support the alternative order.

3.2.2 New information
The last rule describes the case where the agent’s
known topoi have neither evidence about a link be-
tween the antecedent or consequent, the definite
absence of one, or a conflicting one. In this case,
an ‘enthymeme’ with a link in the ant→cons di-
rection may be added to enths solely on the ba-
sis of the conditional content. No additional topos
is added to the list of active topoi – the process
for generalising an acceptable enthymeme to a re-
usable topos is not addressed here.

The shorthand for presence of a clashing topos
is given in (28) as enthClash. An enthymeme
clashes with a topos where the equivalent parent
nodes lead to mutually exclusive child nodes, i.e.
child nodes where a true type cannot be formed
from their meet.

(28) enthClash(e : Enth, t : Topos) : Bool,
true iff∃xi, yj ∈ e.nodes, pi, qj ∈ b.nodes, xi ⊑ pi,∃⟨x′i, y′j⟩ ∈ e.links, x′i ⊑ xi, y′j ⊑ yj ,

175



∃⟨p′i, q′j⟩ ∈ t.links, p′i ⊑ pi, q′j ⊑ qj ,
and ¬T, where T = y′j . q′j

(29) neither support nor opposing knowledge:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pre :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

shrd : [Moves[0] = Assert(if(a, b)) : LocProp]

priv :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Topoi :{Topos}
cno-clash : ∄t, t ∈ Topoi∧ enthClash(x : X , t)
cno-def : ∄t, t ∈ Topoi∧ enthMatch(x : X , t)
cno-alt : ∄t, t ∈ Topoi∧ enthMatch(y : Y , t)
cno-ind : ∄t, t ∈ Topoi∧ enthMatch(z ∶ Z, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
effects : [shrd : [enths = pre.shrd.enths ∪ x ∶X]]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
whereX , Y are as in (26), (27), and Z is the type⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes ={a.sit-type1, b.sit-type2}: RecTypei

links = ∅ :{⟨RecTypei,RecTypei⟩}
probs = ∅ :{ProbInfo}
cind12 : ¬predecessor(1,2, links)∧¬predecessor(2,1, links)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Relative to the previous two update rules, the

preconditions in this rule specify that there is no
known topos that supports an enthymeme with a
link between the antecedent and consequent in ei-
ther direction, which has an explicit constraint en-
forcing independence between the two, or which
otherwise clashes with the possible conditional en-
thymeme.

4 Conclusion

The acceptability of a conditional is often deter-
mined by the conditional probability of the con-
sequent on the antecedent, and recognition of
some meaningful link between the two. However,
both intuitively and according to experimental ev-
idence, positive acceptability judgements can still
be made without fore-knowledge of such a con-
nection. This paper presented two proposals on
the basis that the knowledge enabling these judge-
ments is topoic, integrating these factors into the
representation of the dialogue state and agent re-
sources. First, a formalisation of enthymemes and
topoi as graphs was presented, on the grounds that
they should be in the same form as other knowl-
edge about causal and correlational relationships.
Second, update rules for conditionals using topoi
and enthymemes were presented, drawing on topoi
to recognise the presence and direction of a ‘mean-
ingful’ connection between antecedent and conse-
quent, and making an assumption of one in the ab-
sence of any evidence.

There are several avenues for further work.
Most work focuses on declarative conditionals, the
most common form by far. However, conditional
clauses are also used to form conditionalised ques-
tions and directives. The proposals here should be
related to these forms, whether because to an ex-
tent they apply in those cases too, or because this
topoic association is exclusive to declarative con-
ditionals. This paper has also said nothing about
more standard propositional aspects of condition-
als. The proposals here about structural knowl-
edge associated with conditionals should be inte-
grated with this more standard fare.
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Abstract
Temporal Dependency Trees are a structured
temporal representation that represents tem-
poral relations among time expressions and
events in a text as a dependency tree struc-
ture. Compared to traditional pair-wise tem-
poral relation representations, temporal de-
pendency trees facilitate efficient annotations,
higher inter-annotator agreement, and efficient
computations. However, annotations on tem-
poral dependency trees so far have only been
done by expert annotators, which is costly and
time-consuming. In this paper, we introduce a
method to crowdsource temporal dependency
tree annotations, and show that this representa-
tion is intuitive and can be collected with high
accuracy and agreement through crowdsourc-
ing. We produce a corpus of temporal depen-
dency trees, and present a baseline temporal
dependency parser, trained and evaluated on
this new corpus.

1 Introduction

Temporal relation extraction is an important NLP
task for a range of downstream applications, such
as question answering, summarization, and sto-
ryline generation. This task has attracted a sig-
nificant amount of research interest (Pustejovsky
et al., 2003a; Verhagen et al., 2007, 2010; Uz-
Zaman et al., 2012; Bethard et al., 2016, 2017;
Dligach et al., 2017; Leeuwenberg and Moens,
2017; Ning et al., 2017, 2018a,b; Zhang and Xue,
2018a,b). One practical challenge in temporal re-
lation extraction is to represent the temporal rela-
tions in a text in a way that is feasible for man-
ual annotation and producing training data for ma-
chine learning models. Given a text of n events
and time expressions, there are

(n
2

)
possible re-

lations if the temporal relation between all pairs
of events and time expressions is annotated. This
quickly becomes infeasible even for a text of mod-
est length. One way to address this problem is to

represent the temporal relations in a text as a Tem-
poral Dependency Tree (TDT) structure (Zhang
and Xue, 2018b). TDT models all time expres-
sions and events in a text as “nodes” in a depen-
dency tree, and temporal relations between each
time/event and its parent time/event as “edges” in
the tree. Figure 1 gives an example text and its
TDT. Each (parent, child) pair in Figure 1 is an-
notated with a temporal relation. The number of
temporal relations that need to be annotated in a
text is therefore linear to the number of events and
time expressions in a text, making the annotation
task feasible. At the same time, additional tem-
poral relations can be inferred as needed based on
the TDT structure. For example, in Figure 1 since
“1918” includes the “born” event and “1929” in-
cludes the “won” event, it can be inferred that the
“born” event occurred before the “won” event.

By providing annotators with detailed guide-
lines and training them in multiple iterations,
Zhang and Xue (2018b) have shown that the TDT
representation can be annotated with high inter-
annotator agreement. Zhang and Xue (2018a)
further show that a neural ranking model can
be successfully trained on the corpus. However,
this “traditional” approach to annotation is time-
consuming and expensive. The question we want
to answer in this paper is whether TDT can be
performed with crowdsourcing, a method that has
gained popularity as a means to acquire linguis-
tically annotated data quickly and cost-effectively
for NLP research.

Crowdsourcing has been used to annotate data
for a wide range of NLP tasks that include ques-
tion answering, word similarity, text entailment,
word sense disambiguation, machine translation,
information extraction, summarization, and se-
mantic role labeling (Snow et al., 2008; Finin
et al., 2010; Zaidan and Callison-Burch, 2011;
Lloret et al., 2013; Rajpurkar et al., 2018). The
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key to acquiring high quality data via crowd-
sourcing is to make sure that the tasks are in-
tuitive or can be decomposed into intuitive sub-
tasks. In this paper, we show that it is possible to
acquire high quality temporal dependency struc-
tures through crowdsourcing, and that a temporal
dependency parser can be successfully trained on
crowdsourced TDTs.

The rest of the paper is organized as follows.
We first explain in detail how we set up this depen-
dency tree crowdsourcing annotation task (§2). In
(§3) we present experimental results that show that
if temporal dependency structures are broken into
smaller subtasks, high inter-annotator agreement
can be achieved. In (§4), we show that crowd-
source data can be used to successfully train tem-
poral dependency parsers, including an attention-
based neural model (§4). We discuss related work
(§5) and conclude with future work (§6).

The main contributions of this paper are: (1)
we introduce an effective approach to crowdsource
structured temporal annotations, a relatively com-
plex annotation task; (2) we build an English
temporal dependency tree corpus through crowd-
sourcing that we plan to make publicly available;
and (3) we experiment with automatic temporal
dependency parsers on this new corpus and report
competitive results.

Example text:
He was borne1 in 1918t1. It wase2 a tough 
time for his family. Later, he startede3 
school at the Central Elementary. He 
wone4 a school prize in 1929t2. 

e1:born

t1:1918
includes

t2:1929

e4:won

includes

e2:was

overlap

e3:started

before

depend-on

ROOT

DCT
Present

_Ref

Figure 1: Example text and its temporal dependency
tree. The nodes in blue are meta nodes (e.g., doc-
ument creation time “DCT”, present reference time
“Present Ref”, etc.), the nodes in orange are time ex-
pressions, and the nodes in green are events.

2 Crowdsourcing Tasks Setup

2.1 Data Setup
Our TDT annotations are performed on top of the
TimeBank corpus (Pustejovsky et al., 2003b), with
time expressions and events already extracted.
Following (Zhang and Xue, 2018b), we focus only
on events that are matrix verbs (i.e. main verbs)
in a sentence. In order to extract matrix verbs,
we use the gold constituent trees for the part of
TimeBank that overlaps with the Penn Treebank,
and parse the rest of TimeBank with the Berkeley
Neural Parser (Kitaev and Klein, 2018). All time
expressions in TimeBank are kept.

To facilitate quality control in crowdsourcing
and agreement evaluation, we distinguish two sub-
sets of the TimeBank dataset: (1) TB-small is
a small subset of 10 short Wall Street Journal
news documents with 59 matrix verbs. (2) TB-
dense consists of the same 36 documents as in the
TimeBank-Dense corpus (Cassidy et al., 2014).
It contains 654 matrix verbs. TB-small and TB-
dense are annotated by both crowd workers and
experts.

2.2 Annotation Tasks
We set up two annotation tasks. The first is
full temporal dependency tree annotation, where
crowd workers need to annotate both the depen-
dency tree structure and the temporal relations
between each parent and child. The second is
relation-only annotation, where crowd workers are
given the gold temporal dependency trees and their
job is just to label the temporal relation for each
parent-child pair.

2.3 Crowdsourcing Design
For the full temporal dependency tree annotation,
in order to simplify the questions/instructions to
crowd workers, we split the task of annotating a
full dependency tree into (1) finding the “parent”
for each individual event, and then (2) deciding
the temporal relation between the “parent” and the
event. A crowd worker is given a text with a high-
lighted target event and a list of candidate parent
time expressions and events. The job of the crowd
worker is to select one parent from the given list
of candidates, and label the temporal relation be-
tween the parent and the target event. For relation-
only annotation, a crowd worker is presented a text
with the target event and its parent highlighted.
The job of the worker is to decide the temporal
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relation between the two. See Appendix A for ex-
ample crowdsourcing instructions and questions.

Following standard crowdsourcing quality con-
trol, we perform a qualifying test on both annota-
tion tasks. Any crowd worker who wants to work
on these tasks needs to complete annotations on
TB-small and reach at least 70% accuracy against
the expert gold annotation. We also perform a
surviving test on the relation-only annotation task.
Crowd workers have to maintain at least a cumula-
tive accuracy of 70% for their annotation. Workers
with a lower accuracy will get blocked from the
task and all of their annotations will be discarded.
Every annotation is completed by at least 3 anno-
tators and the majority vote is the final annotation.

3 Annotation Experiments

Crowdsourcing annotations on the full TimeBank
corpus was performed. We report Inter-Annotator
Agreement (IAA) scores in Table 1.

UAA LOA LAA
Crowd v.s. Expert .82 .83 .53

Crowd IAA .81 .85 .52

Table 1: Inter-Annotator Agreement scores between
crowdsourced and expert annotations, and IAAs among
crowd worker annotations.

First, crowdsourced majority annotations on
TB-dense are evaluated against expert annota-
tions, representing the quality of the crowdsourced
data. For this comparison, the standard depen-
dency parsing evaluation metrics (Kübler et al.,
2009) are used as our IAA scores: structure-
only annotation subtask is evaluated with the
Unlabeled Attachment Agreement (UAA) score,
relation-only annotation subtask is evaluated with
the Label Only Agreement (LOA) score, and full
pipeline annotation is evaluated with the Labeled
Attachment Agreement (LAA) score.

Second, crowd worker annotations are com-
pared against each other, indicating the difficulty,
consistency, and confidence of the crowdsourced
data. Since crowd workers annotate isolated
events/times instead of full dependency structures,
the standard dependency parsing metrics are not
applicable for this comparison1. Therefore, we
adopt the Worker Agreements With Aggregate
(WAWA) metric (Ning et al., 2018a) as our IAA

1And for the same reason, Cohen’s kappa and Fleiss’
kappa scores are not applicable here either.

scores. WAWA indicates the average number of
crowd worker responses agreed with the aggregate
answer (i.e. majority aggregation for each annota-
tion instance), representing the agreements among
crowd workers and how consistent their annota-
tions are with each other.

As shown in the table, high accuracies and
agreements are achieved for both the subtasks of
structure annotation and relation-only annotation
(above 80%).

Statistics on our corpus and other similar
TimeBank-based temporal relation corpora are
presented in Table 2. As the number of tempo-
ral relations is linear to the number of events and
time expressions in a text, fewer temporal relations
need to be annotated in our corpus. In compari-
son, the recently crowdsourced temporal structure
corpus MATRES (Ning et al. (2018a), see Sec-
tion 5 for more details) only annotates verb events
in a document while TB-dense annotates a larger
number of time expressions and events in a much
smaller number of documents. Our corpus retains
the full set of TimeBank time expressions and cov-
ers comparable number of events as MATRES. We
pay $0.01 for each individual annotation and the
entire TimeBank TDT annotation cost about $300
in total.

Docs Timex Events Rels
TimeBank 183 1,414 7,935 6,418
TB-Dense 36 289 1,729 12,715
MATRES 275 - 1,790 13,577
This work 183 1,414 2,691 4,105

Table 2: Documents, timex, events, and temporal rela-
tion statistics in various temporal corpora.

4 System Experiments

We experiment with a state-of-the-art attention-
based neural temporal dependency parser (Zhang
and Xue, 2018a)2 on our newly annotated data.
Our training data consists of two parts. The first
part is the crowdsourced temporal dependency an-
notations over the TimeBank documents (exclud-
ing documents that are in the dev and test sets in
the TimeBank-Dense corpus3). The second part
is our expert-annotated TDTs on the TimeBank-
Dense training set documents. The parser is tuned

2https://github.com/yuchenz/tdp_
ranking

3Standard TimeBank-Dense train/dev/test split can be
found in Cassidy et al. (2014).
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and evaluated on our expert TDT annotations on
the TimeBank-Dense dev and test sets, respec-
tively. This neural model represents words with bi-
LSTM vectors and uses an attention-based mecha-
nism to represent multi-word time expressions and
events.

We also experiment with two baseline parsers
from Zhang and Xue (2018a): (1) a simple base-
line that takes an event’s immediate previous time
expression or event as its parent and assigns the
majority “overlap” as the temporal relation be-
tween them; and (2) a logistic regression model
that represents time expressions and events with
their time/event type features, lexical features, and
distance features. Table 3 shows the performance
of these systems on our data.

Model
Structure

-only F
Structure +
Relation F

dev test dev test
Simple Baseline .43 .42 .15 .18
LogReg Baseline .64 .70 .26 .29

Neural Model .75 .79 .53 .60

Table 3: Parsing results of the simple baseline, logis-
tic regression baseline, and the neural temporal depen-
dency model.

Improved performance over the simple base-
line with both the LogReg system and the Neu-
ral system show that temporal dependency infor-
mation can be learned from this crowdsourced
corpus. Comparisons between the LogReg base-
line and the Neural model show that the Neu-
ral model adapts better to new data sets than the
LogReg model with manually-crafted language-
specific features.

5 Related Work

Although crowdsourcing is widely used in other
NLP tasks, there have been only a few temporal
relation annotation tasks via crowdsourcing. The
first attempt on crowdsourcing temporal relation
annotations is described in Snow et al. (2008).
They selected a restricted subset of verb events
from TimeBank and performed strict before/after
temporal relation annotation through crowdsourc-
ing. They reported high agreements showing that
simple temporal relations are crowdsourceable.
Ng and Kan (2012) adopts the TimeML represen-
tation from the TimeBank, and crowdsourced tem-
poral annotations on news articles crawled from

news websites. Their experiments show that the
large crowdsourced data improved classifier per-
formance significantly. However, both of these
works focused on pair-wise temporal relations and
didn’t experiment with crowdsourcing more com-
plex temporal structures. Vempala and Blanco
(2018) uses a crowdsourcing approach to collect
temporal and spatial knowledge. However, they
first automatically generated such knowledge and
then used crowdsourcing to either validate or dis-
card these automatically generated information,
and crowdsourcing was not utilized to do anno-
tation from scratch.

Ning et al. (2018a) proposed a “multi-axis” rep-
resentation of temporal relations in a text, and pub-
lished the MATRES corpus by annotating “multi-
axis” temporal structures on top of the TempEval-
3 data through crowdsourcing. In this representa-
tion, events are annotated on different “axes” ac-
cording to their eventuality types, and for events
on the same axis, pair-wise temporal relations are
annotated. Their annotation task is broken down
to two smaller subtasks too. In the first subtask,
crowd workers annotate whether an event is on a
given axis. In the second subtask, crowd workers
annotate the temporal relations between pairs of
events on the same axis. The main differences be-
tween their work and ours are as follows. First,
they only model events, excluding time expres-
sions which are important temporal components
in text too. Second, our temporal dependency tree
representation is very different from their multi-
axis temporal representation, which requires dif-
ferent crowdsourcing task designs. In their first
subtask, crowd workers need to distinguish differ-
ent eventuality types, while our annotation exper-
iments show that crowd workers can also consis-
tently recognize “parents” as defined in Zhang and
Xue (2018b) for given events.

6 Conclusion and Future Work

In this paper, we introduce a crowdsourcing ap-
proach for acquiring annotations on a relatively
complex NLP concept – temporal dependency
structures. We build the first English tempo-
ral dependency tree corpus through high quality
crowdsourcing. Our system experiments show
that competitive temporal dependency parsers can
be trained on our newly collected data. In fu-
ture work, we plan to crowdsource more TDT data
across different domains.
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A Appendix: Example Crowdsourcing Instructions and Questions

Figure 2: Example crowdsourcing instructions and questions for full structure and relation annotation.
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Figure 3: Example crowdsourcing instructions and questions for relation only annotation.
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Abstract
Noise is inherent in real world datasets and
modeling noise is critical during training as
it is effective in regularization. Recently,
novel semi-supervised deep learning tech-
niques have demonstrated tremendous poten-
tial when learning with very limited labeled
training data in image processing tasks. A
critical aspect of these semi-supervised learn-
ing techniques is augmenting the input or the
network with noise to be able to learn ro-
bust models. While modeling noise is rela-
tively straightforward in continuous domains
such as image classification, it is not immedi-
ately apparent how noise can be modeled in
discrete domains such as language. Our work
aims to address this gap by exploring different
noise strategies for the semi-supervised named
entity classification task, including statistical
methods such as adding Gaussian noise to
input embeddings, and linguistically-inspired
ones such as dropping words and replacing
words with their synonyms. We compare
their performance on two benchmark datasets
(OntoNotes and CoNLL) for named entity
classification. Our results indicate that noise
strategies that are linguistically informed per-
form at least as well as statistical approaches,
while being simpler and requiring minimal
tuning.

1 Introduction

Modeling noise is a fundamental aspect of ma-
chine learning systems. The real world where
these systems are deployed are certainly exposed
to noisy data. Furthermore, noise is used as an
effective regularizer during the training of neural
networks (e.g., dropout (Srivastava et al., 2014)).
Correct prediction in the presence of noisy in-
put demonstrates robustness of learning systems.
A simple analogy to illustrate this is, during im-
age classification, the addition of limited random

∗∗ work done during AN’s post-doc at Univ. of Arizona

Gaussian noise to an image can be barely per-
ceived by our visual system and does not dras-
tically change the label a human assigns to an
image (Raj, 2018). With the emphasis on com-
pliance and recent advances in adversarial tech-
niques, modeling noise has assumed renewed im-
portance (Goodfellow et al., 2014).

Noise is an important factor in recent state-of-
the-art semi-supervised learning systems for im-
age classification (Tarvainen and Valpola, 2017;
Rasmus et al., 2015; Miyato et al., 2018). In
image processing modeling random noise is rel-
atively straightforward as it is a continuous do-
main. For instance, adding a small amount ran-
dom Gaussian jitter can be considered as noisy in-
put. So are other image transformations such as
translation, rotation, removing color and so on.
However, a discrete domain such as language is
not easily amenable to noise augmentation. While
one can certainly add random Gaussian noise to
embeddings of words (continuous vector represen-
tation such as word2vec rather than one-hot en-
coding), the intuition behind such perturbation is
not apparent. Algorithms which require explicit
modeling of noise require careful thinking in the
language domain and is challenging (Clark et al.,
2018; Nagesh and Surdeanu, 2018a).

To the best of our knowledge, previous work in
the area of modeling noise in natural language pro-
cessing (NLP) applications has been limited. Clark
et al. (2018) acknowledge the difficulty of model-
ing noise for language and incorporate a simple
word dropout in their experiments. So does the
work by Nagesh and Surdeanu (2018a). Nagesh
and Surdeanu (2018b) add a standard Gaussian
perturbation with a fixed variance to the pre-
trained word vectors to simulate noise. Belinkov
and Bisk (2017) is perhaps one of the most com-
prehensive works that explore various noise strate-
gies with a different end goal in mind. Their work
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Figure 1: Mean Teacher framework for the named entity classification task (left). Ewi are words in the entity
mention, Wi are words in the context with entity mention replaced by <E> token. cost = (classification cost)
+ λ(consistency cost). Unlabeled examples have only consistency cost. Backprop only through student model,
teacher model parameters are averaged. The architecture of the student or teacher model (right). Noise can be
added to parts in boldface. predictions = softmax(output layer)

explores the degree of robustness of various neural
network approaches to different types of noise on
a machine translation task.

In this paper, we discuss several noise strategies
for the semi-supervised named entity classification
task. Some of these, such as word-dropout and
synonym-replace, are linguistic and are discrete in
nature while others such as Gaussian perturbation
to word embeddings are statistical. We show that
linguistic noise, while being simple, perform as
well as statistical noise. A combination of linguis-
tic and network dropout provides the best perfor-
mance.

2 Semi-supervised Deep Learning

Semi-supervised learning (SSL) is one of the cor-
nerstones in machine learning (ML) (Zhu, 2005).
This is especially true in the case of natural
language processing (NLP), as obtaining labeled
training data is a costly and tedious process for
most of the data-hungry deep learning models.

There has been a flurry of recent work in SSL in
the image processing community (Tarvainen and
Valpola, 2017; Rasmus et al., 2015). Some of
these recent works have achieved impressive per-
formance on hard perceptive tasks. However, re-
purposing these works to NLP is not a straight
forward exercise. As stated earlier, many of
these approaches require noise (along with an op-
tional input augmentation step such as rotation) to
change the percept slightly, to achieve robust per-
formance. However, augmenting data with noise
for NLP tasks is not very clear, as the input domain

consists of discrete tokens rather than continuous
inputs such as images.

In our previous work (Nagesh and Sur-
deanu, 2018a), we evaluated three different
semi-supervised learning paradigms, namely,
bootstrapping-based approaches (Gupta and Man-
ning, 2015), ladder networks (Rasmus et al., 2015)
and mean-teacher (Tarvainen and Valpola, 2017)
for the semi-supervised named entity classification
(NEC) task. The mean-teacher (MT) approach
produced the best performance. However, our
exploration of noise was limited in the previous
study and hence is the focus of the current paper.

The MT framework belongs to the general class
of teacher-student networks that learns in the
semi-supervised setting i.e., limited supervision
and a large amount of unlabeled data and is il-
lustrated in the left part of Figure 1. It consists
of two models, termed student and teacher which
are structurally identical but differ in the way their
parameters are updated. While the student is up-
dated using regular back-propagation, the param-
eters of the teacher are a weighted average of the
student parameters across different epochs. Fur-
ther, the cost function is a linear combination of
supervision cost (from the limited number amount
of supervision) and consistency cost (agreement
between the representation from the teacher and
student models measured as the L2 norm differ-
ence between them). The motivation of using con-
sistency in the cost function and averaging the
parameters in the teacher is to reduce confirma-
tion bias in the teacher when its own predictions
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are used as pseudo-labels during the training pro-
cess (akin to averaged perceptron). This provides
a strong proxy for the student to rely on in the
absence of labeled training data (Tarvainen and
Valpola, 2017).

The specific model we employ for semi-
supervised named entity classification (NEC) task
along with a canonical input data point is depicted
in the right part of Figure 1. The input consists
of an entity mention and the sentence it appears
in, as the context. The goal is to predict the label
of the entity. In the semi-supervised setting only a
few labeled data points are provided, the rest of the
data is unlabeled. We initialize the words in the ex-
ample with pre-trained word embeddings and run
a bi-directional LSTM on both the entity mention
and its context. We concatenate the final LSTM
state of both the mention and the context represen-
tations and run a multi-layer perceptron with one
hidden layer to produce the output layer.

A key aspect of the MT framework is the aug-
mentation of the input and/or the network with
noise as shown in the right part of Figure 1. We
explain this in detail in the next section.

3 Exploration of Noise Strategies

A critical component in the algorithm is the addi-
tion of noise to the models. Noise can be added
mainly in three key places to the model presented
in the previous section as depicted in Figure 1
(parts in boldface). We add a similar but distinct
noise to both the teacher and the student mod-
els. 1 Input noise – In the form of linguistically
motivated noise such as word dropout, or replac-
ing words with their synonyms (more details be-
low). 2 Statistical noise – In the form of stan-
dard Gaussian perturbations to pre-trained word
embeddings. 3 Network noise – Dropout in the
intermediate layers of the student and teacher net-
works.

The idea of adding noise is to regularize the
model parameters and help learn robust models in
the scenario of very limited labeled training data
using the teacher and student models via the con-
sistency cost. Consequently, the MT framework
can also be perceived as a consistency regulariza-
tion technique.

The input noise is applied to the context of
an entity mention. The noise was added to a
fixed number of words in a context. We explored
different types of input noise: (1) Word-dropout

- dropping words randomly in the input context
(2) Synonym-replace - replace a randomly chosen
word in the context by its synonym from WordNet
(3) Word-dropout-idf - drop the most informative
word in the context, as determined by the inverse
document frequency (IDF) of context words com-
puted offline. (4) Synonym-replace-idf - replace
the words in the context according to their IDF (as
described above).

For the statistical noise, we perturbed the pre-
trained word embeddings with standard Gaussian
noise with a fixed standard deviation. We varied
the amount of standard deviation and the number
of words to which this type of noise is added. As
we demonstrate in the experiments, this requires
careful tuning. Further, adding Gaussian noise is
a computationally intensive process as we need to
perform this operation in every minibatch during
the training process.

We implemented network noise with dropout
with fixed probability in both the context repre-
sentation and the hidden layer in the multi-layer
perceptron.

Finally, we combined network noise with input
noise. Empirically, we show that this combination
yields the best possible performance for the task
addressed.

4 Experiments

Task and datasets: The task investigated in
this work is named entity classification (NEC),
defined as identifying the correct type of an en-
tity mention in a given context, e.g., classifying
“Bill Clinton” in the sentence “Former President
Bill Clinton expects to attend the inauguration to-
morrow.” as a person name. We define the context
as the complete sentence in which the entity men-
tion appears. We use standard benchmark datasets,
namely, CoNLL-2003 shared task dataset (Tjong
Kim Sang and De Meulder, 2003) and Ontonotes-
2013 (Pradhan et al., 2013). Our setting is semi-
supervised NEC, so we randomly select a very
small percentage of the training dataset (40 dat-
apoints i.e. 0.18% of CoNLL and 440 datapoints
i.e. 0.56% of Ontonotes as labeled data, and ar-
tificially remove the labels of the remaining dat-
apoints to simulate the semi-supervised setting.
Our task is to predict the correct labels of the un-
labeled datapoints. CoNLL had 4 label categories
while Ontonotes has 11. We measure the accuracy
as the percentage of the datapoints which have
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Figure 2: Performance upon combining noise strategies, CoNLL (left) and Ontonotes (right). Best performance:
network dropout + 5W word-dropout - 70.57% (CoNLL), network dropout + 3W synonym-replace - 72.78%
(Ontonotes)

CoNLL Ontonotes
No noise 65.76 (±2.06) 64.20 (±2.27)

Word-dropout
1 W 67.70 (±2.97) 67.46 (±3.53)
2 W 68.15 (±3.15) 68.19 (±3.35)
3 W 68.54 (±3.38) 68.42 (±3.94)

Synonym-replace
1 W 67.56 (±3.04) 67.70 (±3.20)
2 W 67.95 (±3.17) 68.40 (±3.62)
3 W 68.35 (±3.07) 68.46 (±4.06)

Word-droput-idf
1 W 67.59 (±3.03) 67.38 (±3.29)
2 W 68.11 (±3.17) 68.14 (±3.63)
3 W 68.49 (±3.27) 68.30 (±3.77)

Synonym-replace-idf
1 W 67.51 (±3.02) 67.24 (±3.55)
2 W 67.79 (±3.15) 68.23 (±3.42)
3 W 68.26 (±3.05) 67.95 (±3.96)

Gaussian (stdev=4) all W 62.98 (±2.66) 64.89 (±5.12)
Network Dropout 68.40 (±3.11) 71.77 (±2.18)

Table 1: Overall accuracies comparing all noise strate-
gies on CoNLL and Ontonotes datasets. No noise is the
baseline. X W⇒ X words perturbed by noise. Accu-
racy is % of correctly classified datapoints. (±y) ⇒
variance of 5 runs.

been predicted with the correct labels.
Experimental settings: We use the entity bound-
aries for all datapoints during training but only
use labels for a small portion of the data as in-
dicated above. We demonstrate an input to our
model in the bottom-right of Figure 1. To re-
duce computational overhead, we filtered out en-
tity mentions which were greater than length 5
from the Ontonotes dataset (4 respectively for
CoNLL), and contexts which were greater than
length 59 or smaller than length 5 (40 and 3 re-
spectively for CoNLL). Following Nagesh and
Surdeanu (2018a), we intialized the pre-trained
word-embeddings from Levy and Goldberg (2014)
(300d). We ran a 100d bi-directional LSTM on
both the entity and context representations, con-
catenated their outputs and fed them to a 300d
multi-layer perceptron with ReLU activations. For
network dropout we used p = 0.2. This is similar
to dropout regularization used in deep neural net-
works but since the dropout layer drops neurons
randomly in teacher and student, this acts as noise

CoNLL Ontonotes
1 W 69.70 (±2.93) 68.75 (±3.02)
5 W 68.48 (±2.65) 68.22 (±3.45)
10 W 66.55 (±4.20) 67.32 (±3.42)

stdev=0.05 68.51 (±3.13) 68.42 (±4.15)
stdev=1 66.94 (±2.59) 66.79 (±3.67)
stdev=2 65.43 (±2.68) 65.90 (±4.35)
stdev=4 62.98 (±2.66) 64.94 (±5.91)
stdev=8 62.49 (±2.76) 64.02 (±4.92)

stdev=16 62.87 (±3.08) 64.85 (±6.25)

Table 2: Tuning Gaussian noise - #words & stdev

in the MT framework. We tried a few variations
of this model such as augmenting the LSTM with
position embeddings, attention and replacing the
LSTM with an average model, but did not observe
a considerable improvement in performance.
Results: We present our main results in Table 1.
An important note is that the results are the accu-
racy of classification over 21,373 and 78,492 dat-
apoints in CoNLL and Ontonotes respectively, us-
ing only a tiny sliver of the labels in these datasets
as supervision. Increasing the number of labeled
examples as supervision has the expected effect of
improvement in performance. However it is of-
ten difficult to obtain sufficient number of exam-
ples in the real world. The datapoints for supervi-
sion are chosen randomly having equal represen-
tation in all classes. The analysis of amount of
supervision and its effect on accuracy is reported
in Nagesh and Surdeanu (2018a). We report the
average (along with their variance) of 5 random-
ized runs in each noise setting. Our baseline is the
no noise setting, where the input to the student and
teacher models are not augmented by noise.

From Table 1, we observe that adding noise is
necessary for good performance, as we see that the
various noise strategies consistently improve per-
formance over the baseline on both the datasets.
Network noise is a crucial factor for good per-
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formance. Input noise which are linguistically
motivated, such as word-dropout and synonym-
replace perform as well as the statistical noise.
More specifically, word-dropout of 3 words and
synonym-replace of 3 words, are the highest per-
forming non-network noise strategies on CoNLL
and Ontonotes respectively. Synonym-replace is
an interesting strategy as we believe it makes the
input more interpretable. In the sense that, the
word embedding of a synonym word is closer to
the actual word in the vector space. As opposed
to gaussian embedding noise, which is a random
delta noise added to the embedding to perturb it
and we are not sure of its orientation in the high
dimensional space. Adding Gaussian noise to all
words results in performance poorer than or close
to baseline. 1 Furthermore, Gaussian noise re-
quires fine-tuning over the value of stdev and the
number of words on which these should be applied
which makes this computationally expensive ap-
proach (Table 2). The performance on *-*-idf runs
suggest that random word selection is as good or
better. This is ideal, since it is simpler and inde-
pendent of the data distribution. Finally, network
noise in combination with linguistic input noise
provides the best possible performance, as seen in
Figure 2. One possible explanation for this could
be that ensembling two high performance systems
is akin to combining two good signals achieving
better overall results.

5 Conclusion and Future Work

The modeling of noise in discrete domains such
as language has received limited focus so far, in
the language processing community. In this work
we explore several noise strategies for the semi-
supervised named entity classification task using
the mean teacher framework, where noise aug-
mentation is a crucial factor. We show that lin-
guistic noise such as word-dropout and synonym-
replace perform as well as statistical noise, while
being simpler and easier to tune. A combination of
linguistic and network dropout provides the best
performance. As part of future work, we wish to
explore noise augmentation in other language pro-
cessing tasks such as fine-grained entity typing.

1In Table 1, for Gaussian noise, stdev value is chosen ran-
domly as 4. If we have the luxury to tune this parameter then
Table 2 noise, gives the best performance at stdev 0.05.
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Abstract

In order for coreference resolution systems
to be useful in practice, they must be able
to generalize to new text. In this work, we
demonstrate that the performance of the
state-of-the-art system decreases when the
names of PER and GPE named entities in
the CoNLL dataset are changed to names
that do not occur in the training set. We use
the technique of adversarial gradient-based
training to retrain the state-of-the-art system
and demonstrate that the retrained system
achieves higher performance on the CoNLL
dataset (both with and without the change of
named entities) and the GAP dataset.

1 Introduction

Through the use of neural networks, performance
on the task of coreference resolution has increased
significantly over the last few years. Still, neu-
ral systems trained on the standard coreference
dataset have issues with generalization, as shown
by (Moosavi and Strube, 2018).
One way to improve the understanding of how a
system overfits a dataset is to study the change
in the system’s performance when the dataset is
modified slightly in a focused and relevant man-
ner. We take this approach by modifying the test
set so that each PER and GPE (person and geopo-
litical entity) named entity is different from those
seen in training. In other words, we ensure that
there is no leakage of PER and GPE named entities
from the training set into the test set. We demon-
strate that the performance of the (Lee et al., 2018)
system, which is the current state-of-the-art, de-
creases when the named entities are replaced. An
example of a replacement that causes the system
to make an error is given in Table 1.
Motivated by these issues of generalization, this
paper aims to improve the training process of neu-

Original: But Dirk Van Dongen , president of the
National Association of Wholesaler - Distributors ,
said that last month ’s rise “ is n’t as bad an omen ” as
the 0.9 % figure suggests . “ If you examine the data
carefully , the increase is concentrated in energy and
motor vehicle prices , rather than being a broad - based
advance in the prices of consumer and industrial goods
, ” he explained .
Replacement: Replace Dick Van Dongen with
Vendemiaire Van Korewdit.

Table 1: An excerpt from the CoNLL test set. The
coreference between the two highlighted mentions is
correctly predicted by the (Lee et al., 2018) system, but
after the specified replacement, the system incorrectly
resolves “he” to a different name occurring outside this
excerpt.

ral coreference systems. Various regularization
techniques have been proposed for improving the
generalization capability of neural networks, in-
cluding dropout (Srivastava et al., 2014) and ad-
versarial training (Goodfellow et al., 2015; Miy-
ato et al., 2017). The model of (Lee et al., 2018),
like most neural approaches, uses dropout. In
this work, we apply the adversarial fast-gradient-
sign-method (FGSM) described by (Miyato et al.,
2017) to the model of (Lee et al., 2018), and show
that this technique improves the model’s general-
ization even when applied on top of dropout.
The CoNLL-2012 Shared Task dataset (Prad-
han et al., 2012) has been the standard dataset
used for both training and evaluating English
coreference systems since the dataset was in-
troduced. The dataset includes seven genres
that span multiple writing styles and multiple
nationalities. We demonstrate that the system
of (Lee et al., 2018) retrained with adversar-
ial training achieves state-of-the-art performance
on the original CoNLL-2012 dataset (Pradhan
et al., 2012) as well as the CoNLL-2012 dataset
with changed named entities. Furthermore, the
system trained with the adversarial method ex-
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hibits state-of-the-art performance on the GAP
dataset (Webster et al., 2018), a recently released
dataset focusing on resolving pronouns to peo-
ple’s names in excerpts from Wikipedia. The
code and other relevant files for this project
can be found via https://cogcomp.org/
page/publication_view/871.

2 Related Work

(Moosavi and Strube, 2017, 2018) also study gen-
eralization of neural coreference resolvers. How-
ever, they focus on transfer and indicate that the
ranking of coreference resolvers (trained on the
CoNLL training set) induced by their performance
on the CoNLL test set is not preserved when the
systems are evaluated on a different dataset. They
use the Wikicoref dataset (Ghaddar and Langlais,
2016), which is limited in that it consists of only
30 documents. They then show that the addition
of features representing linguistic information im-
proves the performance of a coreference resolver
on the out-of-domain dataset.
The adversarial fast-gradient-sign-method
(FGSM) was first introduced by (Goodfellow
et al., 2015) and was applied to sentence classifi-
cation tasks through word embeddings by (Miyato
et al., 2017). Gradient-based adversarial attacks
have since been used to train models for various
NLP tasks, such as relation extraction (Wu et al.,
2017) and joint entity and relation extraction
(Bekoulis et al., 2018).

Our replacements of named entities can also
be viewed as a way of generating adversarial ex-
amples for coreference systems; it is related to
the earlier method proposed in (Khashabi et al.,
2016) in the context of question answering and to
(Alzantot et al., 2018), which provides a way of
generating adversarial examples for simple classi-
fication tasks.

3 Adversarial Training for Coreference

In coreference resolution, the goal is to find and
cluster phrases that refer to entities. We use
the word “span” to mean a series of consecutive
words. A span that refers to an entity is called a
mention. If two mentions i and j refer to the same
entity and mention i occurs before mention j in
the text, we say that mention i is an antecedent of
mention j. For a given mention i, the candidate
antecedents of i are the mentions that occur before
i in the text. In Figure 1, each line segment repre-

Figure 1: For each mention, the model computes scores
for each of the candidate antecedent mentions and
chooses the candidate with the highest score to be the
predicted antecedent. This image was created by the
authors of (Chang et al., 2013).

sents a mention and the arrows are directed from
one mention to its possible antecedents.
We now review the model architecture of (Lee
et al., 2018) and describe how we apply the fast-
gradient-sign-method (FGSM) of (Miyato et al.,
2017) to the model. Using GloVe (Pennington
et al., 2014) and ELMo (Peters et al., 2018) em-
beddings of each word and using learned character
embeddings, the model computes contextualized
representations {x1,x2, ...,xn} of each word xi
in the input document using a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997). For candi-
date span i, which consists of the words at indices
starti, starti + 1, ..., endi, the model constructs
a span representation gi by concatenating xstarti ,
xendi ,

1∑endi
j=starti

βj

∑endi
j=starti

βjxj , and φ(endi −
starti), where the βj’s are learned scalar values
and φ(·) is a learned embedding representing the
width of the span (Lee et al., 2017). The span
representations are then used as inputs to feedfor-
ward networks that compute mention scores for
each span and that compute antecedent scores for
pairs of spans. In Figure 1, the number associ-
ated with each arrow is the antecedent score for
the associated pair of mentions. The coreference
score for the pair of spans (i, j) is the sum of the
mention score for span i, the mention score for
span j, and the antecedent score for (i, j). For
each span i, the antecedent span predicted by the
model is the span j that maximizes the antecedent
score for (i, j). Let g = {gi}Ni=1 denote the set
of the representations of all N candidate spans.
Let L(g) denote the original model’s loss func-
tion. (Note that the model’s predictions and the
loss depend on the input text only through the
span representations.) For each i ∈ {1, ..., N}, let
gadvi (g) = ∇giL

(
{gi}Ni=1

)
denote the gradient

of the loss with respect to the span embeddings.
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Then the adversarial loss with the FGSM is

Ladv({gi}Ni=1) = L
({

gi + ε
gadvi (g)

||gadvi (g)||

}N

i=1

)
.

The total loss used in training is

Ltotal(g) = αL (g) + (1− α)Ladv (g) .

In our experiments, we find that α = 0.6 and
ε = 1 work well. A key difference between our
method and that employed by (Miyato et al., 2017)
is that the latter applies the adversarial perturba-
tion to the input embeddings, whereas we apply
it to the span representations, which are an inter-
mediate layer of the model. We found in our ex-
periments that applying the FGSM to the character
embeddings in the initial layer was not as effective
as applying the method to the span representations
as described above. Another difference between
our method and that of (Miyato et al., 2017) is that
we do not normalize the span embeddings before
applying the adversarial perturbations.

4 No Leakage of Named Entities

Named entities are an important subset of the en-
tities a coreference system is tasked with discov-
ering. (Agarwal et al., 2018) provide the percent-
ages of clusters in the CoNLL dataset represented
by the PER, ORG, GPE, and DATE named entity
types – 15%, 11%, 11%, and 4%, respectively. It is
important for generalization that systems perform
well with names that are different from those seen
in training. We found that in the CoNLL dataset,
roughly 34% of the PER and GPE named entities
that are the head of a mention of some gold clus-
ter in the test set are also the head of a mention
of a gold cluster in the train set. Therefore, there
is considerable overlap, or leakage, between the
names in the train and test sets. In this section, we
describe a method for evaluating on the CoNLL
test set without leaked name entities.
We focus on PER and GPE named entities be-
cause they are two of the three most common en-
tity types and because in general when replacing
a PER or GPE name with another name, it is easy
to not change the true coreference structure of the
document. In particular, changing the name of an
organization while ensuring that it is compatible
with nominals in the cluster is nontrivial without
a finer semantic typing. By contrast, we describe
below how we control for gender and location type

when replacing PER and GPE names, respectively.
We also ensure that the capitalization of the first
letter in the replacement name is the same as in
the original text. Finally, we note that the diver-
sity of PER and GPE entities exceeds that of other
named entity types; this increases the importance
of generalization to new names and, at the same
time, enables us to find matching names to use as
replacements. Table 2 provides examples of text
in the original CoNLL-2012 dataset and the corre-
sponding text after our modifications.

4.1 Replacing PER entities

For replacing PER entities, we utilize the pub-
licly available list of last names from the 1990
U.S. Census and a gazetteer of first names that has
the proportion of people with this name who are
males. The gazetteer was collected in an unsuper-
vised fashion from Wikipedia. We denote the list
of last names by L, the list of male first names (i.e.
first names with male proportion greater than or
equal to 0.5 in the gazetteer) byM, and the list of
female first names (i.e. first names with male pro-
portion less than or equal to 0.5 in the gazetteer)
by F . We remove all names occurring in train-
ing from L,M, and F . We use the spaCy depen-
dency parser (Honnibal and Johnson, 2015) to find
the heads of each mention. We say that a mention
is a person-mention if the head of the mention is a
PER named entity, and we say that the name of the
person-mention is the PER named entity that is its
head. We use the dependency parser and the gold
NER to identify all of the person-mentions. For
each gold cluster containing a person-mention, we
find the longest name among the names of all of
the person-mentions in the cluster. If the longest
name of a cluster has only one token, we assume
that the name is a last name, and we replace the
name with a name chosen uniformly at random
from the remaining last names in L. Otherwise, if
the longest name has multiple tokens, we say that
the cluster is male if the cluster contains no female
pronouns (“she”, “her”, “hers”) and one of the fol-
lowing is true: the first token does not appear inM
orF , if the token appears inM, or the cluster con-
tains a male pronoun (“he”, “him”, “his”). We say
that the cluster is female if it is not male. Then we
(1) replace the last token with a name chosen uni-
formly at random from the remaining last names
in L, and (2) replace the first token with a name
chosen uniformly at random from the remaining
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Original No Leakage
We asked Judy Muller if she would like to
do the story of a fascinating man . She took a
deep breath and said , okay .

We asked Sallie Kousonsavath if she would
like to do the story of a fascinating man . She
took a deep breath and said , okay .

The last thing President Clinton did today be-
fore heading to the Mideast is go to church –
appropriate , perhaps , given the enormity of
the task he and his national security team face
in the days ahead .

The last thing President Golia did today be-
fore heading to the Mideast is go to church –
appropriate , perhaps , given the enormity of
the task he and his national security team face
in the days ahead .

In theory at least , tight supplies next spring
could leave the wheat futures market suscepti-
ble to a supply - demand squeeze , said Daniel
Basse , a futures analyst with AgResource Co.
in Chicago .

In theory at least , tight supplies next spring
could leave the wheat futures market suscepti-
ble to a supply - demand squeeze , said Daniel
Basse , a futures analyst with AgResource Co.
in Machete .

Table 2: Excerpts from the CoNLL-2012 test set and their versions after we have replaced PER and GPE names to
avoid name leakage.

first names inM if the cluster is male or from the
remaining first names F if the cluster is female.
Note that our sampling from each of L,M, and F
is without replacement, so no last name is used as
a replacement more than once, no male first name
is used more than once, and no female first name
is used more than once.

4.2 Replacing GPE entities

Our approach to replacing GPE entity names is
very similar to that used for PER names. We use
the GeoNames1 database of geopolitical names.
In addition to providing a list of GPE names, this
database also categorizes the names by the type of
entity to which they refer (e.g. city, state, county,
etc.). The data includes the names and categories
of more than 11, 000, 000 locations in the world.
We restrict our attention to GPE entities that sat-
isfy the following requirements: (1) they occur in
the GeoNames database and (2) they are not coun-
tries. We say that a mention is a GPE-mention if
its head (as given by the dependency parser) is a
GPE named entity satisfying these three require-
ments. (Again, we use the gold NER to identify
GPE names in the CoNLL text.) We remove all
GPE names occurring in the training set from the
list of replacement GPE names for each location
category. Then for each cluster containing a GPE-
mention, we find the GeoNames category for the
mention’s GPE name and replace the name with
a randomly chosen name from the same category.
As with PER names, we sample names from each

1http://www.geonames.org/

category without replacement, so each GPE name
is used for replacement at most once.

5 Experiments

We trained the (Lee et al., 2018) model architec-
ture with the adversarial approach on the CoNLL
training set for 355000 iterations (the same num-
ber of iterations for which the original model was
trained) with the same training hyperparameters
used by original model. For comparing with the
(Lee et al., 2017) and (Lee et al., 2018) systems,
we use the pretrained models released by the au-
thors.2

The datasets used for evaluation are the CoNLL
and GAP datasets.

5.1 CoNLL Dataset

Table 3 shows the performance on the CoNLL
test set, as measured by CoNLL F1, of the (Lee
et al., 2018) system with and without our adver-
sarial training approach. The replacement of PER
and GPE entities decreased the performance of the
original system by more than 1 F1.

5.2 GAP Dataset

The GAP dataset (Webster et al., 2018) focuses
on resolving pronouns to named people in ex-
cerpts from Wikipedia. The dataset, which is
gender-balanced, consists of examples in which

2Available at https://lil.cs.washington.
edu/coref/final.tgz and http://lsz-gpu-01.
cs.washington.edu/resources/coref/c2f_
final.tgz
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Original No Leakage
(Lee et al., 2018) 72.96 71.86
+Adv. Training 73.23 72.36

Table 3: Results (CoNLL F1) on the CoNLL Test Set.
“Original” refers to the original test set, and “No Leak-
age” refers to the test set modified with the replace-
ment of named entities described in Section 4. For each
dataset, highest score for each dataset is bolded and is
underlined if the difference between it and the other
model’s score is statistically significant (p < 0.20 per
a stratified approximate randomization test similar to
that of (Noreen, 1989)).

M F O
(Lee et al., 2017) 68.7 60.0 64.5
(Lee et al., 2018) 75.8 70.6 73.3
+Adv. Training 77.3 72.1 74.7

Table 4: Results (F1 metric defined by (Webster et al.,
2018)) on the GAP Test Set. M refers to male pro-
nouns, F refers to female pronouns, and O refers to the
full evaluation data. For each category, highest score
is bolded and underlined if difference between it and
next-highest score is statistically significant (p < 0.05
per the McNemar test (McNemar, 1947)).

the system must determine whether a given pro-
noun refers to one, both, or neither of two given
names. Thus, the task can be viewed a binary clas-
sification task in which the input is a (pronoun,
name) pair and the output is True if the pair is
coreferent and False otherwise. Performance is
evaluated using the F1 score in this binary classi-
fication setup. Table 4 shows the performance on
the GAP test set of the (Lee et al., 2017)3 and (Lee
et al., 2018) systems as well as the system trained
with our adversarial method. The adversarially
trained system performs significantly better over
the entire dataset in comparison to the previous
systems, and the difference is consistent between
genders. In particular, we observe that the bias
(i.e. ratio of female to male F1 score) is roughly
the same (0.93) for the (Lee et al., 2018) system
with and without adversarial training and that this
bias is better (i.e. the ratio is closer to 1) than that
exhibited by the (Lee et al., 2017) system (0.87).

3The results that we report for the (Lee et al., 2017) sys-
tem differ slightly from those reported in Table 10 of (Web-
ster et al., 2018) due to a difference in the parser and po-
tentially small differences in the algorithm for converting the
system’s output to the binary predictions necessary for the
GAP scorer.

6 Conclusion

We show that the performance of the (Lee et al.,
2018) system decreases when the names of PER
and GPE entities are changed in the CoNLL test
set so that no names from the training set leak
to the test set. We then retrain the same sys-
tem using an application of the fast-gradient-sign-
method (FGSM) of adversarial training, showing
that the retrained system consistently performs
better on the original CoNLL test set, the CoNLL
test set with No Leakage, and the GAP test set.
Our new model is a new state-of-the-art for all
these data sets.
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Abstract
Human Needs categories have been used to
characterize the reason why an affective event
is positive or negative. For example, “I got the
flu” and “I got fired” are both negative (unde-
sirable) events, but getting the flu is a Health
problem while getting fired is a Financial
problem. Previous work created learning mod-
els to assign events to Human Needs categories
based on their words and contexts. In this
paper, we introduce an intermediate step that
assigns words to relevant semantic concepts.
We create lightly supervised models that learn
to label words with respect to 10 semantic
concepts associated with Human Needs cat-
egories, and incorporate these labels as fea-
tures for event categorization. Our results
show that recognizing relevant semantic con-
cepts improves both the recall and precision of
Human Needs categorization for events.

1 Introduction

Affective events have a positive or negative impact
on the people who experience the event. For ex-
ample, being hired for a job is typically a bene-
ficial (positive) event, but being fired is usually a
detrimental (negative) event. Recognizing affec-
tive events is critical to understand people’s mo-
tivations, goals, desires, and empathy in narrative
stories and conversations. Previous research has
proposed several methods to recognize affective
events and their polarity (e.g., (Deng et al., 2013;
Vu et al., 2014; Reed et al., 2017; Ding and Riloff,
2016)). To achieve a deeper level of understand-
ing, Ding and Riloff (2018a) further classified af-
fective events into categories associated with the-
ories of Human Needs (Maslow et al., 1970; Max-
Neef et al., 1991) in psychology: Physiological,
Health, Leisure, Social, Finance, and Cognition,
to characterize the reason for the event’s affective
polarity. For example, breaking your arm is a neg-
ative event because it violates a need to maintain

one’s Health, but fighting with your spouse is neg-
ative because it violates a need for good Social re-
lations with friends and family.

Human Needs categories naturally align with
several broad conceptual classes, and we hypoth-
esized that learning to recognize relevant seman-
tic concepts would lead to more effective Human
Needs categorization. For example, the Physiolog-
ical need corresponds to basic functions such as
breathing, sleeping, eating, and drinking. Learn-
ing to recognize FOOD/DRINK concepts should
help identify events that belong to this category.
Broadly, semantic concepts should help in two
ways. First, semantic features are more gen-
eral than words, which can suffer from sparsity.
Second, given semantic features, a classifier can
directly learn interactions between them, which
should be more robust than interactions between
individual words.

In this paper, we present lightly supervised clas-
sifiers that label words with respect to 10 se-
mantic concepts associated with Human Needs
categories: EMOTION, ENTERTAINMENT, EQUIP-
MENT, FOOD/DRINK, INTERPERSONAL, MEDI-
CAL, MENTAL-PROCESS, MONEY/JOB, PEOPLE,
and OTHER. Seed words for each semantic class
are used as supervision, and pre-trained embed-
ding vectors are used as word features. We explore
three classification models: logistic regression,
instance-based learning, and prototypical neural
networks (Snell et al., 2017). Finally, the semantic
class predictions are used as features for Human
Needs event categorization, improving both recall
and precision for this task.

2 Related Work

Previous work in NLP on affective events has pri-
marily focused on identifying the affective po-
larity of events in narrative fables (Goyal et al.,
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2013), tweets (Li et al., 2014), news (Deng et al.,
2013; Deng and Wiebe, 2014), and personal blogs
(Ding and Riloff, 2016; Reed et al., 2017; Ding
and Riloff, 2018b). Recently, Ding et al. (2018)
further characterized affective events in terms of
human needs categories: Physiological, Health,
Leisure, Social, Financial, Cognition, and Free-
dom, which can explain why an event is positive or
negative. Subsequently, Ding and Riloff (2018a)
designed supervised learning models and a semi-
supervised co-training model to assign affective
events to Human Needs categories.

Our work exploits recent advances in dis-
tributed word representations and semantic em-
beddings (e.g., (Mikolov et al., 2013; Penning-
ton et al., 2014; Peters et al., 2018; Devlin et al.,
2018)), and is related to domain adaptation of
word embeddings (e.g., (Sarma et al., 2018)). But
we aim to recognize a specific set of semantic
concepts, rather than a specialized domain with
domain-specific texts. The LIWC dictionary (Pen-
nebaker et al., 2007) contains word lists for se-
mantic categories that are similar to our targeted
semantic concepts, but its coverage is insufficient.
Our work is also related to semantic lexicon induc-
tion (Thelen and Riloff, 2002; McIntosh and Cur-
ran, 2009; Qadir and Riloff, 2012; De Benedictis
et al., 2013; Gupta and Manning, 2015), contex-
tual semantic tagging (Huang and Riloff, 2010),
and fine-grained entity recognition (Fleischman
and Hovy, 2002; Ling and Weld, 2012). Our goal,
however, is not to generate a dictionary, or assign
semantic meanings in sentence contexts. Instead,
our classifier learns to recognize words that belong
to a small set of relevant semantic classes based
only on their pre-trained embedding vectors.

3 Lightly Supervised Semantic
Classification

We hypothesized that Human Needs categoriza-
tion would benefit from recognizing words that be-
long to the 10 semantic concepts listed in Table 1,
based on our analysis of the Human Needs def-
initions presented in (Ding et al., 2018). In this
section, we present lightly supervised models that
learn to assign words to these classes.

3.1 Seeding

The input to our classifiers is a small set of seed
words for each targeted semantic class. The affec-
tive events data set that we will use for our study

ENTERTAINMENT: play game movie story trip party
birthday song music video
INTERPERSONAL: meet visit kiss share lie relation-
ship hug marry agree admit
MENTAL-PROCESS: know remember read guess
dream forget understand explain study memory
MEDICAL: die hurt pain kill sick blood hospital dead
drug surgery
MONEY/JOB: job pay money deal sell business price
sale purchase dollar
EQUIPMENT: car phone computer bike camera chair
boat machine desk laptop
FOOD/DRINK: eat water food dinner drink lunch
breakfast cake meal chocolate
PEOPLE: people friend guy girl man kid mom someone
everyone family
EMOTION: good love nice fun bad happy best better
smile enjoy laugh hate kind beautiful wrong amazing
awesome funny crazy worry
OTHER: be have do get go time say make think take
day come look thing tell start way try last year

Table 1: Semantic Concepts and Seed Words

(Section 5) was generated from the ICWSM 2009
and 2011 blog corpora (Burton et al., 2009, 2011),
so we selected seed words from these corpora as
well. We used the following procedure to iden-
tify commonly used words for each category: we
sorted all word lemmas by frequency and selected
the k top-ranked words belonging to each seman-
tic concept. We set k=10 for all classes, except we
set k=20 for EMOTION and OTHER because they
are extremely large categories.1 Table 1 shows the
seeds selected for each semantic class.

3.2 Classification

We created three classification models: logistic re-
gression, instance-based learning, and prototyp-
ical neural networks. For all three classifiers,
we used the Word2Vec 300D pre-trained embed-
dings (Mikolov et al., 2013) as features. The
seed words served as training examples, along
with 500 randomly selected unlabeled words as
additional seeds for the OTHER category, since it
needs to represent a large and diverse “None-of-
the-Above” class.

The first model is a one-vs.-rest logistic regres-
sion classifier, built using the scikit-learn toolkit
(Pedregosa et al., 2011) with default parameters.

The second model uses instance-based classifi-
cation. This method first creates a prototype rep-
resentation for each semantic class as the mean of
the word embeddings of its seeds. Given a new

1The k values were chosen arbitrarily without experimen-
tation, so tuning these values could potentially further im-
prove performance.
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word, a probability distribution is computed over
the semantic classes as the softmax of the negative
Euclidean distance to each class prototype. The
class with the highest probability is chosen.

The third model uses prototypical neural net-
works (Snell et al., 2017), which have performed
well on “few-shot” learning tasks with limited la-
beled training data, because of its simple induc-
tive bias. We created a single layer feed-forward
network with ReLU activations as the embedding
function f . To learn parameters for f , we use
the same training algorithm as Snell et al. (2017)
except that we train on all semantic classes in
each training episode, and both the support set and
query set consist of 5 randomly selected examples
per class. During training, we use the following
parameters: the dimension of the embedding rep-
resentation layer is 32, the learning rate is .01, and
the weight decay is .0001. We train the model for
20 epochs with 100 episodes for each epoch.

To predict the class label for a new word, the
process is the same as the instance-based model,
except that the learned embedding is used. First,
we create a prototype embedding ck for each se-
mantic class k using Equation 1, where Sk con-
tains all the labeled seed words for class k.

ck =
1

|Sk|
∑

xi∈Sk

f(xi) (1)

Given a new word, a probability distribution over
the classes is computed as the softmax of the neg-
ative Euclidean distance d to each prototype, as
shown in Equation 2.

p(y = k|x) = exp(−d(f(x), ck))∑
k′ exp(−d(f(x), ck′))

(2)

4 Human Needs Categorization

Our goal is to explore whether semantic classifi-
cation of terms can improve Human Needs cate-
gorization of affective events. Toward this end,
we used the Human Needs categorization frame-
work described in Ding and Riloff (2018a) which
is a co-training model that iteratively trains two
models with different views of the data: (1) an
event expression classifier that uses the words in
an event expression as input, and (2) an event con-
text classifier that uses the sentence contexts that
mention an event as input. An event expression
is represented as a tuple consisting of 4 compo-
nents: (Agent, Predicate, Theme, PP). The event

expression classifier is a logistic regression model
that takes the embedding of an event expression as
input, which is computed as the average over the
embeddings of its individual words. The architec-
ture and models are the same, but in this paper we
aim to improve the event expression classifier by
incorporating semantic classification.

Given an event expression, we extract two types
of semantic features from the head words of its 4
components. For each of the 4 head words, we cre-
ate 10 real-valued features representing the confi-
dence scores produced by the classifier for each
of the 10 semantic classes. In addition, we create
10 binary features (one per semantic class) indi-
cating whether any of the head words belongs to
each class, based on the classifier’s predicted la-
bels. Consequently, for each event expression the
semantic classifier generates 50 semantic features.

5 Evaluation

We conducted two sets of experiments to evaluate
the impact of our semantic classifiers. First, we
show the results of adding semantic features to the
event expression classifier for Human Needs cate-
gorization. Second, we evaluate the impact of the
enhanced event expression classifier in the full co-
training model. We used the evaluation data set
created by Ding and Riloff (2018a), which con-
tains 542 affective events with manually assigned
Human Needs labels. To ensure a fair comparison,
we used the same evaluation settings: we perform
3-fold cross-validation on the evaluation data and
report the average Precision, Recall, and F1 scores
over the folds.

5.1 Human Needs Categorization Results

Table 2 shows the results of experiments with
the event expression classifier. The first row,
Embed (D&R 2018a), shows the performance of
Ding & Riloff’s original event expression clas-
sifier, which is a logistic regression model with
event expression embeddings as features. The next
three rows show the performance of a logistic re-
gression model that uses our semantic features in-
stead. We show results for semantic features pro-
duced by each of our three models: instance-based
classification (Sem:InstBased), logistic regression
(Sem:LR), and the prototypical neural network
(Sem:ProtoNets). The LR and ProtoNets models
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Features Precision Recall F1
Embed (D&R 2018a) 64.2 51.7 54.8
Sem:InstBased 53.7 42.4 45.1
Sem:LR 72.3 46.8 52.0
Sem:ProtoNets 63.1 48.8 52.4
Embed+Sem:InstBased 64.2 55.2 58.1
Embed+Sem:LR 68.7 57.3 60.8
Embed+Sem:ProtoNets 67.5 58.7 61.9

Table 2: Results for Human Needs Categorization with
Event Expression Classifiers

achieve an F1 score2 ≥ .52, which is not far be-
low the performance of the D&R model that uses
embedding features.

The last three rows of Table 2 show results for
the event expression classifier with features for
both the event expression embedding and the 50
semantic features produced by one of our three se-
mantic classifiers. All of these models outperform
the original D&R model. The best model, Pro-
toNets, substantially improves Human Needs cat-
egorization from 54.8%→ 61.9%.

Human Need D&R 2018a Our Results
Category Pr R F1 Pr R F1
Physio 81 68 74 86.7 68.3 76.3
Health 68 50 57 71.6 59.3 64.8
Leisure 69 63 66 74.8 64.0 68.8
Social 68 79 73 73.9 82.4 77.9
Finance 67 44 52 60.5 47.8 52.9
Cognition 92 46 58 83.8 54.2 65.5
Emotion 64 74 69 65.5 74.2 69.6
None 48 52 50 49.0 53.3 51.1
AVG 69.7 59.5 62.4 70.7 62.9 65.9

Table 3: Results for Human Needs Categorization with
Co-Training Models

In the next set of experiments, we evaluated the
impact of the new event expression classifier in
the co-training model for Human Needs catego-
rization. Table 3 shows the results for the original
co-training model reported in our previous work
(Ding and Riloff, 2018a) alongside the results for
our enhanced co-training model, which is identical
except that we replaced the original event expres-
sion classifier with our Embed+Sem:ProtoNets
model. We used the same experimental settings,
running our co-training model for 20 iterations and
reporting the best results3. Table 3 shows the Pre-
cision (Pr), Recall (R), and F1 scores for each

2Note that this result is the average F1 score over the
cross-validation folds, not the F1 score of the average pre-
cision and average recall.

3Our co-training method achieved the best result after 17
iterations.

Human Needs category and the macro-averaged
(AVG) scores. The enhanced co-training model
improves performance on every Human Needs cat-
egory, increasing the average F1 score from 62.4%
to 65.9%.

0 5 10 15 20
Number of Iterations

50.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5
70.0

F1

D&R 2018a
Our Method

Figure 1: Performance of Co-training Models with Se-
mantic Class Features at Different Iterations

Figure 1 shows the performance of the origi-
nal co-training method D&R 2018a and our new
method with semantic features learned by Em-
bed+Sem:ProtoNets model after each iteration.
This result shows that enhancing the event expres-
sion classifier with semantic features helps the co-
training model improve more rapidly and achieve
better performance than the original model for
each iteration.

5.2 Analysis of Semantic Classification

We also informally evaluated the quality of the
semantic labels assigned by the semantic classi-
fier, to better understand its strengths and weak-
nesses. One of the authors assigned each word4

in the evaluation data to one of the 10 semantic
classes. Then we compared these human labels to
the predicted labels from the semantic classifier.

Table 4 shows the performance for each seman-
tic class. Overall, the classifier achieved a macro-
averaged F1 score of 68.8%. Performance across
the semantic classes varies, with several classes
achieving high precision and high or moderate re-
call (OTHER, PEOPLE, ENTERTAINMENT, EMO-
TION, INTERPERSONAL, MENTAL-PROCESS), a
few achieving high recall but low to moderate pre-
cision (FOOD/DRINK, MONEY/JOB), and a few
with moderate recall and precision (EQUIPMENT,
MEDICAL). Overall, these results demonstrate

4Except not pronouns.
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Semantic Classes Precision Recall F1
OTHER 79.5 91.0 84.9
PEOPLE 94.2 75.4 83.8
FOOD/DRINK 57.1 92.3 70.6
ENTERTAINMENT 89.1 54.7 67.8
EQUIPMENT 62.5 66.7 64.5
EMOTION 80.0 51.2 62.5
INTERPERSONAL 84.6 47.8 61.1
MENTAL-PROCESS 77.3 48.6 59.6
MEDICAL 64.5 51.3 57.1
MONEY/JOB 37.9 73.3 50.0
AVG 72.7 65.2 68.8

Table 4: Semantic Classification Results

that the semantic classifier produced fairly good
predictions for most categories given only light su-
pervision. One could almost certainly further im-
prove these scores with more seed examples or by
incorporating readily available external resources
for categories such as EMOTION and MEDICAL,
which would likely yield further gains for Human
Needs categorization. More generally, our lightly
supervised approach for training a semantic clas-
sifier demonstrates that one can rapidly create a
classifier for a specific set of semantic concepts
that are important for an application domain.

〈I, gain, pleasureEMOTION, 〉
〈I, be, busy, with my homeworkMENTAL-PROCESS 〉
〈we, finish, tourENTERTAINMENT, 〉
〈our pizzaFOOD/DRINK, arrive, , 〉
〈my eye, hurtMEDICAL, badEMOTION, , 〉
〈I, try to cooperateINTERPERSONAL, , 〉
〈I, danceENTERTAINMENT, , with my momPEOPLE 〉
〈I, danceENTERTAINMENT, , with my friendPEOPLE 〉
〈I, not function, , at workMONEY/JOB 〉
〈day, be, magicalEMOTION, 〉
〈peoplePEOPLE, buyMONEY/JOB, home, 〉
〈we, grow, hungryFOOD/DRINK, 〉
〈I, forgetMENTAL-PROCESS, paper, 〉
〈I, not learnMENTAL-PROCESS, something, 〉
〈I, buyMONEY/JOB, filmENTERTAINMENT, 〉
〈house phoneEQUIPMENT, not workMONEY/JOB, , 〉
〈epiduralMEDICAL, start to workMONEY/JOB, , 〉

Table 5: Examples of Affective Events with Automati-
cally Predicted Semantic Classes

Table 5 presents some examples of affective
events and their semantic classes that are as-
signed by the Prototypical Networks Model.
All the unlabeled words in the table were as-
signed to OTHER class5. Besides the words

5In our experiments, we did not apply the semantic clas-

(e.g., “pleasureEMOTION”, “pizzaFOOD/DRINK”,
“cooperateINTERPERSONAL”) that were classified
correctly, some words in events also received
incorrect semantic category labels. For example,
the “work” in “house phone not work” and
“epidural start to work” was incorrectly classified
to MONEY/JOB, which suggests that it may be
beneficial to further improve the performance of
semantic categorization of words in events by
considering the contextual meaning of polyse-
mous words. In addition, our set of semantic
classes was selected based on our intuition about
what concepts are most relevant to the human
needs categories, but it might be worthwhile for
future work to more thoroughly explore a large
set of semantic concepts.

6 Conclusions

We proposed to improve human needs categoriza-
tion of affective events by adding semantic fea-
tures that classify terms into related semantic con-
cepts. We designed lightly supervised models that
learn to classify words with respect to semantic
concepts using only their pre-trained word embed-
ding vectors and seed words as training data. We
then showed that representing semantic concepts
improves both the precision and recall for Human
Needs categorization of events.
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Abstract

Word representations trained on text reproduce
human implicit bias related to gender, race
and age. Methods have been developed to re-
move such bias. Here, we present results that
show that human stereotypes exist even for
much more nuanced judgments such as per-
sonality, for a variety of person identities be-
yond the typically legally protected attributes
and that these are similarly captured in word
representations. Specifically, we collected hu-
man judgments about a person’s Big Five per-
sonality traits formed solely from information
about the occupation, nationality or a com-
mon noun description of a hypothetical person.
Analysis of the data reveals a large number of
statistically significant stereotypes in people.
We then demonstrate the bias captured in lexi-
cal representations is statistically significantly
correlated with the documented human bias.
Our results, showing bias for a large set of per-
son descriptors for such nuanced traits put in
doubt the feasibility of broadly and fairly ap-
plying debiasing methods and call for the de-
velopment of new methods for auditing lan-
guage technology systems and resources.

1 Introduction

Implicit association tests probe biases individu-
als may harbor, by measuring the reaction times
of people when asked to sort word stimuli with
clearly positive/negative valance and words asso-
ciated with racial groups or less morally relevant
categories such as insects/flowers and musical in-
struments/weapons (Greenwald et al., 1998). Re-
cent work has revealed that word representations
trained on large text corpora reproduce human
bias in preference to flowers and musical instru-
ments, but also disturbingly on gender, race and
age-related bias (Caliskan et al., 2017).

These findings pose a dilemma. Having sys-
tems learn that flowers/musical instruments are

pleasant and insects/weapons unpleasant appears
to be useful common sense knowledge that sys-
tems can leverage to better interact with peo-
ple1. Having racist, sexist and ageist systems how-
ever is highly undesirable, as these are integrated
in broader technologies like machine translation,
which can reinforce the stereotype2. Stereotypes
are highly problematic because even simply evok-
ing them can trigger change in behavior (Duguid
and Thomas-Hunt, 2015; Spencer et al., 2016).

Guided by these compelling arguments, many
researchers have started looking for ways to de-
bias word representations and language technolo-
gies. In response to the examples in the supple-
mentary materials in (Caliskan et al., 2017), that
Google Translate translates ‘doctor’ as male and
‘nurse’ as female, Google has indeed rolled out a
new version of their systems for certain language
pairs, in which both translation versions are dis-
played3. Similarly, earlier work has zeroed in on
the gender bias in word representation and has pro-
posed methods for debiasing, which take in a set
of words to be debiased as an argument to the al-
gorithm (Bolukbasi et al., 2016). Work further de-
veloping this line of analysis and debiasing has ap-
peared in recent computational linguistics venues
(Zhao et al., 2017, 2018; Rudinger et al., 2018).
This line of work is in stark contrast with ear-
lier work in the field, which treated human stereo-
types encoded in text as common sense knowledge
that could be helpful in automating tasks such as
named entity tagging and coreference resolution
(Bergsma and Lin, 2006; Ji and Lin, 2009).

In this complex context, we set out to study
how broad stereotypes are, both in terms of groups

1Such knowledge will for example make it possible to ac-
curately interpret the pragmatic meaning of a person exclaim-
ing ”You have a spider on your shoulder!”

2https://bit.ly/2HXkipB
3https://bit.ly/2B0nVHZ
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they may affect and the subtlety of distinction in-
volved in the stereotype. For this purpose, we turn
to personality stereotypes evoked by a single de-
scriptor of a person, such as nationality, profession
and arbitrary words describing people. We verify
that people hold stereotypes about personality and
that the human stereotypes can be recovered fairly
accurately from word representations. Given the
wide variety of descriptors to which stereotypes
apply, we argue that an approach different from
classic debiasing approaches for dealing with the
problem ought to be established. We discuss some
of these thoughts and considerations in the con-
cluding section of this paper.

2 Big Five Personality Traits

The Big 5 personality traits, OCEAN, are the most
common framework for studying personality in
psychology studies (John and Srivastava, 1999).
In this framework, personality is described in five
dimensions: openness to experience, conscien-
tiousness, extroversion, agreeableness and neu-
roticism. One of the most compact instruments
to assess personality in this scale is the Ten Item
Personality Inventory (TIPI) (Gosling et al., 2003).
TIPI defines the extreme ends of each personality
dimension by two simple descriptions:
O conventional/uncreative↔ open to new experi-
ences/complex
C disorganized/careless ↔ dependable/self-
disciplined
E reserved/quiet↔ extroverted/enthusiastic
A critical/quarrelsome↔ sympathetic/warm
N calm/emotionally stable↔ anxious/easily upset

OCEAN personality traits have been used in a
number of computational linguistics studies such
as developing dialog systems whose generation
components can be tuned to project specific per-
sonality (Mairesse and Walker, 2007), predict-
ing perceived personality from social media posts
(Celli et al., 2013; Kosinski et al., 2013), au-
tomatic personality detection from essays (Ma-
jumder et al., 2017) and predicting specific traits,
such as neuroticism, strongly linked with risk for
depression and anxiety (Resnik et al., 2013).

3 Human Stereotype Collection

We collected human personality stereotypes for 98
professions and 135 nationalities, recruiting par-

ticipants on Amazon Mechanical Turk4. The pro-
fessions were drawn from the list of nouns that are
children of the node ‘person’ in the WordNet Is-A
hierarchy. The list is large, with over 2,300 en-
tries overall. From this list, two of the authors se-
lected 98 professions. Similarly, nationalities were
drawn for the CIA fact book and narrowed down
to 135 by two of the authors. We used the Ten Item
Personality Inventory (TIPI) (Gosling et al., 2003)
to elicit the participant expectations about the per-
sonality of people with given nationalities or pro-
fessions. Participants were given tasks consist-
ing of ten nationalities/professions, to be judged
for a single personality trait. The top of the page
displayed the TIPI ends for the personality di-
mensions presented above. The participants were
asked to rate where a person with the given pro-
fession/nationality will fall on a 7-point scale. The
middle of the scale is interpreted as ‘have no ex-
pectation/could be either’, -3 corresponds to the
negative end of the dimension defined by the de-
scription on the left above and 3 corresponds with
the positive end of the dimension defined by the
description on the right. The order of the nation-
alities/professions was randomly assigned in each
task. One of the ten professions/ nationalities in
the task was a repeat. This was used for quality
control. Participants who gave different rating for
the repeated nationality/profession were excluded
from the study, as were participants who gave the
same answer for all ten nationalities/ professions.

Only participants residing in the United States
were given access to the task.

4 Analysis of Human Bias

After excluding inconsistent participants, we had
30 judgments for the vast majority of nationalities
and 25 judgments for the professions.

We use the Wilcoxon signed-rank test to deter-
mine if the mean of the human judgments for each
of the five personality traits is different from zero
at 95% confidence. We found that 92.5% of the na-
tionalities had at least one statistically significant
personality trait; about 40% had numerical values
greater than 1 or less than -1 on the seven point
scale, indicating a high bias. Similarly, 98% of the
professions had at least one statistically significant
with personality trait5; about 94% had numerical

4Data available at https://github.com/
oagarwal/personality-bias

5We do not perform any adjustments for multiple com-
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Professions Nationalities
mean > 0 mean < 0 mean > 1 mean < -1 mean > 0 mean < 0 mean > 1 mean < -1

O 33.6 31.6 27.5 18.3 23.7 17.03 18.5 11.8
C 77.5 1 67.3 1 32.5 5.9 16.2 0
E 37.7 18.3 28.5 9.1 19.2 40.7 14.8 5.9
A 41.8 16.3 27.5 9.1 37 9.6 9.6 1.4
N 6.1 31.6 3 12.2 23.7 20 8.1 12.5

Table 1: Percentage of professions and nationalities with statistically significant human bias towards specific per-
sonality traits i.e mean different from zero at 95% confidence using Wilcoxon signed rank test.

Num of Professions Nationalities
sig traits Sig Sig |mean| > 1 Sig Sign |mean| > 1

0 2.04 6.12 7.40 54.81
1 5.10 18.36 25.18 14.07
2 24.48 47.95 25.92 17.77
3 40.81 21.42 17.77 7.40
4 20.40 5.10 19.25 5.18
5 7.14 1.02 3.70 0.74

Table 2: Column 1 is percentage of professions or nationalities with n out of 5 statistically significant personality
traits i.e mean different from zero at 95% confidence using Wilcoxon signed rank test. Column 2 is percentage
of professions or nationalities with n out of 5 statistically significant personality traits and absolute value of mean
greater than equal to 1 indicating high bias.

values greater than 1 or less than -1. Often people,
including the authors, expect bias to be negative
but most of the bias we observe is positive: certain
groups were perceived to be agreeable, open to ex-
periences, conscientious and not neurotic. These
results can be seen in Table 1.

The existence of national stereotypes (from
members of the same nation) has been docu-
mented, and also shown not to correlate at all with
actual self-reported or perceived personalities of
the members of the culture (Terracciano et al.,
2005). In our study, the nationality stereotypes
are from Americans towards other cultures and are
likely similarly unfounded. Many of the stereo-
types we observe in our study are predictable:
Australians and Swedish are ranked at the top
positive end for openness; Japanese and Chinese
are most conscientious; Americans are extroverts;
Canadians and New Zealanders are rated as most
agreeable. In professions, priests and accountants
are perceived as least open; drug dealers as least
conscientious; chemists and mathematicians as in-
troverts; drug dealers and prosecutors as disagree-
able; tour guides and pianists as least neurotic.

There were few professions/nationalities for
which all five dimensions of personality were sta-
tistically significant. Australians, Finnish, New
Zealanders, tour guides, designers, house decora-

parisons. A number of these findings may be spurious but the
number of significant finding far exceeds the 5% expected
significant results due to statistical chance.

tors, art dealers have highly positive bias towards
them. Judges and senators have also significant
bias in all traits, but direction varies across traits
for them. Overall statistics are shown in Table 2.

5 Personality Bias Prediction

In this section, we test the extent to which the
stereotypes in the human data can be explained by
co-occurrence statistics between the nationality/
profession and descriptors related to the person-
ality dimensions. Prior work (Bhatia, 2016) has
shown that co-occurrence statistics can be used to
predict human bias towards probability of occur-
rence of real-life events such as terrorist attacks.

In the prominent work on word representations
and bias (Caliskan et al., 2017), human stereotypes
were reconstructed by substituting human reaction
times in sorting words with the cosine similarity
between sets of words. In the original psychol-
ogy studies, the word stimuli are drawn from prior
studies which established that people consider cer-
tain words to be highly positive or negative. For
example, some words with positive connotations
used in the study include ‘freedom, rainbow, mir-
acle, laughter’ and words with negative connota-
tions include ‘abuse, sickness, tragedy, ugly’.

We do not do any similar pre-screening of de-
scriptors. The personality descriptors in our study
come from a standard instrument developed for
personality assessment (see Table 3). Predictions
in our final evaluation are performed for a broad
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Trait Positive-end words Negative-end words

O
intelligent, perceptive, analytical, reflective, curious,
imaginative, creative, cultured, refined, sophisticated

unintelligent, imperceptive, unanalytical, unreflective,
uninquisitive, unimaginative, uncreative, uncultured,

unrefined, unsophisticated

C
organized, responsible, reliable, conscientious, practical,

thorough, hardworking, thrifty, cautious, serious
disorganized, irresponsible, undependable, negligent,
impractical, careless, lazy, extravagant, rash, frivolous

E
extroverted, energetic, talkative, enthusiastic, bold,

active, spontaneous, assertive, adventurous, sociable
introverted, unenergetic, silent, unenthusiastic, timid,

inactive, inhibited, unassertive, unadventurous,
unsociable

A
warm, kind, cooperative, unselfish, polite, agreeable,

trustful, generous, flexible, fair
cold, unkind, uncooperative, selfish, rude, disagreeable,

distrustful, stingy, inflexible, unfair

N
angry, tense, nervous, envious, unstable, discontented,

insecure, emotional, guilt-ridden, moody
calm, relaxed, at ease, not envious, stable, contended,

secure, unemotional, guilt-free, steady

Table 3: Goldberg markers for personality traits

category of person descriptors, demonstrating that
a long list of arbitrary person categories may trig-
ger stereotypes in people and that these stereo-
types are recoverable from text embeddings.

We use off-the-shelf word representations to
measure the (cosine) similarity between a list of
personality descriptors and a target nationality or
profession. We experimented with GloVe rep-
resentations (Pennington et al., 2014) trained on
Common crawl (6B tokens, 400K vocab, 300d)
and symmetric pattern (SP) based representations
(Schwartz et al., 2015). We used TIPI to collect
human judgments but these descriptors of person-
ality are likely too short for the noisy automatic
creation of personality stereotypes. For this rea-
son, we use a larger inventory of personality trait
descriptors, Goldbergs Big Five markers (Gold-
berg, 1992). It has about ten descriptors associated
with each of the positive and negative dimensions
of a personality trait, all shown in Tables 3.

Different words and phrases are present in the
two vector representations in our study. While
multi-word expressions such as ‘drug dealer’ and
‘movie star’ are present in the SP embeddings,
they are missing from the GloVe embeddings.
Some other words such as ‘guilt-ridden’ and
‘guilt-free’ are present in GloVe embeddings but
missing from the SP embeddings. Results for each
representation are reported using all markers and
person descriptors available in the representation.

Let t denote a target description of a person (eg.
doctor), pd be the set of positive Goldberg person-
ality markers (eg. energetic, extrovert) for a trait
and nd be the set of negative Goldberg personality
markers (eg. reserved, introvert)) for a trait. We
first develop a baseline where the predicted bias
score is the difference between the mean of the co-
sine similarity of target description t with each of
the positive markers for the trait, and the mean co-

sine similarity of t with each of the negative mark-
ers for the trait. We build separate models for each
of the five personality traits. Each of the models
has descriptions of both nationalities and profes-
sions and we do not differentiate between the two.

score =

∑
p∈pd sim(t, p)

|pd| −
∑

n∈nd sim(t, n)

|nd|

Next, we use linear regression to predict the per-
sonality scores using as features the cosine simi-
larity of target description of the person with each
of the Goldberg personality markers (eg. ener-
getic, introvert) for the trait.

score =
∑

p∈pd
wpsim(t, p) +

∑

n∈nd
wnsim(t, n)

where wn,p are weights learned by regression
for each of the Golderberg personality markers.

We do leave-one-out cross validation because
we have human judgements for just 233 descrip-
tions of people. Finally, we calculate the Spear-
man correlation of the scores on the n test points,
one from each model in cross validation with the
average human scores.

Further, we test the model on new descrip-
tions from WordNet6. We randomly selected 140
descriptions and crowdsourced judgments about
them in the same manner as the training data. The
resulting correlations can shown in Table 4.

On the leave-one-out results on the training data
consisting of nationalities and professions, the re-
gression model is clearly superior to the unsuper-
vised baseline. On the test data, the best corre-
lation for Conscientiousness and Agreeableness is
achieved by the baseline with SP representations.

6Specifically 2,638 descriptions, not in the training data,
that are hyponyms of ‘person’ upto depth 4.
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Train Test
Baseline Linear Regr Baseline Linear Regr

Glove SP Glove SP Glove SP Glove SP
O 0.230 0.160 0.519 0.615 0.359 0.380 0.524 0.365
C 0.439 0.618 0.683 0.686 0.459 0.695 0.503 0.611
E 0.364 0.274 0.481 0.298 0.180 0.174 0.272 0.246
A 0.131* 0.295 0.407 0.396 0.414 0.538 0.421 0.451
N 0.092* 0.201 0.299 0.438 0.244 0.396 0.449 0.343

* Not significant

Table 4: Spearman correlation between human bias and predicted personality on the leave-
one-out predictions for the training set, and on generic noun descriptions for the test set.

Description Trait Human
bias

Glove SP

Cook O 1.59 1.97 0.59
Assistant C 1.30 2.12 1.55
Herbalist E -0.91 -0.46 -0.8
Fugitive A -1.14 -0.36 -2.24

Ex-husband N 1.25 1.11 -

Table 5: Predicted scores on new descriptions.

We also computed the class of bias for each of
the predictions—positive bias, negative bias and
no bias.7 The accuracy was 55-60% for each of the
cases except neuroticism (42%). Both representa-
tions assigned the same bias class for 65%, 80%,
73%, 79% and 93% descriptions for OCEAN traits
respectively. There is no clear word representation
that works consistently better.

All correlations are statistically significant and
hold up well between the training and test data,
even though the test data has much more varied de-
scriptions of people. Notably, Openness and Con-
scientiousness are predicted most accurately and
for a number of personality dimensions the results
on the heterogeneous test set are higher than for
the training set of nationality and professions.

Some examples which stood out, of test descrip-
tions and bias scores are shown in Table 5.8 People
have a significant bias which is being predicted by
the classifier based on embeddings as well. The
classifier (Glove) predicted high bias i.e score≥ 1
or ≤ −1 for 21%, 23%, 14.5%, 11% and 2.5%
of the 2,638 WordNet person descriptors for the
OCEAN traits respectively.

6 Discussion and conclusion

We introduced a corpus of human stereotypes of
personality. We showed that the off the shelf vec-

7We consider predicted scores between 1 and -1 to mean
that there is no bias.

8Predictions on all the 2,638 WordNet descriptions are
also available at https://github.com/oagarwal/
personality-bias

tor space representations can be leveraged to de-
rive personality stereotypes from corpora. We
used the model to make predictions on thousands
of person descriptors, with larger samples. This
list allows us to inspect a much larger scope of
possible bias than smaller targeted categories. For
example, in much more controversial direction of
work, our approach can be used to train a model
that predicts sentiment valence, possibly starting
with words from prior studies. Then we can,
as we did in the work here, predict which other
words may have similar bias, potentially recover-
ing many more nuanced groups.

Our findings indicate that debiasing methods
that need explicit set of words to be debiased are
unlikely to be effective in removing all stereotype-
like data. Moreover, as has been now revealed,
debiasing methods only mask the bias rather than
fully remove it from influence on downstream
tasks like clustering and gendered prediction (Go-
nen and Goldberg, 2019).

One of the earliest paper reporting correlation
between lexical co-occurrence and human implicit
bias association tests has a somewhat more op-
timist view (Lynott et al.). They provide exam-
ples in which people exhibit gender and racial im-
plicit bias but when asked to be thoughtful in per-
forming a task, they make decisions not aligned
with that bias. This view aligns with the model of
two systems of thinking—fast stereotypes that are
highly inaccurate in many cases and slow, deliber-
ate thinking that overrides these stereotypes (Kah-
neman, 2011). It remains an open problem what
the slow processing mechanisms should be for au-
tomated systems but clearly developing such sys-
tems and the necessary benchmarks to test these
would mark an important milestone in the devel-
opment of language technology.
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Abstract

Abstract Meaning Representation (AMR) re-
presents sentences as directed, acyclic and
rooted graphs, aiming at capturing their mean-
ing in a machine readable format. AMR pars-
ing converts natural language sentences into
such graphs. However, evaluating a parser on
new data by means of comparison to manually
created AMR graphs is very costly. Also, we
would like to be able to detect parses of ques-
tionable quality, or preferring results of alter-
native systems by selecting the ones for which
we can assess good quality. We propose AMR
accuracy prediction as the task of predicting
several metrics of correctness for an automati-
cally generated AMR parse – in absence of the
corresponding gold parse. We develop a neural
end-to-end multi-output regression model and
perform three case studies: firstly, we evalu-
ate the model’s capacity of predicting AMR
parse accuracies and test whether it can reli-
ably assign high scores to gold parses. Sec-
ondly, we perform parse selection based on
predicted parse accuracies of candidate parses
from alternative systems, with the aim of im-
proving overall results. Finally, we predict
system ranks for submissions from two AMR
shared tasks on the basis of their predicted
parse accuracy averages. All experiments are
carried out across two different domains and
show that our method is effective.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) represents the semantic struc-
ture of a sentence, including concepts, seman-
tic operators and relations, sense-disambiguated
predicates and their arguments. As a machine
readable representation of the meaning of a sen-
tence, AMR is potentially useful for many NLP
tasks. Among other applications it has been used
in machine translation (Jones et al., 2012), text

(a / asbestos
:polarity -
:time (n / now)
:location (t / thing

:ARG1-of (p / produce-01
:ARG0 (w / we))))

Figure 1: Humanly produced AMR for: There is no as-
bestos in our products now. Numbered predicates refer
to PropBank senses (Palmer et al., 2005).

summarization (Liu et al., 2015; Dohare and Kar-
nick, 2017) and question answering (Mitra and
Baral, 2016). Since the introduction of AMR,
many approaches to AMR parsing have been pro-
posed: graph-based pipeline systems which rely
on an alignment step (Flanigan et al., 2014, 2016)
or transition-based parsers relying on dependency
annotation (Wang et al., 2015b,a, 2016a). In the
following we will denote the former by JAMR
and the latter by CAMR. More recently, end-
to-end neural systems have been proposed which
produce linearized AMR graphs within character-
based (van Noord and Bos, 2017b) or word-based
(Konstas et al., 2017) encoding models. Both ap-
proaches greatly profit from large amounts of sil-
ver training data. The silver data is obtained with
self-training (Konstas et al., 2017) or the aid of
additional parsers, where only parses with consid-
erable agreement are chosen to extend the train-
ing data (van Noord and Bos, 2017b). Lyu and
Titov (2018) formulate a neural model that jointly
predicts alignments, concepts and relations. Their
system – henceforth called GPLA (Graph Predic-
tion with Latent Alignments) – defines the current
state-of-the-art in AMR parsing.

A system that can perform accuracy prediction
for AMR parsing can be used in a variety of ways:
(i) estimating the quality of downstream tasks that
deploy AMR parses. E.g., in a document sum-
marization scenario, we might expect lower qual-
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ity of a summary if the estimated quality of AMR
parses used as a basis for the summary is low; (ii)
AMR parsing accuracy estimation can be used to
produce high-quality automatically parsed data:
by filtering the outputs of single parsing systems
in self-training, by selecting high-quality outputs
from different parsing systems in a tri-parsing set-
ting, or else by predicting overall rankings over
alternative parsing systems applied to in- or out-
of-domain data; (iii) finally, AMR parse accuracy
prediction could be used in the context of a parser-
supported treebank construction process. E.g., in
an active learning scenario, we can select use-
ful targets for manual annotation based on their
expected efficiency for parser improvement – the
fine-grained evaluation measures predicted by our
system can be used for targeted improvements. In
the simplest case, we can provide the human anno-
tator with automatic parses where only few flaws
have to be mended. Hence, AMR accuracy pre-
diction systems have the potential to tremendously
reduce manual annotation cost and time.

Contributions We define AMR accuracy pre-
diction as the task of predicting a rich suite of met-
rics to assess various subtasks covered by AMR
parsing (e.g. negation detection or semantic role
labeling). To approach this task, we use the
AMR evaluation suite suggested by Damonte et al.
(2017) and develop a hierarchical multi-output re-
gression model for automatically performing eval-
uation of 12 different tasks involved in AMR pars-
ing (Sections §3 and §4; our code is publicly acces-
sible1). We perform experiments in three different
scenarios on unseen in-domain and out-of-domain
data and show that our model (i) is able to predict
scores with significant correlation to gold scores
and (ii) can be used to rank parses on a sentence-
level or to rank parsers on a corpus-level (§5).

2 Related Work

Automatic accuracy prediction for syntactic pars-
ing comes closest to what we are doing. Ravi
et al. (2008) propose a feature-based SVM regres-
sion model with RBF kernel that predicts syn-
tactic parser performance on different domains.
Like us, they aim at a cheap and effective means
for estimating a parser’s performance. However,
in contrast to their work, our method is domain

1https://gitlab.cl.uni-heidelberg.de/
opitz/quamr

and parser agnostic: we do not take into ac-
count characteristics of the domains of interest and
do not provide any performance statistics of the
competing parsing systems as features to our re-
gressor. Biici (2016) addresses the task without
any domain-dependent features, which results in
a lower correlation to gold scores – even if addi-
tional features from a background language model
are incorporated. In contrast to the prior systems
that predict a single score, we predict an ensem-
ble of metrics suitable for assessing AMR parse
quality with respect to different linguistic aspects.
Also, our system does not rely on externally de-
rived features or complex pre-processing. More-
over, an AMR graph differs in important ways
from a syntactic tree. Nodes in AMR do not ex-
plicitly correspond to words (as in dependency
trees) or phrases (as in constituency trees). AMR
structure elements can exist without any align-
ment to words in the sentence. To our knowledge,
we are the first to propose an accuracy prediction
model for AMR parsing, and offer the first gen-
eral end-to-end parse accuracy prediction model
that predicts an ensemble of scores for different
linguistic aspects.

Automatic accuracy prediction has also been re-
searched for PoS-tagging (Van Asch and Daele-
mans, 2010) and in machine translation. For ex-
ample, Soricut and Narsale (2012) predict BLEU
scores for machine-produced translations. Under
the umbrella of quality estimation researchers try
to predict, i.a., the post-editing time or missing
words in an automatic translation (Cai and Knight,
2013; Joshi et al., 2016; Chatterjee et al., 2018;
Kim et al., 2017; Specia et al., 2013). The fact
that manually creating an AMR graph is signifi-
cantly more costly than a translation provides an-
other compelling argument for investigating auto-
matic AMR accuracy prediction techniques .2

In recent work, Dickinson and Smith (2011,
2017); Jain et al. (2015); Rehbein and Ruppen-
hofer (2018) detect annotation errors in automat-
ically produced dependency parses. The latter ap-
proach uses active learning and ensemble parsing
in combination with variational inference. They
predict edge labelling and attachment errors and
use a back-and-forth encoding mechanism from
non-structured to structured tree data in order to
provide the variational inference model with the

2Creating an AMR graph requires trained linguists and
takes on average 8 to 13 minutes, cf. Banarescu et al. (2013)
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(a / asbestos (a / asbestos
:time (n / now) :polarity -
:polarity - :location (p / product)
:location (p / product :time (n / now))
:poss (w / we)))

__________________________
(a / asbesto metr.(F1)| GP JA CA |

:polarity - ---------|--------------|
:ARG1 (w / we Smatch | 70 | 30 | 67 |
:ARG1-of (p / product SRL | 0 | 14 | 0 |

:mod (n / now)))) Concepts | 67 | 44 | 50 |
IgnVars | 55 | 0 | 60 |

Figure 2: Three AMR parses for: There is no asbestos
in our products now, generated by GPLA (top), JAMR
(bottom), CAMR (right). Light and severe errors are
found in GPLA and JAMR parses; CAMR fails to pro-
vide we, the manufacturer of the product. Bottom right:
F1 for Smatch and three example subtasks from evalu-
ation against the gold parse (given in Figure 1).

needed unstructured data. Their work differs from
ours in three important aspects: firstly, they predict
errors in specific edges or nodes, while we predict
an accuracy score over the complete graph. More-
over, our model does not need several candidate
parses as input – when several multiple parses are
available, our model can be exploited for ranking
(cf. Sections §5.2 & §5.3). Finally, our method is
independent of live human feedback.

3 Accuracy Metrics for AMR Parsing

Automatic AMR parses are often deficient.
Consider the examples in Figure 2. All parsers
correctly detect the negation and its scope. The
GPLA parse (top) provides a graph structure close
to the gold annotation (Figure 1). However, it does
not correctly analyze the possessive our (product),
which in the gold parse is represented as an object
produced by the speaker (we). Instead it recog-
nizes a location in the speaker’s possession. JAMR
(middle) fails to detect the concept in focus (as-
bestos), possibly due to a false-positive stemming
mistake. Moreover, it fails to represent that as-
bestos is (not) in the product: it misses the :loca-
tion-edge from asbestos to product.

AMR accuracy metrics Usually, a predicted
AMR graphG is evaluated against a gold graphG′

using triple matching based on a maximally scor-
ing variable mapping. For finding the optimal vari-
able mapping, Integer Linear Programming (ILP)
can be used in the Smatch metric (Cai and Knight,
2013), which produces precision, recall and F1
score between G and G′. While it is important
to obtain a global measure of parse accuracy, we
may also be interested in a quality assessment

that focuses on specific subtasks or meaning as-
pects, such as entity linking, negation detection
or word sense disambiguation (WSD). For exam-
ple, if a parser commits a WSD error this might
be less harmful than e.g., failing to capture nega-
tion, or missing or wrongly predicting a semantic
role. However, the Smatch calculation would treat
many of such errors with equal weight – a property
which in some cases may be undesirable.

To alleviate this issue, Damonte et al. (2017)
proposed an extended AMR evaluation suite
which allows parser performance inspection with
regard to 11 additional subtasks captured by AMR.
In total, 36 metrics can be computed (precision,
recall and F1 for 12 tasks). F1 scores for three
example metrics are displayed in Figure 2 (bot-
tom, right): Smatch, SRL (Smatch computed on
arg-i roles), IgnoreVars (triple overlap after replac-
ing variables with concepts) and Concepts (F1 for
concept identification).3 GPLA produces the over-
all best parse but it is is outperformed by the other
systems in SRL (JAMR) and IgnoreVars (CAMR).

Task definition We adopt the proposed metrics
by Damonte et al. (2017) and use them as target
metrics for our task of AMR parse accuracy pre-
diction. Given an automatic AMR graph G and a
corresponding sentence S, we estimate precision,
recall and F1 of the main task (Smatch) and of the
subtasks, as they would emerge from comparing
G with its gold counterpart G′.

One of our hypotheses is that predicting a wide
range of accuracy metric scores for individual
aspects of AMR structures will aid our model
to better predict the global Smatch scores. We
will therefore investigate a hierarchical model that
builds on predicted subtask measures in order to
predict the global smatch score. Being able to pre-
dict fine-grained quality aspects of AMR parses
will also be useful to assess and exploit differences
of alternative system outputs and provides a basis
for guiding system development or targeted anno-
tation in an active learning setting.

4 Neural Accuracy Prediction Model

We propose a neural hierarchical multi-output re-
gression model for accuracy prediction of AMR

3The other subtasks are: Unlabelled (Smatch after edge
label removal), No WSD (Smatch after PropBank sense re-
moval), NS frames (PropBank frame identification with-
out sense), Wikification (entity linking), NER (named entity
recognition), Reentrancy (Smatch over re-entrant edges).
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Figure 3: Our model: green: Evaluation metrics com-
puted in a non-hierarchical fashion. orange: Main eval-
uation metric is computed on top of secondary metrics.

parses. Its architecture is outlined in Figure 3.

Inputs Our model takes the following inputs: (i)
a linearized AMR and a linearized dependency
graph (implementation details in §5). The moti-
vation for feeding the dependency parse instead of
the original sentence is due to the moderate sim-
ilarity of dependency and AMR structures.4 We
examine drawbacks and benefits of providing au-
tomatic dependency parses more closely in our
ablation experiments (§5.4). In addition, (ii) we
produce alignments between sentence tokens and
tokens in the sequential AMR structure, as well
as between sentence tokens and the linearized de-
pendency structure, and feed these sequences of
pointers to our accuracy prediction model. The in-
tuition of using pointers is to provide the model
with richer information via shallow alignment be-
tween AMR, dependencies and the sequence of
sentence tokens (see Section §5 for implementa-
tion details). Finally, (iii) we feed a sequence of
PropBank sense indicators for AMR predicates.

Joint encoding of AMR and dependency parses
for metric prediction Embedding layers are
shared between AMR/dependency pointers and
AMR/dependency tokens. We embed the three
sequences representing the AMR graph (tokens,
pointers and senses) in three matrices and sum
them up element-wise (indicated with + in Figure
3). The same procedure is applied to the linearized
dependency graph (tokens and pointers). The re-
sulting matrices are processed by two two-layered
Bi-LSTMs to yield vectorized representations for
(i) the AMR graph and (ii) the dependency tree
(i.e., the last states of forward and backward reads
are concatenated). Thereafter, we apply element-

4c.f. Groschwitz et al. (2018); Chen and Palmer (2017).

wise multiplication, subtraction and addition to
both vector representations and concatenate the re-
sulting vectors (⊗ in Figure 3). The joint AMR-
dependency representation is further processed by
a feed forward layer (FF) with sigmoid activation
functions in order to predict, in total, 36 different
metrics (green, Figure 3).

Hierarchical prediction of multiple metrics
The task naturally lends itself to be formulated in
a hierarchical multi-task setup (orange, Figure 3).
In this strand, we first compute the 33 fine-grained
subtask metrics and on their basis we caclulate the
Smatch scores (precision, recall, F1) as our pri-
mary metrics. In order to accomplish this, we col-
lect the outputs from the subtask metric prediction
layer in a vector and concatenate it with the pre-
vious layer’s representation (⊕ in Figure 3). The
resulting vector is fed through a last FF layer to
predict the metrics for the task of main interest
(Smatch). Our intuition is that the estimated qual-
ity of the parse with respect to the subtask metrics
informs the model and allows it to better predict
the overall quality.

Loss In the non-hierarchical case, we denote our
full model with fθ : X → [0, 1]d with parame-
ters θ, where d describes the dimensionality of the
score vector (one dimension represents one met-
ric) and D = {(Xi, yi)}Ni=1, yi ∈ [0, 1]d is our
training data. In the non-hierarchical model, we
minimize the mean squared error:

`(fθ) =
1

dN

N∑

i=1

d∑

j=1

(yi,j − fθ(Xi)j)
2 (1)

For our hierarchical model, we have two func-
tions, fθ : X → [0, 1](d−k) which returns the
output vector for the (d − k) subtask metrics and
f ′θ′ : X → [0, 1]k which returns the output vector
for our k main metrics (in our experiments, k = 3
for Smatch recall, precision and F1). Then,

`′(fθ, f
′
θ′) =

λ1

(d− k)N

N∑

i=1

d−k∑

j=1

(yi,j − fθ(Xi)j)
2

+
λ2

kN

N∑

i=1

d∑

j=d−k+1

(yi,j − f ′θ′(Xi)j−(d−k))
2

defines the total loss over the two entangled metric
prediction models. Note that θ ⊂ θ′, which means
that by optimizing the parameters of f ′ with gra-
dient descent, we also concurrently optimize all
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training development

parser Smatch (F1) % def. Smatch (F1) % def.

JAMR 0.79 86.7 0.69 91.8
CAMR 0.75 93.6 0.66 95.7
GPLA 0.86 83.4 0.76 90.0

Table 1: Parser output evaluation on training and devel-
opment partitions of LDC2015E86. Smatch F1: avg.
over Smatch F1 per sentence, % def.: percentage of
deficient parses (i.e., parses with Smatch F1 < 1).

parameters of f . By this construction, the hier-
archical model instantiates a two-task model with
shared parameters. For our experiments, we man-
ually set the loss weights λ1 = 0.2, λ2 = 1.

5 Experiments

Data Since our goal is to predict the accuracy
of an automatic parse, we need a data set contain-
ing automatically produced AMR parses and their
scores, as they would emerge from comparison to
gold parses. Our largest data set, LDC2015E86,
comprises 19,572 sentences and comes in a pre-
defined training, development and test split. We
parse this data set with three parsers, JAMR
(Flanigan et al., 2014, 2016), CAMR (Wang et al.,
2015b,a, 2016a) and GPLA (Lyu and Titov, 2018).
Since the three parsers have been trained on the
training data partition, we naturally obtain more
accurate parses for the training partition than for
development and test data. Table 1, however, indi-
cates that we still obtain a considerable amount of
deficient parses for training. Based on the parser
outputs we compute evaluations comparing the au-
tomatic parses with the gold parses by using amr-
evaluation-tool-enhanced5, a bug-fixed version of
the script that computes the metrics of Damonte
et al. (2017). This allows us to create full-fledged
training, development and test instances for our
accuracy prediction task. Each instance consists
of a sentence and an AMR parse as input and a
vector of metric scores as target.

Our second data set, LDC2015R36, comprises
submissions to the SemEval-2016 Task 8 (May,
2016). We have 1053 parses from each of the 11
team submissions (and 2 baseline systems).6 Our

5https://github.com/ChunchuanLv/
amr-evaluation-tool-enhanced

6Riga (Barzdins and Gosko, 2016), CMU (equal to
JAMR) (Flanigan et al., 2016), Brandeis (Wang et al., 2016b),
UofR (Peng and Gildea, 2016), ICL-HD (Brandt et al.,
2016), M2L (Puzikov et al., 2016), UMD (Rao et al., 2016),

data set LDC2015E86 LDC2015R36 BioAMRTest

domain news news medical
nb. sentences 19,572 1,053 500
avg. sent. len. 21 22.35 36.52
nb. auto. parses 58,716 13,689 3,000
used as train/dev/test test test

Table 2: Statistics of data sets used in this work.

third dataset, BioAMRTest is used as the test set in
the SemEval-2017 Task 9 (May and Priyadarshi,
2017) and consists of 500 parses from each of the
6 teams.7 The shared task organizers kindly made
this data available for our experiments.

Preprocessing For dependency annotation, we
parse all sentences with spacyV2.08. For sequen-
tializing the AMR and dependency graph repre-
sentations we take intuitions from van Noord and
Bos (2017b) & Konstas et al. (2017) and output
tokens by performing a depth-first-search over the
graph. We replace the AMR negation token ‘-’
and strings representing numbers with special to-
kens. The vocabularies (tokens, senses and point-
ers) are computed from our training partition of
LDC2015E86 and comprise all tokens with a fre-
quency ≥ 5 (tokens with lesser frequency are re-
placed by an OOV-token). PropBank senses of
predicates are removed and collected in an extra
list that is parallel to the tokens in the linearized
AMR sequence. For each linearized AMR and de-
pendency tree we generate a sequence with index
pointers to tokens in the original sentence (-1 for
tokens which do not explicitly refer to any token
in the sentence, e.g. brackets, ‘subj’ or ‘arg0’ re-
lations). Extraction of token-pointers from the de-
pendency graph is trivial. For every concept in the
linearized AMR we execute a search for the corre-
sponding token in the sentence, looking for exact
matches with surface tokens and lemmas.

Training For the optimization of the accuracy
prediction model we use only the development and
training sections of LDC2015E86 and the corre-
sponding automatic parses together with the gold
scores. Details on the training cycle can be found
in the Supplemental Material §A (the loss is de-

DynamicPower (Butler, 2016), TMF (Bjerva et al., 2016),
UCL+Sheffield (Goodman et al., 2016) and CU-NLP (Foland
and Martin, 2016).

7TMF-1 and TMF-2 (van Noord and Bos, 2017a), DAN-
GNT (Nguyen and Nguyen, 2017), Oxford (Buys and Blun-
som, 2017), RIGOTRIO (Gruzitis et al., 2017) and JAMR
(Flanigan et al., 2016)

8https://spacy.io/
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ρ LDC2015E86 ρ BioAMRTest

P R F1 P R F1

Smatch 0.74 0.79 0.78 0.54 0.41 0.47

Concepts 0.56 0.65 0.64 0.67 0.55 0.62
Frames 0.7 0.71 0.72 0.67 0.56 0.63
IgnoreVars 0.76 0.8 0.79 0.33 0.27 0.29
Named Ent. 0.81 0.81 0.81 0.5 0.48 0.5
Negations 0.87 0.87 0.87 0.33 0.32 0.32
No WSD 0.75 0.78 0.78 0.54 0.41 0.46
NS frames 0.76 0.75 0.77 0.72 0.59 0.67
Reentrancies 0.77 0.79 0.8 0.52 0.45 0.48
SRL 0.72 0.74 0.75 0.47 0.43 0.45
Unlabeled 0.71 0.75 0.75 0.6 0.45 0.51
Wikification 0.87 0.85 0.86 0.24 0.23 0.23

Table 3: Pearson correlation coefficient (ρ) over vari-
ous metrics and across domains. Explanations of the
metrics and AMR subtasks are in Section §3 and fn. 3

(a) LDC2015E86 (train) (b) LDC2015E86 (test)

Figure 4:Predicted (y-axis) & gold (x-axis) Smatch F1.

scribed in §4). We use the same single (hierarchi-
cal) model for all three evaluation studies, proving
its applicability across different scenarios (a non-
hierarchical model is only instantiated for the ab-
lation experiments in Section §5.4).

5.1 Correlation with Gold Accuracy

The primary goal in our first experiment is to test
whether the system is able to differentiate good
from bad parses. This capacity is expressed by a
high correlation of predicted accuracies with true
accuracies on unseen data and by the ability to as-
sign high scores to gold parses. We evaluate on the
test partition of LDC2015E86 and BioAMRTest.

Correlation results The results are displayed in
Table 3. Over all metrics, in-domain and out-of-
domain, we achieve significant correlations with
the gold scores (p < 0.005 for every metric).
While on LDC2015E86 the model has learned to
predict the KB linking F1 (ρ = 0.86) and nega-
tion detection F1 with high correlation to the gold
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Figure 5: Probability density function estimations
for predicted F1 Smatch scores using Scott’s method
(Scott, 2012) with respect to candidate parses from dif-
ferent systems.

scores (ρ = 0.87), Concept assessment poses the
greatest challenge (ρ = 0.64). For the out-of-
domain data BioAMRTest, these two facts seem
almost reversed: here, the assessment of KB link-
ing poses difficulties (ρ = 0.23) while the Concept
F1 predictions are better (ρ = 0.62). The main
metrics of interest (Smatch precision, recall and
F1) can be predicted with high correlation on in-
domain data (ρ ≥ 0.74, cf. also Figure 4) and solid
correlation for out-of-domain data (ρ ≥ 0.41).

Find the Gold AMR! Now, we want to test our
system’s capacity to reliably predict high Smatch
F1 scores for unseen gold AMR parses. Ide-
ally, the scores should be close or equal to 1.
For in-domain data, it appears to work well: a
large amount of Smatch predictions for gold AMR
graphs are very close to one (Figure 5a).

Evidently, our system also gets the ranking of
the parsing systems right: the distribution of the
state-of-the-art (GPLA) is shifted right towards
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percentile

dataset 5 25 75 90 95 97 99

LDC15E86 0.83 0.99 1.0 1.0 1.0 1.0 1.0
BioAMRTest 0.74 0.77 0.83 0.88 0.93 0.98 1.0

Table 4: Various percentiles of Smatch F1 predictions
for gold graphs.

higher predicted F1 scores, whereas the distribu-
tion of CAMR is shifted left towards lower scores.
Also, more than 75% of gold parses have a pre-
dicted Smatch score of more than 0.99 (Table 4).

On the other hand, finding gold parses in the
BioAMRtest data is much harder: about 75% of
Smatch scores get assigned a score of 0.83 or
lower and only 1% of gold parses are predicted as
perfect (Table 4). The estimated probability den-
sity function for gold parses (red solid line in Fig-
ure 5b) struggles to discriminate itself from the
functions corresponding to the flawed parses of
the automatic systems. Nevertheless, the predic-
tion score density for gold parses is situated more
on the right hand side than most others. In other
words, we find that in the out-of-domain data gold
parses tend to be assigned above-average scores.

To sum up, our observations for the out-of-
domain data stand in some contrast to what we
observe for the in-domain data. However, this out-
come can be plausibly explained: assuming that
the out-of-domain gold parses have some unfa-
miliar properties, a system that has never seen
such parses cannot judge well whether they are
gold or not. In fact, it can be interpreted posi-
tively that the system hesitates to assign maximum
scores to gold parses from a domain in which the
model is completely inexperienced. Additionally,
bio-medial texts involve difficult concepts, naming
conventions and complicated noun phrases which
are hard to understand even for non-expert humans
(e.g., “TAK733 led to a decrease in pERK and
G1 arrest in most of these melanoma cell lines re-
gardless of their origin, driver oncogenic muta-
tions and in vitro sensitivity to TAK733”.). Taking
all this into account, the results for out-of-domain
data may be not as bad as they perhaps appear at
first glance.

5.2 Application Study: AMR Parse Ranking

Our automatic accuracy prediction method natu-
rally lends itself for ranking parser outputs. For
any sentence, provided automatic parses by com-
peting systems can be ranked according to the

Smatch LDC2015E86 Smatch BioAMRTest

P R F1 P R F1

lower-bound 64.9 57.9 60.5 41.7 31.3 34.3
random 72.4 67.0 69.1 60.3 50.3 54.0
ours 76.6 73.5 74.8 64.9 56.0 59.2
upper-bound 79.3 75.2 76.9 73.2 65.2 68.5

JAMR 71.4 66.5 68.4 48.4 39.7 42.9
CAMR 69.5 60.4 64.0 - - -
GPLA 76.3 73.4 74.6 - - -
TMF-1 - - - 56.0 46.5 49.3
TMF-2 - - - 70.0 54.5 60.5
DANGNT - - - 70.2 58.6 63.1
Oxford - - - 65.8 59.0 61.6
RIGOTRIO - - - 65.0 50.8 56.4

Table 5: Results (sentence averages) of different AMR
parsing (bottom part) and ranking (top part) systems on
two test sets. Upper part: results when selecting from
alternative parses: lower-bound (upper-bound): oracle
selecting the worst (best) AMR parse; ours: results
when selecting the best parse according to our models’
accuracy prediction (hierarchical model).

scores predicted by our system. This scenario
arises, e.g., when we run several AMR parsers
over a large corpus with the aim of selecting the
best parse for each sentence in order to collect
silver training data.9 In the worst case, we do
not have any prior knowledge about a parser’s
performance (we may not even know the source
of a parse). We use the test partition from
LDC2015E86 and BioAMRTest to rank, for each
sentence, the automatic candidate parses provided
by the different parsers. In LDC2015E86 we as-
sume not to be agnostic about the parsers as their
performances on the development data of this data
set are known (in terms of their sentence-average
F1 Smatch score). Consider that we are given
a sentence and three automatic parses. We se-
lect the maximum-score parse, where the score is
defined by predicted Smatch F1 plus the average
Smatch F1 of the parse-producing parser on the
development data. As baselines in this scenario
we (i) randomly choose a parse from the three op-
tions or (ii) always choose the parse of GPLA. On
BioAMRTest, however, we have no prior informa-
tion about the submitted systems. We select from
6 automatic parses for each sentence. Since now
we are completely parser agnostic, the baseline is
to randomly select a parse from the candidate set.

Results The results are displayed in Table 5. For
our in-domain test data, LDC2015E86, selecting

9In a self-training scenario, we also could set a threshold
of minimum predicted accuracy to select confident parses.
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Smatch LDC2015E86 Smatch BioAMRTest

ρ̄ %pos ρ̄ %pos

lower-bound -1 0.0 -1 0.0
random 0.00 50.0 0.00 50.0
ours 0.54 77.0 0.22 70.4
upper-bound 1.00 100.0 1.00 100.0

Table 6: Results of different parse-ranking systems
with respect to sentence-level parse rankings. ρ̄: av-
erage Pearson-r on a sentence level. %pos: ratio of
predicted rankings with positive ρ to gold ranking.

the best parse according to our model’s predicted
accuracy score improves over all individual parser
results: the obtained average Smatch F1 per sen-
tence increases (i) slightly by 0.2 pp. compared
to always choosing outputs from GPLA and (ii)
observably by 5.7 pp. compared to randomly se-
lecting a parse from the competing system out-
puts. The difference compared to always choos-
ing GPLA seems negligible which perhaps can be
explained by the fact that GPLA has been shown
to be on par or better than doubly-blind human
annotators.10 The oracle that always selects the
best parse (upper-bound in Table 5) shows little
room for improvement: it achieves 2.1 pp. Smatch
F1 increase compared to our model. This margin
is small and further success might also be ham-
pered by peculiarities in the manual annotations.
On BioAMRTest, no prior information about the
systems is available. Using our model’s predicted
scores to select from the alternative system out-
puts, we can boost Smatch F1 by 5.2 pp. com-
pared to randomly selecting a parse. Compared to
always selecting the parses of the best submitted
system (in-hindsight), we lag behind by 3.9 pp.

Since our data comprises outputs from sev-
eral parsers with varying performance, we can
study the performance of our approach in com-
bination with different parsers (Figure 6). When
only choosing among CAMR and JAMR outputs,
on LDC2015E86, our system boosts the F1 by
2.7 pp. compared to randomly selecting a parse,
and by 0.6 pp. compared to always choosing the
parse from the better system (determined on dev,
here: JAMR). Choosing from CAMR and GPLA
or JAMR and GPLA makes little difference: in
most cases our system selects the GPLA parse and
the difference to only choosing GPLA parses is

10GPLA (Lyu and Titov, 2018) achieves a high 74.4% cor-
pus-level Smatch F1 (primarily news texts), while a prior an-
notation study (Banarescu et al., 2013) reported doubly blind
annotation corpus-level F1 of 0.71 (for web texts).

CAMR/JAMR CAMR/GPLA JAMR/GPLA

Figure 6: Using our model to predict the best parse out
of two candidate parses, each from a different system.

marginal. Moreover, across both test sets, the ma-
jority of rankings assigned by our method have
positive correlations with the true rankings (Table
6): 77% of all assigned rankings have a positive
correlation with the true ranking (70% for bio-
medical). In sum, we can draw two conclusions
from this experiment: given a sentence, ranking
AMR parser outputs using our accuracy predic-
tion model, on in-domain and out-of-domain un-
seen data (i) clearly improves performance when
non state-of-the-art parsers are applied or if we are
not informed about the parsers’ performances and
(ii) does not worsen results in other cases.

5.3 Application Study: Predict System Ranks
In our final case study, we use our accuracy pre-
diction model to predict a ranking over systems.
We use our model to rank the unseen submitted
system parses of the SemEval-2017 Task 9 (eval-
uated on BioAMRTest) and SemEval-2016 Task 8
(evaluated on LDC2015R36) according to average
predicted F1 Smatch scores. Again, we assume a
parser-agnostic setting, meaning we have no prior
knowledge of the submitted systems (i.e. we just
consider their outputs). In this setting, we do not
rank individual parses given a sentence, but rank
the system outputs, according to estimated aver-
age Smatch F1 per sentence. We evaluate against
the final team rankings of the two shared tasks.

Results The results are displayed in Table 7. On
BioAMRTest we have a good, albeit non statis-
tically significant correlation with the true team
ranking. On the in-domain LDC2015R36 test set
we see a significant correlation of ρ = 0.645
(p1,2 < 0.05). In this shared task, many teams
were competitive and differences between the best
teams were marginal. For example, in the true
ranking, places 1 to 6 achieved between 0.60 and
0.62 Smatch F1. Notably, the first four teams ac-
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Rank LDC2015R36 Rank BioAMRTest
rank r rank r̂ rank r rank r̂

DANGNT - - 1 3
Oxford - - 2 1
TMF-2 - - 3 2
RIGOTRIO - - 4 5
TMF-1 - - 5 4
JAMR 7 7 6 6
RIGA 1 4 - -
Brandeis 2 3 - -
CU-NLP 3 1 - -
UCL+Sheffield 4 2 - -
ICL-HD 5 8 - -
M2L 6 10 - -
JAMR-base 8 12 - -
UofR 9 11 - -
TMF 10 5 - -
UMD 11 6 - -
DynamicPower 12 13 - -
det. baseline 13 9 - -

ρ 0.645 (p1 = 0.017, p2 = 0.011) 0.771 (p1 = 0.072, p2 = 0.051)

Table 7: True rank r (given corpus-Smatch) and pre-
dicted rank r̂ (based on sentence average Smatch com-
puted using our model). p1: probability of non-
correlation. p2: probability that a randomly produced
ranking achieves equal or greater ρ (estimated over 106

random rankings). For team names, see fn. 6 & 7.

cording to the true ranking and the first four teams
according to our predicted ranking fall into the
same group. This shows that our model success-
fully assigned high ranks to low error submissions.

5.4 Ablation Experiments

We finally perform ablation experiments to eval-
uate the impact of individual model components.
We experiment with five different setups. (i) in-
stead of stacking two Bi-LSTMs, we use only one
Bi-LSTM (one-lstm, Table 8). (ii) instead of the
dependency tree, we feed the words in the order
as they occur in the sentence (no-dep). (iii) no-
pointers: we remove the token-pointers from our
model. (iv), instead of using the hierarchical setup,
we predict all metrics on the same level (green in
Figure 3, no-HL in Table 8) and (v), no-HMTL: we
optimize the non-hierarchical model only with re-
spect to Smatch, disregarding the AMR subtasks.
Remarkably, the dependency tree greatly helps the
model on in-domain data over all measures (-37
total ∆ without dependencies) but hurts the model
on out-of-domain data (+27 total ∆). A possible
explanation is the degradation of the dependency
parse quality: bio-medical data not only poses a
challenge for our model, but also for the depen-
dency parser. With special regard to the main
AMR evaluation measure, Smatch F1, the learned
pointer embeddings provide useful input on the in-
domain test data (-4 ∆ without pointers).

LDC2015R36 BioAMRTest
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ρ ∆ ρ ∆

Smatch 78 -1 -1 -4 -3 -2 47 0 +5 +4 +2 -3

Concepts 64 -1 -4 -3 -4 - 62 0 +3 +2 0 -
Frames 72 0 -5 0 -1 - 63 0 +1 +1 -1 -
IgnoreVars 79 -1 -1 -1 -2 - 29 +5 +6 +5 +4 -
Named Ent. 81 +2 -3 +2 +3 - 50 -18 -9 -7 -9 -
Negations 87 -1 -1 +1 0 - 32 -16 +2 -1 -4 -
No WSD 78 -1 0 -1 -2 - 46 +2 +6 +5 +3 -
NS frames 77 0 -7 0 0 - 67 +1 +1 0 -1 -
Reentrancies 80 0 -9 +1 +2 - 48 0 +2 0 +1 -
SRL 75 -1 -4 0 +1 - 45 -4 +3 0 +2 -
Unlabeled 75 -1 0 -1 -1 - 51 0 +1 +4 +2 -
Wikification 86 0 -2 +1 +2 - 23 +5 +6 +6 +7 -
∑

i ∆i 0 -5 -37 -5 -5 -2 0 -25 +27 +19 +6 -3

Table 8: ρ correlation (F1) differences over different
setups (columns), test sets (out-of-domain, in-domain)
and subtasks (rows). ±x: plus and minus x pp.ρ.

6 Conclusion

AMR parser evaluation with human gold anno-
tation is very costly. Our main contributions in
this work are two-fold: Firstly, we introduced
the concept of automatic AMR accuracy predic-
tion. Given only an automatic parse and the sen-
tence, from whence it was derived, the goal is
to predict evaluation metrics cheaply and possi-
bly at runtime. Secondly, we framed the task as
a multiple-output regression task and developed a
hierarchical neural model to predict a rich suite
of AMR evaluation metrics. We presented three
case studies proving (i) the feasibility of auto-
matic AMR accuracy prediction in general (sig-
nificant correlation with gold scores on unseen in-
domain and out-of-domain data) and (ii) the ap-
plicability of our model in two use cases. In the
first study, we ranked different automatic candi-
date parses per sentence, outperforming the ran-
dom selection baseline by 5.7 pp. average Smatch
F1 (in-domain) and 5.2 pp. (out-of-domain). In
the second study, we ranked team submissions to
two AMR shared tasks and our method was able
to reproduce rankings similar to the true rankings.
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A Supplemental Material

Hyper parameters and weights initialization
We initialize all parameters of the model ran-
domly. Embedding vectors of dimension 128 are
drawn from U(0.05, 0.05) and the LSTM weights
(neurons: 128) and weights of the feed forward
output layers are sampled from a Glorot uniform
distribution (Glorot and Bengio, 2010). For fu-
ture work, initializing the embedding layer with
pre-trained vectors could further increase the per-
formance. In this work, however, we learn all pa-
rameters from the given data. We fit our model us-
ing Adam (Kingma and Ba, 2014) (learning rate:
0.001) on the training data over 20 epochs with
mini batches of size 16. We apply early stopping
according to the maximum Pearson’s ρ (with re-
gard to Smatch F1) on the development data. ρ =∑n

i=1(xi−x̄)(yi−ȳ)√∑n
i=1(xi−x̄)2

√∑n
i=1(yi−ȳ)2

quantifies the linear

relationship between predicted scores (x1, ..., xn)
and true scores (y1, ..., yn).
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Abstract

Semantic proto-role labeling (SPRL) is an
alternative to semantic role labeling (SRL)
that moves beyond a categorical definition of
roles, following Dowty’s feature-based view
of proto-roles. This theory determines agent-
hood vs. patienthood based on a participant’s
instantiation of more or less typical agent vs.
patient properties, such as, for example, voli-
tion in an event. To perform SPRL, we develop
an ensemble of hierarchical models with self-
attention and concurrently learned predicate-
argument-markers. Our method is competitive
with the state-of-the art, overall outperforming
previous work in two formulations of the task
(multi-label and multi-variate Likert scale pre-
diction). In contrast to previous work, our re-
sults do not depend on gold argument heads
derived from supplementary gold tree banks.

1 Introduction

Deciding on a linguistically sound, clearly de-
fined and broadly applicable inventory of seman-
tic roles is a long-standing issue in linguistic the-
ory and natural language processing. To alleviate
issues found with classical thematic role invento-
ries, Dowty (1991) argued for replacing categori-
cal roles with a feature-based, composite notion of
semantic roles, introducing the theory of seman-
tic proto-roles (SPR). At its core, it proposes two
prominent, composite role types: proto-agent and
proto-patient. Proto-roles represent multi-faceted,
possibly graded notions of agenthood or patient-
hood. For example, consider the following sen-
tence from Bram Stoker’s Dracula (1897):

(1) He opened it [the letter] and read it gravely.

‘Davidsonian’ analyses based on SR and SPR
of the event open are displayed in Figure 1. The
SPR analysis provides more detail about the event
and the roles of the involved entities. Whether an

SR: ∃e
[
open(e) ∧ agent(e, c∗) ∧ theme(e, l∗)

]

SPR: ∃e
[
open(e) ∧ volition(e, c∗) ∧ aware(e, c∗) ∧

sentient(e, c∗) ∧ manipulated(e, l∗) ∧ changes-
state(e, l∗) ∧ ...

]

Figure 1: Two different ‘Davidsionian’ event analyses
of open. c∗ and l∗ refer to the count and letter entities.

argument is considered an agent or patient follows
from the proto-typical properties the argument ex-
hibits: e.g., being manipulated is proto-typical for
patient, while volition is proto-typical for an agent.
Hence, in both events of (1) the count is deter-
mined as agent, and the letter as patient.

Only recently two SPR data sets have been
published. Reisinger et al. (2015) developed a
property-based proto-role annotation schema with
18 properties. One Amazon Mechanical Turk
crowd worker (selected in a pilot annotation) an-
swered questions such as how likely is it that the
argument mentioned with the verb changes loca-
tion? on a 5-point Likert or responded inapplica-
ble. This dataset (news domain) will henceforth be
denoted by SPR1. Based on the experiences from
the SPR1 annotation process, White et al. (2016)
published SPR2 which follows a similar annota-
tion schema. However, in contrast to SPR1, the
new data set contains doubly annotated data from
the web domain for 14 refined properties.

Our work makes the following contributions: In
Section §2, we provide an overview of previous
SPRL work and outline a common weakness: re-
liance on gold syntax trees or gold argument heads
derived from them. To alleviate this issue, we pro-
pose a span-based, hierarchical neural model (§3)
which learns marker embeddings to highlight the
predicate-argument structures of events. Our ex-
periments (§4) show that our model, when com-
bined in a simple voter ensemble, outperforms all
previous works. A single model performs only
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slightly worse, albeit having weaker dependencies
than previous methods. In our analysis, we (i) per-
form ablation experiments to analyze the contri-
butions of different model components. (ii) we
observe that the small SPR data size introduces
a severe sensitivity to different random initializa-
tions of our neural model. We find that combining
multiple models in a simple voter ensemble makes
SPRL predictions not only slightly better but also
significantly more robust. We share our code with
the community and make it publicly available.1

2 Related Work

SPRL Teichert et al. (2017) formulate the se-
mantic role labeling task as a multi-label prob-
lem and develop a conditional random field model
(CRF). Given an argument phrase and a corre-
sponding predicate, the model predicts which of
the 18 properties hold. Compared with a sim-
ple feature-based linear model by Reisinger et al.
(2015), the CRF exhibits superior performance by
more than 10 pp. macro F1. Incorporating features
derived from additional gold syntax improves the
CRF performance significantly. For treating the
task as a multi-label problem, the Likert classes
{1, 2, 3} and inapplicable are collapsed to − and
Likert classes {4, 5} are mapped to +. Subsequent
works, including ours, conform to this setup.

Rudinger et al. (2018) are the first to treat SPRL
as a multi-variate Likert scale regression problem.
They develop a neural model whose predictions
have good correlation with the values in the testing
data of both SPR1 and SPR2. In the multi-label
setting, their model compares favourably with Te-
ichert et al. (2017) for most proto-role properties
and establishes a new state-of-the-art. Pre-training
the model in a machine translation setting helps on
SPR1 but results in a performance drop on SPR2.
The model takes a sentence as input to a Bi-LSTM
(Hochreiter and Schmidhuber, 1997) to produce a
sequence of hidden states. The prediction is based
on the hidden state corresponding to the head of
the argument phrase, which is determined by in-
spection of the gold syntax tree.

Recently, Tenney et al. (2019) have demon-
strated the capacities of contextualized word em-
beddings across a wide variety of tasks, includ-
ing SPRL. However, for SPRL labeling they pro-
ceed similar to Rudinger et al. (2018) in the sense

1https://gitlab.cl.uni-heidelberg.de/
opitz/sprl

that they extract the gold heads of arguments in
their dependency-based SPRL approach. Instead
of using an LSTM to convert the input sentence
to a sequence of vectors they make use of large
language models such as ELMo (Peters et al.,
2018) or BERT (Devlin et al., 2018). The con-
textual vectors corresponding to predicate and the
(gold) argument head are processed by a projec-
tion layer, self-attention pooling (Lee et al., 2017)
and a two-layer feed forward neural network with
sigmoid output activation functions. To compare
with Rudinger et al. (2018), our basic model uses
standard GloVe embeddings. When our model is
fed with contextual embeddings a further observ-
able performance gain can be achieved.

To summarize, previous state-of-the-art SPRL
systems suffer from a common problem: they are
dependency-based and their results rely on gold
argument heads. Our approach, in contrast, does
not rely on any supplementary information from
gold syntax trees. In fact, our marker model for
SPRL is agnostic to any syntactic theory and acts
solely on the basis of argument spans which we
highlight with position markers.

SRL The task of automatically identifying
predicate-argument structures and assigning roles
to arguments was firstly investigated by Gildea
and Jurafsky (2002). Over the past years, SRL
has witnessed a large surge in interest. Recently,
very competitive end-to-end neural systems have
been proposed (He et al., 2018a; Cai et al., 2018;
He et al., 2018b). Strubell et al. (2018) show that
injection of syntax can help SRL models and Li
et al. (2019) bridge the gap between span-based
and dependency-based SRL, achieving new state-
of-the-art results both on the span based CoNLL
data (Carreras and Màrquez, 2005; Pradhan et al.,
2013) and the dependency-based CoNLL data
(Surdeanu et al., 2008; Hajič et al., 2009). A fully
end-to-end S(P)RL system has to solve multi-
ple sub-tasks: identification of predicate-argument
structures, sense disambiguation of predicates and
as the main and final step, labeling their argument
phrases with roles. Up to the present, SPRL works
(including ours) focus on the main task and as-
sume the prior steps as complete.

Research into SPRL is still in its infancy,
especially in comparison to SRL. One among
many reasons may be the fact that, in contrast
to semantic roles, semantic proto-roles are multi-
dimensional. This introduces more complexity:
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Figure 2: Model outline. Input: (i) a sequence of vec-
tors representing the words and (ii) a sequence of vec-
tors which serve to highlight predicate and argument.
Processing: 1. element-wise multiplication of the two
sequences (

⊗
); 2. generation of hidden states with for-

ward and backward Bi-LSTM reads ( & ); 3.
self-attention mechanism builds a new sequence of hid-
den states by letting every hidden state attend to every
other hidden state; 4. concatenation of the hidden states
to generate a vector representation ([; ]). Output: (i)
use vector representation to output Likert scale auxil-
iary predictions (FFReLU ) and (ii) concatenate auxil-
iary predictions to the vector representation ([; ]) to fi-
nally (iii) compute the multi-label predictions at the top
level (|P |·FFSoftmax; P : set of proto role properties).

given a predicate and an argument, the task is no
more to predict a single label (as in SRL), but a
list of multiple labels or even a multi-variate Lik-
ert scale. Another reason may be related to the
available resources. The published SPR data sets
comprise significantly fewer examples. The de-
sign of annotation guidelines and pilot studies with
the aim of in-depth proto-role annotations is a hard
task. In addition, the SPR data were created, at
least to a certain extent, in an experimental man-
ner: one of the goals of corpus creation was to
explore possible SPR annotation protocols for hu-
mans. We hope that a side-effect of this paper is to
spark more interest in SPR and SPRL.

3 Attentive Marker Model

Since the work of Teichert et al. (2017), the SPRL
problem has been phrased as follows: given a (sen-
tence, predicate, argument) tuple, we need to pre-
dict for all possible argument properties from a
given property-inventory whether they hold or not
(regression: how likely are they to hold?).

Following previous work (Rudinger et al.,
2018), the backbone of our model is a Bi-LSTM.
To ensure further comparability, pretrained 300 di-
mensional GloVe embeddings (Pennington et al.,
2014) are used for building the input sequence

(e1, ..., eT ). In contrast to Rudinger et al. (2018),
we multiply a sequence of marker embeddings
(m1, ...,mT ) element-wise with the sequence of
word vectors: (e1 ·m1, ..., eT ·mT ) (

⊗
, Figure 2).

We distinguish three different marker embeddings
that indicate the position of the argument in ques-
tion (red, Figure 2), the predicate (green, Figure
2) and remaining parts of the sentence. This is
to some extent similar to He et al. (2017) who
learn two predicate indicator embeddings which
are concatenated to the input vectors and serve the
purpose of showing the model whether a token is
the predicate or not. However, in SPRL we are
also provided with the argument phrase. We will
see in the ablation experiments that it is paramount
to learn a dedicated embedding. Embedding mul-
tiplication instead of concatenation has the advan-
tage of fewer LSTM parameters (smaller input di-
mension). Besides, it provides the model with the
option to learn large coefficients of the word vec-
tor dimensions of predicate and argument vectors.
This should immediately draw the model’s atten-
tiveness to the argument and predicate phrases
which now are accentuated.

The sequence of marked embeddings is further
processed by a Bi-LSTM in order to obtain a se-
quence of hidden states S = (s1, ..., sT ). In Fig-
ure 2, forward and backward LSTM reads are in-
dicated by and .

From there, we take intuitions from Zheng et al.
(2018) and compute the next sequence of vectors
by letting every hidden state attend to every other
hidden state, which is expressed by the following
formulas:

ht,t′ = tanh(QSt +KSt′ + β)

et,t′ = σ(vTht,t′ + α)

at = softmax(et)

zt =
∑

t′
at,t′ · st′

Q,K are weight matrices, β is a bias vector,
α is a bias scalar and v a weight vector. Let-
ting every hidden state attend to every other hid-
den state gives the model freedom in computing
the argument-predicate composition. This is de-
sirable, since arguments and predicates frequently
are in long-distance relationships. For example, in
Figure 3 we see that in the SPR1 data predicates
and arguments often lie more than 10 words apart
and a non-negligible amount of cases consists of
distances of more than 20 words.

226



0 10 20 30 40

#words betw. arg & verb or sent len

0

10

20

30

40

50

60

70

80
√ co

u
n
t

SPR1 #words betw. arg & verb

SPR1 sent len

SPR2 #words betw. arg & verb

SPR2 sent len

Figure 3: Distribution of the number of words between
argument and verb (distance relationship) and sentence
lengths in the data sets SPR1 and SPR2.

We proceed by concatenation, z = [z1; ...; zT ],
and compute intermediate outputs approximating
the property-likelihood Likert scales. This is
achieved with weight matrix A and ReLU acti-
vation functions (FF+ReLU , Figure 2):

a = ReLU(Az). (1)

To perform multi-label prediction with |P | pos-
sible labels we use [a; z] for computing the final
decisions with 2|P | output neurons and |P | sepa-
rate weight matrices (|P |∗FF+softmax, Figure 2),
one for each property p ∈ P :

op = softmax(W p[a; z]). (2)

For example, given the 18 proto-role properties
contained in SPR1, we learn |P | = 18 weight ma-
trices and use the Softmax functions to produce 18
vectors of dimension 2 as outputs. The first dimen-
sion op,0 represents the predicted probability that
property p does not apply (op,1: probability for p
applies). For the regression task, we reduce the
number of output neurons from 2|P | to |P | and
use ReLU activation functions instead. We hy-
pothesize that the hierarchical structure can sup-
port the model in making predictions on the top
layer. E.g., if the argument is predicted to be most
likely not sentient and very likely to be manipu-
lated, the model may be less tempted to predict
an awareness label at the top layer. The auxiliary
loss for any datum is given as the mean square er-
ror over the auxiliary output neurons:

`′ =
λ′

|P |
∑

p∈P
(a?p − ap)2 (3)

In case of the multi-label formulation, our main
loss for an example is the average cross entropy
loss over every property:

` = − λ

|P |
∑

p∈P
(o?p,1 log op,1 + o?p,2 log op,2), (4)

where o?p,0 = I(¬p) and o?p,1 = I(p) i.e. the gold
label indicator.

4 Experiments

Data We use the same data setup and split as Te-
ichert et al. (2017); Rudinger et al. (2018); Ten-
ney et al. (2019). For determining the gold labels,
we also conform to prior works and (i) collapse
classes in the multi-label setup from {NA, 1, 2, 3}
and {4, 5} to classes ‘−’ and ‘+’ and (ii) treatNA
as 1 in the Likert regression formulation. For dou-
bly annotated data (SPR2), the Likert scores are
averaged; in the multi-label setup we consider val-
ues≥ 4 as ‘+’ and map lesser scores to ‘−’. More
data and pre-processing details are described in the
Supplement §A.1.

Baselines As baselines we present the results
from previous systems: the state-of-the-art by
Rudinger et al. (2018) is denoted in our tables
as RUD’18, the linear feature-based classifier by
Reisinger et al. (2015) as REI’15 and the CRF de-
veloped by Teichert et al. (2017) as TEI’17. Like
previous works, we use macro F1 as the global
performance metric in the multi-label scenario and
macro-averaged Pearson’s ρ (arithmetic mean over
the correlation coefficients for each property, de-
tails can be found in the Supplement A.1) We re-
fer to the system results as reported by Rudinger
et al. (2018). The most recent work, which eval-
uates large language models on a variety of tasks
including SPRL, is denoted by TEN’19 (Tenney
et al., 2019). In this case, we present the micro F1
results as reported in their paper.

Model instantiation We introduce four main
models: (i) Marker: our basic, span-based single-
model system. For (ii) MarkerE, we fit an ensem-
ble of 50 Markers with different random seeds.
Computationally, training 50 neural models in this
task is completely feasible since neither SPR1 nor
SPR2 contain more than 10,000 training examples
(parallelized training took approximately 2 hours).
The ensemble predicts unseen testing data by com-
bining the models’ decisions in a simple major-
ity vote when performing multi-label prediction
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or, when in the regression setup, by computing
the mean of the output scores (for every property).
We also introduce (iii) MarkerB, and (iv) Mark-
erEB. These two systems differ in only one as-
pect from the previously mentioned models: in-
stead of GloVe word vectors, we feed contextual
vectors extracted from the BERT model (Devlin
et al., 2018). More precisely, we use the trans-
former model BERT-base-uncased2 and sum the
inferred activations over the last four layers. The
resulting vectors are concatenated to GloVe vec-
tors and then processed by the Bi-LSTM.

We fit all models with gradient descent and ap-
ply early stopping on the development data (max-
imum average Pearson’s ρ for multi-variate Likert
regression, maximum macro F1 for the multi-label
task). Further hyper parameter choices and details
about the training are listed in Appendix §A.2.

4.1 Multi-Label Prediction Results

News texts The results on newspaper data
(SPR1) are displayed in Table 1 (left-hand side).
Our basic ensemble (MarkerE) improves mas-
sively in the property location3 (+19.1 pp. F1).
A significant loss is experienced in the property
changes possession (-9.6). Overall, our ensem-
ble method outperforms all prior works (REI’15:
+17.7 pp. macro F1; TEI’17: +6.2, RUD’18:
+1.0). Our ensemble method provided with addi-
tional contextual word embeddings (MarkerEB)
yields another large performance gain. The old
state-of-the-art, RUD’18, is surpassed by more
than 6.0 pp. macro F1 (a relative improvement of
8.6%). With regard to some properties, the con-
textual embeddings provide massive performance
gains over our basic MarkerE: stationary (+9.5
pp. F1), makes physical contact (+21.3), change
of location (+14.1) and created (+17.3). The only
loss is incurred for the property which asks if an
argument is destroyed (-12.3). This specific prop-
erty appears to be difficult to predict for all mod-
els. The best score in this property is achieved by
MarkerE with only 26.6 F1.

Web texts On the web texts (SPR2), due to less
previous works, we also use three label selection
strategies as baselines: a majority label baseline, a
constant strategy which always selects the positive
label and a random baseline which samples a pos-

2https://github.com/google-research/
bert

3i.e. does the argument describe the location of the event?

itive target label according to the occurrence ratio
in the training data (maj, constant & ran, Table 2,
left-hand side).

Our basic MarkerE method yields massive im-
provements over both baselines (more than +10
pp. F1) in 4 out of 14 proto-role properties. For
argument changes possession and awareness the
improvement over both baselines is more than +25
pp. F1 and for sentient more than +40 pp. How-
ever, in the partitive property, the constant-label
baseline remains unbeaten by a large margin (-
21.7 pp.). Overall, all Marker models yield large
performance increases over the baselines. For ex-
ample, MarkerE yields significant improvements
both over random (+27.7 pp. macro F1), constant
(+9.5) and majority (+45.0).

Intriguingly – while the contextual embeddings
provide a massive performance boost on news
texts (SPR1), – they appear not to be useful for
our model on the web texts. The macro F1 score
of MarkerEB is slightly worse (-1 pp.) than
that of MarkerE and the micro F1 score is only
marginally better (+0.9). The same holds true
for the single-model instances: Marker performs
better than MarkerB by 2.2 pp. macro F1 albeit
marginally worse micro F1 wise by 0.5 pp.

Why exactly the contextual embeddings fail to
provide any valuable information when labeling
arguments in web texts, we cannot answer with
certainty. A plausible cause could be overfitting
problems stemming from the increased dimen-
sionality of the input vectors. In fact, the con-
textual embeddings increase the number of word
vector features by more than two times over the
dimension of the GloVe embeddings. This inflates
the number of parameters in the LSTM’s weight
matrices. As a consequence, the likelihood of
overfitting is increased – an issue which is further
aggravated by the fact that SPR2 data are signifi-
cantly fewer than SPR1 data. SPR2 contains less
than five thousand predicate-argument training ex-
amples, roughly half the size of SPR1.

Another source of problems may be rooted in
the target-label construction process for SPR2.
This question does not arise when using SPR1 data
since all annotations were performed by a single
annotator. The SPR2 data, in contrast, contains
for each predicate-argument pair, two annotations.
In total, the data was annotated by many crowd
workers – some of whom provided many and some
provided few annotations. Perhaps, averaging Lik-
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multi-label (ML), F1 score regression (LR), ρ

previous works ours ours
property REI’15 TEI’17 RUD’18 MarkerE Marker MarkerEB MarkerB RUD’18 MarkerE Marker MarkerEB MarkerB

awareness 68.8 87.3 89.9 89.4 88.1 93.4 91.6 0.897 0.880 0.868 0.922 0.915
chg location 6.6 35.6 45.7 50.5 53.2 64.6 57.1 0.702 0.768 0.744 0.835 0.814
chg state 54.6 66.1 71.0 66.6 68.2 71.5 66.1 0.604 0.651 0.621 0.701 0.653
chg possession 0.0 38.8 58.0 48.4 55.5 55.7 59.5 0.640 0.609 0.576 0.652 0.582
created 0.0 44.4 39.7 34.8 46.5 52.2 56.1 0.549 0.593 0.498 0.669 0.614
destroyed 17.1 0.0 24.2 26.6 19.9 14.3 22.2 0.346 0.368 0.220 0.412 0.347
existed after 82.3 87.5 85.9 87.0 82.9 88.5 84.8 0.619 0.612 0.571 0.695 0.669
existed before 79.5 84.8 85.1 87.4 85.4 90.1 85.8 0.710 0.704 0.668 0.781 0.741
existed during 93.1 95.1 95.0 95.2 94.3 95.8 94.0 0.673 0.675 0.626 0.732 0.714
exists as physical 64.8 76.4 82.7 83.7 80.6 88.1 85.8 0.834 0.807 0.777 0.871 0.856
instigated 76.7 85.6 88.6 86.6 86.4 88.9 87.6 0.858 0.856 0.842 0.879 0.860
location 0.0 18.5 53.8 72.9 69.8 78.9 76.1 0.619 0.755 0.742 0.849 0.820
makes physical contact 21.5 40.7 47.2 45.7 32.3 67.0 61.1 0.741 0.716 0.671 0.801 0.772
manipulated 72.1 86.0 86.8 86.9 86.7 89.6 86.5 0.737 0.738 0.705 0.774 0.751
pred changed arg 54.0 67.8 70.7 68.1 67.6 72.8 66.1 0.592 0.621 0.579 0.714 0.664
sentient 42.0 85.6 90.6 89.5 88.3 95.4 92.2 0.925 0.904 0.887 0.959 0.951
stationary 13.3 21.4 47.4 41.0 25.0 50.5 54.5 0.711 0.666 0.654 0.771 0.739
volitional 69.8 86.4 88.1 88.3 86.7 91.6 90.1 0.882 0.873 0.863 0.911 0.903

micro 71.0 81.7 83.3 83.6 82.0 86.8 83.5 - - - - -
macro 55.4 65.9 71.1 72.1 69.3 77.5 73.8 0.706 0.711 0.673 0.774 0.743

Table 1: SPR1 results. bold: better than all previous work; bold: overall best.

multi-label (ML), F1 score regression (LR), ρ

baselines ours ours
property maj ran const MarkerE Marker MarkerEB MarkerB RUD’18 MarkerE Marker MarkerEB MarkerB

awareness 0.0 48.9 67.1 92.7 92.3 94.0 91.1 0.879 0.882 0.868 0.902 0.878
chg location 0.0 12.0 21.7 28.6 35.1 38.0 18.2 0.492 0.517 0.476 0.563 0.507
chg possession 0.0 5.5 6.6 33.3 33.3 35.6 41.1 0.488 0.520 0.483 0.549 0.509
chg state 0.0 19.5 31.3 29.7 27.1 41.4 45.2 0.352 0.351 0.275 0.444 0.369
chg state continuous 0.0 9.2 21.7 25.3 19.8 26.8 30.4 0.352 0.396 0.321 0.483 0.423
existed after 94.1 86.1 94.1 94.0 92.4 94.0 94.5 0.478 0.469 0.403 0.507 0.476
existed before 89.5 80.0 89.5 91.0 90.5 92.0 89.8 0.616 0.645 0.605 0.690 0.664
existed during 98.0 96.2 97.0 98.0 97.8 98.1 98.1 0.358 0.374 0.280 0.354 0.301
instigated 0.0 48.9 70.5 77.9 78.0 78.9 78.7 0.590 0.582 0.540 0.603 0.599
partitive 0.0 10.4 24.2 2.5 16.5 9.2 2.4 0.359 0.283 0.213 0.374 0.330
sentient 0.0 47.6 44.3 91.9 91.6 93.7 92.0 0.880 0.874 0.859 0.892 0.872
volitional 0.0 39.1 61.8 88.1 87.2 89.7 88.5 0.841 0.839 0.825 0.870 0.854
was for benefit 0.0 31.6 48.8 61.1 59.2 60.2 63.4 0.578 0.580 0.525 0.598 0.569
was used 79.3 66.1 79.3 77.9 78.0 77.6 79.9 0.203 0.173 0.093 0.288 0.264

micro 65.0 62.9 61.4 84.0 83.4 84.9 83.9 - - - - -
macro 25.9 43.2 61.4 70.9 69.7 69.9 67.5 0.534 0.535 0.483 0.580 0.544

Table 2: SPR2 results. bold: better than previous work and/or baselines; bold: overall best.

ert scale annotations of two random annotators is
not the right way to transform SPR2 to a multi-
label task. Future work may investigate new trans-
formation strategies. For example, we can envi-
sion a strategy which finds reliable annotators and
weighs the choices of those annotators higher than
those of less reliable annotators. This should result
in an improved SPR2 gold standard for both multi-
label and multi-variate Likert scale SPRL systems.

4.2 Likert Scale Regression Results

News texts MarkerE achieves large perfor-
mance gains for the properties location and
change of location (∆ρ: +0.136 & ∆ρ: +0.066,
Table 1). This is in accordance with the results
for these two properties in the multi-label predic-

tion setup. Our model is outperformed by RUD’18
in the property stationary (∆ρ: -0.045). All in
all, MarkerE outperforms RUD’18 (∆ macro ρ:
+0.005). When providing additional contextual
word embeddings from the large language model,
the correlations intensify for almost all role prop-
erties. Overall, the contextual embeddings in
MarkerEB yield an observable improvement of
+0.063 ∆ macro ρ over MarkerE (which solely
uses GloVe embeddings).

Web texts Our MarkerE model outperforms
RUD’18 slightly by +0.001∆ρ (Table 2). How-
ever, if we compare with RUD’18’s model setup
which achieved the best score on the SPR1
testing data (pre-training with a supervised MT
task, macro regression result SPR2: 0.521ρ), we
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macro result micro result

used by system SPR1 SPR2 SPR1 SPR2
Method span or dep. gold head STL ensembling C-embeddings ML LR ML LR ML ML

ou
rs

pr
ev

io
us

REI’15 span no no no no 55.4 - - - 71.0 -
TEI’17 dependency yes (full parse) no no no 65.9 - - - 81.7 -
RUD’18 dependency yes no no no 69.3 0.697 - 0.534 82.2 -
RUD’18(+MT pretrain) dependency yes yes no no 71.1 0.706 - 0.521 83.3 -
TEN’19 dependency yes no no yes (BERT concat) - - - - 84.7 83.0
TEN’19 dependency yes no no yes (BERT lin. comb.) - - - - 86.1† 83.8

Marker span no no no no 69.3 0.682 67.9† 0.483 80.8 81.1
MarkerE span no no yes no 72.1 0.711 70.9 0.535 83.6 84.0
MarkerB span no no no yes (BERT sum) 73.5† 0.741† 67.5 0.544† 84.9 83.9†

MarkerEB span no no yes yes (BERT sum) 77.5 0.774 69.9 0.580 86.8 84.9

Table 3: Main results, system properties and requirements of SPRL systems. Overall best system is marked in bold,
best system using GloVe is underlined, best single-model system is marked by †. STL: supervised transfer-learning
(e.g., RUD’18: pre-training on MT task). C-embeddings: contextual word embeddings (BERT-base). ML: multi-
label prediction; LR: multi-variate Likert regression. BERT concat: last four BERT layers are concatenated.
BERT lin. comb.: optimized linear combination of last four BERT layers (our BERT based models sum the last
four layers). The Table is further discussed in the Section Discussion §4.3.

achieve a significantly higher macro-average (∆ρ:
+0.014). Yet again, when our model is provided
with contextual word embeddings, a large per-
formance boost is the outcome. In fact, Mark-
erEB outperforms MarkerE by +0.045 ∆ macro
ρ and RUD’18’s best performing configuration
by +0.046. This stands in contrast to the multi-
labeling results on this type of data, where the
contextual embeddings did not appear to provide
any performance increase. As previously dis-
cussed (§4.1), this discrepancy may be rooted in
the task generation process of SPR2 which re-
quires transforming two annotations per example
to one ground truth (the two annotations per ex-
ample stem from two out of, in total, 50 workers).

4.3 Discussion

Leaving the contextual word embedding inputs
aside, the performance differences of our Marker
models to RUD’18 may seem marginal for many
properties. Albeit our MarkerE yields an ob-
servable improvement of 1.0 pp. macro F1 in the
multi-label setup, in the regression setup the per-
formance gains are very small (∆ρ SPR1: +0.005,
∆ρ SPR2: +0.001, Table 1 & 3). In addition, our
model as a single model instance (Marker) is out-
performed by RUD’18’s approach both in the re-
gression and in the multi-label setup. However, it
is important to note that the result of our system
has substantially fewer dependencies (Table 3).

Firstly, our model does not rely on supplemen-
tary gold syntax – in fact, since it is span-based,
our model is completely agnostic to any syntax.
Besides our approach, only REI’15 does not de-
pend on supplementary gold syntax for the dis-

played results. However, all of our models out-
perform REI’15’s feature-based linear classifier in
every property (+17 pp. macro F1 in total) ex-
cept for destroyed (where MarkerEB performed
slighly worse by -2.8 pp. F1). Also, results of
SRL systems on semantic role labeling data show
that span-based SRL systems often lag behind a
few points in accuracy (cf. Li et al. (2019), Ta-
ble 1). When provided with the syntactic head
of the argument phrase, a model may immedi-
ately focus on what is important in the argument
phrase. When solely fed the argument-span, which
is potentially very long, the model has to find the
most important parts of the phrase on its own and
is more easily distracted. Additionally, identify-
ing the head word of an argument may be more
important than getting the boundaries of the span
exactly right. In other words, span-based SPRL
models may be more robust when confronted with
slightly erroneous spans compared to dependency-
based models which may be vulnerable to false
positive heads. However, this hypothesis has to
be confirmed or disproven experimentally in fu-
ture work.

Further information about differences of vari-
ous SPRL approaches is displayed in Table 3. In
sum, despite having significantly fewer dependen-
cies on external resources, our approach proves to
be competitive with all methods from prior works,
including neural systems. When combined in a
simple ensemble, our model outperforms previ-
ous systems. When we feed additional contex-
tual word embeddings, the results can be boosted
further by a large margin. In the following sec-
tion, we show that ensembling SPRL models has
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Ensembling worse Ensembling better

Data p ∈ [0.005, 0.05) p < 0.005 p ∈ [0.005, 0.05) p < 0.005 NS

SPR1 0 1 5 9 3
SPR2 1 1 5 2 5

Table 4: McNemar significance test results of Mark-
erEB against MarkerB. Counts of properties for which
a significance category applies (NS: #properties with
insignificant difference).

another advantage besides predictive performance
gains. Namely, it decreases SPRL model sensitiv-
ities towards different random initializations. As a
result, we find that a simple neural voter commit-
tee (ensemble) offers more robust SPRL predic-
tions compared to a randomly selected committee-
member (single model).

4.4 Analysis

Ensembling increases accuracy To investigate
whether ensembling improves proto-role labeling
results significantly, we conduct McNemar signif-
icance tests (McNemar, 1947) comparing the pre-
dictions of MarkerB and MarkerEB. The signifi-
cance test results summarized in Table 4 are unam-
biguous: for many proto-role properties, ensem-
bling helps to improve performance significantly
(SPR1: 14

18 cases; SPR2: 7
14 cases; significance

level: p < 0.05). However, for few cases, en-
sembling resulted in significantly worse predic-
tions (SPR1: change of location; SPR2: change
of location, instigated and partitive; significance
level: p < 0.05). For the rest of the properties,
differences in predictions remain insignificant.

Ensembling increases robustness Addition-
ally, we find that ensembling increases the robust-
ness of our neural models. Consider Figure 4,
where we display the performance difference of
a n-voter ensemble to the same ensemble after
one additional voter joined (n+1-voter ensemble).
The difference fluctuates wildly while the ensem-
ble is still small. This suggests that a different ran-
dom seed yields significantly different predictions.
Hence, our a single neural Marker model is very
vulnerable to the quirks of random numbers. How-
ever, when more voters join, we see that the pre-
dictions become notably more stable. An outcome
which holds true for both data sets and two dif-
ferent ensemble model configurations (MarkerE
and MarkerEB). We draw two conclusions from
this experiment: (i) a single neural SPRL model
is extremely sensitive to different random initial-

ablated component

Data MarkerEB SelfAtt mark. pred-mark. arg-mark. hier.

SPR1 77.5 73.1 50.7 76.3 60.1 76.7
SPR2 69.9 67.3 59.3 68.2 63.3 68.9

Table 5: Multi-labeling F1 macro scores for different
MarkerEB model configurations over SPR1 and SPR2.

izations. Finally, (ii) a simple voter ensemble has
the potential to alleviate this issue. In fact, when
we add more voters, the model converges towards
stable predictions which are less influenced by the
quirks of random numbers.

Model Ablations All ablation experiments are
conducted with MarkerEB in the multi-label for-
mulation. We proceed by ablating different com-
ponents in a leave-one-out fashion: (i) the self-
attention components of the ensemble model are
removed (SelfAtt in Table 5); (ii) we abstain from
highlighting (a) the arguments and predicates, (b)
only the predicates and (c) only the arguments
(mark. pred-mark. and arg-mark. in Table 5); Fi-
nally, (iii) we remove the hierachical structure and
do not predict auxiliary outputs (hier. in Table 5).

From all ablated components, removing simul-
taneously both predicate and argument-markers
hurts the model the most (SPR1: -26.8 pp.
macro F1; SPR2: -10.6). Only ablating the
argument-marker also causes a great performance
loss (SPR1: -17.4, SPR2: - 6.6). On the other
hand, when only the predicate marker is ablated,
the performance decreases only slightly (SPR1: -
1.2, SPR2: -1.7). In other words, it appears to
be of paramount importance to provide our model
with indicators for the argument position in the
sentence, but it is of lesser importance to point at
the predicate. The self-attention component can
boost the model’s performance by up to +4.4 pp.
F1 on SPR1 and +2.6 on SPR2. The hierarchical
structure with intermediate auxiliary Likert scale
outputs leads to gains of approximately +1 pp.
macro F1 in both data sets. This indicates that
indeed the finer Likert scale annotations provide
auxiliary information of value when predicting the
labels at the top layer, albeit the performance dif-
ference appears to be rather small.

5 Conclusion

In our proposed SPRL ensemble model, predicate-
argument constructs are highlighted with con-
currently learned marker embeddings and self-
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(a) Data: SPR1, voter: Marker.
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(b) Data: SPR1, voter: MarkerB.
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(c) Data: SPR2, voter: Marker.
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(d) Data: SPR2, voter: MarkerB.

Figure 4: Adding more voters leads to convergence in SPRL predictions. x-axis: number of voter models partaking
in the ensemble. y-axis: F1 mean difference over all proto-roles from the ensemble with x voters compared to the
ensemble with x− 1 voters. Thin bars represent standard deviations.

attention enables the model to capture long-
distance relationships between arguments and
predicates. The span-based method is competitive
with the dependency-based state-of-the-art which
uses gold heads. When combined in a simple en-
semble, the method overall outperforms the state-
of-the-art on newspaper texts (multi-label predic-
tion macro F1: +1.0 pp.). When fed with contex-
tual word embeddings extracted from a large lan-
guage model, the method outperforms the state-of-
the-art by 6.4 pp. macro F1. Our method is com-
petitive with the state-of-the-art for Likert regres-
sion on texts from the web domain. In the multi-
label setting, it outperforms all baselines by a large
margin. Furthermore, we have shown that a sim-
ple Marker model voter ensemble is very suited for
conducting SPRL, for two reasons: (i) results for
almost every proto-role property are significantly
improved and (ii) considerably more robust SPRL
predictions are obtained.

We hope that our work sparks more research
into semantic proto-role labeling and corpus cre-
ation. Dowty’s feature-based view on roles allows
us to analyze predicate-argument configurations in

great detail – an issue which we think is located in
the marrow of computational semantics.
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A Supplemental Material

A.1 Notes

Calculation of macro F1 The global perfor-
mance metric for multi-label SPRL is defined as
‘macro F1’. To ensure full comparability of re-
sults, we use the same formula as prior works
(Rudinger et al., 2018):

2 · Pmacro avg. ·Rmacro avg.

Pmacro avg. +Rmacro avg.
, (5)

where P and R are Precision and Recall and
macro avg. means the unweighted mean of these
quantities computed over all proto-role properties.
The above macro F1 metric, though not explicitly
displayed in the prior work papers, has been con-
firmed by the main authors (email).

Calculation of Pearson’s ρ Person’s ρ quanti-
fies the linear relationship between two random
variables X and Y . Computed over a sample
{(xi, yi)}n1 it is calculated with the following for-
mula:

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(6)

Given |P | proto-role properties and correspond-
ing correlation coefficients ρ1, ...ρ|P |, the macro
Pearson’s ρ is calculated as

macro ρ =

∑|P |
i=1 ρi
|P | . (7)

hyper-parameter choice

λ (main loss) 1
λ′ (aux. losses) 0.2
optimizer Adam (Kingma and Ba, 2014)
optimizer param. β1 = 0.9, β2 = 0.999, ε = 1e−07

learning rate 0.001
Bi-LSTM units 2 · 64
max. seq length 30
padding pre
Marker embeddings,init U(−0.05,+0.05)
Fixed embeddings, init GloVe 300d (Pennington et al., 2014)

Table 6: Hyper parameter configuration.

Data split of SPR1 (Teichert et al., 2017) re-
framed the SPRL task as a multi-label problem.
Previously the task was to answer, given a pred-
icate and an argument, one specific proto-role
question (binary label or single output regression).
Now we need to predict all proto-role questions
at once (multi-label or multi-ouput regression). In
order to allow this formulation of the task, the au-
thors needed to redefine the original train-dev-test
split of SPR1 (recent works, including ours, all use
the re-defined split).

Reported Numbers In the EMNLP publication
of Rudinger et al. (2018) we found a few minor
transcription errors in the result tables (confirmed
by email communication with the main authors,
who plan to upload an errata section). In the case
of transcription errors, we took the error-corrected
numbers which were sent to us via email.

A.2 Hyperparameters & Preprocessing
The hyper parameter configuration of our model
are displayed in Table 6. Sequence pruning: Con-
sider that I = {i} is the index of the predicate
and J = {j, ..., k} are the indices corresponding
to the argument. As long as the input sequence
length is longer than maximum length (30, cf. Ta-
ble 6), we clip left tokens so that the index of the
token m < min I ∪ J , then we proceed to clip to-
kens to the right so that m > max I ∪ J , for the
very rare cases that this was not sufficient we pro-
ceed to clip tokens with m /∈ I ∪ J (the marker
sequences are adjusted accordingly). The clip-
ping strategy ensures that predicate and argument
tokens are present in every input sequence. Se-
quences which are shorter than 30 words are pre-
padded with zero vectors.
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Abstract

We introduce a set of nine challenge tasks that
test for the understanding of function words.
These tasks are created by structurally mutat-
ing sentences from existing datasets to target
the comprehension of specific types of func-
tion words (e.g., prepositions, wh-words). Us-
ing these probing tasks, we explore the ef-
fects of various pretraining objectives for sen-
tence encoders (e.g., language modeling, CCG
supertagging and natural language inference
(NLI)) on the learned representations. Our re-
sults show that pretraining on CCG—our most
syntactic objective—performs the best on av-
erage across our probing tasks, suggesting that
syntactic knowledge helps function word com-
prehension. Language modeling also shows
strong performance, supporting its widespread
use for pretraining state-of-the-art NLP mod-
els. Overall, no pretraining objective domi-
nates across the board, and our function word
probing tasks highlight several intuitive differ-
ences between pretraining objectives, e.g., that
NLI helps the comprehension of negation.

1 Introduction

Many recent advances in NLP have been driven by
new approaches to representation learning—i.e.,
the design of models whose primary aim is to yield
representations of words or sentences that useful
for a range of downstream applications (Bowman
et al., 2017). Approaches to representation learn-
ing typically differ in either the architecture of the
model used to learn the representations, the objec-
tive used to train that network, or both. Varying
these factors can significantly impact performance
on a broad range of NLP tasks (McCann et al.,
2017; Peters et al., 2018; Devlin et al., 2019).

∗Corresponding authors: Najoung Kim (n.kim@jhu.edu),
Ellie Pavlick (ellie pavlick@brown.edu)

This paper investigates the role of pretraining
objectives of sentence encoders, with respect to
their capacity to understand function words (e.g.,
prepositions, conjunctions). Although the impor-
tance of finding an effective pretraining objective
for learning better (or more generalizable) repre-
sentations is well acknowledged, relatively few
studies offer a controlled comparison of diverse
pretraining objectives, holding model architecture
constant.

We ask whether the linguistic properties im-
plicitly captured by pretraining objectives measur-
ably affect the types of linguistic information en-
coded in the learned representations. To this end,
we explore whether qualitatively different objec-
tives lead to demonstrably different sentence rep-
resentations. We focus our analysis on function
words because they play a key role in composi-
tional meaning—e.g., introducing and identifying
discourse referents or representing relationships
between entities or ideas—and are not yet con-
sidered to be well-modeled by distributional se-
mantics (Bernardi et al., 2015). Our results sug-
gest that different pretraining objectives give rise
to differences in function word comprehension;
for instance, we see that natural language infer-
ence helps understanding negation, and grounded
language helps understanding spatial descriptors.
However, overall, we find that the observed dif-
ferences are not always straightforwardly inter-
pretable, and further investigation is needed to de-
termine what specific aspects of pretraining tasks,
yield good representations of function words.

The analyses we present contribute new results
in an ongoing line of research aimed at providing
a finer-grained understanding of what neural net-
works capture about linguistic structure (Conneau
et al., 2018; Poliak et al., 2018b; Linzen et al.,
2018; Tenney et al., 2019, i.a.). Our contributions
are:
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Acceptability

wh-word why are you so chippy about posh people? D
. . .a Mr. Nice Guy like Melcher, what is now 46 X

Def. . . . the case is remarkable for the cooperation . . . D
. . . a case is remarkable for a cooperation . . . X

Coord. I have also tried monthly data and the results are the same. D
Rooms very clean but smelled very fresh. X

EOS the forehead is gathered in a frown // the mouth is slightly parted to reveal the teeth D
the forehead is gathered in a frown the mouth // is slightly parted to reveal the teeth X

NLI

Prep. With a single jerk the man’s head tore free. → The man’s head tore free from a single jerk. D
With a single jerk the man’s head tore free. → The man’s head tore free without a single jerk. X

Negation This is a common problem. → This is not an uncommon issue we are facing. D
This is not a common problem. → This is not an uncommon issue we are facing. X

Spatial To reach . . . turn left up a small alleyway → do not turn right up the alleyway . . . D
To reach . . . turn left up a small alleyway → Turn right up the alleyway . . . X

Quant. all taken up yeah → There are not still some left D
all taken up yeah → There are still some left X

Comp. Today there are more than 300,000. → Today there are not less than 300,000. D
Today there are more than 300,000. → Today there are less than 300,000. X

Table 1: Examples of sentences and sentence pairs corresponding to each of our probing datasets. The highlighted
words are those that are relevant to the phenomena targeted by each set.

• We provide an in-depth exploration into how
different pretraining objectives for sentence
encoders affect the information encoded by
the output representations. We isolate the
effects of different pretraining objectives by
holding the model architecture constant.

• We study function words, which have been
under-studied in previous works on represen-
tation learning, but are critical to language
understanding.

• We release nine new datasets,1 quality-
controlled by both linguists and non-linguist
annotators, to facilitate ongoing work and
follow-up analysis.

2 Function Word Probing Tasks

2.1 Approach
We introduce nine new probing tasks aimed
at evaluating models’ understanding of function
words. We focus on function words because al-
though they are key building blocks of composi-

1The datasets are released as part of the Diverse Natural
Language Inference Collection (DNC, Poliak et al., 2018b),
available at http://decomp.io.

tional meaning and are highly frequent, they have
received relatively little attention in the probing
literature and in the distributional semantics litera-
ture. Each task targets the understanding of a spe-
cific type of function word; illustrative examples
are given in Table 1. Our expectation is that dif-
ferent pretraining objectives (see Section 3.2) will
yield sentence representations which measurably
differ in their performance on these probing tasks.

We use two different formats for our prob-
ing tasks: acceptability judgment and natural lan-
guage inference (NLI). The former uses a binary
classification approach (acceptable/unacceptable)
for probing a single sentence vector, in line with
works such as Conneau et al. (2018) and Adi et al.
(2017). The latter uses an entailment-based ap-
proach similar to White et al. (2017) and Poliak
et al. (2018b), which is a ternary classification task
(entailment, contradiction, neutral) over sentence
pairs. The format is selected based on the suitabil-
ity to the particular function word type in question.

To generate our probing datasets, we make
structural modifications to sentences drawn from
existing corpora, targeting a particular type of
function word. We heuristically apply modifica-
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tions which we believe are likely to produce a spe-
cific label, and then recruit human annotators in
order to produce the final labels used in our eval-
uations. The result is a publicly available suite
of nine task datasets (four acceptability tasks and
five NLI tasks) consisting of 3,710 annotated ex-
amples. Appendix C lists the sizes of each dataset.

2.2 Acceptability Judgment-Based Tasks
We cast acceptability as a binary classification task
following the format of such judgments commonly
used in linguistics, in a similar manner to Warstadt
et al. (2018). All tasks follow a common proto-
col of first identifying sentences that contain the
construction that we are interested in, and then
mutating half of the identified sentences to gener-
ate infelicitous versions of the original sentences.
Unless stated otherwise, the original sentences are
drawn from the test set of the Billion Word Bench-
mark (BWB, Chelba et al., 2013).

Wh-Words Understanding wh-words (i.e., who,
what, where, when, why, how) depends on under-
standing the context and correctly identifying the
antecedent, which may not be overtly present in
the sentence. For instance, recognizing the infe-
licity of I talked about who I live requires know-
ing that the (unstated) antecedent must be a place
and not a person. Our dataset consists of sentences
that contain one of the six wh-words listed above.
Half of these sentences are mutated versions of the
original which are generated by replacing the orig-
inal wh-word with a different wh-word randomly
selected from the remaining five options.

Definite-Indefinite Articles The definiteness
task probes the understanding of definiteness that
arises by the use of the definite article (the) versus
indefinite articles (a and an). We find sentences
containing multiple occurrences of the or multi-
ple occurrences of a, and, for half of them, swap
all such occurrences (i.e., replacing the with a2 or
vice-versa). This gives us four types of sentences:
unchanged sentences with multiple definite arti-
cles, unchanged sentences with multiple indefi-
nite articles, sentences with all definite articles re-
placed by the indefinite article, and sentences with
all indefinite articles replaced by the definite arti-
cle. Our intent is that the former two types will be
judged felicitous while the latter two will be infe-
licitous despite the fact that the sentence would be

2When we replace the with a, we choose a/an as neces-
sary based on the word it precedes.

syntactically well-formed. We only focus on the
cases with multiple occurrences of the same arti-
cle, because replacing a single article most of the
time did not significantly affect the acceptability
(although it often did affect the actual meaning).

Coordinating Conjunctions Correct under-
standing of coordinating conjunctions (and, but,
or) requires contextual comprehension of the two
conjoined linguistic units, since different coor-
dinating conjunctions express different logical
relations, meaning their use is often restricted by
the meanings of the conjoined items. We take
sentences that contain coordinating conjunctions,
and replace half of them with a version that
contains a different conjunction. For example,
the sentence Room’s very clean but smelled very
fresh is infelicitous despite being syntactically
well-formed; but is unnatural here because the
conjoined clauses do not form a clear contrast.
Judging this sentence to be infelicitous requires a
proper understanding of the ideas expressed in the
clauses and how they relate to each other.

End-of-Sentence The end-of-sentence (EOS)
task tests a model’s ability to identify semantically
coherent chunks (i.e., sentences) in running text.
In written text this is often indicated by punctua-
tion marks such as periods, but humans are able to
easily identify sentences even without overt mark-
ers. Thus, we take pairs of sentences from the
same paragraph of the WikiText-103 (Merity et al.,
2017) test set and remove all punctuation marks
and capitalization, and concatenate each sentence
pair to create a line of running text.3 Half of the
dataset consists of a pair of valid sentences, and
the other half consists of a pair of potentially in-
valid sentences generated from an incorrect seg-
mentation of the running text, where the incorrect
segmentation index is obtained by sampling from
a Gaussian distribution centered around the correct
index (σ = 2) and rounding to the nearest integer.

2.3 NLI-Based Tasks
Our NLI-based probing tasks ask whether the
choice of function word affects the inferences li-
censed by a sentence. These tasks consist of a pair
of sentences—a premise p and a hypothesis h—
and ask whether or not p entails h. We exploit the
label changes induced by a targeted mutation of

3We use WikiText instead of BWB because adjacent sen-
tences in BWB are not logically contiguous and therefore
may not be from the same discourse context.
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the sentence pairs taken from the Multi-genre Nat-
ural Language Inference dataset (MNLI, Williams
et al., 2018). The rationale is that, if a change to
a single function word in the premise changes the
entailment label, that function word must play a
significant role in the semantics of the sentence.

Prepositions We manually curate a list of prepo-
sitions (see Appendix D) that are likely to be
swapped with each other without affecting the
grammaticality of the sentence. We generate mu-
tated NLI pairs by finding occurrences of the
prepositions in our list and randomly replacing
them with other prepositions in the list. Our list
consists of a set of locatives4 and several other
manually-selected prepositions that are not strictly
locatives but are likely to be substitutable (about,
for, to, with, without).

Comparatives Comparatives express qualita-
tive or quantitative differences between entities.
For instance, a sentence that states A is more than
B and another that states B is more than A lead to
different inferences. We select a list of common
comparatives (e.g., more/less, bigger/smaller) and
select pairs from MNLI that contain a compara-
tive phrase in both the premise and the hypothe-
sis. We apply several mutations to the sentences,
including negating the premise and/or hypothesis,
and swapping comparatives (e.g., replacing bigger
with smaller).5

Quantification The quantification task tests the
understanding of natural language expressions
of quantities, including common quantifiers (all,
some), number words (two, twenty), and propor-
tion (half, one-third, quarter). We select NLI
pairs that contain at least one quantifier in both the
premise and the hypothesis, and apply mutations
of negating sentences and/or replacing quantifiers
with syntactically appropriate substitutes.

Spatial Expressions The spatial expressions
task probes the understanding of words that de-
note spatial relations between entities. Changing
the spatial configuration often leads to different
inferences; for instance, A is to the left of B im-
plies that B is to the right of A, but not that A is
to the right of B. We select a set of words that

4Locative prepositions are those that denote place or po-
sition: e.g., in, on, near, etc.

5We note that Dasgupta et al. (2018) also focus on com-
paratives, but they exclusively look at artificial sentences con-
taining more/less.

describe spatial configurations which are not nec-
essarily prepositions (e.g., left, right, close, far).
Again, we find MNLI pairs containing these words
and negate/substitute to generate mutated pairs.

Negation This task probes whether models are
able to understand negations, in particular explicit
negation using the word not, lexical negation us-
ing antonyms, and the interaction between them.
We first identify premise-hypothesis pairs from the
MNLI dataset that contain antonym pairs (e.g.,
dirty appears in p and clean in h) and generate
all possible patterns of negation with the two mu-
tation strategies: swapping antonyms and adding
explicit negation. That is, we use each of lexical
negation, explicit negation, and their combination
to mutate the premise and/or the hypothesis. We
generate all 16 possible patterns of negation for a
given premise-hypothesis (p, h) pair. For each of
p and h we can either apply or not apply each of
four possible mutations: lexical negation, explicit
negation, both, and none.

2.4 Annotation

We recruit human annotators on Amazon Me-
chanical Turk to produce the final labels for the
heuristically-generated datasets described above.
We collect three labels per sentence (or per pair of
sentences for EOS and NLI probing sets). We use
the majority label in our final dataset, and discard
examples on which there is no majority consensus.
For more details about our annotation protocol, in-
cluding compensation, refer to Appendix C.

Acceptability Tasks Human annotators are pre-
sented with a single (mutated or unmutated) sen-
tence and are given the options {natural, unnatu-
ral, neither}. We discard sentences in which the
majority label does not agree with our expected
label. That is, we only include mutated sentences
with a majority label of unnatural and unmutated
sentences with a majority label of natural. We col-
lect around 500 annotated examples with balanced
label ratio for each probing set. We release our
sentences in small batches until we have approxi-
mately 250 unnatural examples per task. To cre-
ate the final dataset, we pool all answers from all
batches and take a subset of the natural sentences
so that the label ratio is balanced, prioritizing ex-
amples with perfect inter-annotator agreement.

Natural Language Inference Tasks For the
NLI tasks, we collect common-sense entailment
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judgments from annotators on a 5-point Likert
scale on which 1 denotes ‘definitely contradiction’
and 5 denotes ‘definitely entailment’, following
Zhang et al. (2017). This finer-grained scale is in-
tended to avoid confounds arising from borderline
cases. Except for the use of scaled judgments, our
instructions follow the MNLI guidelines. Specifi-
cally, our instructions said to assume that the sen-
tences co-refer and that the first sentence (p) states
a true fact, describes a scenario, or expresses an
opinion, and to then indicate how likely it is that
the second sentence (h) is also true, describes the
same scenario, or expresses the same opinion.

Annotators could also select an option indicat-
ing that one or both of the sentences did not make
sense; we discarded (p, h) pairs for which at least
one annotator chose this option. We map judg-
ments of 5 and 4 to entailment, 3 to neutral, and 2
and 1 to contradiction, and treat the majority label
as the correct label after this mapping.

Agreement and Quality Control In construct-
ing our final evaluation sets, we removed examples
on which there was no majority consensus. For the
binary acceptability tasks, we manually prefiltered
sentences that were felicitous even after the heuris-
tic modification. For the NLI tasks, we removed
pairs that contained ungrammatical sentences that
were not flagged by annotators via manual postfil-
tering. See Appendix C for more details.

3 Experimental Design

3.1 Pretraining Architecture

Since our focus is on comparing differences in
pretraining objectives, we fix the architecture
for all sentence encoders. We use the pre-
trained character-level convolutional neural net-
work (CNN) from ELMo (Peters et al., 2018) that
replaces word embeddings (see Bowman et al.
(2018) or Tenney et al. (2019) for similar usages of
the CNN layer). This acts as a base input layer that
uses no information beyond the word, and allows
us to avoid potentially difficult issues surrounding
unknown word handling in transfer learning.

We feed the word representations to a 2-
layer 1024d bidirectional LSTM (Hochreiter and
Schmidhuber, 1997). A downstream task-specific
model sees both the top-layer hidden states of this
model and, through a skip connection, the original
representation of each word. We train a version
of this model on each task in Section 3.2. Ad-

ditional experimental details are in given in Ap-
pendix A. Our codebase is open-source6 and built
using AllenNLP (Gardner et al., 2017) and Py-
Torch (Paszke et al., 2017).

Classification Tasks For classification pretrain-
ing tasks (NLI, DisSent), we use an attention
mechanism inspired by BiDAF (Seo et al., 2017).
Given the sequence of output states of the core
BiLSTM for both sentences in an example, we
compute dot-product based attention between all
pairs of words between the sentences to form a
sequence of attention-contextualized word repre-
sentations. We use an additional BiLSTM fol-
lowed by max-pooling to obtain an attention-
contextualized vector representation of each sen-
tence h1 and h2. We use the heuristic matching
feature vector [h1;h2;h1·h2; |h1−h2|] (Mou et al.,
2016) as input to an MLP.

Sequence-to-Sequence Tasks For sequence-to-
sequence pretraining tasks (machine translation
and skip-thought), we use a single-layer 1024d
LSTM as the decoder, initialized with the max-
pooled output of the encoder. We use a linear pro-
jection bottleneck layer to reduce the dimension of
the output of the decoder by half before the output
softmax layer.

3.2 Pretraining Tasks

Our main experiments compare seven pretraining
tasks which we believe capture different aspects
of linguistic meaning and which yield reasonable
performance when used on a benchmark task such
as MNLI.7 For our purposes, a task is a dataset-
training objective pair. We attempt to select a
set of tasks diverse enough to highlight perfor-
mance differences due to pretraining objectives.
We additionally report results using BERT (De-
vlin et al., 2019) (base, uncased) to demonstrate
that our probing sets prove challenging even for
state-of-the-art models.

Language Modeling We train a left-to-right
word-level language model on BWB, which was
successfully used by Peters et al. (2018) for pre-
training sentence encoders. Because language
modeling is trivial for a bidirectional LSTM, we
follow Peters et al. (2018) by training separate
forward and backward two-layer 1024d language

6https://github.com/
jsalt18-sentence-repl/jiant

7Around 70% development set accuracy; see Appendix B.
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models and concatenate their hidden states as to-
ken representations.

Skip-Thought Drawing from Kiros et al. (2015)
and Tang et al. (2017), we train a sequence-to-
sequence model on skip-thought, which is a task
of generating the next sentence in the discourse
given the previous sentence. We use the learned
encoder as our sentence encoder. Since this objec-
tive requires running text, we use sentences from
WikiText-103 as training data.

CCG Supertagging We train a model to predict
the Combinatory Categorial Grammar (CCG) su-
pertag for each word, with sentences from CCG-
Bank (Hockenmaier and Steedman, 2007). Su-
pertags are similar to part-of-speech tags but
capture more syntactic context (“almost-parsing”;
Bangalore and Joshi, 1999).

Discourse (DisSent) We train a model on Dis-
Sent (Jernite et al., 2017; Nie et al., 2017), which
is an unsupervised task of predicting the discourse
marker (e.g., and, because, or so) that connects
two clauses. We train our model on a dataset
created from WikiText-103 following Nie et al.
(2017)’s protocol, which involves extracting pairs
of clauses with a specific dependency relation.

Natural Language Inference Inspired by Con-
neau et al. (2017), we use the MNLI dataset for
NLI pretraining. The task is to predict the entail-
ment label for premise-hypothesis pairs; the pos-
sible labels are entailment, contradiction, neutral.

Machine Translation We train a sequence-to-
sequence machine translation model with attention
on WMT14 English-German (Bojar et al., 2014)
and take the encoder as our sentence encoder. Mc-
Cann et al. (2017) previously showed that pretrain-
ing an encoder on translation led to good perfor-
mance on downstream NLP tasks.

Image-Caption Matching We train a model on
the task of grounding sentences to the images they
describe. We use image-caption pairs from the
MSCOCO dataset (Lin et al., 2014) with an ob-
jective that minimizes the cosine distance between
sentence representations and corresponding image
features, as described in Kiela et al. (2018).

3.3 Classifiers for Probing Tasks

To probe the sentence encoders pretrained on the
different objectives, we freeze the weights of the

encoder after pretraining and train an additional
model using the outputs of the fixed encoder as
inputs. We describe the implementation details for
the NLI and acceptability probing sets below.

NLI Tasks For NLI-type probing, we train an
NLI model on top of the representations produced
by the pretrained sentence encoder that uses an at-
tention mechanism inspired by Seo et al. (2017)
that computes attention between all pairs of words
in the two sentences (described in more detail in
Section 3.1). We train this component on MNLI
and evaluate directly on our NLI probing datasets
with no further dataset-specific training.

Acceptability Classification Tasks For all ac-
ceptability tasks except the EOS task, we take the
sequence of hidden state outputs from the pre-
trained encoder as the sentence representation. We
aggregate this sequence into a single vector via
max-pooling and train a 512d MLP on top of the
resulting vector. For the EOS task, we also use
max-pooling on each sentence in the pair. We then
concatenate the resulting vectors and train an MLP
on top of the joint representation.8 Each task has
around 400 training examples (see Appendix C).
Due to their small size, we use 10-fold cross val-
idation where each fold is used as the test set ex-
actly once, and report the average test set accuracy.

BERT For NLI-type probing tasks, we use the
fine-tuned MNLI classifier from (Devlin et al.,
2019)9. For the acceptability classification tasks,
we fine-tune the model by adding a sequence-level
classifier on top of the pretrained BERT model.
The sequence-level classifier is a linear layer that
takes in as input the final hidden vector corre-
sponding to the first input token as aggregate rep-
resentation in the input sequence, and then classi-
fies to the required number of classes for the task,
where the label probabilities are computed with a
standard softmax. The BERT fine-tuning setup al-
lows a classification output to be indicated with a
CLS token. Pairs of sequences are indicated with
a SEP token between the pairs. All parameters are
fine-tuned jointly to maximize the log-probability

8We tried training a general acceptability model using
CoLA and evaluating directly on our acceptability tasks, as
an analogous evaluation setup to the NLI tasks, but all mod-
els performed around chance under this setup. This is likely
due to the intrinsic difficulty of CoLA for our base model, as
suggested by low performance from similar models (“GLUE
Baselines”) on https://gluebenchmark.com.

9https://github.com/google-research/
bert
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of the correct label while the hyperparameters are
the same as in pretraining.

3.4 Variation from Random Restarts

In order to calibrate the degree of variation that can
be expected due to random restarts, we run each of
our probing tasks on five different random initial-
izations of the sentence encoder weights. These
sentence encoders were not pretrained, and we
trained MLPs for each probing task on top of the
randomly initialized sentence encoders. The ex-
pectation is that if pretraining has measurable ef-
fects on the probing results, the variance across
different pretrained models would be greater than
the variance across random restart models. Across
five random restarts, the average standard devia-
tion across our probing set was around 1 percent-
age point. The mean and 95% confidence interval
for each probing task are reported in Appendix E.

4 Results

4.1 Overall Performance

Figure 1 shows the performances of models
trained on each pretraining task on our probing
datasets. We also provide comparison with a
randomly initialized encoder with no pretraining,
which is known to be a strong baseline (Bowman
et al., 2018). We observe that different pretrain-
ing tasks have different strengths and weaknesses;
there is no single pretraining task that achieves
the best (or worst) performance across the board.
This implies that even the best encoders, such as
BERT, are unable to capture function word se-
mantics fully, and suggests further research into
combining advantages of different tasks. Further-
more, most models are far from human perfor-
mance, with only a few exceptions (e.g., BERT on
conjunctions). This demonstrates that our probing
datasets serve as useful challenge sets, in addition
to permitting fine-grained analysis.

Looking into each probing set in more detail,
we see several intuitive patterns on how pretrain-
ing might affect probing performance. Among the
pretrained models (not including BERT), the NLI
model did best on the negation10 and conjunction
tasks, both of which involve words that play cen-
tral roles in inferential reasoning. The CCG model

10We additionally find that this improvement is specifically
due to the NLI model’s capacity to understand explicit nega-
tion using not, rather than lexical negation with antonymy.
See Appendix F for differences between negation subtypes.

yields the best result for EOS, which could be at-
tributed to the task’s emphasis on structure; it is
the only task that where the target labels directly
represent compositional structure.

Surprisingly, we find that pretraining can some-
times hurt performance. For instance, pretrain-
ing uniformly hurts performance on comparatives
with the exception of skip-thought, which is still
within random variation range. In fact, for many
probing sets, the choice of pretraining task af-
fects whether it helps or hurts performance; for
instance, pretraining on NLI helps with negation,
whereas pretraining on image-caption matching
and CCG lowers performance. This suggests that
pretraining can be helpful, but only helpful if we
pretrain on a task that provides useful information
in solving the probing set. For instance, in Sec-
tion 4.3 we discuss how the image-caption match-
ing objective may bias models to discard informa-
tion about certain preposition senses. Overall, we
observe that language modeling is a useful pre-
training task, which aligns with its effectiveness
for pretraining models that achieve state-of-the-art
NLP results. However, the most beneficial task on
average (in terms of both raw accuracy and gains
over random baseline) is CCG, our most syntactic
task, which suggests that syntactic knowledge is
important for function word comprehension. We
also note that CCG achieves this result with the
smallest number of training examples out of all
pretraining tasks compared.

We furthermore see that our probing sets are
challenging even for BERT—although BERT sub-
stantially improves performance on many probing
sets, and obtains superhuman performance on con-
junctions and EOS,11 it also shows clear weak-
nesses in several probing sets (e.g., wh-words and
prepositions) where it is outperformed even by a
randomly initialized baseline with no pretraining.

4.2 Correlations between Pretaining Tasks

To further investigate whether our probing sets dif-
ferentiate between pretraining objectives, we look
into correlations between the model predictions;
given two pretraining tasks i and j, how often does
a model trained on i make the exact same predic-
tion as a model trained on j? Figure 2 shows the
correlations across all probing sets in aggregate,
and for the wh-words and prepositions sets specif-

11We speculate that this might be an effect of the next-
sentence classification task that BERT is pretrained on.
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0.50 0.51 0.63 0.53 0.55 0.52 0.54 0.55 0.67 0.50 0.86
0.46 0.29 0.35 0.25 0.23 0.37 0.38 0.29 0.29 0.47 0.85
0.48 0.19 0.22 0.19 0.18 0.21 0.25 0.19 0.22 0.48 0.87
0.38 0.46 0.45 0.47 0.50 0.41 0.42 0.47 0.45 0.34 0.77
0.40 0.55 0.49 0.56 0.59 0.49 0.50 0.54 0.52 0.64 0.80
0.50 0.51 0.82 0.59 0.62 0.70 0.61 0.68 0.71 0.90 0.82
0.50 0.59 0.66 0.60 0.61 0.62 0.59 0.61 0.72 0.52 0.86
0.50 0.53 0.61 0.63 0.68 0.55 0.57 0.59 0.63 0.97 0.88
0.49 0.34 0.32 0.28 0.30 0.28 0.35 0.29 0.28 0.49 0.84
0.47 0.44 0.51 0.46 0.47 0.46 0.47 0.47 0.50 0.59 0.84

Figure 1: Accuracy for each pretraining task on each probing set. The leftmost column shows the majority-class
baseline, and the rightmost column shows individual annotator accuracy on the final probing set. Blue denotes
performance improvement over randomly initialized encoder baseline and orange denotes performance decrease.

Overall Prepositions Wh-Words

Figure 2: Prediction overlap on the probing tasks for models trained on different pretraining tasks (i.e., how often
models make identical predictions on a particular probing set).

ically (see Appendix G for all sets).
We observe that models pretrained on differ-

ent tasks do make different predictions overall,
with image-caption matching and skip-thought be-
ing the tasks that make predictions that deviate
the most from others (left). NLI and image-
caption matching are the least correlated pair of
tasks among all. The difference between image-
captioning and other tasks is the most prominent
in the preposition probing set; it makes predictions
that are only weakly correlated with others (mid-
dle). We hypothesize that this is due to the duality
of preposition semantics; most prepositions have
both concrete and abstract senses, and the image
model is biased to focus on the former.

To illustrate, consider the preposition below,
which can denote a spatial configuration (e.g., the
boots end below the knee) or an abstract rela-
tion (numeric or qualitative comparison; e.g., her
score is below sixty). In the preposition dataset,
below occurs 17 times, 11 of which are spatial
and 6 abstract. For the spatial usage, both MNLI
and image-caption models have 64% accuracy
(7/11). The NLI model shows 50% accuracy for

pairs containing abstract uses (3/6), but the image-
captioning model answers none of them correctly
(0/6). Here is an example of a numeric usage of
below that the NLI model answered correctly but
the image model answered incorrectly:

P: Only those whose incomes do not exceed 125
percent of the federal poverty level qualify . . .

H: Those whose incomes are below 125 percent
qualify . . . (P→H)
The image model’s bias towards the spatial usage
is intuitive, since the numeric usage of below (i.e.,
as a counterpart to exceed) is difficult to learn from
visual clues only. This concrete-abstract duality,
which is not specific to below but common to most
other prepositions (Schneider et al., 2018), may
partially explain why the image-caption model be-
haves so differently from all other models, which
are not trained on a multimodal objective.

4.3 Data Size and Genre Effects

As can be seen from the varying sizes of the pre-
training dataset reported in Figure 1, seeing more
data at pretrain time does not imply better perfor-
mance on probing tasks. Also, as noted before,
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the fact that pretraining can hurt probing perfor-
mance suggests that if the task is not the “right”
task, adding more datapoints at pretrain time is not
necessarily beneficial for probing performance.

Another potential confound is vocabulary over-
lap between pretraining and probing task datasets.
Since all pretraining task datasets have different
sets of vocabulary, the variance in the results could
be attributed to the amount of words in the prob-
ing set already seen at pretrain time. To investigate
this possibility, we compute the ratio of overlap-
ping words between the pretraining and probing
datasets. A regression analysis shows that vocab-
ulary overlap overall does not predict better per-
formance on the probing set (p > .05). No single
probing set performance was significantly affected
by vocabulary overlap either (all p > .05 after
Bonferroni correction for multiple comparisons).

5 Related Work

An active line of work focuses on “probing” neural
representations of language. Ettinger et al. (2016,
2017); Zhu et al. (2018), i.a., use a task-based ap-
proach similar to ours, where tasks that require a
specific subset of linguistic knowledge are used to
perform qualitative evaluation. Gulordava et al.
(2018), Giulianelli et al. (2018), Rønning et al.
(2018), and Jumelet and Hupkes (2018) make a fo-
cused contribution towards a particular linguistic
phenomenon (agreement, ellipsis, negative polar-
ity). Using recast NLI, Poliak et al. (2018a) probe
for semantic phenomena in neural machine trans-
lation encoders. Staliūnaite and Bonfil (2017);
Mahler et al. (2017); Ribeiro et al. (2018) use sim-
ilar strategies to our structural mutation method,
although their primary goal was to break existing
systems by adversarial modifications rather than
to compare different models. Ribeiro et al. (2018)
and our work both test for proper comprehension
of the modified expressions, but our modifications
are designed to induce semantic changes whereas
their modifications are intended to preserve the
original meaning. Our strategy is close to that of
Naik et al. (2018), but our modifications are more
constrained and lexically targeted.

The design of our NLI-style probing tasks fol-
lows the recent line of work which advocates for
NLI as a general-purpose format for diagnostic
tasks (White et al., 2017; Poliak et al., 2018b).
This idea is similar in spirit to McCann et al.
(2018), which advocates for question answering as

a general-purpose format, to edge probing (Tenney
et al., 2019) which probes for syntactic and seman-
tic structures via a common labeling format, and
to GLUE (Wang et al., 2018) which aggregates
a variety of tasks that share a common sentence-
classification format. The primary difference in
our work is that we focus specifically on the un-
derstanding of function words in context. We also
present a suite of several tasks, but each one fo-
cuses on a particular structure, whereas tasks pro-
posed in the works above generally aggregate mul-
tiple phenomena. Each of our tasks isolates each
function word type and employ a targeted mod-
ification strategy that gives us a more narrowly-
focused, informative scope of analysis.

6 Conclusion

We propose a new challenge set of nine tasks
that focus on probing function word comprehen-
sion. Although we use our challenge set to com-
pare the effects of pretraining, the probing sets
themselves are architecture- and evaluation setup-
agnostic. The results show that models pretrained
with different objectives do generate different pre-
dictions (e.g., image models have a bias towards
concrete preposition senses), and that no single
objective leads to models that perform best or
worst across all probing tasks. This suggests
that there are ‘gaps’ in the linguistic knowledge
learned from a single pretraining objective that
could be complemented by other objectives, and
this calls for further research into how different
pretraining objectives could be productively com-
bined. On average, CCG supertagging—our most
syntactic task—is the most beneficial pretraining
task for function word comprehension, even more
so than language modeling which has achieved
state-of-the-art results in recent advances in NLP.
In addition to contributing to the discussion of
finding effective pretraining tasks, we hope that
our exploratory study initiates further discussions
about modeling function words and their contribu-
tion to compositional meaning.
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Appendix

A Experimental Details

Image-Caption Matching We train on image-
caption pairs from the MSCOCO dataset (Lin
et al., 2014) to minimize the cosine distance be-
tween representations of the sentence and corre-
sponding image. Specifically, we encode the sen-
tence with the BiLSTM encoder. We use a Resnet-
101 (He et al., 2016), a CNN pretrained on Ima-
geNet to obtain a 1024-dimensional feature repre-
sentation for the image. We linearly transform the
encoder output of the sentence to the size of the
image representation and use a cosine embedding
loss against the two vectors, i.e., minimize the co-
sine distance between two representations to allow
mapping sentences to their corresponding images.

Regularization We regularize with dropout
with p = 0.2. Dropout is placed after the input
layer, each LSTM layer, and each MLP layer in
the task-specific classifier.

Preprocessing We use Moses tokenizer with a
maximum sequence length of 40 tokens. Because
we used a character-based word encoder, we have
no word-level vocabulary, except for sequence-to-
sequence tasks, where we use an output vocabu-
lary of 20,000 tokens. For translation, we use BPE
tokenization; for skip-thought we use the Moses
tokenizer.
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Training Details We optimize using AMSGrad
(Reddi et al., 2018) with a learning rate of 1e-3 for
text generation tasks and 1e-4 otherwise. We eval-
uate on the validation set every 1,000 iterations
and stop training if we fail to get a best result after
20 evaluations. We multiply the learning rate by
0.5 whenever validation performance fails to im-
prove for more than 4 validation checks. We also
stop training if the learning rate falls below 1e-6.
At the end of training, we load the best checkpoint.

Acceptability task evaluation For the accept-
ability tasks, we use a 10-fold cross-validation
evaluation setup because we are training task-
specific classifiers for each probing task and the
datasets are small. We split each dataset into 10
folds with balanced label ratio within each fold,
and test on each fold using the other 9 as train and
development sets (8 folds train, 1 fold dev). The
accuracy reported in the paper for the acceptability
tasks is test accuracy averaged across all folds.

B MNLI Development Set Accuracy for
Pretrained Models

MNLI (dev)

Random 73.8
CCG 69.6
DisSent 73.6
MNLI 75.6
IMG 62.6
Skip 67.4
MT 72.0
LM 72.6

Table 2: MNLI development set accuracy for each pre-
trained model.

C Annotation Protocol

We recruited three annotators per sentence or sen-
tence pair on Amazon Mechanical Turk to control
the quality of the labels for our heuristically gener-
ated datasets. For the acceptability judgment task
sentences, individual sentence or sentence pair ex-
ample was presented to the annotators and they
were asked to choose between the options natural,
unnatural, neither, after reading the given exam-
ple. The examples were presented in sets of five
sentences (individual sentence tasks) or three sen-
tence pairs (sentence pair tasks) in random order,

with the option to stop at any point during the pro-
cess. The annotators were compensated with $.1
per five sentences (or three sentence pairs). For
NLI task sentences, the annotators were presented
with six sentence pairs, for which they were asked
to provide judgment on a five-point scale about the
inferrability of the second sentence from the first.
The annotators were compensated with $.1 per six
sentence pairs. See Table 3 for inter-annotator
agreement and the final size of the dataset.

Agree Unan. Accuracy Size

Negation 60.3 40.5 80.2 598
Spatial 70.0 43.4 85.0 180
Quant. 73.8 48.8 86.9 448
Comp. 68.7 40.7 84.3 100
Prep 54.7 33.1 77.4 358

wh-words 72.5 58.7 86.2 584
Def. 72.0 58.1 86.0 508
Coord. 75.3 62.9 87.6 456
EOS 64.9 47.3 82.4 478

Table 3: Pairwise inter-annotator agreement (n = 3),
% of examples with unanimous agreement, and indi-
vidual annotator accuracy according to the expected la-
bel for each task in the final probing dataset.

D List of Prepositions Used for the NLI
Probing Set

about, above, across, after, against, ahead of, all
over, along, among, around, at, before, behind, be-
low, beneath, beside, by, for, from, in, in front of,
inside, inside of, into, near, nearby, next to, on,
on top of, out of, outside, outside of, over, past,
through, to, under, up, within, with, without

E Random Initialization Variance

µ (±σ)
Prep 46.14 (±0.78)
Negation 53.66 (±0.74)
Spatial 25.34 (±1.87)
Quant. 19.38 (±0.86)
Comp. 31.8 (±1.51)
wh-words 51.37 (±0.36)
def/indef articles 57.77 (±0.97)
coord. 54.39 (±0.96)
EOS 52.74 (±1.30)

Table 4: Mean and 95% CI of probing task perfor-
mance across five different random initializations.
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majority rand ccg
38K

dis
151K

nli
393K

img
592K

skip
4M

mt
3.4M

lm
30.3M

bert human

expneg
neg

lexneg

0.41 0.43 0.37 0.42 0.53 0.39 0.39 0.42 0.40 0.58 0.82
0.40 0.55 0.49 0.56 0.59 0.49 0.50 0.54 0.52 0.64 0.80
0.42 0.65 0.62 0.67 0.65 0.55 0.57 0.65 0.65 0.68 0.81

Figure 3: Accuracy of each pretrained model on subsets of the negation probing set. neg is the accuracy for
the whole negation probing set. lexneg shows accuracy for the subset of sentence pairs negated using antonyms
and expneg sentences explicitly negated using not. The leftmost column shows the majority-class baseline, and
the rightmost column shows individual annotator accuracy on the final evaluation set. Blue denotes performance
improvement over randomly initialized encoder baseline and orange denotes performance decrease.

F Subset Accuracy for the Negation
Probing Set

In Figure 3, we see that the NLI model’s improve-
ment on the negation probing set mostly derives
from its improvement on explicit negation rather
than lexical negation.

G Prediction Overlap between Models

We show prediction overlap heatmaps for all prob-
ing tasks in Figure 4.

248



Figure 4: Heatmaps of prediction overlap for all probing tasks, between models pretrained with different objectives.
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Abstract

Large crowdsourced datasets are widely used
for training and evaluating neural models
on natural language inference (NLI). De-
spite these efforts, neural models have a hard
time capturing logical inferences, including
those licensed by phrase replacements, so-
called monotonicity reasoning. Since no large
dataset has been developed for monotonicity
reasoning, it is still unclear whether the main
obstacle is the size of datasets or the model ar-
chitectures themselves. To investigate this is-
sue, we introduce a new dataset, called HELP,
for handling entailments with lexical and logi-
cal phenomena. We add it to training data for
the state-of-the-art neural models and evaluate
them on test sets for monotonicity phenomena.
The results showed that our data augmentation
improved the overall accuracy. We also find
that the improvement is better on monotonic-
ity inferences with lexical replacements than
on downward inferences with disjunction and
modification. This suggests that some types of
inferences can be improved by our data aug-
mentation while others are immune to it.

1 Introduction

Natural language inference (NLI) has been pro-
posed as a benchmark task for natural language
understanding. This task is to determine whether a
given statement (premise) semantically entails an-
other statement (hypothesis) (Dagan et al., 2013).
Large crowdsourced datasets such as SNLI (Bow-
man et al., 2015a) and MultiNLI (Williams et al.,
2018) have been created from naturally-occurring
texts for training and testing neural models on
NLI. Recent reports showed that these crowd-
sourced datasets contain undesired biases that al-
low prediction of entailment labels only from hy-
pothesis sentences (Gururangan et al., 2018; Po-
liak et al., 2018b; Tsuchiya, 2018). Moreover,
these standard datasets come with the so-called

Upward Some changes in personal values are simply part of growing older
(MultiNLI) ⇒ Some changes in values are a part of growing older
Downward At most ten commissioners spend time at home
(FraCaS) ⇒ At most ten female commissioners spend time at home

Table 1: Upward and downward inferences.

upward monotonicity inferences (see Table 1),
i.e., inferences from subsets to supersets (changes
in personal values v changes in values), but they
rarely come with downward monotonicity infer-
ences, i.e., inferences from supersets to subsets
(commissioners w female commissioners). Down-
ward monotonicity inferences are interesting in
that they allow to replace a phrase with a more
specific one and thus the resulting sentence can be-
come longer, yet the inference is valid.

FraCaS (Cooper et al., 1994) contains such log-
ically challenging problems as downward infer-
ences. However, it is small in size (only 346 exam-
ples) for training neural models, and it covers only
simple syntactic patterns with severely restricted
vocabularies. The lack of such a dataset on a large
scale is due to at least two factors: it is hard to in-
struct crowd workers without deep knowledge of
natural language syntax and semantics, and it is
also unfeasible to employ experts to obtain a large
number of logically challenging inferences.

Bowman et al. (2015b) proposed an artificial
dataset for logical reasoning, whose premise and
hypothesis are automatically generated from a
simple English-like grammar. Following this line
of work, Geiger et al. (2018) presented a method
to construct a complex dataset for multiple quanti-
fiers (e.g., Every dwarf licks no rifle ⇒ No ugly
dwarf licks some rifle). These datasets contain
downward inferences, but they are designed not
to require lexical knowledge. There are also NLI
datasets which expand lexical knowledge by re-
placing words using lexical rules (Monz and de Ri-
jke, 2001; Glockner et al., 2018; Naik et al., 2018;
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Poliak et al., 2018a). In these works, however,
little attention has been paid to downward infer-
ences.

The GLUE leaderboard (Wang et al., 2019) re-
ported that neural models did not perform well on
downward inferences, and this leaves us guessing
whether the lack of large datasets for such kind
of inferences that involve the interaction between
lexical and logical inferences is an obstacle of un-
derstanding inferences for neural models.

To shed light on this problem, this paper makes
the following three contributions: (a) providing
a method to create a large NLI dataset1 that
embodies the combination of lexical and log-
ical inferences focusing on monotonicity (i.e.,
phrase replacement-based reasoning) (Section 3),
(b) measuring to what extent the new dataset helps
neural models to learn monotonicity inferences,
and (c) by analyzing the results, revealing which
types of logical inferences are solved with our
training data augmentation and which ones are im-
mune to it (Section 4.2).

2 Monotonicity Reasoning

Monotonicity reasoning is a sort of reasoning
based on word replacement. Based on the mono-
tonicity properties of words, it determines whether
a certain word replacement results in a sentence
entailed from the original one (van Benthem,
1983; Icard and Moss, 2014). A polarity is a char-
acteristic of a word position imposed by mono-
tone operators. Replacements with more general
(or specific) phrases in ↑ (or ↓) polarity positions
license entailment. Polarities are determined by
a function which is always upward monotone (+)
(i.e., an order preserving function that licenses en-
tailment from specific to general phrases), always
downward monotone (−) (i.e., an order reversing
function) or neither, non-monotone.

Determiners are modeled as binary opera-
tors, taking noun and verb phrases as the first
and second arguments, respectively, and they
entail sentences with their arguments narrowed
or broadened according to their monotonicity
properties. For example, the determiner some
is upward monotone both in its first and second
arguments, and the concepts can be broadened by
replacing its hypernym (people w boy), removing
modifiers (dancing w happily dancing), or adding

1Our dataset and its generation code will be made publicly
available at https://github.com/verypluming/HELP.

disjunction. The concepts can be narrowed by
replacing its hyponym (schoolboy v boy), adding
modifiers, or adding conjunction.

(1) Some [NP boys↑]+[VP are happily dancing↑]+
⇒ Some [NP people] [VP are dancing]
; Some [NP schoolboys] [VP are dancing and singing]

If a sentence contains negation, the polarity of
words over the scope of negation is reversed:

(2) No [NP boys↓]−[VP are happily dancing↓]−
; No [NP one] [VP is dancing]
⇒ No [NP schoolboys] [VP are dancing and singing]

If the propositional object is embedded in another
negative or conditional context, the polarity of
words over its scope can be reversed again:

(3) If [there are no [NP boys↑]−[VP dancing happily↑]−]−,
[the party might be canceled]+

⇒ If [there is no [NP one] [VP dancing]],
[the party might be canceled]

In this way, the polarity of words is determined by
monotonicity operators and syntactic structures.

3 Data Creation

We address three issues when creating the infer-
ence problems: (a) Detect the monotone opera-
tors and their arguments; (b) Based on the syntac-
tic structure, induce the polarity of the argument
positions; (c) Using lexical knowledge or logical
connectives, narrow or broaden the arguments.

3.1 Source corpus

We use sentences from the Parallel Meaning Bank
(PMB, Abzianidze et al., 2017) as a source while
creating the inference dataset. The reason behind
choosing the PMB is threefold. First, the fine-
grained annotations in the PMB facilitate our au-
tomatic monotonicity-driven construction of infer-
ence problems. In particular, semantic tokeniza-
tion and WordNet (Fellbaum, 1998) senses make
narrow and broad concept substitutions easy while
the syntactic analyses in Combinatory Categorial
Grammar (CCG, Steedman, 2000) format and se-
mantic tags (Abzianidze and Bos, 2017) contribute
to monotonicity and polarity detection. Second,
the PMB contains lexically and syntactically di-
verse texts from a wide range of genres. Third, the
gold (silver) documents are fully (partially) manu-
ally verified, which control noise in the automated
generated dataset. To prevent easy inferences, we
use the sentences with more than five tokens from
5K gold and 5K silver portions of the PMB.
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Step 1. Select a sentence using semantic tags from the PMB

All kids were dancing on the floor
AND CON PST EXG REL DEF CON

Step 2. Detect the polarity of constituents via CCG analysis

All [NP kids↓] were [VP dancing on the floor↑]

Step 3. Replace expressions based on monotonicity

P : All [NP kids↓] [VP were dancing on the floor↑]
H1: All [NP foster children] [VP were dancing on the floor] ENTAIL

H2: All [NP kids] [VP were dancing] ENTAIL

Step 4. Create another inference pair by swapping sentences

P ′1(= H1): All [NP foster children] [VP were dancing on the floor]
P ′2(= H2): All [NP kids] [VP were dancing]
H ′(= P ): All [NP kids] [VP were dancing on the floor] NEUTRAL

Figure 1: Illustration for creating the HELP dataset.

3.2 Methodology

Figure 1 illustrates the method of creating the
HELP dataset. We use declarative sentences from
the PMB containing monotone operators, conjunc-
tion, or disjunction as a source (Step 1). These tar-
get words can be identified by their semantic tags:
AND (all, every, each, and), DIS (some, several,
or), NEG (no, not, neither, without), DEF (both),
QUV (many, few), and IMP (if, when, unless). In
Step 2, after locating the first (NP) and the sec-
ond (VP) arguments of the monotone operator via
a CCG derivation, we detect their polarities with
the possibility of reversing a polarity if an argu-
ment appears in a downward environment.

In Step 3, to broaden or narrow the first and the
second arguments, we consider two types of op-
erations: (i) lexical replacement, i.e., substituting
the argument with its hypernym/hyponym (e.g.,
H1) and (ii) syntactic elimination, i.e., dropping
a modifier or a conjunction/disjunction phrase in
the argument (e.g., H2). Given the polarity of the
argument position (↑ or ↓) and the type of replace-
ment (with more general or specific phrases), the
gold label (entailment or neutral) of a premise-
hypothesis pair is automatically determined; e.g.,
both (P,H1) and (P,H2) in Step 3 are assigned
entailment. For lexical replacements, we use
WordNet senses from the PMB and their ISA rela-
tions with the same part-of-speech to control nat-
uralness of the obtained sentence. To compensate
missing word senses from the silver documents,
we use the Lesk algorithm (Lesk, 1986). In Step
4, by swapping the premise and the hypothesis, we
create another inference pair and assign its gold
label; e.g., (P ′1, H

′) and (P ′2, H
′) are created and

assigned neutral. By swapping a sentence pair cre-
ated by syntactic elimination, we can create a pair

Section Size Example

Up 7784
Tom bought some Mexican sunflowers for Mary
⇒Tom bought some flowers for Mary*

Down 21192
If there’s no water, there’s no whisky*
⇒If there’s no facility, there’s no whisky

Non 1105
Shakespeare wrote both tragedy and comedy*
;Shakespeare wrote both tragedy and drama

Conj 6076
Tom removed his glasses
;Tom removed his glasses and rubbed his eyes*

Disj 438
The trees are barren
⇒The trees are barren or bear only small fruit*

Table 2: Examples in HELP. The sentence with an as-
terisk is the original sentence from the PMB.

such as (P ′2, H
′) in which the hypothesis is more

specific than the premise.

3.3 The HELP dataset

The resulting dataset has 36K inference pairs con-
sisting of upward monotone, downward mono-
tone, non-monotone, conjunction, and disjunction.
Table 2 shows some examples. The number of
vocabulary items is 15K. We manually checked
the naturalness of randomly sampled 500 sentence
pairs, of which 146 pairs were unnatural. As men-
tioned in previous work (Glockner et al., 2018),
there are some cases where WordNet for substitu-
tion leads to unnatural sentences due to the context
mismatch; e.g., an example such as P: You have
no driving happening ⇒ H: You have no driving
experience, where P is obtained from H by replac-
ing experience by its hypernym happening. Since
our intention is to explore possible ways to aug-
ment training data for monotonicity reasoning, we
include these cases in the training dataset.

4 Experiments

We use HELP as additional training material for
three neural models for NLI and evaluate them on
test sets dealing with monotonicity reasoning.

4.1 Experimental settings

Models We used three models: BERT (Devlin
et al., 2019), BiLSTM+ELMo+Attn (Wang et al.,
2019), and ESIM (Chen et al., 2017).

Training data We used three different training
sets and compared their performance; MultiNLI
(392K), MultiNLI+MQ (the dataset for multiple
quantifiers introduced in Section 1; Geiger et al.,
2018) (892K), and MultiNLI+HELP (429K).

Test data We used four test sets: (i) the GLUE
diagnostic dataset (Wang et al., 2019) (upward
monotone, downward monotone, non-monotone,
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Model

GLUE diagnostic FraCaS SICK MNLI
Train Up Down Non Conj Disj Total match mismatch
Data (30) (30) (22) (32) (38) (152) (80) (4927) (10000) (10000)

4 4 4 4 4 4 4 4 4 4

BERT
MNLI 50.4 -67.5 23.1 52.5 -6.1 17.8 65.0 55.4 84.6 83.4
+MQ 59.6 +9.2 -49.3 +18.2 14.0 -9.1 62.1 +9.6 -18.8 -12.7 26.3 +8.5 68.8 +3.8 58.2 +2.8 78.4 -6.2 78.6 -4.8
+HELP 67.0 +16.6 29.8 +97.3 47.9 +24.8 72.1 +19.6 -4.1 +2.0 51.2 +33.4 68.8 +3.8 60.0 +4.6 84.4 -0.2 83.1 -0.3

BiLSTM MNLI 22.2 -9.4 -2.7 42.4 -9.9 -3.5 68.9 53.8 76.4 76.1
+ELMo +MQ 22.2 0.0 8.1 +17.5 -5.7 -3.0 42.4 0.0 -9.8 +0.1 5.7 +9.2 65.9 -3.0 54.0 +0.2 71.4 -5.0 70.7 -5.4
+Attn +HELP 32.4 +10.2 22.9 +32.3 3.7 +6.4 45.6 +3.2 -9.9 0.0 17.0 +20.5 71.3 +2.4 54.0 +0.2 75.2 -1.2 74.1 -2.0

ESIM
MNLI 14.9 -14.0 6.0 29.8 -3.6 1.1 47.5 43.9 71.3 70.7
+MQ 27.2 +12.3 -7.8 +6.2 3.4 -2.6 5.2 -24.6 -13.0 -9.4 6.8 +5.7 43.7 -3.8 53.1 +9.2 68.6 -3.7 68.2 -2.5
+HELP 31.4 +16.5 24.7 +38.7 8.0 +2.0 32.6 +2.8 7.1 +10.7 27.0 +25.9 48.8 +1.3 56.6 +12.7 71.1 -0.2 70.1 -0.6

Table 3: Evaluation results on the GLUE diagnostic dataset, FraCaS, SICK, and MultiNLI (MNLI). The number
in parentheses is the number of problems in each test set. 4 is the difference from the model trained on MNLI.

conjunction, and disjunction sections), (ii) Fra-
CaS (the generalized quantifier section), (iii) the
SICK (Marelli et al., 2014) test set, and (iv)
MultiNLI matched/mismatched test set. We
used the Matthews correlation coefficient (ranging
[−1, 1]) as the evaluation metric for GLUE. Re-
garding other datasets, we used accuracy as the
metric. We also check if our data augmentation
does not decrease the performance on MultiNLI.

4.2 Results and discussion

Table 3 shows that adding HELP to MultiNLI im-
proved the accuracy of all models on GLUE, Fra-
CaS, and SICK. Regarding MultiNLI, note that
adding data for downward inference can be harm-
ful for performing upward inference, because lex-
ical replacements work in an opposite way in
downward environments. However, our data aug-
mentation minimized the decrease in performance
on MultiNLI. This suggests that models managed
to learn the relationships between downward oper-
ators and their arguments from HELP.

The improvement in accuracy is better with
HELP than that with MQ despite the fact that the
size of HELP is much smaller than MQ. MQ does
not deal with lexical replacements, and thus the
improvement is not stable. This indicates that the
improvement comes from carefully controlling the
target reasoning of the training set rather than from
its size. ESIM showed a greater improvement in
accuracy compared with the other models when
we added HELP. This result arguably supports the
finding in Bowman et al. (2015b) that a tree ar-
chitecture is better for learning some logical infer-
ences. Regarding the evaluation on SICK, Talman
and Chatzikyriakidis (2018) reported a drop in ac-
curacy of 40-50% when BiLSTM and ESIM were
trained on MultiNLI because SICK is out of the
domain of MultiNLI. Indeed, the accuracy of each
model, including BERT, was low at 40-60%.

When compared among linguistic phenomena,

the improvement by adding HELP was better for
upward and downward monotone. In particular, all
models except models trained with HELP failed to
answer 68 problems for monotonicity inferences
with lexical replacements. This indicates that such
inferences can be improved by adding HELP.

The improvement for disjunction was smaller
than other phenomena. To investigate this, we
conducted error analysis on 68 problems of GLUE
and FraCaS, which all the models misclassified.
44 problems are neutral problems in which all
words in the hypothesis occur in the premise (e.g.,
He is either in London or in Paris ; He is in
London). 13 problems are entailment problems in
which the hypothesis contains a word or a phrase
not occurring in the premise (e.g., I don’t want to
have to keep entertaining people⇒ I don’t want to
have to keep entertaining people who don’t value
my time). These problems contain disjunction or
modifiers in downward environments where either
(i) the premise P contains all words in the hypoth-
esis H yet the inference is invalid or (ii) H con-
tains more words than those in P yet the infer-
ence is valid.2 Although HELP contains 21K such
problems, the models nevertheless misclassified
them. This indicates that the difficulty in learn-
ing these non-lexical downward inferences might
not come from the lack of training datasets.

5 Conclusion and Future Work

We introduced a monotonicity-driven NLI data
augmentation method. The experiments showed
that neural models trained on HELP obtained the
higher overall accuracy. However, the improve-
ment tended to be small on downward mono-
tone inferences with disjunction and modification,
which suggests that some types of inferences can

2Interestingly, certain logical inferences including dis-
junction and downward monotonicity are difficult also for hu-
mans to get (Geurts and van der Slik, 2005).
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be improved by adding data while others might re-
quire different kind of help.

For future work, our data augmentation can be
used for multilingual corpora. Since the PMB an-
notations sufficed for creating HELP, applying our
method to the non-English PMB documents seems
straightforward. Additionally, it is interesting to
verify the quality and contribution of a dataset
which will be created by using our method on an
automatically annotated and parsed corpus.
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Abstract

Popular Natural Language Inference (NLI)
datasets have been shown to be tainted by
hypothesis-only biases. Adversarial learning
may help models ignore sensitive biases and
spurious correlations in data. We evaluate
whether adversarial learning can be used in
NLI to encourage models to learn representa-
tions free of hypothesis-only biases. Our anal-
yses indicate that the representations learned
via adversarial learning may be less biased,
with only small drops in NLI accuracy.

1 Introduction

Popular datasets for Natural Language Inference
(NLI) - the task of determining whether one sen-
tence (premise) likely entails another (hypothesis)
- contain hypothesis-only biases that allow mod-
els to perform the task surprisingly well by only
considering hypotheses while ignoring the corre-
sponding premises. For instance, such a method
correctly predicted the examples in Table 1 as con-
tradictions. As datasets may always contain bi-
ases, it is important to analyze whether, and to
what extent, models are immune to or rely on
known biases. Furthermore, it is important to build
models that can overcome these biases.

Recent work in NLP aims to build more ro-
bust systems using adversarial methods (Alzantot
et al., 2018; Chen & Cardie, 2018; Belinkov &
Bisk, 2018, i.a.). In particular, Elazar & Gold-
berg (2018) attempted to use adversarial training
to remove demographic attributes from text data,
with limited success. Inspired by this line of work,
we use adversarial learning to add small compo-
nents to an existing and popular NLI system that
has been used to learn general sentence represen-
tations (Conneau et al., 2017). The adversarial

∗∗ Equal contribution

A dog runs through the woods near a cottage
I The dog is sleeping on the ground

A person writing something on a newspaper
I A person is driving a fire truck

A man is doing tricks on a skateboard
I Nobody is doing tricks

Table 1: Examples from SNLI’s development set that
Poliak et al. (2018)’s hypothesis-only model correctly
predicted as contradictions. The first line in each sec-
tion is a premise and lines with I are corresponding
hypotheses. The italicized words are correlated with
the “contradiction” label in SNLI

techniques include (1) using an external adversar-
ial classifier conditioned on hypotheses alone, and
(2) creating noisy, perturbed training examples. In
our analyses we ask whether hidden, hypothesis-
only biases are no longer present in the resulting
sentence representations after adversarial learning.
The goal is to build models with less bias, ideally
while limiting the inevitable degradation in task
performance. Our results suggest that progress on
this goal may depend on which adversarial learn-
ing techniques are used.

Although recent work has applied adversarial
learning to NLI (Minervini & Riedel, 2018; Kang
et al., 2018), this is the first work to our knowl-
edge that explicitly studies NLI models designed
to ignore hypothesis-only biases.

2 Methods

We consider two types of adversarial methods. In
the first method, we incorporate an external clas-
sifier to force the hypothesis-encoder to ignore
hypothesis-only biases. In the second method, we
randomly swap premises in the training set to cre-
ate noisy examples.
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2.1 General NLI Model
Let (P,H) denote a premise-hypothesis pair, g de-
note an encoder that maps a sentence S to a vector
representation v, and c a classifier that maps v to
an output label y. A general NLI framework con-
tains the following components:

• A premise encoder gP that maps the premise
P to a vector representation p.

• A hypothesis encoder gH that maps the hy-
pothesis H to a vector representation h.

• A classifier cNLI that combines and maps p
and h to an output y.

In this model, the premise and hypothesis are each
encoded with separate encoders. The NLI classi-
fier is usually trained to minimize the objective:

LNLI = L(cNLI([gP (P ); gH(H)], y)) (1)

where L(ỹ, y) is the cross-entropy loss. If gP is
not used, a model should not be able to success-
fully perform NLI. However, models without gP
may achieve non-trivial results, indicating the ex-
istence of biases in hypotheses (Gururangan et al.,
2018; Poliak et al., 2018; Tsuchiya, 2018).

2.2 AdvCls: Adversarial Classifier
Our first approach, referred to as AdvCls, follows
the common adversarial training method (Good-
fellow et al., 2015; Ganin & Lempitsky, 2015;
Xie et al., 2017; Zhang et al., 2018) by adding
an additional adversarial classifier cHypoth to our
model. cHypoth maps the hypothesis representation
h to an output y. In domain adversarial learning,
the classifier is typically used to predict unwanted
features, e.g., protected attributes like race, age,
or gender (Elazar & Goldberg, 2018). Here, we
do not have explicit protected attributes but rather
latent hypothesis-only biases. Therefore, we use
cHypoth to predict the NLI label given only the hy-
pothesis. To successfully perform this prediction,
cHypoth needs to exploit latent biases in h.

We modify the objective function (1) as

L =LNLI + λLossLAdv

LAdv =L(cHypoth(λEncGRLλ(gH(H)), y))

To control the interplay between cNLI and cHypoth
we set two hyper-parameters: λLoss, the impor-
tance of the adversarial loss function, and λEnc, a
scaling factor that multiplies the gradients after re-
versing them. This is implemented by the scaled

gradient reversal layer, GRLλ (Ganin & Lempit-
sky, 2015). The goal here is modify the represen-
tation gH(H) so that it is maximally informative
for NLI while simultaneously minimizes the abil-
ity of cHypoth to accurately predict the NLI label.

2.3 AdvDat: Adversarial Training Data
For our second approach, which we call Adv-
Dat, we use an unchanged general model, but
train it with perturbed training data. For a frac-
tion of example (P,H) pairs in the training data,
we replace P with P ′, a premise from another
training example, chosen uniformly at random.
For these instances, during back-propagation, we
similarly reverse the gradient but only back-
propagate through gH . The adversarial loss func-
tion LRandAdv is defined as:

L(cNLI([GRL0(gP (P
′));λEncGRLλ(gH(H))], y))

where GRL0 implements gradient blocking on gP
by using the identity function in the forward step
and a zero gradient during the backward step. At
the same time, GRLλ reverses the gradient going
into gH and scales it by λEnc, as before.

We set a hyper-parameter λRand ∈ [0, 1] that
controls what fraction P ’s are swapped at random.
In turn, the final loss function combines the two
losses based on λRand as

L = (1− λRand)LNLI + λRandLRandAdv

In essence, this method penalizes the model
for correctly predicting y in perturbed examples
where the premise is uninformative. This implic-
itly assumes that the label for (P,H) should be dif-
ferent than the label for (P ′, H), which in practice
does not always hold true.1

3 Experiments & Results

Experimental setup Out of 10 NLI datasets,
Poliak et al. (2018) found that the Stanford Natural
Language Inference dataset (SNLI; Bowman et al.,
2015) contained the most (or worst) hypothesis-
only biases—their hypothesis-only model outper-
formed the majority baseline by roughly 100%
(going from roughly 34% to 69%). Because of
the large magnitude of these biases, confirmed

1As pointed out by a reviewer, a pair labeled as neutral
might end up remaining neutral after randomly sampling the
premise, so adversarially training in this case might weaken
the model. Instead, one could limit adversarial training to
cases of entailment or contradiction.
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by Tsuchiya (2018) and Gururangan et al. (2018),
we focus on SNLI. We use the standard SNLI split
and report validation and test results. We also test
on SNLI-hard, a subset of SNLI that Gururangan
et al. (2018) filtered such that it may not contain
unwanted artifacts.

We apply both adversarial techniques to In-
ferSent (Conneau et al., 2017), which serves as
our general NLI architecture.2 Following the stan-
dard training details used in InferSent, we en-
code premises and hypotheses separately using
bi-directional long short-term memory (BiLSTM)
networks (Hochreiter & Schmidhuber, 1997).
Premises and hypotheses are initially mapped
(token-by-token) to Glove (Pennington et al.,
2014) representations. We use max-pooling over
the BiLSTM states to extract premise and hy-
pothesis representations and, following Mou et al.
(2016), combine the representations by concate-
nating their vectors, their difference, and their
multiplication (element-wise).

We use the default training hyper-parameters
in the released InferSent codebase.3 These in-
clude setting the initial learning rate to 0.1 and
the decay rate to 0.99, using SGD optimization
and dividing the learning rate by 5 at every epoch
when the accuracy deceases on the validation set.
The default settings also include stopping train-
ing either when the learning rate drops below
10−5 or after 20 epochs. In both adversarial
settings, the hyper-parameters are swept through
{0.05, 0.1, 0.2, 0.4, 0.8, 1.0}.
Results Table 2 reports the results on SNLI,
with the configurations that performed best on the
validation set for each of the adversarial methods.

Model Val Test Hard

Baseline 84.25 84.22 68.02

AdvCls 84.58 83.56 66.27
AdvDat 78.45 78.30 55.60

Table 2: Accuracies for the approaches. Baseline refers
to the unmodified, non-adversarial InferSent.

As expected, both training methods perform
worse than our unmodified, non-adversarial In-
ferSent baseline on SNLI’s test set, since they re-
move biases that may be useful for performing this

2Code developed is available at https:
//github.com/azpoliak/robust-nli.

3https://github.com/facebookresearch/
InferSent

(a) Hidden biases remaining from AdvCls

(b) Hidden biases remaining from AdvDat

Figure 1: Validation results when retraining a classifier
on a frozen hypothesis encoder (cHypoth, retrained) com-
pared to our methods (cNLI), the adversarial hypothesis-
only classifier (cHypoth, in AdvCls), majority baseline, a
random frozen encoder, and a hypothesis-only model.

task. The difference for AdvCls is minimal, and
it even slightly outperforms InferSent on the vali-
dation set. While AdvDat’s results are noticeably
lower than the non-adversarial InferSent, the drops
are still less than 6% points.4

4 Analysis

Our goal is to determine whether adversarial learn-
ing can help build NLI models without hypothesis-
only biases. We first ask whether the models’
learned sentence representations can be used by
a hypothesis-only classifier to perform well. We
then explore the effects of increasing the adversar-
ial strength, and end with a discussion of indicator
words associated with hypothesis-only biases.

4.1 Hidden Biases
Do the learned sentence representations eliminate
hypothesis-only biases after adversarial training?

4This drop may indicate that SNLI-hard may still have
biases, but, as pointed out by a reviewer, an alternative ex-
planation is a general loss of information in the encoded hy-
pothesis. However, Subsection 4.3 suggests that the loss of
information is more focused on biases.
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(a) AdvCls (b) AdvDat

Figure 2: Results on the validation set with different configurations of the adversarial methods.

We freeze sentence encoders trained with the stud-
ied methods, and retrain a new classifier that only
accesses representations from the frozen hypothe-
sis encoder. This helps us determine whether the
(frozen) representations have hidden biases.

A few trends can be noticed. First, we con-
firm that with AdvCls (Figure 1a), the hypothesis-
only classifier (chypoth) is indeed trained to perform
poorly on the task, while the normal NLI clas-
sifier (cNLI) performs much better. However, re-
training a classifier on frozen hypothesis represen-
tations (cHypoth, retrained) boosts performance. In
fact, the retrained classifier performs close to the
fully trained hypothesis-only baseline, indicating
the hypothesis representations still contain biases.
Consistent with this finding, Elazar & Goldberg
(2018) found that adversarially-trained text clas-
sifiers preserve demographic attributes in hidden
representations despite efforts to remove them.

Interestingly, we found that even a frozen ran-
dom encoder captures biases in the hypothesis,
as a classifier trained on it performs fairly well
(63.26%), and far above the majority class base-
line (34.28%). One reason might be that the word
embeddings (which are pre-trained) alone con-
tain significant information that propagates even
through a random encoder. Others have also found
that random encodings contain non-trivial infor-
mation (Conneau et al., 2018; Zhang & Bowman,
2018). The fact that the word embeddings were
not updated during (adversarial) training could ac-
count for the ability to recover performance at the
level of the classifier trained on a random encoder.
This may indicate that future adversarial efforts
should be applied to the word embeddings as well.

Turning to AdvDat, (Figure 1b), as the hyper-
parameters increase, the models exhibit fewer bi-

ases. Performance even drops below the random
encoder results, indicating it may be better at ig-
noring biases in the hypothesis. However, this
comes at the cost of reduced NLI performance.

4.2 Adversarial Strength
Is there a correlation between adversarial strength
and drops in SNLI performance? Does increasing
adversarial hyper-parameters affect the decrease in
results on SNLI?

Figure 2 shows the validation results with
various configurations of adversarial hyper-
parameters. The AdvCls method is fairly stable
across configurations, although combinations of
large λLoss and λEnc hurt the performance on SNLI
a bit more (Figure 2a). Nevertheless, all the drops
are moderate. Increasing the hyper-parameters
further (up to values of 5), did not lead to sub-
stantial drops, although the results are slightly less
stable across configurations (Appendix A). On the
other hand, the AdvDat method is very sensitive
to large hyper-parameters (Figure 2b). For every
value of λEnc, increasing λRand leads to significant
performance drops. These drops happen sooner
for larger λEnc values. Therefore, the effect of
stronger hyper-parameters on SNLI performance
seems to be specific to each adversarial method.

4.3 Indicator Words
Certain words in SNLI are more correlated with
specific entailment labels than others, e.g., nega-
tion words (“not”, “nobody”, “no”) correlated
with CONTRADICTION (Gururangan et al., 2018;
Poliak et al., 2018). These words have been
referred to as “give-away” words (Poliak et al.,
2018). Do the adversarial methods encourage
models to make predictions that are less affected
by these biased indicator words?
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Score Percentage decrease from baseline

Word Count p̂(l|w) Baseline AdvCls (1,1) AdvDat (0.4,1) AdvDat (1,1)

sleeping 108 0.88 0.24 15.63 53.13 -81.25
driving 53 0.81 0.32 -8.33 50 -66.67
Nobody 52 1 0.42 14.29 42.86 14.29
alone 50 0.9 0.32 0 83.33 0
cat 49 0.84 0.31 7.14 57.14 -85.71
asleep 43 0.91 0.39 -18.75 50 12.5
no 31 0.84 0.36 0 52.94 -52.94
empty 28 0.93 0.3 -16.67 83.33 -16.67
eats 24 0.83 0.3 37.5 87.5 -25
naked 20 0.95 0.46 0 83.33 -33.33

Table 3: Indicator words and how correlated they are with CONTRADICTION predictions. The parentheses
indicate hyper-parameter values: (λLoss, λEnc) for AdvCls and (λRand, λEnc) for AdvDat. Baseline refers to the
unmodified InferSent.

For each of the most biased words in SNLI asso-
ciated with the CONTRADICTION label, we com-
puted the probability that a model predicts an ex-
ample as a contradiction, given that the hypothesis
contains the word. Table 3 shows the top 10 ex-
amples in the training set. For each word w, we
give its frequency in SNLI, its empirical correla-
tion with the label and with InferSent’s prediction,
and the percentage decrease in correlations with
CONTRADICTION predictions by three configura-
tions of our methods. Generally, the baseline cor-
relations are more uniform than the empirical ones
(p̂(l|w)), suggesting that indicator words in SNLI
might not greatly affect a NLI model, a possibil-
ity that both Poliak et al. (2018) and Gururangan
et al. (2018) do concede. For example, Gururan-
gan et al. (2018) explicitly mention that “it is im-
portant to note that even the most discriminative
words are not very frequent.”

However, we still observed small skews towards
CONTRADICTION. Thus, we investigate whether
our methods reduce the probability of predicting
CONTRADICTION when a hypothesis contains an
indicator word. The model trained with AdvDat
(where λRand = 0.4, λEnc = 1) predicts contra-
diction much less frequently than InferSent on ex-
amples with these words. This configuration was
the strongest AdvDat model that still performed
reasonably well on SNLI (Figure 2b). Here, Adv-
Dat appears to remove some of the biases learned
by the baseline, unmodified InferSent. We also
provide two other configurations that do not show
such an effect, illustrating that this behavior highly
depends on the hyper-parameters.

5 Conclusion

We employed two adversarial learning techniques
to a general NLI model by adding an external ad-
versarial hypothesis-only classifier and perturbing
training examples. Our experiments and analyses
suggest that these techniques may help models ex-
hibit fewer hypothesis-only biases. We hope this
work will encourage the development and analy-
sis of models that include components that ignore
hypothesis-only biases, as well as similar biases
discovered in other natural language understand-
ing tasks (Schwartz et al., 2017), including visual
question answering, where recent work has con-
sidered similar adversarial techniques for remov-
ing language biases (Ramakrishnan et al., 2018;
Grand & Belinkov, 2019).
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Abstract

We present BIS, a Bayesian Inference Seman-
tics, for probabilistic reasoning in natural lan-
guage. The current system is based on the
framework of Bernardy et al. (2018), but de-
parts from it in important respects. BIS makes
use of Bayesian learning for inferring a hy-
pothesis from premises. This involves estimat-
ing the probability of the hypothesis, given the
data supplied by the premises of an argument.
It uses a syntactic parser to generate typed syn-
tactic structures that serve as input to a model
generation system. Sentences are interpreted
compositionally to probabilistic programs, and
the corresponding truth values are estimated
using sampling methods. BIS successfully
deals with various probabilistic semantic phe-
nomena, including frequency adverbs, gener-
alised quantifiers, generics, and vague predi-
cates. It performs well on a number of interest-
ing probabilistic reasoning tasks. It also sus-
tains most classically valid inferences (instan-
tiation, de Morgan’s laws, etc.). To test BIS
we have built an experimental test suite with
examples of a range of probabilistic and clas-
sical inference patterns.

1 Introduction

On a traditional view of inference, the entailment
relation between the premises of an argument and
its conclusion holds iff the argument is logically
valid in a proof or model theory. More recently,
computational approaches to entailment in natu-
ral text, such as Recognising Textual Entailment
(RTE, Dagan et al. (2009)) have attempted to cap-
ture inferences that depend on lexical meaning and
real world knowledge, as well as logical structure.
In the latter sorts of inference, the conclusions of-
ten follow from the premises within a certain range
of probability values.

In this paper we present Bayesian Inference Se-
mantics (BIS), a probabilistic semantics for natu-

ral language that assigns probability values, rather
than Boolean truth-values, to sentences. The prob-
ability of a sentence is the likelihood that an
idealised speaker, as represented by our model,
would accept the assertion that it expresses. Our
framework builds on the approach proposed by
Bernardy et al. (2018). It is Bayesian in that it con-
structs models in which asserted constraints pro-
vide Bayesian evidence that models use to deter-
mine whether objects satisfy particular properties.

Objects are represented as vectors in a model
space S, and properties are subspaces in S. Sat-
isfaction of a property is expressed as mem-
bership in the corresponding subspace of S.
The probability density over the space of pos-
sible situations corresponds to the a priori
density of objects in these subspaces, and is
specified through Bayesian priors. The sys-
tem leverages the probabilistic functional pro-
gramming language WebPPL (Goodman and
Stuhlmüller, 2014) to evaluate Bayesian posteri-
ors. English sentences are parsed using Ranta’s
Grammatical Framework (GF, http://www.
grammaticalframework.org/, 2004), and
the parses are compositionally mapped into inter-
pretations within BIS’s probabilistic models.

We apply BIS to inferences, most of which are
probabilistic in nature, and so closely related to
RTE concerns. We have constructed a test suite
of 78 inferences on which we have developed and
tested BIS. The premises in each argument pro-
vide Bayesian evidence for the models in which
the inference is interpreted, and its conclusion is
assigned a (posterior) probability value.1

In Section 2 we describe BIS. We explain the
syntax-model interface that our GF parses pro-
vide, and we characterise how our models are
constructed. The models employ Monte Carlo

1Our test set, and the code for BIS are available at
https://github.com/GU-CLASP/bbclm2019.
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Markov Chain (MCMC) sampling2 on objects
to estimate membership in the property classes
that correspond to the predicates identified in GF
parses of our input sentences.

Section 3 presents our inference system and our
test set. BIS currently handles a range of gen-
eralised quantifiers, sentential and VP negation,
modal and temporal adverbs, measure and com-
parative adjectives, common nouns, and a variety
of logical connectives. It treats VPs and common
nouns as monadic predicates. We show how BIS
handles both probabilistic and logically valid in-
ferences over a series of examples from the test
set. We specify the coverage that the system cur-
rently achieves for this set. We have designed
BIS to capture inferences involving gradable pred-
icates like tall, where the application of the pred-
icate is clear for upper and lower bound cases,
but increasingly indeterminate for intermediate in-
stances between these points. BIS handles argu-
ments in which neither a predicate nor its contrary
apply. It also covers both wide and narrow scope
readings of certain quantifiers.

We discuss other approaches to probabilistic se-
mantic inference in Section 4. Finally, in Section
5 we identify the issues that we plan to take up in
future work, and state our conclusions.

2 System Description

2.1 Overview
Our system for probabilistic semantics is com-
prised of three phases: (i) parsing, using the GF
tool, (ii) compositional Montegovian Semantics,
written in Haskell, and (iii) computation of entail-
ment probability.

Our syntax is encoded in the Grammatical
Framework (GF) formalism. GF converts a syn-
tactically well-formed sentence into an abstract
syntax tree, which is mapped to semantics. The
adequacy of the mapping is guaranteed by using
the same types in the GF abstract syntax as in the
Haskell semantics. The main constructions are de-
scribed below.

Our semantics blends aspects of Montague se-
mantics, vector space models, and Bayesian infer-
ence. It adopts the main ideas of Bernardy et al.
(2018), which we summarise here.

A sentence is interpreted as a probabilistic pro-
gram returning a Boolean value. Individuals are

2For detailed discussion of MCMC see Brooks (1998);
Roberts and Rosenthal (2004).

represented as (probabilistic) vectors. Other syn-
tactic categories are mapped to functional types,
following the Montague Grammar paradigm. BIS
evaluates the validity of an inference as follows. It
expresses the priors as a distribution over individ-
uals and predicates. The premises of the inference
impose conditions on the model that correspond
to Bayesian observations. We then compute the
truth-value of the conclusion using posterior dis-
tributions for input variables, yielding a Bernouilli
distribution. Its expected value (a real number be-
tween 0 and 1) corresponds to a probabilistic mea-
sure of entailment. Fig. 1 gives a schematic view
of BIS’s architecture.

This value can be computed symbolically, for
example by using the precise semantics for proba-
bilistic programming of Borgström et al. (2013).
However symbolic expressions may contain in-
tractable integrals. Therefore we resort to approx-
imating the result by using MCMC sampling, as
described by Goodman et al. (2008), and imple-
mented in their WebPPL tool.

2.2 Basics

Consider the sentence “John is a musician”. Our
GF grammar parses this sentence as:
CltoS Pos (S1 John (Bare (IsA Musician))).
We briefly review the combinators used above.
CltoS is of type Pol → Cl → S : it produces
a declarative sentence from a polarity (positive
or negative) and a declarative clause. S1 is of
type NP → AVP → Cl , taking a noun phrase
and a (possibly modified) verb phrase to return a
declarative clause. Here, AVP is understood as
VP phrase that might have been modified by a
modal adverb. There is no modifier in this exam-
ple, which is signaled by the combinator Bare , of
type VP → AVP . The types of the remaining
constants are IsA : CN → VP , John : NP , and
Musician : CN .

Because the types are the same in Haskell and
in GF, any abstract syntax tree given by GF will
be a well-typed Haskell expression. To obtain a
complete semantics, our model treats John and
Musician as random representatives of their re-
spective classes, and they are sampled accord-
ingly. Then the truth value of the sentence is eval-
uated (there is no premise in this case).

modelJohnMusician = do
john ← newInd
musician ← newPred
return (cltoS pos (s1 john (bare (isA musician))))
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Text Abstract syntax tree Probabilistic program result in (0, 1)
GF Haskell interpreter WebPPL

Syntax Semantics Sampling hyper parameters

Figure 1: Phases in our system

Running the model, with our implementation,
gives the following result:

false : 0.67 true : 0.33

In the absence of further information, an arbitrary
predicate has a chance of (around) 0.33 to hold of
an arbitrary individual. This number follows from
the way that we model predicates, as described in
Section 2.3.

To record assumptions about individuals and
predicates, we use the observe primitive of
Borgström et al. (2013), which ensures that a
given proposition holds, and so influences the
posteriors. In the MCMC implementation, if
the argument to an observe call is false, then
the corresponding choice of parameters is not
retained in the final computation of posteri-
ors. So, for instance, assume that we add
the premise that “Most people are musicians”
to the earlier example. The premise is parsed
as CltoS Pos (S1 (QNP Most Person)
(Bare (IsA Musician))), where QNP :Quant →
CN → NP and Most :Quant . The semantics is:

modelJohnMusicianMost = do
john ← newInd
musician ← newPred
observe (cltoS pos (s1 (qNP most person)

(bare (isA musician))))
return (cltoS pos (s1 john (bare (isA musician))))

The premise raises the estimated probability value
of the conclusion to

true : 0.834 false : 0.166

2.3 Predicates and their negation
Our basic assumption is that (in the absence of
other information) individuals are drawn from a
multi-variate normal distribution of dimension k,
with a zero mean vector and a unit covariance ma-
trix, where k is a hyperparameter of the system.
Any logical predicate is represented as a subspace
of all individuals. We make the additional simpli-
fying assumption that every atomic lexical predi-
cate p is represented by three components: (1) A
vector vp. The projection of any individual x onto
this direction (x · vp) corresponds to the degree to
which x exhibits the characteristics corresponding

to p. (2) A threshold θ+p , such that if x · vp > θ+p
then x is (probabilistically) considered to satisfy p.
(3) Another threshold θ−p , such that if x · vp < θ−p ,
then the contrary of the predicate (expressed as VP
negation) applies. This procedure allows BIS to
express the indeterminacy attached to both mea-
sure and non-measure predicates in cases at the
border of a classifier, in a fully uniform way.

The vectors vp are sampled from the same
multi-variate normal distribution as individuals,
but unlike individuals, these vectors are nor-
malised. Both thresholds are sampled in a stan-
dard normal distribution. At all times, we maintain
a positive gap between these thresholds: θ−p < θ+p .
Hence, in our system, the law of the excluded mid-
dle does not hold at the linguistic level, since for a
given individual x and a predicate p we may well
have θ−p < x ·vp < θ+p . For example, it is possible
that neither “John is a musician” nor “John isn’t
a musician” apply. Notice that this is not a case
of epistemic uncertainty. Rather, in this example,
John does not clearly satisfy the property of being
a musician and, at the same time, he cannot be re-
garded as a non-musician. This state of affairs is
illustrated in Fig. 2.

2.4 Adjectives and Measure Predicates

Adjectives behave like other predicates. They
come with a direction and two thresholds, allow-
ing for the proposition “It is not the case that John
is tall, and it is not the case that John isn’t tall” to
hold in some models.

BIS supports reasoning with units of measures,
as in “John is 6 feet tall”. We can also express
height in various units of measures (“John is 180
cm tall”). To capture the scaling needed for any
metric we introduce an additional layer of inter-
pretation, which corresponds to units of measure.
Each unit of measure u is represented by a pair
of a factor fu and a bias bu, both drawn from
normal distributions. This yields a transformation
tu(x) = fux+bu. The numbers provided in the in-
put (“6”, “180”) are then compared with the trans-
formed measure predicates corresponding to the
adjective. (In our example tfeet(john ·vtall) = 6.)
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Figure 2: A representation of the predicate “musician”
and its negation. The blue and red areas indicate the
corresponding subspaces.

This allows BIS to simultaneously infer posterior
distributions for individuals, predicates and units
of measures.

2.5 Quantifiers

BIS uses the same mechanism for handling quan-
tifiers as Bernardy et al. (2018) do. To interpret a
sentence such as “Most musicians are tall”, it runs
an inner instance of an inference corresponding to
“If x is a musician, then x is tall”. Then, it im-
poses, as a posterior of the outer model, the con-
dition that the probabilistic evaluation of the inner
inference is higher than a given threshold θmost.

We allow a sentence to contain several gener-
alised quantifiers, such as in “Most bass players
are taller than most guitarists”, and there are two
possibilities to consider when implementing sup-
port for this. The first is to nest one application of
the above procedure within another. This gives an
inner model “If x is a bass player, then x is taller
than most guitarists”, and an inner-inner inference
problem “If y is a guitarist, then x is taller than y”.
The other is to use a single inner model, with si-
multaneous quantification over all variables: “If x
is a bass players and y is a guitarist, then x is taller
than y”. The first interpretation is inefficient. Each
inner model demands a separate MCMC sampling.
When running two-levels of sampling the speed
is inversely propositional to the square of samples
used. But the second interpretation is not quite
correct. The threshold that is being used can only
commutatively compound the thresholds of both
quantifiers that are used. Therefore, the model
would not distinguish between the sentences “Ev-
ery bass player is taller than most guitarists” and
“Most bass players are taller than every guitarist”,
although their semantics are distinct. For this rea-
son, we opt for the inefficient but precise first pro-
cedure, even while we recognise that the second
option is a viable way of doing rough grained es-
timated reasoning.

Finally, we note that it is very inefficient to use

the inner-instance sampling method to ensure that
a model satisfies sentences containing the univer-
sal quantifier, such as “Every musician is a logi-
cian”. The priors must be set in a particular way
to ensure that the subspace of “musicians” is in-
cluded in that of “logicians”. The defining vec-
tors must be exactly parallel. Therefore sampling
converges slowly. To deal with this problem we in-
stead impose on the model the requirement that the
cosine similarity between the vectors correspond-
ing to “musician” and “logician” is greater than
0.99, and that the threshold θ+musician is greater
than θ+logician. These conditions produce a near-
perfect containment of “musician” in “logician”.

3 Test Suite

In order to illustrate BIS’s coverage we have con-
structed a test suite. We construct a test suite rather
than use any of the existing test suites for infer-
ence because all of the latter (e.g. the FraCaS test
suite (Cooper et al., 1996), RTE (Dagan et al.,
2006), and SNLI (Bowman et al., 2015)) are not
designed to assess probabilistic inference, but cat-
egorical entailment. They are annotated for three-
way (YES, NO, UNK), or binary (YES, NO) val-
ues for entailment. In the latter case, the categories
NO and UNK of the three-way task are collapsed
into a single category. By contrast, we are inter-
ested in capturing the full distribution of probabil-
ity over an inference. Our suite includes 78 exam-
ples, each with one or more premises followed by
a conclusion. The examples are annotated with re-
spect to the semantic phenomena that figure in the
inference. Here is the first example from our test
suite:

(T1) P1. Every violinist is a musician.
P2. Musicians generally read music.
H. If John is a violinist, then John reads music.
Label: QUANTIFIER, MODAL ADVERB

Below, we describe several phenomena that an
adequate natural language inference system ought
to capture. These are particularly important for se-
mantic frameworks designed to handle probabilis-
tic reasoning. While most examples in the current
version of the test suite involve probabilistic rea-
soning, others are classically valid entailments.

We briefly comment on the current state of the
art of our system with respect to each of the ex-
amples that we present. It is important to note
that none of the inferences in our test suite turn
on real world knowledge, beyond the information
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contained in the premises. This is due to the fact
that our models estimate the likelihood of an in-
ference as the conditional probability of the con-
clusion, given the premises. The premises serve
as priors on the models generated to evaluate the
conclusion. The models sample the possible rela-
tions among the individuals and properties that in-
terpret the NPs and predicates in the conclusion,
given only the restrictions imposed by the rela-
tions among the individuals and the properties that
interpret the statements in the premises.

All the phenomena presented in this section (as
seen in examples under the label (Tn), where n
is a number of an example in the test suite) are
supported by our system.

3.1 Relation to classical logic

Although our main goal is not to embed a partic-
ular logic into our system, it is useful to know the
relation between our system and a specified logic.
This allows us to evaluate whether our system can
be used in situations where precise reasoning is re-
quired.

BIS nearly supports full classical propositional
logic, using the sentential connectives “and”, “or”,
“if ... then ...”, together with “it is not the case
that”. To see that it goes beyond intuitionistic
propositional logic we check that it validates the
law of the excluded middle, de Morgan’s laws, and
Peirce’s formula. However, BIS does not sustain
reductio ad absurdum as a rule of inference. The
system evaluates an inference by constructing a
model for the premises of the inference and evalu-
ating the hypothesis in that model. This means that
in arguments where the premises are inconsistent
(as would be the case in an attempt to use reduc-
tio) the system fails to construct such a model. It
would not evaluate the hypothesis in that model,
yielding no result at all. Therefore the conse-
quence relation is not monotone, as the addition
of an extra inconsistent premise makes the com-
putation diverge. By contrast, the system assigns
probability 1 to |= A∧¬A→ B for any choice of
A and B.

VP-level negation does not interact with sen-
tential negation in the way that one might expect.
GF only provides binary clausal polarity, whereas
our implementation of predicates requires a many-
valued logic. Therefore, VP negation in exam-
ples such as “John isn’t a guitarist” rules out both
that John is a guitarist, and that John is in the

undecided area between θ−guitarist and θ+guitarist.
Hence, “John isn’t a guitarist” implies “It is not
the case that John is a guitarist”, but the converse
implication does not hold. As a consequence of
our treatment of VP negation, the universal quan-
tifier (“all”) and the existential quantifier (“some”)
are not interdefinable, as they are in classical logic.
So, for example, “All musicians read music” im-
plies “It is not the case that some musicians don’t
read music”, but not the other way around.

Instantiation: Instantiation, one of the main in-
ference rules in the Aristotelian syllogism, is sup-
ported in our system. The following test suite ex-
ample is evaluated as true with probability 1.

(T31) P1. All intermediate logic students are Stones fans.
P2. John is an intermediate logic student.
H. John is a Stones fan.
Label: INSTANTIATION

Chains of universal affirmatives: The system
does not perform very well on examples that chain
universal quantifiers together to form valid FOL
inferences. Consider the following:

(T76) P1. All violinists are musicians.
P2. All musicians read music.
H. All violinists read music.
Label: QUANTIFIERS, FOL VALIDITY

Here, we would expect a probability of 1 for the
conclusion, but the actual result is slightly lower.
The reason for this is that our system evaluates the
universal quantifier by measuring the cosine simi-
larity between the corresponding vectors (> 0.99)
as well as comparing the thresholds θ+p for the two
predicates. Even if the cosine similarity between
the vectors corresponding to “violinist” and “mu-
sician” is close to 1, and the one between “musi-
cian” and “read music” is also, this does not imply
that the cosine similarity between “violinist” and
“read music” is 1.

By contrast, the following example is assigned a
probability close to 1, because the percentage de-
terminer is treated as a generalised quantifier, trig-
gering an inner-model inference.

(T77) P1. All violinists are musicians.
P2. All musicians read music.
H. 99 percent of violinists read music.
Label: QUANTIFIERS, PERCENTAGE DETER-

MINER
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Higher-order case: Universally quantified sen-
tences connected via implications Consider an
example with more complex cases of conditionals
of the form “if X then Y ”, where X and Y are
quantified assertions.

(T78) P1. Every guitarist is a logician.
P2. If every guitarist is a logician, then every musi-

cian reads music.
P3. John is a musician.
H. John reads music.
Label: IMPLICATION, QUANTIFIER, PROPER

NAME

BIS performs well for (T78), assigning the in-
ference a probability close to 1. To test that it
works as expected for P2 of (T78), we substitute
“Few musicians read music” for “Every musician
reads music”. BIS assigns the conclusion false
with a high probability to H of (T78), which is a
reasonable estimated value for this variant of the
argument pattern.

3.2 Generalised quantifiers and generics

In addition to examples with universal quantifica-
tion, our test suite includes cases with other gen-
eralised quantifiers (few, most, etc.), and generics
expressed as bare plurals.

(T54) P1. Few people are basketball players.
P2. Basketball players are taller than most non bas-

ketball players.
P3. John is a basketball player.
H. John is taller than most people.
Label: COMPARATIVE ADJECTIVE, MODAL AD-

VERB

3.3 Gradation, Adjectives, and Comparatives

We test our system on gradation, adjectival modi-
fication, and comparatives against the sorts of ex-
amples discussed in the linguistic semantics liter-
ature, e.g. by Klein (1980).

In English, a (positive) adjective such as “tall”
can be turned into the comparative “taller”, which
has the property of transitivity (if XtallerY and
Y tallerZ, then XtallerZ). Moreover, the adjec-
tive and the comparative derived from it are re-
lated in meaning, as the example (T15) illustrates
(H holds given that P1 and P2 hold). If XtallerY
and tall(Y ), then tall(X).

BIS does well on tasks where an inference in-
volves transitivity of a relation expressed as a com-
parative adjective. The system computes a proba-
bility of 1 for (T15).

(T15) P1. Mary is tall.
P2. John is taller than Mary.
H. John is tall.
Label: COMPARATIVE ADJECTIVE, TRANSITIV-

ITY

3.4 Modal Adverbs
BIS handles modal adverbs, such as “usually”,
“always”, “rarely” (sometimes called adverbs of
frequency), which can be used to turn categor-
ical judgments into probabilistic ones. Exam-
ples where both adverbs of frequency and quan-
tifiers (including generics and generalised quanti-
fiers) interact are particularly interesting. They are
not only complex from a computational modelling
perspective. They are also semantically difficult.
Their interpretations are not straightforward.

As we are interested in probabilistic judgments,
we test our model against similar examples that
contain probabilistic modifiers, as in (T17) below.
The main difference between (T15) and (T17), is
that (T17) contains the modal frequency adverbs
“usually” and “always” that interact with a com-
parative. They trigger frequency based semantic
relations that condition probabilistic inferences.

(T17) P1. John is always as punctual as Mary.
P2. Sam is usually more punctual than John.
H. Sam is more punctual than Mary.
Label: QUANTIFIER, MODAL/TEMPORAL AD-

VERB

BIS computes a value of 0.7 for this example.

3.5 Vagueness
Finally, we take up measure predicates that involve
vagueness.

(T38) P1. Mary is 190 centimeters tall. Mary is tall.
P2. Molly is 184 centimeters tall. Molly is tall.
P3. Ruth is 180 centimeters tall. Ruth is tall.
P4. Helen is 178 centimeters tall. Helen is tall.
P5. Athena is 166 centimeters tall. Athena isn’t tall.
P6. Artemis is 157 centimeters tall. Artemis isn’t

tall.
P7. Joanna is 160 centimeters tall. Joanna isn’t tall.
P8. Kate is 162 centimeters tall. Kate isn’t tall.
P9. Christine is x centimeters tall.
H. Chistine isn’t tall
Label: QUANTIFIER, MODAL ADVERB

We perform 15 runs for 18 values of x uni-
formly distributed in the range 145cm to 201cm.
BIS generates encouraging results for this case.
The conclusion is always true with high probabil-
ity where x is lower than 166, the highest measure-
ment judged to be not tall. There is a slight devia-
tion when x is 166, where 3 cases return false with
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probabilities from 0.5 to 0.85. In the intermediate
cases, for which we expect the vagueness effect,
we see a near incremental increase of false judg-
ments values with higher probabilities. From 174
cm and upwards, the system returns false consis-
tently. After the lowest judgment of tallness (178),
the system returns false with very high probability
(many cases are 1).

BIS offers a gradient treatment of measure pred-
icates (through tweaking of priors), expressing
vagueness, but it is not yet fully incremental or sta-
ble. We seem to be on the right track in our treat-
ment of measure predicates. Improving this aspect
of BIS is one of our priorities for future work.

4 Related and Future Work

We do not have any baseline to compare our sys-
tem to. The only implemented approach similar
to ours is the one proposed by Goodman and Las-
siter (2015); Lassiter and Goodman (2017). This
system is not tested against a test suite. Further-
more, it is not designed to deal with the range
of syntactic structures or complex inference pat-
terns that BIS handles. Adapting the Goodman-
Lassiter model to allow for such testing would re-
quire changes that undermine a comparison with
BIS.

Goodman and Lassiter (2015); Lassiter and
Goodman (2017) implement a probabilistic se-
mantics in WebPPL. They regard the probability
of a declarative sentence as the most highly valued
interpretation that a hearer assigns to the utterance
of a speaker in a specified context. On this ap-
proach, speakers express unambiguous meanings
in specified contexts through their utterances, and
hearers estimate the likelihood of distinct interpre-
tations as corresponding to those that the speaker
intends to convey. Their account requires the ex-
istence of a univocal, non-vague speakers mean-
ing that hearers seek to identify by distributing
probability among alternative readings. Goodman
and Lassiter posit a boundary point parameter for
graded modifiers, where the value of this parame-
ter is determined in context. They adopt a classical
Montagovian treatment of generalised quantifiers,
and their framework has limited coverage of syn-
tactic and semantic structures.

We take the probability value of a sentence to be
the likelihood that a competent speaker would en-
dorse an assertion, given specified premises. Pred-
ication is intrinsically vague, and we do not as-

sume a sharply delimited reading for a predica-
tion that hearers attempt to converge on by es-
timating the probability of alternative readings.
All predication consists in applying a classifier to
new instances, on the basis of supervised training.
BIS does not posit a contextually dependent cut
off boundary for graded predicates or non-graded
predicates. Instead, we adopt an integrated ap-
proach to both types of classifier on which a prop-
erty term allows for vague borders. BIS applies a
probabilistic treatment of generalised quantifiers,
and it covers higher-order quantifiers like most.

The design of BIS is inspired by the Bayesian
compositional semantic framework proposed by
Bernardy et al. (2018). But BIS differs from
this framework in a number of important respects.
First, it has a comprehensive syntax-semantics in-
terface through GF parsing. Second, it is intended
to cover inference in a systematic way, including
logically valid, as well as probabilistic arguments.
Third, BIS has considerably wider coverage than
the framework of Bernardy et al. (2018), and it is
constructed in such a way as to permit straightfor-
ward extension to new types of sentence structure
and inference patterns.

van Eijck and Lappin (2012) distribute proba-
bility values for natural language sentences over
the set of possible worlds. The probability of a
sentence is the sum of the probability values of
the worlds in which it is true. If these worlds are
understood as maximal consistent sets of propo-
sitions, as in classical theories of formal seman-
tics, then it is unclear how they can be represented
in a computationally tractable way.3 Our system
avoids these problems by sampling only the in-
dividuals and properties (vector dimensions) re-
quired to estimate the probability of a given set
of statements.

Cooper et al. (2015) propose a composi-
tional semantics within a probabilistic type theory
(ProbTTR). They take the probability of a sen-
tence to be a judgment on the likelihood that a
given situation is of a particular type, specified in
terms of ProbTTR. They do not offer an explicit
treatment of vagueness or probabilistic inference.
It is also not clear to what extent their type the-
ory is required to achieve a viable compositional
probabilistic semantics.

Emerson and Copestake (2017a,b) provide a

3Lappin (2015) discusses the complexity problems posed
by the representation of complete worlds.
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probabilistic model in order to identify ‘features’
of objects in terms of the properties that apply to
those objects. They build their model as a graph-
ical probabilistic model. They also interpret uni-
versal and existential quantifiers from a probabilis-
tic perspective. “As are Bs” is represented as a
conditional probability of B given A, for all el-
ements of the space, which is equal to the sum
(integral) over all elements. To compute it, they
make use of the variational inference for graphical
probabilistic models.

Pfeifer and colleagues (Pfeifer and Sanfilippo,
2018; Pfeifer, 2013; Gilio et al., 2015) study in-
ference in a probabilistic setting by estimating the
probability of the conclusion given the probabil-
ities of the premises. They employ p-validity by
Adams (1998). To be p-valid the uncertainty of
a conclusion in an inference should not increase
the cumulative uncertainties of its premises. Their
approach differs from ours in several ways. The
main one is that we build a model (using Bayesian
updating of priors) where the premises hold, and
then we observe how probable the hypothesis is in
this model. By contrast, they provide an analytic
estimation of the conclusion, given its premises.
They require that certain properties on conditional
probabilities hold. Conditional probabilities are
primitives for modelling an implication (“ifA then
B”). This allows them to avoid problems when es-
timating A → B when A is false. In the current
work, we take “if...then...” statements to be cases
of material implication (A → B = ¬A ∨ B) in-
stead of conditional probability.

In future work we will explore the interpretation
of the “if...then...” construction as a conditional
probability, and we may incorporate Pfeifer and
colleagues’ insights into our semantics.

We plan to extend the current test suite to ex-
amples that contain phenomena which are not yet
represented there. This will allow us to increase
both BIS’ coverage and its power. We intend to
organise the test suite in a more structured way,
by introducing a more systematic and fine-grained
classification of example types, and example com-
plexity. To illustrate what we have in mind, imag-
ine that BIS gives the correct result for test suite
example n1, but fails on n2, where the two cases
are labelled as of the same type, but n2 is simpler
than n1. Given such a typology and complexity
hierarchy over examples, it becomes easier to de-
tect the source of peculiar behaviour in the system.

We will also take into account that some examples
might not make sense in a probabilistic setting.
As Suppes (1966) remarks, statistical syllogisms
require a specific formulation in order to be well
posed as probabilistic problems. Building such a
structured test suite is a challenging task.

In our model, we have sentence-level and
predicate-level negation, which we refer to as
weak and strong negation, respectively. In this
way, we obtain a logic which deviates from both
classical first-order and intuitionistic logic. We
will explore the formal properties of this alterna-
tive logic, and we will consider the most efficient
way of encoding it in BIS.

We observed in the previous section that
chained transitive inferences become problematic
for BIS in proportion to the length of the chain.
This is due to errors that originate in Monte Carlo
Methods of approximating integrals, which BIS
uses to generate its models. We will experiment
with an alternative approach that calculates the re-
quired integrals symbolically. On this strategy BIS
would invoke Monte Carlo Methods only as a last
resort, when symbolic computation is not feasible.

5 Conclusion

This paper describes BIS, an implemented
Bayesian system for probabilistic inference. We
have tested BIS on a test suite for probabilistic and
classically valid arguments, which we have con-
structed for this task. While the test suite is still
under development, it is, to our knowledge, unique
in that its examples make probabilistic judgments
based purely on the knowledge contained in the
premises. The arguments do not require addi-
tional world knowledge beyond the information
contributed by the premises to support their con-
clusions. We will reorganise and extend this suite
to achieve a fine-grained, labelled typology for its
examples.

While BIS follows the approach outlined by
Bernardy et al. (2018) in many respects, it handles
a wider and richer range of phenomena. In addi-
tion to providing a systematic Bayesian inference
system, it offers a unique treatment of vagueness
through a distinction between two types of nega-
tion, and an alternative procedure for computing
interpretations for quantifiers.

We have also noted some of the limitations of
the current system. Most of these are due to the
fact that BIS does not yet encode certain linguis-
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tic phenomena. Other problems arise because of
BIS’s current method for sampling and comput-
ing (numerical) approximations. We will address
these issues in future work. BIS’s current level of
performance suggests that it can be scaled up to
a wide coverage semantic system for probabilistic
natural language inference.

In extending our test suite our primary objec-
tive is to provide a better platform for evaluating
probabilistic semantic approaches. One way of
obtaining more reliable gradient judgments of en-
tailment is to submit inferences to crowd source
assessment on a four or five point scale, and to
map this scale into probability values (or ranges
of values). The mean judgments of such an anno-
tated suite would provide a gold standard for eval-
uating the performance of a probabilistic inference
system. We are also interested in testing BIS on
a standard dataset for logical inference, like the
FraCaS test suite, that is annotated for categori-
cal inference judgments. Success would consist in
assigning high probability to yes cases, low prob-
ability to no cases, and intermediate values to unk
instances. We could also crowd source the FraCas
set, and use the mean judgments that we obtain as
the target values for our system.
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Abstract
We study pragmatics in political campaign
text, through analysis of speech acts and
the target of each utterance. We propose a
new annotation schema incorporating domain-
specific speech acts, such as commissive-
action, and present a novel annotated corpus of
media releases and speech transcripts from the
2016 Australian election cycle. We show how
speech acts and target referents can be mod-
eled as sequential classification, and evaluate
several techniques, exploiting contextualized
word representations, semi-supervised learn-
ing, task dependencies and speaker meta-data.

1 Introduction

Election campaign text is a core artifact in politi-
cal analysis. Campaign communication can influ-
ence a party’s reputation, credibility, and compe-
tence, which are primary factors in voter decision
making (Fernandez-Vazquez, 2014). Also, mod-
eling the discourse is key to measuring the role
of party in constructive democracy — to engage
in constructive discussion with other parties in a
democracy (Gibbons et al., 2017).

Speech act theory (Austin, 1962; Searle, 1976)
can be used to study such pragmatics in political
campaign text. Traditional speech act classes have
been studied to analyze how people engage with
elected members (Hemphill and Roback, 2014),
and how elected members engage in discussions
(Shapiro et al., 2018), with a particular focus on
pledges (Artés, 2011; Naurin, 2011, 2014; Gib-
bons et al., 2017). Also, election manifestos have
been analyzed for prospective and retrospective
messages (Müller, 2018). In this work, we com-
bine traditional speech acts with those proposed
by political scientists to study political discourse,
such as specific pledges, which can also help to
verify the pledges’ fulfilment after an election
(Thomson et al., 2010).

In addition to speech acts, it is important to
identify the target of each utterance — that is, the
political party referred to in the text — in order to
determine the discourse structure. Here, we study
the effect of jointly modeling the speech act and
target referent of each utterance, in order to exploit
the task dependencies. That is, this paper is an ap-
plication of discourse analysis to the pragmatics-
rich domain of political science, to determine the
intent of every utterance made by politicians, and
in part, automatically extract pledges at varying
levels of specificity from campaign speeches and
press releases.

We assume that each utterance is associated
with a unique speech act (similar to Zhao and
Kawahara (2017)) and target party,1 meaning that
a sentence with multiple speech acts and/or targets
must be segmented into component utterances.
Take the following example, from the Labor Party:

(1) Labor will contribute $43 million towards
the Roe Highway project and we call on the
WA Government to contribute funds to get
the project underway.

The example is made up of two utterances (with
and without an underline), belonging to speech
act types commissive-action-specific and directive,
referring to different parties (LABOR and LIB-
ERAL), resp. In our initial experiments, we per-
form target based speech act classification (i.e.
joint speech act classification and determination of
the target of the utterance) over gold-standard ut-
terance data (Section 6), but return to perform au-
tomatic utterance segmentation along with target
based speech act classification (Section 7).

While speech act classification has been applied
to a wide range of domains, its application to polit-

1Zhao and Kawahara (2017) do not address the target ref-
erent classification task in their work.
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Utterance Speech act Target party Speaker

Tourism directly and indirectly supports around 38000 jobs in
TAS.

assertive NONE LABOR

We will invest $25.4 million to increase forensics and intelli-
gence assets for the Australian Federal Police

commissive-action-specific LIBERAL LIBERAL

Labor will prioritise the Metro West project if elected to gov-
ernment.

commissive-action-vague LABOR LABOR

A Shorten Labor Government will create 2000 jobs in Ade-
laide.

commissive-outcome LABOR LABOR

Federal Labor today calls on the State Government to commit
the final $75 million to make this project happen.

directive LIBERAL LABOR

Good morning everybody. expressive NONE LABOR

The Coalition has already delivered a $2.5 billion boost to our
law enforcement and security agencies.

past-action LIBERAL LIBERAL

Malcolm Turnbull’s health cuts will rip up to $1.4 billion out
of Australians’ pockets every year

verdictive LIBERAL LABOR

Table 1: Examples with speech act and target party classes. “Speaker” denotes the party making the utterance.

ical text is relatively new. Most speech act analy-
ses in the political domain have relied exclusively
on manual annotation, and no labeled data has
been made available for training classifiers. As it
is expensive to obtain large-scale annotations, in
addition to developing a novel annotated dataset,
we also experiment with a semi-supervised ap-
proach by utilizing unlabeled text, which is easy
to obtain.

The contributions of this paper are as follows:
(1) we introduce the novel task of target based
speech act classification to the analysis of politi-
cal discourse; (2) we develop and release a dataset
(can be found here https://github.com/
shivashankarrs/Speech-Acts) based on
political speeches and press releases, from the two
major parties — Labor and Liberal — in the 2016
Australian federal election cycle; and (3) we pro-
pose a semi-supervised learning approach to the
problem by augmenting the training data with in-
domain unlabeled text.

2 Related Work

The recent adoption of NLP methods has led to
significant advances in the field of computational
social science (Lazer et al., 2009), including polit-
ical science (Grimmer and Stewart, 2013). With
the increasing availability of datasets and compu-
tational resources, large-scale comparative politi-
cal text analysis has gained the attention of politi-
cal scientists (Lucas et al., 2015). One task of par-
ticular importance is the analysis of the functional

intent of utterances in political text. Though it has
received notable attention from many political sci-
entists (see Section 1), the primary focus of almost
all work has been to derive insights from manual
annotations, and not to study computational ap-
proaches to automate the task.

Another related task in the political communi-
cation domain is reputation defense, in terms of
party credibility. Recently, Duthie and Budzynska
(2018) proposed an approach to mine ethos sup-
port/attack statements from UK parliamentary de-
bates, while Naderi and Hirst (2018) focused on
classifying sentences from Question Time in the
Canadian parliament as defensive or not. In this
work, our source data is speeches and press re-
leases in the lead-up to a federal election, where
we expect there to be rich discourse and interplay
between political parties.

Speech act theory is fundamental to study such
discourse and pragmatics (Austin, 1962; Searle,
1976). A speech act is an illocutionary act of
conversation and reflects shallow discourse struc-
tures of language. Due to its predominantly
small-data setting, speech act classification ap-
proaches have generally relied on bag-of-words
models (Qadir and Riloff, 2011; Vosoughi and
Roy, 2016), although recent approaches have used
deep-learning models through data augmentation
(Joty and Hoque, 2016) and learning word rep-
resentations for the target domain (Joty and Mo-
hiuddin, 2018), outperforming traditional bag-of-
words approaches.

Another technique that has been applied to com-
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pensate for the sparsity of labeled data is semi-
supervised learning, making use of auxiliary un-
labeled data, as done previously for speech act
classification in e-mail and forum text (Jeong
et al., 2009). Zhang et al. (2012) also used semi-
supervised methods for speech act classification
over Twitter data. They used transductive SVM
and graph-based label propagation approaches to
annotate unlabeled data using a small seed train-
ing set. Joty and Mohiuddin (2018) leveraged out-
of-domain labeled data based on a domain adver-
sarial learning approach. In this work, we focus
on target based speech act analysis (with a cus-
tom class-set) for political campaign text and use
a deep-learning approach by incorporating contex-
tualized word representations (Peters et al., 2018)
and a cross-view training framework (Clark et al.,
2018) to leverage in-domain unlabeled text.

3 Problem Statement

Target based speech act classification requires the
segmentation of sentences into utterances, and la-
belling of those utterances according to speech act
and target party. In this work we focus primarily
on speech act and target party classification.

Our speech act coding schema is comprised of:
assertive, commissive, directive, expressive, past-
action, and verdictive. An assertive commits the
speaker to something being the case. With a com-
missive, the speaker commits to a future course
of action. Following the work of Artés (2011)
and Naurin (2011), we distinguish between ac-
tion and outcome commissives. Action commis-
sives (commissive-action) are those in which an
action is to be taken, while outcome commissives
(commissive-outcome) can be defined as a descrip-
tion of reality or goals. Secondly, similar to Nau-
rin (2014) we also classify action commissives
into vague (commissive-action-vague) and specific
(commissive-action-specific), according to their
specificity. This distinction is also related to text
specificity analysis work addressed in the news
(Louis and Nenkova, 2011) and classroom discus-
sion (Lugini and Litman, 2017) domains. A direc-
tive occurs when the speaker expects the listener
to take action in response. In an expressive, the
speaker expresses their psychological state, while
a past-action denotes a retrospective action of the
target party, and a verdictive refers to an assess-
ment on prospective or retrospective actions.

Examples of the eight speech act classes are

# Doc # Sent # Utt Avg Utterance Length

258 6609 7641 19.3

Table 2: Dataset Statistics: number of documents,
number of sentences, number of utterances, and aver-
age utterance length

given in Table 1, along with the target party
(LABOR, LIBERAL, or NONE), indicating which
party the speech act is directed towards, and the
“speaker” party making the utterance (information
which is provided for every utterance).

3.1 Utterance Segmentation

Sentences are segmented both in the context of
speech act and target party — when a sentence
has utterances belonging to more than one speech
act or/and more than one target. For exam-
ple, the following sentence conveys a pledge
(commissive-outcome) followed by the party’s be-
lief (assertive), with the utterance boundary indi-
cated by

∣∣:

(2) We will save Medicare
∣∣ because Medicare is

more than just a standard of health.

Further, the following (from the Labor party) has
segments comparing LABOR and LIBERAL:

(3) Our party is united –
∣∣ the Liberals are not

united.

4 Election Campaign Dataset

We collected media releases and speeches from
the two major Australia political parties — Labor
and Liberal — from the 2016 Australian federal
election campaign. A statistical breakdown of the
dataset is given in Table 2. We compute agreement
over 15 documents, annotated by two independent
annotators, with disagreements resolved by a third
annotator. The remaining documents are anno-
tated by the two main annotators without redun-
dancy. Agreement between the two annotators for
utterance segmentation based on exact boundary
match using Krippendorff’s alpha (α) (Krippen-
dorff, 2011) is 0.84. Agreement statistics for the
classification tasks (Cohen, 1960; Carletta, 1996)
are given in Tables 3 and 4.
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Speech act % Kappa (κ)

assertive 40.8 0.85
commissive-action-specific 12.4 0.84
commissive-action-vague 6.6 0.73
commissive-outcome 4.9 0.72
directive 1.7 0.92
expressive 1.9 0.88
past-action 6.3 0.76
verdictive 25.4 0.82

Table 3: Speech act agreement statistics

Target party % Kappa (κ)

LABOR 45.9 0.92
LIBERAL 39.1 0.90
NONE 15.0 0.86

Table 4: Target party agreement statistics

5 Proposed Approach

Our approach to labeling utterances for speech act
and target party classification is as follows. Utter-
ances are first represented as a sequence of word
embeddings, and then using a bidirectional Gated
Recurrent Unit (“biGRU”: Cho et al. (2014)).
The representation of each utterance is set to the
concatenation of the last hidden state of both the
forward and backward GRUs, hi =

[−→
h i,
←−
h i

]
.

After this, the model has a softmax output layer.
This network is trained for both the speech act
(eight class) and target party (three class) clas-
sification tasks, minimizing cross-entropy loss,
denoted as LS and LT respectively.

Our approach has the following components:

ELMo word embeddings (“biGRUELMo”): As
word embeddings we use a 1024d learned linear
combination of the internal states of a bidirectional
language model (Peters et al., 2018).

Semi-supervised Learning: We employ a
cross-view training approach (Clark et al., 2018)
to leverage a larger volume of unlabeled text.
Cross-view training is a kind of teacher–student
method, whereby the model “teaches” another
“student” model to classify unlabelled data. The
student sees only a limited form of the data, e.g.,
through application of noise (Sajjadi et al., 2016;
Wei et al., 2018), or a different view of the input,
as used herein. This procedure regularises the
learning of the teacher to be more robust, as well
as increasing the exposure to unlabeled text.

We augment our dataset with over 36k sen-
tences from Australian Prime Minister candidates’

election speeches.2 On these unlabeled examples,
the model’s probability distribution over targets
pθ(y|s) is used to fit auxiliary model(s), pω(y|s),
by minimising the Kullback-Leibler (KL) diver-
gence, KL(pθ(y|s), pω(y|s)). This consensus loss
component, denoted Lunsup, is added to the super-
vised training objective (LS or LT ).

We evaluate the following auxiliary models:3

• a forward GRU (“biGRUCVTfwd ”);

• separate forward and backward GRUs
(“biGRUCVTfwdbwd ”); and

• a biGRU with word-level dropout
(“biGRUCVTworddrop ”).

The intuition is that the student models only have
access to restricted views of the data on which the
teacher network is trained, and therefore this acts
as a regularization factor over the unlabeled data
when learning the teacher model.

Multi-task Learning (“biGRUMulti”): For
speech act classification, target party classification
is considered as an auxiliary task, and vice versa.
Accordingly, a separate model is built for each
task, with the other task as an auxiliary task, in
each case using a linearly weighted objective
LS + αLT , where α ≥ 0 is tuned separately
in each application. The intuition here is to
capture the dependencies between the tasks, e.g.,
commissive is relevant to the Speaker party only.

Meta-data (biGRUMeta): We concatenate a bi-
nary flag encoding the speaker party (mi) along-
side the utterance embedding hi, i.e., [hi,mi].
This representation is passed through a hidden
layer with ReLU-activation, then projected onto a
output layer with softmax activation for both the
classification tasks.

6 Evaluation

We compare the models presented in Section 5
with the following baseline approaches:

• Support Vector Machine (“SVMBoW”) with
with unigram term-frequency representation.

• Multi-layer perceptron (“MLPBoW”) with uni-
gram term-frequency representation.

2https://primeministers.moadoph.gov.
au/collections/election-speeches

3Note that auxliary models share parameters with the cor-
responding components of main (teacher) model, with the ex-
ception of their output layers.
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ID Approach Speech act Target party
Accuracy Macro-F1 Accuracy Macro-F1

1 Metanaive — — 0.55 0.43
2 SVMBoW 0.56 0.41 0.60*1 0.56*1

3 MLPBoW 0.60*2 0.47*2 0.61*1 0.57*1

4 DANGloVe 0.53 0.30 0.59 0.54
5 GRUGloVe 0.56 0.46 0.58 0.55
6 biGRUGloVe 0.57 0.48 0.59 0.56
7 MLPELMo 0.62*3 0.53*3 0.58 0.57
8 biGRUELMo 0.68*7 0.57*7 0.63*2,3,7 0.60*2,3,7

9 biGRUELMo + CVTfwd 0.66 0.55 0.63 0.58
10 biGRUELMo + CVTfwdbwd 0.68 0.54 0.61 0.56
11 biGRUELMo + CVTworddrop 0.69 0.57 0.66*8 0.60

12 biGRUELMo + CVTworddrop + Multi 0.69 0.58 0.65 0.60

13 biGRUELMo + CVTworddrop + Meta 0.68 0.58 0.71*11 0.66*8,11

Table 5: Classification results showing average performance based on 10 runs. * indicates results significantly
better than the indicated approaches (based on ID in the table) according to a paired t-test (p < 0.05). Boldface
shows the overall best results and results insignificantly different from the best. Metanaive is not applicable for
speech act classification. Note that all approaches use gold-standard segmentation for evaluation.

Speech act MLPELMo Our approach

assertive 0.77 0.80
commissive-action-specific 0.65 0.69
commissive-action-vague 0.45 0.48
commissive-outcome 0.28 0.39
directive 0.58 0.59
expressive 0.55 0.58
past-action 0.45 0.48
verdictive 0.48 0.61

Table 6: Speech act class-wise F1 score.

Target party biGRUELMo Our approach

LABOR 0.68 0.74
LIBERAL 0.65 0.75
NONE 0.46 0.48

Table 7: Target party class-wise F1 score.

• Deep Averaging Networks (“DANGloVe”)
(Iyyer et al., 2015), GRU (“GRUGloVe”), and
biGRU (“biGRUGloVe”) with pre-trained 300d
GloVe embeddings (Pennington et al., 2014).

• MLP with average-pooling over pre-trained
ELMo word embeddings (“MLPELMo”).

• Using speaker party as the predicted target
party (“Metanaive”).

We average results across 10 runs with
90%/10% training/test random splits. Hyper-
parameters are tuned over a 10% validation

set randomly sampled and held out from the
training set. We evaluate using accuracy and
macro-averaged F-score, to account for class-
imbalance. We compare the baseline approaches
against our proposed approach (different com-
ponents given in Section 5). We evaluate
the effect of each component by adding them
to the base model (biGRUELMo), e.g., biGRU
model with ELMo embeddings and word-level
dropout based semi-supervised approach is given
as biGRUELMo + CVTworddrop . Results for speech act and
target party classification are given in Table 5. The
corresponding class-wise performance for both
speech act and target party tasks with our approach
(biGRUELMo + CVTworddrop + Meta) compared against the
competitive approach from Table 5 is given in Ta-
ble 6 and Table 7 respectively (and also discussed
further in Section 8). All the approaches are eval-
uated with the gold-standard segmentation. Utter-
ance segmentation is discussed in Section 7.

From the results in Table 5, we observe that
the biGRU4 performs better than the other ap-
proaches, and that ELMo contextual embeddings
(biGRUELMo) boosts the performance apprecia-
bly. Apart from ELMo, the semi-supervised
learning methods (biGRUELMo + CVTworddrop ) provide
a boost in performance for the target party

4The biGRU model uses ReLU activations, a 128d hidden
layer for speech act classification and 64d hidden layer for
target party classification, and dropout rate of 0.1.

277



10 30 50 70 90
% Training Ratio

0.40

0.45

0.50

0.55

0.60

0.65

0.70
Ac

cu
ra

cy

Speech Act Classification

biGRUELMo
biGRUEMLo + CVTfwdbwd

biGRUELMo + CVTfwd

biGRUELMo + CVTworddrop

10 30 50 70 90
% Training Ratio

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Target Party Classification

biGRUELMo
biGRUEMLo + CVTfwdbwd

biGRUELMo + CVTfwd

biGRUELMo + CVTworddrop

10 30 50 70 90
% Training Ratio

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

Speech Act Classification

biGRUELMo
biGRUEMLo + CVTfwdbwd

biGRUELMo + CVTfwd

biGRUELMo + CVTworddrop

10 30 50 70 90
% Training Ratio

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

Target Party Classification

biGRUELMo
biGRUEMLo + CVTfwdbwd

biGRUELMo + CVTfwd

biGRUELMo + CVTworddrop

Figure 1: Classification performance across different training ratios. Note that 90% is using all the training data,
as 10% is used for validation.

task (wrt accuracy) using all the training data.
biGRUELMo + CVTworddrop and biGRUELMo + CVTfwd pro-
vide gains in performance for the speech act
task, especially with fewer training examples
(≤ 50% of training data, see Figure 1). Per-
formance of semi-supervised learning models
with cross-view training (which leverages in-
domain unlabeled text) is compared against
biGRUELMo, which is a supervised approach. Re-
sults across different training ratio settings are
given in Figure 1. From this, we can see
that biGRUELMo + CVTworddrop and biGRUELMo + CVTfwd

performs better than biGRUELMo + CVTfwdbwd in al-
most all cases. With a training ratio ≤ 50%,
biGRUELMo + CVTworddrop achieves a comparable per-
formance to biGRUELMo + CVTfwd .

Multi-task learning (biGRUELMo + CVTworddrop + Multi)
provides only small improvements for the speech
act task. Further, when we add speaker
party meta-data (biGRUELMo + CVTworddrop + Meta), it pro-
vides large gains in performance for the tar-
get party task. Overall, the proposed ap-
proach (biGRUELMo + CVTworddrop + Meta) provides the
best performance for the target party task. Its
performance is better than the biGRUELMo + Meta

model, which does not leverage the additional
unlabeled text using semi-supervised learning,
where it achieves 0.70 accuracy and 0.65 Macro
F1. Also, ELMo and semi-supervised methods
(biGRUELMo + CVTworddrop and biGRUELMo + CVTfwd ) pro-
vide significant improvements for the speech act
task, especially under sparse supervision scenar-
ios (see Figure 1, for training ratio ≤ 50%).

7 Segmentation Results

In the previous experiments, we used gold-
standard utterance data, but next we experiment
with automatic segmentation. We use sentences as
input, based on the NLTK sentence tokenizer (Bird
et al., 2009), and automatically segment sentences
into utterances based on token-level segmentation,
in the form of a BI binary sequence classification
task using a CRF model (Hernault et al., 2010).5

We use the following set of features for each word:
token, word shape (capitalization, punctuation,
digits), Penn POS tags based on SpaCy, ClearNLP
dependency labels (Choi and Palmer, 2012), rela-
tive position in the sentence, and features for the

5We also experimented with a neural CRF model, but
found it to be less accurate.
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Utterance Target party Speaker

Our new Tourism Infrastructure Fund will bring more visitor dollars and more hospitality jobs
to Cairns, Townsville and the regions.

LABOR LABOR

Just as he sold out 35,000 owner-drivers in his deal with the TWU to bring back the “Road
Safety Remuneration Tribunal".

LABOR LIBERAL

Then in 2022, we will start construction of the first of 12 regionally superior submarines, the
single biggest investment in our military history.

LIBERAL LIBERAL

Table 8: Scenarios where “Speaker” meta-data benefits the target party classification task.

adjacent words (based on this same feature rep-
resentation). We compute segmentation accuracy
(SA: Zimmermann et al. (2006)), which measures
the percentage of segments that are correctly seg-
mented, i.e. both the left and right boundary match
the reference boundaries. SA for the CRF model is
0.87. Secondly, to evaluate the effect of segmenta-
tion on classification, we compute joint accuracy
(JA). It is similar to SA but also requires correct-
ness of the speech act and target party. In cascaded
style, JA using the CRF model for segmentation
and biGRUELMo + CVTworddrop + Meta for speech act and
target party classification is 0.60 and 0.64 respec-
tively. Here, segmentation errors lead to a small
drop in performance.

8 Error Analysis

We analyze the class-wise performance and con-
fusion matrix for our best performing approach
(biGRUELMo + CVTworddrop + Meta). Speech act and target
party class-wise performance is given in Tables 6
and 7 respectively. We can see that the proposed
approach provides improvement across all classes,
while achieving comparable performance for di-
rective. Recognizing commissive-outcome can be
seen to be tougher than other classes. In addition,
we analyze the results to identify cases where hav-
ing “Speaker” party information is beneficial for
predicting the target party of sentences. Some of
those scenarios are given in Table 8, where the
meta-data enables predicting the target party cor-
rectly even when there is no explicit reference to
the party or leaders.

Confusion matrices for the speech act and tar-
get party classification tasks are given in Fig-
ure 2. Some observations from the confusion
matrices are: (a) assertive and verdictive are of-
ten misclassified as each other; (b) commissive-
action-vague utterances are often misclassified as
commissive-action-specific; and (c) LABOR and
LIBERAL classes are often misclassified as each

other for the target party classification task.

9 Qualitative Analysis

Here we provide the policy-wise speech act distri-
bution for both parties, which indicates the differ-
ence in their predilection for the indicated six pol-
icy areas (Figure 3). We provide results for the six
most frequent policy categories, for each of which,
the campaign text is first classified into one of the
policy-areas that are relevant to Australian poli-
tics, by building a Logistic Regression classifier
with data obtained from ABC Fact Check.6 Some
observations (based on Figure 3) are as follows:
• The incumbent government (LIBERAL) uses

more directive, expressive, verdictive, and
past-action utterances than the opposition
(LABOR).
• LIBERAL’s text has relatively more pledges

(commissive-action-vague, commissive-
action-specific and commissive-outcome) on
economy compared to LABOR, whereas LA-
BOR has more pledges on social services and
education. This is as expected for right- and
left-wing parties respectively. Other policy-
areas have a comparable number of pledges
from both parties. Overall, party-wise
salience towards these policy areas correlates
highly with the relative breakdowns in the
Comparative Manifesto Project (Volkens
et al., 2017): where the relative share of
sentences from the LABOR and LIBERAL

manifestos7 for welfare state (health and
social services) is 22:7, education is 9:6,
economy is 11:23, and technology & infras-
tructure (communication, infrastructure)
is 17:19.
• Across policy-areas, specific pledges are

6https://www.abc.net.au/news/factcheck
7https://manifesto-project.wzb.eu/

down/data/2018b/datasets/MPDataset_
MPDS2018b.csv
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Figure 2: Confusion matrix for speech act and target party classification tasks.
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Figure 3: Policy-wise speech act analysis. Classes include: directive (“direc”), assertive (“asser”), commissive-
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more frequent than vague ones. This aligns
with previous studies done by Naurin (2014)
and Gibbons et al. (2017).

10 Conclusion and Future Work

In this work we present a new dataset of elec-
tion campaign texts, based on a class schema of
speech acts specific to the political science do-
main. We study the associated problems of iden-
tifying the referent political party, and segmenta-
tion. We showed that this task is feasible to an-
notate, and present several models for automating
the task. We use a pre-trained language model
and also leverage auxiliary unlabeled text with
semi-supervised learning approach for the target
based speech act classification task. Our results
are promising, with the best method being a semi-
supervised biGRU with ELMo embeddings for the
speech act task, and the model additionally in-
corporating speaker meta-data for the target party
task. We provided qualitative analysis of speech
acts across major policy areas, and in future work
aim to expand this analysis further with fine-
grained policies and ideology-related analysis.
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Abstract

Incivility in public discourse has been a ma-
jor concern in recent times as it can affect the
quality and tenacity of the discourse negatively.
In this paper, we present neural models that
can learn to detect name-calling and vulgarity
from a newspaper comment section. We show
that in contrast to prior work on detecting toxic
language, fine-grained incivilities like name-
calling cannot be accurately detected by sim-
ple models like logistic regression. We ap-
ply the models trained on the newspaper com-
ments data to detect uncivil comments in a
Russian troll dataset, and find that despite the
change of domain, the model makes accurate
predictions.

1 Introduction

Online harassment, colloquially known as cyber-
bullying or cyber harassment, has been rampant
since the introduction of the Internet to the general
population. It has been a major cause of concern
since the mid- and late-90’s, and is a thoroughly
researched topic in the fields of social science, be-
havioral science, network science and computer se-
curity. Cyberbullying is a form of harassment that
is carried out using electronic modes of communi-
cation like computer, phone, and in almost all the
cases in recent years, the Internet. Cyberbullying
is defined as a “willful and repeated harm inflicted
through the medium of electronic text” by Patchin
and Hinduja (2006)- but this phenomenon goes far
beyond the scope of just electronic text. A more
comprehensive definition of cyberbullying can be
found in one of their later works, where they de-
fined cyberbullying as “a form of harassment using

electronic mode of communication” (Hinduja and
Patchin, 2008). Fauman (2008) described cyberbul-
lying as “bullying through the use of technology
such as the Internet and cellular phones”.

The spectrum of online harassment is vast;
hence, we focus on one segment of this phe-
nomenon: online incivility. Incivility has been
rampant in American society for quite some time.
Incivility is described as features of discussion that
convey an unnecessarily disrespectful tone toward
the discussion forum, its participants, or its topics
(Coe et al., 2014). While it is often said that in-
civility is “very much in the eye of the beholder”
and what is civil to someone may be uncivil to
another (Kenski et al., 2017), some are universal
nevertheless. One study has suggested that 69%
of Americans believe that incivility in public dis-
course has become a rampant problem, and only 6%
do not identify it as a problem (Shandwick, 2018).
The average number of incivility encounters per
week has also risen drastically in both the physical
world and cyberspace. Social media encounters
are especially alarming: a person who encountered
any form of incivility anywhere, had on average
5.4 uncivil encounters per week in online social
media platforms in 2018, which is almost double
the amount from late 2016.

In this paper, we present machine learning mod-
els that can identify two prominent forms of inci-
vility, name-calling and vulgarity, based on user-
generated contents from public discourse platforms.
We focused trained recurrent neural network mod-
els on an annotated newspaper comment section
and showed that our model outperforms several
baselines, including a state-of-the-art model based
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on pre-trained contextual embeddings. We applied
our newspaper-comments-trained model to a dat-
saets of Russian troll tweets to observe how the
model generalizes from one platform to another.

2 Related Works

Kenski et al. (2017) divided incivility into several
different forms, including name-calling, vulgarity,
lying accusation, pejorative, and aspersion. They
took comments posted by regulars in a newspaper
website, and annotated these for the various forms
of incivility. Their research focused mostly on the
demographics and other individual attributes of
readers of these comments and how they perceived
incivility in these comments.

Rains et al. (2017) focused more on the perpe-
trators of incivility rather than the readers. They
researched a handful of news articles published in
the Arizona Daily Star newspaper website and the
comments posted about these articles, then man-
ually annotated these comments and their posters
for their incivility and political orientation. The
authors found that conservatives were significantly
less likely to be uncivil in these public discussions
compared to liberals, and the likelihood of liberals
being uncivil increased with the presence of con-
servatives in the same discussion. Liberals were
also found to be more repercussive compared to
the conservatives.

Recent work has focused on particular forms of
incivility, as described in the following sections.

2.1 Generic incivility

Reynolds et al. (2011) developed machine learning
models that can detect cyberbullying by identify-
ing curse and insult words in social media posts.
They have collected a small set of posts from a
website named formspring.me and used various
non-sequential learning algorithms on this dataset
to build a binary classifier for cyberbullying detec-
tion.

2.2 Vulgarity

Cachola et al. (2018) used a vulgarity score for
better sentiment prediction from a collection of
6800 tweets. They found that vulgarity interacts
with key demographic variables like gender, age,
religiosity, etc. Other research has also identified
demographic keys closely associated with vulgar-
ity: Wang et al. (2014) presented a quantitative
analysis on the frequency of curse word usage in

Twitter and their variation with certain demograph-
ics, and Gauthier et al. (2015) analyzed the usage
of swear words based on Tweeter users’ age and
gender. As none of these papers present any ma-
chine learning model that can be used for vulgarity
detection, Holgate et al. (2018) claim their work
to be the first in vulgarity prediction. They clas-
sified functionality of vulgarity in five different
cohorts: aggression, emotion expression, emphasis,
auxiliary and signalling group identity; and used
binary logistic regression classifiers to identify vul-
gar texts. They also showed the correlation among
demographic variables and vulgarity and found that
age, faith, and political ideology have significant
correlation with vulgarity usage.

2.3 Racism/sexism
Waseem and Hovy (2016) has presented machine
learning models that can be used to detect racism
and sexism in social media. They have collected
and annotated a set of almost 17000 tweets, and
used them to build character based n-gram models
for offensive tweet detection. They have provided
an extensive list of criteria that identify a tweet as
racially and sexually offensive, and showed that
demographic information does not add much per-
formance to a character-level model.

2.4 Personal attacks
Wulczyn et al. (2017) introduced a methodol-
ogy to generate annotations for personal attacks.
They have used crowdsourcing to identify a set of
Wikipedia comments, and used a machine learning
model to imitate this annotation on a much larger
scale. Agrawal and Awekar (2018) have developed
deep neural models that can detect cyberbullying
(Reynolds et al., 2011), racism/sexism (Waseem
and Hovy, 2016), and personal attacks (Wulczyn
et al., 2017) in multiple social media platforms.
They claim that theirs is the first work to system-
atically analyze cyberbullying in social media to-
wards building deep prediction models. They have
shown that hand-crafted features using lexicons is
not a good idea as abusive word vocabularies vary
a lot from one social media platform to another,
and swear words are not always considered to be
uncivil in social media.

2.5 Name-calling
Habernal et al. (2018) analyzed ad hominem at-
tacks in Change My View, a “good faith” ar-
gumentation platform that is hosted on Reddit.
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They identified posts that Reddit moderators had
marked as violating the forum’s rules against ad
hominem atacks. To identify such posts, they
used stacked bidirectional Long-Short Term Mem-
ory networks (LSTMs) and Convolutional Neural
Networks (CNNs), and achieved 78% and 81%
accuracy, respectively. One of their most inter-
esting findings was that in 48.6% of the cases,
ad hominem attacks are in the last comment of
the thread, which shows that personal attacks and
name-callings can affect user participation in pub-
lic discourses.

Works that closely resemble what we are trying to
do have one major issue with the datasets that have
been used- they are often annotated by mechanical
turks (Wulczyn et al., 2017; Reynolds et al., 2011).
Incivility is based on the perception of the person in
the receiving end, and this perception varies wildly
from person to person. Using turkers that we know
almost nothing about is not ideal- as difference in
perception may introduce unintended bias in the
dataset. Hence, we need a dataset that is annotated
by experts who have extensive knowledge on inci-
vility detection. Coe et al. (2014) presents one such
dataset, and we plan to use this for our incivility
detection task (more on this in Section 4).

3 Incivility Classification and Definitions

For our work, we will use the incivility classifica-
tion presented by Coe et al. (2014): name-calling,
vulgarity, aspersion, lying accusations and pejora-
tive for speech. We focus on the two most prevalent
forms of these in Coe et al. (2014)’s data: name-
calling and vulgarity.

name-calling Ad hominem attacks. Although ad
hominem attacks are often used to derail a con-
versation by using derogatory terms towards
another person, the authors have included ev-
ery instances of derogatory remarks, irrespec-
tive of target and intention. For example, At
least the morons in the state capital no longer
have control of this process! is identified as
a name-calling comment as it has the word
moron in it (Kenski et al., 2017).

vulgarity Contents that include any sort of curse
words, including minor ones such as damn
(Kenski et al., 2017). For example, I hope
the voters will kick that politician out on his
pompous ass next election. is marked as vul-
gar, as it contains the word ass in it.

4 Data

Coe et al. (2014) graciously shared with us the data
that they collected from the comment section of
the Arizona Daily Star newspaper. They collected
articles and comments between 17 October 2011
and 6 November 2011 from eight news sections:
Business, Entertainment, Lifestyles, Local News,
Nation and World, Opinion, Sports, and State News.
All their data was downloaded and saved manually
by one research assistant one day after the articles
were posted to provide enough time for the article
to garner comments, yet not long enough for the ar-
ticle to be deleted. At the end of the data collection
period, a total of 706 articles and 6535 comments
were collected, out of which they coded 6444 for
further analysis.

They used three teams of 3-5 research assistants
to code articles and comments for incivility. The
teams had extensive training on the coding proce-
dures (Coe et al., 2014). The coding process took
approximately six weeks, and chance-corrected in-
tercoder reliability was established prior to the cod-
ing, which ranged between 0.61 to 1.0 Krippen-
dorff’s alpha score for different codes. In addition
to coding the incivilities present in the comments,
they also coded a variety of other metadata, e.g.,
the author’s name, reactions received for other read-
ers (thumbs up or thumbs down), word counts, etc.
All the results of the coding procedure were saved
in a metadata file created using Microsoft Excel.
Comments were saved in separate PDF files named
based on the news sections, articles and dates.

5 Challenges in Identifying incivilities
from User Contents

As we have mentioned before that incivility is in
the eye of the beholder, it is sometimes challenging
to identify what can be unequivocally considered
as uncivil interaction. Informed by the Coe et al.
(2014) data, the following sections discuss some of
these challenges.

5.1 Frequency

Although researchers have identified incivilities be-
ing rampant in public discourse (Shandwick, 2018),
it is still minuscule compared to regular civil dis-
courses in any social platform. As most of our iden-
tification and prediction techniques are data-driven,
it is difficult to create a model that can identify
incivilities from this small number of examples.
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5.2 Linguistic Variations and Creativity

Oftentimes people refrain from using an exact ver-
sion of an uncivil phrase and use an abbreviation
or spelling variation of that phrase instead. For
example, in All BS, just like the politicians – the
same crap, the term BS is clearly an abbreviation
of the word bullshit. However, there are also in-
stances in the data where BS is used to abbreviate a
person’s name, which clearly is not an example of
uncivil comment. Also, people often like to write
uncivil words in spellings that are a derivative form.
For example, people often use sh!t instead of shit,
which clearly are the same thing in a public dis-
course. Hundreds of these variations may exist,
making for a challenging identification problem.

Another challenge in identifying incivilities is
that people can be really creative when they try to
attack someone. This often happens when some-
one tries to indulge in ad hominem attacks with
plausible deniability. For example, we have ob-
served people using the word DemocRat instead of
Democrat to identify someone with a democratic
political orientation. Although these two words
look similar, and sound exactly the same, Demo-
cRat indicates that the target democrat is also a
rat, a colloquial word for a spy, or a dishonest per-
son. There are many other examples of this kind
of variation, e.g. democraps. This phenomenon
is sometimes referred as Obscenity Obfuscation,
and researchers have found that it is becoming in-
creasingly common in user generated contents in
all sorts of social media platforms (Rojas-Galeano,
2017).

5.3 Difficulty in Comprehension

It is sometimes difficult to understand whether a
word or a phase is used in an uncivil manner with-
out understanding the context. For example, the
word lazy can be used to describe the state of some-
thing that is actually slow or ineffective (e.g., lazy
algorithms), or it can be used as an ad hominem
attack on someone (e.g., the lazy politicians have
ruined this country). As understanding the con-
text of a content in a public discourse is difficult,
separating these cases based on their contexts is
challenging.

6 Incivility Prediction

In this section, we focus on our attempt to create
a machine learning model that can be used as an
incivility filter for moderators in social media plat-

forms. Our model will exclusively use features
obtained from the contents and reciprocations in
the platform, while avoiding the demographic infor-
mation that was used heavily by prior work. This
will allow our models to be used on the large por-
tion of online discourse where such demographic
information is unavailable, e.g., where users are
anonymous.

6.1 Data preparation
We will train our incivility prediction models on
the Coe et al. (2014) data discussed in section 4.
However, that data were designed for use in social
science research, not natural language processing
research, and thus there were several challenges
in working with the data as they were collected,
including:

• The comments were saved in PDFs, and the
metadata referenced each comment by a num-
ber that was drawn (not typed) into the PDF
beside the comment.

• The naming conventions for the files were in-
consistent (spelling variations, variable length
identifiers, etc.)

• Dates were saved using multiple formats
(ddmmyy, dd-mm-yy, etc.)

• There were no specific markers in the text that
identified the start and end of a comment.

• Many comments contained quotations from
other comments, also with no consistent mark-
ers of where quotes began or ended.

We solved these problems using a combination of
regular expressions (e.g., for normalizing dates),
brute-force techniques (e.g., quotations were identi-
fied by comparing against all previous comments),
and manual revision (e.g., renaming the files whose
names were too inconsistent to be resolved auto-
matically).

The resulting set of annotated comments were
saved in JSON format for further computational
analysis. We ended up with 6175 comments from
the original set of 6444 comments after the extrac-
tion and cleaning process.

6.2 Prediction Task
Our main focus was to build a prediction model
that can work as a filter for incivility in public
discourse. We were also interested in how a model
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trained on public discourse data would work on a
social media platform. We first divided our dataset
into three smaller sets: train, development and test
sets. Comments are randomly assigned to sets, and
we ended up with 3950 comments in the training
set, 989 comments in the validation set and 1236
comments in the test set. We set the the test set
aside for our final evaluation, and worked only on
the training and validation dataset to find the best
model that can fit the problem.

6.3 Baselines

We found a similar task in Kaggle1 (Wulczyn et al.,
2017) that tries to identify toxicity of comments
in the discourse section of Wikipedia. In that task,
the best performing model was a recurrent neural
network model with gated recurrent units (GRUs;
Cho et al., 2014), but some simple non-sequential
models (logistic regressions and support vector ma-
chines) also performed almost as well as the se-
quential model on that task.

For our baseline, we used two non-sequential
machine learning techniques: logistic regression
and support vector machines, using TF-IDF vec-
tors obtained over words in the comments. We
also considered a state-of-the-art out-of-the-box
text classification model as a baseline, the Flair text
classification model (Akbik et al., 2018), which
uses GloVe word embeddings (Pennington et al.,
2014) and pre-trained contextual word embeddings
derived from two character-level language models.
Flair achieved state-of-the-art performance in part-
of-speech tagging and named-entity recognition
tasks, and we thought that the character-based na-
ture of the Flair model might be helpful in the face
of the linguistic variation and creativity challenges
we discussed earlier.

6.4 Model

Our model was inspired by the top performing sys-
tems in the Kaggle competition, and started with
FastText embeddings (Joulin et al., 2016) for each
of the words in a comment. These word vectors
were fed to a recurrent layer consisting of bidirec-
tional GRUs. The outputs of the GRUs were fed to
an average pooling layer and a max pooling layer,
which were then concatenated2. The output of the
pooling was then fed through a sigmoid layer to

1https://www.kaggle.com/c/jigsaw-
toxic-comment-classification-challenge

2This type of pooling worked well for Demidov (2018),
and also performed well in our preliminary analysis.

produce the outputs. To avoid overfitting, we used
a dropout layer (Srivastava et al., 2014) with 0.2
probability in between the input and hidden layer.
We set the maximum length of input to 500 words
for each comment, as this garnered the best valida-
tion performance in our preliminary analysis. We
set class weights based on the frequency of name-
calling and vulgarity: non-name-calling comments
are 7 times more common than the name-calling
ones, and non-vulgar comments are 35 times more
common than vulgar ones, so we used a weight-
ing scheme of 1:7 for name-calling and 1:35 for
vulgarity. The model was trained with the Adam
optimizer (Kingma and Ba, 2015) on mini-batches
of size 32, with other hyperparameters set to their
defaults. We trained each instance of this model
for at most 500 epochs, with the option of early
stopping if the validation accuracy did not improve
for 10 consecutive epochs. A general structure of
this model is shown in figure 1.

To further improve our model, we wanted to
incorporate any metadata that were available to use.
Coe et al. (2014) found that the thumbs up and
thumbs downs received by a comment, the section
of the article, and the author of the article all had
some significance regarding incivility in the forum.
So we introduced these metadata as features in
our model. We created normalized feature vectors
built on these attributes, and introduced them as
auxiliary features right before the sigmoid layer, by
concatenating them with the output of the pooling
layers.

We also explored external resources that could
improve our model. We created a pretrained model
on the Kaggle dataset discussed earlier, as it had
a large amount of annotated comments (over 160
thousand comments obtained from Wikipedia con-
tributor’s community). We used the same RNN
model to train on the Kaggle data until it reached
convergence, then retrained the model using our
Arizona Daily Star data. The only portion of the
model that was not shared between the pre-training
(on Kaggle) and the training (on Arizona Daily
Star) was the output sigmoid layers.

6.5 Experimental Results

The performance of the different models can be
seen in table 1. Flair outperformed both of the
other two baselines (36.55 vs. 23.35 and 18.46
F1 in name-calling. Logistic regression and sup-
port vector machine models failed to detect single
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lazy politicians ruined this country

Figure 1: General structure of the RNN model. Auxiliary features are optional.

Validation
Name-calling Vulgarity

Prec Rec F1 Prec Rec F1

Logistic regression 56.13 11.05 18.46 - 0.00 0.00
Support vector machine 54.10 14.89 23.35 - 0.00 0.00
Flair 52.17 28.12 36.55 25.00 7.41 11.43
GRU 43.65 61.72 51.13 37.50 66.67 48.00
GRU with auxiliary features 44.38 59.85 50.96 37.50 66.67 48.00
GRU with pretraining 69.44 19.53 29.79 50.00 11.11 18.03

Test
Name-calling Vulgarity

Prec Rec F1 Prec Rec F1

GRU 45.76 50.63 48.07 48.72 57.57 52.77

Table 1: Performance of the models in terms of Precision (Prec), Recall (Rec), and F-measure (F1).

instances of vulgarity in the development dataset,
hence, Flair automatically outperformed these two.
But our GRU-based model easily outperformed the
Flair model (51.13 vs. 36.55 F1 in name-calling,
and 48.00 vs. 11.43 F1 in vulgarity). These re-
sults stand in contrast to the Kaggle competition on
toxicity detection, where such baselines performed
nearly as well as the best (GRU-based) model, and
all models achieved high levels of performance
(>0.98 area under receiver operating characteristic
curve). This suggests that the finer-grained inci-
vility detection formulated by Coe et al. (2014) is
more challenging than simple toxicity detection.

Adding the auxiliary features (upvotes, etc.) to
the GRU-based model had virtually zero effect,
with slight improvement on the model’s precision
but a slight drop in recall for name-calling, and ab-
solutely no change for vulgarity. Using the Kaggle
dataset to pre-train our GRU-based model before
training on the Arizona Daily Star data yielded
very high precisions, but at the cost of very low
recalls. This suggests that while there is some over-
lap between the two tasks (toxicity detection and
incivility detection), the differences between the
tasks make it difficult to directly leverage the data
from one task in the other.
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name-calling Vulgarity
Tweet text Score Tweet text Score

RT Jason toronto: immigrant4trump
Delusional Waters, Head Clown Schumer,
Joke Perez, Senile Pelosi, Sleazy Schiff

0.997 Damn #BillCosby !! Damn damn
damnnnn

0.996

#IHateItWhen incompetent idiots try to
teach us how to live

0.997 I’m just going to say it. This is the stupi-
dest tweet I’ve seen today. This BS bully-
ing is not

0.973

@dapsixer GOP POTUS GOPChair-
woman Primary these GOP candidates

0.979 ”White Nationalism” WTH came up with
this moniker? democrats?

0.985

#alis Dobbs obliterates Mitch McConnell
and his pathetic excuses

0.989 Hell hath no fury like a bureaucrat
scorned

0.969

Table 2: Examples of the GRU-based model predictions on the Russian troll Twitter data.

Since the GRU model with no auxiliary features
or pre-training performed best on the development
set, we evaluated the performance of this model on
the test set. It achieved 48.07 F-measure for name-
calling and 52.77 for vulgarity, scores roughly sim-
ilar to what we had seen on the development data.

7 Incivility Prediction in Twitter

Though we built our models to detect incivilities in
newspaper comments, we were interested in how
well they would perform in other domains of social
media. Karan and Šnajder (2018) has showed that
cross-domain adaptation for detecting abusive lan-
guage is possible- hence we would like to observe
how well our model performs on a set of tweets.

In June 2018, The United States House Intel-
ligence Committee released a list of 3841 Twit-
ter account names that were human-operated troll
accounts associated with Russia’s Internet Re-
search Agency. Darren Linvill and Patrick Warren
from Clemson University collected all the tweets
published since June 2015 from these accounts,
cleaned them, and published a set of almost 3
million tweets (Linvill and Warren, 2018). These
tweets are publicly available in FiveThirtyEight’s
Github page3.

As prior research suggest that trolls are a big
source of incivility in social media platforms (Fau-
man, 2008; Hinduja and Patchin, 2008), we took
this opportunity to observe how our model per-
forms on this dataset. We downloaded all the tweet
texts and ran our GRU-based model on these texts.
Results of this experiment can be found in the au-

3https://github.com/fivethirtyeight/
russian-troll-tweets

thor’s GitHub repository4.

7.1 Observations

Our model identified 13% of all tweets as name-
calling and 1.7% as vulgarity. These are roughly
similar to the Arizona Daily Star training data,
which had 14% name-calling and and 2.8% vul-
garity. Though we do not have access to the expert
annotators used by Coe et al. (2014), but we can
nonetheless get an approximate measure of our
model’s performance by sampling predictions from
our model and estimating the true label following
the Coe et al. (2014) annotation guidelines.

To measure our model’s precision, we took the
250 tweets that our model was most certain con-
tained name-calling, and the 250 tweets that our
model was most certain contained vulgarity. We
manually reviewed each of these 500 tweets, and
found only 7 instances of mistakenly tagged name-
calling and 5 instances of mistakenly tagged vulgar-
ity. To get a rough sense of our model’s recall, we
looked at the other end of the model’s prediction
spectrum. Based on a manual review of the model’s
prediction, the model almost never makes a mis-
take when the prediction score is below 10%; we
found only one instance of mistaken name-calling,
and no instance of mistaken vulgarity in the bottom
250 tweets that we manually annotated.

Table 2 shows some example tweets and the
prediction scores from our model. The bottom
two examples under name-calling and the bottom
one example under vulgarity represent mistakes.
In the first name-calling error, the model is confi-
dent (probability 0.979) that there is a name-calling,

4anonymized
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perhaps because the terms GOP and POTUS fre-
quently appear with name-calling in our training
data. In the second name-calling error, the model is
confident (probability 0.989) that there is a name-
calling, likely because of the presence of the word
pathetic, which is an aspersion, attacking an idea,
not a name-calling, attacking a person. In the vul-
garity error, hell has not been used to reference
the religious concept of hell, but the word strongly
associated with vulgarity in the training data. The
table also shows some examples of reasonable suc-
cesses of the model, for example, handling vulgar
abbreviations like BS (short for bullshit) and WTH
(short for Who the hell).

8 Future Works and Conclusion

Our work here aims towards keeping a civil en-
vironment in public discourse forums and social
media platforms. Our goal was to build a filtering
system that could work alongside human moder-
ators to reduce their workload, be objective and
independent of user reporting, and perform well
on previously unseen social media streams. There
is much work to do in this area: annotation of a
large random sample of the troll tweets can give
a more thorough estimate of model performance,
and various forms of domain adaptation like self-
training might be applied to improve the perfor-
mance of the model. We have used word n-grams
for features in our baseline models, which can be
improved by using features obtained from domain-
specific lexicons. There are lexicons of abusive
words (Wiegand et al., 2018)- which can be used to
create non-sequential models with smaller feature
sets. Whether these simpler models are better is
yet to be proven - as Agrawal and Awekar (2018)
has shown that vocabulary of words used for cyber-
bullying varies significantly from one social media
platform to another. They have also showed that
swear words are not necessary to be uncivil in on-
line social media- hence these types of detection
techniques should not rely on such hand-crafted
features.

One research question that follows this work is
to observe whether incivility affects user engage-
ment in social media. Prior research has observed
that receiving replies can have effects in a user’s
engagement (Joyce and Kraut, 2006; Sadeque et al.,
2015), and the language of these replies can also
have consequences (Arguello et al., 2006). Haber-
nal et al. (2018) has showed that 48% of comments

that included ad hominem attacks ended the argu-
ment – which is indicative of lower engagement
by the entire community. Hence, we believe that
incivility has a significant influence on user engage-
ment, and in turn may contribute to a community’s
sustainability. This is yet to be proven, and more
work needs to be performed to prove or disprove
this hypothesis.

In this paper, we have presented a recurrent neu-
ral that can identify incivilities in public discourse.
Though trained on a corpus of newspaper com-
ments, we have initial evidence that it also performs
well in detecting incivilities in Twitter. We believe
our model will be able to serve as a wide-range
incivility filter in other social media platforms.
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Abstract

Automatically generating animation from na-
tural language text finds application in a num-
ber of areas e.g. movie script writing, ins-
tructional videos, and public safety. However,
translating natural language text into anima-
tion is a challenging task. Existing text-to-
animation systems can handle only very sim-
ple sentences, which limits their applications.
In this paper, we develop a text-to-animation
system which is capable of handling complex
sentences. We achieve this by introducing a
text simplification step into the process. Buil-
ding on an existing animation generation sys-
tem for screenwriting, we create a robust NLP
pipeline to extract information from screen-
plays and map them to the system’s knowledge
base. We develop a set of linguistic transfor-
mation rules that simplify complex sentences.
Information extracted from the simplified sen-
tences is used to generate a rough storyboard
and video depicting the text. Our sentence sim-
plification module outperforms existing sys-
tems in terms of BLEU and SARI metrics.We
further evaluated our system via a user study:
68 % participants believe that our system gene-
rates reasonable animation from input screen-
plays.

1. Introduction

Generating animation from texts can be useful
in many contexts e.g. movie script writing (Ma and
Kevitt, 2006; Liu and Leung, 2006; Hanser et al.,
2010), instructional videos (Lu and Zhang, 2002),
and public safety (Johansson et al., 2004). Text-to-
animation systems can be particularly valuable for
screenwriting by enabling faster iteration, prototy-
ping and proof of concept for content creators.

In this paper, we propose a text-to-animation
generation system. Given an input text describing
a certain activity, the system generates a rough ani-
mation of the text. We are addressing a practical

setting, where we do not have any annotated data
for training a supervised end-to-end system. The
aim is not to generate a polished, final animation,
but a pre-visualization of the input text. The pur-
pose of the system is not to replace writers and
artists, but to make their work more efficient and
less tedious. We are aiming for a system which is
robust and could be deployed in a production en-
vironment.

Existing text-to-animation systems for screenw-
riting (§2) visualize stories by using a pipeline
of Natural Language Processing (NLP) techniques
for extracting information from texts and mapping
them to appropriate action units in the animation
engine. The NLP modules in these systems trans-
late the input text into predefined intermediate ac-
tion representations and the animation generation
engine produces simple animation from these re-
presentations.

Although these systems can generate anima-
tion from carefully handcrafted simple sentences,
translating real screenplays into coherent anima-
tion still remains a challenge. This can be attri-
buted to the limitations of the NLP modules used
with regard to handling complex sentences. In this
paper, we try to address the limitations of the
current text-to-animation systems. Main contribu-
tions of this paper are:

We propose a screenplay parsing architectu-
re which generalizes well on different screen-
play formats (§3.1).
We develop a rich set of linguistic rules to
reduce complex sentences into simpler ones
to facilitate information extraction (§3.2).
We develop a new NLP pipeline to generate
animation from actual screenplays (§3).

The potential applications of our contributions
are not restricted to just animating screenplays.
The techniques we develop are fairly general and
can be used in other applications as well e.g. in-
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Figure 1: System Architecture: Screenplays are first segmented into different functional blocks. Then, the descrip-
tive action sentences are simplified. Simplified sentences are used to generate animation.

formation extraction tasks.

2. Related Work

Translating texts into animation is not a trivial
task, given that neither the input sentences nor
the output animations have a fixed structure. Prior
work addresses this problem from different pers-
pectives (Hassani and Lee, 2016).

CONFUCIUS (Ma and Kevitt, 2006) is a sys-
tem that converts natural language to animation
using the FDG parser (Tapanainen and Järvinen,
1997) and WordNet (Miller, 1995). ScriptViz (Liu
and Leung, 2006) is another similar system, crea-
ted for screenwriting. It uses the Apple Pie par-
ser (Sekine, 1998) to parse input text and then re-
cognizes objects via an object-specific reasoner.
It is limited to sentences having conjunction bet-
ween two verbs. SceneMaker (Hanser et al., 2010)
adopts the same NLP techniques as proposed in
CONFUCIUS (Ma and Kevitt, 2006) followed by
a context reasoning module. Similar to previously
proposed systems, we also use dependency par-
sing followed by linguistic reduction (§3.2).

Recent advances in deep learning have pushed
the state of the art results on different NLP tasks
(Honnibal and Johnson, 2015; Wolf et al., 2018;
He et al., 2017). We use pre-trained models for
dependency parsing, coreference resolution and
SRL to build a complete NLP pipeline to crea-
te intermediate action representations. For the ac-
tion representation (§3.4), we use a key-value pair
structure inspired by the PAR architecture (Badler
et al., 2000), which is a knowledge base of repre-
sentations for actions performed by virtual agents.

Our work comes close to the work done in the
area of Open Information Extraction (IE) (Niklaus
et al., 2018). In particular, to extract information,
Clause-Based Open IE systems (Del Corro and
Gemulla, 2013; Angeli et al., 2015; Schmidek and
Barbosa, 2014) reduce a complex sentence into
simpler sentences using linguistic patterns. Howe-
ver, the techniques developed for these systems do
not generalize well to screenplay texts, as these
systems have been developed using well-formed
and factual texts like Wikipedia, Penn TreeBank,
etc. An initial investigation with the popular Open
IE system OLLIE (Open Language Learning for
Information Extraction) (Mausam et al., 2012) did
not yield good results on our corpus.

Previous work related to information extraction
for narrative technologies includes the CARDI-
NAL system (Marti et al., 2018; Sanghrajka et al.,
2018), as well as the conversational agent PICA
(Falk et al., 2018). They focus on querying know-
ledge from stories. The CARDINAL system also
generates animations from input texts. However,
neither of the tools can handle complex sentences.
We build on the CARDINAL system. We deve-
lop a new NLP module to support complex sen-
tences and leverage the animation engine of CAR-
DINAL.

Recently, a number of end-to-end image ge-
neration systems have been proposed (Mansimov
et al., 2015; Reed et al., 2016). But these sys-
tems do not synthesize satisfactory images yet,
and are not suitable for our application. It is hoped
that the techniques proposed in this paper could
be used for automatically generating labelled da-
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ta (e.g. (text,video) pairs) for training end-to-end
text-to-animation systems.

3. Text-to-Animation System

We adopt a modular approach for generating
animations from screenplays. The general over-
view of our approach is presented in Figure 1. The
system is divided into three modules:

Script Parsing Module: Given an input
screenplay text, this module automatically
extracts the relevant text for generating the
animation (§3.1).
NLP Module: It processes the extracted text
to get relevant information. This has two sub-
modules:
• Text Simplification Module: It simpli-

fies complex sentences using a set of lin-
guistic rules (§3.2).
• Information Extraction Module: It ex-

tracts information from the simplified
sentences into pre-defined action repre-
sentations (§3.4).

Animation Generation Module: It genera-
tes animation based on action representations
(§3.5).

3.1. Script Parsing Module
Typically, screenplays or movie scripts or

scripts (we use the terms interchangeably), are
made of several scenes, each of which corresponds
to a series of consecutive motion shots. Each sce-
ne contains several functional components1: Hea-
dings (time and location), Descriptions (scene des-
cription, character actions), Character Cues (cha-
racter name before dialog), Dialogs (conversation
content), Slug Lines (actions inserted into con-
tinuous dialog) and Transitions (camera move-
ment). In many scripts, these components are ea-
sily identifiable by indentation, capitalization and
keywords. We call these scripts well-formatted,
and the remaining ones ill-formatted. We want to
segment the screenplays into components and are
mainly interested in the Descriptions component
for animation generation.
Well-formatted Scripts: We initially tried
ScreenPy (Winer and Young, 2017) to annotate
the well-formatted scripts with the component
labels. However, ScreenPy did not perform well
on our data. We developed our own model, based
on Finite State Machines (FSM), for parsing

1https://www.storysense.com/format.htm

Algorithm 1 Syntactic Simplification Procedure
1: procedure SYNTACTIC SIMPLIFICATION(sent, temp)
2: Q← empty queue
3: HS← empty integer hash set
4: RES← empty list
5: Q.push(sent) . push input sentence to queue
6: while Q 6= Empty do
7: str← Q.pop()
8: if hash(str) ∈ HS then
9: RES.append(str) . have seen this sentence
10: continue
11: HS.add(str) . mark current sentence as already seen
12: transform← False
13: for a in analyzers do
14: if !transform & a.identify(str) then
15: transform← True
16: simplified = a.transform(str)
17: correct verb tense(simplified)
18: Q.push(simplified)
19: if transform 6= True then
20: RES.append(str)
21: return RES

scripts (for details refer to Appendix A). Due
to space limitations, we do not describe the
FSM model; the key idea is that the model uses
hand-crafted transition rules to segment the input
screenplay and generates (paragraph, component
name) pairs.
Ill-formatted Scripts: Taking all the (paragraph,
component name) pairs generated by the FSM as
ground truth, an SVM model is trained to segment
ill-formatted screenplays with inconsistent inden-
tations. For extracting features, each paragraph is
encoded into a fix-sized vector using a pre-trained
Universal Sentence Encoder. The SVM is trained
and tested on a 9:1 train-test data split. The re-
sult shows an accuracy of 92.72 % on the test set,
which is good for our purposes, as we are interes-
ted mainly in the Descriptions component.
Coreference Resolution: Screenplays contain a
number of ambiguous entity mentions (e.g. pro-
nouns). In order to link mentions of an entity, an
accurate coreference resolution system is requi-
red. The extracted Descriptions components are
processed with the NeuralCoref2 system. Given
the text, it resolves mentions (typically pronouns)
to the entity they refer to in the text. To facili-
tate entity resolution, we prepend each Descrip-
tion component with the Character Cues compo-
nent which appears before it in the screenplay (e.g.
[character]MARTHA: [dialog]“I knew it!” [des-
cription]She then jumps triumphantly→ MART-
HA. She then jumps triumphantly).

3.2. Text Simplification Module
In a typical text-to-animation system, one of the

main tasks is to process the input text to extract
2github.com/huggingface/neuralcoref

294



Syntactic Structure Identify procedure Transform procedure
Coordination search if cc and conj in dependency tree cut cc and conj link. If conj is verb, mark it as new root; else

replace it with its sibling node.
Pre-Correlative Conjugation locates position of keywords: “either”,

“both”,“neither”
removed the located word from dependency tree

Appositive Clause find appos token and its head (none) glue appositive noun phrase with “to be”
Relative Clause find relcl token and its head cut appos link, then traverse from root. Then, if no “wh” word

present, put head part after anchor part; else, we divide them into
5 subcases (Table 2)

Adverbial Clause Modifier find advcl token and its head. Also conjuncts of
head token

cut advcl edge. If advcl token does not have subject, add subject
of root as advcl’s most-left child and remove prep and mark token.
Then traverse from both root and advcl token

Inverted Clausal Subject attr token has to be the child of head of csubj
token

change position of actual verb and subject

Clausal Complement find ccomp token in dependency tree cut ccomp link, add subject to subordinate clause if necessary
Passive Voice check presence of nsubjpass or csubjpass optio-

nally for auxpass and agent
cut auxpass link if any. Cut nsubjpass or csubjpass link. Prepend
subject token to verb token’s right children. Finally append suita-
ble subject.

Open Clause Complement find xcomp verb token adn actual verb token if aux token presents, cut aux link, then replace xcomp-verb in
subject’s children with actual-verb, traverse from actual-verb; el-
se, cut xcomp link, traverse from xcomp-verb

Adjective Clause find acl verb token and its head cut acl link. Link subject node with it. Traverser from acl node

Table 1: Linguistic rules for text simplification module

the relevant information about actions (typically
verbs) and participants (typically subject/object of
the verb), which is subsequently used for genera-
ting animation. This works well for simple sen-
tences having a single verb with one subject and
one (optional) object. However, the sentences in a
screenplay are complicated and sometimes infor-
mal. In this work, a sentence is said to be compli-
cated if it deviates from easily extractable and sim-
ple subject-verb-object (and its permutations) syn-
tactic structures and possibly has multiple actions
mentioned within the same sentence with syntactic
interactions between them. By syntactic structure
we refer to the dependency graph of the sentence.

In the case of screenplays, the challenge is to
process such complicated texts. We take the text
simplification approach, i.e. the system first sim-
plifies a complicated sentence and then extracts
the relevant information. Simplification reduces a
complicated sentence into multiple simpler sen-
tences, each having a single action along with its
participants, making it straightforward to extract
necessary information.

Recently, end-to-end Neural Text Simplifica-
tion (NTS) systems (Nisioi et al., 2017; Saggion,
2017) have shown reasonable accuracy. However,
these systems have been trained on factual data
such as Wikipedia and do not generalize well to
screenplay texts. Our experiments with such a pre-
trained neural text simplification system did not
yield good results (§5.1). Moreover, in the context
of text-to-animation, there is no standard labeled
corpus to train an end-to-end system.

There has been work on text simplification
using linguistic rules-based approaches. For exam-

ple, (Siddharthan, 2011) propose a set of rules
to manipulate sentence structure to output simpli-
fied sentences using syntactic dependency parsing.
Similarly, the YATS system (Ferrés et al., 2016)
implements a set of rules in the JAPE language
(Cunningham et al., 2000) to address six syntac-
tic structures: Passive Constructions, Appositive
Phrases, Relative Clauses, Coordinated Clau-
ses, Correlated Clauses and Adverbial Clauses.
Most of the rules focus on case and tense correc-
tion, with only 1-2 rules for sentence splitting. We
take inspiration from the YATS system, and our
system incorporates modules to identify and trans-
form sentence structures into simpler ones using a
broader set of rules.

In our system, each syntactic structure is hand-
led by an Analyzer, which contains two proces-
ses: Identify and Transform. The Identify process
takes in a sentence and determines if it contains
a particular syntactic structure. Subsequently, the
Transform process focuses on the first occurrence
of the identified syntactic structure and then splits
and assembles the sentence into simpler sentences.
Both Identify and Transform use Part-of-Speech
(POS) tagging and dependency parsing (Honni-
bal and Montani, 2017) modules implemented in
spaCy 2.03

The simplification algorithm (Algorithm 1)
starts with an input sentence and recursively pro-
cesses it until no further simplification is possi-
ble. It uses a queue to manage intermediate simpli-
fied sentences, and runs in a loop until the queue
is empty. For each sentence, the system applies
each syntactic analyzer to Identify the correspon-

3https://spacy.io
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Type Example Input Sentence System Output Sentence 1 System Output Sentence 2
Coordination She LAUGHS, and[cc] gives[conj] Kevin a kiss. She laughs. She gives Kevin a kiss.
Pre-Correlative It’s followed by another squad car, both[preconj]

with sirens blaring.
It’s followed by another squad car,
with sirens blaring.

–

Appositive Kevin is reading a book the Bible[appos] Kevin reads a book The book is the Bible.
Relative-dobj She pulls out a letter which[dobj] she

hands[relcl] to Keven
Shee pulls out a letter She hands a lettre to Kevin.

Relative-pobj A reef encloses the cove where[pobj] he ca-
me[relcl] from.

A reef encloses the cove he comes from the cove.

Relative-nsubj Frank gestures to the SALESMAN,
who[nsubj]’s waiting[relcl] on a woman

the SALESMAN waits on a woman. Frank gestures to the SALESMAN.

Relative-advmod Chuck is in the stage of exposure whe-
re[advmod] the personality splits[relcl]

Chuck is in the stage of exposure the personality splits at exposure.

Relative-poss The girl, whose[poss] name is[relcl] Helga, co-
wers.

The girl cowers The girl ’s name is Helga

Relative-omit Kim is the sexpot Peter saw[relcl] in Washington
Square Park

Peter sees Kim in Washington Square
Park.

Kim is the sexpot.

Adverbial Jim panics as[advcl] his mom reacts, shocked. Jim panics, shocked. Jim’s mom reacts.
Adverbial-remove Suddenly there’s a KNOCK at the door, im-

mediately after[prep] which JIM’S MOM en-
ters[advcl].

Suddenly there ’s a KNOCK at the
door.

Immediately JIM ’S MOM enters.

Inverted Cl. Subject Running[csubj] towards Oz is Steve Stifler Steve Stifler runs towards Oz. –
Clausal Component The thing is, it actually sounds[ccomp] really

good.
The thing is.(will be eliminated by the
filter)

It actually sounds really good.

Passive Voice They[nsubjpass] are suddenly illuminated by the
glare of headlights.

Suddenly the glare of headlights illu-
minateds them.

–

Open Clausal The sophomore comes running[xcomp] through
the kitchen.

The sophomore runs through the kit-
chen.

The sophomore comes.

Adjective Stifler has a toothbrush hanging[acl] from his
mouth.

A toothbrush hangs from Stifler’s
mouth.

Stifler has a toothbrush.

Table 2: Syntactic simplification rules applied on example sentences.

ding syntactic structure in the sentence (line 14).
If the result is positive, the sentence is processed
by the Transform function to convert it to simple
sentences (line 16). Each of the output sentences is
pushed by the controller into the queue (line 19).
The process is repeated with each of the Identify
analyzers (line 13). If none of the analyzers can
be applied, the sentence is assumed to be simple
and it is pushed into the result list (line 21). We
summarize linguistic rules in Table 1 and exam-
ples are given in Table 2. Next, we describe the
coordination linguistic rules. For details regarding
other rules, please refer to Appendix B.

Coordination: Coordination is used for entities
having the same syntactic relation with the head
and serving the same functional role (e.g. subj,
obj, etc.). It is the most important component in
our simplification system. The parser tags word
units such as “and” and “as well as” with the de-
pendency label cc, and the conjugated words as
conj. Our system deals with coordination based on
the dependency tag of the conjugated word.

In the case of coordination, the Identify function
simply returns whether cc or conj is in the depen-
dency graph of the input sentence. The Transform
function manipulates the graph structure based on
the dependency tags of the conjugated words as
shown in Figure 2. If the conjugated word is a
verb, then we mark it as another root of the sen-
tence. Cutting cc and conj edges in the graph and

traversing from this new root results in a new sen-
tence parallel to the original one. In other cases,
such as the conjugation between nouns, we simply
replace the noun phrases with their siblings and
traverse from root again.

3.3. Lexical Simplification

In order to generate animation, actions and par-
ticipants extracted from simplified sentences are
mapped to existing actions and objects in the ani-
mation engine. Due to practical reasons, it is not
possible to create a library of animations for all
possible actions in the world. We limit our library
to a predefined list of 52 actions/animations, ex-
panded to 92 by a dictionary of synonyms (§3.5).
We also have a small library of pre-uploaded ob-
jects (such as “campfire”, “truck” and others).

To animate unseen actions not in our list, we
use a word2vec-based similarity function to find
the nearest action in the list. Moreover, we use
WordNet (Miller, 1995) to exclude antonyms. This
helps to map non-list actions (such as “squint at”)
to the similar action in the list (e.g. “look”). If we
fail to find a match, we check for a mapping while
including the verb’s preposition or syntactic ob-
ject. We also use WordNet to obtain hypernyms
for further checks, when the similarity function
fails to find a close-enough animation. Correspon-
dingly, for objects, we use the same similarity fun-
ction and WordNet’s holonyms.
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Figure 2: Transform in an example coordination sentence. Firstly the dependency links of cc and conj are cut. Then
we look for a noun in the left direct children of the original root LAUGHS and link the new root gives with it.
In-order traverse from the original root and the new root will result in simplified sentences as shown in Table 2.

Our list of actions and objects is not exhausti-
ve. Currently, we do not cover actions which may
not be visual. For out of list actions, we give the
user a warning that the action cannot be animated.
Nevertheless, this is a work in progress and we are
working on including more animations for actions
and objects in our knowledge base.

3.4. Action Representation Field (ARF):
Information Extraction

For each of the simplified sentences, informa-
tion is extracted and populated into a predefined
key-value pair structure. We will refer to the keys
of this structure as Action Representation Fields
(ARFs). These are similar to entities and rela-
tions in Knowledge Bases. ARFs include: owner,
target, prop, action, origin action, manner, mo-
difier location, modifier direction, start-time, du-
ration, speed, translation, rotation, emotion, par-
tial start time (for more details see Appendix C).
This structure is inspired by the PAR (Badler et al.,
2000) architecture, but adapted to our needs.

To extract the ARFs from the simplified sen-
tences, we use a Semantic Role Labelling (SRL)
model in combination with some heuristics, for
example creating word lists for duration, speed,
translation, rotation, emotion. We use a pre-
trained Semantic Role Labelling model4 based on
a Bi-directional LSTM network (He et al., 2017)
with pre-trained ELMo embeddings (Peters et al.,
2018). We map information from each sentence to
the knowledge base of animations and objects.

3.5. Animation Generation
We use the animation pipeline of the CAR-

DINAL system. We plug in our NLP module in
4AllenNLP SRL model: https://github.com/

allenai/allennlp

CARDINAL to generate animation. CARDINAL
creates pre-visualizations of the text, both in story-
board form and animation. A storyboard is a se-
ries of pictures that demonstrates the sequence of
scenes from a script. The animation is a 3-D ani-
mated video that approximately depicts the script.
CARDINAL uses the Unreal game engine (Ga-
mes, 2007) for generating pre-visualizations. It
has a knowledge base of pre-baked animations (52
animations, plus a dictionary of synonyms, resul-
ting in 92) and pre-uploaded objects (e.g. “camp-
fire”, “tent”). It also has 3-D models which can be
used to create characters.

4. Text-to-Animation Corpus

We initially used a corpus of Descriptions com-
ponents from ScreenPy (Winer and Young, 2017),
in order to study linguistic patterns in the mo-
vie script domain. Specifically, we used the “hea-
ding” and “transition” fields from ScreenPy’s pu-
blished JSON output on 1068 movie scripts scra-
ped from IMSDb. We also scraped screenplays
from SimplyScripts and ScriptORama5. After se-
parating screenplays into well-formatted and ill-
formatted, Descriptions components were extrac-
ted using our model (§3.1). This gave a corpus of
Descriptions blocks from 996 screenplays.

The corpus contains a total of 525,708 Descrip-
tions components. The Descriptions components
contain a total of 1,402,864 sentences. Out of all
the Descriptions components, 49.45 % (259,973)
contain at least one verb which is in the anima-
tion list (henceforth called “action verbs”). Des-
criptions components having at least one action
verb have in total 920,817 sentences. Out of the-

5http://www.simplyscripts.com and http:
//www.script-o-rama.com
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Carl touches Ellie’s shoulder as the doctor explains. Ellie drops her head in her hands.
System output Annotator I Annotator II BLEU2( %)
Carl touches Ellie ’s shoulder carl touches ellie’s shoulder carl touches ellie’s shoulder. 38.73
the doctor explains the doctor explains the doctor is talking. 100
Ellie drops Ellie head in Ellie
hands

ellie drops her head in her hands ellie drops her head in her
hands.

48.79

Table 3: Differences between system output and annotator responses

BLEU SARI
NTS-w2v 61.45 36.04

YATS 58.83 48.75
Our System 67.68 50.65

Table 4: Results on syntactic simplification

se, 42.2 % (388,597) of the sentences contain ac-
tion verbs. In the corpus, the average length of a
sentence is 12 words.

5. Evaluation and Analysis

There are no standard corpora for text-to-
animation generation. It is also not clear how
should such systems be evaluated and what should
be the most appropriate evaluation metric. Nevert-
heless, it is important to assess how our system is
performing. We evaluate our system using two ty-
pes of evaluation: Intrinsic and Extrinsic. Intrinsic
evaluation is for evaluating the NLP pipeline of
our system using the BLEU metric. Extrinsic eva-
luation is an end-to-end qualitative evaluation of
our text-to-animation generation system, done via
a user study.

5.1. Intrinsic Evaluation

To evaluate the performance of our proposed
NLP pipeline, 500 Descriptions components from
the test set were randomly selected. Three anno-
tators manually translated these 500 Descriptions
components into simplified sentences and extrac-
ted all the necessary ARFs from the simplified
sentences. This is a time intensive process and
took around two months. 30 % of the Descriptions
blocks contain verbs not in the list of 92 animation
verbs. There are approximately 1000 sentences in
the test set, with average length of 12 words. Each
Descriptions component is also annotated by the
three annotators for the ARFs.

Taking inspiration from the text simplification
community (Nisioi et al., 2017; Saggion, 2017),
we use the BLEU score (Papineni et al., 2002) for
evaluating our simplification and information ex-
traction modules. For each simplified sentence si

we have 3 corresponding references r1i , r
2
i and r3i .

We also evaluate using the SARI (Xu et al., 2016)
score to evaluate our text simplification module.

5.1.1. Sentence Simplification
Each action block a is reduced to a set of

simple sentences Sa = {s1, s2, ....sna}. And
for the same action block a, each annotator t,
t ∈ {1, 2, 3} produces a set of simplified sen-
tences Rt

a = {rt1, rt2, ...rtmt
a
}. Since the simpli-

fication rules in our system may not maintain
the original ordering of verbs, we do not ha-
ve sentence level alignment between elements in
Sa and Rt

a. For example, action block a = He
laughs after he jumps into the water is reduced
by our system into two simplified sentences Sa =
{s1 = He jumps into the water, s2 = He laughs}
by the temporal heuristics, while annotator3
gives us R3

a = {r31 = He laughs, r32 =
He jumps into the water}. In such cases, sequen-
tially matching si to rj will result in a wrong (hy-
pothesis, reference) alignment which is (s1, r31)
and (s2, r32).

To address this problem, for each hypothesis
si ∈ Sa, we take the corresponding reference
rti ∈ Rt

a as the one with the least Levenshtein Dis-
tance (Navarro, 2001) to si, i.e,

rti = argmin
rtj

lev dist(si, r
t
j), ∀j ∈ {1, ...,mt

a}

As per this alignment, in the above example, we
will have correct alignments (s1, r32) and (s2, r31).
Thus, for each simplified sentence si we have 3 co-
rresponding references r1i , r2i and r3i . The aligned
sentences are used to calculate corpus level BLEU
score6 and SARI score7.

The evaluation results for text simplification
are summarized in Table 4. We compare against
YATS (Ferrés et al., 2016) and neural end-to-end
text simplification system NTS-w2v (Nisioi et al.,

6We used NLTK’s API with default parameters: http:
//www.nltk.org/api/nltk.translate.html#
nltk.translate.bleu_score.corpus_bleu

7Implementation available at https://github.
com/cocoxu/simplification/
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Field BLEU1 Field BLEU1

owner 56.16 org action 80.92
target 41.85 manner 84.84
prop 28.98 location 71.89
action 70.46 direction 70.83
emotion 57.89

Table 5: Results on textual ARFs ( %)

Field P R F1
s time 86.49 68.63 76.53
rot. 82.04 81.16 81.60
duration 94.72 73.92 83.04
transl. 75.49 86.47 80.61
speed 94.41 79.50 86.32

Table 6: Result on Non-textual ARFs( %)

2017). YATS is also a rule-based text simplifica-
tion system. As shown in Table 4, our system per-
forms better than YATS on both the metrics, in-
dicative of the limitations of the YATS system.
A manual examination of the results also showed
the same trend. However, the key point to note is
that we are not aiming for text simplification in
the conventional sense. Existing text simplifica-
tion systems tend to summarize text and discard
some of the information. Our aim is to break a
complex sentence into simpler ones while preser-
ving the information.

An example of a Descriptions component with
BLEU2 scores is given in Table 3. In the first sim-
plified sentence, the space between Ellie and ’s
causes the drop in the score. But it gives exactly
the same answer as both annotators. In the second
sentence, the system output is the same as the an-
notator I’s answer, so the BLEU2 score is 1. In
the last case, the score is low, as annotators pos-
sibly failed to replace her with the actual Charac-
ter Cue Ellie. Qualitative examination reveals, in
general, that our system gives a reasonable result
for the syntactic simplification module. As exem-
plified, BLEU is not the perfect metric to evaluate
our system, and therefore in the future we plan to
explore other metrics.

5.1.2. ARF Evaluation

We also evaluate the system’s output for action
representation fields against gold annotations. In
our case, some of the fields can have multiple (2
or 3) words such as owner, target, prop, action,
origin action, manner, location and direction. We
use BLEU1 as the evaluation metric to measure
the BOW similarity between system output and
ground truth references. The results are shown in
Table 5.

In identifying owner, target and prop, the sys-
tem tends to use a fixed long mention, while an-
notators prefer short mentions for the same cha-
racter/object. The score of prop is relatively lower
than all other fields, which is caused by a systema-
tic SRL mapping error. The relatively high accu-

racy on the action field indicates the consistency
between system output and annotator answers.

Annotation on the emotion ARF is rather sub-
jective. Responses on the this field are biased and
noisy. The BLEU1 score on this is relatively low.
For the other non-textual ARFs, we use precision
and recall to measure the system’s behavior. Re-
sults are shown in Table 6. These fields are sub-
jective: annotators tend to give different responses
for the same input sentence.

rotation and translation have Boolean values.
Annotators agree on these two fields in most of
the sentences. The system, on the other hand, fails
to identify actions involving rotation. For exam-
ple, in the sentence “Carl closes CARL ’s door
sharply” all four annotators think that this sen-
tence involves rotation, which is not found by the
system. This is due to the specificity of rules on
identifying these two fields.

speed, duration and start time have high preci-
sion and low recall. This indicates the inconsis-
tency in annotators’ answers. For example, in the
sentence “Woody runs around to the back of the
pizza truck”, two annotators give 2 seconds and
another gives 1 second in duration. These fields
are subjective and need the opinion of the script
author or the director. In the future, we plan to in-
volve script editors in the evaluation process.

5.2. Extrinsic Evaluation

We conducted a user study to evaluate the per-
formance of the system qualitatively. The focus of
the study was to evaluate (from the end user’s pers-
pective) the performance of the NLP component
w.r.t. generating reasonable animations.

We developed a questionnaire consisting of 20
sentence-animation video pairs. The animations
were generated by our system. The questionnai-
re was filled by 22 participants. On an average it
took around 25 minutes for a user to complete the
study.

We asked users to evaluate, on a five-point Li-
kert scale (Likert, 1932), if the video shown was
a reasonable animation for the text, how much of
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Strongly Di-
sagree

Disagree Neutral Agree Strongly
Agree

The animation shown in the video is a reasona-
ble visualization of the text.

13.64 % 18.18 % 22.95 % 28.64 % 16.59 %

All the actions mentioned in the text are shown
in the video.

15.68 % 20 % 22.96 % 20.68 % 20.68 %

All the actions shown in the video are mentio-
ned in the text.

12.96 % 11.14 % 16.36 % 23.18 % 36.36 %

Table 7: User Study Results

the text information was depicted in the video and
how much of the information in the video was pre-
sent in the text (Table 7). The 68.18 % of the parti-
cipants rated the overall pre-visualization as neu-
tral or above. The rating was 64.32 % (neutral or
above) for the conservation of textual information
in the video, which is reasonable, given limitations
of the system that are not related to the NLP com-
ponent. For the last question, 75.90 % (neutral or
above) agreed that the video did not have extra in-
formation. In general, there seemed to be reasona-
ble consensus in the responses. Besides the limita-
tions of our system, disagreement can be attributed
to the ambiguity and subjectivity of the task.

We also asked the participants to describe quali-
tatively what textual information, if any, was mis-
sing from the videos. Most of the missing infor-
mation was due to limitations of the overall system
rather than the NLP component: facial expression
information was not depicted because the charac-
ter 3-D models are deliberately designed without
faces, so that animators can draw on them. Infor-
mation was also missing in the videos if it refe-
rred to objects or actions that do not have a close
enough match in the object list or animations list.
Furthermore, the animation component only sup-
ports animations referring to a character or object
as a whole, not parts, (e.g. “Ben raises his head” is
not supported).

However, there were some cases where the NLP
component can be improved. For example, lexical
simplification failed to map the verb “watches” to
the similar animation “look”. In one case, syntac-
tic simplification created only two simplified sen-
tences for a verb which had three subjects in the
original sentence. In a few cases, lexical simpli-
fication successfully mapped to the most similar
animation (e.g.“argue” to “talk”) but the partici-
pants were not satisfied - they were expecting a
more exact animation. We plan to address these
shortcomings in future work.

6. Conclusion and Future Work
In this paper, we proposed a new text-to-

animation system. The system uses linguistic text
simplification techniques to map screenplay text
to animation. Evaluating such systems is a cha-
llenge. Nevertheless, intrinsic and extrinsic eva-
luations show reasonable performance of the sys-
tem. The proposed system is not perfect, for exam-
ple, the current system does not take into account
the discourse information that links the actions im-
plied in the text, as currently the system only pro-
cesses sentences independently. In the future, we
would like to leverage discourse information by
considering the sequence of actions which are des-
cribed in the text (Modi and Titov, 2014; Modi,
2016). This would also help to resolve ambiguity
in text with regard to actions (Modi et al., 2017;
Modi, 2017). Moreover, our system can be used
for generating training data which could be used
for training an end-to-end neural system.
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Carolina Ferrari, Roberto Comella and Max Gros-
se for their help and support in developing the
Cardinal system. Mubbasir Kapadia has been fun-
ded in part by NSF IIS-1703883 and NSF S&AS-
1723869.

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), volu-
me 1, pages 344–354.

Norman I. Badler, Rama Bindiganavale, Jan Allbeck,
William Schuler, Liwei Zhao, and Martha Palmer.

300



2000. Embodied conversational agents. chapter Pa-
rameterized Action Representation for Virtual Hu-
man Agents, pages 256–284. MIT Press, Cambrid-
ge, MA, USA.

Hamish Cunningham, Diana Maynard, and Valentin
Tablan. 2000. Jape: a java annotation patterns en-
gine.

Luciano Del Corro and Rainer Gemulla. 2013. Clau-
sie: clause-based open information extraction. In
Proceedings of the 22nd international conference on
World Wide Web, pages 355–366. ACM.

Jessica Falk, Steven Poulakos, Mubbasir Kapadia, and
Robert W Sumner. 2018. Pica: Proactive intelligent
conversational agent for interactive narratives. In
Proceedings of the 18th International Conference on
Intelligent Virtual Agents, pages 141–146. ACM.

Daniel Ferrés, Montserrat Marimon, Horacio Saggion,
and Ahmed AbuRa’ed. 2016. Yats: Yet another text
simplifier. In Natural Language Processing and In-
formation Systems, pages 335–342, Cham. Springer
International Publishing.

Epic Games. 2007. Unreal engine. Online:
https://www. unrealengine. com.

Eva Hanser, Paul Mc Kevitt, Tom Lunney, and Joan
Condell. 2010. Scenemaker: Intelligent multimodal
visualization of natural language scripts. In Pro-
ceedings of the 20th Irish Conference on Artificial
Intelligence and Cognitive Science, AICS’09, pages
144–153, Berlin, Heidelberg. Springer-Verlag.

Kaveh Hassani and Won-Sook Lee. 2016. Visualizing
natural language descriptions: A survey. ACM Com-
put. Surv., 49(1):17:1–17:34.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computatio-
nal Linguistics (Volume 1: Long Papers), volume 1,
pages 473–483.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Confe-
rence on Empirical Methods in Natural Language
Processing, pages 1373–1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Richard Johansson, David Williams, Anders Berglund,
and Pierre Nugues. 2004. Carsim: a system to vi-
sualize written road accident reports as animated 3d
scenes. In Proceedings of the 2nd Workshop on Text
Meaning and Interpretation, pages 57–64. Associa-
tion for Computational Linguistics.

R. Likert. 1932. A technique for the measurement of
attitudes. Archives of Psychology, 22(140):1–55.

Zhi-Qiang Liu and Ka-Ming Leung. 2006. Script vi-
sualization (scriptviz): a smart system that makes
writing fun. Soft Computing, 10(1):34–40.

Ruqian Lu and Songmao Zhang. 2002. Automatic ge-
neration of computeranimation: using AI for movie
animation. Springer-Verlag.

Minhua Ma and Paul Kevitt. 2006. Virtual human ani-
mation in natural language visualisation. Artif. In-
tell. Rev., 25(1-2):37–53.

Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba,
and Ruslan Salakhutdinov. 2015. Generating ima-
ges from captions with attention. arXiv preprint ar-
Xiv:1511.02793.

Marcel Marti, Jodok Vieli, Wojciech Witoń, Rushit
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Appendix A

Figure 3: FSM of Well-formatted Screenplay Parser. Numbers of link are Rules and ∼ means logical NOT

ID Rule Summary
1 If input is uppercase and contains heading words such as ‘INT’, ‘EXT’. etc, return True, otherwise

False
2 If input is uppercase and contains character words such as ‘CONT.’, ‘(O.S)’, or if #indentation >

most frequent #indentation, return True. Otherwise False
3 If input starts with ‘(′ , return True, otherwise False
4 If input ends with ‘)′, return True, otherwise False
5 If |#lastindents−#currentindents| < 3, return True, otherwise False
6 If the input is uppercase and contains transition words such as ‘DISSOLVE’, ‘CUT TO’. etc, return

True, otherwise False
7 If the input equals to ‘THE END’, return True. Otherwise False.

Table 8: FSM Transition Rules
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COMPLEX: Another parent , Mike Munson , sits on the bench with a tablet and uses an app to track and
analyze the team ’s shots.
NSELSTM-B: Another parent, Mike Munson, sits on the bench with a tablet and uses an app to track.
YATS: Another parent sits on the bench with a tablet and uses an app to track and examines the team’ s
shots. This parent is Mike Munson.
OURS: Another parent is Mike Munson. Another parent sits on the bench with a tablet. Another parent
uses an app.
COMPLEX: Stowell believes that even documents about Lincoln’s death will give people a better un-
derstanding of the man who was assassinated 150 years ago this April.
NSELSTM-B: Stowell believes that the discovery about Lincoln’s death will give people a better unders-
tanding of the man.
YATS: Stowell believes that even documents about Lincoln’ s death will give people a better reason of
the man. This man was assassinated 150 years ago this April.
OURS: Stowell believes. Even documents about Lincoln ’s death give people a better understanding of
the man. Somebody assassinates the man 150 years ago this April.

Table 9: Example Model Outputs
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Appendix B: Algorithms

Algorithm 2 Identify Adverbial Clause
1: procedure ADVERBIAL CLAUSE IDENTIFY PROCEDURE(sent) . The input sentence
2: find tokens in sents with dependency tag ROOT and ADVCL (we call it advcl)
3: if no ADVCL token in sents then
4: return False
5: find father token of advcl as father
6: if father is not a VERB then
7: we make it as a VERB . We correct POS error here
8: find conjunction tokens of father as conjuncts
9: if NOUN in advcl’s left subtree then
10: subject← this NOUN
11: else
12: subject← NOUN in father’s left subtree
13: return True

Algorithm 3 Transform Adverbial Clause
1: procedure ADVERBIAL CLAUSE TRANSFORM PROCEDURE(sent) . The input sentence
2: cut edge between root and advcl token . remove advcl token from root’s children
3: if advcl verb does not have its own subject then
4: add subject as advcl’s most left direct child
5: remove PREP and MARK token in advcl’s children, modify temporal id accordingly
6: str1← traverse a string(root)
7: str2← correct tense(traverse a string(advcl))
8: return [str1, str2]

Algorithm 4 Identify() in Relative Clause Analyzer
1: procedure RELATIVE CLAUSE IDENTIFY PROCEDURE(sent) . The input sentence.
2: if no RELCL token in sent then
3: return False
4: anchor← RELCL token
5: head← anchor’s head token
6: wg← NULL
7: for token t in anchor’s children do
8: if t.tag ∈ [WDT, WP, WP$, WRB] then
9: wh← t
10: return True

Algorithm 5 Transform() in Relative Clause Analyzer
1: procedure RELATIVE CLAUSE TRANSFORM PROCEDURE(root, anchor, head, wh) . Root of dependency tree, the recl anchor token, its head, and

wh-word
2: cut relcl edge between head and anchor
3: str1← traverse a string(root)
4: if wh = NULL then . No Wh-word in the sentence, concatenate
5: str2←traverse a string(anchor) + traverse a string(head)
6: else
7: wh-dep← dependency tag of wh
8: wh-head← head of wh
9: remove wh in anchor’s children
10: if wh-dep= DOBJ then . wh is verb
11: str2← traverse a string(wh-head) + traverse a string(anchor)
12: else if wh-dep= POBJ then . wh-head is preposition
13: put head after wh-head in anchor’s children
14: str2← traverse a string(anchor)
15: else if wh-dep∈ [NSUBJ, NSUBJPASS] then . wh is subject
16: str2← traverse a string(wh-head) + traverse a string(anchor)
17: else if wh-dep= ADVMOD then . wh is time or location
18: prep← ‘at’
19: str2← traverse a string(anchor) + prep+ traverse a string(wh-head)
20: else if wh-dep= POSS then . wh = whose
21: str2← traverse a string(wh-head) + be verb+ traverse a string(anchor)
22: correct verb tense in str1 and str2
23: return [str1, str2]
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Algorithm 6 Transform() in Coordination Analyzer
1: procedure COORDINATION TRANSFORM PROCEDURE(sents) . Input sentence
2: results← empty list
3: find root of dependency tree of sents
4: find first cc(if any) and conj token in denpendency tree and their head token main
5: embed all conjugate words of main in a list conjus
6: cut conj edge between main and cc and conj
7: if no object for main then
8: try find object in conj’s right children
9: str1← traverse a string(root)
10: results.append(str1)
11: for conj in conjs do
12: type← get conj type(main, conj)
13: if type=VERB&VERB then
14: correct part-of-speech tag if necessary . spaCy tends to tag verb as noun
15: if conj has its own subject then
16: new-root← conj
17: else
18: if main=root then
19: new-root← conj
20: else
21: replace main with conj in root’s children
22: new-root← root
23: else . Other cases such as NOUN&NOUN, AD*&AD*, apply same rule
24: main-head← head of main
25: replace main with conj in main-head’s children
26: new-root← root
27: str2← traverse a string(new-root)
28: results.append(str2)
29: return results

Algorithm 7 Identify() in Passive Analyzer
1: procedure PASSIVE VOICE IDENTIFY PROCEDURE(sents) . Input sentence
2: is-passive← False
3: for token t in sents do
4: if t.dep ∈ [CSUBJPASS, NSUBJPASS] then
5: subj-token← t
6: verb-token← t.head
7: is-passive← True
8: if t.dep ∈ [AUXPASS] and t.head = verb-token then
9: auxpass-token← t
10: if t.dep ∈ [AGENT] and t.text = ‘by’ then
11: by-token← t
12: return is-passive

Algorithm 8 Transform() in Passive Analyzer
1: procedure PASSIVE VOICE TRANSFORM PROCEDURE(sents) . Input sentence
2: if auxpass-token 6= NULL then
3: cut auxpass edge
4: cut nsubjpass or csubj edge
5: prepend subject-token to verb-token’s right children
6: if by-token 6= NULL then
7: cut by-agent edge
8: add by-token’s right children to verb-token’s left children
9: else
10: add ‘Somebody’ to verb-token’s left children
11: correct verb tense for verb-token
12: return traverse a string(root-token)

Algorithm 9 Transform() in Appositive Clause Analyzer
1: procedure APPOSITIVE CLAUSE TRANSFORM PROCEDURE(anchor, head) . The APPOS token and its head token.
2: cut edge between anchor and head token . remove anchor from head’s right children
3: str1← traverse a string(root token of input sentence)
4: str2← traverse a string(head) + be verb + traverse a string(anchor)
5: correct verb tense in str1 and str2
6: return [str1, str2]

Algorithm 10 Identify() in Inverted Clausal Subject Analyzer
1: procedure INVERTED CLAUSAL SUBJECT IDENTIFY PROCEDURE(sents) . Input sentence
2: for Token t in sents do
3: if t.dep = CSUBJ and t.tag ∈ [VBN, VBG] and t.head.lemma=‘be’ then
4: attr← token with dependency label attr in t.head’s right children
5: if attr = NULL then . attr is the actual subject of the sentence
6: return False . Make sure this is an inverted sentence
7: actual-verb← t
8: be-verb← t.head
9: return True
10: return False
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Algorithm 11 Transform() in Inverted Clausal Subject Analyzer
1: procedure INVERTED CLAUSAL SUBJECT TRANSFORM PROCEDURE(sents) . Input sentence
2: get access to actual-verb, be-verb and attr in identify procedure 10
3: change position of actual-verb and attr in be-verb’s children
4: return [traverse a string(be-verb)]

Algorithm 12 Transform() in CCOMP Analyzer
1: procedure CLAUSE COMPONENT TRANSFORM PROCEDURE(sents) . Input sentence
2: cut CCOMP link in dependency tree
3: subject← find ccomp verb’s subject
4: if subject 6= NULL and subject 6= DET(e.g. ‘that’) then
5: if original verb do not have object then
6: make subject as original verb’s object
7: else if subject = DET (e.g. ‘that’) then
8: find root verb’s object, substitute ‘that’
9: str1← traverse a string(ccomp verb)
10: str2← traverse a string(original verb)
11: return [str1, str2]

Algorithm 13 Transform() in XCOMP Analyzer
1: procedure OPEN CLAUSAL COMPONENT TRANSFORM PROCEDURE(sents) . Input sentence
2: subject-token← find subject(xcomp-verb-token) . find subject of the actual verb
3: results← empty list
4: if AUX 6∈ sents then . for some cases two verbs needs to be output
5: cut xcomp link
6: results.add(traverse a string(xcomp-verb-token))
7: remove AUX token in the dependency tree
8: replace xcomp-verb-token in subject’s children with actual-verb-token
9: results.add(traverse a string(actual-verb-token))
10: return results

Algorithm 14 Transform() in ACL Analyzer
1: procedure ADJECTIVE CLAUSE TRANSFORM PROCEDURE(sents) . Input Sentence
2: cut acl edge in dependency tree
3: str1← traverse a string(root-token)
4: mid-fix← empty string
5: if acl-token.tag = VBN and by-token in acl-token’s right children then
6: mid-fix← ‘be’
7: update acl-verb-token’s left children with [acl-noun, mid-fix, [t ∈ acl-verb-token.lefts where t.dep 6∈ [AUX]]
8: correct acl-verb-tense
9: str2← traverse a string(acl-verb-token)
10: return [str1, str2]

Algorithm 15 Get-Temporal Function at Line 5 in Algorithm 3
1: procedure ADVERBIAL CLAUSE TEMPORAL INFO EXTRACTION PROCEDURE(prep− or−mark, cur− temp). The PREP or MARK token in input

sentence
2: flag← False . whether we change the temp
3: if prep-or-mark.type = PREP then
4: sign← -1
5: else
6: sign← 1
7: text← prep-or-mark.text.lower()
8: if text = as then
9: flag← True
10: else if text ∈ [until, till] then
11: flag← True
12: cur-temp← cur-temp + sign
13: else if text = after then
14: flag← True
15: cur-temp← cur-temp - sign
16: else if text = before then
17: flag← True
18: cur-temp← cur-temp + sign
19: return [flag, cur-temp]
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Appendix C: Action Representation Fields

Action Representation Fields (ARFs) in the demo sentence James gently throws a red ball to Alice in
the restaurant from back, extracted with SRL:

owner: James
target: a red ball
prop: to Alice
action: throw
origin action: throws
manner: gently
modifier location: in the restaurant
modifier direction: from back

In this case, our output for the prop and target is not correct; they should be swapped. This is one
example where this module can introduce errors.

Additional ARFs, extracted heuristically:

startTime: Calculated by current scene time

duration: We have a pre-defined list of words that when appearing in the sentence, they will indicate a short duration
(e.g “run” or “fast”) and therefore the duration will be set to 1 second; in contrast, for words like “slowly” we assign a
duration of 4 seconds; otherwise, the duration is 2 seconds.

speed: Similarly to duration, we have pre-defined lists of words that would affect the speed of the pre-baked animation:
“angrily” would result in faster movement, but “carefully” in slower movement. We have 3 scales: 0.5, 1, 2 which
corresponds to slow, normal and fast.

translation: We have a list of actions which would entail a movement in from one place to another, e.g. “go”. If the value
of the action exists in this list, it is set to True, otherwise False.

rotation: If the action exists in our list of verbs that entail rotation, this field is True, otherwise False. Rotation refers to
movement in place e.g. “turn” or “sit”.

emotion: We find the closet neighbor of each word in the sentence in list of words that indicate emotion, using word
vector similarity. If the similarity exceeds an empirically tested threshold, then we take the corresponding emotion word
as the emotion field of this action.

partial start time: an important field, since it controls the sequence order of each action. It determines which actions
happen in parallel and which happen sequentially. This is still an open question. We solve this problem when doing
sentence simplification. Together with the input sentence, current time is also fed into each Analyzer. There are several
rules in some of the Analyzers to obtain temporal information. For example, in Line 5 of the Adverbial Clause Analyzer
(c.f.3), we assign different temporal sequences for simplified actions. The algorithm is shown in Algorithm 15. The sign
together with specific prepositions determines the change direction of current temporal id. In the Coordination Analyzer,
the current temporal id changes when it encounters two verbs sharing same subject. Then the later action will get a bigger
temporal id.
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